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Abstract
This paper highlights our recent work on the incorporation of physical domain knowledge into machine learning model-
ing and predictive control of nonlinear processes. Specifically, we first review recurrent neural network (RNN) modeling
for nonlinear dynamic systems, and discuss several methods to incorporate domain knowledge within neural network
modeling. Then, we discuss physics-informed RNN (PIRNN) model that integrates physical laws with available data in
the training process with a theoretical analysis of its generalization performance. When a multistage process is consid-
ered, process structural knowledge can be further utilized to improve PIRNN models, for which process-structure-based
and weight-constrained-based modeling approaches are discussed. Finally, we present the formulation of RNN-based
model predictive control (MPC) and conclude with discussions on some practical implementation issues with the PIRNN
modeling approach.
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Introduction
Reliability, safety, and sustainability are the cardinal goals
of any manufacturing enterprise in driving economic devel-
opment and competitiveness, and the adoption and exploita-
tion of advanced process control techniques such as model
predictive control (MPC) thus naturally becomes the key en-
ablers to these visions. Machine learning-based MPC (ML-
MPC) presents an unprecedented opportunity for revolution-
izing the manufacturing landscape, and has attracted substan-
tial interest among researchers and practitioners. Fundamen-
tally, ML-MPC is an optimization-based advanced control
method that solves for the optimal control actions using a
machine learning-based predictive model of the process by
accounting for the intrinsic dynamic behaviors of the pro-
cess and any physical constraints imposed on the manipu-
lated inputs. A major challenge of ML-MPC has been asso-
ciated with the generalizability of ML models, where limited
or inadequately sampled training data can greatly compro-
mise the prescriptive performance of ML-MPC in real-world
applications (Karniadakis et al., 2021). In this respect, to
warrant a satisfactory predictive performance of ML mod-
els, an exhaustively large dataset is typically indispensable,
which, however, may not always be readily available or is

prohibitively exorbitant and arduous to obtain.
To this end, the physics-informed neural network (PINN)
modeling technique, as introduced by Raissi et al. (2019), is a
viable potential alternative approach. Specifically, PINN ef-
fectively overcomes the small-data problem by informatively
leveraging and incorporating the a priori physics-based in-
sights (e.g., the underlying mass and energy balance equa-
tions) to provide additional penalty terms in the loss func-
tion of the learning framework. This, in turn, enhances
the performance of the learning algorithm, as the ML mod-
els are now required to conform to the inherent dynamic
behavior imposed not only by the empirical data but also
by the mechanistic laws. The associated regularization ef-
fect engendered by embedding the underlying physics-based
knowledge into the ML models thus moderates the reliance
on extensively large training datasets. Currently, the physics-
informed learning methodology is widely applied to feedfor-
ward neural networks Raissi et al. (2019), with its applica-
bility to other notable neural network architectures (e.g., re-
current neural network (RNN)) remained to be investigated.
Furthermore, theoretical analysis of the generalization per-
formance of the PI-RNN model for nonlinear dynamic pro-
cesses has not been reported.
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In this work, we summarize our recent results on formaliz-
ing the generalization performance of PI-RNN, and on im-
plementing the various physics-informed approaches to en-
hance the performance of RNN-based MPCs in controlling
nonlinear dynamic processes.

Class of Nonlinear Process Systems
The class of continuous-time nonlinear systems described by
the following state-space model is considered:

ẋ = F(x,u) := f (x)+g(x)u, x(t0) = x0 (1)

where x ∈ Rn and u ∈ Rk denote the state vector and the ma-
nipulated input vector, respectively. The input is bounded,
i.e., u ∈U , where U := {umin ≤ u ≤ umax} ⊂ Rk defines the
maximum umax and the minimum umin allowable values of u.
We assume f (·) and g(·) are sufficiently smooth vector and
matrix functions of dimensions n×1, and n×k, respectively,
and f (0) = 0 without loss of generality such that the ori-
gin is a steady-state of Eq. 1. Additionally, it is assumed
that there exists a feedback controller that stabilizes the non-
linear system of Eq. 1 at the origin. Specifically, we as-
sume that a continuously differentiable Lyapunov function
V (x) and a stabilizing controller u = Φ(x) ∈U can be found
to render the origin exponentially stable for the states in an
open neighborhood D around the origin. A level set of V (x)
within the set D is chosen to be the stability region for the
nonlinear system of Eq. 1, i.e., Ωρ := {x ∈ D | V (x) ≤ ρ},
ρ > 0. We use |·| to denote the Euclidean norm of a vector,
and A\B := {x ∈ Rn | x ∈ A,x /∈ B} to denote set subtraction
in this manuscript.

