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Abstract 

Model Predictive Control (MPC) has been widely used in process industries. However, in the real world 

most systems exhibit nonlinear dynamics, rendering the application of linear controllers. In order to apply 

MPC for nonlinear distributed-parameter systems with unknown dynamics, as a “black-box” system, a 

data-driven model reduction-based feedforward artificial neural network (ANN) approach has been 

developed for MPC control. An off-line model reduction technique, the proper orthogonal decomposition 

(POD) method, is first applied to extract accurate non-linear low-order models from the non-linear 

dynamic large-scale distributed system. Then a series of successive feedforward ANNs are trained based 

on the time coefficients of POD basis functions to obtain the model for the system. A benchmark case 

study to use cooling zones to stabilize a tubular reactor with recycle will be used as an illustrative example 

to show this methodology. 
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Introduction

Model predictive control (MPC) has been applied 

efficiently for a large number of industrial processes. In 

general, nonlinear MPC is mostly used in batch operations, 

while linear MPC is more often applied in continuous 

operations (Heath et al., 2006). Meanwhile, a non-linear 

model requires extensive computation to perform nonlinear 

MPC control strategy due to its iterative feature, especially 

for the cases with a large number of inputs. 

Model reduction techniques can be applied in MPC to 

significantly reduce the complexity of sophisticated 

nonlinear dynamic systems, which leads to  the successful 

design and implementation of the MPC control strategy 

(Bonis et al., 2012; Bonis et al., 2014; Li and Christofides, 

2008; Xie and Theodoropoulos, 2010; Xie et al., 2011; Xie 
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et al., 2012; Xie et al., 2015). The Proper Orthogonal 

Decomposition (POD) method has been effectively applied 

in non-linear MPC frameworks (Garcia et al., 2008; Li and 

Christofides, 2008; Xie and Theodoropoulos, 2010; Xie et 

al., 2015) and for MPC application with mesoscopic 

simulators (Oguz and Gallivan, 2008). An off-line POD 

model reduction technique associated with a Trajectory 

Piecewise-Linear (TPWL) method has been developed 

using linear MPC for nonlinear large-scale systems (Xie 

and Theodoropoulos, 2010; Xie et al., 2011; Xie et al., 

2012). This POD-FEM-based reduced model is 1-

dimensional nonlinear only in the time. However, this 

method requires the knowing detailed governing equations 

and the application of Galerkin projection.  



  

 

 

Since 1940s (Hebb, 1949; McCulloch and Pitts, 1943), 

especially with the development of modern computers, 

artificial neural networks (ANNs)  have been applied in 

many areas including system identification and control, 

process modeling, data processing, visualization, and etc. It 

has been stated that multilayer feed-forward networks with 

only one hidden layer can be universal approximators for 

any nonlinear functions (Hornik et al., 1989; Hornik, 1993). 

ANN-based dynamic modeling and control has been 

applied for chemical process systems (Bhat and McAvoy, 

1990). More recently, ANN associated with POD model 

reduction has been applied for nonlinear dynamic reaction 

systems (Shvartsman et al., 2000; Xie et al., 2012; Xie et 

al., 2015). A radial basis function (RBF) neural network has 

been used to model distributed parameter systems (DPSs) 

and then implemented in MPC configurations 

(Aggelogiannaki and Sarimveis, 2008). However, it took a 

long time to implement the online RBF neural network for 

predicting the temporal evolution of the system. In order to 

control systems with unknown dynamics, a POD model 

reduction-based successive Elman neural network approach 

has been applied to simulate the nonlinear large-scale 

distributed system, and then nonlinear MPC control strategy 

has been applied on the POD/ANN reduced model (Xie et 

al., 2012; Xie et al., 2015). A combined methodology of 

POD and rANN (recurrent ANNs) has been employed to 

produce a reduced order system, without using the 

equations, which is then employed within a new nonlinear 

Multiparametric MPC algorithm (Petsagkourakis et al., 

2018). 

This paper describes the development of a POD-based 

artificial neural network technique on MPC application for 

any “black-box” system with unknown dynamics. The rest 

of paper is organized as follows: There is a brief 

introduction of POD/ANN model reduction and the 

feedforward neural network. Then, a case study of a tubular 

reactor is used to illustrate the features of POD/ANN-MPC 

control strategy. Finally, the conclusions of this work are 

discussed.  

