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Abstract 

Modular production units are small-scale modules that are implemented into a working facility by 

numbering-up modules to achieve a desired throughput. While many supply chain studies have 

demonstrated the benefits of modular process designs, the potential operation and control benefits of a 

numbered-up system have not been as well studied. In this work, we analyze the possibility of 

reconfiguring modular connectivity in response to set point changes. In particular, the set point tracking 

performance for a system of three benchmark reactor modules is analyzed. Simulation results identify a 

breakpoint where for larger set point changes it is more beneficial to reconfigure from a parallel to hybrid 

configuration. Obtaining this knowledge through offline simulations is useful to keep the configuration 

and control action decisions separate and the optimal control problem tractable. 
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Introduction

Over the past few years, global events such as a 

pandemic, war, climate change, and social unrest have made 

clear the fact that future infrastructure that supports human 

life, such as the production of critical chemicals such as 

fertilizers and fuels, must be sustainable. A promising 

approach to further enabling sustainable development, 

resource independence, and a modern circular economy is 

to implement distributed, rather than centralized, chemical 

supply chains. Distributed manufacturing can be broadly 

defined as utilizing large numbers of small-scale 

geographically scattered facilities, which is beneficial to 

reducing transportation costs for geographically distributed 

resource supply or product demand. A pivotal facilitating 

technology for distributed manufacturing is that of modular 

production units. These are small-scale, standardized units 

that can perform traditional or intensified chemical unit 

operations (Baldea et al., 2017; Shao and Zavala, 2020). 
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Modular units can be constructed off-site at a centralized 

manufacturing site, transported to a chemical production 

facility, and quickly assembled together to a working plant. 

Due to their inherent small scale, they may also be 

disassembled and moved to other facilities as needed. 

Desired plant throughput is achieved by "numbering-up", or 

installing and connecting multiple copies of the same 

module type. Unlike traditional chemical facilities but 

analogous to trends in, for example, the manufacture of 

automobiles, favorable economics for modular systems are 

achieved via an economy of numbers, where building many 

units makes capital costs lower, rather than an economy of 

scale, where building larger units makes capital costs lower. 

Recent research has explored and demonstrated the 

many possible benefits of distributed supply chains with 

modular production units. From an economic perspective, it 

has been demonstrated that such systems are well equipped 



  

 

 

to exploit spatiotemporal variability in, for example, the 

supply of critical feedstocks or the demand of the product 

made (Allman and Zhang, 2020). Additionally, it has been 

shown that increasing production capacity in a supply chain 

by building modular units can help to mitigate risk of sunk 

capital investment in cases where economic conditions such 

as future demand forecasts are uncertain (Shao et al. 2021). 

Practically speaking, distributed modular supply chains 

have shown to be promising in the production of ammonia 

(Palys et al. 2018), the upgrading of shale gas to higher 

value chemicals (Allen et al. 2019), and the processing of 

biomass waste into energy (Allman et al. 2021), to name a 

few examples. 

Much of the recent process systems research on 

modular facilities has looked at supply chain level 

problems. However, for decisions made on the time scale of 

scheduling, real-time operation, and control, there exist 

several potential benefits (and challenges) that can occur 

when considering a numbered-up modular facility rather 

than a facility with a single scaled up process unit. In 

particular, we note that when operating a numbered up 

system, there exists the option of attempting to control each 

module individually, or only worrying about a system wide 

output, allowing for a disturbance in one module to be 

rejected by manipulating another module’s input. 

Depending on which is chosen, symmetry may emerge in 

the underlying optimal control problem, which can make it 

challenging to find high quality solutions and requires a 

symmetry-breaking or dimensionality reduction approach. 

Finally, while it intuitively makes most sense to operate 

numbered-up modules in parallel, the opportunity exists to 

dynamically transition the module configuration to a series 

architecture, or any number of hybrid series/parallel 

architectures that may involve mixing together or splitting 

module output streams. The act of reconfiguration can 

potentially reject system disturbances more quickly, 

achieve lower costs in changing economic conditions, or 

allow for the production of different qualities of product. 

