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Abstract

In this work, we initially focus on modeling of a hydraulic fracturing process to describe fracture growth,

proppant transport and proppant settling. The developed model involves the coupling of multiple non-

linear dynamic equations that show the spatiotemporal evolution of the important physical variables in

the hydraulic fracturing processes. To solve these equations by capturing the detailed process dynamics

of the system with a time-dependent spatial domain, a fixed-mesh strategy is employed by adopting the

size of integration time steps. Then, we identify a linear time invariant state-space model by applying

the MOESP algorithm to regress a linear model of a hydraulic fracturing process. In this regard, a series

of step inputs are used to generate the input (flow rate and proppant concentration) and output (average

width and propped length of fracture) data using the dynamic model. In ultra low permeability forma-

tions, horizontal wells are typically drilled with multiple hydraulic fractures for enhanced recovery of oil

and gas. We find the optimal number of fractures (equivalently, optimal fracture length) and well aspect

ratio that maximize the productivity of a fractured well for a given amount of proppant, well drainage

area and the total length of all the fractures. To achieve the optimal fracture length, a pumping schedule

is generated using the developed empirical model by solving an optimization problem that directly takes

into account the practical constraints such as the total amount of proppant to be injected for each fracture

and the required minimum average width at the end of pumping. The generated pumping schedule is

applied to the dynamic model, and a series of results demonstrate that the propped length is close to

the optimal fracture length while satisfying the practical constraints to enhance the productivity of a

fractured well.
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Introduction

The shale gas refers to natural gas trapped in rock

of very low porosity and permeability. Even though

shale formations contain many naturally formed frac-

tures, production would be so slow that extracting gas

from such a well would be considered to be economically

infeasible. Two stimulation technologies (hydraulic frac-

turing and horizontal drilling) are widely used to render

shale gas recovery economically attractive. Typically,
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several horizontal wells are drilled. Within each well,

tens to hundreds of fractures are generated through the

operation of a hydraulic fracturing treatment.

When designing a hydraulic fracturing treatment,

optimization techniques have traditionally been em-

ployed to determine the number of fracture stages, the

distance between adjacent stages, and the total amount

of a fracturing fluid to be introduced and its injection

rate for well completion. Specifically, for a given amount

of proppant, a unified fracture design that provides the

optimal fracture geometry has been addressed by Econo-



mides et al. (2002) for conventional (high-permeability)

oil and gas reservoirs, and the approach has been re-

cently extended to unconventional (low-permeability)

resources by Bhattacharya et al. (2012). However, in

the unconventional reservoir, because of the uncertainty

in the measurement of basic optimization parameters

such as the reservoir permeability, traditional design ap-

proaches do not perform very well in designing a fractur-

ing treatment. Motivated by this consideration, Ibragi-

mov et al. (2005) proposed a way to calculate the dimen-

sionless productivity index by simply solving an eigen-

value problem, and the approach is employed in this

work to find the optimal number of fractures as well as

the desired fracture length and well aspect ratio for a

given amount of proppant, well drainage area and the

total length of all the fractures to maximize the total

productivity of a fractured well.

Once we identify the desired fracture geometry and

the number of fractures, we have to develop a technique

to generate an optimal pumping schedule to achieve this

target. One of the most common approaches for gener-

ating pumping schedules is developed by Nolte (1986).

Assuming no proppant settling, he provided a pumping

schedule in the pre-defined form as a power-law, requir-

ing the final fluid efficiency, pad time and total time

a priori. The generated pumping schedule can be ap-

plied to a variety of fracture geometries, however it no-

tably underestimates the pad size, which may lead to

premature tip screen out. Therefore, we propose an op-

timization framework to design a pumping schedule that

will achieve the desired fracture geometry at the end of

pumping.

The remainder of the paper is structured as follows:

First, we present the dynamic model of a hydraulic frac-

turing process. Then, a simulator is developed to de-

scribe the spatio-temporal evolution of fracture geome-

tries, suspended proppant concentration and proppant

bank formation across the fracture, by effectively han-

dling the computational requirement attributed to cou-

pling of multiple equations over time-dependent spa-

tial domain. Then, the optimal fracture geometry is

obtained based on the method proposed by Ibragimov

et al. (2005). Lastly, we present a methodology to de-

sign a pumping schedule and show that the generated

pumping schedule performs very well producing a frac-

ture with the desired fracture geometry.

