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Abstract

Superstructure optimization problems, as they often arise in the domain of Process Systems Engineering, are highly
subjected to uncertainty inherent in different aspects of the optimization formulation, such as process performance, pricing
parameters of resources and products, environmental impact factors, availability and service demands. While the matter of
uncertainty in such problems has been addressed with a variety of methods and research contributions, we are proposing
a framework to explore the effects of uncertainty in parameters on the obtained solution space and the decision-making
process. Our approaches address the identification of important process unit decisions that drive the objective functions, the
identification process unit sizes that are preferable for a variety of parameterised scenarios, and the parameter domains for
which certain process unit sizes might be preferred compared to others. Furthermore, we elaborate on choosing from a set
of solutions obtained for a superstructure optimization problem, considering parameter uncertainty in both the generation
stage and the exploration of the solution space. The suggested approaches are applied to the design of an integrated pulp

biorefinery, focusing the uncertainty analysis on economic parameters.
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Introduction

Superstructure optimization has been established as an im-
portant method to derive sustainable and robust designs of
process and energy systems in many domains of Process Sys-
tems Engineering (PSE). However, such optimization prob-
lems are subject to uncertainty - an inherent feature of any su-
perstructure, affecting process performances, pricing param-
eters of resources and products, availabilities and service de-
mands. Uncertainty in superstructure optimization has been
addressed by a variety of research contributions (Sahinidis,
2004; Ning and You, 2019; Moret, 2017). Li and Gross-
mann (2021) provide a comprehensive overview of available
contributions in the domain of PSE and uncertainty analy-
sis, with a focus on stochastic optimization. Stochastic opti-
mization is a major research area in the domain of optimiza-
tion under uncertainty, relying on probability distributions
of input parameters in the optimization problem. Classic
textbooks address the main developments in the field (Birge
and Louveaux, 2011; Shapiro, 2008; Pistikopoulos and Ier-
apetritou, 1995); a comprehensive review of existing meth-
ods is made available including mathematical formulations
and illustrative examples by Li et al. (2022). Robust opti-
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mization is another approach, based on a set of uncertain-
ties in parameters that ensures the best benefits in the worst
case of possible scenarios (Ben-Tal et al., 2004; Yanikoglu
et al., 2019). As another powerful paradigm for optimization
under uncertainty, chance constrained programming aims to
optimize an objective while ensuring constraints to be sat-
isfied with a specified probability in the uncertainty domain
(Prékopa, 2013). Similarly to stochastic programming, un-
certainty is tackled using probability distributions. More re-
cently, the application of big data and machine learning for
dealing with uncertainty in optimization has gained interest.
Ning and You (2019) provide - besides a review of concepts
and applications of stochastic programming, robust optimiza-
tion and chance-constrained programming - insights on data-
driven approaches towards optimization under uncertainty.

In general, many methods and approaches exist to tackle
uncertainty in PSE-related design and optimization prob-
lems. However, only few of them exist that include uncer-
tainty for both, solution generation and solution ranking, and
that provide guidance throughout the decision-making pro-
cess based on the uncertainty inherent in the model. The
aim of the research herein is to develop approaches on how
to identify well-performing and robust solutions of a super-
structure optimization problem by considering the existence
of uncertainty in data during solution generation and the se-
lection of solutions from a set of unique configurations. In



our context, robustness describes the ability of a configura-
tion to perform well in a wide range of parameter uncertainty.
Depending on the knowledge of the decision maker on the
degree of uncertainty inherent in the problem, different ap-
proaches are suggested. Hence, different aspects the decision
maker faces during the decision process are addressed with
visually-assisted, data-driven approaches.

Methodology

In this contribution, we present a framework to address
the impact of parameter uncertainty on superstructure opti-
mization problems. Multiple aspects and considerations are
discussed, each of them being applied to a PSE problem af-
terwards. The applications are centered around uncertainties
in economic parameters for the design of integrated industrial
biorefineries.

In the first part of this methodology section, we give a short
overview of the overall method on how we generate solu-
tions for a superstructure optimization problem. In the sec-
ond part, we propose an approach for identifying the config-
uration among a set of obtained configurations that performs
best under a wide range of scenarios. Finally, information
available from correlations between optimization objectives,
parameters and decisions is discussed.

