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Abstract

It is important to assess the accuracy of the dynamic model obtained by system identification before its implementation to

a model-based control system. Especially in practical situations, it is required to use finite-sample data for the assessment

of model accuracy, that is, asymptotic theory, which assumes infinite-sample data, cannot be used. The sign-perturbed

sums (SPS) method can exactly assess the model accuracy using finite-sample, input-output data. SPS calculates the

confidence region of the process parameters using resampled data sets that are obtained by sign-perturbation of the noise

innovation. However, the application of the SPS method to multivariate processes has not been reported. In this paper,

an extended SPS method that can handle multivariate processes is proposed. Moreover, it is shown by both a theoretical

proof and a numerical example that the proposed method can calculate the exact confidence region. In the numerical

example, the errors between the true and empirical confidence probabilities are smaller than 0.14%.
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Introduction

In model-based control systems, such as model predictive

control systems, the accuracy of the dynamic model affects

the control performance directly. Hence, it is important to

evaluate the model accuracy before it is used for control, as

well as to construct an accurate model. When the model ac-

curacy turns out to be terrible, the resulting problems caused

by the implementation of the model-based control can be pre-

vented. In addition, evaluating model accuracy can provide

clues to constructing an accurate model. For the above rea-

sons, it is essential to determine the model accuracy exactly.

The models used for process control are often constructed

using system identification (Darby and Nikolaou, 2012).

Generally speaking, there are two types of system identifica-

tion methods, open-loop identification and closed-loop iden-

tification. In open-loop identification, the process inputs are

determined freely, and the identification result is likely to be

accurate. However, a lot of time and effort are required to

keep the production performance of the process during data

acquisition. On the other hand, in closed-loop identification,

the process inputs are determined by feedback controllers.

Hence, closed-loop identification can save a lot of time and

effort that are required in open-loop identification. However,

model parameters obtained from closed-loop identification

are likely to be biased because of the correlation between the

manipulated variables and the output disturbances (Forssell

and Ljung, 1999).

When comparing these two identification methods in the

current situation, one is not always better than the other.

However, closed-loop identification will be preferred in the

future because the external situations of industrial plants will

change more frequently. For example, the product demands

will change faster as the idea of mass customization becomes

more common, and the utility cost will also change faster as

renewable energy, whose supply is unstable, becomes com-

monly used in plants. To handle such fast external changes,

frequent update of the model is required. In such situations,

closed-loop identification, which can work with past oper-

ating data accumulated in the plant, will be more suitable.

Therefore, methods for assessing the model accuracy will be

expected to handle not only open-loop identification but also
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closed-loop identification in the future.

Several studies have theoretically examined the accuracy

of the model obtained from system identification (Soder-

strom et al., 1976; Ljung, 1999; Wang et al., 2004; Bazanella

et al., 2010; Shardt and Huang, 2011a,b; Yan et al., 2015).

These studies derived the theoretical conditions where the

modeling error converges to 0 as the number of samples

goes to infinity. Therefore, while they are approximately true

when the number of samples is large, the application of them

to the case where a small number of samples are used may

lead to wrong conclusions. Hence, it is necessary to correctly

assess the accuracy of the model identified with finite-sample

data.

Recently, several methods for assessing the accuracy of

the model from system identification with finite-sample data

were proposed by Weyer et al. (Csaji et al., 2015; Campi

and Weyer, 2005; Care et al., 2018; Volpe et al., 2015). Us-

ing their methods, a confidence region, which includes the

true process parameters with a given probability, can be cal-

culated from the finite-sample data under the mild assump-

tion that the noise innovation follows a symmetric distribu-

tion about 0.

Among their methods, only the sign-perturbed sums

(SPS) method can be applied to closed-loop systems (Csaji

and Weyer, 2015). However, the application of the SPS

method to multivariate processes has not been discussed yet.

