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Abstract 

This paper presents a multi-objective approach considering a mixed integer linear programing (MILP) 
model, based on a continuous-time Resource Task Network (RTN) formulation, for the optimal planning 
management of biopharmaceutical processes. The model assesses the manufacturing constraints for the 
determination of the optimal production schedule while considering the simultaneous maintenance 
planning of downstream units, subject to performance decay. The optimal results of an illustrative 
medium-term planning problem of a biopharmaceutical process, addressing the main bioprocesses 
regulations, is analysed through a multi-objective approach considering the augmented e-constraint 
method. The evaluation of the Pareto sets for two bi-objective analyses is performed, considering the profit 
maximisation with the minimisation of the number of intermediate maintenance operations and the 
maximisation of average service level, while comparing the different solutions towards the decision 
maker’s strategic and operational goals. 
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Introduction

The management of current multipurpose plants has 
challenged the development of efficient tools for production 
planning/scheduling optimisation. Harjunkoski et al. (2014) 
recently reviewed several industrial applications of 
mathematical models and methods successfully 
implemented. Despite the increasing interest of industry 
stakeholders to understand the potential of these tools to 
optimise their operations, a major challenge arises to 
overcome the wide diversity of operational problems. For 
example, the process modelling often stumbles either to 
detail specific operational requirements or to tackle large 
temporal horizons due to inherent computational 
limitations. Therefore, the research community has been 
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exploring improved model formulations to address real 
industrial management problems, aiming the 
implementation of optimal decision-making production 
systems.  

The case of the pharmaceutical industry, due to its 
process network complexity, has been the drive for several 
studies of optimisation models and techniques (Moniz et al., 
2014). More recently, the increasing relevance of novel 
bioprocesses have defined new modelling challenges, either 
addressing the strict process regulatory policies on products 
storage shelf-life and biological variability or the process 
equipment compliance to product quality. These 
biopharmaceutical drugs are complex medicinal 



  
 
biomolecules with pharmacological activity used for 
therapeutic or in vivo diagnostic purposes. The 
manufacturing process generically defines an upstream 
suite that include all tasks associated with cell culture and 
maintenance of the active biological ingredient, and a 
downstream suite comprise the chemical/physical 
operations in the isolation and purification of the drug. The 
ability to genetically manipulate highly effective 
biotherapies such as vaccines, cell or gene therapies, 
therapeutic proteins hormones, monoclonal antibodies, 
cytokines and tissue growth factors, is promoting a steady 
growth in the pharmaceutical market.  

The wide research on planning and scheduling models 
in the pharmaceutical industry spreads from the 
management of drug portfolio pipelines to the design 
optimisation of highly specific steps of the manufacturing 
process. But only recently these biotechnological processes 
have been gathering more attention due to its biological 
specificities, so it is noticed a relatively small number of 
research papers covering planning and scheduling problems 
of biochemical processes. Noteworthy, the work by 
Lakhdar et al. (2005) firstly proposed a discrete-time MILP 
model for the optimal production and cost effective 
sequence of manufacturing tasks for a medium-term 
horizon, underlining the advantages of planning 
optimisation. More recently, Kabra et al. (2013) and Vieira 
et al. (2016a) developed a continuous-time model for multi-
product campaign scheduling of biopharmaceutical 
processes based on State Task Network (STN)/ Resource 
Task Network (RTN) framework, while Siganporia et al. 
(2011) developed a discrete-time model with a rolling time 
horizon for the capacity planning across multiple 
biopharmaceutical facilities, are some examples.  

Optimisation models have been further extended to 
approach different critical operational aspects of the 
production planning process. One is related to the planning 
of maintenance operations, aiming to provide an integrated 
solution defining which maintenance activities occurs (and 
when) to restore an item to a given condition, such that one 
or several objectives are optimised. As example, the 
simultaneous production and maintenance planning under a 
performance decay applied to biopharmaceutical processes 
problems was only recently proposed by Liu et al. (2014). 
In that work, the planning of a biopharmaceutical process is 
proposed with the development of a discrete-time model 
based in Lakhdar et al. (2005), optimising the number of 
maintenance operations considering the yield decay of 
resins in downstream purification with the number of 
batches produced. The premise relies on the fact that 
chromatography is one of the most common techniques for 
purification and separation in the biopharmaceutical 
industry. Chromatography resins have a limited lifetime 
and, due to their high cost, the decision when to perform 
maintenance operations is of key importance in the 
purification performance. Therefore, it is possible to 
optimise the production schedule on whether to continue 
using the resin with a lower yield or to perform the 

regeneration to its initial level, subject to a maintenance 
cost. 

