

BATCH-CENTRIC CONTINUOUS-TIME
FORMULATION FOR PIPELINE SCHEDULING

Pedro M. Castro*,a, and Hossein Mostafaeia,b
aCMAFCIO, Faculdade de Ciências, Universidade de Lisboa

1749-016 Lisboa, Portugal
bDepartment of Applied Mathematics, Azarbaijan Shahid Madani University

Tabriz, Iran

Abstract

We propose a new mixed-integer linear programming (MILP) formulation for straight pipelines with
multiple intermediate dual purpose nodes. Products enter the pipeline as batches, making this a batch-
centric approach. As such, and before solving the model, it is required to convert the products initially
inside the pipeline into batches and assign them left and right coordinates. Furthermore, we need to leave
empty batches in between to allow for injections at intermediate nodes. We will show that these decisions,
together with the number of time slots in the single grid continuous-time formulation, affect solution
quality. The model features segment-dependent coordinates and allows for interacting pumping runs. It is
thus more general than previous work, leading to a better utilization of the pipeline capacity.

Keywords

Petroleum industry, mathematical modeling, optimization, mixed-integer linear programming.

Introduction

Pipelines are frequently used to send refined petroleum
products over long distances, from refineries to distribution
centers. Different configurations can be encountered,
ranging from a single pipeline with a refinery feeding a
depot at the other end, to tree- and mesh-like structures. The
flow is unidirectional in most cases, but systems with
reversible flow can also be found.

Planning and scheduling of multiproduct pipelines can
be quite challenging since the liquid fuels will typically take
different routes, a batch may increase/decrease in size while
passing through input/output nodes, pipeline segments vary
in diameter (leading to changes in the preferred flowrate),
some product sequences are forbidden, etc. This has
motivated researchers to developed optimization
approaches and a few contributions have appeared over the
last decade. They can be divided into product and batch
centric.

* To whom all correspondence should be addressed (pmcastro@fc.ul.pt)

Figure 1. Pipeline segment discretized into
packs of known capacity (single product/pack)

The main modeling difficulty concerns allowing a
product to be present in different places of a segment with
other products in between, e.g. P1 in Figure 1. One way to
overcome it, is to rely on a discrete volume representation
(Rejowski and Pinto, 2003, 2008; Herran et al., 2010),
where each pack holds exactly one product. Discretizing the
volume increases model size, affects solution quality and
may degrade computational performance. The alternative is

Segment

Pack

P1 P2 P3 P1

to use a continuous volume representation. An example, is
the Resource-Task Network (RTN) model of Castro (2010),
which is also product centric but may return suboptimal
solutions since it does not allow for the case in Figure 1.

Batch centric approaches overcome such problem
while using a continuous volume representation. The first is
due to Cafaro and Cerdá (2004) and tackled a system with
a single refinery and multiple output nodes. Products
initially in the pipeline are converted into batches with the
modeler postulating additional elements so as to meet
product demand. It is a simple process that becomes more
complex in systems with multiple input nodes. More
specifically, Cafaro and Cerdá (2009) highlight the
importance of defining empty batches as part of the initial
characterization of the pipeline. However, to the best of our
knowledge, no work has made such decisions part of the
optimization. One of the goals of this paper is to motivate
researchers to do so, by testing alternative assignments.

The straight pipeline configuration considered in this
paper was also tackled by Cafaro and Cerdá (2010) and
Cafaro et al. (2015) but they used a 2-stage decomposition
approach to generate the schedule. As a consequence, it is
not possible to enforce flowrate constrains on the segments.
The higher planning level handles decisions involving the
sequence of product injections and the destination for each
batch. The lower scheduling level then finds the sequence
and timing of product deliveries. In contrast, the models in
Ghaffari-Hadigheh and Mostafaei (2015) and Mostafaei et
al. (2015, 2016) generate the detailed schedule in one step,
leading to improved solution quality. By allowing a
segment to receive a product both from its input node and
the immediate upstream segment (interacting pumping
runs), the model discussed in this work can do even better.
The comparison below, considers makespan minimization
to better highlight the more efficient use of the pipeline
capacity. Different objectives can naturally be included.

