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Abstract 

Manufacturing industry has witnessed a gradual transition from being a heuristic-driven labor-intensive 

set of processes to a sophisticated set of automation and model-driven processes where each operation 

unit in the production chain is automatically controlled and operated at a preset optimum regime. While 

incremental improvements in overall manufacturing efficiency have been steered by advances in 

computational algorithms, many of these enterprises, however, can still be characterized as being a 

collection of ‘islands of automation’ and being ‘rich in data but poor in knowledge’. This can be 

attributed to sub-optimal usage of available process data and neglect of enterprise-wide analysis. There 

are several systemic factors which contribute to such myopic treatment of manufacturing operations. In 

addition, other factors have kept medium and small-scale manufacturers from leveraging even the 

currently available automation tools. In this paper, we explore these factors in the context of smart 

manufacturing (SM) as a vehicle for a paradigm shift in the manufacturing industry. A case application 

of SM in a hydrogen manufacturing plant as an industrial example is presented where integrated use of 

advanced sensors, high-fidelity and reduced-order models, high performance computing, and data 

management and visualization tools paved the way for plant-wide energy usage reduction.  
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Introduction

Manufacturing entities continuously evolve to stay 

competitive in the face of constraints such as 

environmental regulations, labor cost and availability, raw 

materials feedstocks and demand uncertainty, which dictate 

the production economics. Sophisticated process modeling 

and control technologies are employed to increase the 

production efficiency by optimizing individual process 

units in the production chain.  However, the overall 

production often remains sub-optimal due to the presence 

of these “islands of automation” which operate unaware of 

the exogenous factors such as disturbances in supply chain. 

This can be overcome by application of manufacturing 

intelligence across the production chain and an IT 

infrastructure that facilitates such an application.  A 

coalition of companies, universities, manufacturing 

consortia (SMLC) have proposed Smart Manufacturing 

(SM) as the vehicle for accelerating manufacturing 

innovation and achieving the transformational productivity 

gains in the 21st century (SMLC, 2011).  

For illustration, consider the hydrogen (H2) 

manufacturing industry where natural gas (methane) is 

converted into hydrogen in large furnaces, also called 

steam-methane reformers (SMRs). It is a highly energy 

intensive process and consumes ~ 105 GJ per day. 

Mathematical modeling of SMRs becomes a crucial tool 

for achieving high energy efficiency. The models can be 

either high-fidelity (e.g., using computational fluid 

dynamics), data-driven (and typically low-order) empirical 

models, or a combination of both. However, the 

development of mathematical models needs to be 

accompanied by online deployment for automation and 

control purposes. The latter must be supported by an IT 

infrastructure, that includes, i) capabilities for acquiring 

appropriate process data via systematically placed sensors, 

ii) adequate high-performance computational resources for 

just-in-time computations, and, iii) a user-friendly 

visualization interface for operator use. The model-based 

computations are themselves a sequence/workflow of 

calculations being executed in series or parallel. Seamless 

interactions between these different layers require an 

appropriate IT infrastructure that allows the intensive 

computations to be performed on cloud and 

intercommunications between various components of the 

workflow, and provides appropriate database management 

capabilities. Moreover, rapid adoption of such practices 

demands that such an IT infrastructure should be easy to 

use and deploy. These requirements constitute the natural 

and essential form of SM (Davis et. al., 2015). In this 

paper, these aspects of SM and their adaptation to a H2 

manufacturing plant, along with the benefits obtained 

therefrom, are described.  

H2 Plant and Steam-Methane Reformer: A Primer  

Figure 1 shows a simplified H2 plant; natural gas 

undergoes endothermic reforming reactions in a reformer 

furnace (with dimensions 16 m X 16 m X 12.5 m). After 



  
 

heat recovery, the syngas product passes through a shift 

reactor followed by H2 separation via pressure swing 

adsorption (PSA). Energy released from combustion of 

fuel (natural gas) in the furnace supports the reforming 

reactions. Figure 1 also shows the furnace interior, with 

several tubes suspended vertically. Reforming reactions 

take place inside these catalyst-filled tubes. Note that 

natural gas is used both as fuel (passes through burners 

placed at the top of the furnace) and process feed (inlet to 

reformer tubes). The process gas temperature inside the 

tubes increases from about 800 K to about 1100 K and the 

burner exhaust gas is typically in the 1300 K range.  

