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Abstract

In this article a nonlinear model predictive control (NMPC) scheme for a smart-scale emulsion poly-

merization process is presented. The control objective is to maintain the product quality specifications

and safe operating conditions even when the process is subject to disturbances or the product quality

setpoint changes. The total monomer conversion and the polymer composition are used as a measure

of product quality and the reactor temperature is used as a measure of process safety. The model is

a set of differential algebraic equations, which captures the polymerization kinetics, mass transfer and

heat transfer in the reactor as well as the dynamics of the auxiliary equipment - namely thermostats,

pumps and mixing chambers. An extended Kalman filter is used to estimate unmeasured states, from

measurements of temperature and mass of reactant fed to the reactor. The performance of the NMPC

scheme is demonstrated in simulation case studies.
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Introduction

Emulsion polymerization is an industrially important

process used to manufacture a variety of products like

adhesives, paints, etc. (Asua, 2004). An alternative

to conventional semi-batch reactors are the so-called

smart-scale reactors (Lueth et al., 2013). These reac-

tors are tubular reactors, which offer a high heat re-

moval capacity, making them safer than semi-batch re-

actors. The control of such reactors, however, remains

challenging due to tight product constraints, stringent

environmental considerations and, temporal and spatial

variation of process states.

There is limited work reported regarding model-

based control of complex tubular processes, e.g., poly-

merization, which involve multiple phases and has cou-

pled phenomena namely mass transfer, heat transfer
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and chemical reactions. Vega et al. (1997) demonstrate

in simulation and experiment the control of monomer

conversion in a tubular solution polymerization reac-

tor using a neural network model. Zavala and Biegler

(2009) describe the implementation of a nonlinear model

predictive control (NMPC) scheme for a tubular reac-

tor manufacturing low-density polyethylene, where it

is demonstrated that the controller is able to stabilize

the reactor in the presence of fouling disturbances and

profitability can be optimized using an economic objec-

tive. Gjertsen (2014) describes a simulation study of

an NMPC implementation for a tubular emulsion poly-

merization reactor for handling setpoint changes for the

monomer conversion and the reactor operating temper-

ature.

In this work, we investigate the performance of an

NMPC scheme for a complete tubular emulsion poly-

merization process, which includes a reactor and inter-
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Figure 1. Flowsheet of the smart-scale emulsion polymerization process

acting auxiliary equipment. The main control objective

is to ensure that requirements for product quality and

safe operating conditions are met even if the process is

subject to disturbances or the product specifications are

changed.

Smart-scale Emulsion Polymerization Process

In Figure 1, a simplified flowsheet of the smart-scale

emulsion polymerization process is shown. At the heart

of the process is the tubular reactor (Rossow et al., 2016)

immersed in an oil jacket. Diaphragm metering pumps

are used to feed all streams into the reactor. The pump

setpoints are FS,SP , FBA,SP , FW,SP and FI,SP . The

monomers (styrene - S, butyl acrylate - BA) are mixed

with a water / emulsifier stream (W) in a sequence of

two mixing chambers to ensure a well-mixed dispersion.

This dispersion is heated in a feed preheater and mixed

with the initiator stream (I) before entering the reactor.

The feed preheater thermostat (TH1) helps to main-

tain a temperature at the reactor inlet high enough for

the initiation of polymerization by the thermal decom-

position of the initiator. The jacket thermostat (TH2)

ensures that the reactor temperature is sufficient for a

high monomer conversion. TH1SP and TH2SP are the

setpoints to the jacket and the preheater thermostat, re-

spectively. The reactor has temperature sensors located

at the reactor inlet (TR,0), at lengths 2.5 m (TR,2.5), 5 m

(TR,5), 7.5 m (TR,7.5) and reactor outlet (TR,10). Sam-

ple points are also located at lengths 2.5 m, 5 m, 7.5

m and reactor outlet to collect samples for offline deter-

mination of conversion using gas chromatography. The

jacket is assumed to be well-mixed and its temperature

(TJ) is also measured. Balances are used to record the

mass of reagents fed to the reactor. The temperature

and balance measurements are the only online measure-

ments available.

Models of Different Process Components

In this section, we discuss briefly the models of the

main process equipment.

Model of Tubular Reactor

The mechanistic model for the tubular reactor used is

based on (Pokorny et al., 2016). It is also assumed that

transfer to monomer does not take place and that the

average number of radicals per particle is 0.5 (zero-one

kinetics (Thickett and Gilbert, 2007)).

