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Abstract

Integrated stochastic optimal control and system learning to simultaneously reduce parametric and model

structure uncertainty can create new avenues for achieving high-performance operation of uncertain sys-

tems using model predictive control. This paper presents a generic framework for stochastic optimal

control with integrated (control-oriented) model structure adaptation, and discusses general solution

methods and key research issues associated with the framework. The potential advantages of the pro-

posed framework include autonomous maintenance of model predictive controllers as well as handling of

multiple system models under closed-loop conditions, for example, for fault-tolerant control applications

and dealing with systems with intrinsically uncertain dynamics.
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Introduction

This paper explores the notion of integrated learning
and model predictive control (MPC) for stochastic sys-
tems with uncertain model structures. The position
taken by this work is motivated by the problem of para-
metric model uncertainty in model-based control, which
has inspired important research directions in the fields
of stochastic adaptive control (Wittenmark, 1975b) and
identification for control (Gevers, 2005; Hjalmarsson,
2005). The techniques in these fields generally rely on
model adaptation in closed loop to reduce model uncer-
tainty under normal operation. Most model-based con-
trol design approaches are based on the certainty equiva-
lence (CE) principle (Bar-Shalom and Tse, 1974), which
involves separately designing the controller and perform-
ing parameter estimation such that merely the point es-
timates of the parameters are used in the controller as
if the estimates were exact. Except for specific cases,
adaptive controllers based on the CE principle are sub-
optimal since they do not account for model uncertainty
(Åström and Wittenmark, 1995). This can potentially
result in severe problems such as parameter drift, burst-
ing, and loss of stability (Wittenmark, 1975b).

When system uncertainty affects the control perfor-
mance, the uncertainty is control relevant. A cautious
controller explicitly incorporates the current knowledge
of uncertainty into the control design, so that increased
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system uncertainty can lead to more cautious control
(Åström and Wittenmark, 1995). One consequence of
this approach is that large uncertainties may cause van-
ishingly small control inputs, which in turn reduce the
amount of information generated in the closed loop
and further increase the model uncertainty, exacerbat-
ing the problem. This phenomenon can be attributed to
the accidental learning in CE and cautious controllers,
both of which are passively adaptive feedback control ap-
proaches.

On the other hand, actively adaptive feedback con-
trollers have a probing feature, the purpose of which is
to actively learn about the system (Tse and Bar-Shalom,
1973). Probing the system is instrumental in handling
model uncertainty when the uncertainty is reducible,
that is, when the control inputs affect not only the sys-
tem states but also the future uncertainty of the states.
This is known as the dual effect of control inputs (Bar-
Shalom and Tse, 1974). The dual control problem (Feld-
baum, 1961) involves solving a stochastic optimal con-
trol problem (OCP) that relies on a single model struc-
ture with reducible, control-relevant parametric uncer-
tainty. Dual control relies on Bellman’s principle of op-
timality (Bellman, 1957) to seek an optimal synergy be-
tween probing the system for model improvement (i.e.,
reducing parametric uncertainty) and optimal control
based on the current uncertain model.

This paper adopts the dual control paradigm for



model structure uncertainty in the context of model pre-
dictive control. The proposed dual control framework re-
lies on competing model structures to account for the ex-
istence of multiple model hypotheses. Including multiple
models into an OCP offers the flexibility of using differ-
ent model structures when a system transitions from one
mode of behavior to another (e.g., due to system faults),
or when the model structure is not known a priori. In ad-
dition, online model structure adaptation is likely to re-
duce the modeling effort during controller development
since a more complex system model (e.g., valid over a
wider operating range) can be replaced with a set of
relatively simpler models in the OCP. This is particu-
larly advantageous in light of the costs associated with
system modeling, which can account for up to 80 % of
resource expenditure in the design of model-based con-
trollers (Sun et al., 2013). MPC with autonomous model
adaptation can sustain high-performance operation of
complex systems over extended times with possibly no
user intervention, a critical consideration for reliable op-
eration of high-precision and safety-critical systems.

