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Abstract

Current challenges in the process industries and the pursuit of optimal operating conditions result in a
need for integrating decision-making across different levels of a chemical company. Problems involving
production scheduling and process control are naturally related and, if addressed simultaneously, can
result in increased profits and performance. However, their integration often results in high dimensional
optimization problems involving complex dynamic models for which fast solution methodologies are still
unavailable. In this paper, recent developments and frameworks for the integration of scheduling and
control are reviewed and compared. A case study is used to illustrate the feasibility and applicability of
these frameworks, and remaining challenges and research directions are identified.
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Introduction

Dynamic market conditions and increasing pressure for
competitive performance in the process industries have led
to significant efforts in the pursuit of optimal operation
conditions. In addition to improved process designs, these
circumstances have spurred the development of strategies
aimed at vertical integration and coordination of decision-
making across all the layers of the chemical supply chain.
Such enterprise-wide optimization efforts (Grossmann,
2005) are supported by advances in numerical optimization
algorithms and by the development of modern IT tools,
which allow extensive information exchange between
different layers of decision-making within a company.

Progress made in integrating the upper echelons of
decision-making (planning and scheduling) and the
resulting benefits have provided the economic motivation
and intellectual impetus for seeking integration paths
further down the decision-making hierarchy, notably
focusing on integrating scheduling and control. Scheduling

aims to maximize profit by setting the optimal production
sequence, batch sizes, unit assignments and timing of tasks
while control maximizes performance by focusing on the
dynamic behavior, such as the transition between products
(Zhuge & lerapetritou, 2015). Additional motivation is
provided by practical considerations related to current
economic circumstances: chemical processes operate in an
increasingly dynamic environment, and fast-changing
prices (especially on the energy and electricity supply side)
require that production schedule changes be made on a time
scale comparable to the time constant of the process
(Pattison, Touretzky, Johansson, et al., 2016). Under these
conditions, the process may actually never reach steady
state in operation and the conventionally accepted time
scale separation between scheduling and control is no
longer valid, making it imperative to address scheduling and
control decisions in an integrated, unified way (Baldea &
Harjunkoski, 2014; Du et al., 2015).
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Initial efforts towards the integration of scheduling and
control followed the intuitive route of embedding the
dynamic model of the process as an additional set of
constraints in the scheduling problem. The result is a mixed-
integer dynamic optimization problem (MIDO), and its
solution provides the optimal production sequence and
optimal control moves required to implement the schedule.
The MIDO problem is either discretized into a Mixed
Integer Nonlinear Program (MINLP) using, for example,
orthogonal collocation on finite elements or implicit Runge-
Kutta methods, or solved using sequential techniques. The
former approach was proposed by Flores-Tlacuahuac and
Grossmann (2006), and it was extended by Terrazas-
Moreno et al. (2007) and Zhuge and Ierapetritou (2012),
while Pattison, Touretzky, Johansson, et al. (2016) have
applied the latter. The alternative of using a decoupled
modelling approach, consisting of formulating the
scheduling problem (master problem) as a Mixed Integer
Linear Programming (MILP) and the control problem
(primal problem) as Dynamic Optimization, has also been
discussed. The problem is solved through iterations
between the master and primal problems. Case studies have
shown that the solution is close to the global optimum
(Nystrom et al., 2005; Nystrom et al., 2006). Furthermore,
Lagrangean and Benders decompositions have been
proposed in order to reduce the computational complexity
of the integrated problem, enabling online integration of
scheduling and control (Chu & You, 2013a, 2013b;
Terrazas-Moreno et al., 2008)

While intuitive, these developments face limitations
when presented with large-scale, industry-relevant
problems. In particular, solving, in a practical amount of
time, mixed-integer dynamic optimization problems with
high-dimensional, nonlinear and stiff constraint sets (which
is typically the case for the models of chemical processes)
is difficult if not impossible. In a different vein,
organizational challenges pertaining to the integration of
multiple disparate software systems used in a process plant
and the decision making process of a company are still to
be overcome (Engell & Harjunkoski, 2012).

