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Abstract 

 Acrylate-based polymers are commonly used across various industrial sectors. Consistent manufacturing of 

these polymers through the help of process analytical technology (PAT) is very desirable. The capability of monitoring 

the polymer molecular weight in real-time will help in reducing operation time and eliminating the frequent samplings 

needed to meet quality control specifications. Herein, we demonstrate the use of Fourier-transform infrared (FTIR) 

spectroscopy and develop a chemometric model to predict the molecular weight (Mw) of glycidyl methacrylate-co-

methyl methacrylate copolymer. Furthermore, we show that acquiring highly correlated spectra enhances the 

robustness of the regression model. The developed model shows a satisfactory correlation with R2 of ~ 89 %.  
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Introduction 

Acrylate-based homo/copolymers are important 

materials with different physical and chemical 

properties and  are used in many applications across 

various industrial sectors (Darvishi et al. 2013). For 

instance, the presence of glycidyl methacrylate 

(GMA) containing epoxy functional group in a 

polymer structure provides the possibility of tuning the 

polymer’s surface chemistry. GMA-based polymers 

are used in various applications from  coatings to 

finishes (Dhal, Ramakrishna, and Babu 1982). Hence, 

being able to determine the properties of acrylate-

based homo/copolymers, in general, is valuable for 

many applications. The properties of polymers are 

mainly determined by their chemical structures as they 
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influence the morphology and characteristics of 

polymers. Molecular weight (Mw) is one of the most 

important characteristics of polymers, affecting 

polymer mechanical and thermal properties. 

Understanding the composition and properties of 

polymeric materials can help unravel the material 

failures and defects throughout the material and 

product’s lifetime. In addition, this knowledge 

contributes to the development of new polymer-based 

materials. Several conventional methods exist for 

measuring Mw of polymers including gel permeation 

chromatography (GPC), viscometry, and light 

scattering (Podzimek 1994; Stein and Srinivasarao 

1993). However, these methods are time consuming 

and do not have the capability of on-the-fly prediction 

of molecular weight. Spectroscopic methods, such as 
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mid-infrared and Raman, are commonly used for 

analysis and characterization of polymeric materials 

(Chalmers and Everall 1999; Chalmers et al. 1992). 

For instance, Raman spectroscopy provides a 

significant amount of information, rendering data for 

determination of chemical and structural properties 

(Pelletier 2003). However, in several spectroscopic 

data, the complex and overlapping peaks make the 

extraction of detailed structural information difficult. 

The hidden information contained in the complex and 

overlapping peaks can be extracted using 

chemometrics, such as partial least square (PLS), 

where in-depth and quantitative information about the 

samples can be obtained. Herein, we monitor the 

molecular structure of Glycidyl Methacrylate-co-

Methyl Methacrylate (GMA-co-MMA) copolymer 

using Attenuated Total Reflection-Fourier 

Transformed Infrared (ATR-FTIR) spectroscopy; not 

only does this provides us with a rich and full range of 

chemical bonds information, but its implementation 

and operation in industrial scales are simple, fast, and 

easy. In addition, Chemometrics are also utilized in 

this study to interpret and analyze ATR-FTIR data, to 

build appropriate regression models for the Mw 

prediction of Poly (GMA-co-MMA) based on Mw data 

attained by GPC. Finally, we optimize the predictive 

model by identifying highly-correlated spectra to the 

samples. This is very advantageous for real-time 

prediction of Mw. 

Materials/Experimental Methods and Modellings 

Chemicals & Instrumentations 

Glycidyl methacrylate (GMA, ≥ 97 % purity 

containing 110 ppm monoethyl ether hydroquinone as 

inhibitor, CAS #607-123-00-4), 2,2′-azobis(2-

isobutyronitrile) (AIBN, ≥ 98 % purity, CAS #78-67-

1), and propylene glycol methyl ether acetate 

(PGMEA, ≥ 99.7 % purity, CAS #108-65-6) were 

obtained from Sigma-Aldrich Inc.; methyl 

methacrylate (MMA,  ≥ 99.8 % purity, CAS #80-62-

6) was purchased from TCI; tetrahydrofuran (THF, 

HPLC grade, CAS #109-99-9) was purchased from 

Fischer Inc. Nitrogen gas tank (≥ 99.999% purity) was 

purchased from Matheson Tri-Gas Inc.  