This work focuses on analyzing the potential for 

reconfiguration of modular connectivity in the control of a 

numbered-up modular system. 

Modern chemical process control of complex systems 

is often performed using model predictive control (MPC), 

whereby an optimization problem is repeatedly solved in a 

moving horizon fashion in order to determine control 

actions. Typically, the resulting optimization problem 

formulation is a nonlinear program (NLP), which are 

commonly solved for this application using a fast local 

solver such as IPOPT (Biegler and Zavala, 2009). 

Introducing the action of reconfiguration to the optimal 

control problem adds integer variables (corresponding to 

the module connectivity), resulting in a mixed integer 

nonlinear program (MINLP) as the optimal control 

problem. Unfortunately, MINLPs are much more difficult 

to solve than NLPs and typically cannot return a solution of 

high quality in the time scale relevant for control decisions. 

As such, it is desirable to decouple the decisions of module 

configuration and process control by, for example, 

simulating system dynamics and control for different 

configurations offline and attempting to learn and 

understand which configurations work best for different 

values of the control problem parameters (i.e. set points, 

initial states, and feed conditions), such that the 

configuration can be seen as fixed in the optimal control 

problem. 

This work provides an initial effort towards the above 

goal by studying the set point tracking of a modular system 

with benchmark reactor units when changing modular 

configuration. The remainder of the paper is structured as 

follows. The next section presents the optimal model 

predictive control problem considered in this work, with 

emphasis on how module configuration affects the 

underlying model. The following section provides 

additional detail on the various problem instances analyzed 

in this study. Then, we present the results of various set 

point tracking simulations and provide assessments of 

control performance when switching between 

configurations. Finally, we conclude by summarizing this 

work and suggesting some potential ideas for future 

development. 

Problem Statement and Formulation  

In this work, we aim to perform MPC on a numbered-up 

system of benchmark reactors whose dynamic model is 

adapted from Liu et al. (2009). In particular, each reactor 

can perform a series of first order reactions A→B→C, to 

convert a feed consisting of only A to the desired product 

B, with C as an undesirable side product. Our goal of control 

is to drive the final output mass fraction of B, 𝑥𝐵, to its set 

point, as well as to keep each individual module at a 

temperature set point. This is achieved by manipulating the 

flow of fresh feed to each module, as well as the heating rate 

to each module. Each reactor follows the standard 

assumptions of a continuously stirred tank reactor (CSTR). 

The formulation of the optimal MPC problem is as follows, 

with the notation for this problem presented in Table 1. 

Table 1. Nomenclature for problem formulation  

Symbol Description 

ℐ Set of modular units 

ℐ𝑜 

 

Set of modular units connecting to 

output stream of the system 

𝒯 Set of time points 

ℳ Set of species (reactants and products) in 

the system 

𝑤𝑥 Weighted parameters for mole fraction 

term in the objective function 

𝑤𝑇  Weighted parameters for temperature 

terms in the objective function 

𝑤𝐹  Weighted parameters for flow rate terms 

in the objective function 



  

 

𝑤𝐹  Weighted parameters for heat rate terms 

in the objective function 

𝑛𝑖𝑗 Binary, 1 if there is a flow from modular 

unit 𝑖 (output) to 𝑗 (input) 