Superstructure formulation and result generation

A process superstructure aims at describing the system’s
units and the way they interact with each other. By activating
certain units and their connections, different system config-
urations can be achieved. In this work, the methodology for
superstructure modelling and optimization is adapted from
(Gassner and Maréchal, 2010; Kantor et al., 2020). For each
unit in the system, energy and mass flow balances are for-
mulated describing demand and supply properties. Binary
decision variables describe whether a unit is installed, and
whether it is used in a respective time-step. Continuous de-
cision variables describe the size of the installed unit and the
level of usage at which it is operated in each period. Both
continuous and binary variables are constrained by param-
eterized bounds. Operating and investment costs are calcu-
lated as a function of equipment size; environmental impacts
of the system are estimated using the LCI (Life Cycle Inven-
tory) Ecoinvent database (Wernet et al., 2016). Pinch anal-
ysis is applied to model heat recovery opportunities and in-
vestigating the integration of the utility system by introduc-
ing heat cascade constraints as elaborated by Marechal and
Kalitventzeff (1998). For solution generation, the decision
variables are determined by solving a Mixed-Integer Linear
Programming (MILP) problem formulated in the AMPL op-
timization language (Fourer et al., 2002), using the CPLEX
(IBM, 2017) branch-and-bound algorithm.

The defined superstructure model, from now on referred
to as lower-level framework, is integrated in an upper-level
framework, in which optimization problems are formulated
for exploring the impact of uncertainty in the parameter do-
main.
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Figure 1: Optimization framework of the solution generation
strategy, adapted from Granacher et al. (2022)

For generating solutions, the design space, consisting of
parameters that are subjected to uncertainty, is defined and a
design of experiment is conducted in the upper level to obtain
the parameter distribution D;. Obtaining distributions of en-
vironmental and economic parameters is challenging; often,
they are not available. To avoid a bias in results induced by
the assumption of inaccurate uncertainty distributions of pa-
rameters, parameters are sampled from an equally distributed
parameter space, applying Latin Hypercube Sampling (LHS)
(Iman, 2014). For each sample in the distribution, multi-
objective optimization is performed applying the €-constraint
method, and the respective constraints as well as the param-
eter samples are communicated from the upper to the lower
level, where the optimization problem is solved (Figure 1).
The procedure yields a Pareto front for the objectives of in-
terest for each scenario in D. In a next step, the set of unique
Sunique Process configurations S obtained over all samples in
D1, characterized by the activation status and installed size
of the units present in the superstructure is identified.

Validating robustness of obtained configurations under pa-
rameter uncertainty

For identifying solutions among the obtained configura-
tions that perform well under parameter uncertainty, the per-
formance of all unique configurations Sysique that are present
on the Pareto fronts obtained for D; is recalculated a pos-
teriori to optimization. For this recalculation, a set of sce-
narios D; describing the uncertainty in parameters is consid-
ered. Similarly to Dy, D, is sampled using LHS. This pro-
cedure leads to |D;|x|S| datapoints describing the configura-
tion’s performance regarding objective functions throughout
different scenarios.
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Figure 2: Proposed algorithm to rank configurations.

The recalculated objectives are used to identify the best-
performing configurations for each scenario in D,. 'Best’ in



this case is defined as being among the configurations that
are closest to Pareto optimality from all available configura-
tions in a given scenario. In other words, configurations that
are not dominated by others regarding the relevant objectives
are identified. This classification allows to rank the configu-
rations that are Pareto optimal for a scenario in D regarding
their presence in the near-Pareto optimal domain for a large
variety of scenarios (D;), and include this information in the
decision-making process when choosing configurations. The
described procedure is visualized in Figure 2 and further il-
lustrated in Figure 3; for each scenario in D;, configurations
closest to Pareto optimality are identified. Unique configura-
tions are then ranked based on their occurrence in domains
close to Pareto optimality in D, (Figure 3, top). For an sce-
nario in D1, the computed rank of the configurations can then
be used to prioritize Pareto optimal configurations (Figure 3,
bottom).
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Figure 3: Ranking solutions based on close-to-Pareto opti-
mality in D; (top) and prioritizing them based on the obtained
ranking in D (bottom) for selected objectives z; and z5.

Interpreting the solution space

Besides the above-discussed approaches to validate and
prioritize obtained Pareto optimal solutions based on their
performance in the domain of parameter uncertainty, we sug-
gest approaches and techniques to identify relevant unit deci-
sions, their impact on changes in the objectives, as well as the
impact of parameter variation on unit selection, to better un-
derstand the solution space of a superstructure optimization
problem. We aim to address a set of questions: (i) What are
the most important process units that influence the objectives
of a superstructure optimization problem, and at which size
are they typically installed? (ii) How do changes in the pa-
rameter space affect the optimizer unit choices? (iii) Under

which conditions is a solution preferable compared to others?