Incorporation of domain knowledge within ML modeling
The fundamental idea of physics-informed ML is essentially
imposing physics-based constraints on an ML model through
either designing specialized model architectures or introduc-
ing additional informative regularizing terms that reinforce
the conformation to the observed patterns and the underly-
ing governing physical laws. Specifically, carefully crafted
NN architectures that are tailored to a priori domain knowl-
edge have demonstrated superior performance (Karniadakis
et al., 2021). The advent of convolutional NNs has reshaped
the field of computer vision by endowing the NN with in-
variance properties that conform to natural representations of
images. Furthermore, the design of the recurrent neural net-
work, which has an architecture that resembles the numerical
solutions of ordinary differentiation equations (ODEs), has
found promising applications in modeling sequential data.
The manipulation of NN weight parameters that respects the
a priori known input-output relationships can also be poten-
tially instrumental in facilitating its learning.
Another class of physics-informed approach is multi-task
learning, where soft penalty constraints containing the a pri-
ori knowledge are incorporated into the loss function of the
learning algorithm to guide the convergence of NN toward
satisfying simultaneously the dynamic patterns embedded in
the observed data and in the given set of physical constraints.
This approach effectively minimizes the demand for training
data and is especially useful in learning problems with lim-
ited or poorly sampled training data (Raissi et al., 2019).

Recurrent neural network (RNN) model
The RNN model with the following form is generally used to
model the nonlinear system of Eq. 1 using time-series data:

ht = σh(Uht−1 +Wxt), yt = σy(Qht) (2)

where xt ∈ Rrx and yt ∈ Rry denote the input and output at
the tth time step, respectively, and ht denotes the hidden state
at the tth time step. W , U , and Q are the weight matrices
for the input-to-hidden connections, hidden-to-hidden recur-
rent connections, and hidden-to-output connections, respec-
tively. σh and σy are the activation functions for the hid-
den and output layer, respectively. Additionally, we assume
that the RNN weights U,W,F and inputs x are bounded by
BU,F ,BW,F ,BV,F ,BX , respectively.
Traditional RNN modeling requires a representative training
dataset that well captures the nonlinear dynamics of Eq. 1.
Such datasets can be generated from industrial process oper-
ations, experimental studies, and computer simulations. For
example, open-loop simulations of Eq. 1 for various initial
conditions x0 and control actions u can be conducted to gen-
erate a rich dataset, which will be partitioned into training,
validation, and test datasets for the development of RNN
models. It has been demonstrated in Wu et al. (2021) that
the RNN models using simulation data can achieve a suf-
ficiently small training loss and the desired generalization
performance with a sufficient number of training samples.
While computer simulations can provide a representative
dataset that meets the minimum training sample size required
by statistical learning theory, data collection and quality have
been a major challenge for real-world chemical processes, as
they are generally operated around steady-states without suf-
ficient data that can be used to capture the nonlinear dynam-
ics throughout the operating region. Therefore, harnessing
domain-specific knowledge (e.g., the physical laws of Eq. 1)
to improve neural network modeling is an emerging research
field that presents many opportunities for further develop-
ment.

Physics-informed RNN (PIRNN) model
Physics-guided learning effectively leverages mechanistic
knowledge encapsulated in process data and mathematical
models for building accurate surrogate RNN models. The in-
corporation of the physical-law-based regularization terms as
soft constraints in the loss function furnishes an RNN with a
priori knowledge by reasonably and informatively restricting
the weights of the neural network, which in turn reinforces
the learning and identification of solutions that are consistent
with the physics-based model (i.e., the first-principles model
of Eq. 1). In this respect, the output of the RNN model has
to satisfy the relationship outlined by the underlying physical
laws, as expressed in the ODE of Eq. 1, to warrant a good ap-
proximation performance. To put it formally, a new function
G is first defined to be the equivalent of Eq. 1.