𝑥𝑏,𝑠𝑝 Set point of mole fraction of desired 

product B in final output 

𝑇𝑖,𝑠𝑝 Set point of temperature for modular 

unit 𝑖 
𝑁 Total number of modular units 

𝑘 Arrhenius pre-exponential factor 

𝐻 Enthalpy of reaction 

𝑉 Volume of the modular unit 

𝐸 Activation energy of reaction 

𝜌 Average density of the reactant-product 

mixture 

𝑐𝑃 Heat capacity of the reactant-product 

mixture 

𝑅𝑔𝑎𝑠 Universal gas constant 

𝐹𝑖𝑗𝑡 Flow rate from modular unit 𝑖 to 𝑗 at 

time point 𝑡 

𝐹𝑓𝑖𝑡 Flow rate of fresh feed to modular unit 𝑖 
at time point 𝑡 

𝐹𝑖𝑜𝑡 Flow rate from modular unit 𝑖 to final 

output at time point 𝑡 

𝑄𝑖𝑡 Heating rate for modular unit 𝑖 at time 

point 𝑡 

𝑇𝑖𝑡  Temperature of modular unit 𝑖 at time 

point 𝑡 

𝑇𝑓 Temperature of feed 

𝑥𝑖𝑚𝑡 Mole fraction of species 𝑚 in modular 

unit 𝑖 at time point 𝑡 

𝑥𝑚𝑡
∗  Mole fraction of species 𝑚 in the final 

output at time point 𝑡 

 

As is typical for model predictive control, the 

objective function is to minimize a weighted combination 

of discretized integral square error terms on the process 

outputs, and integral square control terms on the process 

inputs: 

∑ (𝑤𝑥(𝑥𝑏𝑡
∗ − 𝑥𝑏,𝑠𝑝)

2
+ ∑ (𝑤𝑇(𝑇𝑖𝑡 − 𝑇𝑖,𝑠𝑝)

2
+𝑖∈𝒥,𝑗∈𝒥,𝑖≠𝑗𝑡∈𝒯

𝑤𝐹(𝐹𝑖𝑗𝑡 − 𝐹𝑖𝑗,𝑡−1)
2

+ 𝑤𝑄(𝑄𝑖𝑡 − 𝑄𝑖,𝑡−1)
2

))         (1) 

The problem is constrained by the time-discretized dynamic 

model that describes material and energy balances in our 

benchmark modular reactor units. All of the following 

equations hold for all modules 𝑖 ∈  ℐ  and all time points in 

the control horizon 𝑡 ∈ 𝒯, unless otherwise specified. First, 

consider the following material balances for species A in 

the each module: 

𝑥𝑖𝐴,𝑡+1 = ∆𝑡 (
𝐹𝑓𝑖𝑡

𝑉
+ ∑ 𝑛𝑗𝑖

𝐹𝑗𝑖𝑡𝑥𝑗𝐴𝑡

𝑉𝑗∈𝒥,𝑖≠𝑗 −

(∑ 𝑛𝑖𝑗𝐹𝑖𝑗𝑡 + 𝐹𝑖𝑜𝑡)
𝑥𝑖𝐴𝑡

𝑉𝑗∈𝒥,𝑖≠𝑗 + 𝑓1(𝑇𝑖𝑡 , 𝑥𝑖𝐴𝑡)) + 𝑥𝑖𝐴𝑡   (2) 

Where the reaction term is:  

𝑓1(𝑇𝑖𝑡 , 𝑥𝑖𝐴𝑡) =  𝑘1 exp (
−𝐸1

𝑅𝑔𝑎𝑠𝑇𝑖𝑡
) 𝑥𝑖𝐴𝑡    (3) 

Note that the above mass balance is valid for any 

configuration, and which specific flow terms are considered 

for a specific configuration are determined by the binary 

parameter 𝑛𝑗𝑖, which is one when the current configuration 

enables flow from module j to module i, and zero otherwise. 

For example, in a two module parallel configuration 𝑛12 =
0, while in a series configuration, 𝑛12 = 1.  For the purpose 

of this study, values of these parameters are assumed to be 

fixed, which allows for a simpler implementation of the 

material balances once the configuration is known. 