In this work, recent developments towards efficient and
fast integration of scheduling and control will be presented.
The following section will present approaches for the
integration of Multi-Parametric Model Predictive Control
and Fast Model Predictive Control and the scheduling
problem. The integrated problem using time-scale bridging
models is then introduced. A case study will be used to
illustrate the applicability, feasibility, advantages and
disadvantages of the different methods.

Integration of scheduling and control using full scale
dynamic models
Class of systems considered

We consider a generic (Baldea & Daoutidis, 2012) input-
affine dynamic model of process systems of the form:

x=fx)+G6xu
y = h(x)

where x represent the state variables, u are the system
inputs, y are the outputs, and f, G and h are appropriately
defined vector functions. For convenience, we assume that
the system is minimum phase.

)

Simultaneous scheduling and control incorporating mp-
MPC

Model Predictive Control (MPC) makes use of an
explicit model of the process to obtain a sequence of control
actions by repetitively solving an optimal control problem
online. At each sample point the current state and output are
measured and the tracking error is minimized over a future
time horizon to generate the optimal control strategy
(Camacho & Bordons, 2007). The first step of the computed
input trajectory is implemented to the process, and the
procedure is repeated in the following time point with the
horizon moving forward. MPC has been widely adopted in
industry as an effective control strategy for multivariable
constrained control problems (Bemporad & Morari, 2000).
However, the potentially high computational effort
resulting from the recurrent solution of optimization
problems may limit the applicability of model predictive
controllers. On the other hand, Multi-parametric Model
Predictive Control (mp-MPC) arises as a solution for the
computational burden, as it is capable of transferring the
online computation into offline solution. mp-MPC uses
multi-parametric programming techniques to obtain a set of
explicit control laws, each associated to a polyhedral region
in the state space (critical regions). Therefore, mp-MPC
replaces the online optimization problem by simple function
evaluations and allows the use of model-based controllers
in a wider range of problems (Pistikopoulos, 2012).

In Zhuge and lerapetritou (2014), a framework for the
integration of scheduling and control using mp-MPC was
proposed. The framework can be summarized in four steps:
first, the dynamic model describing the system (1) is
linearized using piecewise affine approximations (PWA).
Second, the derived PWA control problem is reformulated
as a parametric programming, and the explicit solutions for
the control problem are obtained. Third, the explicit
solutions are transformed into explicit linear constraints by
introducing additional variables. Finally, the explicit
constraints are incorporated into the constraints of
scheduling problem, and the resulting MINLP problem can
be solved for the online implementation of integrated
scheduling and control.

The PWA approximations are obtained by applying the
method presented in Dias et al. (2016). The resulting PWA
functions will have the form of Eq. (2). In this work, the mp-
MPC problem is solved using MPT toolbox (Herceg et al.,
2013), and the explicit control solutions assume the form of
Eq. (3). Thus the explicit constraints to be incorporated in
the scheduling problem have the form of Egs. (4)-(7).
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where x denotes the state reference at slot s and sample step
k. u denotes control inputs, and A4;, B; and C; are the PWA

coefficients. If Vps = 1, product p is produced at slot s. If
Yl = 1, the critical region i is selected by Eq. (4) and

thus the explicit control associated with coefficients F;,,,

9ip is selected through constraints (6) and (7). Equation (5)
indicates that only one critical region is selected at each
sample step.

In Zhuge and lerapetritou (2014), the possibility and
feasibility of using the framework for integration of
scheduling and control with mp-MPC is explored. Case
studies involving a batch process are presented, and the
performance of the proposed model is compared to a model
where a MIDO is built for the integrated problem and
discretized into a MINLP using implicit Runge-Kutta
method. The comparison shows that the proposed
framework produces slightly lower profit while its solution
time is nearly two orders of magnitude smaller.
Nevertheless, the applicability of this model is limited to
small and medium size control problems, provided that the
number of critical regions increases exponentially as the
problem size increases in terms of state dimension and
prediction horizon.