Model Reduction Methodology 

POD/ANN Model Reduction 

Proper orthogonal decomposition (POD) applies the 

spectral theory of compact and self-adjoint operators from 

the Karhunen-Loeve decomposition theorem (Wong, 

1971). POD can capture the most “energy” in an average 

sense for efficient linear approximation in terms of data 

compression (Holmes et al., 1996). The “energy” of a given 

mode corresponds to the magnitude of the eigenvalue for 

the mode. The method of snapshots (Sirovich, 1987) is often 

used to obtain the reduced set of POD global basis 

functions.  

In Figure 1, it shows main steps for POD/ANN model 

reduction method:  

(i) An empirical collection of time evolving data points 

from the response of dynamic “black box” system for the 

chosen appropriate range of parameters;  

(ii) Construction of a two-point correlation matrix from 

these dynamic responses;  

(iii) Calculation of the empirical global basis functions 

with low-order set of m<<N (N being the dimension of the 

full model) global basis functions, in which m is determined 

by capturing most of the system’s “energy” through 

eigenvalue analysis of this two-point correlation matrix; 

(iv) Expression of the state variables x(z,t) of the 

system (where z are spatial coordinates) as linear 

combinations of the eigenfunctions 𝜛(𝑧) which are 

functions only of space and of some coefficients a(t), which 

are functions only of time: 

𝑥(𝑧, 𝑡) = ∑ 𝛼𝑗
𝑚
𝑗=1 (𝑡)𝜛𝑗(𝑧) + 𝑥̅(𝑧)                                 (1) 

𝑥̅(𝑧) being the average snapshot. 

(v) Training for neural network on time coefficients of 

POD method to obtain POD/ANN reduced model, which is 

1-dimensional nonlinear only in the time. 

 
Figure 1. Schematic diagram for POD/ANN model 

reduction approach 

 

Feedforward Artificial Neural Network 

Because appropriate artificial neural network can be 

good approximators for any nonlinear functions (Hornik et 

al., 1989; Hornik, 1993), ANN can be used for POD time 

coefficients modelling. An Elman neural network (Elman, 

1990) with two recurrent tansig layers and one output 

purelin layer has been applied for POD time coefficients 

modelling (Xie et al., 2012; Xie et al., 2015). A feedforward 

neural network is an artificial neural network wherein 

connections between the nodes do not form a cycle. The 

feedforward neural network from the Neural Network Tool-

box in MATLAB is applied in this research. A feedforward 

neural network, as shown in Figure 2, has good features to 

recognize and generate temporal patterns, which are 

suitable for simulation of dynamic systems. 

“Black box” system 

Two-point correlation matrix 
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Figure 2. Neural network topology of a standard feed-

forward neural network with no recursive connections. 

The feedforward neural network has been chosen for 

POD/ANN model reduction method for the simulation of 

non-linear dynamic large-scale distributed system in this 

research. 

Case Study 

Tubular Reactor Case 

 

 
Figure 3. Tubular reactor with recycling 

 

The tubular reactor with recycling in Figure 3 can be 

modeled by two set of partial differential equations (Jensen 

and Ray, 1982) in a spatial domain 𝑧 ∈ [0,1]: 

𝐶𝑡 = −
𝜕𝐶

𝜕𝑧
+

1

𝑃𝑒𝐶

𝜕2𝐶

𝜕𝑧2 − 𝑓(𝐶, 𝑇)                                          (2) 

𝑇𝑡 = −
𝜕𝑇

𝜕𝑧
+

1

𝑃𝑒𝑇

𝜕2𝑇

𝜕𝑧2 + 𝐵𝑇𝑓(𝐶, 𝑇) + 𝛽𝑇(𝑇𝑐 − 𝑇)         (3) 