Similarly, the material balance for species B in each module 

is: 

𝑥𝑖𝐵,𝑡+1 = ∆𝑡 (∑ 𝑛𝑗𝑖

𝐹𝑗𝑖𝑡𝑥𝑗𝐵𝑡

𝑉𝑗∈𝒥,𝑖≠𝑗 − (∑ 𝑛𝑖𝑗𝐹𝑖𝑗𝑡 +𝑖∈ℐ,𝑗∈𝒥,𝑖≠𝑗

𝐹𝑖𝑜𝑡)
𝑥𝑖𝐵𝑡

𝑉
+ 𝑓1(𝑇𝑖𝑡 , 𝑥𝑖𝐴𝑡) − 𝑓2(𝑇𝑖𝑡 , 𝑥𝑖𝐵𝑡)) + 𝑥𝑖𝐵𝑡     (4) 

Where the second reaction term is: 

𝑓2(𝑇𝑖𝑡 , 𝑥𝑖𝐵𝑡) =  𝑘2 exp (
−𝐸2

𝑅𝑔𝑎𝑠𝑇𝑖𝑡
) 𝑥𝑖𝐵𝑡 ,                     (5) 

 

An energy balance is used to derive the change in 

temperature over time: 

𝑇𝑖,𝑡+1 = ∆𝑡 (
𝐹𝑓𝑖𝑡𝑇𝑓

𝑉
+ ∑ 𝑛𝑗𝑖

𝐹𝑗𝑖𝑡𝑇𝑗𝑡

𝑉𝑗∈𝒥,𝑖≠𝑗 −

(∑ 𝑛𝑖𝑗𝐹𝑖𝑗𝑡 + 𝐹𝑖𝑜𝑡)
𝑇𝑖𝑡

𝑉𝑗∈𝒥,𝑖≠𝑗 + 𝑔1(𝑇𝑖𝑡 , 𝑥𝑖𝐴𝑡) +

𝑔2(𝑇𝑖𝑡 , 𝑥𝑖𝐵𝑡) +
𝑄𝑖𝑡

𝑐𝑃𝜌𝑉
) + 𝑇𝑖𝑡 ,   ∀𝑖 ∈ ℐ                          (6) 

Where the reaction terms are: 

𝑔1(𝑇𝑖𝑡 , 𝑥𝑖𝐴𝑡) = −
𝐻1𝑚

𝑐𝑃
𝑘1 exp (

−𝐸1

𝑅𝑔𝑎𝑠𝑇𝑖𝑡
) 𝑥𝑖𝐴𝑡     (7) 

𝑔2(𝑇𝑖𝑡 , 𝑥𝑖𝐵𝑡) = −
𝐻2𝑚

𝑐𝑃
𝑘2exp (

−𝐸2

𝑅𝑔𝑎𝑠𝑇𝑖𝑡
)𝑥𝑖𝐵𝑡 (8) 

Since one of the key assumptions of a CSTR is constant 

mass holdup in each reactor, we also define a steady state 

overall mass balance constraint: 

𝐹𝑓𝑖𝑡 + ∑ 𝐹𝑗𝑖𝑡 = ∑ 𝐹𝑖𝑗𝑡 + 𝐹𝑖𝑜𝑡𝑗∈ℐ,𝑗≠𝑖𝑗∈ℐ,𝑗≠𝑖   (9) 

Finally, we can calculate the outlet mole fraction of B, our 

controlled variable of interest, from the outlet flowrates of 

each module that feed into the final outlet. An algebraic 

mixing of multiple streams is assumed: 

𝑥𝑏𝑡
∗ =

∑ 𝐹𝑖𝑜𝑡𝑥𝑖𝐵𝑡𝑖∈ℐ𝑜

∑ 𝐹𝑖𝑜𝑡𝑖∈ℐ𝑜

                                                     (10) 



  

 

 

Depending on the configuration, only select modules feed 

into the final outlet, and flowrates between non-connected 

modules are prohibited: 

𝐹𝑖𝑜𝑡 = 0,    ∀ 𝑖 ∉ ℐ𝑜   (11) 

𝐹𝑖𝑗𝑡 ≤ 𝐹𝑖𝑗𝑡
𝑚𝑎𝑥𝑛𝑖𝑗𝑡   (12) 

 

The total optimal control problem is to minimize the 

objective function (1) subject to constraints (2)-(12). As is 

typical for model predictive control, this formulation can be 

solved repeatedly in a moving horizon fashion, 

implementing only the first decided control action, then 

updating the system’s state after a certain amount of time 

has passed and re-solving the MPC problem. The 

formulation defines a nonconvex NLP, which can be solved 

using IPOPT, a well-known fast local NLP solver.  