The Mettler Toledo ReactIR 10 was equipped 

with the liquid N2 MCT detector and apodization of 

Happ-Genzel. The Silver Halide (AgX) fiber conduit 

probe with a tip made of diamond (DiComp) was 

utilized to collect the ATR-FTIR spectra of copolymer 

solutions. A 750-mL jacketed reactor (vessel) 

equipped with a polytetrafluoroethylene (PTFE) 

anchor shaft and a Pt-100 PTFE temperature probe, 

which was utilized to control the temperature of the 

copolymer solution, were purchased from Radley Inc. 

A refrigerated/heating circulator (Julabo Inc., DYNEO 

DD-200F) was employed to maintain the temperature 

of the jacketed reactor. The temperature was 

controlled in real time using LabVIEW, and a mass 

flow controller (Alicat Inc., MC-20SCCM-D/5M) was 

utilized to control N2 flow rate. 

Experimental Preparation and In-situ Data Collection  

Copolymerization was performed by mixing 

MMA (10 mmol), GMA (10 mmol), and AIBN (0.5 

mol% of total monomers) in PGMEA (20 wt.% of total 

monomers) in the 750-mL reactor, and the ReactIR 

probe was immersed into the polymerization solution. 

Before preparation of materials, the vessel was sealed 

and purged with N2 gas to remove oxygen. Meanwhile, 
AIBN was mixed with ~20 % of the total PGMEA 

solution and purged with N2 gas for 15-20 minutes. At 

the same time, GMA, MMA, and 90 % of the 

remaining PGMEA solution were sequentially added 

to the reactor, mixed at 310 rpm and room 

temperature. The 5-sccm N2 flow rate was set for 

purging the reaction. Then, the temperature of the 

jacketed reactor was increased and maintained at a 

setpoint temperature (Tsp) of 76 ± 0.2 ºC. When Tsp 

was reached, a mixture of AIBN and PGMEA was 

added to the reactor. The copolymerization reaction 

was conducted for six hours. After that, the 

temperature was set to 25 ºC to cool down the reactor; 

~200 mL of PGMEA solution was used for quenching.  

The ATR-FTIR spectra of the copolymer solution 

was collected in the range of 3000-800 cm-1 using 

Mettler Toledo iC IR 7.0 software. The spectra were 

recorded every 15 seconds with 50 scans per sample 

and an 8 cm-1 spectra resolution. An air background 

was collected before the reaction started. For spectra 

stability and good spectra alignment, the ReactIR 

probe was connected to the vessel in a stable position. 

Then, the FTIR spectra were collected from the room 

temperature to the setpoint temperature, and the 

collection was continued until the end of the 

copolymerization reaction. For the GPC analysis, ~2 

mL of the filtered PGMEA and copolymer mixture at 

a concentration of ~ 0.1 wt. % was prepared in THF. 

Multivariate Models for the Molecular Weight 

Prediction 

To develop a robust PLS model with an accurate 

polymer Mw prediction, it is important to select the 

ATR-FTIR spectral ranges that are correlated to the 

desired property of the polymer.(Swierenga et al. 

1998). There are many developed search-based 

selection methods, such as the Simulated Annealing 

(SA) and the Genetic Algorithm (GA) (Kalivas, 



Roberts, and Sutter 1989; Lucasius and Kateman 

1991), that are capable of efficiently identifying 

important wavelengths to predict a desired property; 

however, they still have limitations, such as slow 

convergence and only reaching a local minimum 

(Kalivas, Roberts, and Sutter 1989). Thus, it is 

necessary to test the different methods and identify the 

most appropriate model. In this study, we utilized 

different methods to predict Mw of copolymers and 

then evaluated the predictive capability of these 

methods. A manual wavelengths selection was the first 

method to build the PLS model. Here, we evaluated 

the spectra that were well-suited and strongly 

correlated to the production of copolymer; then we 

used them to build the PLS model for predicting the 

Mw of the copolymer.  