Since the industrial plant has multiple input and output vari-

ables, it is required to extend SPS so that it can handle the

data from multivariate processes. In this paper, the SPS

method is extended to handle the finite-sample data obtained

from multivariate processes.

Problem Setting

Figure 1 shows the process of interest. Let the true pro-

cess be represented by an autoregressive exogenous (ARX),

M-input, N-output linear system such as

y(t) = G(q−1)u(t)+H(q−1)e(t), (1)

G(q−1) =







G1,1(q
−1) · · · G1,M(q−1)

...
...

GN,1(q
−1) · · · GN,M(q−1)






, (2)

H(q−1) =









H1(q
−1) 0

. . .

0 HN(q
−1)









, (3)

where u(t) = [u1(t), · · · ,uM(t)]⊤ ∈ R
M , y(t) =

[y1(t), · · · ,yN(t)]
⊤ ∈R

N , and e(t) = [e1(t), · · · ,eN(t)]
⊤ ∈R

N

are the input, output and noise innovation vectors. Here, N

and M can be different, that is, the extended SPS can be

applied to nonsquare systems.

Figure 1: Control system considered in this paper.

For ∀n ∈ {1,2, · · · ,N} and ∀m ∈ {1,2, · · · ,M}, Gn,m(q
−1)

and Hn(q
−1) are rational functions of backward shift opera-

tor q−1 defined as

Gn,m(q
−1) =

Bn,m(q
−1)

An(q−1)
, (4)

Hn(q
−1) =

1

An(q−1)
, (5)

An(q
−1) = 1+an,1q−1 + · · ·+an,Knq−Kn , (6)

Bn,m(q
−1) = bn,m,1q−1 + · · ·+bn,m,Ln,mq−Ln,m , (7)

where Kn and Ln,m are non-negative integers. Based on

Eqs. (1) to (7), the true process can be expressed as

y(t) =Φ
⊤
0 (t)θ

∗+e(t). (8)

The definitions of the regressor matrix Φ0(t)∈R
d×N and the

true parameter vector θ∗ ∈ R
d are

Φ0(t) =













φ0,1(t) 0
φ0,2(t)

. . .

0 φ0,N(t)













, (9)

φ0,n(t) = [yn(t −1), · · · ,yn(t −Kn),

u1(t −1), · · · ,u1(t −Ln,1),

· · ·

uM(t −1), · · · ,uM(t −Ln,M)]⊤, (10)

θ∗ = [θ∗⊤
1 ,θ∗⊤

2 , · · · ,θ∗⊤
N ]⊤, (11)

θ∗
n = [an,1, · · · ,an,Kn ,

bn,1,1, · · · ,bn,1,Ln,1 ,

· · ·

bn,M,1, · · · ,bn,M,Ln,M ]
⊤, (12)

where d is the number of parameters included in the system

and is calculated by

d =
N

∑
n=1

(

Kn +
M

∑
m=1

Ln,m

)

. (13)

In the case of open-loop systems, u(t) is determined

freely. On the other hand, when considering closed-loop sys-

tems, u(t) is calculated by

u(t) = C(q−1)(yset(t)−y(t)), (14)

C(q−1) =







C1,1(q
−1) · · · C1,N(q

−1)
...

...

CM,1(q
−1) · · · CM,N(q

−1)






, (15)

where yset(t) = [yset,1(t), · · · ,yset,N(t)]
⊤ ∈ R

N is the setpoint

vector, and Cm,n(q
−1) are the linear controllers. Note that

{yset,n}
T
t=1 can be an arbitrary, bounded signal.

Method

SPS calculates an exact confidence region of model pa-

rameters using time-series data with finite samples. The con-

fidence region is a region defined in the parameter space

where the true parameter vector θ∗ is included with probabil-

ity p. When the value of p is fixed, the size of the confidence



region indicates the model accuracy, that is, the model accu-

racy increases as the size of the confidence region decreases.

This means that SPS enables us to assess model accuracy us-

ing finite-sample data.