Case Study 

The benchmark reactor system studied in this work 

uses the same parameter values as in the original study (Liu 

et al. 2009) unless specified below. For the weights of 

various integral square error and control terms in the 

objective function, values of 𝑊𝑥 = 107, 𝑊𝑇 = 1, 𝑊𝐹 =
107, and 𝑊𝑄 = 10−5 are used. These values help to ensure 

that all terms are considered roughly equally given the 

varying orders of magnitude of the different variables. Each 

reactor module has a volume of 0.17 m3, such that the total 

volume of all modules is equivalent to the reactor size tested 

in the original work (0.5 m3). 

Table 2. Configuration parameters 

Configuration 𝑛𝑖𝑗 ℐ𝑜 

Parallel (a) 

0 0 0
0 0 0
0 0 0

 {1,2,3} 

Mixing (b) 

0 0 1
0 0 1
0 0 0

 {3} 

Hybrid (c) 

0 0 1
0 0 0
0 0 0

 {2,3} 

Series (d) 

0 1 0
0 0 1
0 0 0

 {3} 

 

For the case study analyzed here, we consider a three 

module system that can operate in any of the configurations 

specified in Figure 1. Information about the connectivity of 

the four different modules is given in Table 2. In particular, 

a parallel configuration (a), a configuration with mixing (b), 

 

 

Figure 1. All configurations considered for the 

3 module system 

a hybrid series-parallel configuration (c), and a series 

configuration (d) are considered. Note that configurations 

involving splitting are also possible, but neglected in this 

work due to the extra degree of freedom that would need to 

be considered (the split fraction). 

For the set point tracking studies performed in this 

work, we begin with the modular system in parallel 

configuration (a) at a steady state with outlet mass fraction 

of B of 0.11 and reactor temperature at 388 K. After 1350 s 

pass, a set point change in 𝑥𝑏,𝑠𝑝  occurs. At this time, we 

consider the cases where the system configuration remains 

parallel, as well as when it transitions to one of the other 

three considered configurations. New set points tested range 

from 0.12 up to 0.26, at a resolution of 0.01. If a 

configuration change occurs, temperature set point changes 

also occur in the upstream modules to ensure that the risk of 

overheating from the series reactors is low. Performance of 

different configurations is determined by the realized 

integral square error of 𝑥𝑏𝑡
∗ .  

Results and Discussion 

In this work, 60 different control simulations are 

performed, with 4 configuration changes tested for each of 

the 15 set point changes considered. All optimal MPC 

problems are solved using Ipopt v0.6.5 in the JuMP v0.22.1 

package (Bezanson et al., 2017) in Julia v1.8.1. 

Computations were performed on a 5.2GHz Intel Core i9-

10900 processor. 

When analyzing the results of the control simulations, 

the first thing that is apparent is the extremely poor control 

performance in large set point changes when transitioning 

the system to the mixing configuration (b) and the series 

configuration (d). Representative plots of these poor 

performances are shown in Figures 2 and 3, respectively. In 

both figures, it is apparent that the system behaves in an 

oscillatory manner and that the controller is unable to drive 

the system to a steady state at its new set 

point. A look at the process inputs can help to explain why: 

in both cases the feed flowrates and heating rates in reactor 

3, the furthest downstream reactor, saturate at the minimum 

possible value of zero. Indeed, one can show that to achieve 

the new composition setpoint, negative heating or flowrates 

are required for these configurations to reach the desired 

steady state. This is to ensure that too much C, the 

undesirable side product, is not formed. Because these two 



  

 

configurations generally perform very poorly for the set 

point changes considered, they are not considered in the rest 

of the analysis.  

