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Abstract

Due to the intrinsic uncertainty and dynamics afustrial environments schedulers must continually
reconcile what is expected with what actually hayp®ne of the most common sources of uncertainty
encountered at the operational level is the onecésted with variable processing times. This wask-c
tributes in the area of proactive scheduling byeligping an innovative Constraint Programming (CP)
model able to cope with uncertain processing tiate¢ke decision stage, prior to scheduling andauith
resorting to the generation of scenarios. The egfdin of the model to various instances of thrasec
studies shows that the approach is computatiordfigient. In addition, when the obtained schedules
are compared with the agendas that were reacheddsterministic CP formulation, it is shown that
they absorb the variability of the processing tirhegter.
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Introduction

Nowadays, industrial companies operate under the

Two types of methodologies that deal with uncertain

pressures of competitive economy, which pushes tteem ties in scheduling environments can be distinguqB®n-

have a great variety of products manufacturedwatdoc-

es, to deliver on time, to be flexible, etc. Thimtext calls
for an outstanding operational efficiency. Howevedus-
trial environments continuously face uncertaintiasd
unexpected events that conspire against the desifed
ciency. Given this situation, the interest on scitied

methodologies that can cope with various sourcesnef
certainty, such as changes in product orders, awgrp
failures, processing time variability, recipe chesgraw
materials late arrival, manpower availability, etcas in-
creased in the last decade. Several works haverbeent-

fill et al., 2008): reactive and proactive schexgliReac-
tive scheduling methodologies are implemented atex
tion time to face unforeseen events once they lwve
curred. On the other hand, proactive approachespoe
rate the knowledge of uncertainty at the decisitages
prior to scheduling. This contribution focuses be ton-
sideration of a priori uncertainties during the iden

stage in order to generate more resilient schedSescif-
ically, the short-term scheduling of multiproductulti

stage batch plants with uncertain operation tingesd-
dressed

ly reviewed by Gupta et al. (2016). The most commortimes/rates are one of the most common sourcegazru

techniques proposed to deal with uncertainty arehststic
programming, robust optimization and robust coupdgr
optimization (Li and lerapetritou, 2008). Alternati ap-

tainty and they can lead to the generation of &ifld wait

times. While the first ones cause equipment under-

utilization and reduce plant productivity, wait 881 can

proaches such as fuzzy programming and paramewic p generate order delays and/or batch rejections duewt

gramming methods have also been reported.

quality problems associated with material detetiora

in a proactive fashion. Variable processing



Processing time uncertainty has been treated with v Estimation of end time standard deviation
lous approaches such as fuzzy programming (Balasubr The end time standard deviation of a batdhcluded
manian and Grossmann, 2003) and genetic algorithms . . . .

. . . S o In a given agenda can be estimatechdsnes the maxi-
(Bonfill et al., 2008). This work deals with uncartties in o . : .
: ) . mum standard deviation associated with the stanedi of
the processing times by means of a novel ConstRriot ) . . .
ramming (CP) model that does not rely on the gaifeer the tasks of this batch in the set of assignedsunit
9 - . (devStar), plusn times the standard deviation of the pro-
of scenarios or worst case formulations. ) g : .
. : . . cessing time associated with the whole set of talks
The remainder of this paper is organized as follows

ot X . manded by batch (devBatch). While devStart takes into
The problem statement is introduced in the nexti@®ec . . .
- . - account the role of processing time uncertaintythafse
which also includes a description of how to capumeer- : .
L . . : tasks that precede the execution of bdidn all the as-
tainties in the processing times. Then, the stdch&P . . . .
. : . signed units,devBatch captures the uncertainty in the
approach is presented, followed by a discussiorthef . .
. . . execution of the tasks that pertain to babcitself. Thus,
results of various instances of three case studiasal S : .
remarks and future work conclude the paper one of the underlying ideas is to push forwarchia &gen-

' da the whole set of tasks corresponding to bhtahvalue
equal todevStart in order to take into account the uncer-
Problem statement tainties in the processing times of those tasksphecede
batchb. Similarly, by means oflevBatch the expected
end time is pushed forward due to the variationghef
processing times associated with bakchtself. Figure 1
shows the conceptual interpretation of these viatab

