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Abstract: This paper considers the upstream oil and gas domain, or more precisely the daily
production optimization problem in which production engineers aim to utilize the production
systems as efficiently as possible by for instance maximizing the revenue stream. This is done by
adjusting control inputs like choke valves, artificial lift parameters and routing of well streams.
It is well known that the daily production optimization problem is well suited for mathematical
optimization. The contribution of this paper is a discussion on appropriate formulations, in
particular the use of static models vs. dynamic models. We argue that many important problems
can indeed be solved by repetitive use of static models while some problems, in particular related
to shale gas systems, require dynamic models to capture key process characteristics. The reason
for this is how reservoir dynamics interacts with the dynamics of the production system.
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1. INTRODUCTION

Petroleum assets imply sizable amounts of hydrocarbons
which are trapped in appropriate underground geological
structures. After discovering and deciding on developing
an asset wells are drilled and production starts. Typically
the production lifetime of an asset contains three stages;
the ramp-up, plateau and decline phases. During the ramp-
up phase new wells are drilled and completed while the
production rate steadily increases. During the plateau
phase production stays fairly constant. New wells may,
however, still be drilled while others are abandoned. Typ-
ically reservoir fluid composition changes with more and
more less valuable products like water entering the produc-
tion stream. Further, fluids may be injected to maintain
reservoir pressure. During the decline phase production
can no longer be maintained, thus production rates drop.

Asset production planning is performed on different hori-
zons from a life-cycle perspective to daily production plan-
ning where decisions may be described through a control
hierarchy as shown in Fig. 1. The uppermost level includes
life-cycle related decisions such as selecting an invest-
ment strategy, appropriate technologies and an operations
model.

The second highest level, level 2 in Fig. 1 typically refers
to decision horizons of one to five years, even though this
may vary significantly, and includes choices on production
strategies. This includes drilling schedules, the location
and completion design of new wells, injection rates and
fluids, and target production rates to mention a few. Level
2 decisions are usually supported by simulator studies
using high fidelity reservoir models.

Level 3 takes us to the operations domain since the
planning horizon ranges from a few hours to a week, thus

Fig. 1. A multilevel control hierarchy

from a process systems perspective this is equivalent to
real-time optimization (RTO). We denote this by Daily
Production Optimization (DPO). There are two important
contrasts between level 2 and level 3 formulations. First,
the shorter time horizon most often allows for the use
simple reservoir models on level 3, and, second it is critical
to include the production network in DPO formulations.
The reason is that DPO production bottlenecks normally
are found both in the reservoir as well as in the network.

The lowest level in Fig. 1 includes an automatic control
systems which normally is implemented in proprietary
control systems. This includes control loops for flow,
pressure and level control functions to mention some of its
functionality. It may also be noted that there will always
exist a separate safety system, which is automatically
activated in emergency situations.

There is a clear business case for mathematical optimiza-
tion in DPO in the sense that decision support systems
based on this methodology reports production increases



in the range of 1-4% (Stenhouse et al., 2010; Teixeira
et al., 2013). These improvements are more pronounced for
fields in the late plateau and decline phases than earlier
since the DPO bottleneck structure tends to become more
complicated with time, e.g. due to increased water and gas
production, and reduced reservoir pressure.

This paper contributes to DPO formulations by discussing
static and dynamic formulations. The paper continues
with an efficient formulation of the DPO problem, which
is new and captures a broad class of problems since it
includes both static as well as dynamic reservoir models.
Examples of application classes in which a static or a
dynamic formulation is appropriate are given. This section
includes a new case study in addition to references to ear-
lier cases, and forms the basis for a discussion on benefits
and limitations of the static and dynamic formulations.
Towards the end some conclusions are presented.

2. A GENERAL DPO FORMULATION

Consider the petroleum production system illustrated in
Fig. 2, in which the produced fluid flows through well
bores, manifolds, and flowlines, to finally enter the separa-
tors. At the separators the fluid phases, typically including
oil, gas and water, are separated. It may be noted that the
process diagram for the processing section in practice is
far more complicated than shown in Fig. 2. Oil and/or gas
are exported separately through transmission pipelines.
One important feature of the production system is that
each well flow can be routed to one of the flowlines by
configuring the on/off valves in the manifold.

Upstream of the wells lies the reservoir. Thus, the reservoir
defines the inflow boundary conditions on the production
system. The downstream boundary conditions are given
by the (nearly) constant pressure in the separators, which
is maintained by regulatory control. In this paper we will
mainly be concerned with production systems where the
upstream and downstream boundaries are placed in the
reservoir and the inlet separator, respectively.

