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Abstract

We aim to develop a new method that can optimize operating conditions of commercial-scale equipment

to achieve scale-up from pilot-scale equipment even when only a small number of experiments can be

performed with commercial-scale equipment. The proposed method, combined task Bayesian optimization

(CTBO), uses not only data of a target task, e.g., a commercial-scale plant, but also data of a source task,

e.g., a pilot-scale plant. CTBO determines new operating conditions in the target task sequentially by

BO while information of the source task is exploited by transfer learning. CTBO was compared with BO

and LW-PLS + jDE (locally weighted partial least squares + self-adaptive differential evolution) through

their applications to a pharmaceutical granulation process. CTBO remarkably outperformed the other

methods. CTBO is expected to be useful not only for scale-up but also for technology transfer.

Keywords

Scale-up, Bayesian optimization, Gaussian process regression, Transfer learning.

Introduction

Operating condition optimization is crucial to assure

product quality and reduce operation cost in any indus-

try. In particular, one of the most challenging problems

is to optimize operating conditions of commercial-scale

equipment when only a small number of data are avail-

able just after scale-up from pilot-scale equipment. Such

a situation is quite common because the experimental

cost is significantly higher with commercial-scale equip-

ment than pilot-scale equipment. In the present work,

we aim to solve this problem and propose a new operat-

ing condition optimization method, which is referred to

as combined task Bayesian optimization (CTBO).

A conventional method builds a model that relates

product qualities with operating conditions, and then

optimizes the operating conditions by using the model so

that the target product qualities are realized and opera-

tion cost is minimized under various constraints. Unfor-

tunately, this method does not work well when only little

data is available at a commercial-scale plant, because it

is difficult to build an accurate model. Such a situation
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always occurs just after scale-up from a pilot-scale plant.

The optimization performance would be improved if

data of the pilot-scale plant could be used jointly with

data of the commercial-scale plant. However, combining

data of different scales is not straightforward because

pilot-scale and commercial-scale plants have different

numbers and types of sensors, which are operated under

different conditions. To resolve such difficulties, joint-Y

partial least squares (JYPLS) was proposed for scale-up

and product transfer (Garćıa Muñoz et al., 2005). JY-

PLS assumes that output variables are common in both

plants and can be jointly used while input variables are

different and need to be used separately. JYPLS was

applied to scaling-up processes (Garćıa Muñoz et al.,

2005; Liu et al., 2011). However, JYPLS does not func-

tion well when the number of data is limited.

The goal of this research is to develop a new

method that can efficiently and accurately derive op-

timal operating conditions by using data obtained from

a commercial-scale plant and a pilot-scale plant even

when only little data is available at the commercial-scale

plant. The proposed method uses Bayesian optimiza-

tion (BO) (Brochu et al., 2009; Snoek et al., 2012) and

transfer learning (Pan and Yang, 2010).



BO can systematically determine a plan for new op-

erating conditions to be evaluated for further optimiza-

tion. Thus, without experimental design, BO can find a

better solution through fewer experiments than conven-

tional methods.

Transfer learning aims to exploit knowledge from one

or more source tasks and to apply the knowledge to

the target task (Pan and Yang, 2010). A key idea of

the present work is that transfer learning is useful for

solving the scale-up problem by regarding the source

task and the target task as the pilot-scale plant and the

commercial-scale plant, respectively.

Conventional transfer learning algorithms assume

that the number of input variables in the source task is

the same as that in the target task. In practice, however,

the number and types of sensors of a pilot-scale plant are

different from those of a commercial-scale plant. Thus,

we introduce a transformation matrix, which transforms

data of the pilot-scale plant into data of the commercial-

scale plant so that data from both can be used for mod-

eling the commercial-scale plant.

In the present work, combined task Bayesian opti-

mization (CTBO) is proposed by integrating BO, trans-

fer learning, and the transformation matrix. To vali-

date the effectiveness of the proposed method, CTBO

was compared with BO and LW-PLS + jDE (locally

weighted partial least squares + self-adaptive differen-

tial evolution) through their applications to a pharma-

ceutical granulation process.

