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Abstract 

Data science approaches have yielded pathways toward “big data analytics” for the accelerated development 
of many material systems. However, tremendous challenges exist in applying widespread, data-driven 
approaches to facilitate the accelerated development of electronic devices formulated from polymer 
semiconductors. Such polymer materials have demonstrated unprecedented performance for flexible, 
stretchable, and deformable device applications, though their discovery remains largely trial-and-error. A 
foremost challenge is the availability of experimental data that can yield the requisite knowledge necessary 
to inform robust performance and formulation precision at the manufacturing scale. The reliability of 
available experimental data to this end, such as in literature, is hindered by the need to interrogate the relevant 
process parameters and structural features in both solution and in thin film. This presentation details progress 
on the implementation of informatics methodologies for the development of polymer-based organic 
semiconductor technologies. The integration of high throughput experimentation laboratory techniques offers 
an avenue to traverse the small data gap afforded by the organic semiconductor parameter space. Robust data 
management systems provide a foundation for schema design and solutions for the challenges in small, 
sparse, materials data. Finally, the incorporation of “small data analytics” approaches on literature datasets 
provides a foundation for informing sequential experiments from which π-conjugated polymer domain 
knowledge can be extracted.  
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Introduction

Development of π-conjugated polymers holds promise for 
modern applications in large-area, printed electronics due in 
part to their ease of solution processing. For example, these 
semiconducting materials are attractive as the active 
component in organic photovoltaic (OPV), organic light-
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emitting diode (OLED), and organic field-effect transistor 
(OFET) designs (Root et al., 2017).  

A grand challenge within this materials domain is the 
immense parameter space offered by organic electronics. 
This design space is crowded by a variety of solution 



  

processing parameters in addition to the desired 
heterogeneous structure-property characterization data in 
the form of images, spectra, device measurements curves. 
In tandem with the traditionally “Edisonian” nature of 
experimental research within the organic electronics 
domain, the challenging design space creates a “small data” 
materials problem within which process optimization for 
high-performance devices becomes daunting (McBride et 
al., 2020). 

Charge carrier mobility (µ), attained via the OFET 
device architecture, is the figure of merit in measuring the 
performance of organic electronics. As this performance 
metric is highly dependent on thin-film morphology, 
research efforts have focused on controlling this 
morphology by understanding and tuning polymer structure 
in solution (Xu et al., 2022). Therefore, the design space 
includes a large set of polymer characteristics (e.g., 
monomer chemistry, molecular weight, polydispersity, 
charge carrier type, etc.), solvent properties, and parameters 
that relate to their complex polymer-solvent interactions. 
Furthermore, as semiconductor ink formulation frequently 
requires the blending of additional polymers, solvents, or 
small molecule additives, this design space quickly 
becomes unwieldy with the additional requirement to 
consider multicomponent compositional space.  

Due to the challenges within this domain, the 
development of specialized approaches for analysis, data 
curation/storage, and experimentation is required to render 
the data-enabled development of π-conjugated polymer-
based semiconductors more tenable (Callaway et al., 2022). 
This work will present a summary of work toward applying 
such techniques toward developing and understanding the 
behavior of next-generation polymer-based electronics. 

High-Throughput Experimentation 

In recent years, the materials community has invested 
resources in developing custom experimental methods to 
accelerate the experimental sampling of laboratory data. 
Such high-throughput experimentation (HTE) methods 
offer the potential to “bridge the small data gap” in polymer-
based electronics. Gradient film methodologies are one 
common avenue for generating sample libraries on which 
multiple data points can be automatically measured via 
high-throughput characterization. For polymer thin-film 
applications, such as organic electronics, gradient sampling 
techniques leverage a solution-based mixing approach to 
deposit a continuous film sample with that spatially varies 
a desired parameter (i.e., composition or blend ratio, 
thickness, etc.).  

