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Abstract

Robustness and offset-free tracking remains a challenge in the field of nonlinear model predictive control

(NMPC) in the presence of plant-model mismatch. This paper focuses on offset-free tracking with robust

constraint satisfaction using NMPC. In the proposed approach, the discrepancy between the plant and a

fundamental model is captured using a model-error model. The fundamental model is augmented with

the model-error model to predict the future evolution of the states to obtain the optimal sequence of

control inputs. Whenever new information from the plant is available, the model-error model is adapted.

This helps the controller to react to time varying model-errors and disturbances and to achieve offset-free

tracking with robust constraint satisfaction. The advantages of the proposed approach when compared

to existing approaches for offset-free tracking are demonstrated with a continuous stirred tank (CSTR)

example.
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1 Introduction

Model predictive control (MPC) is widely used in the

process industries because of its ability to handle mul-

tivariate systems with constraints. MPC usually uses

a fundamental model to predict the future evolution of

the plant. An open-loop optimization problem is solved

at each sampling instant and the first control input in

the sequence is applied to the plant. At the next sam-

pling instant, the optimization problem is reinitialized

using the measurement information available from the

plant and it is solved again in a receding horizon fash-

ion, thus providing feedback information (Rawlings and

Mayne, 2009). The performance of MPC depends on

the accuracy of the model used in the optimization.

In industry, it is often required to track a chang-

ing reference (Cairano, 2012). The advantages of model

predictive control for a tracking problem were demon-
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strated in Stephens et al. (2013). Offset-free tracking

with constraint satisfaction using an MPC in the pres-

ence of plant-model mismatch however remains a chal-

lenging task.

Several key contributions have already been made

in this area. Pannocchia and Bemporad (2007) used a

disturbance model along with the fundamental model

to achieve an offset-free control. Maeder and Morari

(2010) used target constraints in addition to the dis-

turbance model to achieve offset-free tracking. These

methods use an observer to estimate the states and the

disturbances present in the augmented model. These ap-

proaches show that offset-free tracking can be achieved

if the disturbance model can estimate the plant-model

mismatch at steady state. These methods use a lin-

ear model in the controller design. An adaptive MPC

strategy to obtain offset-free tracking using online model

estimation is proposed in Bemporad et al. (2005). It

uses an auto-regressive exogenous inputs (ARX) model

as in Ljung (1999b) to identify the system at each con-

trol interval and uses this adapted ARX model in the

MPC.



Morari and Maeder (2012) extended the approach in

Maeder and Morari (2010) by using a nonlinear model

and a constant disturbance model. A nonlinear estima-

tion scheme was employed to estimate the states and

the disturbances to achieve offset-free tracking. In the

proposed approach, we build a linear model-error model

to capture the unmodeled dynamics of the plant. Vari-

ous approaches for model-error modeling are explained

in Ljung (1999a). The proposed approach uses a model-

error model along with the fundamental model of the

plant in order to obtain offset-free tracking. The advan-

tage of the proposed approach over the scheme in Be-

mporad et al. (2005) is that we are not approximating

the nonlinear dynamics using a linear model, but only

the dynamics of the plant which are not captured by

the nonlinear model by a linear model. The proposed

approach tries to capture the unmodeled dynamics of

the plant in contrast to other approaches (Rawlings and

Mayne, 2009) that try to estimate the plant-model mis-

match using a constant disturbance model. A linear

error-model approximates the transient response of the

unmodeled dynamics of the plant better than a constant

disturbance model. Hence the proposed approach can

converge to the tracking-point faster than using a con-

stant disturbance model and achieve robust constraint

satisfaction.

We compare the tracking performance and ro-

bust constraint satisfaction of the proposed approach

with bias update Seborg et al. (2011) and offset-free

NMPC Morari and Maeder (2012) with the help of

simulation study on a continuous stirred tank reactor

(CSTR) example.

2 Problem statement

The dynamics of the plant to be controlled is given by

x
p
k+1 = fp(x

p
k, uk), (1a)

y
p
k = hp(x

p
k, uk) + wk, (1b)

where x
p
k ∈ X ⊆ R

nx is the state, ypk ∈ Y ⊆ R
ny is the

output, uk ∈ U ⊆ R
nu is the input and wk ∈ W ⊆ R

ny

is the measurement noise which is assumed to be white

Gaussian noise. We assume that the true dynamics of

the plant is not known but it can be approximately ob-

tained using the fundamental model given below:

xk+1 = f(xk, uk), (2a)

yk = h(xk, uk). (2b)

The number of states, output and control inputs of the

plant is assumed to be known and it is given by nx,

ny and nu. The reference signals to be tracked are de-

fined by r and are assumed to be asymptotically con-

stant (rk → r∞) and are measured. The tracking error

is given by

trk = y
p
k − rk. (3)

We assume that the constraints are functions of mea-

sured states and control inputs. The goal of the con-

troller is to achieve offset-free tracking with robust con-

straint satisfaction (tr∞ = 0).