Bayesian Optimization

Bayesian optimization (BO) can efficiently optimize a

nonlinear objective function f(x).

max
x

f(x) (1)

BO is especially useful when it is expensive to evaluate

f(x), e.g., drug trials, destructive tests, or financial in-

vestment (Brochu et al., 2009). Operating condition op-

timization of a complex industrial process is a problem

that BO is effective at solving. In practice, the objective

function f(x) is often corrupted by Gaussian noise

ε ∼ N (0, σ2
noise) . (2)

Hence, the objective function with noise is treated as

y = f(x) + ε . (3)

In BO, Gaussian process regression (GPR) and an ac-

quisition function play important roles. GPR can grasp

characteristics of the objective function from past data.

The acquisition function can be evaluated more easily

than the objective function and therefore is used to de-

termine a next point, at which the acquisition function

is evaluated.

Gaussian Process Regression

Gaussian process regression (GPR) is a nonlinear re-

gression method, which maps input variables x onto a

feature space with an explicit function ϕ(·) and conducts

linear regression in the feature space, i.e.,

y = wTϕ(x) +m (4)

where w is a weight vector and m is a mean of the

output variable y (Bishop, 2006). A distribution of y is

estimated under the assumption that the weight vector

follows a multivariate Gaussian distribution;

w ∼ N (0, σ2
wI) (5)

where σw is a parameter and I is a unit matrix.

Given N samples, Eq. (4) is expressed as

y = Φw +m (6)

where

y =
[
y1, y2, . . . , yN ]T (7)

Φ =
[
ϕ(x1), ϕ(x2), . . . , ϕ(xN ) ]T (8)

m = m1N (9)

and 1N ∈ ℜN is a vector of ones. Under the assumption

of Eq. (5), a mean vector and a covariance matrix are

yielded as

E[y] = m (10)

cov[y] = σ2
wΦΦT = K . (11)

The covariance matrix K = {Kij}, which is also known

as a Gram matrix, consists of kernel functions k(·, ·).

Kij = k(xi,xj) = σ2
wϕ(xi)

Tϕ(xj) . (12)

The prior of the output variable follows a multivariate

Gaussian distribution

p(y|X,θ) = N (m,K)

X =
[
x1, x2, . . . , xN

]T
(13)

where θ is a vector of GPR hyperparameters used for

calculation of the covariance matrix. The mean m needs

to be estimated, therefore m is added to θ.



The covariance matrix with the Gaussian noise in

Eq. (2) is expressed as

C = K + σ2
noiseI (14)

where the parameter σnoise needs to be estimated, thus

it is also added to θ. The prior of y is described as

p(y|X,θ) = N (m,C) . (15)

The posterior of the output variable ynew in GPR

also follows the Gaussian distribution (Rasmussen and

Williams, 2006).

p(ynew|X,y,θ) = N (µ(x), σ2(x)) (16)

where

µ(x) = m+ kT(x)C−1(y −m) (17)

σ2(x) = k(x,x)− kT(x)C−1k(x) (18)

k(x) =
[
k(x1,x), k(x2,x), . . . , k(xN ,x)

]T
. (19)

The choice of kernel function is significant for GPR to

build an accurate model. In this work, the ARD Matérn

5/2 kernel with a hyperparameter θ0 is adopted since it

has great flexibility in capturing the smoothness (Brochu

et al., 2009).

The posterior of the output variable in GPR de-

scribed in Eq. (16) needs to be repeatedly updated for

every experiment; in other words, hyperparameters of

GPR are required to be tuned iteratively. The hyperpa-

rameters are determined so that their posterior is maxi-

mized. Within the Bayesian framework, the hyperpa-

rameters are automatically determined by using past

data. Hence, users are freed from bothersome trial-

and-error tuning. In the present work, Markov Chain

Monte Carlo (MCMC) is used to determine the hyper-

parameters since it can determine the hyperparameters

without the gradient and therefore greatly contributes

toward the effectiveness of the proposed CTBO.