The first principles model of the tubular reactor re-

sults in a system of partial differential and algebraic

equations (PDAEs) which are converted to a system

of differential and algebraic equations (DAEs) using

method of lines (MOL) (Schiesser, 1991). In this work,

a discretization with 12 discretization points provides

a satisfactory trade-off between computational demand

and model accuracy. The model is implemented in the

software gPROMS, has 110 differential equations, 1200

algebraic equations and requires 1.2 seconds to simu-

late 1 h of operation on a server running Intel Xeon,

2.6 GHz, 16 core processor with 96 GB RAM. For the

parameter estimation of the reactor model, an identifi-

ability analysis using the Eigenvalue method (Quaiser

and Mönnigmann, 2009) is carried out.
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Figure 2. Comparison of measured and pre-

dicted values of total monomer conversion (XR)

at steady state

A set of 9 parameters, out of 23, were identifiable

with steady state measurements of total and individ-

ual monomer conversion (obtained from offline GC mea-

surements) as well as reactor temperature. For further

details about experimental results from the smart-scale

reactor refer to Rossow et al. (2016). During the pa-

rameter estimation, which was carried out in gPROMS,

some of the identifiable parameters were observed to

have large confidence intervals. These parameters were

kept fixed at their literature values (taken from Pokorny

et al. (2016)) and only those parameters which had an

acceptable confidence interval were updated based on

measurement data. The parameters that were adjusted

are the rate coefficients for polymer propagation (2 pa-

rameters), the reactivity ratios (2 parameters) and the

heat transfer coefficient. In Figure 2, we compare model

prediction and measured values of total monomer con-

version. Except for the measurement at 5 m, the model

prediction is in good agreement with the observed mea-

surements.

Models of Auxiliary Equipment

The model of the pumps comprise the calculation of

the flow rates from the rate of change of balance mea-

surements and a PI controller which adjusts the pump

frequency to maintain the flow rates at the chosen set-

point. The mixing chambers also need to be modeled as

they affect the time taken for change in concentration of

monomers, due to a change in the pump flow rates, to

be realized at the reactor inlet. The mixing chambers

are modeled as perfectly mixed vessels.

Both the jacket and preheater thermostat have an

oil bath, the temperature of which is maintained by ad-

justing the heating rate with the help of an internal PID

controller. The thermostats are assumed to have fixed

cooling rates. The models for the jacket and preheater

thermostat are developed by performing an energy bal-

ance of the streams entering and leaving the respective

equipment.

State Estimation Using EKF

As the controlled variables (CVs), i.e., total

monomer conversion and the polymer composition, are

not measured online, they are estimated from the avail-

able measurements using an extended Kalman filter (Si-

mon, 2006). A linear observability test for the tubular

reactor reveals that the system is not observable but, de-

tectable, which is required for stable estimation (Rawl-

ings and Mayne, 2009).

The tuning parameters of the EKF are the ma-

trices P0 (covariance of the initial state), Q (covari-

ance of the state noise) and R (covariance of the the

measurement noise). To determine Q, we use the ap-

proach suggested by Schneider and Georgakis (2013),

i.e., Q = Jp̂ ·Cp̂ ·JT
p̂ , where Jp̂ = ∂f

∂p

∣∣∣
ss

is the Jacobian

of model equations w.r.t the estimated parameters p̂,

evaluated at the steady state of the system. The matrix

Cp̂ is the covariance matrix of the estimated parameters

p̂, which is obtained from gPROMS during parameter

estimation.

NMPC Formulation

We use the NMPC formulation according to

(Tiagounov and Weiland, 2003). Here the NMPC op-

timization problem is converted to a quadratic program

wherein the future predictions are calculated as a com-

bination of predictions using a nonlinear model with

past inputs and prediction of future outputs using a

linearized model defined along the predicted trajectory.

The tuning of the NMPC is done to ensure that the

setpoints of the CVs are satisfied and so that the ma-

nipulated variables have a smooth and non-oscillatory

response.

Case Studies in Simulation

Simulation studies to test the NMPC are carried out

using the OptoEcon toolbox (Elixmann et al., 2014).

This toolbox allows for use of models implemented in a

high-level modeling language like gPROMS. A model of

the process is used as a plant replacement with no plant-

model mismatch. Zero-mean Gaussian noises are added



to the outputs to simulate measurement errors. In all

the simulation studies reported, a sampling time of 60 s

is used. Two scenarios are considered for the testing of

the NMPC scheme: (i) response to external disturbances

and (ii) setpoint change for product quality.

Scenario I - Disturbance in Styrene Feed

A 40% step increase in the styrene flow rate

serves as the disturbance in this scenario. The re-

actor temperature is used as a measure of process

safety and is specified an upper bound of 110 ◦C.