Recent years have witnessed growing interest in the
notion of adaptive control based on multiple models
(e.g., see Narendra and Han (2011) and the references
therein). The multiple-model adaptive control methods
commonly entail switching between the models, mean-
ing the control inputs are at any given time computed
using one model without active discrimination between
the competing models. In this work, the proposed dual
control framework for MPC with multiple models is in-
tended to actively probe the system for reducing fu-
ture parametric and model structure uncertainty, while
achieving the best attainable control performance with
the most appropriate model structure at present. For a
general class of stochastic systems described by a set
of uncertain models, this paper presents the stochastic
optimal control problem with dual effect for controlling
the states and the future uncertainty of the states. The
connection between the stochastic OCP and stochastic
MPC (SMPC) is briefly discussed in light of the recur-
sion of the Bellman equation in stochastic dynamic pro-
gramming (DP). We then outline some of the key chal-
lenges associated with solving the stochastic OCP with
dual effect, and discuss solution methods that can result
in tractable SMPC approaches with autonomous model
adaptation.

Notation. P[ · | A] denotes conditional (joint) prob-
ability distribution given A. E[ · | A] denotes conditional
expected value given A. Pr[B] denotes the probability of
event B.

The Dual Control Problem with Multiple Models

Consider a general dynamical system that is described
by a set of nm discrete-time model structures m[i] (e.g.,
due to model structure uncertainty, or using different

model structures for different modes of system behavior)

m[i] : x̄
[i]
t+1 = f [i](x̄

[i]
t , ut, w

[i]
t , θ

[i]
t ), ∀ i ∈ Z[1,nm], (1)

where t is the time index; the superscript [i] denotes
the model index; x̄t denotes the states of each model
structure, with x being the true system states; ut de-
notes the system inputs; θ denotes the model parame-
ters; wt is a sequence of stochastic process noise with
known statistics; and f represents the (possibly nonlin-
ear) model equations. Let Yk denote the system observa-
tions at sampling time k. Define the hyperstate ξk as the
conditional joint probability distribution of the system
states given the observations Yk, i.e., ξk , P[xk|Yk]. In
fact, the hyperstate is a state variable that provides a
statistical representation of the system uncertainty.

Given ξk at sampling time k, the stochastic OCP
with multiple models (1) can be stated as

min
π

Jk(ξk) = E

[k+N−1∑
j=k

`j(x̄
[i]
j , πj) +̀ k+N (x̄
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s. t. : multiple models (1), ∀ t ∈ Z[k,k+N−1] (2b)

πt ∈ U, ∀ t ∈ Z[k,k+N−1] (2c)

Pr[g[i](x̄
[i]
t ) ≤ 0] ≥ β[i], ∀ t ∈ Z[k+1,k+N ], (2d)

where π denotes a vector of N -stage control policy, each
element of which is defined by ut = πt(·); `j denotes the
stage-wise cost at the jth stage of control; and (2d) rep-
resents state chance constraints with g being a (possibly)
nonlinear function and 1 − β the maximum admissible
probability of constraint violation.

According to the principle of optimality, the optimal
cost function J∗

k (ξk) (i.e., cost-to-go) must satisfy the
recursion of the Bellman equation (Bellman, 1957)

J∗
j (ξj) , min

πj

E
[
`j(x̄

[i]
j , πj) + J∗

j+1(ξj+1)|ξj
]
,

∀j ∈ Z[k,k+N−1], (3)

with the initial condition J∗
k+N (ξk+N ) = `k+N (x̄k+N ).

Eq. (3) implies that the expected control cost at each
stage k is evaluated through accounting for the system
uncertainty ξj at future stages j ≥ k. Thus, the control
inputs will not only influence the system states but also
the state uncertainty, suggesting that the control inputs
have dual effect.