Table 1. Utility sets

Set Description

N Set of nodes i ∈ N.
E Set of edges e = (i, j) ∈ E, with i, j ∈ N.
K Timesteps K = {0, 1, . . . , N}. K− = K \N .
Ein

i Edges entering node i, i.e. Ein
i = {e : e = (j, i) ∈ E}.

Eout
i Edges leaving node i, i.e. Eout

i = {e : e = (i, j) ∈ E}.
Esnk Edges entering a sink node, i.e. Esnk = {e : e =

(i, j), Eout
j = ∅}.

Ed Set of discrete edges, i.e. Ed ⊂ E.
Nd Nodes with discrete leaving edges, i.e. Nd = {i : i ∈

N,Eout
i ⊂ Ed} ⊂ N.

R Set of phases - oil, gas and water {oil, gas,wat}.

We can now formulate a fairly general network optimiza-
tion problem. The topology of the network is represented
by a directed graphG = (N,E), with nodes N and edges E
(Ahuja et al., 1993). In the sequel we adopt the notation in
Grimstad et al. (2015). There are three mutually exclusive
sets of nodes, N, which all represent a junction: source
nodes (Nsrc), sink nodes (Nsnk) and intermediate nodes
(Nint), the latter representing junctions in the graph. An

edge E connects two nodes and represents a pipe segment
such as a well bore or a flowline, a valve, or an active
element like a pump. A subset of edges, Ed, represents
chokes and on/off valves. These edges have two states:
either open or closed. Thus, discrete edges are used to
route the flow through the network by restricting the flow
through the valve. It is advantageous to define certain
utility sets, and certain requirements need to be placed
on the graph structure, cf. Grimstad et al. (2015). Some
utility sets are defined in Table 1 in order to compactify
notation.

Table 2. Variables

Variable Description

pik Pressure in node i ∈ N at time k ∈ K.
qrek Flow rate of phase r ∈ R on edge e ∈ E at time

k ∈ K.
Yek Boolean variable associated with edge e ∈ Ed at time

k ∈ K. The edge may be open (Yek = True) or closed
(Yek = False).

Alternative formulations like compositional models in-
stead of three phases is sometimes necessary, especially
for condensate reservoirs. The variables of the problem
formulation are listed in Table 2. Note that the flow rates
{qrek} are given as mass flow rates or as volumetric flow
rates at standard conditions. For brevity, the phase flow
rates on an edge e ∈ E at time k ∈ K are collectively
denoted qek, that is, with an oil, gas, and water phase,
qek = [qoil,ek, qgas,ek, qwat,ek]T.

The DPO problem is posed as the following general dis-
junctive programming (GDP) problem, denoted P:

maximize z =
∑
r∈R

∑
e∈Esnk

∑
k∈K

grk(qrek) (1)

subject to∑
e∈Ein

i

qrek =
∑

e∈Eout
i

qrek, ∀r ∈ R, i ∈ Nint, k ∈ K (2)

ζrik(qe,k+1,qek, pik) = 0, ∀r ∈ R, i ∈ Nsrc, k ∈ K− (3)

qe,0 = given, ∀i ∈ Nsrc (4)

pik = const., ∀i ∈ Nsnk, k ∈ K (5)

pik − pjk = fe(qek, pik), ∀e ∈ E \Ed, k ∈ K (6)

Yek =⇒ pik − pjk = fe(qek, pik), ∀e ∈ Ed, k ∈ K (7)

¬Yek =⇒ qek = 0, ∀e ∈ Ed, k ∈ K (8)(
Y

e∈Eout
i

Yek

)
∨
(
∧

e∈Eout
i

¬Yek
)
, ∀i ∈ Nd, k ∈ K (9)

Yek ∈ {True,False}, ∀e ∈ Ed, k ∈ K
(10)∑

e∈Esnk

qrek ≤ Crk, ∀r ∈ R, k ∈ K

(11)

The objective function (1) is a sum of univariate, possibly
nonlinear functions of flow rate. This general form allows
for the inclusion of various cost and penalty terms. A
particularly common objective in operational settings is
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Fig. 2. A petroleum production system

the total oil production, which may be represented by
grk(qrek) = qrek, for r = oil.