The CVs - the total monomer conversion and the

styrene fraction in the polymer have setpoints 0.98

and 0.21, respectively. The manipulated variables

(MV) are the butyl acrylate flow rate and the

setpoints of the preheater and jacket thermostats.
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Figure 3. Monomer pump setpoints. FS,SP - as-

sumed disturbance, FBA,SP - MV
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Figure 4. MVs - TH1SP and TH2SP in response

to a disturbance

In Figure 3, we show the disturbance (FS,SP ) and the

response of the NMPC on the BA pump (FBA,SP ). The

NMPC adjusts the BA flow rate in order to maintain

the final polymer composition.
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Figure 5. Temperature in the reactor

The NMPC action on the preheater and jacket ther-

mostats is shown in Figure 4. Both the preheater and

jacket thermostats are increased as a higher tempera-

ture is needed to achieve the specified conversion for an

increased total monomer flow rate.

In Figure 5, we plot the temperature at the four mea-

surement locations within the reactor. In general, an

increase in temperature is observed due to a higher heat

of reaction resulting from the additional monomer be-

ing fed to the reactor and due to the increased reactor

inlet and jacket temperatures. The reactor temperature

at 2.5 m which is lower than that at 5 m, is seen to

increase more and become higher than the temperature

at 5 m. This is due to the large increase in the reactor

inlet temperature. The temperature at all the measure-

ment points are kept below the specified constraint for

the maximum reactor temperature.
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Figure 6. Evolution of temperature profile in the

reactor

In Figure 6, we show the evolution of the tem-

perature profile in the reactor at different time in-

stances. Here we see that the maximum tempera-

ture in the reactor is at 4 m initially and as the re-

actor inlet temperature increases, the temperature in

the first half (5 m) in the reactor increases significantly

∼ 20 ◦C, while that in the second half of the reac-



tor increases to a smaller extent (7 - 8 ◦C). Note that

at the final steady state the temperature within the

reactor hits the upper bound between 2.5 and 5 m.
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Figure 7. Total monomer conversion (XR) and

styrene fraction in polymer (YS) at reactor outlet

in response to disturbance

The evolution of the CVs over the course of the

NMPC simulation are shown in Figure 7. We observe

that the total monomer conversion (XR) decreases from

its original value (prior disturbance) by ∼ 0.5% and

the polymer composition, represented in terms of the

styrene fraction in polymer (YS), increases ∼ 2%. This

deviation from the setpoint for the CVs is because the

reactor temperature hits the specified constraint. In or-

der to achieve the necessary conversion and composi-

tion a higher reactor temperature will be needed, which

would be in violation of the specified safety constraints.

Scenario II - Change in Product Specification

In this scenario, the setpoint for the total monomer

conversion is changed from 0.92 to 0.97 and the set-

point for the styrene fraction in the polymer is changed

from 0.53 to 0.7. For this simulation study, the ma-

nipulated variables are the flow rate setpoint to the S

and BA pumps, and the setpoints to the jacket and pre-

heater thermostats. A maximum reactor temperature

constraint of 105 ◦C is specified as a safety constraint.

In Figure 8, we see the response of the outlet reac-

tor conversion and styrene fraction in the polymer to

a setpoint change implemented at 8 min. Both the to-

tal monomer conversion (XR) and the polymer compo-

sition (YS) attain their specified setpoint values. The

delay in the response of the CVs to the change in the

setpoint is due to the residence time of the reactor.
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Figure 8. Total monomer conversion (XR) and

styrene fraction in polymer (YS) at reactor outlet

in response to a setpoint change
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Figure 9. Evolution of temperature profiles at

different time points

From Figure 9 we conclude that at all times the reac-

tor temperatures are below the upper bound. Note that

there is negligible change in the temperature profile.
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Figure 10. Response of the monomer pumps

In Figure 10 and Figure 11 the response of the ma-

nipulated variables in response to a setpoint change are

shown. The monomer pumps are adjusted to attain the

necessary composition at the exit. We observe that there

is negligible change in the setpoints to the jacket and



preheater thermostats. Thus, the implemented NMPC

scheme is able to successfully control the process for the

considered setpoint change in the product quality.
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Figure 11. Response of preheater and jacket

thermostats

Conclusions

In this work, the modeling and simulation results

of an NMPC implementation of a smart-scale emulsion

polymerization process are presented. When subject to

external disturbances, the original monomer conversion

and polymer composition were not met due to tight

constraint on the reactor temperature. For a setpoint

change in the product quality, the NMPC enabled a

smooth transition from the first operating point to the

second operating point.

For future work, the robustness to model error and

the use of an economic MPC, instead of the setpoint

tracking formulation, for the grade transitions may be

investigated. The simulation results presented here is

an intermediate step before experimental validation on

the real smart-scale emulsion polymerization process.
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