Two conservative simplifications have been made: (i
devStarg and devBatch are linearly added; (ii) the idle-

bution. Each batch has to be processed at eadh istage times and/or wait times that may be part 0 f thendgeand
could act as buffers, compensating certain possiblays,

of the multiple non-identical units that operateparallel. . .
) . .. _are not considered with the role of bumpers.
The processing environment has banned batch-unit as

A set of batches of different products has to bede
uled in order to achieve two conflicting objectivem-
time delivery and plant efficiency. As most mulbduct
multistage industrial plants implement already ¢t
recipes, which correspond to batches of predefsied,
the lot sizing problem will not be considered imsthontri-

signments, forbidden sequences and topology réetric
Regarding the intermediate storage and inter-stagéng ; [rask rask | n-devStart,,,,= n-\vary,,
policy, it is assumed a non-intermediate storagé wn- ot o 5
limited wait (NIS-UW) one. In addition, changeovasks, . n-devStart,, 7
whose duration depends on the sequence and/omihe u 2
may be required. Processing times are assumeditulbe
pendent stochastic variables that take values pyigthabil- task, ., task,,,
ities given by a fixed probability distribution. &frest of “ I 55
the problem variables and parameters are assumbd to =
deterministic. ud | n~var,,tvar,,, tasky; ., eeBa fC\hm
Processing times having a stochastic behavior
us

Provided that the processing times uncertaintyctliye WV Vo2 o,
affects the end time of each processing task, tbpgsed X X
methodology associates a stochastic variable whih t u6
completion time of each batch. The value of thidalie, n-devBatch,,= n-\var,,,+var,, ;+var,,,;
which is nameeand time subject to deviatidat-St}), has
a P probability of occurrence. For any given batghet- Figure 1. Interpretation of the main stochastic
StD, cannot be described accurately, with mathematical variables that participate in the proposal

precision, without a significant CPU effort. Nevetess,
it could be estimated in a practical way. The Jagahat
approximateset-StQy in the proposed CP model eet-
Batch, the estimated end time of batdh eetBatch is The proposed methodology handles uncertainties in
calculated by means of the expected end timemlirses  the processing times by creating two associateddudbs
the estimated end time standard deviation, witleing the  that are simultaneously built. One of them, thedpation
z value associated with a normal cumulative prolitst. schedule, is generated using nominal processingstitNo
The expected end time is computed by adding prowess buffer times neither overestimated (conservatived- p
times that are assumed to have normal probabilityidu-  cessing times are included a priori to compensassiple
tions, as well as idle times and changeover/seitupst  delays that may result from the realizations of tineer-
which are supposed to have a deterministic behaviotainties. Nevertheless, the assignment and sequenci
Therefore, it is also expected to have a normailidigion.  decisions would be performed in order to bettercirte
positive variabilities (processing times greatearththe

I nnovative CP stochastic model



nominal duration of the tasks) and their impacttotal

tardiness. The second schedule is not an operhtgea-
da. It is employed to capture the variances oftds& set
that is assigned to each equipment unit. The strecbf

both agendas is similar (same task-unit assignmemds
task sequencing). However, in the variance agendsead
of processing times, the span of the tasks is emuéie
variance sizes. Another difference is that all theks as-
signed to a given unit are scheduled from the beggof

the planning horizon, without any intermediate itihee.

Model implementation

eetBatch, float variable capturing the estimated end time
of batchb

stTask s interval variable representing the processing tas
of batchb at stages

task, .. interval variable representing the processing tds
batchb in unitu

tardiness: float variable that captures the expected total
tardiness.

unitBatchSeg sequence variable defined for each wnit

It represents an ordering of processing task iatevaria-
bles associated with unit Each variable is characterized
by thep product associated with batbh

The proposed CP model was developed using the OPtar, : interval variable representing the variance o th
programming language, supported by the IBM ILOGprocessing time of batdhin unitu

CPLEX Optimization Studio environment (IBM ILOG
2013). The IBM ILOG OPL language, combined with the

IBM ILOG CP Optimizer constraint programming engine just one processing unit at each stage. Constajnen-

provides some specific scheduling constraints, tfans,
as well as different types of variables, aimedestcdibing
scheduling problems properly (Novara et al.,
Among these features, a specific construct thatages

sequence and unit depended changeovers in anesffici

way is employed. In addition, a warm-start moda\aila-
ble, which allows specifying an initial point toduce the
computational effort, especially for big size madel