The constraints in (2) are the mass balances for each
phase, for all the internal nodes in the system. The
upstream boundary conditions are covered by constraints
(3), with initial conditions in (4), while the downstream
boundary conditions are given by the (piecewise) constant
separator pressure in (5). Downstream conditions may
vary. However, a constant separator pressure is quite
common and is adopted here.

Equations (6) and (7) define the momentum balance, or
pressure drop, across pipe segments. These are modelled
as a function of inlet flow rates and inlet pressure. For
a discrete edge, the momentum balance is only enforced
when the edge is open; otherwise, when the edge is closed,
the flow rate is required to be zero according to (8). Note
that P can easily be brought to the normal form of GDP
by combining (7) and (8) to a set of disjunctions, and
transforming (9) to a conjunctive normal form.

A node with discrete leaving edges may route the flow to
one or zero of these edges. This logic is captured by the
routing constraints in (9). These constraints do not allow
for flow splitting—this way of operating the production
system is rarely used since it is difficult to model. The final
constraints in (11) are processing capacity constraints,
typically included for the gas and water phase. Note that
(10) just defines the Boolean variable Yek.

2.1 Discussion

Upstream conditions are of particular interest to this study
and will thus be elaborated upon. Problem P defines a
dynamic optimization problem on a prediction horizon K
where the dynamics enter through the reservoir model
(3), where a natural approach is to embed this into a
receding horizon optimization strategy. This implies that
P is solved repetitively at each timestep, and that only the

first control move is actually implemented. In situations
where the reservoir dynamics can be neglected a quasi
dynamic approach may be used in which P is simplified
by limiting the prediction horizon to one time step and
substituting (3) with a static model, i.e.,

ζrik(qek, pik) = 0, ∀r ∈ R, i ∈ Nsrc, k = 0 (12)

Further, (4) needs to be omitted in this case.

The static upstream inflow condition, which describes the
mass flowrate from the reservoir into the well, may be lin-
ear or nonlinear depending on the actual well and reservoir
characteristics near the well. Common models are linear
productivity index models and nonlinear Vogel curves.
There is a vast literature on dynamic reservoir models,
also related to optimization, see e.g. Jansen et al. (2008)
and references therein. Reservoir model (3) describes the
well known class of black oil models, which include oil,
water and gas phases. Such models are typically based on
a spatial discretization of a PDE model (Aziz and Settari,
1979), and may for instance be solved using a Newton
iteration scheme. It may be noted that there exisits more
complex models, like compositional models as well as sim-
pler, surrogate models. Streamline models is an example
of the latter.

The static version of P is not new. Kosmidis et al. (2004)
was the first to formulate a MINLP for the well oil rate
allocation problem.

There are alternative ways to solve the DPO problem in
P. The problem is formulated as a GDP, which requires
a special solver or a reformulation to a mixed-integer
nonlinear programming (MINLP) formulation before it
can be solved by conventional MINLP solvers. Then P may
be solved directly using a derivative-free approach. Since
equations (3), (6) and (7) normally are embedded in one
simulator or several independent simulators for each well



and pipeline, it is usually necessary to apply a derivative-
free method since gradient information is seldom available.
However, by acknowledging the fact that each nonlinear
model, (3), (6) and (7), only has a few (local) inputs and
that all integer variables appear linearly, it makes sense to
replace each well and pipeline simulator with a piecewise
continuous surrogate model. This transforms the MINLP
problem into a MILP problem with all the benefits that
come from such a formulation. One example of the latter is
given in Codas and Camponogara (2012). Another option
is to use piecewise polynomial proxy models instead of
piecewise linear models. An interesting approach is the
use of polynomials with compact support in which cubic
B-splines seems to be particularly attractive. In the latter
case this translates into a MINLP with only B-spline
based nonlinear constraints, which may be solved with a
dedicated solver (Grimstad and Sandnes, 2014).

3. CASE STUDIES

We now present three classes of DPO problems and start
off with a problem from the shale-gas domain before dis-
cussing two other domains, namely oil rims and conven-
tional oil reservoirs. Page constraints limits the depth of
the last two applications while the first is presented in
some detail.

3.1 Scheduling shale-gas wells with demand-side response

The case study, adopted from Knudsen et al. (2014), con-
sists of a small field with dry, mature shale-gas wells. These
wells have an unique ability to quickly recover from loss
of production due to a well shut-in. Moreover, the land-
based nature of shale-gas exploitation leaves many fields in
immediate proximity to gas-intensive industries and power
plants. Consequently, by systematically optimizing shut-
ins with respect to current and predicted local demand,
enables utilization of such wells as a proxy or substitute for
conventional, third-party underground gas storage (Knud-
sen et al., 2014).

