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Abstract 

The fusion of information from disparate sources of data is the key step in devising strategies for a smart 

analytics platform. In the context of the application of analytics in the process industry, this paper 

provides a framework for seamless integration of information from process and alarm databases 

complimented with process connectivity information. The discovery of information from such diverse 

data sources can be subsequently used for process and performance monitoring including alarm 

rationalization, root cause diagnosis of process faults, hazard and operability analysis, safe and optimal 

process operation. The utility of the proposed framework is illustrated by several successful industrial 

case studies. 
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Introduction1 

Process data analytic methods rely on the notion of 

sensor fusion whereby data from many sensors and alarm 

tags are combined with process information, such as 

physical connectivity of process units, to give a holistic 

picture of health of an integrated plant. 

The discovery and learning from process and alarm 

data refer to a set of tools and techniques for modeling and 

understanding of complex data sets. Such data sets 

generally include normal numerical (or non-categorical) 

data but should also take into account categorical (or non-

numerical or qualitative) data from Alarm and Event (A&E) 

logs combined with process connectivity or topology 

information. The later refers to the capture of material flow 

streams in process units as well as information flow-paths 

in the process due to control loops. This is particularly 

useful when one is analyzing data from highly integrated 
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processes to understand propagation of process faults as 

would be required in HAZard and OPerability (HAZOP) 

analysis for safe process operation. Highly interconnected 

process plants are now a norm and the analysis of root 

causes of process abnormality including predictive risk 

analysis is non-trivial. It is the extraction of information 

from the seamless fusion of process data, alarm and event 

data and process connectivity that should form the 

backbone of a viable process data analytics platform. This 

paper focuses on an attempt to create such a platform. This 

idea of information fusion in the context of process data 

analytics is depicted in Figure 1. 

For efficient and informative analytics, data analysis is 

ideally carried out in the temporal as well as spectral 

domains, on a multitude and NOT singular sensor signals 

to detect process abnormality, ideally in a predictive mode. 

With the explosion of applications of analytics in diverse 

areas (such as aircraft engine prognosis, medicine, sports, 

finance, insurance, social sciences and the advertising 

industry) statistical learning skills are in high demand. The 

emphasis in this study is on tools and techniques that help 

in the process of understanding data and discovering 

information that would lead to predictive monitoring and 

mailto:sirish.shah@ualberta.ca


  
 

diagnosis of process faults, alarm rationalization and safe 

and optimal process operation. 

Typical process data analytic methods require the 

execution of following steps: 

1) Data quality assessment, such as outlier detection, 

data normalization, and noise filtering; 

2) Data visualization and segmentation; 

3) Process and performance monitoring including root 

cause detection of faults; 

4) Alarm data analysis; 

5) Data-based process topology discovery and 

validation. 

 

Figure 1.  Ingredients of a smart process data 
analytics platform to enable seamless fusion of 

information from process and alarm data 
combined with process connectivity information. 

The focus of this paper is to introduce a framework for 

a smart analytics platform supported by industrial case 

studies to demonstrate the practical utility of such a tool. In 

this vein this paper is organized as follows: First, main 

features of this data analytics platform are introduced in 

detail, including several functional modules, such as the 

alarm data analysis, alarm system design, process data 

analysis, and causality inference. To demonstrate the utility 

of these functional modules, several case studies involving 

real industrial data are presented. The concluding remarks 

are given in the last section. 

Framework for a Data Analytics Platform 

A comprehensive platform should integrate a variety 

of basic statistical functions as well as advanced analytical 

features, which are powerful and insightful in analyzing 

either continuous-valued process data or binary-valued 

alarm data as well as additional categorical data. The 

proposed analytics platform consists of a data loading 

section and four functional modules as shown in Figure 2. 

“Data Loading” imports, reorganizes, merges, or exports 

alarm data and/or process data. The functional module 

“Alarm Data Analysis” provides analytic and reporting 

functions to analyze and visualize alarm data. The 

remaining three functional modules are based on process 

data. The “Alarm Configuration Analysis” module designs 

univariate alarm systems for specific process variables. 

The “Process Data Analysis” module visualizes and 

analyzes process data from either time or frequency 

perspective. The “Connectivity & Causality Analysis” 

module uncovers correlations and causal relations between 

process variables. In addition, a data summary section 

displays the basic information of loaded alarm data and/or 

process data. Details and features in each functional 

module are presented in the following subsections. The 

framework allows merging of process and alarm data, and 

gives exploratory as well as analytical insights in the 

extraction of information from such data. 

 

Figure 2. Functional modules for a process 
data analytics toolbox. 

Data Loading 

“Data Loading” is the first highlighted part in Figure 2. 

It has six functions that can fulfill different functions 

related to data loading, including alarm data loading, 

process data loading, data exporting, preprocessed data 

loading, data matching, and data clearing. The descriptions 

of these functions are listed in Table 1.  

Table 1. Tasks in “Data Loading”. 

Function Task 

Load Alarm 
Data 

Load alarm data from an Excel file with 
structured data format. 

Load Process 
Data 

Load process data from an Excel file 
with structured data format. 

Load 
Preprocessed 
Data 

Load alarm and/or process data from a 
MATLAB data file with a reorganized 
data format. 

Merge Data 
Associate the tags of process variables 
with their corresponding alarm tags. 

Export 
Export the alarm data and/or process 
data as a MATLAB data file with a 
reorganized data format. 

Clear Clear alarm and/or process data. 

① 

② ③ 

④ ⑤ 



  

To import alarm historian data to the platform, an 

Alarm & Event (A&E) log file in Microsoft Excel format 

is needed. Databases from various vendor systems can be 

exported into this toolbox by first converting them into 

Excel files. Several requirements on the log file should be 

satisfied: (1) Each row should reflect one event message; 

(2) each column should be a certain field of event 

messages; (3) the same column in all the sheets of the log 

file should represent the same field. A typical A&E log 

usually consists of configuration attributes, e.g., the tag 

name, alarm identifier, priority and location, and realtime 

messages such as alarm occurrences (ALM), return-to-

normal instants (RTN), and their time stamps (Izadi et al. 

2010; Kondaveeti et al. 2012). Among these attributes and 

messages, the following pieces are key and necessary: time 

stamp, tag name, tag identifier, and message type. They 

may have different field headers in the data archived from 

different vendor systems, but usually all of these four 

pieces of information are provided. In addition to this, the 

priority and unit information are optional for the data 

loading depending on whether the two pieces of 

information are archived or not. An example of A&E log 

in Excel format is shown in Figure 3. The four mandatory 

attributes and two optional attributes are highlighted by red 

and blue dashed rectangles, respectively.  