Nomenclature

Sets/Indexes

B/b: batches to be produced within the planning haerizo
CJ/-: units of stages+1, which are unconnected to urit
belonging to stage

FJ/-: products that are forbidden as successors ofugtqad
when assigned to the same unit

P/p: products to be manufactured

S/s processing stages

U/u: equipment units

Parameters

co. <u,p,p™> triplets containing the changeover time be-

tween productp andp’ in unitu

dd,: due-date of batch

n: number of standard deviations associated withobgsr
bility P that is established by the scheduler ilatren to
certain stochastic variables

pty,i: Nominal processing time required by a batch ofipr

uctp in unitu

Variables

2016)

' _Constraints

Expression (1) enforces each batch to be assigned t

sures precedence relationships between adjacent pro
cessing tasks of any batbh

alternative (stTaskb,S, all(u e Uy) taskb_u), 1)
VseS,VbeEB
endAtStart(stTaskb,S , stTaskb,S,)
VbeB,Vs,s'€S,s+ Card(S),s'=s+1

Topology restrictions are captured by means of ex-
pression (3). Constraint (4) avoids overlapping ¢kecu-
tion of tasks in any uniu and simultaneously inserts
changeover times between consecutive tasks assigned
such unit. Expression (5) avoids forbidden sequerne
resorting to sequence variables and tyy@eOfNextcon-
struct. See details in Novara et al. (2016) and IBKAG
(2013).

)

minl (endOf(taskb_u), endOf(taskb,u,)) =0

! ) 3

vVbeB VU eC,Vuu el
noOverlap(unitBatchSeq,, co), vueU (4)
typeOfNext(unitBatchSequ, taskb_u) *p' ®)

V(p,p') EFp,YUu€eUVbEB,

Constraints (6) and (7) describe the calculatioxmanf
iablesdevStarnt , anddevBatch, respectively. As previous-
ly mentioned, they are the two stochastic variathes are
employed to estimate the end time standard dewiaifo
batchb. The role of the fictitious tasks representing the
task variancesyar,,, appears precisely in constraints (6)

devBatch float variable that represents the standard deviand (7). In (6) the start time of each variancerival vari-

ation of the processing time associated with theleviset
of tasks demanded by batich

devSeg sequence variable defined for each wnitt rep-

resents an ordering of interval variablesy,, on u. Each
of these interval variables is characterized byatinbute

defining the produgb associated with batdh

devStars: given the units in which the tasks of batchre

carried out, this float variable captures the maximof

the processing time standard deviations of thekt&sks
that precede the execution of bakcim each of such units.

able, captures the variance associated with theepsing
times of the set of activities that are predecessbbatch
b in the same equipment unit. Expression (8) showsg h
the estimated end time of batilis calculated by means of
deterministic and stochastic variables. Finallynstoaint
(9) describes the expected total tardiness, whsclhée
objective function to be minimized.

devStart, = J\gnae)l(] (startOf(varb'u)) ,vbep (6
u



devBatch, = Z sizeOf (var,, ),V b € B (7
Y ueu
eetBatch, = endOf (stTaskys) + n - devStart, +
n- devBatch,, (8)
VbeEBVsES,s=card(s)
tardiness = maxl(0, eetBatch, — dd,) 9)

V beB

Constraints (10)-(12) link the operational agendld w
the variance or auxiliary schedule. If the intervatiable
task, ,, representing the processing task of batch unit
u is included in the solution, the correspondingeiinal
variable representing the variance of this task toabe
included too, as shown in (10). Expression (11)ids/the
overlapping of interval variables representing aaces.
Finally, constraint (12) enforces the interval wahies
representing processing and variance tasks towfolle
same sequence in each unit.

presenceOf (taskb,u) = presenceOf (varb,u)

(10)
VbEBVYueU
noOverlap(devSeq,), Vueu (11)
min{ endOf (taskbru) — endOf(taskb,u) ,
(12)

endOf (vary, ) — endOf (varbf,u)} <0
Vbbb eEBYueU

ent values for thenf and sup parameters, various case
studies instances have been generated, as seablin Il

Case study 1 (C1): It is based on Example 4 of

Marchetti and Cerda (2009), which corresponds feci-
ty having 5 processing stages and 12 non-identioés.
Sequence dependent changeovers are consideresetbut
up times are avoided. Other modifications from ohigi-
nal example are: (i) NIS-ZW policy instead of a Wife;
(i) topology constraints are added; (iii) limitegtailability
of discrete resources, such as electricity or masepoare
ignored; (iv) due-dates were modified in order htain a
deterministic solution having zero total tardiness.