where, C and T are dimensionless concentration and 

dimensionless temperature, respectively. TC corresponds to 

the dimensionless temperature of the cooling medium and 

𝑓(𝐶, 𝑇) = 𝐵𝑐𝐶𝑒𝑥𝑝(
𝛾𝑇

1+𝑇
) is the reaction term. The values of 

parameters used are: 𝑃𝑒𝑐 = 7.0, 𝑃𝑒𝑇 = 7.0, 𝐵𝑐 = 0.1, 

𝐵𝑇 = 2.5, γ=10.0 and βT=2.0, with 𝑃𝑒𝑐, 𝑃𝑒𝑇 being the 

Peclet numbers for mass and heat transport respectively, BC 

being the (dimensionless) heat transfer coefficient, 𝐵𝑇  being 

the (dimensionless) temperature rise and γ being the 

activation energy. For a given recycling ratio r, the 

boundary conditions for concentration and temperature at 

𝑧 = 0 become (Antoniades and Christofides, 2001): 
𝜕𝐶

𝜕𝑧
= −𝑃𝑒𝐶[(1 − 𝑟)(1 + 𝐶0) + 𝑟𝐶(𝑡, 1) − 𝐶(𝑡, 0)]  (4) 

𝜕𝑇

𝜕𝑧
= −𝑃𝑒𝑇[(1 − 𝑟)(1 + 𝑇0) + 𝑟𝑇(𝑡, 1) − 𝑇(𝑡, 0)]  (5) 

The boundary conditions at 𝑧 = 1 are 𝑑𝐶 𝑑𝑧⁄ = 0 and 

𝑑𝑇 𝑑𝑧⁄ = 0. The reactor exhibits oscillations at 

C0=T0=Tc=0 for r=0.5 (Alonso et al., 2004). The model was 

discretized into 16 nodes for the spatial domain, and the 

full-scale FEM method has been applied to solve this 

model. The data from FEM method are used as the full 

model for further process in training or testing neural 

network. 

Control Objective 

It can be seen that the outlet temperature of a tubular 

reactor shows stable behavior for r=0 (Figure 4a) while it 

undergoes sustained oscillations for r=0.5 (Figure 4b). 

 
(a) 

 
(b) 

Figure 4. Temperature profiles of a tubular reactor 

under the condition (a) 𝑟 = 0, (b) 𝑟 = 0.5 

The control objective was to stabilize the reactor with 

r=0.5 to behave like the system with r=0 by introducing a 

number of jacket temperature zones (actuators). The 

objective function is as follows: 

𝐽 = min
𝑑𝑢

(𝑇(𝑡) − 𝑇𝑟𝑒𝑓)
𝑇

𝑄(𝑇(𝑡) − 𝑇𝑟𝑒𝑓) + 𝐷𝑈𝑇𝑅𝐷𝑈  

(6) 

where, Tref(t) is the reference state (r=0) and DU is the 

control on the actuators. 

Then, the following objective function can be obtained 

by applying Eq. (1) from POD method to replace 

temperature term. 

𝐽 = min
𝑑𝑢

((∑ 𝛼𝑘_𝑇
𝑚
𝑘=1 (𝑡)𝜛𝑘_𝑇(𝑥) + 𝑇16

̅̅ ̅̅ ) −

𝑇𝑟𝑒𝑓)
𝑇

𝑄 ((∑ 𝛼𝑘_𝑇
𝑚
𝑘=1 (𝑡)𝜛𝑘_𝑇(𝑥) + 𝑇16

̅̅ ̅̅ ) − 𝑇𝑟𝑒𝑓) +

𝐷𝑈𝑇𝑅𝐷𝑈                                                                                 (7) 

which is a quadratic function due to the linear POD 

representation of the state variables as seen in Eq. (1). Q and 

R are non-negative definite matrices. Applying POD on the 

nonlinear Eqs. (2) - (5) resulted in a reduced set of nonlinear 



  

 

 

characteristic equations of the system which are functions 

of the time coefficients a(t). 

 

Data Sampling 

A method based on orthogonal experimental design 

methodology has been applied on data sampling. There 

were 8 jacket temperature zones (actuators) for the 

implementation of the computed control actions. In 

Taguchi’s orthogonal experimental design, the use of the 

L12 orthogonal array has been highly recommended and 

many successful cases have been reported (Tsai, 1995). The 

first 8 columns of L12 (211) orthogonal array, as listed in 

Table 1, has been used in this work. 

Table 1: L12(211) orthogonal array from Taguchi’s 

orthogonal experimental design [25], with symbol 1 being 

replaced by 0 and -1 being replaced by 1. 