G(x̃,u) := ˙̃x−F(x̃,u) (3)

where x̃ denotes the RNN output, which takes the initial state
vector x0 of Eq. 1, and the manipulated input u as its in-
puts. Specifically, the RNN model is developed to predict
the states of Eq. 1 for 0 ≤ t ≤ T , where T is the maximum



prediction horizon that depends on the time length of train-
ing data. To simplify the notation, we use h(z;θ) to repre-
sent the RNN hypothesis (i.e., Eq. 2) that approximates the
ODE solutions x of the nonlinear system of Eq. 1 for time
0 ≤ t ≤ T , i.e., x̃(t) = h(z;θ), t ∈ [0,T ], where z = [x0,u] de-
notes the RNN input vector that consists of the initial state x0
and manipulated inputs u, and θ denotes the RNN weights.
Consequently, as RNN learns to compute the solution x of
the ODE governed by Eq. 1 (i.e., h(z;θ) ≈ x), the following
expression holds.

G(x̃,u) := ˙̃x−F(x̃,u)≈ 0, t ∈ [0,T ] (4)

The physics-informed learning approach outlined in this sec-
tion can be viewed as a subset of multi-task learning where
the RNN model is concurrently enforced to fit the observed
data (e.g., data from sensors), and to generate outputs that
conform to the physics-based constraints (e.g., the first-
principles model of Eq. 1). Specifically, the physics-guided
RNN h(z;θ) is trained using two groups of data, which corre-
spond to their respective penalty terms presented in the mean
squared error (MSE) loss function (Eq. 5), and an optimizer
such as Adam. The first group of data, corresponding to the
first loss term MSEX , consists of the dynamic process data
captured from sensor measurement (i.e., contains both the
input data to RNN and their corresponding output labels),
which resembles the training data used in a typical regres-
sion problem. The second group of data, related to the second
loss term MSEG , comprises only input data (i.e., collocation
points encompassing the initial state vector and manipulated
inputs) that are randomly and uniformly sampled from the
designated operating regions where the ODE approximation
(Eq. 4) should be valid.

MSE = wX MSEX +wG MSEG (5)

MSEX =
1

NX

NX

∑
n=1

1
NT

NT

∑
i=0

|xn(tX ,i,uX ,n)− x̃n(tX ,i,uX ,n)|2 (6)

MSEG =
1

NG

NG

∑
n=1

1
NT

NT

∑
i=0

|G(x̃n(tG ,i,uG ,n),uG ,n)|2

+
1

NG

NG

∑
n=1

|xn(tG ,0,uG ,n)− x̃n(tG ,0,uG ,n)|2 (7)

where NX , NG , and NT denote the number of training data
(i.e., the number of dynamic state trajectories captured from
sensors), collocation points (i.e., comprising of only initial
state vector and manipulated inputs), and outputs of RNN
at time 0 ≤ t ≤ T , respectively. MSEX and MSEG repre-
sent the MSE losses with respect to the collected process
data (i.e., sensor measurements), and the randomly sampled
collocation points, respectively. wX and wG are coefficient
weights that balance the scale of the two MSE loss terms.
These weights are usually user-defined to adjust the inter-
play between the two contributing MSE loss terms and to
facilitate the training of RNN. Subscripts X and G denote
the loss terms with respect to the conventional MSE loss,
and the physics-based loss, respectively. With a slight abuse

of notation, we use xn(tG ,i,uG ,n) to represent the solution of
the first-principles model of Eq. 1 for time 0 ≤ t ≤ T under
the initial condition xn(tG ,0) at t = t0 and the manipulated
inputs u = uG ,n which are kept constant for all t ∈ [0,T ].
x̃n(tG ,i,uG ,n) represents the desired output from the RNN at
time tG ,i, and under the manipulated inputs uG ,n. It should be
noted that the training data garnered for calculating the first
loss term MSEX are directly captured from the actual nonlin-
ear dynamic system, and the collocation points should thus
be randomly sampled predominantly from operating regions
that are beyond the range of training data. Consequently,
the second loss term MSEG aims to enforce the dynamic be-
havior imposed by the physical-law-based ODE at the finite
set of randomly sampled collocation points that are beyond
the range of operating conditions captured by the training
data. Due to the incorporation of physical laws, the physics-
informed ML modeling approach is able to overcome the
problem of low data availability, satisfy the underlying con-
servation laws (e.g., conservation of energy, mass, momen-
tum), and improve the approximation performance on new
data points.