Simultaneous scheduling and control incorporating Fast
MPC

Fast MPC for linear systems transforms the MPC
problem into a convex quadratic program, and the online
computation can be sped up by exploiting the problem
structure and using efficient nonlinear programming
methods. Therefore, the issue of handling large-scale
control problems is overcome by using Fast MPC. In Zhuge
and lerapetritou (2015), a framework involving two control
loops for the integration of scheduling and control using
Fast MPC is proposed. In the outer control loop, the original
process dynamics is transformed into a PWA system
composed by a set of Linear Time Invariant (LTI) equations
and incorporated in the scheduling problem. The resulting
MINLP problem is solved for the production scheduling
and state references. Hereafter, the inner control loop uses
Fast MPC for PWA systems to track state references
provided by the outer loop. The LTI equation for current
states is located using a binary search method, and the MPC
problem for the selected LTI is solved using toolbox

FORCES (Domahidi, 2012), which is based on primal-dual
interior-point method.

When disturbances at control level are detected, fast
MPC acts to minimize state deviations. However, large
disturbances may not be handled efficiently by the inner
loop. Therefore, Zhuge and Ierapetritou (2015) proposed to
empirically determine a threshold for state deviations,
above which the state deviation would be feedback to the
integrated problem and the scheduling solution would be
updated.

Scheduling Problem Formulation

In this work, the problem of continuous cyclic
production is addressed, and scheduling constraints are
adopted from the work of Flores-Tlacuahuac and
Grossmann (2006). Constraints at control level include the
discretized dynamic model and bounds for state and
manipulated variables. In addition, the model incorporating
mp-MPC includes Eq. (4)-(7). Furthermore, the
determination of the end of transition and evaluation of
transition times is determined by Eq. (8)-(12).
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Transition between slots in a continuous process
naturally starts with state values set at the steady state of the
previous slot, and end when the steady state value for the
new product is reached. However, the duration of transition
is unknown. We determine the end of transition by first
dividing the transition time in k steps of duration h. We also
assume that there exist some margins around the set point,
and if the state is between the lower bound Xs — Xpargin
and the upper bound Xs + Xpargin, it is meeting the set
point. We then introduce two binary variables, y2;, and
¥3sk- If y25, = 1, the state value at step k and slot s is
between the desired margins of production. If y3, = 1, the
current value of state x, meets the quality bounds, but the
previous value xg,_, did not meet the quality bounds.
Therefore, the transition has ended and the transition time
is determined as kh by constraint (12).

Time Scale-Bridging Models for the Integration of
Production Scheduling and Process Control

As shown earlier in the paper, dimensionality reduction is a
key ingredient for improving the tractability of integrated
scheduling and control problems. In this section, we review
previous efforts predicated on obtaining a low-order model
of the closed-loop behavior of the process, which captures
its scheduling-relevant input-output dynamic behavior, and



is then embedded in the scheduling calculation. These
constructs, referred to as scale-bridging models (SBMs)
were initially proposed by Du et al. (2015), with extensions
to MPC controllers and data-driven models introduced by
Baldea et al (2016) and Pattison, Touretzky, Johansson, et
al. (2016) respectively. The notion of scheduling-relevance
reflects the fact that not all state and output variables x and
y are relevant (or needed) for establishing the optimal
schedule. Intuitively, the subset of states and/or outputs
whose dynamics should be accounted for when computing
the schedule (and thus captured in the SBM) includes
product purities and production rates, as well as the (state)
variables that are critical to the safe operation of the process
and that are at or close to their constraints/bounds either
during steady-state operation or during transitions (Pattison,
Touretzky, Johansson, et al., 2016). Case studies carried out
on industrial-scale problems (Pattison, Touretzky,
Harjunkoski, et al., 2016) suggest that in practical
circumstances the dimensionality of the SBM may be quite
small, and significantly lower than the dimension of the
first-principles model of an industrial facility.
In the general case, SBMs are of the form:

Y= fy,Gsp, 9, %, )
¢ = fr(Jsp, 9, 2, 0) (13)
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=

where the hat denotes scheduling-relevant variables, and the
subscript sp refers to the target values of the scheduling-
relevant process outputs, as determined by the scheduling
calculation. The model representation (13) can then be
embedded in the scheduling problem formulation as
described above in order to capture the process dynamics.