For the first question, the unit choices that affect the ob-
jectives most are determined using the Spearman Rank cor-
relation coefficient, relating the changes in objectives of the
optimization problem to the changes in unit configurations
and sizes (Dodge, 2008). The most correlated process units
are identified based on the sum of the correlation coefficients
determined for both objectives, and the distribution of the
obtained process unit sizes are visually presented. For this
visual representation, the configurations closest to Pareto op-
timality in 90% of the scenarios in D, are considered, mean-
ing that we are showing the process unit sizes that are present
in the robust solutions obtained from the solution generation.
Robust in this case is meant to define the competitiveness of
a certain configuration compared to others for a multitude of
scenarios.

The next question addresses the conditions under which
a process unit is typically installed in robust configurations,
and in this way, identifying the conditions under which a
certain unit is most likely to be competitive. Furthermore,
typical sizes at which process units are emerging in con-
figurations closest to Pareto optimality for certain scenarios
are identified. This information might be relevant in high-
uncertainty situations, where the decision maker is keen on
having an overview on a wide range of possibilities.

Correlations between the parameter distribution and the
objectives are derived for each unique configuration in the
solution space, as well as the correlations between the unit
choices and the objectives for each scenario. These corre-
lations are used to identify the process units and parameters
influencing the objectives. For each relevant process unit,
its characteristics in robust configurations across the range of
considered scenarios is displayed, showing both unit instal-
lation and size of the process unit.

For identifying typical solutions and their validity ranges
in the scenario space, a similar approach to the one in Sec-
tion 2.2 is elaborated. The difference is that previously, the
decision maker had a strong guess about the scenario to con-
sider in D and uses the distributions in D, to evaluate the
performance of the obtained Pareto optimal configurations
for this chosen scenario, whereas in the approach suggested
hereafter, no strong guess is available. Therefore, validity re-
gions for obtained configurations, i.e. scenarios in which a
configuration is preferable compared to the others, are iden-
tified. Typical configurations are obtained by clustering the
unique solutions on unit decisions; the number of clusters is
identified using the k-elbow approach (Satopaa et al., 2011).
The data is reduced to two dimensions by applying Principal
Component Analysis (PCA) with high explained variance,
followed by a t-Distributed Stochastic Neighbor Embedding
that allows for adequate visualization of the clusters. For
clustering, the k-Medoid partitioning technique is applied,
yielding cluster representatives from the respective cluster
members rather than average data (Park and Jun, 2009). For
each cluster, the representative is selected based on its occur-
rence in Pareto optimal domain of D and near Pareto optimal
domains in D,. For visualizing the ranges of the scenarios
where each cluster is performing well, we identify the sce-



narios in Dy and D; where the cluster members belong to
the configurations that are closest to Pareto optimality (D)
or Pareto optimal (D1). The obtained parameter space is dis-
played in parallel coordinates, showing the parameter dis-
tribution and the resulting objectives in Pareto optiomal or
near Pareto optimal domains for each cluster. Furthermore,
we show the distribution of the clusters for binned objective
functions. For each bin, we determine the number of times
a cluster member is close to Pareto optimality or Pareto op-
timal and leads to a objective that is in the respective bin;
allowing to identify typical solutions that are preferable if a
certain overall performance regarding the objectives is de-
sired. The described procedure is visualized in Figure 4.
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Figure 4: Identification of validity ranges of clusters.

Application and results
Solution generation

We apply the suggested approaches to the solutions gener-
ated for the efficient design of an integrated industrial biore-
finery, where a Kraft pulp mill is enriched with biomass-
based process units that convert excess electricity and bio-
genic residual streams such as bark and black liquor to
storable energy in the form of fuel. The biomass-based pro-
cesses can be divided into two main pathways, dry gasifica-
tion of bark and hydrothermal gasification of black liquor,
both followed by fuel synthesis. More details on the consid-
ered superstructure are available in Granacher et al. (2022).
Optimizer decisions include system configurations which
contain the installation of units as well as their sizes. The
initial results were generated for competing objectives total
expenditure (TOTEX) and environmental impact measured
in Global Warming Potential (GWP), applying the method
described in Section 2.1. In the current example, we are con-
sidering uncertainties inherent in economic parameters. Our
sample set D has a size of 50, containing 25 economic pa-
rameters to be varied with equal probability in ranges that
are defined by + 20%-50% of the mean of historic market
observations, depending on the observed profiles. For each
of the samples in Dy, a total of 10 Pareto optimal configura-
tions are generated with the methods described in 2.1, using
the e-constraint method for GWP and TOTEX as objectives,
which yields a solution space of 500 configurations. Out of

the 500 configurations, 487 are identified as unique regarding
unit choice and size. For generating the set D, 1000 samples
of economic conditions are created, following the same sam-
pling approaches as the ones used for D;. For each unique
configuration, the objectives are recalculated for all samples
in Dy, yielding a total of 487000 datapoints.