The basic idea of multivariate SPS is almost the same

as SPS for single-input, single-output systems (Csaji et al.,

2015). Multivariate SPS calculates the confidence region

DSPS(p) ⊆ R
d by determining whether each parameter vec-

tor in R
d is included in the DSPS(p). Let one of the consid-

ered parameter vectors be θ ∈ R
d . Then, multivariate SPS

resamples data sets by perturbing the signs of the estimate

ǫ0(t,θ) = [ε0,1(t,θ), · · · ,ε0,N(t,θ)]
⊤ ∈ R

N of e(t), which is

calculated by

ǫ0(t,θ) = y(t)−Φ
⊤
0 (t)θ, y(t),u(t) ∈ D0, (16)

where D0 = {y(t),u(t) | t = 1 · · · ,T}, and T ∈N is the num-

ber of samples.

The sign perturbation of ǫ0(t,θ) is performed by mul-

tiplying (R − 1)N independent and identically distributed

(i.i.d.) random sign {αr,n(t)}
T
t=1 (r = 1, · · · ,R − 1, n =

1, · · · ,N) to each element of ǫ0(t,θ). Here, αr,n(t) takes the

values +1 and −1 with a probability of 0.5 each. The sign-

perturbed noise innovation estimate ǫr(t,θ)(r = 1, · · · ,R−1)
is given as

ǫr(t,θ) = [αr,1(t)ε0,1(t,θ), · · · ,αr,N(t)ε0,N(t,θ)]
⊤. (17)

Using ǫr(t,θ)(r = 1, · · · ,R−1) as the noise innovation vec-

tors, simulations for acquiring (R− 1) time-series data sets,

Dr(θ) = {yr(t,θ),ur(t,θ) | t = 1, · · · ,T}(r = 1, · · · ,R−1),
is performed. Here, ur(t,θ) = [ur,1(t,θ), · · · ,ur,M(t,θ)]⊤∈
R

M and yr(t,θ) = [yr,1(t,θ), · · · ,yr,N(t,θ)]
⊤∈ R

N are the re-

sampled input and output vectors.

Using D0 and Dr(θ)(r = 1, · · · ,R−1), multivariate SPS

calculates the reference sum S0(θ) and the sign-perturbed

sums {Sr(θ)}
R−1
r=1 defined as

Sρ(θ) =

(

1

T

T

∑
t=1

Φρ(t)Φ
⊤
ρ (t)

)− 1
2

1

T

T

∑
t=1

Φρ(t)ǫρ(t,θ), (18)

ρ = 0,1, · · · ,R−1,

where Φr(t)(r = 1, · · · ,R−1) is

Φr(t) =













φr,1(t) 0
φr,2(t)

. . .

0 φr,N(t)













, (19)

φr,n = [yr,n(t −1), · · · ,yr,n(t −Kn),

ur,1(t −1), · · · ,u⊤r,1(t −Ln,1),

· · ·

ur,M(t −1), · · · ,u⊤r,M(t −Ln,M)]⊤. (20)

Multivariate SPS determines if θ is included in DSPS(p) by

exploiting the fact that {||Sρ(θ
∗)||}R−1

ρ=0 is uniformly ordered

with respect to (w.r.t.) ≺π. Here, ≺π is a strictly total order

defined for I real numbers {Zi}
I
i=1 as

Zk ≺π Z j (21)

if and only if

(Zk < Z j) or (Zk = Z j and π(k)< π( j)), (22)

where π is a bijection map from {1,2, · · · , I} to itself. In ad-

dition, “uniformly ordered” is defined in Definition 1.

Definition 1. Let Z1, · · · , ZI be random variables and ≺ be

a strict total order. Then, {Zi}
I
i=1 is uniformly ordered w.r.t.

≺ if and only if

P(Zi1 ≺ Zi2 ≺ ·· · ≺ ZiI ) =
1

I!
(23)

holds for any permutation ∀{i1, i2, · · · , iI} of {1,2, · · · , I},

where P(·) is the probability that the input event occurs.