Case study 2 (C2): It is based on the multiproduct
batch plant having 5-stages, 25 non-identical uaitsl
topological constraints, which was studied by Zkisakt
al. (2011). Product orders and processing unitchagac-
terized by release and ready times, respectivéig. due-
dates correspond to the set DD2 proposed by thHeoesut
In addition, some orders cannot be processed itainer
units and there are forbidden processing sequences.

Case study 3 (C3): Based on the example of Castro et
al. (2009). The facility has 5 stages with 20 diskir
processing units. Fifty product orders are to beedaled.
Sequence dependent changeovers are considered.

The results of the deterministic and stochastic ap-
proaches have been compared. The deterministicdagen
have been obtained with the CP model proposed by
Novara et al. (2016). All the deterministic solutsocorre-
sponding to Cases 1-3 are optimal schedules haviotgl
tardiness equal to zero. However, the stochasts ¢tne

Parameters such as unit ready times, batch releaS@erational schedules of this approach) have peefoce

times and nominal processing times of the batcivities,
can be taken into account without resorting to speon-
straints. This is done by declaring the domain axfhein-
terval variable that represents the execution tdsk be-
longing to a batch recipe. The same reasoning eppti
the duration of interval tasks representing varaiasks.

Case studies and results

values that are not that far appart: Examples @i@1-d
have a total tardiness of zero, whereas the C1-€1tg
instances a value equal to 3.2. Similary, C2-a @2¢b
have total tardiness values of 17.3 and 0, respgti
Finally, both C3-a and C3-b have total tardineszewb. If
Makespans are compared, the Makespans of the G set
instances range from 96 to 129.3, whereas therdetisr
tic value is of 113.3 time units. For cases C2-d @2-b
the stochastic makespan values are 336.4 and 34tB,

The methodology was tested by means of three deteflose to the 335.5 deterministic one. Finally, e C3-a

ministic examples available in the literature thvegre
slightly modified. In all the cases, a NIS-UW intexdiate
storage/inter-stage waiting policy was adopted.aduli-
tion, total tardiness was the objective functioaclt case
study was solved under various uncertain conditi®ts-
chastic processing times were captured by mead#fef-
ent asymmetrical triangular distributions that tmyresem-
ble what happens in realistic production environtsen
where more delays than anticipations occur. Eastnilli-
tion was generated assuming the deterministic gsicg
time as the mode. The lower value was randomlytedea
by subtracting the mode the result of multiplyits value
by an aleatory number belonging to the ij@] interval.
Similarly, the upper limit was generated by addihg
mode the result of multiplying its value by a randoum-
ber belonging to the [Gug interval. By adopting differ-

and C3-b examples the stochastic makespan valees ar
59.590 and 58.700, close to the 58.970 deternmirste.

Then, the different agendas have been contrasted by
means of simulation to test their resilience to astain
processing times. Table 1 and Figures 2-3 allowpaym
ing the results of the simulations for various ahility
conditions (seenf andsup parameter values in Table 1).
The different performance indicators (Total Tardsie
Makespan, etc.) reported in Table 1 correspondhéoat/-
erage values obtained from 50.000 simulations izae
been executed for each agenda. During such sironati
when tasks had a delay, a right-slide reschedivlgy
was applied to accommodate the successor activiflas
the contrary, no schedule correction was done whgks
finished earlier than predicted.

An analysis of the results presented in Table kaks/
that, with the exemption of the C3-a example, ladl $olu-



tions obtained with the stochastic proposal exralitetter
behavior than the deterministic ones. The exceptmne-
sponds to a large-scale example which demands €kt
time or a warm-start mode (initial solution) to den a
good quality solution. Table 1 allows concludingttihe
deterministic solutions become more affected bypie
cessing time uncertainty than the stochastic ones.
Furthermore, simulations results for the extreme va
ues of the distributions, which are not discusses: fdue
to space limitations, show a very robust behavand are
of considerably better quality than the determiaishes.
Figure 2 shows a plot of the total tardiness vakees
sociated with various instances of the C1 probléat t
correspond to increasing processing times vartgtsice-
narios, for both deterministic and stochastic metho-
gies. The stochastic approach is more stable, (eirig
better than the deterministic one, especially falugs of
sup greater than 0.30. Figure 3 shows a similar bemavi
for the total start time delay performance indicatehich
is the sum of the start time postponement with eesfo
the scheduled start time of all the tasks. Oncenaglae
stochastic approach renders lower values of tldgator,
which could be considered as a robustness measure.