Generalization performance of PIRNN model
Generalization error has been widely used to characterize
the ability of the machine learning model to adapt to new
unseen data. Therefore, a theoretical generalization error
bound is important for the implementation of machine learn-
ing models to real-world chemical processes based on the
training data from past process operations, and should be
taken into account in the controller design to improve the
robustness. We consider an extreme scenario for the PIRNN
model where only the first-principles model of Eq. 1 and the
initial conditions x0 are available while no historical data is
provided. In other words, the PIRNN will be trained using
the loss function of Eq. 7 only to capture the nonlinear dy-
namics of Eq. 1 and fit the initial condition x0. The general-
ization error for the RNN model h(z,θ) with z drawn inde-
pendently from some underlying distribution z ∈ Z is defined
as follows, where Z is the set of bounded states x0 ∈ Ωρ and
bounded manipulated inputs u ∈U .

RD(θ) := Ez∼Z [L(G(h(z;θ),u),0)]+ γEz∼Z [L(x̃0,x0)] (8)

where L(·, ·) denotes the loss function (e.g., the mean
squared error (MSE) function that is typically used for re-
gression problems). γ is a positive real number that balances
the contributions of two loss terms in Eq. 8. x̃0 = x̃(t = 0)
is the initial condition predicted by the PIRNN model (i.e.,
the first element in the PIRNN model output vector x̃(t) =
h(z;θ), ∀t ∈ [0,T ]). Since the generalization error RD(θ) is
difficult to compute due to the unknown probability distri-
bution Z, it is generally approximated by an empirical error
calculated using a finite set of training samples zi drawn from
the same distributions Z as follows.

RS(θ) :=
1

NG

NG

∑
i=1

L(G(h(zi;θ),u),0)+γ
1

NG

NG

∑
i=1

L(x̃0i,x0i) (9)

where NG is the number of training samples from the same
distribution Z. To mitigate the impact of γ on the overall



training performance, and also to simplify the analysis of
the PIRNN generalization error by maintaining only one loss
term (i.e., the first term representing the system of Eq. 1) in
the loss function, we design a new PIRNN model h̃(z;θ) that
approximates the original PIRNN model h(z;θ) via the fol-
lowing equation.

h(z;θ) = (t − t0)h̃(z;θ)+ x0 (10)

It can be observed from Eq. 10 that h(z;θ) = x0 holds when
t = t0 regardless of the choice of h̃(z;θ). In other words,
through the design of the new PIRNN model h̃(z;θ), the ini-
tial condition can be accurately predicted by h(z;θ) for any
h̃(z;θ). Therefore, it remains to show that the approximation
of h(z;θ) through Eq. 10 can capture the nonlinear dynamics
of Eq. 3. Specifically, by substituting Eq. 10 into Eq. 3, we
have the following equation.

G̃(h̃(z;θ),u) =(t − t0) ˙̃h(z;θ)−F((t − t0)h̃(z;θ)+ x0,u)

+ h̃(z;θ)

(11)

Therefore, the new PIRNN model h̃(z;θ) is developed by
minimizing the loss function L(G̃(h̃(z;θ),u),0) only, while
the initial condition can be readily satisfied using Eq. 10. The
optimal weight matrices of the new PIRNN model h̃(z;θD)
can be obtained as follows.

