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Abstract: This paper deals with the analysis of two tubular reactor models, the non isothermal
tubular reactor model and a biochemical reactor model. It is shown in particular that multiple
equilibrium profiles can be exhibited if the diffusion coefficients are large enough.
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1. INTRODUCTION

The dynamics of reaction systems is usually described by
nonlinear models that most of the time exhibit multi-
ple equilibrium points. The development of such models
have indeed largely been motivated by practical issues
and the need to emphasize phenomena encountered in the
real life. The exothermic CSTR (continuous stirred tank
reactor) model (e.g. (Ray (1981))) has been developed
to address the issue of the presence of unstable steady-
states in industrial chemical reactors, and in particular in
the polymer industry, involving exothermic reactions also
known as runaway reactions that require the careful design
and application of appropriate feedback control laws in
order to maintain the process in stable conditions. The
use of the Haldane function for the specific growth rate,
a non-monotonic function of the limiting substrate con-
centration, has been considered by (Andrews (1968)) to
emphasize overloading effects in biochemical processes like
the anaerobic digestion where the accumulation of volatile
fatty acids may lead to the wash-out of the process, i.e.
the disappearance of the active micro-organism. In ecol-
ogy, Vito Volterra was motivated to develop a model, the
predator-prey model, to address the periodic behaviour of
the predators and the preys, an issue that had been raised
by his future son-in-law Umberto D’Ancona, a marine
biologist, who was puzzled by the behaviour of Selachians
in the upper Adriatic sea (Kot (2001)). All these models
are indeed very simple (only two differential equations),
simply based on mass (and energy for the CSTR) balance
considerations, yet very rich in terms of the dynamical
properties. The multiplicity of the equilibrium points and
their stability have been largely analyzed and explained
in details in most basic textbooks on (bio)process control
and mathematical ecology (e.g. (Bequette (2003))(Kot
(2001))(Ogunnaike&Ray (1994))(Seborg et al. (2004)).

The CSTR model assumes that the medium in which the
reactions takes place is homogeneous due to the perfect
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mixing of the fluid. If the perfect mixing conditions meets
appropriately several configurations, it happens that the
hydrodynamics in the tank may substantially differ from
this ideal situation. It is even known in reactor design
that the plug flow conditions typically provide higher
conversion that the CSTR (Levenspiel (1999)). In such
instance, the dynamics of the system have to be described
by PDE’s (partial differential equations) that account for
the inherent non homogeneous behaviour of the system
due to the different hydrodynamics. The standard con-
figuration of such behavior is the tubular reactor (see
Figure 1), which covers two configurations the convection-
reaction one (also known as the plug flow reactor) and
the convection-diffusion-reaction one, in which the diffu-
sion term covers mainly the effect of back mixing in the
reactor. The tubular chemical reactor is well known in
the literature. The basis of the tubular biochemical model
considered here comes from earlier work on the control of
fixed bed bioreactors (Dochain et al. (1992)) and has been
further studied in its application on anaerobic digestion in
the pilot fixed bed reactor of the LBE-INRA in Narbonne
(France) and the related validated model (Schoefs et al.
(2004)).

The dynamical properties of the tubular reactor have
been the object of many studies over the years (e.g. (Co-
hen&Poore (1974); Varma&Aris (1977); Georgakis et al.
(1977); Dochain&Bouaziz (1994); Laabissi et al. (2004))
to cite a few). Yet the conditions for the occurrence of
multiple equilibrium profiles remained unclear and poorly
linked to the hydrodynamics.

In this paper we shall first present the dynamical model
of both tubular reactors, their already known properties
and their rewriting in dimensionless variables (Section
2). Sections 3 and 4 are dedicated to the conditions
for having multiple equilibrium profiles and the related
stability properties, respectively.



Fig. 1. Schematic view of a tubular reactor

2. TWO DYNAMICAL MODELS OF TUBULAR
REACTORS

2.1 Model #1 : chemical tubular reactor

Figure 1 gives a schematic view of a tubular reactor. The
dynamics of the system are derived from mass and energy
considerations. This results in the following set of PDE’s
(e.g. (Varma&Aris (1977))):
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In the above equations, t′ is the time (s), z′ is the spatial
variable (m)(0 ≤ z′ ≤ L), T > 0 is the temperature (K),
C > 0 is the process component concentration (kg.m−3),
L (m) is the length of the reactor, v is the fluid superficial
velocity (m/s), λea is the axial energy dispersion coefficient
(kJ.m−1.s−1.K−1), Dma is the axial mass dispersion coef-
ficient (m2/s), ∆H is the heat of reaction (kJ.kg−1) (∆H
< 0 for exothermic reactions, and > 0 for endothermic
reactions), ρ is the fluid density (kg/m3), Cp is the spe-
cific heat (kJ.kg−1.K−1), k0 is the kinetic constant (s−1),
E is the activation energy (kJ.kg−1), R is the gas con-
stant (kJ.kg−1.K−1), h is the wall heat transfer coefficient
(kJ.m−2.K−1.s−1), d is the reactor diameter (m), Tw is the
coolant temperature (K), is the inlet temperature (K), Cin
and is the inlet reactant concentration (kg.m−3).