However, solubility is a major challenge in enabling 
HTE for many π-conjugated polymers because elevated 
temperatures create processing challenges in the small-
volume mixing setups typically used for high throughput 
sample preparation. Providing high throughput 
experimentation beyond polymers only processible at 
ambient conditions, therefore, requires custom mixing 
protocols that consider solvent resistance, high viscosities, 

and temperature control to access a broader range of 
polymers that can be studied. For example, many 
semiconducting polymers of interest are studied in 
aggressive and/or chlorinated solvents and elevated 
temperatures to enable solution processibility.  

 

 
Figure 1. Film composition measurements (via x-ray 

photoelectron spectroscopy) of a P3HT:PS gradient thin 
film coated from a chloroform solution. MBM and TIS 

represent two residence time distribution models used to 
predict process conditions for the gradient film. 

 
Recently, we have demonstrated a new gradient mixing 

and film deposition protocol that is capable of operating 
polymer solutions at elevated temperatures (Liu et al., 
2022). Composition gradient poly(3-
hexylthiophene)/poly(styrene) (P3HT/PS) films were 
demonstrated as a model π-conjugated polymer blend 
system (Figure 1), and poly(propylene)/poly(styrene) 
(PP/PS) films were used to demonstrate controllable 
composition gradients at temperatures of 110 °C. In 
particular, the latter system represents materials 
components in which gradient films are especially difficult 
to generate via existing coating approaches due to solubility 
constraints and viscosities at ambient conditions. The 
methodology developed and demonstrated here widens the 
range of solution processed materials that can be explored 
via high-throughput laboratory sampling and provides an 
avenue for efficiently screening multiparameter materials 
spaces even in polymer-based semiconductors thus far 
incompletely explored due to solubility constraints. 
Enabling this HTE protocol therefore opens avenues for 
populating the large datasets required to enable data-driven 
materials science in polymer semiconductors of interest. 

OFET Database Design 

Given the complexity of the design space and the 
wealth of information provided by prior experimental data, 
a robust experimental data management workflow is 



  

required for enhancing research activities within polymer-
based electronics. However, providing a repository to unify 
experimental data from literature and the laboratory within 
even a single polymer chemistry provides tremendous 
challenges due to small sampling size and inconsistency of 
reporting across data sources. 

Structure-property data is heterogeneous, taking the 
form of spectroscopic signals, images, and device 
performance curves. From each of these pieces of 
information is frequently extracted a series of parameters 
either informed by established models or other custom 
methods (in the case of images). As structural ordering has 
long been established as an influential factor in controlling 
device performance, these extracted parameters serve to 
curate such structural information to elucidate the process-
structure-property relationship. 

“Non-relational” (NoSQL) database management 
systems (which exist alongside their relational (SQL) 
counterparts) have been deployed for a variety of use cases 
for computational data. Additionally, conceptual data 
modeling provides an opportunity to elucidate the 
organization of data and facilitates data unification under a 
common schema. In tandem, modern database management 
systems and conceptual modeling can facilitate the 
organized storage, workflow, and subsequent analysis of 
any data. Though many prime examples have been 
demonstrated for computational materials data, best 
practices for experimental materials data management as is 
not always clear due to the inconsistency challenges 
mentioned above.  

Within our research workflow, we have applied the 
above tools to enable a searchable repository of OFET 
device data based on P3HT and poly[2,5-(2-octyldodecyl)-
3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl) thieno-
3,2-b]-thiophene)] (DPP-DTT). Conceptual modeling 
facilitates the organization of curated experimental device 
information, including process, structure, and property 
features. Concurrently, NoSQL data management tools 
(using MongoDB) provide techniques to work around 
challenges related to inconsistent data reporting and missing 
data. Addressing these challenges using the techniques 
above will be discussed. 

Knowledge Extraction from Small Materials Data 

In addition to the storage of small materials data, we 
show that analysis of this materials data requires custom 
techniques to extract meaningful domain insights for 
polymer-based electronics. While small datasets may not 
always provide enough meaningful information to 
effectively feed machine learning models, data-driven tools 
can still be applied to extract domain knowledge and 
physicochemical motifs. Additionally, they can suggest 
work toward building a richer experimental dataset with the 
goal of enabling the application of more rigorous machine 
learning techniques. 