The study discussed in this paper follows the same 
maintenance propositions by Liu et al. (2014), with the 
determination of the optimal production schedule while 
addressing the main specific requirements of 
biopharmaceutical processes. It extends the previous work 
by Vieira et al. (2016b), that discussed the results advantage 
of a continuous-time model approach when compared to a 
discrete-time formulation. In this work, regarding the 
multiple strategic and operational constraints of these 
bioprocesses, we will formulate a multi-objective approach 
to these planning problems, evaluating the solution quality 
provided to the decision maker and its relevance to take the 
best solution towards the management optimisation of the 
industrial process.  

Problem Statement  

In this work, we highlight the study of a multi- 
objective approach to determine the optimal production 
schedule of a biopharmaceutical process with integrated 
maintenance operations due to performance decay. The 
biopharmaceutical manufacturing is commonly refereed as 
a two stages process:  all products undergo upstream cell-
fermentation to produce intermediate products and then 
downstream purification processing to obtain the final 
product. The production facilities typically operate on a 
campaign basis, to avoid long changeover times and cross-
product contamination, and are exploring continuous 
operation modes due to enhanced ability to control process 
parameters. Although each stage may take place on multiple 
sequential suites, the fact that the processing times in these 
bioprocesses are rather long, it is reasonable to assume an 
aggregate production task per each process stage: a single 
fermentation step with an average production titre and a 
single chromatography step with a known characteristic 
decaying yield of the resin versus the number of cycles. The 
maintenance operations are therefore to be scheduled on the 
downstream processing units to perform the replacement of 
the chromatography resin.  

The strategic and operational objectives for a 
biopharmaceutical manufacturer are directly linked to the 
different stakeholders and operational restrictions. Even 
though the long-term goal of any business relies in the 
maximization of its shareholder value, the process 
objectives can include the minimization of operational 
costs, the maximization of profit or service level, among 
others. As previously discussed by Vieira et al. (2016), the 
main manufacturing constraints of these bioprocesses 
assess batch and/or continuous process steps, multiple 
intermediate deliveries with backlog penalties, sequence 
dependent changeover/setup operations, shelf-life 
limitations of stored intermediates/products, and the track-
control of the production lots for regulatory policies. And 
further, the simultaneous optimisation of the required 
maintenance plan with the campaign schedule increases the 
competition among operational factors.  



  

Most optimisation models rely in providing a solution 
accounting a single objective function. However, the best 
decision for the optimal company management can often 
imply the simultaneous evaluation of different goals, 
increasing the interest for multi-objective approaches. For 
that reason, in this study we will first consider a common 
single objective problem where the operating profits are 
maximised, followed by two multi-objective problem 
comparing the profit results against the number of 
maintenance operations required and the demand service 
level. On the former, the costs of the high-performance 
purification steps are usually difficult to quantify, whereas 
the replacement of a resin before the end of its lifetime can 
often imply an investment loss not quantified in the profit. 
On the later, the late deliveries must be minimised by 
ensuring an adequate supply of product, but foremost to 
keep a high client satisfaction, which could be lost with a 
single maximization of revenues.  

Applied to an industrial-based planning problem, the 
goal is to determine a solution with an optimal task-unit 
assignment and sequencing, sequence dependent 
changeover/set-up, the temporary storage allocation, 
produced campaign lots, sales/late deliveries and 
maintenance tasks schedule of the downstream units, given:  

(i) the product recipes in terms of their respective 
RTN framework;  

(ii) the time horizon, product demands and due dates; 
(iii) the characteristics of the processing/storage units 

and sequence-dependent changeover/setup times; 
(iv) processing rates and the task-unit suitability;  
(v) the shelf-life storage of intermediaries/products;  
(vi) the manufacturing, changeover and storage costs 

for all materials, the value of the products, and late delivery 
penalties; 

(vii) the duration and cost of maintenance operation, 
with information of the decaying yield with the number of 
batches produced. 

So as to maximize the production profit (single 
objective problem) and implement two multi-objective 
assessments by (i) minimising the number of maintenance 
operations and (ii) maximising the service level.  

Mathematical Formulation 

The problem defined above is formulated through a 
MILP continuous-time model based on the RTN 
framework, addressing the identified constraints of 
biopharmaceutical processes. The RTN process framework 
unifies the problem formulation in terms of two sets of 
entities: tasks and resources, where a task i is any operation 
that transform any set of resource r (materials or processing 
units) (Pantelides, 1994). The base formulation is detailed 
in Vieira et al. (2016), considering a continuous-time 
representation with single time-grid common to all 
equipment resources. This approach divides the planning 
horizon into a number of time slots with unknown duration 
(to be optimised) given by a number of time events t. Since 
in a continuous-time formulation it is unknown a priori how 

many slots are required to find the global optimal solution, 
a standard iterative procedure is used, where one keeps 
incrementing the number of events/slots and solving the 
optimisation problem as long as improvements in the 
objective function are observed (Mendez et al., 2006). Only 
one processing task can occur per time interval and it could 
comprise the allocated time for the sequence dependent 
changeover/setup and/or maintenance. Despite the original 
formulation by Vieira et al. (2016a) allows some tasks to 
span across a number of time slots, in these approach, for 
simplification, it is assumed that all tasks can last only one 
time slot [t,t+1], which allows to consider a single time 
index t in the main decision variables. This formulation is 
later extended to address the maintenance planning 
optimisation based on the work by Liu et al. (2014).  