The concept of recursion of the Bellman equation (3)
is closely related to the choice of the control policy π in
the stochastic OCP (2) (Tse and Bar-Shalom, 1973).
The dual effect of the control inputs largely relies on in-
corporating the (probabilistic) knowledge of future sys-
tem observations into π. Using a closed-loop control pol-
icy in (2), which considers the knowledge that the loop
is closed throughout the horizon [k, k+N−1], allows for
anticipation of the future system observations through
(N − 1)-step recursion in (3). The causal anticipation of
future observations will enable the closed-loop control



policy to actively probe the system for new informa-
tion. Hence, in addition to affecting the system states,
closed-loop control policies will affect the uncertainty of
future states (i.e., dual effect). Simultaneously, closed-
loop control policies will intelligently exercise caution
in accounting for uncertainty since the control inputs
know that future system observations will be available
and can inform corrective actions. Another key property
of closed-loop control policies is that the active learning
occurs to the extent dictated by the closed-loop control
performance. This implies that closed-loop control poli-
cies intrinsically seek control-oriented model adaptation.

On the contrary, a feedback control policy uses only
the prior system observations Yk, gathered up until k,
independently of the knowledge of future observations.1

This implies that a feedback control policy does not in-
volve recursion of the Bellman equation (3), which from
a computational standpoint is appealing for solving (2)
but it is suboptimal since the optimality of the con-
trol cost over the future stages is neglected (Bertsekas,
2005). In contrast to closed-loop policies that are ac-
tively adaptive, feedback control policies are passively
adaptive in that they do not enable active learning of
the system since they do not anticipate the future ob-
servations (Tse and Bar-Shalom, 1973).

Approximate Solution Methods for the Dual
Control Problem

Stochastic DP is a natural approach to solving the dual
control problem (Feldbaum, 1961), including the exten-
sion to the case of model structure uncertainty in (2).
However, the curse of dimensionality (Bellman, 1957)
generally renders DP intractable for problems of practi-
cal interest since the computational requirements grow
exponentially with the state space. Broadly speaking,
approximate solutions to the original dual control prob-
lem for parametric uncertainty include (Filatov and Un-
behauen, 2000): (i) implicit dual control that involves
direct approximation of the recursion of the Bellman
equation (3), and (ii) explicit dual control that involves
reformulation of the dual control problem to a tractable
(stochastic) optimal control problem with some form
of dual control effect. Implicit dual control essentially
relies on numerical approximation of the dynamic pro-
gramming problem through approximating the solution
to the Bellman equation only in limited regions of the
hyperstate ξj (e.g., Lee and Lee, 2009; Bayard and Schu-
mitzky, 2010). This yields a control policy that is a func-
tion of approximate cost-to-go functions. However, ap-
proximate DP approaches typically involve recursion of
the Bellman equation over N stages, which can be com-
putationally formidable. This has motivated explicit ap-

1The celebrated open-loop optimal feedback (OLOF) control

result, which is fundamental to MPC, belongs to this class

of control policies (Dreyfus, 1963).

proaches to dual control, which seek to recast the dual
control problem as a tractable OCP that does not en-
tail recursion of the Bellman equation but the control
inputs still retain some form of cautious and probing
features (Wittenmark, 1975a). In the context of MPC,
most common approaches to explicit dual control under
parametric uncertainty involve adding probing effect to
the control inputs. Generally speaking, this is done ei-
ther by directly adding perturbation signals to the con-
trol inputs (e.g., Tanaskovic et al., 2014; Marafioti et al.,
2014), or by reformulating the OCP such that it incorpo-
rates some measure of model uncertainty over the future
stages (e.g., Larsson et al., 2013; Heirung et al., 2015).
The addition of the probing effect to control inputs in-
evitably results in control performance loss due to unde-
sired system perturbations. However, the improved sys-
tem learning facilitated by probing is expected to lead
to better control performance over the future control
stages and, as a result, decrease the overall performance
loss that would otherwise be incurred due to large sys-
tem uncertainty in case no learning takes place.