Dynamic modeling of hydraulic fracturing sys-

tems

A dynamic model of the hydraulic fracturing pro-

cess is developed based on the following standard as-

sumptions: (1) the formation layers above and below

are where the fractures have sufficiently large stresses

such that the vertical fracture is confined within a sin-

gle horizontal rock layer; (2) the rock properties remain

constant with respect to time and spatial coordinates;

(3) the fracture length is much greater than its width,

and thus, the fluid pressure across the vertical direction

is constant; and (4) fracture propagation is described

using the Perkins, Kern, and Nordgren (PKN) model

which is shown in Fig. 1.

Figure 1. The PKN fracture model (Perkins and Kern,

1961; Nordgren, 1972) considered in this work.

Fluid momentum

The fluid flow rate is determined by the following

equation for flow of a Newtonian fluid in an elliptical

section (Nordgren, 1972; Economides and Nolte, 2000):

dP

dx
= −

64µQ

π (H − δ)W 3
(1)

where P is the net pressure, µ is the fluid viscosity, Q

is the local flow rate in the horizontal direction, H is

the fracture height, δ is the bank height, and W is the

fracture width.

Pressure-width relationship

For a crack under constant pressure, the fracture

shape is elliptical and the maximum fracture width (i.e.,

the minor axis of the ellipse) with a height (H − δ) is

given by (Sneddon and Elliot, 1946).

W =
2P (H − δ)

(

1− ν2
)

E
(2)



where ν is the Poisson ratio of the formation and E is

the Young’s modulus of the formation.

Continuity equation

The continuity equation for flow of an incompressible

fluid inside the fracture is given by (Nordgren, 1972),

∂A

∂t
+

∂Q

∂x
+ (H − δ)U = 0 (3)

where A = πW (H − δ) /4 is the free cross-sectional area

of the elliptic fracture (Nordgren, 1972), U is the fluid

leak-off rate. The two boundary conditions and an ini-

tial condition are formulated as follows:

Q(0, t) = Q0 and W (L(t), t) = 0 (4a)

W (x, 0) = 0 (4b)

where Q0 is the water/slurry injection rate at the well-

bore.

Leak-off model

The fluid leak-off rate is given by the following equa-

tion (Economides and Nolte, 2000):

U =
2Cleak

√

t− τ(x)
(5)

where Cleak is the overall leak-off coefficient, t is the

elapsed time since fracturing was initiated, and τ(x) is

the time at which the fracture propagation has arrived

the spatial coordinate x for the first time.

Proppant transport

The transport of proppant in the vertical as well as

horizontal direction is considered. The settling velocity,

Vs, is computed by (Daneshy, 1978),

Vs =
(1− C)

2

101.82C
(ρsd − ρf ) gd

2

18µ
(6)

where ρsd is the proppant particle density, ρf is the pure

fluid density, g is the gravitational acceleration constant,

d is the proppant diameter, C is the dimensionless prop-

pant concentration and µ is the fracture fluid viscosity

where its dependence on C can be modeled through the

following empirical formula (Barree and Conway, 1995):

µ(C) = µ0

(

1−
C

Cmax

)

−α

(7)

where µ0 is the pure fluid viscosity, α is the expo-

nent in the rage of 1.2 to 1.8, Cmax is the theoret-

ical maximum concentration, which is determined by

Cmax = (1− φ) ρsd where φ is the proppant bank poros-

ity. It is assumed that the settling velocity of proppant

along the vertical direction is identical. The evolution

of proppant bank is described by (Gu and Hoo, 2014),

d (δW )

dt
=

CVsW

1− φ
(8)

The advection of suspended proppant in the horizontal

direction can be expressed by the following equation:

d [W (H − δ)C]

dt
= −

d (QC)

dx
(9)

Numerical simulation

A novel numerical scheme is developed for efficiently

solving these equations by effectively handling the is-

sues with time-dependent spatial domains and coupling

of nonlinear equations. In order to capture the detailed

process dynamics of the system that has a boundary

condition associated with the time-dependent spatial do-

main, a fixed mesh strategy is employed by adopting the

size of integration time step.

Numerical solution procedure

The steps of the numerical algorithm are shown be-

low:

1. At time step tk, the fracture length L(tk+1) is

obtained by elongating the fracture tip by ∆x,

L(tk+1) = L(tk) + ∆x.