3 Model-error modeling

Model-error models capture the discrepancy between

the true plant and the predicted output (Reinelt et al.,

1999). It is shown in Ljung (1999a) that the model-error

can be modeled as a linear model such as Finite Impulse

Response model (FIR), ARX model, Box Jenkins model

and as a nonlinear model such as neural network finite

impulse response model.

We choose an ARX model in order to model the

model-error because of its simplicity and because it

has less unknown model parameters to be estimated

when compared to other approaches. The residual error

between the plant measurements and the fundamental

model is given by

e
p
k = y

p
k − yk, (4)

where e
p
k ⊆ R

ny . We approximate the nonlinear plant-

model mismatch using a linear model-error model as

e
p
k = y

p
k − yk =

B(z)

A(z)
uk + δk, (5)

A(z) = I +A1z
−1 + ... +Ana

z−na , (6)

B(z) = B1z
−1 + ... +Bnb

z−nb , (7)

under the assumption that the process is sufficiently

excited. Ai, ∀i ∈ {1, · · · , na} are ny × ny matrices,

Bj, ∀j ∈ {1, · · · , nb} are ny × nu matrices that have

to be estimated using the measurement information ob-

tained from the plant, δk represents the dynamics which

are not captured by the linear model-error model (e.g.

non-linearity, disturbances), z−i is the backward shift

(delay) operator. nb denotes the number of zeros, na de-

notes the number of poles of the ARX model and these

are tuning parameters which can be chosen offline.

The unknown parameters Ai and Bi can be es-

timated from the observed data by solving an opti-

mization problem. The model parameters will be time



varying if the plant-model mismatch is highly nonlin-

ear. Hence we propose to use a weighted recursive

least squares estimates with variable forgetting factor

adapted from Golden and Ydstie (1989). The model-

error model approximates the nonlinear plant-model

mismatch locally about the current operating region.

The formulation of such an optimization problem is

given below

min
Ai,Bj

Nm∑

k=q

[epk − ek]
TRk[e

p
k − ek], (8a)

subject to

ek = −

na∑

i=1

Aie
p
k−i +

nb∑

j=1

Bjuk−j , (8b)

h(epk, ek, uk) ≤ 0, (8c)

where q is max(na, nb), ek is the plant-model mismatch

predicted by the error model, Nm is the total number

of measurement information available. Rk, the variable

forgetting factor is a tuning parameter and it is a diag-

onal matrix whose values can be chosen from 0 to 1. If

we choose the variable forgetting factor as an identity

matrix (Rk = I), all the available information will be

used to estimate the model-error model. Any additional

constraint (h(.)) can be added to the estimation problem

if required. The resulting model-error model is given as

ek =
B(z)

A(z)
uk. (9)

The ARX model is transformed to a linear state

space model to be used along with the fundamental

model (Ljung, 1999b). The reduced model-error model

in state space form is given as

xe
k+1 = Aexe

k +Beuk, (10a)

ek = Cexe
k +Deuk, (10b)

where xe denotes the state vector of the error dynamics.

4 Nonlinear Model Predictive Control with

model-error model

The aim of the proposed NMPC with model-error model

(NMPCMEM) is to obtain offset-free NMPC with ro-

bust constraint satisfaction, by reducing the plant-

model mismatch. NMPCMEM achieves this by captur-

ing the error dynamics using a model-error model.

The fundamental model is augmented with the

model-error model in order to account for the plant-

model mismatch. The augmented model is given as:
[

xk+1

xe
k+1

]

︸ ︷︷ ︸

x
aug
k+1

=

[

f(xk, uk)

0

]

+

[

0 CeAe

0 Ae

][

xk

xe
k

]

+

[

CeBe +De

Be

]

uk,

︸ ︷︷ ︸

faug(x
aug
k

,uk)

(11a)

y
aug
k = haug(x

aug
k , uk) = h(xk, uk) + ek, (11b)

Rawlings and Mayne (2009) and Morari and Maeder

(2012) consider Ae = Be = Ce = De = 0 and estimate

xe
k using an observer whereas the proposed approach es-

timates Ae, Be, Ce, De using the plant-model mismatch

data (epk) and the control input (uk).