Problem Statement

We consider a straight pipeline with multiple
intermediate single or dual purpose nodes, see Figure 2. A
segment 𝑠 ∈ 𝑆 identifies the part of the pipeline located
between consecutive nodes, of volume 𝑣%& (m3). The
location of input nodes 𝑟 ∈ 𝑅, output nodes 𝑑 ∈ 𝐷 and dual
purpose nodes 𝑑𝑝 ∈ 𝐷𝑃 is known. More specifically, subset
𝑅%, if ≠ ∅, indicates the refinery at the start of segment 𝑠,
while subset 𝐷% holds the depot at the end of 𝑠.

Lower and upper bounds on the aggregated storage
capacity are known for each product 𝑝 ∈ 𝑃, e.g. 𝑣/,1

2,345 and
𝑣/,1
2,367, and so are the initial volumes in storage, e.g. 𝑣8,1

9,:.
For simplicity, it is assumed that the initial volume at the
refineries is enough to meet the product demand at the
depots 𝑓8,1

9,<5=, which is removed all at once at the end of the
last pumping run. Additional data includes minimum and
maximum pumping rates, which are product specific for
nodes, e.g.	𝜌8,1

9,345, but not for segments, e.g. 𝜌%
&,345.

Figure 2. Straight pipeline with multiple
intermediate nodes

Assigning initial products to batches

The initial product sequence and volumes inside the
pipeline are also known. However, this is not enough to
proceed, since batch-centric models require the assignment
of each of these products to one or more batches 𝑖 ∈ 𝐼. Take
Figure 2 as an example. There are 4 products in the pipeline,
arranged, from right to left, in a P5-P3-P1-P2 sequence. The
standard approach is to consider each position in the
sequence as a batch and so, the number of batches initially
in the pipeline, 𝐼BC8, is set to four. It does not necessarily
mean that the old batches will go from one to four since we
may need empty batches in between to allow for new
product injections at intermediate nodes. More specifically,
empty batch I3 allows input node R2 (part of dual purpose
node DP1) to pump another product between P3 (I2) and P4
(I3). Empty batches will become new batches 𝐼DEF during
operation. Thus, for 𝐼 =7, 𝐼BC8={I1,I2,I4,I5} and
𝐼DEF={I3,I6,I7}.

The batch-product assignment for old batches involves
making parameter 𝑦H,1=1. The initial volumes inside the
pipeline segments are given by 𝑣%,H

&,: (m3), with the right-
coordinates 𝑟𝑐%,H: defining their exact location, see Figure 3.
In contrast, the batch-product assignment for new batches
will be determined by the optimization (variables 𝑌H,1).

Figure 3. Computing initial right coordinates

Time Representation

One key element of scheduling formulations is the
underlying time representation. The modeler has to decide
between discrete and continuous, based on experience. For
the specific case of pipeline scheduling, the continuous-

Input	node	
(Refinery	R1)

Output	node	
(Depot	D1)

Dual	purpose	node	DP1
Input	R2,	Output	D2 Depot	D3

I4

Empty	batch	I3

Segment	S1	 Segment	S2	 Segment	S3	

I2 I1I5

P1 P2 P3 P4 P5 P6

Flow	direction Segment	numbering Batch	numbering

D1

I5

Segment	s	

DP1	(R2,D2)

𝑣"# = 12100
I4 I3

4300 3400 4400

𝑟𝑐",+,- = 4300
𝑟𝑐",+0- = 4300 + 3400 = 7800

𝑟𝑐",+4- = 12100

time model of Cafaro and Cerdá (2004) improved
performance by up to 3 orders of magnitude compared to
the discrete-time and -volume model of Rejowski and Pinto
(2003). A fairer comparison involving the same RTN
continuous-volume model also favored continuous time
(Castro, 2010) and so, it is the option taken.

Batch-centric models use the notion of pumping runs.
They can be viewed as the time slots of a continuous-time
representation relying on a single grid, which was also used
by the product-centric formulation of Castro (2010).

