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Abstract

Robust optimization constitutes an approach for handling parameter uncertainty in the context of a

mathematical optimization model. Despite having been around for a few decades and being a relatively

well-known approach by now, it has arguably lagged behind other alternatives (e.g., stochastic or chance-

constrained programming) in terms of applications in which it has been considered. This can be partly

attributed to certain theoretical limitations in earlier robust optimization frameworks as well as to the

misconception of “being too conservative” of an approach, steering many researchers and practitioners

away from adopting it as a risk mitigation tool. However, recent advances in theory and methods have

alleviated many of the previous concerns and have made robust optimization particularly attractive for

practice, both from the viewpoint of conceptual fit as well as for the numerical tractability benefits it can

offer. In this paper, we briefly review the current state-of-the-art in robust optimization and demonstrate

its applicability in two example pieces of our work.
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Introduction

A generic form of an optimization problem with

uncertain parameters is presented in Formulation (1),

where x represents a vector of decisions to be deter-

mined and ξ represents a vector of parameters whose

exact value is unbeknownst to the decision-maker at the

time of optimization.

min
x∈X

f (x, ξ)

s.t. gi (x, ξ) ≤ 0 ∀ i
(1)

In order to cope with this uncertainty, Robust Op-

timization (RO) seeks to identify solutions that remain

feasible under any realization of the parameters from

within an uncertainty set, Ξ, which is chosen by the

modeler a-priori. This set constitutes a comprehensive

collection of all parameter realizations that the mod-

eler wishes to insure against, and it can be linked to a

confidence interval for probabilistic constraint satisfac-

tion. In general, an uncertainty set may consist of a

continuum of parameter realizations, collections of dis-
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crete scenarios, or their combinations. Out of all those

solutions that retain their feasibility for all ξ ∈ Ξ, a.k.a.,

robust feasible solutions, RO selects the one that yields

the best “worst-case” outcome given all possibilities.

Consequently, RO can be represented by the bi-level

Formulation (2), which is referred to as the robust coun-

terpart of the original problem, and which can be ad-

dressed via semi-infinite programming techniques. This

typically involves the invocation of duality arguments to

reformulate it into a monolithic formulation that can be

solved directly.

min
x∈X

max
ξ∈Ξ

f (x, ξ)

s.t gi (x, ξ) ≤ 0 ∀ ξ ∈ Ξ, ∀ i
(2)

From a game-theory perspective, the above prob-

lem constitutes a Stackelberg game in which the leader

controls the decision variables, x, and the adversarial

follower controls the realization of uncertainty, ξ. The

main principle governing this game is Wald’s maximin

criterion, which dates back to the 1940s and the de-

velopment of statistical decision theory. Three decades

later, Soyster (1973) studied this problem from a math-



ematical optimization perspective and introduced a

methodology that ensured feasibility of a linear prob-

lem under all possible perturbations around each uncer-

tain parameter’s nominal value. Since this may be too

conservative in a practical setting, subsequent seminal

works introduced more elaborate uncertainty sets that

generally lead to less conservative solutions (we review

such sets later). A concept similar to RO is that of Flex-

ibility Analysis, which was developed independently in

the context of studying feasibility of chemical process

designs. Its relationship to RO was comprehensively ar-

ticulated in Zhang et al. (2016).

Generally speaking, RO is particularly suitable in

cases where loss of feasibility cannot be tolerated (e.g.,

due to system safety concerns), is not meaningful (e.g.,

equipment physical limitations), or cannot be reason-

ably penalized (e.g., no way to “monetize” infeasibil-

ity). However, RO can–and should–be considered also

in contexts where the above do not hold. In fact, doing

so may offer a number of advantages as compared to its

alternatives. For one, RO often features good compu-

tational tractability, since in many cases the fully refor-

mulated RO counterpart is in the same problem class

as the deterministic problem itself. Furthermore, it can

be applied in cases where detailed knowledge of prob-

ability distributions is not available. The more coarse

description of uncertainty in the form of an uncertainty

set, which is a collection of correlations among parame-

ter values, can be readily extracted from any historical

data. In general, these correlations may apply condi-

tionally upon our own decisions, allowing us to capture

also the endogenous stochastic behavior of a system.

Critics of RO have often dubbed it “too conserva-

tive,” due to its focus on “worst-case” objective. It is

important to highlight, however, that the choice of the

uncertainty set rests with the modeler, who can judi-

ciously choose the shape and size of the set so as to meet

the tolerable risk profile. In fact, a hierarchy of optimal

solutions across a range of uncertainty sets should be

sought to better understand the price of robustness in

each application of interest. In the author’s view, a more

substantial historical limitation of RO was the fact that

it used to be restricted to single-stage decision-making

settings, without the versatility to incorporate recourse

decisions, or at least one had to make significant ap-

proximations in the form of applicable recourse. How-

ever, recent developments (briefly reviewed later) have

opened many possibilities for multi-stage optimization

via the RO approach.