 

Figure 3. An example of A&E log.  

To import historical process data to the platform, files 

that store historical measurements of process variables in 

Microsoft Excel format are needed. Process data has 

totally different format compared to alarm data. Several 

requirements on the Excel files should be satisfied: (1) The 

first column should be time stamps of the sampling instants; 

(2) the following columns store the historical values of 

process variables at these sampling instants. If the time 

stamp information is not available, an Excel file without 

the time stamp column is also acceptable. The log file of 

process data has a much simpler structure compared with 

the A&E log, and usually includes three parts, namely, tag 

names, measurements, and time stamps. An example of a 

process data stream is presented in Figure 4. The tag 

names, measurements, and time stamps are highlighted by 

green, blue, and red dashed rectangles, respectively. 

Once the alarm and/or process data are loaded, the 

platform will reorganize them in a format that can be easily 

processed by the analytical functions. Exporting data 

before closing the platform is recommended, since it is 

much less time-consuming to import the preprocessed data 

in .mat format than to import the raw data stored in Excel, 

especially for subsequent analysis. If both the alarm data 

and process data are loaded, then all the process variables 

that have observations during the time-window of the 

alarm dataset are listed. Macros can be created to associate 

alarm tags with a listed process variable. Some basic 

information about the data set is shown in the information 

section at the bottom left corner of Figure 2. It shows the 

directories of the alarm data and process data files, 

respectively. Alarm historian duration, average alarm rate, 

number of alarm tags, number of process tags, and number 

of process tags that have been matched to alarm tags are 

also provided if available. 

 

Figure 4. An example of process data.  

Alarm Data Analysis 

This functional module provides a variety of functions 

for the analysis of alarm data, including basic statistical 

features, such as the reporting of top bad actors, 

calculation of average/peak alarm rates, and OPerator 

Acknowledgement Analysis (OPAA), advanced data 

analytics, such as the Run Length Distribution & Delay 

Timer Analysis (RLD&DTA), Chattering Index (CI), 

Oscillating Alarm Analysis (OAA), Alarm Flood Analysis 

(AFA), Causality Inference for Alarms (CIA), and Mode-

Dependent Alarm Analysis (MDAA), plus powerful 

visualization plots, such as the High Density Alarm Plot 

(HDAP), Alarm Burst Plot (ABP) and Alarm Similarity 

Color Map (ASCM). This functional part is helpful for 

issuing weekly or monthly assessments/recommendations 

of alarm management. But it is not merely a simple Key 

Performance Indicator (KPI) calculator as it has many 

advanced features that can help in alarm rationalization. 

The descriptions of these functions are listed in Table 2. 

To observe top bad actors and visualize changes of 

KPIs, HDAP and ABP can be used. A High Density Alarm 

Plot (HDAP) is useful for visualizing large amounts of 

alarm data over a selected period (Kondaveeti et al. 2012). 

It displays alarm counts for top bad actors using a color 

map and provides an overall picture of alarm data without 

getting into details of each alarm variable. Using a sliding 

time window of 10 minutes, the peak alarm rate is 

calculated along with time and can be visualized using a 

line graph, namely, the Alarm Burst Plot (ABP) (Hollifield 

& Habibi 2011). 

Correlated alarms are referred to as alarms occurring 

within a short time period of each other. They could be 

either redundant or overlapping in indicating the same 

abnormality. Therefore, the detection and quantification of 



  
 

correlated alarms are important. Based on the alarm 

correlations, redundant alarms can be removed and related 

alarms can be grouped. A variety of methods have been 

developed and demonstrated to be effective using 

industrial case studies (Noda et al. 2011; Kondaveeti et al. 

2012; Yang et al. 2013; Hu et al. 2015). In this functional 

part, the correlation metrics are visualized by an Alarm 

Similarity Color Map (ASCM), where correlated alarms 

are clustered, and thus can be easily identified (Kondaveeti 

et al. 2012; Yang et al. 2012). 

Table 2. Functions in “Alarm Data Analysis”. 

Function Task 

HDAP 
Visualize alarm data over a selected time 
period using a high density color map. 

RL&DTA 
Design on/off delay timers based on run 
length distributions. 

CI 
Detect chattering alarms and calculate 
chattering indices. 

ABP 
Calculate and visualize the peak alarm 
rate. 

OAA 
Discover alarms caused by process 
oscillations. 

ASCM 
Detect correlated alarms and visualize 
their similarity indices using a color map. 

AFA 
Analyze alarm floods, including 
identification, comparison, and clustering 
of alarm floods. 

OPAA 
Analyze the operator acknowledgement, 
including the acknowledgement rate and 
response time. 

CIA 
Detect causal relations between alarm 
variables. 

MDAA Detect mode-dependent nuisance alarms. 

Chattering alarms are major contributors of alarm 

overloading. According to ANSI/ISA-18.2 (2009), any 

alarm occurring more than 3 times over a 60 seconds 

period is likely to be chattering. To identify chattering 

alarms and quantify their severities, a Chattering Index (CI) 

was developed based on Run Length Distribution (RLD) 

(Nagoosi et al. 2011; Kondaveeti et al. 2013). CI takes 

values between 0 and 1, with a value closer to 1 

corresponding to a more serious chattering problem. To 

reduce chattering alarms, delay timers are effective tools 

(Kondaveeti et al. 2013; Wang & Chen, 2013 & 2014).  

Kondaveeti et al. (2013) and Adnan et al. (2013) provided 

effective ways for the design of delay-timers, which is 

available in RL&DTA. 

An oscillating alarm is a special case of chattering or 

repeating alarms, which is caused by oscillatory processes. 

An oscillating alarm, as identified by periodicity in the 

alarm tag, is an indication of some underlying process 

oscillation. The oscillating alarms can be easily detected 

offline using the method in (Cheng 2013) and online using 

the method in (Wang & Chen 2013). Specifically, the 

offline method, namely OAA, is incorporated in this 

platform, to detect oscillating alarms based on the 

periodicity in alarm states. 