Figure 4. Underlying continuous-time grid

The adopted reference grid is show in Figure 4. There
are 𝑡 ∈ 𝑇 event points (𝑇 -1 time slots) ranging from time
zero to the given horizon ℎ. Let 𝑇N give the absolute time of
event point 𝑡 and 𝐿N the duration of slot 𝑡 (h). The objective
will be to minimize the makespan, the time of the last event
point, Eq. (1). The difference in time of two consecutive
event points equals the slot duration, Eq. (2).

min 𝑇|T| (1)

𝑇NUV = 𝑇N + 𝐿N	∀𝑡 ≠ |𝑇| (2)

Decisions affecting solution quality

The number of event points 𝑇 , number of batches 𝐼
and product-batch assignments for old batches, all affect
solution quality. It reflects the higher complexity of pipeline
scheduling compared to other process scheduling problems,
which only need to be iterated over 𝑇 to find the real
optimal solution.

Rather than performing an exhaustive search over all
possible combinations, we do the following: (i) choose the
number of batches and initial assignments based on product
demand; (ii) iterate over 𝑇 , starting with a low number and
stopping when the makespan stops improving; (iii) increase
the number of batches by one and/or change the location of
empty batches to see if a better solution can be found. Since
this is a heuristic search procedure, it is perfectly possible
that the reported solutions are not globally optimal.

Pipeline Model

The mathematical formulation to be presented next is
divided into modules. The pipeline system features input
and output nodes (dual purpose nodes have one input and
one output node), and pipeline segments, see Figure 5.
Nodes are product centric since all its model parameters are
related to products. Nevertheless, the volumetric balances
feature disaggregated variables with a batch index to make
the connection to the immediate segment. On the other

hand, the segment module is batch centric. Batches can be
viewed as virtual entities that facilitate the writing of some
model constraints. Ideally, the complete model should be
product centric to forbid certain product sequences.

Figure 5. Main elements of pipeline system

It is important to highlight at this point that the
complete mixed-integer linear programming (MILP) model
was derived from Generalized Disjunctive Programming
(GDP) (Balas, 1979; Raman and Grossmann, 1994; Castro
and Grossmann, 2012). The timing constraints are of the
big-M type since a slightly better performance was
observed compared to their convex hull counterparts.
Further details are given in Mostafaei and Castro (2017).

Batch-product assignment

The linking variables in Figure 5 can be different than
zero only if batch 𝑖 is associated to product 𝑝, i.e. 𝑌H,1=1. In
Eqs. (3)-(4), 𝑓1

Z,367 is an upper bound on the maximum
volume that can be transferred. Batch-product assignments
are already known for old batches, while new batches have
to select exactly one product, Eqs. (5)-(6).

𝐹/,H,1,N
2,8

N\|T|/ ≤ 	 𝑓1
Z,367𝑌H,1	∀𝑖, 𝑝 (3)

𝐹8,H,1,N
9,8

N\|T|8 ≤ 	 𝑓1
Z,367𝑌H,1	∀𝑖, 𝑝 (4)

𝑌H,1 = 𝑦H,1	∀𝑖 ∈ 𝐼BC8, 𝑝 (5)

𝑌H,11 = 1	∀𝑖 ∈ 𝐼DEF (6)

Input node

The mass balance in Eq. (7) states that the volume 𝑉/,1,N2
at event point 𝑡 is equal to the volume at the previous event
point (or the initial capacity 𝑣/,1

2,:) minus the volume
entering the pipeline during slot 𝑡-1. Eq. (8) enforces lower
and upper limits on the storage capacity. The volume of
batch 𝑖 entering the pipeline is equal to the sum of the
disaggregated product variables, see Eq. (9).

