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Abstract
Climate change and global warming have an increasing impact on our daily lives, thus attracting increasing attention
from researchers. Among various economically-viable methods to alleviate global warming trends, the electrochemical
approach provides the possibility of reducing CO2 gas to valuable chemical products. This article provides an overview
of our recent work on digitalizing an experimental electrochemical reactor for CO2 reduction at UCLA and developing
a process control scheme for this reactor using machine learning modeling tools. Our work starts with training a neural
network model with years of historical experimental data to investigate the underlying physical and chemical phenomena
of the reactor. After having a high-level overview of the correlations between input and output variables, a single-input
single-output control scheme is developed based on the integration of classical control with support vector regression
methods. Lastly, the closed-loop control scheme is implemented in LabVIEW and the experimental setup is integrated
with the Smart Manufacturing Innovation Platform.
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Introduction

Since the first warning of global warming in the 19th cen-
tury delivered by the Swedish scientist Svante Arrhenius, we
have witnessed the fastest increment of average temperature
in the past 50 years. Large amounts of carbon dioxide (CO2),
one of the main chemical components that warm our planet,
are continuously being released into the atmosphere as a re-
sult of human activities. To address this climate crisis, sci-
entists and engineers from various domain areas have pro-
posed the replacement of fossil fuels with clean or nuclear
sources of energy, in parallel to the development of CO2 cap-
ture technologies. CO2 capture is an energy intensive pro-
cess that requires more energy to remove carbon from more
diluted sources such as air. In addition to physical methods
for CO2 capture, chemical approaches provide a way to con-
vert captured CO2 into valuable chemical products. When
put together, carbon capture and conversion technologies can
enable the recycling of CO2 from the atmosphere and be-
come carbon neutral if powered with energy harvested from
renewable, carbon-neutral sources. In the last decade, the
electricity-driven CO2 reduction reaction has attracted in-
creasing attention from researchers for its promise not only
to transform CO2 into useful fuels and chemicals, but also as
a mean to store excess renewable electricity at global scales
(Morales-Guio et al., 2018).

CO2 reduction refers to a chemical process that transfers
electrons and protons to the carbon atom to reduce its oxi-
dation state, which weakens the molecular stability and in-

creases the reactivity of carbon atoms in CO2 molecules for
further chemical reactions. The key technical challenge in
implementing this reaction is to overcome the high energy
barrier for the activation of CO2. The three main strategies
for CO2 activation and reduction are of a thermochemical,
photochemical, and electrochemical nature (Lu and Jiao,
2016). Thermochemical CO2 reduction already operates at
global scales. The main challenge to this process is that it
requires the generation of hydrogen gas as reducing agent
in a separate, energy intensive step. The production of hy-
drogen at industrial scales typically involves the reforming
of hydrocarbons and the further emissions of CO2 (Centi
et al., 2013; Wang et al., 2011). In contrast, photochemi-
cal CO2 reduction can directly transform CO2 and water into
fuels and chemicals in one device using sunlight. To date,
however, these technologies have been limited to low solar-
to-chemical conversion efficiencies due to the complex kinet-
ics for light absorption, charge separation and charge trans-
fer occurring at solid-liquid heterojunctions (Kumar et al.,
2012). Electrochemical methods for CO2 reduction, on the
other hand, circumvent many of the challenges associated
with thermochemical and photochemical methods. CO2 elec-
trochemical reactors, for example, can be coupled to any
source of electricity, not only solar, and can be used for the
direct transfer of electrons and protons to CO2 molecules at
ambient temperatures and at high rates (Lu and Jiao, 2016).
Despite the theoretical advantage of the electrochemical ap-
proach for CO2 reduction, the reaction mechanisms are still
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not fully understood. Indeed, the complexity of the transport-
reaction processes involved makes this transformation one of
the greatest challenges in the fields of catalysis and energy
(Jin et al., 2021). The high complexity of the electrochem-
ical CO2 reduction reaction offers a unique test ground for
advanced machine learning (ML) technologies. The higher
the complexity of a transport-reaction process, the larger the
dataset needed to decouple and understand the underlying
physico-chemical processes and the larger the computational
power needed.