Alarm floods typically arise during a situation when a 

process abnormality propagates leading to triggering of a 

large number of annunciated alarms over a short period 

that often exceeds the operator’s ability to respond in a 

timely manner to mitigate the fault(s). An alarm flood is 

said to be raised when the number of annunciated alarms 

reaches 10 alarms over a 10 minutes period per operator, 

and be cleared when the number drops below 5 alarms 

over a 10 minutes period (ISA-18.2 2009; EEMUA-191 

2013; IEC 2014). Alarm floods are common in alarm 

systems and have various negative effects (Nimmo 2005; 

Timms 2009; Beebe et al. 2013). To analyze alarm floods, 

AFA functions enable analysis in two steps. First, alarm 

floods are identified from historical alarm data and 

highlighted in an alarm burst plot. Second, alarm floods 

are compared in pairwise using sequence alignment 

algorithms, such as Dynamic Time Warping (DTW) 

(Müller 2007; Ahmed et al. 2013), modified Smith 

Waterman (SW) algorithm (Smith & Waterman 1981; 

Cheng et al. 2013a), and BLAST-like algorithm (Altschul 

et al. 1990; Hu et al. 2016a). Furthermore, sequence 

patterns of alarm floods can be found using a multiple 

sequence alignment algorithm in (Lai & Chen 2015). 

To identify abnormality propagation paths and assist 

in the root cause detection, the CIA function provides a 

practical way to detect causal relations between alarms. 

Based on the detection results, users are able to make a 

more reliable judgement on how an abnormality 

propagates from one alarm to another and relate it to 

experiences from similar abnormal events in the past (Hu 

et al. 2016b). In this way the alarm flood event clustering 

analysis allows one to develop a canonical fingerprint of 

common faults that trigger an alarm flood and also identify 

appropriate corrective actions that need to be taken to 

mitigate the abnormality rapidly. 

To analyze the interactions between alarms and 

operator responses, the OPAA and MDAA functions have 

been developed. The OPAA includes three plots to 

visualize the alarm states and operator acknowledgements 

(Ack’s) in a high density color map, compare the alarm 

count and Ack’s count for each unique alarm using a bar 

chart, and show the response time for acknowledging an 

alarm using a boxplot. The MDAA function discovers the 

association rules of mode-dependent alarms from A&E 

logs, where both the alarm data and operator actions 

should be available. The results can be used to assist in 

configuring state-based alarming strategies. Moreover, 

another advanced technique to analyze the interaction 

between alarms and operator responses is process 

discovery of operational procedures (Hu et al. 2016c). The 

results can be used to provide decision supports by 

analyzing operator actions from historical data.  

In addition to the above analytical functions, reporting 

functions are also useful. Table 3 lists three reporting 



  

functions, including the Bad Actor List, Performance 

Calculator, and Bad Actor Comparison. A bad actor list 

contains statistical results of alarm data. It does not only 

indicate top bad actors, but also tells distributions of alarm 

priorities, alarm identifiers, and unit areas. Performance 

Calculator gives results of how many alarms can be 

reduced by applying delay timers to bad actors and 

suppressing specified nuisance alarms. Bad Actor 

Comparison compares the bad actor list of the loaded 

alarm historian with another one for the same alarm system 

but at a different time period, thus allowing audit checks to 

determine if implemented changes have helped. 

Table 3. Report Functions in “Alarm Data 
Analysis”. 

Report Function Task 

Bad Actor List 

Generate Excel reports of basic 
statistical information of alarms by 
top bad actors, alarm identifiers, 
alarm priorities, and locations. 

Performance 
Calculator 

Generate Excel reports of alarm 
reduction by simulating the 
implementation of delay-timers and 
alarm suppression techniques. 

Bad Actor 
Comparison 

Generate Excel reports of changes of 
alarm count for each alarm variable 
during two different time periods. 

Alarm Configuration Analysis 

This functional part is used to simulate the 

configuration of alarm systems for univariate process 

signals, as is the current practice in industry. Techniques, 

such as filters, delay timers, and deadbands, are provided. 

Moreover, there are several ways to determine alarm limits. 

The user can manually define them, set a certain alarm rate, 

select the maximum or minimum historical value, or make 

the platform find an optimal limit automatically. The 

platform then can calculate, display, and compare the 

design results based on different techniques. The 

descriptions of these functions for alarm configuration are 

listed in Table 4. 

Filters are used to reduce noises from process signals. 

As a result, the process data during normal and abnormal 

situations will be easily separated, which is an effective 

way to minimize false and missed alarms. Six commonly 

used industrial filters are provided, including the moving 

average filter, moving variance filter, moving norm filter, 

rank order filter, low pass filter, and Exponentially 

Weighted Moving Average (EWMA) filter. The 

mathematical principles of these filters can be found in 

(Izadi et al. 2009; Cheng et al. 2013b). In contrast to filters, 

delay timers work on alarm signals rather than process 

signals. Two types of delay timers are provided, namely, 

the off-delay timer and on-delay timer. The off-delay timer 

reduces chattering alarms by delaying return-to-normal 

instants while the on-delay timer reduces chattering alarms 

or removes fleeting alarms by delaying alarm occurrences. 

The principle and design of delay timers can be found in 

(Adnan et al. 2011; Adnan et al. 2013). Adding a deadband 

is another widely used technique in industry. This requires 

two different alarm limits for the raising and clearing of 

alarms (Adnan et al. 2011). Chattering alarms caused by 

noise can be effectively reduced by deadbands. 

Table 4. Functions in “Alarm Configuration 
Analysis”. 

Function Task 

Filter 

Moving Average 

Reduce noises, remove bad 
data, or modify statistical 
distributions of process 
signals. 

Moving Variance 

Moving Norm 

Rank Order 

Low Pass 

EWMA 

Delay 
Timer 

Off-Delay Timer Reduce chattering or 
fleeting alarms by delaying 
alarm raising or clearing 
instants. On-Delay Timer 

Deadband 

Reduce false or missed 
alarms by applying different 
thresholds for alarm raising 
and clearing. 

Alarm Limit Optimization 
Optimize high or low alarm 
limit automatically. 

To design the above techniques, three performance 

specifications are used commonly, including the False 

Alarm Rate (FAR), Missed Alarm Rate (MAR) and 

Averaged Alarm Delay (AAD). FAR and MAR measure 

the accuracy in detecting abnormal situations, and AAD 

denotes the alarm latency (Adnan et al. 2011; Xu et al. 