For example, we have demonstrated a reduced design 
region (RDR) approach for learning from small datasets 

(McBride et al., 2018). This approach applies a custom 
classification algorithm to identify a design region within 
the available parameter space for which high performance 
experimental samples take place. The performance 
threshold for “high” and “low” performance is set by the 
user based on domain expertise. Two custom metrics are 
evaluated across all features to determine a small set of 
experimental parameters that are influential in describing 
high performance. 

Our work therefore provides an avenue for selecting 
influential parameters and ranges to explore future 
experimental samples. In recent work, our RDR algorithm 
has enabled the small-data knowledge extraction or even 
machine learning predictions for PP-talc polymer 
composites (McBride et al., 2018), PET small molecule 
stabilizers (Liu et al., 2020) in addition to P3HT or DPP-
DTT-based polymer electronics (Venkatesh et al., 2021). 

 

 
 

Figure 2. Two-dimensional reduced design region 
demonstration for DPP-DTT devices with hole mobility 
values above (squares) and below (X marks) a critical 

cutoff of 1 cm2/V•s. Dashed box suggests an experimental 
design region for future sampling. 

Case Study: Identifying a Critical Overlap Concentration 
as an Influential Design Parameter in Organic Electronics 

For the case of polymer electronics, we have shown 
that small data approaches applied to sparse literature data 
can enable a deeper study into process-structure-property 
motifs, therefore enhancing the experimental workflow. 
Our recent study applied the RDR technique to a literature 
dataset of n = 115 samples from 15 publications reporting 
the device performance of DPP-DTT across 34 different 
experimental parameters (Venkatesh et al., 2021). The data-
driven algorithm identified molecular weight and solution 
concentration as influential parameters that provided the 
greatest reduction in the original experimental design space. 

Interestingly, while high performance at higher 
molecular weights was not necessarily surprising, the 
results suggested an optimal window for concentration 



  

might occur above a molecular weight threshold. This 
suggested that some critical process-structure motif occurs 
within this processing range (~2-8 g/L), despite the larger 
design region of concentration (1-25 g/L) in the curated 
literature.  

To verify the performance sensitivity within this 
processing window, a high molecular weight (Mw = 290 
kg/mol) sample of commercially available DPP-DTT was 
used to prepare and characterize a series of OFET devices 
coated from various solution concentrations using 
chlorobenzene as the solvent. Results showed a significant 
performance optimum within this concentration window, 
which verified the existence of high performance within the 
suggested design region informed by the algorithm.  

 
 

 
 

Figure 3. Device performance coincides with critical 
overlap concentration (C*) in DPP-DTT. (a) Viscosity 
measurements of DPP-DTT dissolved in chlorobenzene 

solutions at 56 °C. (b) OFET hole mobility as a function of 
solution concentration 

 
The process-structure-property motifs responsible for 

this inflection in device behavior were further interrogated 
by subsequent spectroscopic, morphological, and solution-
state studies. Results showed that the peak in hole mobility 
coincided with a critical overlap concentration (C*) 
behavior as measured by solution viscosity measurements. 
Accompanying studies facilitated by photophysical and 
spectroscopic measurements revealed insights about 
aggregate behavior in solution, suggesting a tunability of 
polymer chain backbone at varying concentrations. Further 
studies (i.e., confirming behavior at various molecular 
weights, etc.) will also be presented. 

Conclusions 

The π-conjugated polymers that are studied as the 
active thin-film component in organic electronics are key 
candidates for future applications in clean energy, 
deformable devices, next-generation sensors, and more. 
However, moving beyond traditional one-factor-at-a-time 
approaches to experimentation will require the application 
of custom techniques that are tailored to the unique data 
types and information collected within this materials 
domain. Here, we detail a progress report toward enabling 
data-driven experimentation for π-conjugated polymers. 
Future work will focus on developing the feedback loops 
among the respective areas of data management, data 
collection, and data analytics to contribute toward 
accelerating experimental development within polymer-
based electronics. 
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