 

 

Figure 2. Control performance when the 

configuration switches from (a) to (b) and the 

setpoint increases to 0.20 

 

Figure 3. Control performance when the 

configuration switches from (a) to (d) and the 

setpoint increases to 0.18 

The control performance when keeping the 

configuration parallel (a) and when converting to the hybrid 

parallel-series configuration (c), along with the percent 

improvement from reconfiguration, is shown in Table 3. We 

note that in general, these two strategies give very similar 

control performance in all cases, as shown by the 

representative plots in Figures 4 and 5. In Table 3, we see 

that keeping the system in the parallel configuration (a) is 

best for small changes in the set point. Physically, this 

seems to make sense, as the system is initially at a good 

steady state in that configuration and the required change to 

get to the new steady state is not so large. However, as the 

set point change becomes larger, the hybrid configuration 

(c) starts to perform relatively better. Indeed, we observe a 

crossover point at a set point of 0.21 whereby the hybrid 

configuration (c) becomes the best performer. Physically, 

the fact that adding a series reactor improves set point 

tracking for larger concentration set points makes sense, as 

this can allow for higher conversions due to the increased 

reactor residence time. Practically, knowledge of the 

changeover point where the hybrid configuration (b) is very 

useful, as instead of trying to determine configuration 

online by solving an MINLP, this offline knowledge can be 

used to automatically implement a configuration shift for 

set points above 0.21.  

Table 3. Comparison on integral square error for 

configurations (a) and (c) and % improvement 

∆𝑥𝑠,𝑚 ISE*104 (a) ISE*104 (c) % imp. 

0.01 1.03 1.19 -15.6 

0.02 4.05 4.61 -13.8 

0.03 9.06 10.48 -15.7 

0.04 16.60 19.09 -15.0 

0.05 28.12 32.35 -15.0 

0.06 43.59 47.48 -8.9 

0.07 61.65 65.55 -6.3 

0.08 81.74 83.75 -2.5 

0.09 105.18 105.80 0.6 

0.10 136.88 131.91 3.6 

0.11 172.50 162.74 5.7 

0.12 214.38 198.86 7.2 

0.13 260.38 250.73 3.7 

0.14 308.96 296.73 4.0 

0.15 359.06 346.67 3.5 

 

 

Figure 4.   Control performance when the 

configuration switches from (a) to (c) and 

setpoint increases to 0.23 

 



  

 

 

 

Figure 5.   Control performance when the 

configuration keeps (a) and the setpoint 

increase to 0.23 

 

As the controller performance for the configurations (a) and 

(c) looks very similar by analyzing Figures 4 and 5, the set 

point tracking performance zoomed into where the change 

occurs is displayed in Figure 6. Here, it is apparent that the 

hybrid configuration (c) is able to more quickly approach 

the new set point than configuration (a). However, it is also 

important to note that the total system throughput, as 

determined by the sum of fresh feed added to each of the 

three modules, is larger in the parallel configuration (a). As 

such, given the similarity in set point tracking performance, 

it may still be desirable to continue to operate in the parallel 

configuration (a) even at the highest set points, depending 

on the process economics. 

 

Figure 6.   Comparison on the final output 

concentration between keeping configuration 

(a) and switching to configuration (c) 

Conclusions 

In this work, control performance of different 

configurations of a benchmark modular reactor system was 

presented. The set point tracking performance of switching 

configurations was discussed to provide insights that can 

help prevent needing to solve a challenging MINLP to 

determine optimal system configurations. In the future, we 

aim to explore more possible configurations within systems 

with higher number of modular units, as well as analyzing 

the disturbance rejection properties of reconfiguration. 

After fully understanding dynamic characteristics of 

reconfiguration, we expect to use machine learning tools to 

develop rules which allow us to perform the selection of 

system configuration offline, and to keep the complexity of 

the online optimization problem manageable. 
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