Inspired by explicit dual control approaches for para-
metric uncertainty in the context of predictive control,
we propose reformulating the stochastic OCP (2) with
dual effect to an OCP with integrated input design
for discrimination between the competing model struc-
tures (1). This will lead to a SMPC framework with
the endogenous capability of learning about the model
structure uncertainty (e.g., see Mesbah (2016) for the
general description of SMPC). Input design for model
discrimination seeks to ensure that outputs of the com-
peting models are sufficiently far apart so that system
measurements can invalidate all but one model to the
largest extent possible (Atkinson and Cox, 1974). For
the stochastic models (1), model discrimination hinges
on quantifying the distance between outputs of the com-
peting models in a probabilistic sense. Various measures
exist for quantifying the distance between probability
distributions (Gibbs and Su, 2002). To this end, a nat-
ural choice is the Kolmogorov distance (Kolmogorov,
1933), which is the maximum difference between two cu-
mulative distribution functions (cdfs); the Kolmogorov
distance thus converges to the maximum value of one
as the two corresponding probability distributions ap-
proach complete separation. A key issue in optimal con-
trol with multiple models is ensuring the feasibility of
the optimization problem. Requiring all models be fea-
sible on the entire prediction horizon can lead to fea-
sibility issues and overly conservative control. One ap-
proach to addressing the latter issue is to propagate the
least likely model(s) on a shorter horizon than that of
the most likely model(s). Alternatively, each model can
have an associated sequence of control inputs, the first
elements of which are identical (i.e., nonanticipativity in
stochastic programming).

The performance of an SMPC approach with inte-
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Figure 1. The control inputs computed by the SMPC ap-
proach with integrated input design for active model dis-
crimination in relation to the probability of model valid-
ity and observed system state.

grated input design for active model discrimination is
demonstrated for a simple case: two competing scalar,
discrete-time models with no parametric uncertainty,
with one of the models being the true representation
of the system. Under the effect of a Gaussian stochas-
tic process, one model is stable and has a high positive
input gain while the other is unstable, with a low neg-
ative input gain. The probability of validity of the first
model structure Pk is updated based on Bayes’ rule us-
ing the system observations Yk at each sampling time.
The Kolmogorov distance is used to enable model sep-
aration one sampling time into the future, with the two
models having separate input sequences over the control
horizon except for the first element, which is the same
for both sequences. For a standard quadratic stage cost
and a prediction horizon of N = 7, the performance
of the SMPC approach with integrated input design is
compared to that of (numerically) solving the stochastic
OCP (2) subject to the two models using a closed-loop
control policy. Notice that the latter approach requires
solving the Bellman equation (3) for DP over the N
stages, whereas the SMPC approach does not involve
recursion of (3).

Figures 1 and 2 show the control input profiles com-
puted by the SMPC approach with integrated input de-
sign and the stochastic OCP (2) with a closed-loop con-
trol policy, respectively. The input profiles are plotted as
a function of the observed system state and the proba-
bility of validity of the first model. The similarity of the
control input profiles designed by the two approaches
suggests that the SMPC approach with integrated input
design is able to adequately approximate the N -stage re-
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Figure 2. The control inputs computed by solving the
stochastic OCP (2) using a closed-loop control policy in
relation to the probability of model validity and observed
system state.

cursion of the Bellman equation (3). While solving (3)
recursively based on quantization of the space of state
xk and probability Pk is computationally expensive and
must be performed offline, the SMPC approach com-
putes the control input for every pair (xk,Pk) online,
several orders of magnitude faster. Monte Carlo simu-
lation of the true system with the control input profile
obtained by the SMPC approach verifies that the system
performance, as measured by the average cost function,
is almost identical to what results from using the input
profile obtained via solving the stochastic OCP (2) with
a closed-loop control policy.

The performance of the SMPC approach with in-
tegrated input design for active model discrimination
remains to be verified for practically-sized systems. To
this end, the next section outlines some of the key chal-
lenges associated with an explicit dual control approach
to solving the stochastic OCP (2).