[Total Tardiness]

Cl-a C1-b Ci
~—4— Deterministic Approach

C1d C1-e C1f Cig
~f- Stochastic Approach

C1-h  C1-i  C14
Increasing Variability

Figure 2. Case 1 total tardiness for increasing
processing times variability scenarios

350
300
250

200

[Total Start Time Delay]

150
100
50
0
Cl-a Cib Ci1c C1d Ci1e Ci1f C1,g C1-h Ct-i C1+j
—e— Deterministic Approach —#— Stochastic Approach Increasing Variability

Figure 3. Case 1 total start time delay for in-
creasing processing times variability scenarios

Finally, Figures 4 and 5 show the Gantt chartsexpond-
ing to example C1-h. Both associated agendas, fibeao
tional and the variance one, are displayed, shovliag
they have exactly the same structure.

Conclusions and futurework

An innovative CP stochastic scheduling methodology
was proposed to address processing time uncertaioty
actively. It has been tested by means of sevemnples
with a satisfactory CPU performance, since the aggr
does not have the computational load of most siiztha
proposals. The attained operational schedules ae m
resilient and better prepared to absorb the effectscer-
tainty. This conclusion was reached after perfograimu-
lations that compared the agendas obtained withfo-
posal and the ones reached with a deterministimGéel.

One of the inherent limitations of the proposattis
normal distribution assumption of processing timas,
opposed to real industrial settings, where theylmtter
modeled by asymmetric distributions. However, sanul
tion tests, which employed these asymmetric distidins,
rendered very good results. Future work will extehd
approach to address other intermediate storageftage
waiting policies: UIS (unlimited intermediate stges,
NIS-ZW and NIS-FW (non-intermediate storage, zard a
finite wait, respectively). The impact of a propearm-
start (good quality initial solution) will also laalyzed.
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Table 1. Comparison of deterministic and stochaegpigroaches by means of simulation

Stochastic schedule execution in a simulated environment**

Deter ministic schedule execution in a simulated environment

Case study inf sup TthaI Tardy orders ~ Makespan Idle-time Total start Tojcal Tardy orders ~ Makespan Idle-time Total start
ardiness time delay Tardiness time delay

Cl-a 0.05 0.12 0.9 1 132.3 285.3 40.7 0.9 1 129.6 28.& 42.0
Cl-b 0.075 0.18 1.4 1 128.6 270.2 62.0 14 1 130.6 233.7 66.1
Cil-c 01 024 2.6 2 133.8 294.9 85.3 2.7 2 131.7 9.823 92.0
Cild 0.125 0.3 4.0 2 133.0 288.2 1,9.7 4.2 2 1329 247.1 122.0
Cl-e 0.15 0.36 5.2 1 134.3 315.7 70.8 5.9 2 134.2 552 153.4
C1f 0.175 0.42 5.7 1 139.7 265.9 117.6 7.5 2 1355 262.9 185.1
Clg 0.2 0.48 6.2 1 130.1 296.0 103.3 9.3 2 1369 71.2 219.5
C1-h 0.225 0.54 6.6 1 138.5 310.3 129.7 10.9 2 338. 279.9 250.1
C1-i 025 0.6 7.4 2 129.3 279.3 144.0 12.8 3 139.6 288.5 283.7
C1lj 0.275 0.66 8.8 3 140.1 359.1 157.3 16.5 5 a41. 297.1 317.8
C2-a 0.2 0.5 39.6 2 347.0 2311 470.3
C2-b* 0.2 05 6.0 2 344.0 2376 3122 14 4 346.1 2627 518.7
C3-a 0.07 0.2 10.101 5 62.161 293.295 306.621
C3b* 007 02 6726 5 61130 305578  251.060 o8 4 61.933  301.831 235093

*Warm start is employed — 4.500 CPU seconds— Coenphibtebook Asus X555LAB, Intel Core i7-5500U peesor, 8GB Ram Memory
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Figure 4. Example C1-h operational

schedule

Figbir&xample C1-h variance schedule