As a short overview of the model, the main decision 
variables, given a set of events t, are: Ni,l,t (binary) is active 
if lot l of task i (batch or continuous) starts at event t, and  
xi,l,t (integer) gives the amount of material processed on time 
slot [t,t+1]. The excess balance of each resource r is 
determined in each event point (with absolute time Tt) by 
the variable Rr,l,t. These variables include an additional lot 
index l to comply with production regulations, allowing the 
blending/splitting traceability by labelling each campaign 
lot. The maintenance formulation is based on the tracking 
of the number of batches produced per unit, indexing the 
sequential nth batch since the last maintenance and, 
accordingly, link each batch to the respective resin yield 
decaying profile. The binary variable Mr,t indicates whether 
the maintenance is performed in the equipment unit E at the 
beginning of time event t, taking into account the respective 
performance decay (production yield versus number of 
batches produced since last maintenance). 

Regarding the multi-objective approach, the 
formulation would not provide a single solution that 
optimises both objectives under analysis, but instead 
allowing the decision maker to search for a compromise 
among a range of solutions. According to Mavrotas (2009), 
the multi-objective methods can be classified as a priori, 
interactive and a posteriori (or generation), based on the 
phase in which the decision maker is required to express 
his/her preference: in a priori method the decision maker 
should set a goal or weights to the objective function before 
the solution process; in an iterative method he/she drives a 
iteration search of successive calculations until 
convergence; and in a posteriori method the decision maker 
is able to evaluate a representation of all efficient solutions 
generated. Acknowledging the limitations of the former 
methods, this later method provides significant advantages 
generating a Pareto set of solutions which upturns the 
confidence of the decision maker, but is highly demanding 
in computational effort. Among the existing  literature 
methods, our proposed model approach implemented the 
augmented e-constraint method (AUGMECON) developed 
by the same author and applied as follows: the first step 
consists in the lexicographic optimisation of the payoff 
table, to determine the range of each one of the objective 
functions that are used as constraints; then each range is 



  
 
divided into equal intervals, defining the grid points that are 
used to calculate the parametric solutions; and with the total 
number of runs is possible to generate the Pareto set. The 
density of the set representation can be defined with a higher 
number of grid points but a trade-off should be evaluated 
with the cost of higher computational time.  

Finally, the objective functions for the proposed MILP 
model approach for the planning problem optimisation: Eq. 
(1) consider the profit maximisation with final products 
sales (ur

s) by penalising the costs of manufacturing (ci
mf), 

storage allocations (cr
st), changeovers/setup (ci,i’

ch), 
extended shelf-life wasted amounts (cr

d), late backlogs (cr
u) 

and maintenance operations (cr
m); Eq. (2) the number of 

intermediate maintenance operations; and Eq. (3) the 
average service level per total demand, accounting for the 
backlogs throughout the planning horizon. 
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Illustrative example 

The example reproduces the medium-term planning 
problem suggested by Lakhdar et al. (2005) based on a real 
industrial case: a two-stages process in a continuous 
production mode, with two upstream fermentation suites [J1 
& J2] and two downstream purification suites [J3 & J4] per 
stage (Figure 1). The problem considers a demand profile 
of 34 batches of three products (12 of P1, 6 of P2 and 16 of 
P3) to be delivered in five due dates d for a 360 days 
horizon. One batch should be considered as a quantity unit, 
undisclosed for confidentiality reasons. Maintenance and 
performance decay data was taken from Liu et al. (2014). 
For this approach, the variable assessing the extent of tasks 
is set as continuous with an upper limit of 180 days and the 
costs of the first setup and maintenance operations were 
disregarded. The model was implemented in GAMS 
(GAMS 24.5.6 WIN VS8 x86) and solved with CPLEX 

running on an Intel Xeon X5680 64-bit at 3.33 GHz with 24 
GB of RAM.  

 

Figure 1.   RTN production facility layout for 
illustrative example. 

Single objective approach 

Considering the single objective of the profit 
maximisation, the iterative procedure reached the global 
optimal schedule solution with 7 event points (including the 
initial point T=0 days) for a profit of 440,7 real monetary 
units (rmu), since an increase in the number of event points 
does not verify the improvement of the profit solution. The 
GAMS results statistics are summarized in Table 1 and the 
Gantt chart is presented in Figure 2.  