θD = argmin
θ

RD(θ) := Ez∼Z [L(G̃(h̃(z;θ),u),0)]. (12)

Similarly to Eq. 9, the optimization of the RNN weights can
be practically solved by minimizing the empirical error using
a number of training samples. Based on the optimal weights
derived from empirical loss (denoted by θS), the RNN model
that approximates the nonlinear system of Eq. 1 is obtained
as h(z;θS) = (t − t0)h̃(z;θS) + x0. Therefore, by designing
h(z;θD) using Eq. 10, the training process for the original
PIRNN model h(z;θD) using the loss function of Eq. 8 is
equivalent to training the new PIRNN model h̃(z;θD) using
the new loss function of Eq. 12. Additionally, since the new
loss function of Eq. 12 only includes one loss term, and does
not depend on the weight parameter γ, a generalization error
bound can be developed for the new PIRNN model h̃(z;θD)
following the method in Wu et al. (2021). Specifically, we
use Rademacher complexity method in statistical learning
theory to quantify the richness of an ML model class, where
the definition of empirical Rademacher complexity of a hy-
pothesis class H is given below (Mohri et al., 2018).

RS(H ) = E

[
sup
h∈H

1
m

m

∑
i=1

εih(si)

]
(13)

where εi, i = 1, ...,m are Rademacher random variables that
are independent and identically distributed (i.i.d.) and satisfy
P(εi = −1) = P(εi = 1) = 0.5. Consider a hypothesis class
H of PIRNN models h̃(z;θ) that map the input z∈Rdx×t (i.e.,
the first t-time-step inputs) to the output yt ∈ Rdy (i.e., the t-
th output). Let Lt be the set of loss functions that satisfy lo-
cal Lipschitz continuity property (i.e., |L(G̃(h̃1(z;θ),u),0)−

L(G̃(h̃2(z;θ),u),0)| ≤ Lr
∣∣h̃1(z;θ)− h̃2(z;θ)

∣∣) and are asso-
ciated with the PIRNN class H , i.e., Lt = {lt : (z, ȳ) →
L(G̃(h̃(z;θ),u),0), h̃ ∈ H }, where z and ȳ are the PIRNN
input and the ground-truth output values, respectively. The
following proposition derives the generalization error bound
for PIRNN models following the proof techniques in Mohri
et al. (2018); Wu et al. (2021):

Proposition 1. Given a dataset S = (zi,t , ȳi,t)
T
t=1, i = 1, ...,m

with m i.i.d. data samples, i = 1, ...,m, and a loss function
class Lt that is associated with the class of PIRNN functions
H trained following Eq. 12. Then, the following inequality
holds with probability at least 1−δ over S.

E[lt(z, ȳ)]≤
1
m

m

∑
i=1

lt(zi, ȳi)+2RS(Lt)+3

√
log( 2

δ
)

2m

≤ 1
m

m

∑
i=1

lt(zi, ȳi)+O

(
Lrdy

MBX (1+
√

2log(2)t)√
m

)

+3

√
log( 2

δ
)

2m
(14)

where M =
1−(BU,F )

t

1−BU,F
BW,F BV,F is the product of PIRNN

weight matrices bounds, and BX is the PIRNN input bound.
dy is the PIRNN output dimension and Lr is the local Lips-
chitz constant.

The first line in Eq. 14 shows that the generalization er-
ror bound depends on the training loss (first term), the
Rademacher complexity of the PIRNN hypothesis class (sec-
ond term), and a function of the confidence δ and the train-
ing sample size m (last term). Since the first and the last
terms can be readily calculated after the training loss and
the parameters m, δ are obtained, to further show that the
Rademacher complexity term (second term) can be bounded,
the second line in Eq. 14 is derived following the proof tech-
niques in Wu et al. (2021), from which it is demonstrated
that the Rademacher complexity depends on the bounds
of PIRNN weights and inputs, the time length of data se-
quences, the output dimension, and the property of the loss
function.

Process-structure-based RNNs for multistage processes
Neural networks are generally developed with fully-
connected layers to model the nonlinear system of Eq. 1,
where the weight parameters in all layers are optimized dur-
ing the training process to minimize the training error. How-
ever, the underlying assumption that all the inputs affect all
the neural network neurons, followed by all the outputs, in
a fully-connected neural network may not be valid for all
chemical processes, especially in a multistage chemical pro-
cess, where upstream units affect downstream units but the
impact is negligible in the opposite direction. In this case,
the performance of neural network for multistage, complex
processes can be improved by accounting for the fact that
only a portion of inputs affects a portion of outputs. In this
section, we will discuss two RNN modeling approaches that
incorporate process structural knowledge into the architec-
ture design (Wu et al., 2020).