The formulation of the NMPC problem using the

augmented model is given as:

min
uk

N−1∑

k=0

Jk(rk, x
aug
k , uk) + JN (rN , x

aug
N , uk), (12a)

subject to

x
aug
k+1 = faug(x

aug
k , uk), (12b)

g(xaug
k , uk) ≤ 0, (12c)

where N represents the length of the prediction hori-

zon. g : R
nx × R

nu → R
ng denotes the constraints

of the optimization problem where ng denotes the to-

tal number of constraints. The stage cost is given by

Ji : R
nx × R

nu → R as

Ji(ri, x
aug
i , ui) = tri

TPtri +∆uTQ∆u, (13a)

tri = ri − haug(x
aug
i , ui), (13b)

∆u = ui − ui−1, (13c)

where P is a positive definite matrix with the dimen-

sion ny × ny. Q is a positive definite matrix with the

dimension nu × nu.

The schematic diagram of the proposed approach is

given in Figure 1. NMPCMEM solves the optimization

problem (12) at every-time step and the first control in-

put is applied to the plant in a receding horizon manner.

We assume that full state measurement is available from

the plant. The same control input is applied to the fun-

damental model and the discrepancy between the mea-

surement data and fundamental model (epk) is obtained.

The ARXmodel is updated at every time-step by solving

the optimization problem (8) using the observed data.

The ARX model is converted to a state space model

and the model-error model in the augmented model is

updated. During the initial stages, enough information

about the plant-model mismatch is not available, hence



for k ≤ Nmodel we use the fundamental model in the

NMPC without the model error model. Nmodel is cho-

sen such that there is enough information available to

estimate all the parameters present in the model-error

model. We assume that the state trajectories are away

from the constraints during this period. One of the key

differences in the proposed approach when compared to

the standard approach is that when k > Nmodel the op-

timization problem is not reinitialized with the plant

measurements (ypk), instead the model-error model is

reinitialized at epk (4). The plant measurement informa-

tion enters the fundamental model via the model-error

model. The necessary condition for offset-free tracking

is |e∞ − ep∞| = 0.

x
aug
k+1 = faug(x

aug
k , uk)

NMPCMEM

y
aug
k = haug(x

aug
k , uk)

Plant
x
p
k+1 = fp(x

p
k, uk)

Fund. model
xk+1 = f(xk, uk)

ARX modelARX-SS model

Model-error modeling

r y
p
k

yk

e
p
k

[A
e
B

e
C

e
D

e
]

ek = B(z)
A(z)

uk

xe
k+1 = Aexe

k +Beuk

uk

y
p
k = hp(x

p
k, uk)

yk = h(xk, uk)

ek = Cexe
k +Deuk

Figure 1. Schematic diagram of proposed nonlinear

model predictive control with model-error model

If the error dynamics is highly nonlinear, it is diffi-

cult to approximate it using a linear model-error model.

The forgetting factor can be tuned so that we can ap-

proximate the nonlinear plant-model mismatch in the

operating region using a linear model-error model with a

reasonable accuracy. Though the proposed scheme may

not work for highly nonlinear error dynamics, the accu-

racy of the proposed scheme is higher than the other ap-

proaches that use a constant disturbance model because

we consider the first-order information of the nonlinear

error dynamics to update the fundamental model. This

results in a better prediction accuracy and an improved

closed loop performance.

5 Case study

A nonlinear CSTR bench mark problem from (Klatt and

Engell, 1998) is adapted to illustrate the approach pro-

posed in this paper via simulation results. Three chem-

ical reactions take place inside the reactor:

A → B → C

2A → D

where B is the desired product and C and D are un-

wanted by-products. The mathematical model of the

CSTR is obtained from the molar balance of component

A (of concentration cA) and component B (of concentra-

tion cB), the energy balance for reactor (of temperature

TR) and the jacket (of temperature TJ). The dynam-

ics of the CSTR is given by the following differential

equations

ċA = F (cAin − cA)− k1cA − k3c
2
A, (14a)

ċB = −FcB + k1cA − k2cB, (14b)

ṪR = F (Tin − TR) +
kwA

ρcpVR

(TK − TR)

−
k1cA∆HAB + k2cB∆HBC + k3c

2
A∆HAD

ρcp
, (14c)

ṪK =
Q̇K + kwA(TR − TK)

mKcpK
, (14d)

where ki gives the reaction rate and follows the Arrhe-

nius law

ki = k0, ie
−EA,i

R(TR+273.15) . (15)

Table 1. Activation energies of the true plant and

the model

Parameter
Value

Unit
True Model

EA,1

R
9953.47 9758.3 K

EA,2

R
9953.47 9758.3 K

EA,3

R
7742.52 7704.0 K

The feed (F = V̇
VR

), the inflow normalized by the vol-

ume of the reactor and the cooling capacity (Q̇K) are

the control inputs with bounds F ∈ [5, 100] h−1 and

Q̇K ∈ [−13500, 0] kJ h−1. We assume that the activa-

tion energy of the reaction taking place inside the plant

fp is not exactly known and only 99% of the feed (F )

is fed into the reactor due to actuator error. The true

values of the parameters that are known along with the

initial condition of the states and their bounds can be

obtained from Lucia and Engell (2015). The true values

of the activation energy of the reaction along with the

values that are used in the model equation is given in

Table 1. The control task is to track the concentration

of component B (cB) respecting the constraint on the

reactor temperature (TR ≤ 150 ◦C).