𝑉/,1,N2 = 𝑣/,1
2,:

N`V
+ 𝑉/,1,NaV2 − 𝐹/,H,1,NaV

2,8
H∈cd 	∀𝑟, 𝑝, 𝑡 (7)

1
2 4 |T|-2 |T|-1

slot 1

3

time slot 2 slot 3 slot |T|-2 slot |T|-1

0 h
event points t=|T|

Input	node
Product centric

Single	batch	can	leave	
per	time	slot

SegmentModule
Batch	centric

Multiple	batches	can	enter/leave	per	time	slot

𝐹" ,$,%,&
',(𝐹(,$,%,&

),(Disaggregatedvariables
Link product	to	batch

Output	node
Product centric

Single	batch	can	enter	
per	time	slot

𝑣/,1
2,345 ≤ 𝑉/,1,N2 ≤ 𝑣/,1

2,367	∀𝑟, 𝑝, 𝑡 (8)

𝐹/,H,N2 = 𝐹/,H,1,N
2,8

1 	∀𝑟, 𝑖, 𝑡 ≠ |𝑇| (9)

Let binary variable 𝑋/,H,N2 indicate if input node 𝑟 is
pumping batch 𝑖 during slot 𝑡. As highlighted in Figure 5,
at most one batch can leave the refinery during slot 𝑡, see
Eq. (10). If 𝑋/,H,N2 =1, then 𝐹/,H,N2 ≥0, else 𝐹/,H,N2 =0 (Eq. (11),
where 𝑓/

2,345 and 𝑓/
2,367 are bounding parameters). In

addition, the duration of the pumping run must respect the
minimum and maximum flowrates, see big-M Eq. (12).

𝑋/,H,N2
H ≤ 1	∀𝑟, 𝑡 ≠ |𝑇| (10)

𝑓/
2,345𝑋/,H,N2 ≤ 𝐹/,H,N2 ≤ 	 𝑓/

2,367𝑋/,H,N2 	∀𝑟, 𝑖, 𝑡 ≠ |𝑇| (11)

fd,g,h,i
j,k

ld,h
j,mno1H ≤ 𝐿N ≤

fd,g,h,i
j,k

ld,h
j,mpq1H +

																																							ℎ ∙ (1 − 𝑋/,H,N2
H∈cd)	∀𝑟, 𝑡 ≠ |𝑇| (12)

Output node

Similar constraints can be obtained for the output node.
The main difference is that the volume is now entering the
output node and there is an instantaneous product removal
at the end of the time horizon that represents the product
demand, see Eq. (13).

𝑉8,1,N9 = 𝑣8,1
9,:

N`V
+ 𝑉8,1,NaV9 + 𝐹8,H,1,NaV

9,8
H −

															𝑓8,1
9,<5=

N`|T|
	∀𝑑, 𝑝, 𝑡 (13)

Dual purpose node

Dual purpose node 𝑑𝑝 can act simultaneously as input
and output node provided that the same batch is not
involved. In Eq. (14), subsets 𝑅81 and 𝐷81 hold the refinery
and depot associated to the node. Equation (15) ensures that
product arrivals and departures report to the same tank.

𝑋/,H,N2 + 𝑋8,H,N9 ≤ 1	∀𝑑𝑝, 𝑟 ∈ 𝑅81, 𝑑 ∈ 𝐷81, 𝑖, 𝑡 ≠ |𝑇| (14)

𝑉81,1,N9Z = 𝑣81,1
9Z,:

N`V
+ 𝑉81,1,NaV9Z − 𝑓8,1

9,<5=
8 N` T

+

																	 (𝐹8,H,1,NaV
9,8

8 − 𝐹/,H,1,NaV
2,8

/)H 	∀𝑑𝑝, 𝑝, 𝑡 (15)

Node-segment junction

According to Figure 2, nodes are located between
consecutive segments. Equation (16) ensures that the
volume 𝐹%,H,N

&,HD of batch 𝑖 entering segment 𝑠 during slot 𝑡
must be equal to the volume leaving the previous segment
plus the volume coming from the refinery node minus the
volume entering the depot. Then, the volume leaving the
last segment must enter the last depot, Eq. (17). The model
allows for the input node at the start of segment 𝑠 and
segment 𝑠-1 to simultaneous send material to 𝑠 but only if

the same batch is involved. Similarly, if batch 𝑖 is entering
output node 𝑑, only 𝑖 can be leaving segment 𝑠 feeding 𝑑.