2012). However, tradeoff exists between FAR and MAR. It 

is impossible to reduce FAR and MAR simultaneously, by 

just adjusting the alarm limit. Thus, filters, delay timers, 

and deadbands can be applied to improve the performance 

of alarm systems. A Receiver Operating Characteristic 

(ROC) curve is provided to visualize the tradeoff between 

FAR and MAR, for the design of alarm systems. 

Process Data Analysis 

This functional module provides a variety of 

techniques to analyze and visualize process signals from 

different perspectives of view. Prior to analysis of process 

data, data preprocessing is usually required. Four 

commonly used data preprocessing techniques are 

incorporated in the platform, including data detrending, 

data smoothing, data normalization, and outlier removal. 

The descriptions of these data preprocessing functions are 

listed in Table 5. 

The data analytical functions are classified into two 

groups as listed in Table 6. The analytical functions and 

visualization plots for univariate process signals include 



  
 

time trend, frequency spectrum, power spectrum density, 

and spectrogram, and those for multivariate process signals 

include high density plots, parallel coordinate plots, scatter 

matrices, spectral envelopes, and temporal and spectral 

Principle Components Analysis (PCA and SPCA). 

Table 5. Preprocessing Functions for Process 
Signals. 

Function Task 

Detrend Data 
Make the mean of the process 
signals be zero. 

Data Smoothing 
Remove the noise from process 
signals using a band filter. 

Data Normalization Normalize process signals. 

Remove Outliers Detect and remove outliers. 

Table 6. Functions to Analyze and Visualize 
Process Signals. 

Type Function 

Univariate 

Time trend 

Frequency spectrum 

Power spectrum density  

Spectrogram 

Multivariate 

High density plot 

Parallel coordinate 

Scatter matrix 

Spectral envelope 

PCA and Spectral PCA 

Among the univariate plots, the frequency spectrum 

and power spectrum density are in frequency domain, and 

the spectrogram is in the time-frequency or wavelet 

domain. A spectrogram plot is a 2 dimensional colormap 

that can reflect both the temporal and spectral information 

simultaneously for a single process variable. High density 

plots visualize the plots of a multitude of process variables 

in a compact form, namely, in a single plot. Parallel 

coordinate plots and scatter matrices are commonly used to 

visualize multivariate process signals, so that the relations 

between process variables can be easily observed. PCA is a 

commonly used technique to analyze large multivariate 

datasets (Jolliffe 2002). It reduces data dimensionality and 

distills important information based on the dependencies 

between process variables. Spectral envelopes (Stoffer 

1999; Stoffer et al. 2000) and spectral PCA (Thornhill et al. 

2002) are effective in analyzing the spectral behavior of 

process signals, the results of which could help to diagnose 

plant oscillations (Jiang et al. 2007, Tangirala et al. 2007). 

In addition, the platform also provides functions to 

visualize process signals and their associated alarm signals 

in a single plot, and to calculate statistical values, such as 

the mean, median, variance, compression factor, and 

quantization factor. The latter functions are particularly 

useful for assessing data quality. 

Connectivity and Causality Analysis 

An often overlooked part of analytics is causation 

analysis. While this information is available in a Piping 

and Instrumentation Diagrams (P&ID), the connectivity or 

causality information is not always up to-date and not 

easily available in mathematical forms. This data-based 

functional part is used to detect correlations and causal 

relations between process variables to capture material and 

information flow paths in the process. Four functions are 

provided, including the correlation coefficient, spectral 

correlation, Granger causality, and Transfer Entropy (TE). 

The calculated correlations and causal relations are 

visualized using correlation color maps, and Signed 

Directed Graphs (Yang et al. 2010). Table 7 describes the 

functionalities and capacities of these functions. 

Table 7. Functions in “Connectivity and 
Causality Analysis”. 

Function Task 

Correlation Coefficient 

Detect correlations between 
process signals and visualize 
the results using a correlation 
color map. 

Spectral Correlation 

Detect the correlations 
between power spectrums of 
process signals and visualize 
the results using a correlation 
color map. 

Granger Causality 

Detect causal relations 
between process signals and 
visualize the results using a 
signed directed graph. This 
method is fast, but only 
effective for linear processes. 

Transfer Entropy 

Detect causal relations 
between process signals and 
visualize the results using a 
signed directed graph. This 
method is effective for either 
linear or nonlinear processes, 
but quite computational 
burdensome. 

Correlation coefficient is calculated by assuming a 

certain time lag between two time series. Accordingly, the 

real correlation between two process variables is achieved 

as the absolute maximum value of correlation coefficients 

(Welch 1974; Yang et al. 2012). Spectral correlation is a 

specific application of correlation coefficient to the power 

spectrums of process signals (Tangirala et al. 2005). It 

indicates the similarities in the spectral ‘shapes’ of all 

signals; for example, this can reveal all process variables 

that are oscillating at the same frequency. 

However, correlation does not indicate a causal 

relation. The directions of interactions between process 

variables are usually unknown from correlations. To detect 



  

how process variables influence each other and how 

abnormalities propagate through processes, causality 

inference is effective. There are a variety of causality 

inference techniques based on different resources (Chiang 

& Braatz 2003; Thambirajah et al. 2009; Jiang et al. 2009; 

Schleburg et al. 2013; Yang et al. 2014). The techniques, 

namely, Granger causality and transfer entropy provided in 

this platform are based on process history. Granger 

causality was first proposed by Granger in 1969, based on 

two assumptions: (1) the cause occurs before the effect; (2) 

the cause contains information about the effect that is 

unique (Granger 1969). However, this method only works 

for linear processes. By contrast, the transfer entropy 

method is effective for both linear and nonlinear processes 

(Schreiber 2000; Kaiser & Schreiber 2002; Bauer et al. 

2007). Furthermore, Direct Transfer Entropy (DTE) can be 

used to find direct dependencies between process variables 

(Duan et al. 2013). To circumvent the assumptions of 

stationary processes and Gaussian distributions, a Trasfer 

0-Entropy (T0E) was proposed (Nair 2013; Duan et al. 

2015). 

Case Studies for Alarm Data Analytics 

This section illustrates the application of alarm data 

analytics of the smart platform based on case studies 

involving real industrial A&E data sets.  