Run A B C D E F G H I J K 

1 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 1 1 1 1 1 

3 0 0 1 1 1 0 0 0 1 1 1 

4 0 1 0 1 1 0 1 1 0 0 1 

5 0 1 1 0 1 1 0 1 0 1 0 

6 0 1 1 1 0 1 1 0 1 0 0 

7 1 0 1 1 0 0 1 1 0 1 0 

8 1 0 1 0 1 1 1 0 0 0 1 

9 1 0 0 1 1 1 0 1 1 0 0 

10 1 1 1 0 0 0 0 1 1 0 1 

11 1 1 0 1 0 1 0 0 0 1 1 

12 1 1 0 0 1 0 1 0 1 1 0 

Taking 11 samples over the range of cooling 

temperature [-1, 1], we have 12 ∗ 11 = 132 runs. The full-

scale FEM model was used for sampling and the sampling 

time was 15s.   

 

Reduced Model vs. Full Model 

It is shown in Figure 5a and 5b that five global basis 

functions for concentration and temperature were computed 

based on the 132 samples collected. l=5, eigenfunctions for 

concentration (or temperature) capture 99.7% (or 98.3%) of 

the system’s energy. 

 
(a) 

 
(b) 

Figure 5. Global basis functions for (a) concentration 

(b) temperature from the sampling data of tubular reactor 

with 𝑟 = 0.5. 

The feedforwardnet function in MATLAB with a two-

layer feedforward network has been applied in this research. 

The network has one hidden layer with 20 neurons and an 

output layer. All data sampling collected with Taguchi’s 

orthogonal experimental design method has been used to 

train the feedforward neural network. In general, neural 

network training is very important for the quality of the 

approximation to the original model. Successive 

feedforward neural networks with short time slots have 

been used to simulate the original model to avoid bad 

approximation using neural networks for long time period. 

In addition, a least square optimization has been applied to 

the sampling cases of feedforward neural network to catch 

the dynamics on time coefficients of POD/ANN reduced 

model. After simulation of the sampling cases, this 

optimization step will not be used for further MPC control. 

A training result of the first feedforward ANN from 

MATLAB is shown in Figure 6. There are 8 inputs from the 

8 actuators (cooling zones). The training algorithm is 

Levenberg-Marquardt method. It took 32 iterations to reach 

minimum gradient and the performance (Mean-Squared 

Error) is 4.34e-5, which is also acceptable. Then, the 



  

 

successive feedforward ANNs can be obtained by using the 

similar training method to simulate the tubular reactor 

system. 

 
Figure 6. A training result of feedforwardnet in 

MATLAB. 

The comparison of temperature between full and 

reduced model for the dynamics of the middle and output 

points for   𝑟 = 0.5 is shown in Figure 7. It can be seen that 

the reduced model has a good prediction on the complex 

reactor dynamics. 

 
Figure 7. Comparison between temperature 

predictions of full model and POD-ANN reduced model at 

the middle and output points for tubular reactor with 𝑟 =
0.5. 

 

POD/ANN-MPC Results 

 In Figure 8, results of the POD/ANN-MPC for 8 

actuators are shown. Figure 8a shows the control law for the 

8 actuators (zones). The control output and the reference 

profile are shown in Figure 8b. It can be seen that the tubular 

reactor outlet temperature is efficiently stabilized by the 8 

actuators. 

 
(a) 

 
(b) 

Figure 8. POD/ANN-MPC results (a) time evolution of 

control profile for the 8 actuators (b) control and reference 

profile of the tubular reactor outlet temperature. 

Conclusion 

A POD model reduction-based artificial neural network 

(ANN) approach has been developed for the nonlinear MPC 

application for nonlinear large-scale distributed systems. 

This efficient model reduction-based technique combines 

the proper orthogonal decomposition (POD) with the 

feedforward artificial neural network (ANN). The POD-

ANN methodology enables the use of nonlinear MPC for 

large scale non-linear “black-box” systems. This method 

can effectively facilitate the use of nonlinear MPC for large 

scale distributed systems, as it was demonstrated in the case 

study, where stabilization of a tubular reactor undergoing 



  

 

 

sustained oscillations was performed. For the future work, 

it has been proposed to implement a piecewise linear MPC 

associated with POD-ANN for control of large scale non-

linear “black-box” systems, by which high computational 

efficiency can be achieved. 
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