𝐹%,H,N
&,HD = 𝐹%aV,H,N

&,BuN + 𝐹/,H,N2
/∈2v − 𝐹8,H,N9

8∈9vwx 	∀𝑠, 𝑖, 𝑡 (16)

𝐹%,H,N
&,BuN = 𝐹8,H,N9

8∈9v 	∀𝑠 = |𝑆|, 𝑖, 𝑡 ≠ |𝑇| (17)

𝑋%,H,N
&,HD

H ≤ 1 + (𝐼 − 1) ∙ (1 − 𝑋/,H,N2
H)	∀𝑠, 𝑟 ∈ 𝑅%, 𝑡 (18)

𝑋%,H,N
&,BuN

H ≤ 1 + (𝐼 − 1) ∙ (1 − 𝑋8,H,N9
H)	∀𝑠, 𝑑 ∈ 𝐷%, 𝑡(19)

Segment

The volumetric balance for batch 𝑖 in segment 𝑠 is
shown in Eq. (20). The liquid fuels are incompressible and
so the sum of the batch volumes inside must match the
segment volume, Eq. (21). Events triggering the entrance
and withdrawal of batches into/from the segment are related
to their left 𝐿𝐶%,H,N and right 𝑅𝐶%,H,N coordinates. These are
related by Eqs. (22)-(23) and illustrated in Figure 3.

𝑉%,H,N& = 𝑣%,H
&,:

N`V
+ 𝑉%,H,NaV& + 𝐹%,H,NaV

&,HD − 𝐹%,H,NaV
&,BuN 	∀𝑠, 𝑖, 𝑡 (20)

𝑉%,H,N&
H = 𝑣%&	∀𝑠, 𝑡 (21)

𝑅𝐶%,H,N = 𝑟𝑐%,H: N`V
+ (𝑉%,H´,N&

H´{H)
N|V
	∀𝑠, 𝑖, 𝑡 (22)

𝐿𝐶%,H,N = 𝑅𝐶%,H,N − 𝑉%,H,N& 	∀𝑠, 𝑖, 𝑡 (23)

Let binary variable 𝑋%,H,N
&,HD indicate if batch 𝑖 is entering

segment 𝑠 during slot 𝑡 and 𝑋%,N
&,DB	H if no batch is entering.

Clearly, at most one of the two cases can happen, see Eq.
(24). If the batch is entering the segment, then its left
coordinate must be equal to zero, otherwise it can take any
value lower than the volume segment, see Eq. (25). The
bounding and timing constraints are in Eqs. (26)-(27).

𝑋%,H,N
&,HD + 𝑋%,N

&,DB	H ≤ 1	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (24)

𝐿𝐶%,H,N ≤ 𝑣%& ∙ 1 − 𝑋%,H,N
&,HD 	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (25)

𝑓%
&,345𝑋%,H,N

&,HD ≤ 𝐹%,H,N
&,HD ≤ 	 𝑓%

&,367𝑋%,H,N
&,HD	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (26)

fv,g,i
},g~

g∈�v
lv
},mno ≤ 𝐿N ≤

fv,g,i
},g~

g∈�v

lv
},mpq + ℎ ∙ 𝑋%,N

&,DB	H	∀𝑠, 𝑡 ≠ |𝑇| (27)

For a batch to leave segment 𝑠 during slot 𝑡, the right
coordinate at the end of the slot (event point 𝑡+1) must be
equal to the segment volume, see Eqs. (28)-(29).

𝑅𝐶%,H,NUV ≥ 𝑣%&𝑋%,H,N
&,BuN	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (28)

𝑓%
&,345𝑋%,H,N

&,BuN ≤ 𝐹%,H,N
&,BuN ≤ 	 𝑓%

&,367𝑋%,H,N
&,BuN	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (29)

Computational Results

The new formulation has been implemented in GAMS
24.6.1 and solved using CPLEX 12.6.3 running in parallel
deterministic mode using up to eight threads. The
termination criteria were either a relative optimality
tolerance of 10-6 or a maximum wall time limit of 7200
CPUs. The hardware consisted of a Windows 10, 64-bit
desktop with an Intel i7-6700K (4.0 GHz) processor and 16
GB of RAM.