Analysis of Bad Actors and Removal of Nuisance Alarms 

The alarm data used in this case study was collected 

from an oil plant over a time period of 10 days. Totally, 

173 unique alarms were found to occur with an average of 

8.5 alarms over a 10 minutes period, which was much 

higher than the benchmark threshold of an efficient alarm 

system, namely, 1 alarm over 10 minutes. To explore why 

this alarm system had such a high alarm rate over the 

selected time period, the alarm data analytical functions of 

this smart platform are applied. 

Time (Bins, each bin = 10 mins)

High Density Alarm Plot
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Figure 5. High density alarm plot. 

Figure 5 shows a high density alarm plot of the top 20 

bad actors over the selected time period of 10 days. This 

figure contains 864,000 bits of alarm data for each of the 

20 tags. The color bar denotes the number of alarms in 

each 10 min time bin. The red and orange colors indicate 

high alarm rates, implying chattering or repeating alarms. 

It is obvious that “Tag102.CFN” and “Tag101.CFN” were 

likely chattering over some short time periods, and 

“Tag192.FAILED” kept repeating for the whole time 

period. Moreover, it can be seen that two alarms, 

“Tag64.COMM” and “Tag60.IOF”, were annunciated 

almost simultaneously in the first two days of the selected 

time period. Around 11pm on Aug. 23rd, there was a high 

chance that most top bad actors occurred, implying a plant 

upset around this time instant. 

Figure 6 shows an alarm similarity color map of the 

top 20 bad actors. Alarm tags are clustered based on their 

correlations. The darker color of a block indicates a higher 

correlation between alarms. The diagonal of the map 

consists of 1’s (black squares), indicating the highest 

correlations of alarm tags with themselves. In this case 

study, only one pair of alarms was found to be correlated, 

namely, “Tag64.COMM” and “Tag60.IOF”. The 

correlation value was 0.9, indicating a strong relation. 

Alarm Similarity Color Map
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Figure 6. Alarm similarity color map. 

Figure 7 displays the chattering indices of the top 20 

bad actors using red bars. The green line denotes the 

threshold of chattering alarms based on ANSI/ISA-18.2 

(2009) standard (no more than 3 alarms over a 60 second 

period). Any chattering index that exceeds this threshold 

indicates a chattering alarm. Among these bad actors, 7 

alarms were determined to have chattering problems. To 

design delay timers for these chattering alarms, the run 

length distribution is used. Figure 8 shows an example of 

designing off-delay timer for the topmost bad actor 

“Tag102.CFN”. The red curve indicates the alarm count 

that can be reduced by implementing an off-delay timer 

with the value of the delay timer on the horizontal axis. For 

instance, an off-delay timer of 10 sec reduces 82% of the 

alarm occurrences. The off-delay timer turns the chattering 

alarms into standing alarms. Accordingly, the alarm count 

was reduced from 4856 to 875 over 10 days. 
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Figure 7. Chattering indices of top bad actors. 
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Figure 8. Design of off-delay timer based on the 
run length distribution. 

In the same manner, the types and values of delay 

timers were recommended for all the seven chattering 

alarm tags as shown in Table 8. It is noteworthy that small 

off-delay timers were very effective in reducing most 

chattering instants for these alarm tags. By applying the 

recommended off-delay timers, the average alarm rate can 

be reduced to 4.7 alarms over 10 minutes, which is 45% 

lower than the original alarm rate, namely, 8.5 alarms per 

10 minutes. 

Table 8. Recommendations for setting of delay timers. 

Alarm Tag 
Type of 

delay-timer 

Length of 

delay-
timer(sec

) 

No. of 

alarms 
reduced 

Percentag

e of 
alarms 

reduced 

Tag102.CFN Off-delay 10 3981 82% 

Tag101.CFN Off-delay 10 856 79% 

Tag108.LOW Off-delay 10 408 77% 

Tag96.IOF Off-delay 8 156 91% 

Tag103.CFN Off-delay 8 141 96% 

Tag98.IOF Off-delay 10 65 73% 

Tag198.IOF Off-delay 2 76 87% 

Identification, Comparison and Clustering of Alarm 

Floods 

This subsection illustrates the functions of alarm flood 

analysis, including the identification, comparison, and 

clustering of alarm floods. The same alarm data set in the 

previous subsection is used here. Based on benchmark 

thresholds of occurrence and clearing of an alarm flood 

(ISA-18.2 2009; EEMUA-191 2013; IEC 2014), alarm 

floods were easily identified using an alarm burst plot 

shown in Figure 9. The black line indicates the threshold of 

identifying the occurrence of an alarm flood, namely 10 

alarms over 10 minutes. The alarm floods are highlighted 

by blue blocks. It can be seen that this plant was in the 

alarm flood situation for a considerable time period.  
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Figure 9. Alarm burst plot for raw alarm data. 

Figure 10 shows the alarm burst plot for the alarm data 

with chattering alarms reduced using a uniform off-delay-

timer (40 sec) applied to all alarm tags. It can be seen that 

significant reduction was achieved by applying the off-

delay-timer. Originally, there were 66 alarm floods in 

Figure 9 and they occurred for almost 25.4% of the entire 

time period of 10 days. After applying the off-delay timer, 

there were only 38 alarm floods left and they occurred 

during 6.4% of this time period. Having removed the 

chattering alarms, these alarm floods can be considered as 

true alarm floods, requiring further analysis, so as to 

prevent the occurrence of the same root cause. 
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Figure 10. Alarm burst plot for alarm data with 
chattering alarms reduced. 



  

To detect frequent alarm sequences of the 38 alarm 

floods, sequence alignment algorithms are used. The 

similarity indices for all pairs of alarm floods are 

calculated and shown as a similarity color map in Figure 

11, where similar alarm floods are clustered. The vertical 

and horizontal axes display the event number of the 38 

alarm floods. A smaller event number index refers to an 

earlier occurrence in time. The color bar at the right side of 

the cluster map indicates the strength of similarity indices. 

The diagonal of the color map represents the similarity 

between each alarm flood event and itself, and is naturally 

1.  
Cluster using Agglomerative Hierarchical Cluster Tree
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Figure 11. Similarity color map of clustered 
alarm floods. 

To show how similar alarm floods resemble each other, 

an example is given in Figure 12. The No. 12 and No. 14 

alarm floods (as highlighted in the red rectangle in Figure 

11) were found to be very similar. Figure 12 presents the 

sequence alignment between the two alarm floods. It can 

be seen that they share a long sequence of common alarms. 

According to their time stamps, this may indicate that the 

abnormality causing No. 12 alarm flood had not been well 

solved, and thus appeared again in the afternoon of the 

same day, causing No. 14 alarm flood. 