 

Figure 1.   H2 plant process and SMR furnace 

Process Energy Efficiency 

The H2 plant energy efficiency is greatly influenced by 

the furnace tube temperature distribution. Higher operating 

temperature leads to greater H2 yield (due to endothermic 

reforming reactions) and higher steam production following 

heat recovery, and consequently, lower energy 

consumption per unit H2 produced. The prescribed 

operating temperature of the reformer tube material (Tmax in 

Figure 2) places a limit on the furnace temperature as 

(costly) tubes get damaged at temperatures above Tmax. The 

tube wall temperature (TWT) distribution further limits the 

average furnace temperature as shown in Figure 2, where 

the initial distribution has large temperature non-uniformity 

and hence, lower Tavg. However, reduction in the TWT 

non-uniformity, also called furnace balancing, allows for 

increasing the average furnace temperature through 

additional total fuel input, without violating the Tmax 

constraint. Thus, furnace balancing becomes the means 

towards higher overall plant efficiency.  

Process Data to Manufacturing Intelligence 

The first step towards smart manufacturing is to gain 

greater insight into the process by placing appropriate 

sensors. While this requirement may seem obvious, it can 

be neglected. Instead, heuristics-based operations with 

minimal sensor-based support are common in the 

manufacturing sector. This can be attributed to the tenuous 

process of providing economic justification for acquiring 

the additional sensors or to the very lack of appropriate 

sensing technology. While the later scenario has to be 

tackled by promoting advanced research in sensing 

technology, the former can often be dealt through a sensor 

value-addition analysis within the SM framework. 

Figure 2.   Furnace balancing [The temperatures are 

measured at a particular height for all the tubes.] 

For the SMR test-bed, both of the hurdles came forth as the 

high temperature environment makes temperature 

measurements difficult. Common practice involves placing 

thermocouples on only a few tubes (due to economic 

constraints); the resulting -limited - information is 

insufficient for furnace balancing. Consequently, industrial 

practitioners rely on separately optimizing the tube-side 

(e.g., by monitoring the steam-carbon ratio) and the flue-

gas side of the furnace (e.g., by monitoring the oxygen 

content of the exhaust gas). Digressing from the 

convention, in this study an array of state-of-the-art 

infrared cameras was installed around the furnace giving 

unprecedented continuous stream of TWT measurements 

(Kumar et al., 2016a).   

The next step in SM is to convert the sensor data into 

manufacturing intelligence (MI), revealing new useful 

relationships between the process variables and enabling 

proactive decisions in dynamic environments. Although the 

use of process models is not a new concept, the extraction 

of knowledge from data historians through advanced data 

mining is still limited, due amongst others to lack of 

adequate data-management infrastructure. For the SMR, 

the infrared cameras allowed detailed investigation of 

TWT distribution relationship with the fuel distribution 

among the burners (which, in turn, is manipulated through 

fuel valves) through an extensive set of experiments 

performed on the furnace. An empirical SMR furnace 

model (Kumar et al., 2016a) was developed that allows in-

situ measurement-noise filtering during model parameter 

estimation of an exponential response surface (Eq. (1)). In 

Eq. (1), 
ijT is the change in TWT of the ith tube when the 

jth burner fuel valve is closed by 1 degree, and 

,  ,  j xi yia    are the model parameters. 

2 2exp( )ij j xi ij yi ijT a x y                                 (1) 

Data-driven models can also be complemented with high-

fidelity models, e.g. CFD models, to generate model 

predictions with greater accuracy. Incorporating these 

high-fidelity models, however, often requires high 

performance computing (HPC) resources to enable 

business decisions in reasonable time. Unfortunately, HPC 

is still out of reach of many manufacturers due to the high 

investment cost of setting-up a HPC infrastructure or the 



  

lack of expertise in launching an analysis workflow 

(comprising multiple software) on a cloud- based HPC 

tool. Figure 3 shows the workflow deployed for furnace 

balancing. The MATLAB-based ‘Optimizer’ computes the 

required adjustments in the valve positions using the SMR 

model and the ANSYS Fluent-based CFD model verifies 

the recommendations before final implementations. 

Complete details can be found in Kumar et al. (2015).  The 

SM platform, described later, facilitated the assembly and 

deployment of the workflow by providing an easy access to 

the HPC resources and easy-to-use workflow service.  

