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Abstract 

Model-based design of experiments (MBDoE) leverages science-based models to maximize information 
gain from experiments while minimizing time and resource costs.  When not enough or unsuitable 
measurements are , MBDoE may suggest uninformative or infeasible optimal experiments. We proposed 
a novel to the measurementmaximiz the experimental information content. This framework identifies 
measurement campaigns for multi-response systems variance and covariances between responses. We 
leveraged the continuous-effort design concept to retain a convex optimization problem regardless of 
model structure. sensitivity matrix computed by Pyomo.. 
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Introduction

Design of experiments (DoE) is an essential tool for the 
building and validation of predictive mathematical models. 
It links the experimental and the modelling world by 
suggesting experiments that yield the most informative data 
from an experimental apparatus. Model-based DoE 
(MBDoE) leverages science-based mathematical models 
constructed from the underlying physical principles of the 
system (Franceschini and Macchietto, 2008). Taking 
advantage of the prior knowledge of the experimental 
system, MBDoE can discriminate between scientific 
hypotheses, posted as mathematical models, and facilitate 
nonconvex optimization with state-of-the-art algorithms 
that exploit 1st and 2nd derivative information. MBDoE has 
a rich history of success at the intersection of chemical 
engineering, applied statistics, and mathematical 
programming research communities including chemical 
kinetics (Waldron et al., 2020), heat/mass transfer modeling 
(Balsa-Canto et al., 2007), and biological modeling 
(Chakrabarty et al., 2013). Recent open-source general-
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purpose software including Pyomo.DE (Wang and 
Dowling, 2022) and Pydex (Kusumo et al., 2022) help 
reduce barriers by making MBDoE accessible to Python 
user. 
 Pyomo.DE implements a two-stage stochastic program 
tosolve the MBDoE optimization problem 							max

𝝋
	 𝜓(M)                                                               

(1)   where 𝝋 is the vector of experimental design variables, 
M is Fisher information matrix (FIM). The design criteria 
𝜓  can be the classical alphabetic criteria such a A-
optimality (trace), D-optimality (determinant), or user-
defined expression. 

 Pydex 						      

 𝐌(𝝋") is the FIM of this experiment. Unlike Eq. (1) 
which leverages process models to evaluate FIM, Eq. (2) 
precomputes FIM  and how many of them should be 
repeatedIn this way, Eq. (2) circumvents the challenges of 



  
 

 

solving the usually large-scale and highly-nonlinear 
MBDoE problem memory requirements to store sensitivity 
data. Figure 1 shows model calibration and uncertainty 
quantification workflow in Pyomo (Bynum et al., 2021) 
ecosystem. Building Pyomo models with prior knowledge 
and preliminary data, Pyomo.DE evaluates the FIM with a 
specific set of measurements  the identifiability of the 
model, suggests new experiments to provide data for 
parameter estimation. ureang and Dowling 2022 shows with 
a fixed-bed case study that optimal designs may be 
uninformative or unidentifiable when certain measurements 
are unavailable. Considering the possibility and difficulty to 
set up and the usually high costs to add measurements, 
choosing a experimental measurement, a.k.a. hat, when, and 
how to measure,  critical balance the trade-off between high 
information content provided by s the high costs . We 
highlight the importance of choosing such a measurement  
and s 

Figure 1.   Parameter estimation, sensitivity 
and uncertainty analysis, and MBDoE are 

combined into an iterative framework to select, 
refine, and calibrate science-based 

mathematical models with quantified 
uncertainty. 

Method 

Consider a multi-input multi-response model of a 
process given by:  

𝒇(𝜽,𝝋, 𝒚) = 0                                                                  () 

where 𝒚 ∈ 𝓨 ⊂ ℝ#!  is the vector of state variables, 𝜽 ∈
𝚯 ⊂ ℝ#"  is the vector of parameters𝒇 is the process model, 
𝝋 ∈ 𝚽 ⊂ ℝ𝒏𝝋   is the vector of A set of data is collected 
from the experimental system by measuring part of or all 
the state variables 𝒚% at a set of specific timepoint 𝒕%. 𝑦%,' 
means the dynamical measurement 𝒚% ∈ 𝓨 = 8𝒚(, … , 𝒚)!: 
is measured at a specific time point 𝑡 ∈ 𝒕% = {𝑡(, … , 𝑡%}. 𝑁* 
is the number of dynamical measurements. The  𝑝%,' ∈
{0,1}indicates if the data of 𝑦%,' is measured. Thes 