In the context of Process Operations, in particular,

where typically the mathematical models are of (mixed-

integer) linear nature and feature too many parameters,

using RO so as to mitigate the risk of our decisions

makes good sense. In fact, in the usual paradigm of

applying decision-making in a rolling horizon fashion,

using a risk-averse framework like RO to obtain deci-

sions at each iteration improves the likelihood of main-

taining closed-loop feasibility over long periods of time,

in contrast to using decisions based on deterministic or

other stochastic models.

Uncertainty Sets

As discussed, a robust optimization model is associ-

ated with a specific uncertainty set that has been chosen

by the modeler to this purpose. The most commonly

utilized uncertainty sets are norm-based, as shown in

Eq. (3). Here, ξ can be interpreted as the vector of

normalized deviations of the uncertain parameters from

their nominal values. For p → 0, the set assumes that

only a given number of uncertain parameters may devi-

ate from their nominal values in any real-life scenario;

for p = 1, the single budget set assumes that the cu-

mulative absolute deviation from the nominal scenario

shall be bounded; for p = 2, the ellipsoidal set assumes

that the parameter realizations are jointly distributed

normally; finally, for p → ∞, the rectangular (a.k.a.,

“box”) set assumes independent parameter realizations.

Ξ =
{
ξ ∈ Rn

∣∣∣ ‖ξ‖p ≤ α} (3)

The prolific use of the above sets in RO literature

is both due to their simplicity of representation as well

as the fact that they often suffice to represent correla-

tions among uncertain parameters that are observed in

historical process data. Intersections among these sets

are further suggested in Li et al. (2011). A straightfor-

ward extension is the general polyhedron uncertainty set

of Eq. (4), which concurrently accommodates all affine

correlations among subsets of parameters that can be

postulated. Another polyhedral uncertainty set that one

may use is the factor-model set (a.k.a., net-alpha model)

of Eq. (5), which has been proposed to deal specifically

with settings that feature a large number n of uncer-

tain parameters. This set insures against all realizations

whose weighted deviation from the nominal scenario is

bounded. In effect, this reduces the dimensionality of

the uncertainty down to a small number m (m� n) of

random variables (i.e., the factors φ).



Ξ =

{
ξ ∈ Rn

∣∣∣∣∣
n∑
i=1

hjiξi ≤ gj , ∀ j

}
(4)

Ξ =


(ξ, φ) ∈ Rn × Rm

∣∣∣∣∣∣∣∣∣∣∣

ξi =
m∑
f=1

αifφf , ∀ i∣∣∣∣∣ m∑f=1

φf

∣∣∣∣∣ ≤ βm
φf ∈ [−1,+1] , ∀ f


(5)

The various coefficients and right-hand-sides refer-

enced in a set are to be chosen by the modeler in a way

that reflects the desirable level of risk tolerance. Ef-

ficient data-driven uncertainty set construction is cur-

rently an active field of research. As an example, we

refer the interested reader to the work by Bertsimas

et al. (2013), who proposed a scheme based on statis-

tical hypothesis tests and machine learning techniques

to determine the set. It should also be noted that, given

distributional information about parameter realizations,

bounds on the probability of constraint satisfaction as a

function of the set’s shape and size can be derived for

many of the sets described above, while the sets them-

selves can be chosen so as to satisfy desirable confidence

intervals (Guzman et al. (2016) and references therein).

A typical RO approach utilizes uncertainty sets

whose coefficients and right-hand-sides are predeter-

mined constants. However, there are cases where the op-

timization decisions can have a direct impact upon the

uncertainty itself. Such endogenous uncertainty arises

when decisions lead a parameter to lose its physical

meaning (e.g., the processing time of a task that never

occurred), realize at a different point in time (e.g., we

learn the true demand of a product only after the pe-

riod we launch it into the market), or adhere to a dif-

ferent probability distribution (e.g., a decision to install

a more established technology reduces the range of pos-

sible yields that will be achieved). In these contexts,

one may use an uncertainty set where the various coef-

ficients and right-hand-sides are functions of the deci-

sions, x, appropriately modeling the underlying depen-

dencies. For example, a decision-dependent counterpart

of the generic polyhedron uncertainty set of Eq. (4) is

shown in Eq. (6). More details about the use of decision-

dependent sets in the context of RO can be found in Lap-

pas and Gounaris (2017).