Acquisition Function

The acquisition function a(x) is one of the most im-

portant factors to determine optimization performance

of BO, and it is selected so that the cost of evaluating

a(x) is much lower than that of the original objective

function f(x). The acquisition function has two impor-

tant roles: exploration and exploitation. Figure 1 de-

scribes the relationship between the objective function

and the acquisition function. Exploration is to search

a point at which posterior uncertainty is expected to

objective function

observation

posterior mean

posterior uncertainty

acquisition function

acquisition max

Figure 1. One-dimensional objective function, GPR

model, and acquisition function in Bayesian optimiza-

tion (BO).

be large, i.e., σ(x) is emphasized. On the other hand,

exploitation is to search a point at which f(x) is ex-

pected to be good, i.e., µ(x) is emphasized. BO can

efficiently search a good point in a wide area by using

the acquisition function that combines exploration and

exploitation.

In the present work, the mutual information (MI)

algorithm is adopted since Contal et al. (2014) theoret-

ically proved that MI improves upper bounds for cumu-

lative regret compared with the conventional algorithms

and empirically demonstrated its practicability through

numerical examples.

After the choice of the acquisition function, it is re-

quired to find a solution that maximizes the acquisition

function. It is hard to find a global optimal solution.

Thus, local optimal solutions for different initial values

are typically obtained with nonlinear programming, and

the best solution among them is adopted. Latin hy-

percube sampling (Mckay et al., 2000) is an effective

method to generate solution candidates, at which the

acquisition function is calculated.

Transfer Learning

Transfer learning aims to exploit knowledge from one or

more source tasks and apply the knowledge to the tar-

get task (Pan and Yang, 2010). In the proposed method,

transfer learning is modified to solve the scale-up prob-

lem; a pilot-scale plant and a commercial-scale plant

are regarded as the source task and the target task, re-

spectively. Although there are various algorithms for

transfer learning, adaptive transfer learning (Cao et al.,



2010), which is established for GPR, is adopted in the

present work.

A fundamental idea of adaptive transfer learning is

to multiply a kernel function by a weight when samples

come from different tasks:

K̃ = {k̃(xi,xj)}

=

{
λk(xi,xj),

k(xi,xj),

when ζ(xi,xj) = 1

otherwise
(20)

λ = 2

(
1

1 + q2

)r2

− 1 (21)

where ζ(xi,xj) = 1 if xi and xj come from different

tasks, and q and r are hyperparameters.

Let subscripts a and b denote the source task and the

target task, respectively. Input and output variables are

expressed as

Xa =
[
xa1, xa2, . . . ,xaNa

]T
(22)

Xb =
[
xb1, xb2, . . . ,xbNb

]T
(23)

ya =
[
ya1, ya2, . . . , yaNa

]T
(24)

yb =
[
yb1, yb2, . . . , ybNb

]T
. (25)

The covariance matrix is described as

K̃ =

[
K̃aa K̃ab

K̃ba K̃bb

]
=

[
Kaa λKab

λKba Kbb

]
(26)

where Kab = KT
ba.

In GPR with adaptive transfer learning, the prior of

the output variable in the target task is described as

p(yb|Xa,ya,Xb,θ) = N (µ,C) (27)

µ = mb + K̃ba(K̃aa + σ2
noise,aI)

−1(ya −ma) (28)

C = (K̃bb + σ2
noise,bI)− K̃ba(K̃aa + σ2

noise,aI)
−1K̃ab

(29)

ma = ma1Na mb = mb1Nb
(30)

where 1Na ∈ ℜNa and 1Nb
∈ ℜNb are the vectors of ones,

and θ is a vector of hyperparameters. The posterior of

the output variable in the target task is described as

p(yb,new|Xa,ya,Xb,yb,θ) = N (µ(xb), σ
2(xb)) (31)