2. The coupled equations of Eqs. (1)–(9) are solved for

the fracture width W (x, tk+1), suspended proppant

concentration C(x, tk+1), net pressure P (x, tk+1),

flow rate Q(x, tk+1), settling velocity Vs(x, tk+1)

and proppant bank height δ(x, tk+1) across the frac-

ture via a finite element method.

3. Calculate τ(xk+1) in Eq. (5) iteratively by repeat-

ing Steps 2 and 3.

4. The time interval ∆tk+1 is determined.

5. Set k← k + 1 and go to Step 1.

Optimal fracture geometry in ultra-low perme-

ability environment

For the given total reservoir area per well, Awell, the

amount of proppant to be injected, Mprop, and the total

length of all the fractures to be created, the following

parameters have to be determined to maximize the pro-

ductivity of a fractured well: the aspect ratio of the

drainage area, ARwell, the number of fractures created

in one well, nf .



The dimensionless (constant-pressure) productivity

index of a single fracture, JDcpfr, is a function of the

aspect ratio of the drainage area, ar = xe/ye, and the

penetration ratio of the fracture, ix = (2xf )/xe, where

xe and ye are the width and length of drainage area for

one fracture and xf is the fracture length. According to

Ibragimov et al. (2005), JDcpfr = 2λ0/π is the dimen-

sionless productivity index where λ0 is the first positive

eigenvalue of the following eigenvalue problem:

∂2φ0

∂x2
+

∂2φ0

∂y2
= −λ0φ0 (10)

with zero Neumann boundary conditions along the rect-

angle cross section of drainage area everywhere except

for zero Dirichlet condition along the fracture. Then, the

total dimensionless productivity index of the well con-

figuration, JD = nfJDcpfr, can be maximized by varying

nf and aspect ratio of the well drainage area, ARwell.

Model identification and validation

We assume that for the hydraulic fracturing process,

the nonlinear model of Eqs. (1)–(9) is not available and

a dynamic model needs to be identified. First, a series of

step inputs are generated and applied to the hydraulic

fracturing process of of Eqs. (1)–(9). Second, a set

of input/output data is obtained, and the multivariable

output error state-space (MOESP) algorithm is used to

regress a linear time-invariant state-space model of the

hydraulic fracturing process. Additionally, a pumping

schedule is generated by solving the optimization prob-

lem formulated in the following section based on the

identified empirical model, and it is applied to the hy-

draulic fracturing process of Eqs. (1)–(9).

Design of optimal pumping schedule

In hydraulic fracturing, the same propped volume

may create larger or smaller productivity. For exam-

ple, in a high-permeability formation a wide and short

fracture is preferred while in a low-permeability forma-

tion a narrow and long fracture is preferred Economides

et al. (2002). Therefore, producing fractures with de-

sired width and length are essential for productivity im-

provement.

In this work, a novel constrained optimization

scheme is employed for the design of a multi-input

pumping schedule with the objective of minimizing the

deviation of the fracture geometry from the desired value

at the end of pumping. On the basis of the empirical

model developed in the preceding section, the design of

the pumping schedule has the following form:

min
Ci,Qi,∆ti

(

x(tf )− xf

xf

)2

(11a)

s.t. ˙̂z(t) = Aẑ(t) +Bu(t) (11b)

Qmin ≤ Qi ≤ Qmax (11c)

Cmin ≤ Ci ≤ Cmax (11d)

Ci ≤ Ci+1 (11e)

10
∑

i=1

2QiCi∆ti = Mtotal/nf (11f)

Waverage(tf ) > 3Dproppant (11g)

10
∑

i=1

∆ti = tf (11h)

∀i = 1, . . . , 10 (11i)

where ẑ(t) = [Waverage(t), x(t)] is the predicted aver-

age fracture width and propped length, tf is the total

treatment time, ∆ti is the time duration of the stage i,

Mtotal is the total amount of proppant to be injected,

and u(t) = [Qi, Ci] is a vector that contains the flow rate

and the proppant concentration at the wellbore (x = 0)

(i.e., decision variables) which are obtained by solving

Eq. (11).

In the optimization problem of Eq. (11), the ob-

jective function of Eq. (11a) describes the deviation of

the fracture length from the target value at the end of

pumping. The empirical model of Eq. (11b) is used to

predict the dynamic behavior of fracture propagation.

The constraints of Eqs. (11c) and (11d) impose the lim-

its on the injection rate and proppant concentration.

The constraint of Eq. (11e) imposes that the proppant

concentration will either increase or equal to the previ-

ous stage proppant concentration. The constraint of Eq.