In the case study, we consider at set of 10 wells, all mature,
mid-life wells producing at low rates, assumed to be
located in proximity to a natural gas power plant (NGPP).
An electric utility company (EUC) operates the NGPP,
using it as a ramp-up source together with generation from
intermittent renewables. We assume that wells produce
gas onto a transmission pipeline with sufficient capacity,
and we assume that the demand from the NGPP is given
sufficiently early to compensate for a short transmission
time on the pipeline. Hence, we omit the delay caused by
the pipeline transmission in the optimization model.

The shut-in ability of dry, mature shale-gas wells is enabled
by the characteristic shale-fracture system. This system,
generated through hydraulic fracturing stimulation, en-
sures fast formation pressure build-up during well shut-
ins, and a subsequent peak in production recovering the
loss of production during shut-in. The dynamics of the
pressure build-up, however, ranges from the time-scale of
hours in and close to the fracture network, and on the
time-scale of years further into the low-permeable shale
matrix blocks (Knudsen and Foss, 2015). This composite
dynamics, with fast near-well dynamics and steady-state

like dynamics elsewhere in the reservoir, necessitates the
use of a dynamic upstream model. To this end, we apply a
dynamic shale-well proxy model (Knudsen and Foss, 2015)
for ζrik(·) in (3), which we tune using prediction-error
filtering so as to fit the dynamic proxy model in the fre-
quency range necessary to capture dominating dynamics
during recurrent shut-in operations.

To solve P, we apply a combined big-M and convex hull
reformulation of the disjunction, see e.g. Grossmann and
Trespalacios (2013). Further, we approximate the nonlin-
earities with piecewise linearization and implement a La-
grangian relaxation scheme to alleviate the computational
burden of the large-scale MILP, see Knudsen et al. (2014)
for details.

We assume that the EUC operates a set of intermittent
renewable generation sources with hourly varying genera-
tion. The EUC uses the NGPP as ramping source in order
to compensate for the variability in renewable generation
and meet the power demand. We assume that the EUC by
using weather information is able to predict some hours
ahead its gas demand, which it requests from the operator
of the shale-gas field. Consequently, the main objective for
the DPO in this case is to meet the varying gas demands
by scheduling well shut-ins. Every third hour, the shale-
gas operator receives an updated gas demand for the next
24 hours from the EUC.

In order to meet the varying gas demands, the shale-
gas operator must reoptimize its well schedule each time
it receives an updated demand curve. To this end, we
implement P on a receding horizon, reoptimizing the well
schedule and operating pressures each time a new demand
curve is received. We implent this with a prediction horizon
of three days. Beyond the first 24 hours demand curve,
we require that the set of shale wells must be able to
meet the average gas demand, as a simple means of taking
into account the uncertainty of the future demand. If the
operator fails to meet the gas demand, a high penalty
incur. This penalty enters into the objective (1). On the
other hand, if the wells have excess capacity, the operator
may choose to sell surplus gas on the spot market, though
at a lower price compared to gas supplied to the NGPP.

In Fig. 3, we show the gas rates from the open-loop
response computed at the first sampling instant. The set
of wells is seen to exactly meet the initially provided gas
demand and, due surplus capacity, some gas is additionally
sold on the spot market. At the next sampling time, three
hours later, the gas demand from the EUC changes due to
variability in renewable generation. To prevent penalties,
the operator updates the well schedule by incorporating
the updated demand curve. As shown in Fig. 4, by op-
timizing over a receding horizon, the operator is able to
exactly meet the changing gas demand by utilizing the
gas-storage properties of the shale-gas wells. The resulting
well schedule is highly dynamic, as shown by the shut-in
pattern in Fig. 5. Some wells are frequently shut in and re-
opened in order to build-up pressure and save gas for the
predicted future demands, while two of the wells produce
continuously due to higher formation pressure support,
seen by the solid lines.
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Fig. 3. Open-loop gas rates given initial demand from
NGPP.
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Fig. 4. Gas rates using receding horizon optimization.