Detailed procedure

In multivariate SPS, the following assumptions are made:

A.1 Each {en(t)}
T
t=1 is independent and follows a probabil-

ity density function (PDF) symmetric about 0.

A.2 If n1 6= n2, then {en1
(t)}T

t=1 and {en2
(t)}T

t=1 are inde-

pendent of each other.

A.3 The matrices {Rρ}
R−1
ρ=0 defined as

Rρ =
1

T

T

∑
t=1

Φρ(t)Φ
⊤
ρ (t) (24)

are invertible. In addition, Eq. (24) is equivalent to

Rρ =









Rρ,1 0
. . .

0 Rρ,N









, (25)

where Rρ,n = 1
T ∑T

t=1φρ,n(t)φ
⊤
ρ,n(t). Therefore, Rρ is

invertible if and only if Rρ,1, · · · , Rρ,N are invertible,

and the inverse of Rρ is given as

R−1
ρ =









R−1
ρ,1 0

. . .

0 R−1
ρ,N









. (26)

A.4 The true process is included in the model set.

A.5 The external signals, {u1(t)}
T
t=1, · · · ,{uM(t)}T

t=1 in the

case of open-loop systems or {yset,1(t)}
T
t=1, · · ·{yset,N(t)}

T
t=1

in the case of closed-loop systems, are independent of

{e1(t)}
T
t=1, · · · , {eN(t)}

T
t=1.

Since A.1 does not require a particular kind of PDF of e(t),
A.1 is likely to hold in many cases including practical ones,

where the PDF of the noise innovation is usually unknown.

Under assumptions A.1 to A.5, the procedure for multi-

variate SPS is:



M.1 Determine R∈{2,3, · · ·} and R̃∈{1,2, · · · ,R}, then the

confidence probability is p = 1− R̃/R.

M.2 Generate (R − 1) sets of a random-sign time series

{αr(t)}
T
t=1 (r = 1,2, · · · ,R−1).

M.3 Determine DSPS(p) according to the following equa-

tion:

DSPS(p) =
{

θ ∈ R
d | ISPS(θ) = 1

}

. (27)

Here, the definition of ISPS(·) is

ISPS(θ) =

{

1 (if Rank(θ)≤ R− R̃),
0 (otherwise),

(28)

where Rank(θ) is defined as follows:

M.3.1 Calculate {ǫ0(t,θ)}
T
t=1 by Eq. (16)

M.3.2 Calculate {ǫr(t,θ)}
T
t=1 (r = 1, · · · ,R−1) by Eq. (17)

M.3.3 Aquire Dr(θ)(r = 1, · · · ,R− 1) from the simulation

of the system with θ driven by {ǫr(t,θ)}
T
t=1 (r =

1, · · · ,R−1).

M.3.4 Calculate {Sρ(θ)}
R−1
ρ=0 using Eq. (18).

M.3.5 Arrange {||Sρ(θ)||}
R−1
ρ=0 from smallest to largest ac-

cording to ≺π, that is, ||Sρ1
(θ)|| ≺π ||Sρ2

(θ)|| ≺π

· · · ≺π ||SρR
(θ)||, where {ρ1, · · · ,ρR} is a permuta-

tion of {0,1, · · · ,R−1}.

M.3.6 Define Rank(θ) as

Rank(θ) = i, if ||S0(θ)||= ||Sρi
(θ)||. (29)

When considering the open-loop systems, the data acquisi-

tion in Step M.3.3 is performed by

yr(t,θ) = Ĝ(q−1,θ)u(t)+Ĥ(q−1,θ)ǫr(t,θ), (30)

ur(t,θ) = u(t), (31)

where Ĝ(q−1,θ) and Ĥ(q−1,θ) are the transfer function

matrices of the models of the process and the noise filter. In

the case of closed-loop systems, on the other hand, the data

acquisition in Step M.3.3 is performed using the closed-loop

system described as

yr(t,θ) = Ĝ(q−1,θ)ur(t,θ)+Ĥ(q−1,θ)ǫr(t,θ), (32)

ur(t,θ) = C(q−1)(yset(t)−yr(t,θ)). (33)

Theoretical background

DSPS(p) includes the true process parameter θ∗ exactly

with the probability p regardless of the quality of D0 and the

value of R.