The Simulated Annealing (SA) method was the 

second method to be employed in this study. Based on 

a concept of finding the most efficient solution to 

anneal hot materials from a heat bath by Bohachevsky 

et al. (Bohachevsky, Johnson, and Stein 1986), this 

method was developed and applied to find an optimal 

solution in the solution space of the thermal 

equilibrium of the cooling system (Kirkpatrick, Gelatt, 

and Vecchi 1983). This can be characterized and 

optimized by applying the Boltzmann distribution, 

which is shown in Equation (1). 

𝑃 = exp (
𝐶1−𝐶0

−𝛽
) (1) 

Where 𝑃, 𝛽, and 𝐶 are the probability, annealing 

parameter, and evaluation metric value, respectively; 

1 and 0 represent a new and current evaluation metric, 

respectively. Because of a strong connection between 

the behavior of the system with multiple degrees of 

freedom and the multivariate optimization problem, 

the SA is employed in the multivariate analysis 

problem. In this study, the SA was applied to find and 

select optimum wavelengths that are strongly 

correlated to the Mw of the copolymer. We started an 

experiment by randomly selecting bands from the 

spectral dataset, and these bands were evaluated. 

Depending on the correlation between selected bands 

and the predictive model, new bands were either added 

or replaced with the ones with a poor correlation, and 

an annealing parameter was updated based on an 

evaluation metric. The final selected bands were then 

used in the PLS model to find the optimal number of 

PCs, which results in the lowest evaluation metric 

value. After that, the selected bands and the optimum 

PC number were used in the PLS model for Mw 

prediction.  

Furthermore, the Iterative Predictor Weighting 

Partial Least Square (IPW-PLS) method developed by 

Forina et al. (Forina, Casolino, and Pizarro Millan 

1999), was also evaluated in this study. Unlike the SA, 

this method was used to remove the noise and other 

factors that negatively impact the predictive capability 

of the PLS regression model. Thus, IPW-PLS can 

provide a stable and highly accurate prediction of the 

PLS model (Wu et al. 1995; Forina, Casolino, and 

Pizarro Millan 1999; Li et al. 2009). In the IPW-PLS, 

the product of the absolute value of the regression 

coefficient and the standard deviation of the predictor 

is computed and used to evaluate the regression 

model; more details of the IPW-PLS can be found 

elsewhere (Forina, Casolino, and Pizarro Millan 

1999). Similar to the IPW-PLS method, we utilized the 

Large Regression Coefficient-Partial Least Square 

(LRC-PLS) model that selects the large absolute 

values of regression coefficient to evaluate the 

importance of wavelengths and uses that information 

in building the PLS model for the Mw prediction of the 

copolymer; lower values are excluded from the 

dataset. Then, we used the selected bands to find an 

optimal number of PCs and used both selected spectra 

and PCs to build the PLS model.  

Training and Evaluation Metrics  

For chemometrics analysis, we used the principal 

component analysis (PCA) and partial least square 

(PLS) models, and they were built and performed 

using Python language along with the SciPy and 

Sklearn libraries. Given that the copolymerization 

reaction is often operated at a high temperature and in 

an environment having IR light-absorbing solvents, 

gathering reliable data of Mw from ATR-FTIR in these 

conditions always comes with challenges and requires 

considerable analytical measurements. Thus, it is 

necessary to remove interferences from ATR-FTIR 

spectra before any further analysis. Here, the ATR-

FTIR spectra were preprocessed by subtraction with 

an air spectrum and normalized by the maximum 

absorbance value of each sample. Then, the Savitzky-

Golay filter with a window filter of 2, 1st derivative, 

and 2nd polynomial order and the Multiplicative 

Scatter Correction (MSC) were applied to further 

smooth and correct the spectra (Savitzky and Golay 

1964; Dhanoa et al. 1994). For Mw, the value was first 

rescaled by applying the logarithm transformation and 

the standardized scaler. For the spectra selection, the 

10-Fold cross-validation (CV) method was applied in 

the dataset, where a dataset was divided into 10 

different folds, and one-fold was kept for an evaluation 

of the model. Once the potential wavelengths were 

selected, the dataset was split into an 80 and 20 %  of 

train and test set, respectively, for building the PLS 

model. The principal component (PC), in which the 

lowest corresponding metric value was obtained in the 

PLS model, was utilized for the multivariate analysis. 