 
 

Figure 3.   Workflow for furnace balancing 

Enterprise-wide Agility 

Manufacturing intelligence within SM is not restricted 

to factory premises and instead focuses on an integrated 

operations management across all the layers of the supply 

chain (depicted in Figure 4). Coordination of decision-

making in real-time across the verticals of a manufacturing 

chain improves the material and asset utilization and 

thereby improves the process economics and the response 

to supply and demand variability. Studies on realization of 

agile enterprise-wide operations have started getting 

attention only recently (Baldea and Harjunkoski, 2014) 

where the production trajectories of the process units are 

continuously regulated optimally under exogenous 

influences such as variations in product demands or 

electricity prices (Pattison et al., 2016).  Availability of 

comprehensive enterprise-wide data model along with 

forecast model for the exogenous factors becomes a 

prerequisite for successful MI implementation. These 

integrated models, however, are not yet a common feature 

in manufacturing enterprises.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.   Layers of a manufacturing line 

For the H2 plant, changes in customer demand 

necessitates changes in SMR H2 production which is 

effected by adjusting the natural gas process feed. Such an 

adjustment affects the TWT distribution as well, which, as 

described before, impacts the overall plant efficiency. 

Figure 5 shows the observed TWT distributions for three 

different feed rates; each distribution requires different 

valve adjustments for balancing the furnace. Note that the 

fuel valves in an SMR are not usually under automatic 

actuation and thus in the current scheme, furnace balancing 

is executed manually by the plant operators. To close the 

loop,  a potential fully automatic furnace balancing 

solution was devised (Kumar at al., (2016b) by 

determining the optimal placement of (reduced number of) 

temperature sensors and valve actuators. They concluded 

that only about ten percent of the TWTs need to be 

measured to realise most of the benefits of furnace 

balancing. Thus, if the process feed is put under closed 

loop, the automatic furnace balancing solution can keep the 

furnace at its optimum efficiency by regulating the fuel 

distribution in real-time. 

 

 
Figure 5.   Impact of production variations on TWTs 

Visualization-assisted Real-time Knowledge 

Another important aspect of SM is to present the data 

in the form that it is most useful. Visualization and 

interpretation of data further immerses plant personnel in 

the decision-making process. Data visualization can assist 

in process analysis, e.g., through virtual-reality for 

troubleshooting collaboratively (Zhou, 2011) or through 

multidimensional diagrams for fault detection (Wang et. 

al., 2015), or it can be used for keeping the plant personnel 

motivated by providing continuous plant performance 

feedback. To provide real-time plant performance metrics, 

these visual modules need to be interfaced to the data 

historian and MI modules. As of yet, such visual modules 

are not readily available in one place in ready-to-use forms. 

Figure 6 shows the operator dashboard deployed for the 

SMR testbed. It shows the current TWTs and the predicted 

optimal distribution along with the required valve 

adjustments upon SMR model-based furnace balancing and 

is automatically updated at regular intervals. Note that 

actual numeric values have not been shown for proprietary 

reasons.  

Smart Manufacturing Platform (SMP) 

The aforementioned aspects of SM are also frequently 

mentioned in the context of IIoT (industrial internet of 



  
 

things), Industry 4.0, and digital factory but the SM 

platform-based approach distinguishes SM. The SMP is a 

 

 

 

 

 

 

 

 

 

Figure 6.   Operator dashboard for furnace balancing 

 

cloud-based IT infrastructure that provides an easy access 

to the automation tools (see Figure 7) under one umbrella 

and thus acts as the enabler for overcoming the 

aforementioned limitations in adopting the best practices of 

SM (Davis et. al., 2015). Cloud infrastructure is attractive 

from a manufacturer’s viewpoint due to the provision of 

low-cost scalable computing resources and the advantage 

of collaborating with third-party experts by connecting 

them with plant data securely outside of plant premises. 

Figure 7 also shows an instance of furnace balancing 

resulting in 44% reduction in TWT non-uniformity. 

 

Figure 7.   Integration of on-site and platform facilities 

(Terms in brackets refer to the respective software) 

Another distinguishing feature of SMP is community-

driven industrial ‘app’ marketplace (see Figure 8) 

analogous to smartphone Apps stores. Here, several 

customizable industrial process solutions (process, control, 

optimization models) in the form of standardized Apps are 

provided by App vendors. Manufacturing users can use 

these standalone Apps or combine them to form and 

execute composite workflows, e.g., furnace balancing 

solution. Data-driven models like the SMR model can be 

easily customized for a general furnace. Since the ‘right’ 

models are readily available on a pay-per-use basis, it cuts 

down the development cost and time, and thus allows low-

cost deployment in a quick time.  

 

Figure 8.   Representative schematic of SMP marketplace 

Conclusions 

In this work, a unified SM framework was presented 

using a H2 manufacturing plant as an industrial application 

example. Availability of a centralized repository on the 

SMP encourages adoption of standardized manufacturing 

practices at different plants across the globe operated by an 

enterprise as well as sharing of best MI tools among the 

manufacturing community. 
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