Validation of solution robustness

We use the proposed algorithm (Fig 2) to identify prefer-
able solutions for a certain economic scenario in D;. For
each economic sample in D;, the solutions closest to Pareto
optimality from the 487 unique configurations are identified,
which allows to derive a performance measure for each con-
figuration. Going back to the economic sample in D and the
corresponding Pareto front, each configuration on the Pareto
front can now be associated with this performance measure.
For the economic scenario displayed in Figure 5, a clear pref-
erence on which configurations to choose based on this rank-
ing can be observed: the configuration with minimum impact
and the one one next to it are the most competitive ones in
terms of occurrence on the near-Pareto optimal domain for
different economic scenarios, the occurrence being visual-
ized by the size of the points.
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Figure 5: Resulting Pareto front for economic sample d; in
D1, the size of the points indicating their occurrence in the
near-optimal domains in D and D;.

We investigate the second configuration (marked in red
in Figure 5) further by looking at the characteristics of the
process unit installations. Figure 6 displays the sizes of the
process units active in this configuration (marked as white),
compared to the observed distribution of the respective pro-
cess unit sizes over all obtained unique configurations. For
readability, only the nine active process units with the highest
correlation to the objectives are displayed.

Even though not all the units considered in the superstruc-
ture are displayed, some general conclusions regarding the
characteristics of the analyzed system configuration can be
drawn. It can be observed that for the selected configura-
tion, the largest size of the dry gasification line in all of the
obtained solution space is present, indicated by the size of
the water gas shift reactor, the gasifier and the gas cleaning
unit, which affect also the flowrate of offgases in the lime
kiln and the amount of natural gas needed, which is at the
lower end of the observed distribution. Regarding CO, cap-
ture and the Selexol unit, the configuration is positioned on
the average over the solution space, thereby, the mass flow



into the Selexol unit is and indicator for the amount of black
liquor going through hydrothermal gasification and consecu-
tive cleaning.
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Figure 6: Position of identified configuration regarding its
process unit sizes, compared to the process unit sizes in all
of the unique configurations.

Generally, it can be observed that the chosen configuration
consists of process unit sizes that are common among a wide
range of obtained unique configurations (indicated by the
length of the horizontal lines in Figure 6); this observation
is strengthened by the fact that the process unit sizes of the
selected configuration also lead to preferable performance in
most of the scenarios in D,. Therefore, we conclude that for
obtaining robust configurations, installing the displayed pro-
cess units in the respective sizes seem favourable.

Interpretation of the solution space

As suggested in 2.3, visually assisted approaches are fol-
lowed to understand the correlations between scenarios, opti-
mizer decisions and effects on the objectives. To identify the
changes in process unit size that drive the objective functions,
the Spearman Correlation method is applied as previously
described. The typical sizes of the highly correlated pro-
cess units and their frequency throughout all obtained unique
configurations are displayed in Figure 7. Furthermore, the
unit sizes found in the configurations that perform closest
to Pareto optimality in 90% of the considered scenarios are
marked as dots; from now on they are referred to as dominat-
ing sizes. The process units showing the highest correlations
to the objectives over all unique configurations are the ones
describing the wet gasification line and its effects on the re-
causticiser in the pulp mill. For most process units, between
five and seven dominating sizes can be identified. It needs to
be mentioned that, since these are the process units that in-
fluence the objective functions significantly, only few domi-
nating sizes are detected. Nevertheless, the obtained Figures
help to identify critical process units that influence the ob-

jectives under parameter variation, as well as sizes for the
respective units in which the system configuration’s perfor-
mance is likely to be preferable in the majority of economic
scenarios.
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vs. the observed sizes over all unique configurations.

After analyzing the relation between process unit sizes and
obtained performance of related configurations in the uncer-
tainty domain, the process units and their sizes are further-
more related to the economic conditions in which their per-
formance is preferable compared to other unit installations.
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Figure 8: Heat map of Selexol process unit sizes in near-
Pareto optimal domains for varying interest rate.