Causality Inference Using Alarm Data 

This subsection illustrates the alarm data based 

causality inference technique. The alarm data was 

collected from a hydrogen plant over 3.5 days. Totally, 

288 unique alarms were found from the A&E log. The 

causal relations between each pair of alarms are detected 

by applying the TE based causality inference. Six alarm 

signals are selected to demonstrate the causality inference 

technique. The historical data samples of the six alarm tags 

are shown in Figure 13. Over the selected time period, the 

six alarm signals were annunciated 653, 242, 242, 242, 

219, and 106 times, respectively. More detailed results of 

this case study appear in (Hu et al. 2016b).  

 

 

Figure 12. Sequence alignment between two 
similar alarm flood sequences. 
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Figure 13. Alarm signals over 3.5 days. 

By setting a maximum value of the time lag (100 sec 

in this case study), the Normalized Transfer Entropies 

(NTEs) under different time delays between each pair of 

alarm signals were calculated and shown in Figure 14. The 



  
 

maximum values of NTEs are regarded as the causal 

strengths. 

 

Figure 14. Trends of transfer entropies versus 
time lags. 

Meanwhile, significance thresholds are calculated 

from Monte Carlo tests using the method in (Hu et al. 

2016b). The maximum NTEs and their corresponding 

significance thresholds (in brackets) are given in Table 9.  

Table 9. Maximum NTEs and significance 
thresholds. 

 Tag1 Tag2 Tag3 Tag4 Tag5 Tag6 

Tag1  
0.258 

(0.016) 
0.258 

(0.015) 
0.258 

(0.016) 
0.129 

(0.015) 
0.012 

(0.022) 

Tag2 
0.0003 
(0.013) 

 
1 

(0.001) 
1 

(0.001) 
0.434 

(0.014) 
0.008 

(0.019) 

Tag3 
0.001 

(0.013) 
0.0001 
(0.014) 

 
1 

(0.001) 
0.434 

(0.014) 
0.008 

(0.018) 

Tag4 
0.0011 

(0.013) 

0.0001 

(0.014) 

0.0001 

(0.014) 
 

0.434 

(0.014) 

0.008 

(0.020) 

Tag5 
0.0004 
(0.012) 

0.0004 
(0.013) 

0.0005 
(0.013) 

0.0005 
(0.013) 

 
0.009 

(0.017) 

Tag6 
0.007 

(0.009) 
0.006 

(0.009) 
0.006 

(0.009) 
0.006 

(0.009) 
0.005 

(0.010) 
 

Based on Table 9, the causal relations are found 

between alarms with NTEs larger than the significance 

thresholds. As a result, a causal map describing the 

information flow paths is drawn in Figure 15. 

 

Figure 15. Causal map of information flow paths. 

 Causal relations between two variables can be direct 

or indirect if mediated by an intermediate variable. It is 

therefore important to be able to differentiate between such 

relations as has been done in (Hu et al. 2016b). The 

Normalized Direct Transfer Entropies (NDTEs) are 

calculated for alarm pairs with causal relations in Figure 15. 

By comparing the NDTEs with the corresponding 

significance thresholds, indirect causalities are found and 

excluded. Accordingly, a causal map describing all direct 

information flow paths is shown in Figure 16. This 

conclusion is consistent with the process knowledge 

presented in (Hu et al. 2016b). 

 

Figure 16. Causal map of direct information flow 
paths. 

Case Studies for Alarm Configuration Analysis 

This section illustrates the techniques for the design of 

univariate alarm systems in the functional part “Alarm 

Configuration Analysis” of the smart platform. An example 

is given based on the process signal shown in Figure 17. In 

the foremost step, the normal and abnormal parts of the 

process signal are specified as the blue and red sections in 

Figure 17. 

 

Figure 17. Normal (blue) and abnormal (red) 
parts of a process signal. 

Assuming the original high alarm limit to be 1 (HAL 

=1), alarms are generated as the vertical red lines in the left 

plot of Figure 18. The distributions of normal data and 

abnormal data are shown in the right plot of Figure 18. As 

a result, there are 793 alarm occurrences. The FAR and 

MAR rates are 1.22% and 14.36%, respectively. 

 

Figure 18. Original setting with HAL=1. 

In the first design scenario, the high alarm limit is 

redesigned using an optimization function. The optimal 

alarm limit for this process signal is 0.72. The alarm signal 



  

is generated and shown in the left plot of Figure 19. As a 

result, the number of alarm occurrences is reduced to 579. 

The FAR and MAR rates are 3.00% and 1.80%. Compared 

with the original setting, the FAR rate is increased slightly 

while the MAR is reduced significantly. 

 

Figure 19. Design scenario with an optimized 
alarm limit. 

In the second design scenario, an off delay timer of 7 

samples is used based on the original setting (HAL=1). 

This off-delay timer is very effective in reducing chattering 

alarms. The alarm signal with chattering alarms reduced is 

shown in the left plot of Figure 20. It can be seen that there 

is almost no alarm occurrence in the abnormal part of the 

process signal. The total number of alarm occurrences is 

reduced to 183. The MAR decreases to 0.03%, which is a 

significant reduction compared to the original setting. 

However, the FAR grows to 6.69% at the same time.  

 

Figure 20. Design scenario with an off-delay 
timer. 

In the third design scenario, a moving average filter of 

10 samples is used. Compared with the original setting and 

the previous design scenarios, the normal and abnormal 

parts of the process signal are more separated, as shown in 

the right plot of Figure 21. With the original alarm limit 

(HAL=1), there are only 35 alarm occurrences in Figure 21. 

The FAR and MAR are 0 and 1.77%, respectively. The 

two metrics are much lower than those in the original 

setting. 

 

Figure 21. Design scenario with a moving 
average filter. 

To visualize the tradeoff between FAR and MAR in 

the design of alarm system, a ROC curve is drawn in 

Figure 22. The dark and light blue curves are the ROC 

curves for the design scenario with a filter and the original 

setting. The high alarm limits for the two cases are set the 

same. It is obvious that the ROC based on the application 

of a filter is much closer to the origin, indicating better 

alarm system design. 

             

Figure 22. ROC curves. 

Case Studies for Process Data Analytics 

This section illustrates the application of process data 

analytics of this smart platform using case studies 

involving real industrial process data.  