The schedule provides the optimal solution for the 
sequencing and allocation of the different production tasks 
in each processing suites, with identification of the 
campaign lot-number and size/duration for each 
intermediate/product (in brackets, with the outputs of final 
product accounting the yield decay). There is a total 
unfulfilled demand of 0.15 batch (0.05 of P1 and 0.1 P3), 
and extra late deliveries of 0.3 batch verified for P1L3 at 
event t6. Results show four intermediate maintenance 
operations - [M] mark - in the downstream resin and seven 
storage allocations - [S] mark - for a total amount of 0.2 
batch of I3L3 and 17.3 batches of final products. Along with 
the initial equipment setup, 7 intermediate sequence-
dependent changeover/set-up operations are scheduled, 
which our formulation allows to occur at the beginning or 
end of the interval for the upstream units, granting more 
time available for the production task. The results show the 
planning flexibility provided by the continuous time-grid, 
with different length intervals to accommodate the suitable 
production demand and respective support operations. 

Table 1. Optimal GAMS results statistics 

Events Equations Total 
variables 

CPU 
(s) 

Profit 
(rmu) 

6 6728 3876 78 425.8 
7* 8714 4709 317 440.7 
8 10910 5584 831 440.7 



  

 

Figure 2.   Optimal production and 
maintenance schedule of example for a profit of 

440.7 rmu (in brackets, the outputs of final 
product accounting the downstream yield 

decay). 

Multi-objective approach 

In the multi-objective approach, acknowledging that 
the global optimal solution was obtained with 7 event 
points, the analysis of the Pareto sets is performed for the 
two bi-objective cases: (A) maximising the profit vs 
minimising the number of intermediate maintenance 
operations (Figure 3), and (B) maximising the profit vs 
maximising the service level (Figure 4). 

 

Figure 3.   Pareto set for the profit 
maximisations vs the number of intermediate 

maintenance operations minimisation for 
example (A). 

(A) Since the problem statement disregards the time 
dedicated to the maintenance operations, as well as 
the high investment regarding the replacement of 
these downstream chromatography columns, the 
decision maker can prefer an alternative schedule 
solution where the utilization of installed resins is 
increased. The Pareto set displayed in Figure 3 
shows that with two less intermediate maintenance 
operation, the schedule solution of Figure 5 
generates a profit of 422.7 rmu, which corresponds 
to a difference of less than 4% to Figure 2 solution. 
Although increasing the costs of late deliveries, 

this solution increases the utilisation of each resin 
capacity before its ensuing maintenance, which for 
this case was set as maximum of 11 batches 
corresponding to a minimum yield of 65%.  
 

 

Figure 4.   Pareto set for the profit 
maximisations vs the service level maximisation 

for example (B). 

 

Figure 5.   Optimal production and 
maintenance schedule with two intermediate 
maintenance operations (profit 422.7 rmu). 

 

Figure 6.   Optimal production and 
maintenance schedule for an average service 

level of 99.3% (profit 432.1 rmu). 

(B) Accounting for the service level and customer 
satisfaction, which is penalised by the backlogs of 
late deliveries along the horizon time events, the 
decision maker can consider that 98.4% is a low 
proposition for the company standards, as verified 
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in the Pareto set of Figure 4, defining as company 
policy that it could never be lower than 99%. For 
that reason, a schedule solution for a service level 
of 99.3% (profit 432.1 rmu) is generated in Figure 
6, requiring as additional 4th intermediate 
maintenance operational on unit J4 at the third 
event slot to be able to satisfy the entire demand of 
6 batches of P1 at the due date d3 (240 days). The 
increase in the service level is mainly 
accomplished by adding extra maintenance 
operations, reducing the impact of the production 
output decay but incurring in extras maintenance 
costs that lowers the profit solution. 

 
These multi-objective analyses enable the decision 

maker to have a broader look to the range of possible 
planning solutions, in particular to weight the different 
strategic policies and guidelines targeted for the company 
operation. Its relevance clearly stands to support the best 
optimal planning solution while dealing with conflicting 
objectives instead of a single profit maximisation. 

Conclusions  

In this work, a MILP/RTN continuous-time single grid 
formulation was applied to an illustrative medium-term 
planning problem, successfully addressing the specific 
constraints of biopharmaceutical production subject to 
performance decay. The formulation results discuss the 
importance of an integrated maintenance planning and its 
impact in the production optimisation, highlighting the 
advantages of a continuous-time single time-grid horizon to 
determine the optimal plan. A multi-objective optimisation 
approach is also implemented, considering the augmented 
e-constraint method, providing an enhance decision support 
towards company’s strategic objectives for the optimal 
process management. Future work will explore the 
advantages of different multi-objective assessments and the 
challenges of the implementation of the optimisation model 
as a decision support tool, assessing the requirements of the 
decision maker to solve these industrial planning problems 
and its suitability to real production environments. 
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