Attributed to the substantial increase of computational
power, cloud or local data storage, and open source machine
learning libraries, machine learning methods have found
broad applications in science and engineering. Theoretically,
based on the universal approximation theorem of neural net-
works (Wang, 2017), ANN models can provide a unique and
accurate approximation for any nonlinear input-output rela-
tions existing in the recorded dataset. Therefore, in electro-
chemical science research, the ML neural network method
can be considered as a data-driven approach that indeed
has the potential to facilitate the processes of understand-
ing the underlying mechanisms and efficiently substitute first
principle-based equations (Mistry et al., 2021). For example,
an ANN model was developed to fit and compare the nonlin-
ear adsorbate-substrate interaction between CO2 and differ-
ent types of catalyst for CO2 electrochemical reduction (Ma
et al., 2015). In Huang et al. (2018), a ML method was used
to capture the structure-activity relationship between the ab-
sorption energies and the nanoparticle structure of the copper
catalyst. Ulissi et al. (2017) adopted a ML method in their
study to explore the mechanism of a complex surface reac-
tion. These recent investigations demonstrated the applica-
tions of ML methods to provide computational insights into
the fundamental and microscopic understanding of chemical
and electrochemical reactions.

Besides the application in theoretical research areas, ef-
forts are made to implement ML technologies in indus-
trial manufacturing tasks, including but not limited to pro-
cess control, real-time optimization, supply chain manage-
ment, anomaly detection and monitoring carbon footprint
(Bertolini et al., 2021; Wenzel et al., 2019). Unlike the ob-
jectives of most scientific research projects that aim to map
static input-output relations, ML tasks for industry and pro-
cess control involve making intelligent decisions for contin-
uously operating processes based on real-time dynamic in-
formation. This application takes advantage of the ability
of the ML model to process time series data to approximate
the instantaneous operation status or to predict future pro-
cess behavior, which is also known as time series forecast-
ing (Bontempi et al., 2012). Specifically, in Wu et al. (2019),
a method was proposed to approximate the output behavior
using a recurrent neural network model (RNN) trained with
historical time series data. Furthermore, a model predictive
control (MPC) algorithm based on the RNN model was de-
veloped and evaluated through a large-scale chemical process
simulation (Wu et al., 2019, 2021).

With the exponential growth of industrial data and ML/AI
applications, a new era of industrial revolution has been ini-

tiated, and we are approaching the next generation of manu-
facturing processes, namely, Industry 4.0 or Smart Manufac-
turing. Novel smart technologies give rise to this revolution,
such as the Internet of Things (IoT), cloud and edge com-
puting, industrial AI, and digital twins, are mainly exploited
by large-scale data analysts and require intensive computa-
tional support, which implies that manufacturing is shifting
to a data-driven era (Tao et al., 2019; Zhong et al., 2017). In
other words, the key step to achieving smart manufacturing
is how to comprehensively collect useful data, and extract
maximum information hidden in the dataset for the benefit
of daily operations. Recent research has proposed strategies
to implement smart manufacturing to various process sys-
tems. Ren et al. (2021) discussed a data workflow for the
implementation of smart manufacturing to additive manufac-
turing without intensive computational resources. Qi and Tao
(2018) reviewed and compared the roles of big data and dig-
ital twins in smart manufacturing and proposed future direc-
tions to improve the application of these two technologies.
However, implementing advanced ML to fully process in-
dustrial data requires strong computational power, which is
not always available in manufacturing industries, especially
in small and middle companies.

To this end, a government-funded non-profit organiza-
tion, the Clean Energy Smart Manufacturing Innovation In-
stitute (CESMII), is leading the development of a Smart
Manufacturing Innovation Platform (SMIP), which aims to
provide technical support and services to manufacturing en-
terprises to facilitate the application of smart manufactur-
ing. Specifically, the SMIP provides an online database with
pipelines for data transmission to store user data. Further-
more, packages and toolboxes for developing data-driven
models (e.g., ML/ANN model, data extraction algorithm) are
available on the SMIP via Docker container virtual environ-
ment technology that can also be used to access advanced
ML model training, process control, and optimization algo-
rithms. Additionally, manufacturing equipment, such as re-
actors, controllers and sensors can be connected to the on-
line server to be automated or monitored remotely (Çıtmacı
et al., 2022).

This manuscript provides an overview of our work.
Inspired by the aforementioned research achievements of
adopting ML methods to address scientific and engineer-
ing challenges, we utilized an ANN model to study the un-
derlying physical and chemical rules of the electrochemi-
cal reactor and used the ANN model prediction to enhance
the empirical-principles equation of this reactor. Subse-
quently, a single-input single-output (SISO) process control
scheme was developed based on the feedback information
provided by a support vector regression-based (SVR) esti-
mator and gas chromatography (GC) measurements. Subse-
quently, closed-loop control experiments were performed to
evaluate the performance of the control scheme. To embed
the control scheme into the reactor, LabVIEW software is
utilized to establish an operating system for the digital con-
trol of each experimental equipment. Lastly, the developed
system is synchronized to the SMIP server for further inves-
tigation of the aforementioned cloud-based technologies.