Detection of root cause of plant-wide oscillations 

This subsection considers the application of fusing 

process data and process connectivity information to detect 

and locate the root-cause of plant-wide oscillations using 

process data analytical methods.  

Detection and diagnosis of plant-wide disturbances is 

an important issue in many process industries (Qin 1998, 

Desborough & Miller 2001). Thornhill and HÄagglund 

(1997) used zero-crossings of the control error signal to 

calculate integral absolute error (IAE) in order to detect 

oscillations in a control loop. This method has poor 

performance in the cases of noisy error signals. Miao and 

Seborg (1999) suggested a method based on the auto-

correlation function to detect excessively oscillatory 

feedback loops. The auto-covariance function (ACF) of a 

signal was utilized in Thornhill et al. (2003a) to detect 

oscillation(s) present in a signal. This method needs a 

minimum of five cycles in the auto-covariance function to 

detect oscillation, which is often hard to obtain, 

particularly in the case of long oscillations (e.g., an 

oscillation with a period of 400 samples). Although the 

data set can be down sampled, down sampling may 

introduce aliasing in the data. Thornhill et al. (2002) have 

also proposed Spectral Principal Component Analysis 

(SPCA) to detect oscillations and categorize the variables 



  
 

having similar oscillations. This method does not provide 

any diagnosis of the root cause of the oscillations which is 

generally the main objective of the exercise. 

A more efficient procedure based on the spectral 

envelope method for detection and diagnosis of plant-wide 

oscillations was proposed by Jiang et al. (2007). The 

spectral envelope method is a frequency domain technique 

that was originally introduced by Stoffer et al. (1993) to 

explore the periodic nature in time series. The idea is to 

assign numerical values to each of the categories followed 

by a spectral analysis of the resulting discrete-valued time 

series. Later McDougall et al. (1997) extended the concept 

of spectral envelope to real-valued series. In exploring the 

periodic nature of a real-valued series, one can do spectral 

analysis of not only the original series, but also 

transformed series. The key idea in McDougall et al. 

(1997) was to select optimal transformations of a real-

valued series that emphasize any periodic nature in the 

frequency domain. 

 

Figure 23. P&ID of the distillation plant of 
Eastman Chemical Company. 

0 1000 2000 3000 4000 5000

PC1.PV

FC3.PV

LC1.PV

FC1.PV

FC4.PV

TC1.PV

FC6.PV

PC2.PV

LC3.PV

FC5.PV

LC2.PV

FC8.PV

TC2.PV

FC7.PV

PC1.OP

FC3.OP

LC1.OP

FC1.OP

FC4.OP

TC1.OP

FC6.OP

PC2.OP

LC3.OP

FC5.OP

High Density Time Trend

Samples

T
a
g
s

0 1000 2000 3000 4000 5000

LC2.OP

FC8.OP

TC2.OP

FC7.OP

TI1.PV

TI2.PV

FI1.PV

PI1.PV

TI5.PV

TI4.PV

TI6.PV

FI5.PV

TI3.PV

FI4.PV

TI8.PV

TI7.PV

PI2.PV

FI3.PV

LI1.PV

FC3.SP

FC1.SP

FC6.SP

FC5.SP

FC8.SP

High Density Time Trend

Samples

T
a
g
s

 

Figure 24. High density time trends. 

In this case study, the process data was collected from 

a distillation plant of Eastman Chemical Company, USA 

(Thornhill et al. 2003b). The Piping and Instrumentation 

Diagram (P&ID) of this plant is shown in Figure 23. The 

collected data has 48 process variables and 5040 

observations sampled at the 20 sec interval. The high 

density plots of time trends and power spectra of these 

process variables are shown in Figures 24 and 25, 

respectively. It can be seen from Figure 25 that many 

peaks appear in the power spectra, which indicates the 

presence and propagation of plant-wide oscillations in 

many variables. 
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Figure 25. High density power spectra. 
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Figure 26. Power spectral correlation map. 

To analyze plant oscillations, the power spectral 

correlations are first calculated and shown as a power 

spectral correlation color map in Figure 26, where process 

variables with similar power spectra are clustered. The 

color bar on the right side of the color map indicates the 

strength of correlation. The red and orange colors indicate 

strong correlations and the green color indicates a weak 

correlation. The diagonal of the color map represents the 



  

correlation between one variable and itself. Based on 

Figure 26, it is easy to identify all process variables that 

share the same oscillating feature. These would include 

Process Variables (PVs) as well as the corresponding 

Manipulative Variables (MVs). If necessary, the MVs can 

be omitted to obtain a short-list of all oscillating PVs. 

In this case study the spectral envelope method is used 

to diagnose the plant oscillation. Figure 27 shows the 

calculated spectral envelope, where a clear peak is 

observed at the frequency of 0.003175 cycles per sample, 

which was the frequency of concern for plant engineers. 
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Figure 27. Spectral envelope. 

The Chi-squared test statistics of the 48 process 

variables at the oscillation frequency of 0.003175 cycles 

per sample are calculated and shown using a bar chart in 

Figure 28. The red dashed line denotes the significance 

threshold of 13.82 at the significance level of 0.001. As a 

result, the process variables with Chi-squared values larger 

than this threshold are identified to be oscillating at the 

frequency of 0.003175 cycles per sample. 
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Figure 28. Chi-squared test statistics. 

Figure 29 shows the Oscillation Contribution Indices 

(OCIs) of the 48 process variables at the oscillation 

frequency of 0.003175 cycles per sample. The red dashed 

line denotes the OCI threshold of 1. Variables that have 

OCIs larger than 1 are regarded as root cause candidates. 

Among these variables, “LC2.PV” and “LC2.OP” have the 

largest OCIs, indicating the loop associated to tag “LC2” 

contributes most to the spectral envelope at the frequency 

of 0.003175 cycles per sample. Thus, this particular loop 

should be examined as the first root cause candidate. 
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Figure 29. Oscillation contribution indices. 

Figure 30 shows the scatter plot between “LC2.PV” 

and “LC2.OP”. The elliptical pattern indicates a valve 

stiction, that caused limit cycles in the loop and then 

propagated to many other variables. Based on a plant test, 

there indeed existed a 4% stiction in the valve. Thus, this 

was exactly the root-cause of the plant-wide oscillations. 

This root cause was also validated by the connectivity 

analysis (Jiang et al. 2009). 
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Figure 30. Scatter plot between “LC2.PV” and 
“LC2.OP”. 