We consider three example problems, Ex1-Ex3, taken
respectively from Mostafaei et al. (2016) (Examples 4 and
2) and Cafaro and Cerdá (2010) (Example 2). Compared to
our previous model in Mostafaei et al. (2016), we are now
able to reduce the makespan (see Table 1) and the number
of slots that ensures feasibility. Two novel features in our
model are responsible for this: (i) the new model allows for
interacting pumping runs (IPR), in which a segment of the
pipeline simultaneous receives material from its input node
and upstream segment; (ii) left and right coordinates of
batches are no longer global, but segment dependent.

Table 1. Optimal makespan (h) assuming single
empty batch

Example Mostafaei et al. (2016) This work Reduction
Ex1 207.62 197.44 4.9%
Ex2 143.65 136.90 4.7%
Ex3 237.20 231.97 2.2%

Table 2. Computational statistics for new model

Example |𝐼| |𝑇| Makespan (h) CPUs
Ex1 8 10 Infeasible 172

 11 215.81 235
 12 203.06 403
 13 197.44 675
 14 203.06 7200a

Ex2 8 7 Infeasible 72.1
 8 140.47 175
 9 138.10 559
 10 136.90 1269

Ex3 9 10 Infeasible 1911
 11 237.60 3794
 12 231.97 1786

a Optimality gap at termination=8.6%

Table 2 shows the computational results for the

individual iterations in the search for the global optimal
solution. The number of batches |𝐼| is fixed, while single
increments are adopted for the number of event points |𝑇|.
It can be seen that solution quality typically improves,
whereas the computational time increases. The exceptions
occur for: (i) Ex1 for |𝑇|=14, which cannot be solved to
optimality in the given time; (ii) Ex3 for |𝑇|=12, which is
faster than |𝑇|=11 because the optimal solution of 231.97 h

becomes equal to the LP relaxation (zero integrality gap).
Note that the integrality gap reduces when allowing IPR.

Locating empty batches

For a given number of batches and event points, there
are still degrees of freedom left, linked to the location of the
empty batches. Assuming a single empty batch, we show in
Table 3 the base case for Ex1-Ex3 (results in Table 2)
together with the alternatives in the rows below. I3 is the
empty batch in the base case of Ex1, changing then to I4 and
I2. I3 is actually the only option that ensures feasibility.

Picking I4 as the empty batch for Ex2, also leads to a
feasible solution for |𝑇|=10, but the 137.60 h makespan is
0.6% higher. Interestingly, the relative difference to the
base case is actually zero for |𝑇|=9 (138.10 h) and 1.7% for
|𝑇|=8 (142.86 h), suggesting that the best assignment might
change with the number of events. In contrast, moving the
empty batch to I2 makes the problem infeasible.

The results for Ex3 show that there is also a significant
impact on computational time. While the 237.60 h
makespan for the base case and |𝑇|=11 is proven optimal in
roughly one hour, two hours are not enough when moving
the empty batch from I3 to I2, I4 or I5. For I6, we don’t even
know if the problem is feasible.

Table 3. Results for different assignments of old
batches (with single empty batch)

Example 𝐼BC8 |𝑇| Makespan (h) Change
Ex1 I1,I2,I4 11 215.81 -

 I1,I2,I3 11,12 Infeasible -
 I1,I3,I4 11,12 Infeasible -

Ex2 I1,I2,I4 10 136.90 -
 I1,I2,I3 10 137.70 +0.6%
 I1,I3,I4 8,9 Infeasible -

Ex3 I1,I2,I4,I5,I6 11 237.60 -
 I1,I3,I4,I5,I6 11 240.19a +1.1%
 I1,I2,I3,I5,I6 11 238.13a +0.2%
 I1,I2,I3,I4,I6 11 238.13a +0.2%
 I1,I2,I3,I4,I5 11 No solutiona -

a Up to maximum resource limit of 7200 CPUs

Let us now increase the number of empty batches to

two while focusing on Ex2 and |𝑇|=10. If the number of
batches stays at eight, then the problem is infeasible (found
in just 6.54 CPUs). However, raising to |𝐼|=9, lowers the
makespan by 1.6% to 134.72 h (4823 CPUs) compared to
Table 2. The optimal schedule is given in Figure 6 and three
aspects are worth highlighting.

