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Abstract

Scheduling, optimization and control of power for three industrial cogeneration plants at one of Dow's
Louisiana site is presented in this paper. A first principle mathematical model that includes mass and
energy balances for gas turbines, heat recovery units, steam turbines, pressure relief valves and steam
headers is used to formulate multiple optimization problems to recommend the best strategy to trade
power. The model has detailed operational information that includes equipment status and control curves
for different operating scenarios. The scheduled power offer curve is obtained by solving multiple
optimization problems using the validated process model along with operational and equipment
limitations. Adjustment of power schedule offer is done in the real-time market thirty minutes prior to the
hour and implementation of the dispatched power schedule is done using a model predictive controller.
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Introduction

Scheduling power in day-ahead market for a combined
heat and power (CHP) cogeneration plant requires accurate
predictions of steam and electricity production, and fuel
consumption for various operating scenarios. A good
survey on short term cogeneration planning that includes
day-ahead market has been published by Salgado and
Pedrero (2008). Day-ahead short term planning typically
consists of hourly planning intervals that require good
predictions of fuel consumption and power generation by
the cogeneration plant. The literature on cogeneration
planning focuses on sol ution of the economic scheduling
problem using mixed-integer linear programming (MILP)
models (Marshman et a. (2010), Mitraet a. (2013)). The
nonlinear process behavior is approximated using
linearized models for turbines and boilers with constant
efficiency (Marshman et a. (2010), Mitra et al. (2013)).
MILP models are used to avoid numerical difficulties
associated with fundamental models that are non-linear. A
two-tier formulation for real-time economic optimization
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based on steady-state nonlinear models and model
predictive control using linear dynamic models has also
been developed for industrial cogeneration processes
(Emoto et al. (1998)). The power scheduling calculations
in this paper use a detailed steady-state, non-linear model
that is also used for real-time optimization of the industrial
process. A steady-state model is appropriate for scheduling
power in cogeneration plants because the process dynamics
for exported power are fast with a settling time of 3
minutes as compared to the scheduling interval of each
hour. Implementation of the optimized power scheduleis
done using alinear model predictive controller that uses
empirical dynamic models. The modeling details of the
scheduling application for cogeneration plants and its real-
time implementation have been published (Bindlish
(2016)). The process model for scheduler consists of
approximately 18,000 equations and is deployed online for
both scheduling and real-time optimization (Figure 1).
Model validation is done by calculating appropriate model



parameters to match real-time plant data before using it for
scheduling and real-time optimization.
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Figure 1. Scheduler and real-time optimization

Power Scheduling

Power scheduling calculations are done for the
scheduling interval of each hour by solving multiple
optimization cases using the validated process model
(Figure 1). The power offer curve for day-ahead and real-
time M1SO power market takes into account
e  Operating conditions and process limitations
Site power and steam demand
Plant produced fuel flow and composition
Fuel price
Ambient temperature
Equipment Contingency
The offer curve for the power schedule includes
exported power and incremental heat rate (IHR). Heat rate
(HR) is the common measure of system performance in a
cogeneration power plant. It is defined as the fuel input
energy divided by the output power energy. The fuel
energy input takes into account the heating value of
different types of fuels used by the power plant
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Lower heat rate implies higher efficiency and better
conversion of energy. Plant heat rate is a measure of the
combined performance of the gas turbines, steam turbines,
and other associated equipment. Incremental heat rate
(IHR) isdefined as

IHR = AFue Input @
AOutput power

Incremental heat rate is compared to market heat rate
to vary the power output. Market heat rate (MHR) is
defined as the ratio of power priceto fuel price

MHR — Power p_rlce 3
Fuel price

Power Offer Curve

After meeting the site steam and power requirements,
power is scheduled both in the day-ahead and real-time
markets (Figure 1) by submitting an offer curve that
includes exported power and incremental heat rate. The
power offer curve is obtained after solving multiple
optimization problems over the entire range of exported
power (Bindlish (2016)). The exported power that is
scheduled takes into account power produced from gas
turbines and steam turbines along with the site power
demand.

Power,,, =Power . + Power,,,, — Power,, ... (4)

The thirty-four optimized setpoints for the multiple
optimization problems can be listed as
e  Gasturbine power (8)
Steam turbine power (4)
High pressure steam flows from duct burner firing (6)
Steam turbine extraction flows (12)
Gas turbine steam injection ratios (4)
The power offer curve is calculated by evaluating the
minimum operating cost to produce the specified exported
power (Powere,p) over the entire operating range using the
following objective function with the same thirty-four
optimized setpoints. Operating cost takes into account
purchased fuel, condensate make-up cost and the credit
due to power sales

min Cost =) Fuel, xC,; + Cond xC,, -
j

©)
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inwhich C;is cost of fuel j, C, is cost of condensate water
and Cyiscost of power. The governing constraints for the
optimization problems are set by process model and
constraints of site steam and power demand along with
limitations for plant equipment. The process model can be
expressed as

f(x,u,d,b)=0, y=h(x,u,d,b) (6)

wherey are outputs, x are states, u are inputs, d are
measured disturbances, and b are model parameters. Most
of the power produced is used by internal chemical plant
consumers at the Dow site and the surplus is exported into



the power market for the scheduling interval of each hour.
The day-ahead power offer curve is calculated for each
hour of the following day by taking into account equipment
contingency and ambient temperature predictions. A real-
time market offer curve that takes into account the current
operating conditions including ambient temperature and
equipment availability is used to make appropriate
adjustments 30 minutes prior to each hour to the power
schedule offer (Figure 1).

