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In the general case, SBMs are of the form:  

 

 

 

where the hat denotes scheduling-relevant variables, and the 
subscript sp refers to the target values of the scheduling-
relevant process outputs, as determined by the scheduling 
calculation. The model representation (13) can then be 
embedded in the scheduling problem formulation as 
described above in order to capture the process dynamics.  

However, closed-form representations for both output, 
state and input dynamics of the type (13) are difficult to 
obtain in the general case. In situations where the 
complexity of the first-principles process model is not high, 
we have shown (Du et al., 2015) that SBMs can be defined 
as the closed-loop process behavior imposed by an input-
output linearizing controller, of the form: 

 

where  is the system relative order for a single-input, 
single-output system, and  are the time constants of the 
closed-loop dynamic response. Alternatively, dynamic 
models of the form (13) can be identified from process 
operating data using standard system identification 
techniques. In this case, SBMs take on a specific structure, 
being in effect a set of multi-input, single-output models, 
where the inputs are the production-related targets/setpoints 
defined in the scheduling layer, and the output of each 
model is a scheduling-relevant process output or state. This 
structure promotes sparsity and is thus advantageous for 
optimization calculations 

. 

To demonstrate the feasibility of the proposed 
approaches, we solve a simple numerical case involving a 
SISO CSTR and the cyclic production of three products. 

The reaction 3R  P takes place in an isothermal 
CSTR, while products A, B and C, which are differentiated 
by their concentration (Table 1) are manufactured in a 
cyclical mode. The basic dynamic model of the process is 
shown in Eq. (15). 

 

where  is the feed flow rate (i.e., manipulated variable) and 
 is the concentration of raw material in the outlet stream 

(i.e., state variable). In addition to satisfying product 
demand, an upper limit of 10 hours production time is 
enforced for each product in the cycle, and the manipulated 
variable is constrained to . The objective is to 
maximize hourly profit. We investigate three integrated 
scheduling and control solution methods, and the results are 
compared in Table 2. Scheduling solutions for each method 
are shown in Figure 1.  

Scenario 1: following the procedure described in the 

mp-
into PWA by solving optimization problems using 
GAMS/CONOPT. The resulting PWA system and the 
bounds for state and manipulated variables are used in the 
MPT toolbox in order to obtain the explicit control 
solutions. The control solutions are then transformed in 
explicit constraints and added to constraints from the 
scheduling problem. The resulting MINLP is solved for 
production scheduling and control inputs  using 
GAMS/SBB.  

Scenario 2: in this scenario, we follow the procedure 

control incorporating 
discretized and incorporated in the scheduling model. The 
resulting MINLP is solved for production scheduling and 
state references using GAMS/SBB. State reference 
information is sent to the inner control loop, which tracks 
the performance of the system and can act when facing 
process disturbances.  

Scenario 3: we follow the developments in (Du et al., 
2015) and construct an input-output nonlinear controller of 
the form (14). The controller induces a first order closed-
loop response: 

 

where  is the closed-loop time constant (in 
order to account for input saturation during transitions, the 
corresponding time constant in the SBM used in scheduling 
calculations was adjusted to 0.35h). Additionally, we 
approximate the input dynamics with a second order 



Hammerstein model of the form (Baldea et al., 2016; 
Pattison, Touretzky, Johansson, et al., 2016): 

 

with a piecewise constant input transformation: 
. 

Models (16) and (17) are embedded in the scheduling 
problem described above, and the resulting mixed-integer 
optimization problem is solved sequentially in gPROMS 
using a rSQP solver with an outer-approximation method to 
handle the sequence-defining integer variables. 
 

Table 1  Case Study Steady State Information  

Product u [L/h] x[mol/L] 

Demand 

rate 

[kg/h] 

Product 

cost 

[$/kg] 

Inventory 

cost 

[$/kg] 

A 400 0.3032 20 130 1.8 
B 1000 0.393 25 125 2 
C 2500 0.5 10 120 1.7 

 
Table 2  Results of integrated problem 

We notice that integration using Fast MPC provides 
better results than mp-MPC with a much lower 
computational time. The superiority of Fast MPC can be 
explained by aggressive control actions leading to shorter 
transition times when compared to mp-MPC. Furthermore, 
Fast MPC is capable of handling large size control 
problems, and the proposed framework can handle 
uncertainties in the process operations. Similarly, SBM-
based scheduling results in the highest profit of all owing to 
shorter transition times. The aggressiveness of the 
controller is reflected in the higher raw material cost for the 
third scenario (compared to Scenarios 1 and 2), which in 
this case is reflective of broad and rapid variations in the 
manipulated input u. 

Conclusions and 

In this work, a simple case study was presented to 
evaluate the performance of three strategies for the 
integration of scheduling and control. The frameworks can 
be adapted to more complex problems involving batch or 
continuous processes (Touretzky et al., 2016). The results 
of the simple case study reflect the fact that the execution of 
production schedules and the economic performance of a 
process are, indeed, highly dependent on the choice of 
control system, and provide a strong incentive for investing 
further efforts in the integration of scheduling and control, 
both at the fundamental research level and in practical 
applications. 
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