The first, is that segments are almost always operating,
except for S1 in [16.67, 30.95] and S2 in [66.67, 75.00]. The
second is the advantage of segment-dependent coordinates,
observed in the last two runs. Notice in [109.72, 122.22]
that batch I8 is being pumped from R4 into the last segment
(S4), while I6 is still in S3. This is allowed since I6 (and I7)
will never enter S4. It is also possible for I8 to enter segment

S3 in [122.22, 134.72] while I7 is still being removed from
S2. The third aspect is that the inlet and outlet flows from
DP1 in interval [0, 16.67] both involve P3 but do not
conflict with Eq. (14) since they contain batches I6 and I4.

Conclusions

This paper has presented a new continuous-time
formulation for the scheduling of straight pipelines with
multiple intermediate nodes. It is batch centric, in the sense
the user needs to convert the products initially in the
pipeline into batches, while the optimization assigns
batches to pumping runs. We have seen that the initial
assignments, the number of batches and the number of event
points in the time grid, all affect solution quality. Future
work will thus look into including the initial decisions as
part of the optimization, as well as extending the model to
other pipeline configurations. The results have also shown
that the new model is more general than previous work.

Acknowledgments

Financial support from Fundação para a Ciência e
Tecnologia (UID/MAT/04561/2013 and Investigador FCT
2013) and Iranian Ministry of Science and Technology.

References
Balas, E. (1979). Disjunctive programming. Annals of Discrete

Mathematics, 5, 3.
Cafaro, V.G., Cafaro, D.C., Mendéz, C.A., Cerdá, J. (2015).

Optimization model for the detailed scheduling of multi-
source pipelines. Comput. Ind. Eng., 88, 395.

Cafaro, D.C., Cerdá, J. (2004). Optimal scheduling of
multiproduct pipeline systems using a non-discrete
MILP formulation. Comput. Chem. Eng., 28, 2053.

Cafaro, D.C., Cerdá, J. (2009). Optimal scheduling of refined
products pipelines with multiple sources. Ind. Eng.
Chem. Res., 48, 6675.

Cafaro, D.C., Cerdá, J. (2010). Operational scheduling of refined
products pipeline networks with simultaneous batch
injections. Comput. Chem. Eng., 34, 1687.

Castro, P.M. (2010). Optimal scheduling of pipeline systems with
a resource-task network continuous- time formulation.
Ind. Eng. Chem. Res., 49, 11491.

Castro, P.M., Grossmann, I.E. (2012). Generalized disjunctive
programming as a systematic modeling framework to
derive scheduling formulations. Ind. Eng. Chem. Res.,
51, 5781.

Ghaffari-Hadigheh, A., Mostafaei, H. (2015). On the scheduling
of real world multiproduct pipelines with simultaneous
delivery. Optimization and Engineering, 16, 571.

Herran, A., Cruz, J.M., Andres, B. (2010). Mathematical model
for planning transportation of multiple petroleum
products in a multi-pipeline system. Comput. Chem.
Eng., 34, 401.

Mostafaei, H., Castro, P.M. (2017). Continuous-time scheduling
formulation for straight pipelines. AIChE J. doi:
10.1002/aic.15563.

Mostafaei, H., Castro, P.M., Ghaffari-Hadigheh, A. (2015). A
novel monolithic MILP framework for lot- sizing and
scheduling of multiproduct treelike pipeline networks.
Ind. Eng. Chem. Res., 54, 9202.

Mostafaei, H., Castro, P.M., Ghaffari-Hadigheh, A. (2016). Short-
term scheduling of multiple source pipelines with
simultaneous injections and deliveries. Comput. Oper.
Res., 73, 27.

Raman, R., Grossmann, I.E. (1994). Modeling and computational
techniques for logic based integer programming.
Comput. Chem. Eng., 18, 563.

Rejowski, R., Pinto, J.M. (2003). Scheduling of a multiproduct
pipeline system. Comput. Chem. Eng., 27, 1229.

Rejowski, R., Pinto, J.M. (2008). A novel continuous time
representation for the scheduling of pipeline systems
with pumping yield rate constraints. Comput. Chem.
Eng., 32, 1042.

Figure 6. Optimal solution for Ex2 assuming two empty batches (makespan=134.72 h)