6 Results

This section shows the simulation results obtained for

the case study described above using standard NMPC

(with no plant-model mismatch), NMPC with bias cor-

rection (with plant-model mismatch), nonlinear offset-

free NMPC (Morari and Maeder, 2012) and the pro-

posed scheme (NMPCMEM).

In all the cases the length of the prediction hori-

zon is chosen as 10 time-steps. The sampling time of

the plant is 0.005 h. The NMPC with bias correction is

implemented as in Seborg et al. (2011) and integrates

the tracking error as mentioned in Lucia and Engell

(2015). The augmented model used for nonlinear offset-

free NMPC considers that the disturbance model en-

ters the system through the input feed rate F as men-

tioned in (Morari and Maeder, 2012). We use the Ex-

tended Kalman Filter as the observer with a state covari-

ance matrix as diag([1, 1, 10, 10, 10]) and a measurement

co-variance matrix as diag([0.01, 0.01, 0.1, 0.1]). The

Nmodel of NMPCMEM is chosen as 10. The order of the

denominator and numerator of the model-error model is

chosen as 1 (na = nb = 1). We consider that Rk = I

i.e. we use all the available information to build the

model-error model.
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Figure 2. Concentration of component B, reactor

temperature and control inputs obtained using

different NMPC strategies without additional

constraint on the reactor temperature.

The simulation results of the concentration of the

component B (cB), temperature of the reactor (TR)

and control inputs (feed rate (F ) and cooling capacity

(Q̇K) without the constraint on the temperature of the

reactor are shown in Figure 2. The green-dotted line

represents the set-point to the concentration of compo-

nent B. It can be seen that all the controllers except

the nonlinear offset-free NMPC proposed in Morari and

Maeder (2012) achieve offset free tracking. The Morari

and Maeder (2012) controller fails because the plant-

model mismatch does not converge to the disturbance

model present in the augmented model within finite

time. NMPC with bias correction reaches the first set-

point (rk = 0.5) faster when compared to the proposed

NMPC because during the initial stages when enough in-

formation about the plant-model mismatch is not avail-

able, NMPCMEM waits until k ≤ 10 (Nmodel) to build

the model-error model. It can also be seen that NM-

PCMEM reach the second set-point (rk = 0.6) faster

than NMPC with bias correction .
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Figure 3. Concentration of component B, reactor

temperature and control inputs obtained using

different NMPC strategies with a constraint on the

reactor temperature

Figure 3 shows the simulation results obtained using

different controllers with an additional constraint on the

reactor temperature. The red-dotted line shows the con-

straint on the reactor temperature. It is implemented as

a soft constraint. It can be seen that both NMPC with

bias correction and nonlinear offset-free NMPC violate

the constraints. The NMPC with bias correction drifts

away from the first set-point due to constraint viola-

tion. The fundamental model predicts that the temper-

ature of the reactor would go down and satisfy the con-

straint for the chosen optimal control input but in reality

this does not happen due to the plant-model mismatch.

Hence there is a violation of the constraint. The pro-

posed scheme reduces this plant-model mismatch with



the help of the model-error model and does not violate

the constraint even though the set-point is not tracked.

The NMPC with bias correction also suffers from the

windup effect due to the integration of the tracking er-

ror in the presence of an active constraint.
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Figure 4. Concentration of component B, reactor

temperature and control inputs obtained using

different NMPC strategies with measurement error

and a constraint on the reactor temperature

We also investigate the case where the measurement

information is corrupted by additive white Gaussian

noise and the bound on the temperature measurement

is given by ±0.1 and the bound on the concentration

measurement is given by ±0.01. The simulation results

obtained using different NMPC strategies with measure-

ment error and a constraint on the reactor temperature

is shown in Figure 4. It can be seen from the figure

that NMPC with bias correction and nonlinear offset-

free NMPC violates the constraint where as the pro-

posed NMPC satisfies the constraints also in the pres-

ence of the measurement noise.

7 Conclusion

This paper shows the possibility of achieving offset-

free NMPC with robust constraint satisfaction using a

model-error model by means of simulation studies. A

linear ARX model is used to approximate the plant-

model mismatch. The fundamental model is augmented

to the model-error model and used to obtain optimal

control movements to achieve offset-free tracking with

robust constraint satisfaction. The accuracy of the pro-

posed NMPC depends on the accuracy of the model-

error model. Future work will focus on tuning of the

forgetting factor and investigation on other model-error

models for large plant-model mismatch.
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