µ(xb) = mb + k̃T(xb)C
−1(y −m) (32)

σ2(xb) = k(xb,xb)− k̃T(xb)C
−1k̃(xb) (33)

y =
[
yT
a , yT

b

]T
(34)

m =
[
mT

a , mT
b

]T
(35)

k̃(xb) =
[
k̃T
a (xb), k̃T

b (xb)
]T

(36)

k̃a(xb) =
[
k̃(xa1,xb), . . . , k̃(xaNa ,xb)

]T
(37)

k̃b(xb) =
[
k̃(xb1,xb), . . . , k̃(xbNb

,xb)
]T

. (38)

Transformation Matrix for Scale-up

Conventional transfer learning algorithms assume that

the number of input variables in the source task is the

same as that in the target task. In practice, the number

and types of sensors of pilot-scale equipment are differ-

ent from those of commercial-scale equipment; that is,

Xa ∈ ℜNa×Ma and Xb ∈ ℜNb×Mb are different in size

along both directions.

To use the transfer learning algorithms for scale-up,

a transformation matrix Wtr ∈ ℜMa×Mb is introduced

in the present work. Assuming that xa and xb have

a linear relationship, Xa of the pilot-scale equipment

(the source task) is transformed to X ′
a ∈ ℜNa×Mb of the

commercial-scale equipment (the target task) as follows:

X ′
a = XaWtr . (39)

The most important and challenging issue is how to

determine Wtr appropriately. MCMC tunes the trans-

formation matrix Wtr together with the other GPR

hyperparameters in the proposed algorithm. In other

words, augmented hyperparameters are defined as

θ̃ =
[
θT, vec(Wtr)

T
]T

(40)

where θ is the vector of GPR hyperparameters and

vec(·) is an operator that concatenates all the columns

of a matrix into a vector.

Case Study

Optimization performance of combined task Bayesian

optimization (CTBO) is compared with those of BO and

LW-PLS + jDE. LW-PLS + jDE is a conventional ef-

ficient method that combines locally weighted partial

least squares (LW-PLS) (Kim et al., 2011; Kano and

Fujiwara, 2013) and self-adaptive differential evolution

(jDE) (Brest et al., 2006). It was proposed by Yoshizaki

et al. (2015), and its practicability was demonstrated

through its application to a pharmaceutical granulation

process. In this section, these methods are applied to

another pharmaceutical granulation process.

In LW-PLS + jDE, Latin hypercube sampling is used

to generate samples of various operating conditions at

which experiments are conducted. Then, the objective

function is calculated for each set of operating condi-

tions. The measurements of the operating conditions

and the calculated values of the objective function are

stored in a database; Dlw = {xn, yn}Nb
n=1. By using the

database Dlw, the optimal operating conditions xbest is



obtained with LW-PLS + jDE. Finally, the objective

function ybest for xbest is calculated.

On the other hand, BO and CTBO determine new

operating conditions one by one. The operating condi-

tions and the objective function are stored in a database

until the number of samples reaches Nb. Uniform ran-

dom sampling chooses initial operating conditions in the

target task since both BO and CTBO require at least

one set of data to develop a GPR model. The opti-

mal operating conditions and the corresponding objec-

tive function are determined as follows:

xbest = xNbest
, ybest = yNbest

, Nbest = arg min
n∈[1,Nb]

yn .

(41)

To verify the practicability of the proposed method,

CTBO, BO, and LW-PLS + jDE were applied to a

pharmaceutical granulation process. In this industrial

case study, operation data were obtained from a pilot-

scale plant and a commercial-scale plant of a phar-

maceutical company. The pilot-scale plant and the

commercial-scale plant were regarded as the source task

and the target task, respectively. The same product was

manufactured in both plants, but operating conditions

were different since the equipment was different espe-

cially in size. To optimize operating conditions in the

commercial-scale plant by conducting a small number

of experiments, it is desirable to utilize operation data

of the pilot-scale plant. The objective function in this

study is the deviation of the product quality yb from its

target yb,target, i.e.,

min
xb

||yb(xb)− yb,target|| . (42)