To quantify the model performance, the root-mean-

square error (RMSE) and the correlation coefficient of 

determination (R2) are examined. 

Results & Discussion 

Before developing a multivariate model, we first 

needed to determine the sufficient number of collected 

samples and sample collection duration so that a full 

range of Mw of copolymer can be covered. Figure 1 

illustrates the ATR-FTIR spectra and the 

corresponding Mw of Poly (GMA-co-MMA) as a 

function of time. 

 

Figure 1.  (A) 3D ATR-FTIR spectrum of 

Poly(GMA-co-MMA). (B) Molecular 

weight trajectory after 6 hours. 

As shown in Figure 1B, the Mw of copolymer 

started to increase after 30 minutes and gradually 

approached plateau after ~ 5 hours. Afterward, we 

began to build the PLS model using a manual spectra 

region selection. The peaks assignment of the ATR-

FTIR spectra of GMA, MMA, and PGMEA has been 

well-studied and can be found in the literature (Gulari, 

McKeigue, and Ng 1984). Figure 2 illustrates the main 

spectra region, which highlights a strong correlation of 

spectra to the Mw change of Poly(GMA-co-MMA). 

 

Figure 2. (A) Selected FTIR absorbance 

spectrum of Poly(GMA-co-MMA) 

solution. (B) FTIR absorbance spectra of 

the epoxy ring of Poly(GMA-co-MMA). 

As shown in Figure 2A, there are several regions 

with a substantial intensity change (e.g., 1250-1350 

cm-1) that can be used for building the multivariate 

model. The peak of the epoxy group, located at 940 

cm-1, can differentiate GMA from MMA and can show 

increase in Mw of the copolymer (Lipic, Bates, and 

Hillmyer 1998; Ishida and Allen 1996). This 

substantial feature can be explored with the 

multivariate model. Therefore, we first aimed to build 

the model by extracting a region ranging from 910 to 

990 cm-1, which includes the epoxy and -CH groups of 

GMA and MMA, as shown in Figure 2B. Prior to the 

multivariate model analysis, the selected FTIR spectra 

and Mw variation were preprocessed by applying the 

methods described in the “Training and Evaluation 

Metrics” section below. The selected processed FTIR 

spectra were then used to build a PCA model, which 

in turn was used to remove outliers and reduce the 

dimensionality of the spectral data that were necessary 

for the Mw prediction by using principal components 

(PCs) and scores (Hodge and Austin 2004). Figure 3A 

illustrates an explained variance plot with 10 PCs used 

in this study.  

 

Figure 3. (A) Explained variance for the 

first 10 PCs from the PCA analysis. A 

dash line represents the selected PC 

components. (B) PCA plot in this study. 

As can be seen, the explained variance and the 

cumulative explained variance reduces and increases, 

respectively, as the number of PCs increases. Based on 

Mahalanoblis distance coupled with PCA analysis (De 

Maesschalck 2000), Figure 3A shows that three PCs 

were necessary to build the model using the manual 

spectra selection method. Outliers were also removed 

from the dataset by using the Hotelling T2 and the 

squared prediction error (SPE/DmodX) detection 

methods. Any data point located either on or inside an 

ellipse is considered for the regression model. As 

illustrated in Figure 3B, most of the samples in the 

PCA plot were located inside an acceptable range and 

could be used for the further regression analysis. 

Finally, we built the PLS regression model using non-

outlier spectra data to predict the Mw. Similar to 

building the PCA model, we identified the optimum 

number of PCs that produces the lowest MSE value, 

which is illustrated in Figure 4A. We found that the 

best result was obtained with two PCs and thus used 

them to build the PLS model. Figure 4B illustrates the 



parity plot of the predicted and reported log (Mw) 

values. As can be seen, the result showed that a 

prediction of log (Mw) was poor with an R2 value of ~ 

51.6 %, suggesting that the method was unreliable, and 

an alternative method was recommended to improve 

the predictive capability of the PLS model. 