Experimental Electrochemical Reactor
The electrochemical reactor used in this study is designed

to reduce CO2 gas to hydrocarbon and oxygenate products,
including liquid and gas fuels, reagents and other valuable
chemicals that are consumed in our daily lives. The setup
of the reactor is shown in Figure 1, and it has two chambers
separated by an ion-exchange membrane. Each chamber con-
tains one of the electrodes, where the cathode is the working
electrode, and it is submerged in a bicarbonate buffer solu-
tion. During operation, the CO2 gas is fed into the buffer
solution and subsequently transported to the surface of the
working electrode, where the CO2 will be reduced by elec-
trons and protons from water. The working electrode is a
solid cylinder made of copper, the best-known metal for re-
ducing CO2 to hydrocarbons and oxygenates, to maximize
the reactor performance and energy usage (Vasileff et al.,
2018). In this setup, the working electrode rotates at a fixed
speed throughout the experiment to create a consistent mass
transfer profile in the solution, which has a critical impact
on product selectivity (Jang et al., 2022). Finally, gas chro-
matography (GC) is used to analyze the composition of gas
outcomes and quantify the productivity of gas phase products
(hydrogen, carbon monoxide, methane, and ethylene) within
every sampling period (i.e., 20 minutes for our experiments).
Liquid-phase products are collected and quantified off-line
at the end of the experiment utilizing nuclear magnetic reso-
nance (NMR).

Figure 1: Schematic of UCLA’s electrochemical reactor.

Machine Learning-based Modeling
Developing a mathematical model to describe the under-

lying physical and chemical phenomena of a reaction process
is the first step in the implementation of any novel reactor in
industry. However, the mechanism for the electrochemical
reduction of CO2 remains unknown due to the complexity
of the reaction. Moreover, experimental uncertainties such
as sensor detection limits and human errors introduce addi-
tional variance to the observation, making the modeling task
more challenging. Attributed to the stochastic nature of the
artificial neural network (ANN) and its demonstrated ability
to capture highly nonlinear relations, a data-driven model can
be constructed to account for the input-output relationship of
this electrochemical reactor and account for the experimen-
tal data variance. In our work Luo et al. (2022), a feedfor-
ward neural network (FNN) model with two hidden layers

was found to be capable of capturing the designated input-
output relations of the electrochemical reactor. The mathe-
matical expression of this FNN model can be described as
follows:

Y = FNN(X) =
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where X = [x1,x2] ∈ R2 is the input of the FNN model with
respect to the surface potential and the rotation speed of
the working electrode. Y = [ŷ1, . . . , ŷ14] ∈ R14 is the out-
put vector of the FNN model, which contains the produc-
tion rate of 13 reduction products from the electrochemical
reaction and the selectivity of the oxygenates. ω

[k]
ji , i and

j = 1, . . . , p, k = 1, . . . , l, represent the weights that con-
nect the ith input from the previous layer to the jth neuron in
the kth layer, where l is the number of layers. p = 64 rep-
resents the number of logistic units in each layer. b[k] and
σ[k](·) denote the bias and activation function used in the kth

layer. The Rectified Linear Unit (ReLu) and Softplus func-
tion, S(x) = log(1+ ex), are the activation functions for the
hidden and output layers respectively to capture the nonlinear
behavior observed in experiments.

To further account for the variance of data, the method-
ology of maximum likelihood estimation (MLE) is adopted
in the loss function of FNN training to obtain the optimum
weight matrix for the FNN model that would maximize the
likelihood of output prediction by considering the experi-
mental outcome in a probabilistic manner. Specifically, to
simplify the computation, each output is assumed to be inde-
pendent, so the likelihood function (L(·)) of the FNN predic-
tions is approximated as the joint probability distribution of
the experimental data, which can be written as follows:

L(X;W) =
n×m

∏
k=1

fY(yk) (2)

where W, m, n, are the weight matrix of the FNN model,
the number of input conditions applied in the experiments,
and the number of FNN outputs, respectively. fY(yk) stands
for the probability density functions of the kth result. Fur-
thermore, by assuming that all results of the experiment are
following the Gaussian distribution and are independent of
each other, the optimal weight matrix (W ∗) can be computed
by maximizing the logarithm of the joint likelihood function
that can be simplified into the following equation:
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W
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Thus, the loss function used to train the FNN model is shown
as the following expression:

Loss =
1
m

1
n

m

∑
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n
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where v is the coefficient of variance of each data point de-
fined as the ratio of standard deviation and the respective out-
put mean to normalize variability of different magnitudes.
Therefore, the FNN model integrated with the MLE method
is trained to maximize both the prediction accuracy and the
output likelihood function.