Theorem 2. If assumptions A.1 to A.5 hold, for ∀R ∈
{2,3, · · ·} and ∀R̃ ∈ {1,2, · · · ,R}, the confidence probabil-

ity of the confidence region obtained using the multivariate

SPS method is exactly 1− R̃/R.

Proof. See appendix “Proof of Theorem 2”.

This property is mainly attributed to A.1. If θ =
θ∗, then ǫ0(t,θ

∗) = e(t) from Eqs. (8) and (16). Be-

cause of this, the sign-perturbation of each element of

ǫ0(t,θ
∗) does not change the PDF from A.1, that is,

{ǫρ(t,θ
∗)}T

t=1 (ρ = 0, · · · ,R− 1) follows the same PDF. As

a result, {||Sρ(θ
∗)||}R−1

ρ=0 are uniformly ordered w.r.t. ≺π,

and the probability that ||S0(θ
∗)|| is the ρ′-th smallest is

1/R for ∀ρ′ ∈ {1,2, · · · ,R}. Therefore, the probability of

Rank(θ∗)≤ R− R̃, which corresponds to the probability that

θ∗ is determined to be in the confidence region by multivari-

ate SPS, is exactly 1− R̃/R.

Numerical Example

In this section, the validity of the multivariate SPS

method is confirmed through a numerical example of a 2-by-

2 ARX process. Let the ARX process of interest be defined

as:

G(q−1) =









3.2q−1

1−0.6q−1

1.9q−1

1−0.6q−1

2.3q−1

1−0.8q−1

2.8q−1

1−0.8q−1









, (34)

H(q−1) =







1

1−0.6q−1
0

0
1

1−0.8q−1






, (35)

where the sampling interval is 1s. This ARX process is con-

trolled by 2 proportional-integral (PI) controllers. Here, y1(t)
and y2(t) are controlled by manipulating u1(t) and u2(t), re-

spectively. The transfer function matrix of the controller is

described as

C(q−1) =









1.75+
3.51q−1

1−q−1
0

0 1.01+
2.02q−1

1−q−1









×10−3.

(36)

Each element yset,n (n= 1,2) of the setpoint vector is changed

from 0 to 5 at t = 1s, that is,

yset,n(t) =

{

0, t ≤ 1

5, t > 1
, n = 1,2. (37)

Each element en (n = 1,2) of the noise innovation vector is

white noise with a Gaussian distribution whose mean and

variance are, respectively, 0 and 0.1, that is,

en(t)∼ N (0,0.1), n = 1,2. (38)

Note that assumption A.1 holds for the noise innovation de-

fined as Eq. (38). In addition, the number of samples T of

the time-series data is set to 200.

Calculation of the empirical confidence probability

In this subsection, it is confirmed that the proposed

method can yield the exact confidence region by calculating

empirical confidence probabilities pe for several given con-

fidence probabilities p. To calculate pe, ISPS(θ
∗) is calcu-

lated 100,000 times for different seeds to generate {e(t)}T
t=1.

Then, pe is calculated as the mean of 100,000 simulations of

ISPS(θ
∗).
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Figure 2: Errors pe − p between empirical and given confi-

dence probabilities for several given confidence probability

p.
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Figure 3: Cumulative distributions of the difference between

the norms of reference and sign-perturbed sums at θ = θ∗.
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Figure 4: Cumulative distributions of the difference be-

tween the norm of reference and sign-perturbed sums at

θ = 0.95θ∗.