3.2 Optimization oil rim performance

Oil rims are reservoirs where a thin oil rim, typically 10−
25 metres, is sandwiched between a large gas cap above
and water beneath. One well known case is the Troll oil
field operated by Statoil. Oil rims can only be exploited
economically through horizontal wells which are placed
just above the water-oil-contact. The reservoir dynamics
are fast. In particular the gas-oil-contact (GOC) may move
downwards towards the well, in a matter of hours, in the
event of increased choke opening. This can expose the well
to free gas, a situation which limits oil production severely
due to gas processing limitations, as modelled in (11).
Nennie et al. (2009) compares alternative dynamic control
strategies for production optimization of a thin oil rim
and concludes that dynamic strategies enables increased
production. Similar results are obtained in Sagatun (2010)
and Hasan et al. (2013).
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Fig. 5. Shut-ins and start-ups for the well scheduled
optimized on a receding horizon, with total rates
shown Fig. 4. The circle © symbolizes a start-up of
the well, while a M symbolizes a shut-in.

3.3 DPO in conventional wells

The dynamics of conventional reservoirs is usually slow.
In the DPO context this means that reservoir conditions
around wells change slowly. In practice pressure and fluid
changes only marginally from one day to another. In this
case a static formulation, as discussed in conjuntion with
(12) works well. There are numerous references on varia-
tions of this static strategy, which have appeared after the
initial paper (Kosmidis et al., 2004). Gunnerud and Foss
(2010) analyses a large problem inspired by a Statoil field
in which it is necessary to exploit structure in order to
solve P. In particular Lagrange relaxation and Dantzig-
Wolfe decomposition is applied with encouraging results.
Grimstad et al. (2015) extends the static optimization
problem to include energy balances to account for flow
velocity constraints in gas dominated flow for an applica-
tion in cooperation with BP. The two latter papers relates
to offshore applications while as Codas and Camponog-
ara (2012) is linked to the complex onshore Urucu field
operated by Petrobras. The use of a dynamic formulation
becomes more relevant if the DPO problem is extended
to longer time horizons, say one month ore more, since
the reservoir dynamics then increases in importance. This
latter case may be interpreted as an application in between
level 2 and 3 in Fig. 1.

4. DISCUSSION

The cases referred to above makes a case for the use of
both static and dynamic formulations. A large class of
DPO problems are treated through a static formulation by
acknowledging the time scale separation between reservoir
dynamics and the prediction horizon for DPO, thus the
use repetitive optimization on a static model suffices. On
the contrary, however, there are cases where reservoir
dynamics are important on a daily production horizon
such as in shale-gas cases and oil rims.



The clear majority of cases uses a static DPO formulation
for reasons discussed already. However, there is another
reason for choosing the simpler option, static models,
namely model accuracy. Model accuracy poses a particular
challenge for the well models. Flow rate estimates from
individual wells are inaccurate since multiphase flow me-
ters are few and far between. Further, model calibration is
performed quite infrequently since they rely on data from
well tests.

A dynamic formulation may also be inferred because of
demand side dynamics, a situation which is encountered in
the shale-gas example discussed earlier. This case includes
dynamics both in the upstream reservoir and downstream
demand side. Another situation is if fast dynamics appear
only on the demand side. This situation, with only de-
mand side dynamics, is covered by P by optimizing on a
suitable horizon K with a static reservoir model (3) while
discarding (4).

The focus up until now has been on the need for dynamics
related to reservoir behavior and the demand side, while
the wells and network uses static models since P does
not allow dynamic models for these parts. This is a
valid assumption except for certain extended networks
that are closely integrated with downstream processing.
LNG plants may exemplify such systems. In Foss and
Halvorsen (2009), where the Statoil Snøhvit offshore field
was considered, the pipeline between 9 wells and the
LNG plant is 140 km. The network dynamics are then
in the range of 8 − 10 hours and thus in this case the
use of a dynamic formulation was considered and actually
applied in the study to schedule well production. To limit
complexity a dynamic surrogate model for the pipeline was
used.

The focus of this paper has been DPO in upstream
production. In cases with short DPO horizons such as
a few hours a dynamic formulation may be in order,
in particular in situations where the link to lower level
control is particularly important. Slug flow is an issue
which may link DPO closely to low level control. A recent
paper (Codas et al., 2016) explores integration of low level
control with nonlinear model predictive control for DPO.
The analysis is performed for a system prone to slug flow.
Improved results are reported, however, at the expense on
a significant complexity increase.

It may be noted that uncertainty, which is an important
topic, has intentionally been omitted in this paper due to
page constraints.

5. CONCLUSIONS

A static optimization formulation suffices in many relevant
DPO cases. Important exceptions are shale gas wells and
thin oil rims.
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