However, closed-form representations for both output,
state and input dynamics of the type (13) are difficult to
obtain in the general case. In situations where the
complexity of the first-principles process model is not high,
we have shown (Du et al., 2015) that SBMs can be defined
as the closed-loop process behavior imposed by an input-
output linearizing controller, of the form:

r dfy .
Zﬁf Y (14)
j=0

where r is the system relative order for a single-input,
single-output system, and f; are the time constants of the
closed-loop dynamic response. Alternatively, dynamic
models of the form (13) can be identified from process
operating data using standard system identification
techniques. In this case, SBMs take on a specific structure,
being in effect a set of multi-input, single-output models,
where the inputs are the production-related targets/setpoints
defined in the scheduling layer, and the output of each
model is a scheduling-relevant process output or state. This
structure promotes sparsity and is thus advantageous for
optimization calculations (Pattison, Touretzky, Johansson,
et al., 2016).

Case study

To demonstrate the feasibility of the proposed
approaches, we solve a simple numerical case involving a
SISO CSTR and the cyclic production of three products.

The reaction 3R> P takes place in an isothermal
CSTR, while products A, B and C, which are differentiated
by their concentration (Table 1) are manufactured in a
cyclical mode. The basic dynamic model of the process is
shown in Eq. (15).

dx u 3 15
dat ~ oo LT ¥ T2 (>
where u is the feed flow rate (i.e., manipulated variable) and
x is the concentration of raw material in the outlet stream
(i.e., state variable). In addition to satisfying product
demand, an upper limit of 10 hours production time is
enforced for each product in the cycle, and the manipulated
variable is constrained to u € [0, 3000]. The objective is to
maximize hourly profit. We investigate three integrated
scheduling and control solution methods, and the results are
compared in Table 2. Scheduling solutions for each method

are shown in Figure 1.

Scenario 1: following the procedure described in the
section “Simultaneous scheduling and control incorporating
mp-MPC”, the dynamic model of the process is transformed
into PWA by solving optimization problems using
GAMS/CONOPT. The resulting PWA system and the
bounds for state and manipulated variables are used in the
MPT toolbox in order to obtain the explicit control
solutions. The control solutions are then transformed in
explicit constraints and added to constraints from the
scheduling problem. The resulting MINLP is solved for
production scheduling and control inputs u using
GAMS/SBB.

Scenario 2: in this scenario, we follow the procedure
described in the section “Simultaneous scheduling and
control incorporating Fast MPC.” The dynamic model is
discretized and incorporated in the scheduling model. The
resulting MINLP is solved for production scheduling and
state references using GAMS/SBB. State reference
information is sent to the inner control loop, which tracks
the performance of the system and can act when facing
process disturbances.

Scenario 3: we follow the developments in (Du et al.,
2015) and construct an input-output nonlinear controller of
the form (14). The controller induces a first order closed-
loop response:

x_1 w_m (16)
dt 1
where 7, = 0.25h is the closed-loop time constant (in
order to account for input saturation during transitions, the
corresponding time constant in the SBM used in scheduling
calculations was adjusted to 0.35h). Additionally, we
approximate the input dynamics with a second order



Hammerstein model of the form (Baldea et al., 2016;
Pattison, Touretzky, Johansson, et al., 2016):

amn

with a piecewise constant input transformation: x*?' =
Sow (x°P).

Models (16) and (17) are embedded in the scheduling
problem described above, and the resulting mixed-integer
optimization problem is solved sequentially in gPROMS
using a rSQP solver with an outer-approximation method to
handle the sequence-defining integer variables.

u=C'Au’' + C'Bxs?'