The corresponding pe to p= 0.05,0.10, · · · ,0.95 was cal-

culated using the above procedure. Here, R is fixed at 100,

and R̃ is changed to adjust p. The error between p and pe

is shown in Figure 2. From Figure 2, the maximum absolute

error between pe and p is 0.14%. Hence, the proposed exten-

sion of SPS can calculate the exact confidence region with a

given p.

Change in a difference between reference and sign-perturbed

sums against parameter error

Multivariate SPS determines if a given parameter vector θ

is included in DSPS(p), based on the fact that {||Sρ(θ
∗)||}R−1

ρ=0

are uniformly ordered w.r.t. ≺π. This means that the prob-

ability that the norm of reference sum is larger than one of

the norms of sign-perturbed sums is exactly 0.5. In this sub-

section, this property is confirmed by drawing the cumulative

distribution of the difference between ||S0(θ)|| and ||S1(θ)||.
For the 2 kinds of parameters, θ = θ∗ and 0.95θ∗,

||S0(θ)|| and ||S1(θ)|| are calculated 100,000 times with dif-

ferent seed values to generate {e(t)}T
t=1. Then, the empirical

cumulative distribution of ||S0(θ))|| − ||S1(θ)|| are drawn

using 100,000 simulations of ||S0(θ)|| and ||S1(θ)||.
The cumulative distributions of ||S0(θ)|| − ||S1(θ)|| for

the 2 parameter vectors are shown in Figures 3 and 4. From

Figure 3, the probability that ||S0(θ
∗)|| − ||S1(θ

∗)|| > 0 is

0.5. This indicates that the multivariate SPS method can

calculate the exact confidence region for every given con-

fidence probability. From Figure 4, on the other hand,

||S0(0.95θ∗)||− ||S1(0.95θ∗)|| is larger than 0 in all the tri-

als. Therefore, when ||θ−θ∗|| is large, Rank(θ) is likely to

be large, that is, θ is determined to be excluded from the con-

fidence region by multivariate SPS.

Conclusions and future work

In this paper, SPS, which was proposed in (Csaji et al.,

2015), (Csaji and Weyer, 2015), and (Volpe et al., 2015), was

extended so that it can be used for multivariate processes, es-

pecially multivariate ARX processes. The multivariate SPS

method exploits the linear regression form where the output

vector is expressed as the sum of the noise innovation vector

and the product between the regressor matrix and the param-

eter vector to define the reference sum and the sign-perturbed

sums. It was theoretically proved that multivariate SPS pro-

vides the exact confidence region with a given probability. In

addition, the validity of the extended SPS method was con-

firmed through a numerical example of a 2-input, 2-output,

first-order ARX process controlled by PI controllers. As a

result, it was shown that the extended SPS method can cal-

culate the exact confidence region with a given confidence

probability; the absolute error between the empirical and

given probabilities was at most 0.14%. Moreover, it was con-

firmed that the parameter vector far from the true parameter

vector is excluded from the confidence region.

SPS explores the complete confidence region by calculat-

ing the value of the indicator function for a lot of param-

eter vectors. Hence, when the simple grid search is used

for searching the parameter vectors included in the confi-

dence region, the computational burden increases exponen-

tially against the order of the parameter vector. This com-

putation problem is more serious in multivariate SPS than

in SPS for single-input, single-output processes, because of

the large order of the parameter vector in the former. Prac-

tically, the outer approximation method which calculates ap-

proximately the confidence region within polynomial time

can avoid the curse of dimensionality (Csaji et al., 2015;

Volpe et al., 2015). However, the method to determine the

confidence region accurately in a short time is still open.