 

Figure 4. (A) RMSE of the PLS model as a 

function of PCs. A blue dash represents 

the selected PC. (B) Parity plot of 

predicted and reported log(Mw). 

To further improve the log (Mw) prediction, we 

examined the goodness of SA and LRC-PLS models. 

For the SA method, we randomly selected 

wavelengths from the dataset. Figure 5A illustrates the 

selected spectra by the SA. As can be seen, the SA 

selected most of the notable functional groups 

contained in both GMA and MMA, such as C-H 

(~1480 cm-1) or ester group (~1732 cm-1), to improve 

the prediction of log (Mw). By using the SA method, 

R2 of the Mw prediction was improved from ~ 51.6 to 

~ 72 %. Furthermore, it was observed that the SA still 

selected the epoxy and CH groups similar to our 

manual wavelengths’ selection. This indicates that the 

epoxy and CH group region truly has a high impact on 

the formation of the copolymer and leads to an 

increase of Mw of copolymer (Lipic, Bates, and 

Hillmyer 1998). We can observe that selecting more 

profound functional groups of Poly (GMA-co-MMA) 

can help the PLS model to distinguish wavelengths at 

different time steps and improve the Mw prediction.  

Lastly, we evaluated the effectiveness of the 

LRC-PLS method. The wavelengths, selected by the 

LRC-PLS, are illustrated in Figure 5B. As shown in 

Figure 5A-B, most of the wavelengths selected by the 

LRC-PLS and SA are quite similar to each other; 

however, the range of selected spectra was reduced, 

and several new regions were defined. While the 

selected wavelengths of the SA mostly fall into the 

lower (1000-1750 cm-1) and upper region (2750-3000 

cm-1), the LRC-PLS thoroughly explored an entire 

spectral space to select wavelengths. 

 

Figure 5. (A-B) Wavenumber selection 

comparison: (A) the Simulated Annealing 

(SA), and (B) LRC-PLS. (C) Absolute PLS 

coefficients plot obtained from the LRC-

PLS. (D) Bar chart represents R2 value of 

the testing set in this study. Data is 

averaged of 5 independent runs. 

Thus, the LRC-PLS was proved to identify 

potential spectra that were more important to the 

predictive model and removed noise and low-

correlated spectra. As a result, there is a significant 

improvement in the log(Mw) prediction of the PLS 

model with a higher R2-value when the LRC-PLS was 

applied. Nevertheless, the LRC-PLS still cannot 

identify crucial spectra regions that highlight the 

structure change of copolymer. For instance, epoxy 

was evaluated to have a less impact on the PLS model 

due to a low absolute model coefficient (Figure 5C) 

and thus discarded; however, this region showed a 

high impact upon the final product of Poly (GMA-co-

MMA) as mentioned elsewhere. Thus, in the final step 

of this study, we evaluated the predictive capability of 

the PLS model by combining the LRC-PLS and 

“Epoxy & CH” spectra and then compared its result 

with other methods. As illustrated in Figure 5D, a 

combination of the LRC-PLS and the “Epoxy & CH” 

region gives the best predictive performance, followed 

by the LRC-PLS, the SA, and the “Epoxy & CH” 

region. The result shows that utilizing selective and 

profound function groups can help the PLS model to 

recognize the wavelengths distribution better and 

improve the predictive capability of the model, 

increasing the prediction of log(Mw) and surpassing 

the LRC-PLS method. 



Conclusion 

In this study, four methods were applied toward 

building a PLS model for predicting Mw of Poly 

(GMA-co-MMA). The results show that combining 

the LRC-PLS and highly-correlated spectra can 

enhance the robustness of the predictive model, which 

can be further applied to any other copolymers. Even 

though the results of the LRC-PLS and the 

combination method are quite similar, the results still 

point out the importance of selecting appropriate 

spectra regions as it improves the robustness of the 

PLS model. 
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