1) Partially-connected RNN
We consider the nonlinear system of Eq. 1 under the assump-
tion that the state vector x1 is affected by u1 only, and x2

is affected by both u1 and u2, where x = [x1, x2] ∈ Rn and
u = [u1 ∈ Rk1 , u2 ∈ Rk2 ] ∈ Rk, k1 + k2 = k. For example,
the two CSTRs in series in Fig. 1 is a system that meets
this assumption, where the inlet stream to the second reactor
does not affect the first reactor. Instead of building a fully-
connected RNN model for the whole system of two CSTRs,
we can decouple the fully-connected RNN model to develop
a partially-connected RNN structure as shown on the right
of Fig. 1 to resemble the process structure shown on the
left. It is observed in Fig. 1 that in the partially-connected
RNN, u1 only affects x1, and both u1 and u2 have an im-
pact on the output u2, which is consistent with the struc-
tural relationship in the example of two CSTRs on the left.

Figure 1: An example of process-structure-based RNN for
two CSTRs in series.
By designing an RNN structure that explicitly removes the
connection between u2 and x1, a better training performance
can be achieved in the sense that less training time and fewer
neurons can be used to achieve the desired modeling accu-
racy that is as good as that under a fully-connected model.
While in general the training performance of RNNs can be
improved with a more complex neural network structure (i.e.,
more neurons and layers for a fully-connected RNN), the
connection between u2 and x1 physically does not exist, and
may instead lead to a negative impact on the training process
(e.g., sub-optimal solutions). Therefore, by infusing a priori
process structural knowledge into RNN modeling, the model
performance is improved by revealing the correct direction
for RNNs to find the optimal weight parameters. A simula-
tion study of the chemical process example of Fig. 1 was con-
ducted in Wu et al. (2020), from which it was demonstrated
that the partially-connected RNN model achieves a higher
prediction accuracy than the fully-connected RNN model us-
ing the same number of neurons and layers. Additionally,
when incorporating both RNN models in model predictive
controllers, the closed-loop performance using a partially-
connected RNN model also outperformed the one using a
fully-connected model in terms of fast convergence to the
steady-state.

2) Weight-constrained RNN
In addition to partially-connected architecture, weight con-
straints can be incorporated into RNN models to represent
the input-output relationship derived from process structural
knowledge in Fig. 1. Specifically, the weights connecting u2

and x1 (dashed gray lines in the left figure of Fig. 2) can be
constrained such that the connection between u2 and x1 is
weakened during the training process. Additionally, weight

constraints can be integrated in the loss function as a regular-
ization term as follows:

L =
Nd

∑
i=1

(xi − x̂i)
2 +λΠw (15)

where Πw is the product of weights that correspond to the
connections between u2 and x1, and λ > 0 is a parameter
that balances the contributions of regular MSE loss (the first
term in Eq. 15) and weight penalty. It should be noted that
the connection between u2 and x1 cannot be fully removed
using the structure shown in the left figure of Fig. 2, since
making any weight zero will lead to a complete disconnec-
tion between the neurons it connects. Therefore, to fully
remove the connection between u2 and x1, another weight-
constrained RNN structure is designed as shown in the right
figure of Fig. 2, where additional neurons rh+1, ..., r2h are
designed in the hidden layer to build the connection between
u2 and x2. In this way, u2 does not affect the prediction
of x1, which is consistent with the process structure of the
two CSTRs in Fig. 1. While we only discuss an example of
two CSTRs in this section, the proposed process-structure-
based RNN modeling methods can be extended to multi-
stage processes that could be highly coupled, and of high
dimension. In that case, relative gain array and feature se-
lection methods can be used to determine the best input-
output pairings for multivariate processes (Zhao et al., 2022).

Figure 2: Weight-constrained RNNs for the example of two
CSTRs in series.