Key Challenges in SMPC with Integrated Input
Design for Active Model Discrimination

Efficient uncertainty propagation

Efficient propagation of probabilistic model uncertain-
ties and stochastic system disturbances through the
competing models (1) poses a key challenge to solv-
ing the stochastic OCP (2). Arbitrary polynomial chaos
(aPC) can provide a computationally efficient method
for sample-based approximation of the hyperstate (Ola-
dyshkin and Nowak, 2012; Paulson et al., 2017). In aPC,
each stochastic state is approximated by an expansion
of orthogonal polynomial basis functions, which are de-



fined based on moments of probabilistic uncertainties
(without requiring the knowledge of full distributions).
A key feature of aPC is its ability to propagate corre-
lated random variables. The aPC expansions can be used
as a surrogate for the nonlinear system models to per-
form Monte Carlo simulations efficiently since the basis
functions are computed offline for different uncertainty
realizations.

Updating the probability of validity of models based on
system observations

As new system observations become available in the
course of operation, the confidence in each model must
be updated to reflect the degree to which the model
agrees with the closed-loop data. An intuitive represen-
tation of confidence in each model is the conditional
probability that each model is “true” given the current
observations. Bayesian estimation techniques can pro-
vide a statistical framework for quantifying the confi-
dence in each model structure (e.g., see Kuure-Kinsey
and Bequette, 2009).

Model Invalidation

Similar to the issue of identifiability in parameter es-
timation (Ljung, 1999), system observations should be
sufficiently informative for model invalidation. In other
words, the closed-loop data generated by the controller
should allow invalidating the competing models that
cannot describe the data adequately. Verifying whether
model invalidation is possible given the system observa-
tions poses a key theoretical challenge.

Practical Significance of Model Structure Uncer-
tainty Handling in SMPC

The ability to handle multiple model structures in
SMPC can lead to unprecedented opportunities in
stochastic optimal control of modern engineering appli-
cations. Two important application areas are outlined
below. In a wide range of technical systems, there is
structural uncertainty in system dynamics. As an ex-
ample, consider a reaction where an enzyme and a sub-
strate are combined to form an enzyme-substrate com-
plex, which is then converted into the final product.
Here, an optimal experiment can be designed offline
for probabilistic discrimination of the competing model
hypotheses for the reaction mechanisms (Streif et al.,
2014). A different approach involves designing a con-
troller using both models to operate the system in such
a way that the controller can decide, with a high de-
gree of certainty, which model best describes the system
at any given time. Such a controller can detect changes
in reaction kinetics and adapts its underlying model by
deciding whether the system is better described and con-
trolled with a different model. SMPC with active model

discrimination also enables using a collection of simpler
models (relative to a complex model that is valid over
a wide operating range) and switching between models
as the system transitions from one operating mode to
another. This can circumvent the need for developing
complex models, which is often resource intensive.

Another application is SMPC with active fault diag-
nosis (Heirung and Mesbah, 2017). It is often not known
a priori when a system fault will occur, if at all, and
with what likelihood. However, models of potential sys-
tem faults and failures may be available. In this case, the
closed-loop data collected at each sampling time can be
used to improve the confidence regarding which fault
scenario is currently taking place. However, the mere
presence of a feedback controller in the loop may mask
the consequences of a fault, and hamper fault detection
and isolation based on nominal closed-loop data. More-
over, this masking may in certain cases allow the faults
to worsen and, for example, potentially compromise sys-
tem safety. Some standard approaches to fault detection
and isolation (Blanke et al., 2006) share features with
model discrimination (Ashari et al., 2011). These ap-
proaches are generally based on offline input design (e.g.,
see Mesbah et al., 2014 and the references therein). A
controller that intelligently operates the system to bet-
ter reveal faults as they occur can ensure safer operation
and overall better closed-loop control performance. This
involves actively exploring and searching for faults, that
is, performing online fault detection and isolation with
autonomous adaptation of the system models.
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