Power Schedule Implementation

Implementation of the power schedule is done using a
real-time optimizer along with a mode predictive
controller (MPC) (Figure 1). Real-time optimization is
performed using fundamental steady-state modelsin Aspen
Plus Optimizer (Emoto et al. (1998)), whereas model
predictive control is done using empirical linear dynamic
modelsin Aspen DM Cplus (Cutler and Ramaker (1979)).

Real-time Optimization

The vaidated fundamenta model used for
optimization is the same that is used for power scheduling.
The objective of real-time optimization is to minimize total
operating cost (Equation 5) along with the equation
oriented process model (Equation 6) and process
information using the same thirty-four optimized setpoints
that are used to determine the power offer curve for
scheduling. Exported power (Powerep) is constrained
within a band from the scheduled power for real-time
optimization

Power 2™ — § < Power,, < Powerss™ +5  (7)
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The governing constraints for the above optimization
problem are set by process model (Equation 6) and
constraints of site steam and power demand along with
limitations for plant equipment. The on-line optimization
problem is solved every three minutes and the setpoints are
implemented using alinear model predictive controller.
Real-time optimization cycle consists of a model validation
case followed by an optimization case as depicted in
Figure 1. After the model is parameterized to match
current plant operating conditions, an optimizationrun is
executed. The optimization case takes into account the
current control status of each optimized setpoint. If a
particular setpoint is placed out-of-control in the linear
model predictive controller, then its behavior in the plant is
replicated by mimicking the underlying control system
scheme instead of optimizing it. The particular variableis
typically maintained within limits by the underlying control
system scheme even though it is not controlled at a
particular target value. The global optimality and stability
of the implemented solution is ensured by capturing the
behavior of the underlying control system for variables that
are not controlled to atarget by the linear model predictive
controller. At the end of the optimization case, optimized
plant setpoints are implemented by controlling them to

their target values using a linear model predictive
controller. The optimization cycle, from collecting plant
data to sending optimized setpoints, is done continuously
and takes approximately 3 minutes. The closed-loop
optimizer uses a validated process model to keep the plant
at optimum conditions based on process data and
€conomics.

Model Predictive Control

Aspentech's Aspen DM Cplus is the commercial linear
model predictive controller used for implementation of
optimization setpoints and maintaining process within
limits. The commercial controller uses an ARX input-
output model instead of using a state-space representation
to explicitly capture the dynamics of the process.
Plant-model mismatch is attributed to disturbancesin
output measurements instead of inputs or processin the
controller formulation (Cutler and Ramaker (1979)). The
MPC controller runs every 15 seconds and is used to
maintain the optimized exported power target while
keeping plant operations within required process
congtraints (Figure 1). The control objectives for MPC are
ranked such that the more important limits are satisfied
first. The physical limits of valves and environmental
safety limits are most important. The steam header
pressure limits, fuel gas pressure limits and fuel gasratio
limits are next in importance because they are set by the
internal chemical plant producers at the site. The economic
objective of maintaining scheduled exported power is more
important than the target power for each individual gas
turbine or steam turbine specified by the real-time
optimizer. The power produced from the individual
generators varies in response to disturbances from the
chemical plant producers to maintain scheduled export
power.

Results

The results shown for the industrial process have been
scaled to protect proprietary information. The power
schedule offer consists of a curve for incremental heat rate
with exported power (Figure 2) that allows the power
schedule to vary with the market heat rate as per the curve.
After the power is scheduled, there is a deviation band of
20 MW that can be used for real-time optimization.
Incremental heat rate varies with exported power when gas
turbines are getting loaded and has a completely different
slope for supplemental firing from duct burners (Figure 2).
The incremental heat rate curve is able to match within 2
percent error from actual plant data for different ambient
temperatures and operating scenarios. The accuracy of the
model predictions enables better decision making for
scheduling power. Linear models would result in a
constant incremental heat rate when gas turbines are
getting loaded. The less accurate predictions from linear
models would lead to inefficient decision making for
scheduling power. The close match of the power offer
curve with plant data can be attributed to the following



e Fundamental nonlinear model with process control
strategy and equipment design curve details
e  Continuous model validation with real-time plant data
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Figure 2. Scaled Incremental Heat Rate Variation

Implementation of the optimized power target is done
effectively using a linear model predictive controller. The
effective optimized target takes advantage of the allowed
20 MW deviation band from the power schedule and the
actual exported power is able to follow the optimized
target closely without requiring nonlinear models for MPC
as shown (Figure 3). The exported power target is greater
than the power schedule because it is profitable to generate
excess power and the MPC controller is able to follow the
optimized target closely.
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Figure 3. Schedule Implementation for Power

Conclusions

The power scheduling application has been in
continuous use since January 2014 to enable efficient
participation in day-ahead and real-time power markets
due to its robustness and accuracy for solving multiple

optimization cases. The scheduler that uses a validated
fundamental nonlinear model to match plant data closely
has enabled realization of significant benefits that are equal
to 12.8 percent improvement in power sales margin
($MWhr) as compared to selling power in the real-time
market without any scheduling.
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