For each identified relevant process unit, the size distri-
bution is visualized in relation to the economic parameters
at which the respective size is present in a configuration se-
lected as closest to Pareto optimal in D, or Pareto optimal in



D;.

For the example given in Figure 8, it can be noted that
one process unit size seems to be equally competitive or not
competitive for the range of economic parameters analyzed
in D,, meaning that a process unit size is performing strongly
or less strongly over all of the economic parameter space,
and no relevant variation over the economic space can be
observed. Therefore, for the given example, no conclusions
regarding economic conditions are preferably for the instal-
lation of certain process units sizes can be drawn; however,
it can be noted that a certain size, in the case of the visual-
ized Selexol process unit, a gas flow of 2 kg/s, is preferable
compared to other sizes.

Following the identification of units that characterize a
configuration and influence the objectives and their typical
sizes and economic ranges at which they are installed, we
take one step back and again look at the ensemble unit de-
cisions that define a obtained configuration. In 3.2, we dis-
cussed the selection of configurations from a set of Pareto op-
timal solutions for one economic scenario in D1, considering
an assumed uncertainty in economic parameters. If however,
the decision maker is not confident to make a guess about
which economic scenario is the most adequate one to choose
from, they can select configuration on an ensemble of ob-
servations rather than a strong guess. More specifically, the
whole ensemble of economic scenarios is equally weighted
when ranking configurations, instead of a-priori choosing
one most likely one from D; with the corresponding Pareto
front.

In our example, the approach described in Section 2.3
yields five cluster representatives describing the solution
space. For each of the cluster representatives, the economic
scenarios for Pareto optimal or close to Pareto optimal
performance are identified. These economic conditions are
then displayed in parallel coordinates, where we
differentiate between conditions where a cluster performs
close to, or strictly Pareto optimal (Figure 9).
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Figure 9: Economic conditions for near-Pareto optimality
(yellow) and Pareto optimality (black) of cluster 4.

This visual representation aims to assist in identifying
the economic domains in which a configuration is prefer-
able compared to others, however, a significant shortcom-
ing hereby is currently the lack of representation of actual
regions in the economic domain rather than ranges of param-

eters as they are currently displayed in Figure 9; this issue
will be addressed in future work.

For refining the selection between the cluster representa-
tives, their individual performance regarding the objectives is
analyzed. For the observed range of economic performance
(TOTEX), ten bins are created, and for each cluster, the num-
ber of times it performs closest to Pareto optimality with a
TOTEX in the respective bin is derived. In the visual repre-
sentation, the size of the circles represents the relative num-
ber of times the cluster is selected for the binned objective,
the color represents the cluster. The number of times selected
is displayed in % of times it could theoretically be selected
at closest to Pareto optimal.
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Figure 10: Performance of clusters on binned Pareto front.
Size of the dots represents how often a cluster is occurring
among the configurations closest to Pareto optimality in the
scenarios of D, while resulting in a TOTEX within the re-
spective bin.

For the analyzed superstructure optimization problem, the
obtained cluster performance is presented in Figure 10. For
two clusters, namely O and 4, the environmental impact is
rather low compared to the average over the cluster repre-
sentatives, with the occurrence on near-Pareto optimal do-
mains being relatively constant over all considered bins of
TOTEX for cluster 0, while cluster 4 is more likely to result
in a higher TOTEX. The other three clusters show a simi-
lar distribution regarding TOTEX, in 45% of the analyzed
economic scenarios, they appear in the domains closest to
Pareto optimality with a resulting TOTEX between -235 and
-228 MUSD, while differing significantly in environmental
performance.

Conclusion

In this paper, approaches on decision-making under un-
certainty for superstructure optimization problems have been
presented. While the analysis can surely not lead to one “op-
timal” solution to pick, we hope that the suggested visual
representations help to inspire and facilitate decision-making
under uncertainty, by providing insights on correlations be-
tween unit choices, objectives and economic scenarios, and
thereby deepening the understanding of solutions obtained
from superstructure optimization problem. In future work,
we aim to generalize the suggested approaches further, so



that uncertainty in other parameters, such as environmental
assumptions can be considered. In addition, the considera-
tion of more than two objectives will be taken into account
in future versions of this work. Furthermore, we are aim-
ing at making the developed tool available as an open source
platform for interactive visualization of superstructure opti-
mization solution characteristics considering parameter un-
certainty.
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