Ξ (x) =

{
ξ (x) ∈ Rn

∣∣∣∣∣
n∑
i=1

hji (x) ξi ≤ gj (x) , ∀ j

}
(6)

Solution Approaches

Although RO can be applied on non-linear prob-

lems (Ben-Tal et al., 2015) or even problems described

via simulations (Bertsimas et al., 2010b), the majority

of the literature focuses on problems whose determin-

istic instantiations can be represented as mixed-integer

linear models.1 With this in mind, two major solution

avenues can be followed to obtain optimal solutions to

the robust counterparts of those problems.

The standard approach is based on reformulating (2)

by first converting the semi-infinite constraints into in-

ner maximization subproblems, which can then be dual-

ized towards a single-level optimization problem. When

one utilizes polyhedral uncertainty sets, linear duality

principles apply and the linear structure of the determin-

istic model persists in the robust counterpart. However,

using ellipsoidal sets results to (convex) conic optimiza-

tion problems. A second approach is the robust cutting

plane method (Mutapcic and Boyd, 2009), which is based

on the procedural enforcement of robust feasibility by

adding select instantiations of constraints for some key

parameter realizations from within the set. The pro-

cess starts by optimizing a deterministic model for some

nominal parameter realization, ξ0 ∈ Ξ, after which the

solution x∗ is checked for robust feasibility across the

whole set of interest. This entails solving a sequence of

optimization problems (one per constraint)2–with the

uncertain parameters being the variables–, in order to

separate realizations ξ∗ ∈ Ξ under which the current

solution x∗ violates some constraint; the latter is then

added in the master problem and the process repeats

until full robust feasibility is satisfied.

It should be mentioned here that a well-known point

of concern for the above RO solution approaches per-

tains to how to handle equality constraints that refer-

ence uncertain parameters. The challenge stems from

the fact that satisfying an equality for any possible pa-

rameter realization reduces the feasible region dramati-

cally. Gorissen et al. (2015) synopsize typical problem-

specific workarounds, including relaxation to inequali-

ties and state-variable elimination. In certain cases, it

may possible to defer certain decisions for later, apply

affine decision rules (discussed later) and reformulate

the semi-infinite equalities via “coefficient-matching.”

1This generally suffices for the vast majority of process op-

erations applications.
2The separation problems can be merged into a single mixed-

integer problem using disjunctive logic.



Multi-stage Robust Optimization

A multi-stage decision making setup is one where the

set of parameters realizes gradually, with different sub-

sets of parameters realizing at different points in time,

and where decisions are to be taken at each time in-

terval in-between. In general, decisions in stage t may

depend on parameter realizations, but only those real-

izations that have occurred up and until stage t−1, since

the decision maker has not yet had the opportunity to

observe the rest. The T -stage setting is depicted below:

x1 → ξ1 → x2(ξ1)→ . . .→ ξT−1 → xT (ξ1, . . . , ξT−1).

A special case is that of two stages, where the de-

cisions are split into two sets, the here-and-now deci-

sions, which are taken before we had the opportunity

to observe the realization of any parameters, and the

wait-and-see decisions, which are taken after all param-

eter values have been revealed. The latter set of de-

cisions often represent recourse actions to restore fea-

sibility. The two-stage setting is generally adequate

to address problems that fit into the classical “invest

capacities–observe demands–operate network” or the

“design control scheme–observe disturbances–tune con-

troller” paradigms. In contrast, problems with more

than two stages usually arise in multi-period planning

problems, scheduling problems based on multiple event

points, or moving-horizon estimation.

Multi-stage RO problems are usually hard, and much

of the methodological background necessary to tackle

them tractably is still eluding researchers. Some sort

of approximation is typically sought, which in turn

results into models exhibiting a non-zero adaptability

gap.3 The most often used–and also most conservative–

approximation is that of a static model, where all xt(ξ)

are chosen as constant (in ξ). Static models are gen-

eralized with the concept of adjustable RO, where non-

constant functional dependencies are postulated (Ben-

Tal et al., 2004). Affine and piecewise-affine functions

are the most commonly used, and a review of appli-

cations can be found in Bertsimas et al. (2011). Bertsi-

mas et al. (2010a) discuss cases when such decision rules

suffice for full adaptability (e.g., as shown in Gounaris

et al. (2013) in the context of vehicle routing), but this

is usually not the case. Another limitation of such de-

cision rules is that they can only be used to adjust con-

3The adaptability gap of a model is defined as the ratio

between its resulting solution and the best-possible–yet

unknown–solution of any non-anticipative model.

tinuous decisions. For problems with integer recourse,

piecewise-constant rules have been proposed (Bertsimas

and Georghiou, 2014). Application of decision rules is

generally possible in the case of fixed-recourse, with re-

cent works extending them for random-recourse (Bert-

simas and Georghiou, 2015). Note that the RO concept

of decision-rule based approximation can also be applied

to stochastic programming models (Kuhn et al., 2011).