Process Measurements and Characterization
Another major objective of this study is to investigate the

methodology to implement real-time control in a novel ex-
perimental electrochemical reactor based on the data-driven
models built with ML. Ideally, an advanced feedback con-
trol scheme should be able to achieve any desired and feasi-
ble setpoint by manipulating the control variables. However,
in the current stage of the study, the amount of controllable
variables is not sufficient to fully control all valuable prod-
uct concentrations produced by the reactor. Therefore, this
work aims to demonstrate the potential ML approach to de-
velop a complete control scheme by establishing a single-
input single-output (SISO) feedback control system, which
has applied potential as the single input variable.

Due to the discussed limitation of the reactor, liquid phase
products can only be analyzed once the operation is over,
making them infeasible for real-time control. On the other
hand, four gas-phase products (i.e., hydrogen (H2), carbon
monoxide (CO), methane (CH4) and ethylene (C2H4)) can
be collected and analyzed by the GC during the experiment
and therefore they are candidate outputs for the control sys-
tem. The relevant reactions for generating these gas products
are shown as follows:

2CO2 +8H2O+12e− →C2H4 +12OH− (5a)

CO2 +6H2O+8e− →CH4 +8OH− (5b)

CO2 +H2O+2e− →CO+2OH− (5c)

2H2O +2e− → H2 +2OH− (5d)

Among all gas products, ethylene productivity shows the
strongest correlation with the surface potential and it also has
significant value in the marketplace Jang et al. (2022). There-
fore, C2H4 concentration is chosen as the single output state
of the process in this study. During the operation, ethylene
productivity is monitored by injecting the gas outlet stream
into the GC, which first separates the injected molecules with
different elution times and then analyzes the gas components
using the built-in thermal conductivity detector (TCD) and
flame ionization detector (FID). However, the GC requires a
certain time period to obtain the result of each analysis and
needs to be cooled down before taking the next round of sam-
ples. This raises a limitation of 20.33 minutes of sampling
period to our feedback control scheme.

The performance of an electrochemical reactor is very
sensitive to varying conditions. This results in a significant
operation variance, even if the experimental system is pre-
pared with the same procedures and the input conditions are
held constant. In addition to that, it has been observed that af-
ter a certain threshold is reached, the production rate of ethy-
lene remains constant with increasing surface potential. The
applied potential beyond this threshold is intrinsically used
for producing more methane. This phenomenon is explained

as the product selectivity shifting to methane based on the
theory that ethylene and methane share the same intermediate
during the reaction (Hori et al., 1997). Besides the limitation
of the sampling period, the copper catalyst appears to contin-
uously deactivate as the reaction proceeds, which is another
major challenge and uncertainty to implement the feedback
control of this electrochemical reactor. This degradation is
caused by multiple factors such as impurity absorption, sur-
face restructuring, and reactive sites being blocked by unre-
active species. Therefore, the reactor performance varies as
the experiment proceeds, which requires the feedback con-
troller to be adaptive to the continuous degradation.

Real-time Optimization
We proceed with a discussion on process optimization to

determine energy optimal set-points for use in the process
control system discussed in the next section. Specifically, we
consider the following real-time optimization problem.
J = argmax

x̂∈D
R(x̂,V )−C(I,V ) (6a)

s.t. Fnn(V,r)≈ x (6b)
C(V, I) = ce ×E(V, I) (6c)

R(x̂,V ) =
m

∑
i=1

ci × x̂i (6d)

−1.5 ≤V ≤−1.27 (6e)

where V , r are the surface potential and the rotation speed
of the working electrode. Function R(·) and C(·), E(·) are
the revenue, cost and energy consumption of operating the
electrochemical reactor that I, ce and ci denote the current
density on the working surface and market price for electric-
ity and the ith product. In this case, the MLE-FNN model is
used to predict the production rate of each product (x̂i) un-
der different input combinations, and based on this, an open
source optimization software is implemented to search for
the optimal set point to be provided to the control scheme.