ML-based model predictive control (MPC)
This section presents the formulation of a model predic-
tive controller that incorporates a physics-informed RNN
model to make predictions about future process outputs. A
Lyapunov-based model predictive control (LMPC) scheme is
designed to optimize process performance and ensure system
stability. Specifically, the optimization problem of LMPC us-
ing RNN models is given as follows: (Wu et al. (2019))

J = min
u∈S(∆)

∫ tk+N

tk
(x̃T Qx̃+uT Ru)dt (16a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (16b)
u(t) ∈U, ∀ t ∈ [tk, tk+N) (16c)
x̃(tk) = x(tk) (16d)
V̇ (x(tk),u)≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ\Ωρnn (16e)
V (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (16f)

where x̃ is the predicted state trajectory, S(∆) is the set of
piecewise constant functions with period ∆, N is the number



of sampling periods in the prediction horizon, and Fnn(x,u)
represents the RNN model of Eq. 10 or the PIRNN model de-
veloped in the previous section. V̇ (x,u) represents the time
derivative of V (x), i.e., ∂V (x)

∂x (Fnn(x,u)). In the optimiza-
tion problem of Eq. 16, the objective function of Eq. 16a
is the integral of the cost function LMPC(x̃, t) = (x̃T Qx̃ +
uT Ru) over the prediction horizon, where LMPC(0,0) = 0 and
LMPC(x̃, t) > 0, ∀(x̃, t) ̸= (0,0). The constraint of Eq. 16b is
the RNN model used to predict future states. Eq. 16c de-
fines the input constraints over the entire prediction horizon.
Eq. 16d takes the state measurement at each sampling time
tk as the initial condition x̃(tk) to solve Eq. 16b. The two
Lyapunov-based constraints of Eq. 16e-16f guarantee that the
closed-loop state remains inside the stability region Ωρ for all
times and can be bounded in a terminal set around the origin
ultimately. The LMPC of Eq. 16 is implemented in a sample-
and-hold fashion, and the first control action from the opti-
mal input trajectory u∗(t), t ∈ [tk, tk+N) will be applied for the
following sampling period. Closed-loop stability of the non-
linear system of Eq. 1 under LMPC has been studied in our
recent work (Wu et al., 2019, 2021). Specifically, Wu et al.
(2019) proved closed-loop stability in a deterministic man-
ner based on the requirement that the test error of RNN mod-
els should be bounded for all states in the stability region.
More recently, in Wu et al. (2021), probabilistic closed-loop
stability results were derived for the nonlinear system under
LMPC, accounting for the fact that the generalization error of
RNN models is bounded only in a probability manner, pro-
vided that training and test data are of the same distribution.
Interested readers may refer to Wu et al. (2019, 2021) for
detailed discussions of closed-loop stability.

Practical implementation issues in NN modeling and pre-
dictive control
In this section, we discuss some practical challenges such as
model uncertainty and curse of dimensionality when imple-
menting physics-informed NN modeling and predictive con-
trol methods to real-world chemical processes.
Online machine learning
Since machine learning models are generally developed of-
fline using historical data from past normal operations that
do not involve model uncertainty, the resulting machine
learning models may not be able to accurately predict real-
time process dynamics in the presence of model uncertainty
(e.g., process disturbances, model-plant mismatch, and time-
varying process dynamics). To address this issue, online
learning of machine learning models provides a promising
solution to improve models using real-time data for better
prediction and control performance under MPC. For exam-
ple, in Wu et al. (2019); Zheng et al. (2022), event-trigger
and error-trigger mechanisms were proposed to update RNN
models online using real-time process data.
Reduced-order ML modeling
ML modeling of large-scale, complex chemical processes
may encounter the issue of curse of dimensionality, which
implies that an increase in data dimension will lead to an ex-
ponential increase in computational efforts for training. To
this end, model order reduction techniques such as feature
extraction and A variety of feature selection methods includ-
ing filter, wrapper, and embedded methods were explored in

the context of RNN modeling of large-scale nonlinear pro-
cesses in Zhao et al. (2022). Additionally, in Zhao et al.
(2022), a feature extraction method termed autoencoder was
integrated with RNN models to develop reduced-order RNN
models that can capture the process dynamics in latent space.

Conclusions
In this work, we presented an overview of recent research
results on physics-informed ML modeling of nonlinear pro-
cesses. The formulation of physics-informed RNN, its gener-
alization performance, and process-structure-based RNN ar-
chitectures for multistage processes were discussed, followed
by the design of a Lyapunov-based MPC scheme using RNN
models. Finally, the potential solutions to some practical
challenges in NN modeling such as model uncertainty and
curse of dimensionality were discussed.
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