An optimal measurement maximizes the experimental 
information content indicated by experimental design 
criteria while satisfying constraints to the total cost of this 
measurement :  

						max
𝑰
	 𝜓(M)                              (a                                                                      

(4b)									∑ 𝑐, ⋅ 𝑚,	,∈𝒦                                                  
(c)								 								 																 							 

where the design criteria 𝜓 can be the classical alphabetic 
criteria or -defined . Classical information criteria for 
improving the parameter accuracy include A-, D-, and E-
optimality, which are the trace, determinant, and the 
minimal eigen value of the Fisher information matrix (FIM) 
M(Wang and Dowling, 2022). FIM is approximated by the 
dynamic sensitivity matrix and  inverse of the error 
variance-covariance matrix.  is the FIM from prior 
experiments,  prior information.  is the total cost .𝑦 The 
sensitivity matrix 𝐐% for measurement 𝒚% is defined as: 
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here{𝑡(, … , 𝑡%}  are time points for measurement 𝒚% . The 
dynamic sensitivity matrix 𝐐 combines all measurements:  

𝐐 = R
𝐐(
⋮

𝐐)!
S                                                                        () 

Eq. ()sLocal sub-optimal designs can be avoided  CED 
problem and convex optimization . An obvious drawback of 
the CED method is that the size of the optimization problem 
scales with the number of measurements. But the sensitivity 
matrix can be precomputed prior to solving the optimization 
problem, which reduces the computational burden. In this 
work, all process models are constructed on Pyomo he 
precomputed sensitivity matrix are obtained by Pyomo.DE. 
The convex CED formulation is solved numerically using 
MOSEK (Andersen and Andersen, 2000) interfaced 
through cvxpy (Diamond and Boyd, 2016) with a Macbook 
Pro (15-inch, 2018) with a 2.6 GHz 6-core Intel Core i7 
processor in seconds.  

Results 

We consider a reaction kinetics system containing two first-
order liquid phase reactions in a batch reactor from Wang 
and Dowling 2022. The system is dynamic algebraic 
equations (DAE)(  The candidate measurement space 
includes three time-varying state variables, 𝐶2, 𝐶3 , 𝐶4,, the 
concentrations of the species A, B, C ach  9 timepoints 𝒕  0 
to 1 hr. The observation error variance are assumed to be 
different for A, B, C, 𝜎2,'&

5 = 1, 𝜎3,'&
5 = 4, 𝜎6,'&

5 = 8 
mol5	L75 , 𝑖 ∈ 𝒕 , and there are covariance between 
measurements at the same time point, 𝜎(2,3),'& =
0.1, 𝜎(2,6),'& = 0.1, 𝜎(3,6),'& = 0.5, 𝑖 ∈ 𝒕  in mol5	L75 . The 
cost at one time point $10 for A $6 for B and C. Figure 2.   
Figure 2 shows the optimal measurement strategy and its 



  

 

experimental information content with the budget. The left 
axis shows the logarithm of the D-optimality, a.k.a. the 
determinant of FIM, theinformation content. The right  axis 
shows the number of measurements that can be selected. 
With the budget increasing from $50 to $180, he number of  
increases from 7 to all 24, and the information content 
increases by around 3 orders of magnitude. The 
optimization formulation provid the most informative 
measurement campaign the budget.  

Conclusions and Future Outlook 

Many challenges faced in MBDoE for nonlinear 
process models are rooted in the selection of measurement 
and. When an unsuitable measurement is used, computed 
optimal experiments may be uninformative or infeasible. In 
this work, we proposed a novel method to optimize the 
measurement for maximizing the experimental information 
content. This framework effective  measurement campaigns 
for multi-response systems with different variance and 
covariances between responses. We implemented this 
framework in combination with the continuous-effort 
design concept to retain a convex optimization problem 
regardless of model structure. With the sensitivity matrix 
precomputed by Pyomo.DOE, the optimization problem 
can be scaled to more measurements with less 
computational burden.  

We the methodology with a reaction kinetics example. 
We that the method can quickly solve the global optimum 
in the measurement space. a fixed-bed CO2 adsorption 
system  apply -- .  
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