Deriving optimal solutions to fully adaptable mod-

els is currently only possible for two-stage problems.

One way to do this is to follow a Benders dual cutting-

plane approach (Thiele et al., 2010), which can however

only handle pure continuous recourse. Furthermore, this

method does not provide an explicit solution for the sec-

ond stage, rather only an implicit guarantee of robust

feasibility. The main alternative is to work in the pri-

mal space via a constraint-and-column generation pro-

cedure (Zeng and Zhao, 2013), which identifies a vio-

lating scenario at each iteration and introduces a new

scenario-specific policy to insure against it. Although

this approach can accommodate mixed-integer recourse,

one pays the price of having to solve increasingly larger

subproblems. There is also no way to control the num-

ber of policies so derived, which may be undesirable in

practice when the operators need to be trained on how

to implement recourse actions. In these situations, the

ability to derive only a limited number of “good” and

collectively-robust contingency plans is of importance.

On a related note, Bertsimas and Caramanis (2010)

proposed the concept of finite adaptability, whereby the

fully adaptable solution is approximated by a finite set

of a priori computed recourse policies. The goal is to

identify which policy shall apply against each parame-

ter realization. The authors derived conditions for when

a finite adaptability approach may improve upon the

static (i.e., “1-adaptable”) robust solution, and they

provided a heuristic algorithm to a-priori partition the

uncertainty set into policy-specific regions. Alternative

methods to partition the set were proposed in Bertsimas

and Dunning (2016) and Postek and den Hertog (2016).

Hanasusanto et al. (2015) were the first to propose a

tractable method to address to guaranteed optimality

two-stage finite adaptability problems for any a-priori

chosen number of policies. They derived a mixed-integer

linear model that yields the best set of K policies for the

case of pure binary problems. Finally, it should be men-

tioned that the concepts of finite adaptability and deci-

sion rules can in principle be combined so as to enhance

the approximation of the multi-stage problem.



Example Applications

In our first application, we apply affine decision rules

in the multi-stage setting of process scheduling optimiza-

tion (Lappas and Gounaris, 2016). Although various

combinations of variables can be chosen for such adjust-

ment, we found that adjusting only the timing variables

provides for the best trade-off between solution qual-

ity and tractability (Figure 1). In this work we also

introduced novel decision-dependent uncertainty sets to

capture the endogenous nature of uncertain parameters,

such as parameters associated with tasks that may or

may not be chosen in the optimal solution. Other high-

lights included the fact that robust solutions were ob-

tained for the first time in the open literature for in-

stances with zero-wait states as well as instances with

uncertainty in process yields. Our results illustrate that

the multi-stage robust solutions significantly improve

upon the static ones, both in terms of worst-case ob-

jective as well as objective in expectation.

For our second application, we study the tactical

planning vehicle routing problem (VRP) with uncertain

customer orders (Subramanyam et al., 2016), whereby

a distributor plans a set of delivery routes for a number

of upcoming periods. Uncertainty exists in the exact

composition of the customer base, since customers are

Figure 1. Three robust optimal minimum makespan

schedules under the same level of uncertainty in task

processing times, plotted here for the nominal realiza-

tion. From top to bottom, adjusting more variables via

affine decision rules leads to both better unit utilizations

and worst-case objectives (reported in top-right corners).

allowed to call in between deliveries and place additional

orders. Consequently, it is important to derive rout-

ing plans that retain sufficient flexibility to be adapted

once additional demand realizes (Figure 2). We derive

a two-stage approximation of the full, multi-stage prob-

lem, and we prove that it always yields non-anticipative

solutions. We also quantified their adaptability gap by

computing anticipative lower bounds of the fully adapt-

able solutions. Results based on literature benchmarks

indicate that a relatively small risk premium of the order

of a few percent needs to be incurred so as to accommo-

date up to 50% additional customer orders placed later

via calls. This work constitutes the first time in the

open RO literature that addresses a multi-period VRP

as well as the first time that the discrete uncertainty of

customer presence is accounted for in an RO setting.

Conclusions

This article briefly highlighted some of the recent

theoretical and methodological advances that have oc-

curred in the field of RO. Our thesis is that these de-

velopments have positioned RO as a very meaningful

and efficient approach for addressing uncertainty in pro-

cess operations contexts, and we hope to have motivated

more members of our community adopt it in their work.

Figure 2. A non-robust (top left) and a robust (bot-

tom left) plan for routing over the next two days. The

non-robust plan myopically optimized the routes based

on current information and did not have enough day 2

capacity left to serve the additional customers that called

in after the day 1 routes were executed (top right). In

contrast, the robust plan reserved more capacity and was

able to cope with the additional demand (bottom right).
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