Feedback Control Scheme
In this study, the productivity of ethylene is quantified by

its concentration in the product gas stream. The gas flow rate
is fixed and the concentration can be obtained from the GC
measurement. Although an FNN model has been developed
to predict the production rate of each product species, it is
trained on the steady-state data collected at the end of the
experiments; thus, it cannot reflect instantaneous productiv-
ity. Recent research results have demonstrated the method-
ology of using a deep learning model (e.g., LSTM) to cap-
ture the time series dynamics of chemical engineering pro-
cesses (Wu et al., 2019). However, neural network models
generally require a large-scale dataset to develop, which is
not available for most experimental research cases involving
chromatographic measurement methods.

Considering the above limitations, a classic ML algo-
rithm, support vector regression (SVR), is utilized to esti-
mate the real-time ethylene productivity. SVR optimizes the
generalization error bound by defining a support vector and
penalizes data outside the support vector bound (Basak et al.,
2007). The SVR algorithm can be visualized as in Figure 2
and expressed in the following mathematical form for linear



regression problems:
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where ξ, ξ∗ are named slack variables, ⟨· , ·⟩ means inner
product operation, C refers to the tolerance limit for diver-
gences, w and b are the weight matrix and bias, respectively,
and yi denotes the ith data reference. In addition to that, poly-
nomial kernels can be applied to the algorithm to perform
polynomial regression. In our work, the 5th order polyno-
mial kernel is adopted to develop the ML-based estimator to
provide continuous feedback information.

Figure 2: Support vector regression components. f (x) is the
proposed hyperplane, ε is the support vector margin, ξ and ξ∗

are the distances to data points beyond the support vectors.
A proportional-integral control (PI) is used to perform

real-time feedback control for the proposed SISO system.
The control objective of our experiment is to maintain the
optimum set point by adjusting the potential applied to the
reactor. Specifically, the PI controller is alternating the ap-
plied potential based on the feedback information from the
GC and ML-based estimator.

Figure 3: Closed-loop control scheme.
The developed control scheme is shown in Figure 3. Ex-

perimental devices in this study are connected to and moni-
tored by LabVIEW. During the closed-loop operation, after
receiving the setpoint from RTO, the PI controller will calcu-
late the optimum control signal and send it to the potentiostat
to adjust the surface potential. The SVR model estimates
the output C2H4 concentration of the process every second
since a GC reading is available only every 20 minutes. Even
though an SVR model is trained with a sufficient amount of
experiment data to give a reliable prediction of the real-time
productivity of ethylene, it cannot fully capture the stochastic
nature of this reaction. Therefore, it is essential to have a cor-
rection step to calibrate the SVR predictions when a new GC
measurement is available and that accounts for the GC analy-
sis delay. Thus, a correction algorithm is developed based on
an empirical-principle-based theory to adjust the SVR model

using delayed information (Çıtmacı et al., 2022).

Future Research Directions
Multivariable Control. With a better understanding of the
electrochemical reactor, additional control variables can be
adopted to implement a multivariate process control system
to regulate the concentrations of multiple products. Another
important candidate control variable is the rotation speed of
the working electrode, which can adjust the mass transfer
profile within the reacting chamber. In addition, key out-
put variables, like CO product concentration, are observed
to have a high correlation with the rotation speed. In this
context, a more advanced control strategy will be studied to
achieve this goal.
Real-time Machine Learning Modeling. With the develop-
ment of computing and data science technologies, the ML
approach becomes popular in broad research areas includ-
ing chemical engineering and process control. The data shift
problem, defined as the data distribution changed from the
training set, is a major hold-back for implementing ML tech-
nologies in the industry. The data shift in the industry can be
caused by many reasons, such as aging equipment or inherent
process changings. The catalyst degradation is a scenario of
a data shifting problem. To this end, real-time ML method-
ologies are being studied.
Smart Manufacturing Innovation Platform & Edge Comput-
ing. The experimental setup used in this research was dig-
italized by using the Smart Manufacturing Innovation Plat-
form (SMIP) built by the CESMII. SMIP aims to increase
operation data usage efficiency and introduce state-of-the-art
ML and artificial intelligence (AI) technologies to the man-
ufacturing industry. On the other hand, the implementation
of ML/AI is much more computationally intensive than the
conventional process. Although building a centralized data
server to provide powerful cloud computing services is one
approach to deal with computational power limitations in the
manufacturing industry. However, this might not be the most
effective solution since it will be limited by the local inter-
net service. The edge computing concept, which means us-
ing local computation tools closer to the data source to per-
form preliminary calculations, is then proposed to improve
the workflow. Therefore, one future task is to deploy effec-
tive functions and toolboxes on the SMIP to provide a con-
venient and reliable cloud-edge computing methodology.
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