Table 1 — Case Study Steady State Information

Demand  Product Inventory
Product u[L/h]  x[mol/L] rate cost cost
[kg/h] [$/kg] [$/kg]
A 400 0.3032 20 130 1.8
B 1000 0.393 25 125 2
C 2500 0.5 10 120 1.7
Table 2 — Results of integrated problem
Solution method mp-MPC Fast MPC SBMs
Number of variables 153 174 15 differential,
10 algebraic
Number of constraints 540 354 40
CPU Time (s) 83 1 5
Optimal sequence A-B-C A-B-C A-B-C
Cycle time (h) 20.29 18.04 18.37
Revenue ($) 79646.44 88886.62 94743.61
Raw material cost ($) 15547.48 16405.73 18772.19
Inventory cost ($) 6214.34 5468.12 8241.69
Profit ($) 57884.61 67012.77 67729.72

We notice that integration using Fast MPC provides
better results than mp-MPC with a much lower
computational time. The superiority of Fast MPC can be
explained by aggressive control actions leading to shorter
transition times when compared to mp-MPC. Furthermore,
Fast MPC is capable of handling large size control
problems, and the proposed framework can handle
uncertainties in the process operations. Similarly, SBM-
based scheduling results in the highest profit of all owing to
shorter transition times. The aggressiveness of the
controller is reflected in the higher raw material cost for the
third scenario (compared to Scenarios 1 and 2), which in
this case is reflective of broad and rapid variations in the
manipulated input u.

Conclusions and Future Directions

In this work, a simple case study was presented to
evaluate the performance of three strategies for the
integration of scheduling and control. The frameworks can
be adapted to more complex problems involving batch or
continuous processes (Touretzky et al., 2016). The results
of the simple case study reflect the fact that the execution of
production schedules and the economic performance of a
process are, indeed, highly dependent on the choice of
control system, and provide a strong incentive for investing
further efforts in the integration of scheduling and control,
both at the fundamental research level and in practical
applications.

At the fundamental level, it has become apparent that
the integration of scheduling and control requires high-
fidelity representations of the process dynamics and
associated process control problem. In turn, this calls for the
use of nonlinear models capable of accurately describing
process behaviors and dynamic transitions. These models
are almost invariably high-dimensional, stiff and potentially
discontinuous. As a consequence, the computational cost of
performing the integrated scheduling/control calculations
online and in real-time are quite considerable, and represent
one of the main barriers in the deployment of an integrated
scheduling/control framework in practical applications.
Further efforts are therefore required to develop a
systematic and general approach for deriving scheduling-
relevant low-order process models. These efforts should be
accompanied by progress in fast numerical solution
algorithms for mixed integer dynamic optimization
problems.

At a higher level, closing the scheduling loop should
become a priority. This entails defining and implementing
mechanisms that inform rescheduling decisions in the
presence of process faults and disturbances that have an
impact on schedule execution. These mechanisms should be
able to deal with, e.g., plant-model mismatch, equipment
faults that do not necessarily entail a complete machine
breakdown; moreover, endogenous disturbances, such as
changes in feedstock flow rate or composition, and
exogenous ones, including changes in market demand and
prices of products, utilities or raw materials, should be
accounted for.

Closing the scheduling loop should not occur without
careful consideration of the stability and feasibility of
integrated scheduling/control frameworks. Although the
concept of stability has been extensively explored by the
control community, it is anew concept for the integrated

mp-MPC A B €
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transition periods production of A production of B production of C

Figure 1. Gantt chart obtained in the three scenarios



scheduling and control scheme and it remains a major
challenge (Baldea & Harjunkoski, 2014).

Practical challenges will also include data integration
across different levels of the decision-making process, in
view of the diversity of automation systems and
components across different layers of a company. In
addition, organizational silos within a company must be
broken for an efficient coordination and integration of
scheduling and process control. Overall, a closer
relationship between industry and academia will be
fundamental for proving the business value of an integrated
framework and for addressing the remaining challenges in
this area.
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