Process Connectivity Analysis 

This subsection illustrates root cause diagnosis of 

plant-wide oscillations based on process connectivity 



  
 

information. The process data and connectivity diagram 

were collected from a process plant operated by Mitsubishi 

Chemical Corporation (MCC), Japan (Jiang et al. 2009). 

The process flow diagraph of this plant is shown in Figure 

31. Taking the controllers as nodes and connecting them 

based on their direct interactions, a control loop diagraph 

is identified as the lines with red arrows in Figure 31. 

Using the spectral envelope method in (Jiang et al. 2007), 

process oscillations were detected in 19 of the 28 loops. 

Furthermore to diagnose the cause of these plant-wide 

oscillations, the analytical method based connectivity 

information is used. 

 

Figure 31. Process flow diagram of the MCC 
plant. 

Based on direct interactions in Figure 31, an 

adjacency matrix is built and shown in Figure 32. 

Furthermore, a control reachability matrix from the 

adjacency matrix is built and shown in Figure 33. The 19 

oscillatory process variables are highlighted in blue in 

Figure 33.  

 

Figure 32. Adjacency matrix. 

According to this reachability matrix in Figure 33, 

loops 13 (PC1) and 24 (LC2) are the only loops that can 

reach all the oscillatory variables. Moreover, these two 

loops are located in the same area and physically close to 

each other. Thus, loops 13 (PC1) and 24 (LC2) can be 

isolated as root cause candidates. Eventually, a sticky 

valve was found in loop 13 (PC1). This was identified as 

the root cause of the plant-wide oscillations as presented in 

(Jiang et al. 2009). 

 

 Figure 33. Reachability matrix. 

Causality Inference of Complex Processes 

This subsection demonstrates data-based discovery of 

causal relations using causality inference methods in the 

proposed analytics platform. The sampled data of 5 

variables and 3544 observations (sampling time=1 minute) 

were collected from a Flue Gas Desulfurization (FGD) 

process (Duan 2013), the schematic of which is shown in 

Figure 34. The process variables y1, y2, y3, y4, and y5, 

represent the liquid level of the reactor, the level of Tank 1, 

the level of Tank 2, the outlet flow rate of Pump 2, and the 

outlet flow rate of Pump 3, respectively. The time trends of 

these variables are shown in Figure 35. 

 

Figure 34. Schematic of the FGD process. 

 

Figure 35. Time trends of the process variables. 

The NTEs between all pairs of process variables are 

calculated and listed in Table 10. By choosing the 



  

threshold as 0.02, the causal relations are found as those 

with NTEs larger than 0.02 (Duan et al. 2013). As a result, 

the information flow paths are identified and represented 

using a signed directed graph in Figure 36. This figure also 

includes bidirectional connectivity as detected by the 

application of transfer entropy method. In many cases, 

bidirectional connectivity is due to the presence of material 

flow paths as well as feedback control loops. 

Table 10. NTEs between process variables. 

 y1 y2 y3 y4 y5 

y1  0.001 0.089 0.177 0.014 

y2 0.131  0.117 0.154 0.010 

y3 0.078 0.005  0.008 0.105 

y4 0.128 0.005 0.095  0.019 

y5 0.016 0.001 0.130 0.012  

 

Figure 36. Information flow paths based on NTEs. 

It is also important to know if the detected causal 

relations are direct or indirect. To achieve this, the NDTEs 

are calculated step by step. For example, in the first step, 

the NDTE from y1 to y3 based on y2 and y4 is calculated to 

be 0.024 in Table 11. The value is small, indicating no 

direct causality from y1 to y3. Thus, the path from y1 to y3 is 

pruned in step 1 in Figure 37. Analogously, other indirect 

causalities are confirmed. In this case the causality from y2 

to y1 is confirmed to be direct. 

Table 11. NDTE between each pair of process 
variables with causal relations. 

Step Relation Intermediate variables NDTE 

1 y1 → y3 y2, y4 0.024 

2 y3 → y1 y2, y4 0.023 

3 y2 → y1 y4 0.425 

4 y2→ y4 y1 0.025 

5 y2 → y3 y1, y4 0.021 

 

Figure 37. Exclusion of the indirect causalities 
based on the calculation of NDTEs. 

 

Eventually, the direct information flow paths are 

detected and shown as a signed directed graph in Figure 38. 

The result is confirmed to be correct according to (Duan et 

al. 2013). By highlighting these information flow paths in 

Figure 39, it is clear how the process variables affect each 

other. Based on this, the propagation of abnormalities can 

be easily identified. The red arrows in Figure 38 

correspond to feedback loops as validated in Figure 39.  

 

 

Figure 38. Direct Information flow paths based 
on NDTEs in Table 11. 

 

Figure 39. Information flow paths in the FGD 
process. 

Conclusions 

To improve process monitoring and alarm 

management in process industries, a smart platform for the 

alarm and process data analytics has been developed. The 

smart platform consists of a “Data Loading” section and 

four functional modules. Specifically, “Alarm Data 

Analysis” helps to detect and remove nuisance alarms, 

identify and cluster alarm floods, discover causal relations, 

and find mode-dependent alarms.  “Alarm Configuration 

Analysis” provides a variety of techniques for design of 

better alarm systems. “Process Data Analysis” analyzes 

and visualizes the process data from different perspectives. 

“Connectivity & Causality Analysis” uncovers causal 

relations between process variables. This paper has 

introduced the major features in each functional module of 

the platform, and illustrates the effectiveness and 

practicability of these features using case studies involving 

real industrial data. According to the application results, 

this framework has illustrated the value in fusing 

information from disparate data sources and in this respect 



  
 

the proposed platform is comprehensive in functionalities 

and powerful in providing insightful conclusions.  

The development of new features is ongoing so as to 

enhance the practical utility of the smart platform. One 

promising future work is the process discovery of operator 

actions in response to alarm notifications. The pattern 

extracted from the A&E log is supposed to provide 

decision support for operators. A preliminary work can be 

found in (Hu et al. 2016c). Another promising direction is 

the root cause analysis of alarm floods. In alarm flood 

situations, operators may fail to identify the root causes 

and miss the critical alarms, which is the main reason of 

many accidents (Wang et al. 2016). Thus, if the root causes 

of alarm floods can be quickly identified in an on-line 

manner then the operator would be able to confidently 

handle critical alarms and make correct responses. 
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