(11f) describes the total amount of proppant to be in-

jected during the fracture treatment. The constraint of

Eq. (11g) describes the required average fracture width

at the end of pumping, which is normally greater than 3

times proppant diameter, Dproppant, for unconventional

reservoirs. A constrained optimization algorithm will

be utilized to calculate the generated pumping sched-

ule that minimizes the cost function in the optimization

problem subject to the input and state constraints.

Simulation results

In this section, we find the optimal fracture geome-

try and total number of fractures which will maximize



the productivity of a fractured well for the given amount

of proppant, well area and total length of all the frac-

tures. Then, we identified a linear state-space model

for the design of optimal pumping schedule by applying

the proposed optimization method that will achieve the

desired fracture geometry at the end of pumping.

Optimal fracture geometry

The values of the parameters used in our simulations

are listed in Table 1. For the given well area, Awell, we

considered three different ARwell values (1/6, 1/10 and

1/14) to calculate the optimal fracture geometry. The

total length of all the fractures to be created is 9000 m

in order to obtain the required average width at the end

of fracture closure (3Dproppant).

parameter symbol value

leak-off coefficient Cleak 6× 10−5 m/s1/2

maximum concentration Cmax 0.65

young’s modulus E 1× 106 Pa

total reservoir area per well Awell 324000 m2

total proppant mass / well Mtotal 4.5× 106 kg

vertical Fracture height H 100 m

proppant particle density ρsd 2648 kg/m3

pure fluid density ρf 1000 kg/m3

Slick water viscosity µ 0.01 Pa · s

Poisson ratio of formation ν 0.2

Table 1. Model parameters used for example.

Table 2 shows the total dimensionless productivity

index and the optimal number of fractures for different

ARwell values. The maximum productivity will be at-

tained for ARwell = 1/14, nf = 63, and xf = 72.

ARwell nf xf JD

1/6 40 112.5 412.63

1/10 53 84.9 422.24

1/14 63 71.4 429.13

Table 2. Total dimensionless productivity and optimal

number of fractures for different well aspect ratios.

Model Identification

After obtaining the optimal fracture geometry, we

generated the input/output data for a series of step in-

puts using the dynamic model. The inputs for the model

are flow rate, Qi, and proppant concentration, Ci, and

outputs are average fracture width, Waverage, and frac-

ture propped length, x, as a function of time. A linear

time-invariant state-space model for the propped frac-

ture length and the average width has been identified by

applying the MOESP algorithm and is shown in Fig. 2.
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Figure 2. Comparison of results from simulation and

Identified model.

Optimal pumping schedule

After developing the empirical model, a pumping

schedule is generated by solving the optimization prob-

lem to achieve the optimal fracture length by consid-

ering the respective constraints on the total amount of

proppant to be injected for each fracture and the min-

imum required average width to be satisfied at the end

of pumping. A total of 10 stages for the flow rate, Qi,

and the proppant concentration, Ci are considered in

the design of a pumping schedule. The obtained pump-

ing schedule is presented in Fig. 3. It is observed that

the flow rate is nearly constant throughout the pump-

ing schedule while the proppant concentration increases

with time. Then, we applied the generated pumping

schedule to the hydraulic fracturing process of Eqs. (1)–

(9). It is presented in Fig. 4 that the propped length

at the end of pumping is close to the optimal fracture

length.

Conclusions

In this work, we developed a dynamic hydraulic

fracturing model to describe fracture growth, proppant

transport and proppant settling. Using the developed
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Figure 3. Pumping schedule obtained after optimization.
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Figure 4. Propped length of fracture with time.

dynamic model a series of step inputs are used to gen-

erate the input (flow rate and proppant concentration)

and output (average width and propped length of frac-

ture) data. Then, using the generated data we iden-

tified a linear time invariant state-space model by ap-

plying the MOESP algorithm to the hydraulic fractur-

ing process. The identified model predicted the out-

put data with a good accuracy. After that, an offline

optimization-based technique was employed to find the

optimal fracture length for a given amount of proppant,

well drainage area and total length of all the fractures

to maximize the productivity of a fractured well. Then,

a pumping schedule was generated using the identified

empirical model by solving an optimization problem to

achieve the optimal fracture length by considering the

constraints on the total amount of proppant for each

fracture and the required average width. It was demon-

strated that the propped length at the end of pumping

using the obtained pumping schedule was very close to

the optimal fracture length maximizing the productivity

of a fractures well.
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