The numbers of available samples (provided by the

company) were 40 in the pilot-scale plant and 32 in the

commercial-scale plant. All the past data of the pilot-

scale plant were used for scale-up, i.e., Na = 40. On

the other hand, a neural network (NN) model of the

commercial-scale plant was developed by using real op-

eration data. The NN model was used to generate data

for testing CTBO, BO, and LW-PLS + jDE, because

it was impossible to conduct many experiments at the

real plant. The NN model had 10 hidden nodes, four

input nodes corresponding to operating conditions (in-

put variables), and three output nodes corresponding to

product quality (output variables). To set a realistic

problem, the number of samples was limited: Nb = 3, 5,

or 10 for the commercial-scale plant.

The optimization was conducted 100 times for differ-

ent initial values to evaluate the influence of the initial

Table 1. Optimization results of the commercial-scale

pharmaceutical granulation equipment.

Nb Measure LW-PLS BO CTBO

3 Median 2.45 2.28 1.97

Std Dev 1.16 0.62 0.63

5 Median 2.14 1.74 1.61

Std Dev 1.14 0.45 0.47

10 Median 2.18 1.32 1.19

Std Dev 1.24 0.37 0.37

values on the results. LW-PLS + jDE and BO used data

of the commercial-scale plant only, while CTBO used

data of both the pilot-scale plant and the commercial-

scale plant.

The optimization results of the commercial-scale

pharmaceutical granulation process are shown in Ta-

ble 1. BO improved the optimization performance as the

number of samples Nb increased; in fact, both the me-

dian and the standard deviation became better (smaller)

as Nb became larger. On the other hand, the opti-

mization performance of LW-PLS + jDE deteriorated

in some cases even when the number of samples Nb in-

creased. The results of LW-PLS + jDE indicated that

an increase of data chosen randomly did not assure an

improvement in the optimization performance. In ad-

dition, the standard deviations of LW-PLS + jDE were

much larger than those of BO. The results clarified the

disadvantage of LW-PLS; that is, it is difficult to con-

struct an accurate regression model when the number of

samples is limited.

The proposed method, CTBO, was superior to LW-

PLS + jDE and BO. In particular, since CTBO outper-

formed BO, it was confirmed that the proposed method

appropriately exploited the information from the pilot-

scale plant and used it for optimizing the operating con-

ditions in the commercial-scale plant. The results have

demonstrated that CTBO significantly improved the op-

timization performance in the situation that only little

data was available at the commercial-scale plant.

Conclusions

We have developed a new method that can optimize op-

erating conditions of a commercial-scale plant with a

small number of experiments. The proposed method,

referred to as combined task Bayesian optimization

(CTBO), integrates BO and transfer learning. BO was



used to determine new operating conditions sequentially

in the target task, i.e., a commercial-scale plant; trans-

fer learning was used to combine data of both the source

task and the target task, i.e., a pilot-scale plant and a

commercial-scale plant. Conventional transfer learning

algorithms assume that the number of input variables

in the source task is the same as that in the target

task. In practice, however, the number and types of

sensors of pilot-scale equipment are different from those

of commercial-scale equipment. Thus, transfer learning

algorithms cannot be applied directly. To deal with this

problem, a transformation matrix was introduced. In

addition, MCMC was used to tune the transformation

matrix and GPR hyperparameters simultaneously.

The proposed CTBO was verified through its appli-

cation to the pharmaceutical granulation process. The

results demonstrated that CTBO outperformed LW-

PLS + jDE and BO and therefore CTBO used data of

the pilot-scale plant effectively to optimize the operating

conditions of the commercial-scale plant.

CTBO will be applicable not only to the scale-up

problem but also to the problem of technology transfer

from a mother plant to a copy plant; that is, when two

plants are the same but operating conditions need to be

optimized at the copy plant due to various uncertainties.
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