Therefore, an efficient method for SPS to search the com-

plete confidence region must be provided to use the extended

SPS method, which will be one of our future works.
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Proof of Theorem 2

SPS provides the exact confidence region with probability

1− R̃/R for ∀R ∈ {2,3, · · ·} and ∀R̃ ∈ {1, · · · ,R}, if and only

if ||S0(θ
∗)|| is the ρ′-th smallest entry of {||Sρ(θ

∗)||}R−1
ρ=0 ac-

cording to ≺π with probability 1/R for ∀ρ′ ∈ {1, · · · ,R}. The

latter is easily derived if it is proved that {||Sρ(θ
∗)||}R−1

ρ=0 is

uniformly ordered w.r.t. ≺π. The main objective of the fol-

lowing is to prove this.

From assumption A.5, it follows that the realization of the

external signal vector, u(t) in the case of open-loop systems

or yset(t) in the case of closed-loop systems, is fixed. Define

{ξρ,n(t)}
T
t=1 and {Ξρ(t)}

T
t=1 as

ξρ,n(t) =

{

1, ρ = 0,
αρ,n(t), otherwise,

(39)

Ξρ(t) =









ξρ,1(t) 0
. . .

0 ξρ,N(t)









∈ R
N×N . (40)

Then, from Eq. (18), the reference sum and sign-pertubed

sums at θ∗ is expressed as

Sρ(θ
∗) =R

− 1
2

ρ
1

T

T

∑
t=1

Φρ(t)Ξρ(t)e(t). (41)

Substituting Eqs. (19) and (26) to Eq. (41) gives

Sρ(θ
∗) =

[

S⊤
ρ,1(θ

∗) · · ·S⊤
ρ,N(θ

∗)
]⊤

, (42)

Sρ,n(θ
∗) =R

− 1
2

ρ,n
1

T

T

∑
t=1

φρ,n(t)ξρ,n(t)en(t). (43)

Since the external signal vector is fixed, ||Sρ,n(θ
∗)||2 is a

function of {ξρ,n(t)en(t)}
T
t=1. Hence, from Eq. (42),

||Sρ(θ
∗)||2 =

N

∑
n=1

gn(ξρ,n(1)en(1), · · · ,ξρ,n(T )en(T )), (44)

where gn(·) is the measurable function whose output corre-

sponds to ||Sρ,n(·)||
2.

Here, en(t) is divided into the absolute value vn(t) =
|en(t)| and the sign σn = sign(en(t)), where sign(·) is a

function which returns the sign of the input. Let γρ,n(t) =
ξρ,n(t)σn(t), then {γρ,n(t)}

T
t=1 is i.i.d. from Lemma 1

in (Csaji et al., 2015), and ||Sρ(θ
∗)||2 is a function of

{γρ,n(t)vn(t)}
T
t=1 (n = 1, · · · ,N) since

||Sρ(θ
∗)||2 =

N

∑
n=1

gn(γρ,n(1)vn(1), · · · ,γρ,n(T )vn(T )). (45)

Let {vn(t)}
T
t=1 (n = 1, · · · ,N) be fixed to a realization, and

then {||Sρ(θ
∗)||2}R−1

ρ=0 is i.i.d. from the fact that the sum of

the outputs of measurable functions whose inputs are i.i.d.

are also i.i.d. From this, based on Lemma 3 in (Csaji et al.,

2015), {||Sρ(θ
∗)||2}R−1

ρ=0 is uniformly ordered w.r.t. ≺π under

the condition where {vn(t)}
T
t=1 (n = 1, · · · ,N) and the exter-

nal signal vector are realized. Moreover, the same statement

holds without fixing any realizations from Lemma 2 in (Csaji

et al., 2015) because it is independent of the particular real-

izations of {vn(t)}
T
t=1 (n = 1, · · · ,N) and the external signal

vector. Finally, {||Sρ(θ
∗)||}R−1

ρ=0 is also uniformly ordered

with respect to ≺π since

||Sρ1
(θ∗)|| ≺π · · · ≺π ||SρR

(θ∗)||

⇔ ||Sρ1
(θ∗)||2 ≺π · · · ≺π ||SρR

(θ∗)||2, (46)

for any permutation ∀{ρ1, · · · ,ρR} of {0, · · · ,R−1}. Q.E.D.