In the above equations, the kinetic term k0Ce
− E

RT corre-
sponds to the kinetics of a non-isothermal reaction with
first order kinetics with respect to the reactant concentra-
tion C and Arrhenius-type dependence with respect to the
temperature T . This term indeed closely interconnects the
mass and energy balance equations.

The boundary conditions are known as the Danckwerts’
conditions (Danckwerts (1953)).

Note also that the diffusion terms in (1) and (2) are
inspired by the Fick’s law, yet covers all the contributions
to intermixing of fluid flowing in the longitudinal direction,
including molecular diffusion and macroscopic back mixing
(dispersion)(see Levenspiel (1999)).

Note also that the above model reduces to the plug flow
reactor model when the diffusion coefficients λea and Dma

are both equal to zero, i.e.:
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In that case, the boundary equations reduce to:

z′ = 0 : T = Tin, C = Cin (7)

The present process example is particularly interesting
since it is well known that the existence of Arrhenius type
nonlinearities can generate multiple equilibrium points for
exothermic reactions, either stable or unstable, and that
in practical applications, the unstable steady states may
correspond to the operating points of interest. The study
of the steady state multiplicity and stability has been
the object of intensive research activity in the sixties and
seventies, most of the results are gathered in (Varma&Aris
(1977)). Multiple steady states have been observed exper-
imentally, e.g., in continuous stirred tank reactors (Furu-
sawa et al. (1969); Vejtasa&Schmitz (1970)). If the steady
state multiplicity and stability of stirred tank reactors
are now well understood, the tubular reactor case is still
the object of research works. In this context, the seminal
paper of Varma and Aris (Varma&Aris (1977)) empha-
sizes sufficient conditions for the uniqueness of steady
states for adiabatic reactors (i.e., when there is no energy
exchange with the environment, which means here the
absence of a heat exchanger, i.e. when h = 0 in (1))
in the particular case when the energy and mass Peclet
numbers are equal. They also show that in presence of mul-
tiple steady states for the aforementioned tubular reactor
model, these are alternatively stable and unstable. The
case of nonequal diffusion coefficients has been considered
by Deimling (Deimling (1970)), who emphasized steady-
state multiplicity, yet in unrealistic conditions, i.e., when
the reactor temperature is lower than the inlet and cooling
temperature in an exothermic reactor. More recently, the
steady-state multiplicity in non-isothermal reactors has
been shown in (Laabissi et al. (2004)) by using similar
arguments as those considered by Deimling as well as
compactness and nonlinear operator arguments. However,
although there is a strong convergence of results in the
literature in the direction of an alternance of stable and
unstable steady states in presence of multiple equilibrium
points, the existence and stability of the multiple equilib-
rium points for the tubular reactor model largely remains
an open question.

Note also that the tubular reactor has been the ob-
ject of many control studies (see e.g. (Boskovic&Krstic
(2002)) (Godassi et al. (2002)) (Hudon et al. (2008))
(Orlov&Dochain (2002))).



For sake of simplicity and without loss of generality, a
dimensionless model of the tubular reactor will be used.
Let us consider the following time and space formulations,
and change of variables:
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Then equations (1)(2) can be rewritten as follows:
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with the thermal Peh and mass Pem Peclet numbers, Da
the (dimensionless) Damköhler number (a measure of the
relative importance of kinetics and convection), and the
following boundary conditions:

z = 0 :
∂x1
∂z

= Pehx1, (14)

∂x2
∂z

= Pemx2 (15)

z = 1 :
∂x1
∂z

= 0,
∂x2
∂z

= 0 (16)

Note that the (dimensionless) Peclet numbers allow to
evaluate the relative importance of convection versus dif-
fusion.

2.2 Model #2: biochemical tubular reactor

The biochemical tubular reactor model that we study
here considers an autocatlytic growth reaction with one
substrate S and one biomass X in a reactor where the
biomass is "fixed" (this indeed covers various configura-
tions of fixed bed, packed bed and fluidized bed reactors).
For consistency reasons (this allows to have a steady state
for the biomass), a biomass death/decay reaction has to be
added (this reaction can also be viewed as a detachment
phenomenon of the biomass submitted to shear stress due
the liquid flow in the tank). If we consider mass balances
for the substrate concentration S and the biomass con-
centration X, the dynamics of the system in a tubular
reactor is given by the following set of partial differential
equations:
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∂S
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In the above equations, k1 is yield coefficient, µ is the
specific growth rate (h−1), kd is the death/detachment
rate (h−1), and Sin is the inlet substrate concentration
(kg.m−3).

It is easy to see that if the specific growth rate µ is only
a function of the substrate concentration S, the steady-
state values of X and S are uniform throughout the tank.
A steady-state profile can be obtained by considering a
model function of both S and X, like the Contois model:

µ =
µ0S

KCX + S
(21)

Multiple steady states can be emphasized in CSTR’s of
biological systems in presence of an inhibition Haldane
model:

µ =
µ0S

KS + S +
S2

Ki

(22)

here we consider a combined version of the above two
kinetic functions, i.e.:

µ(S,X) =
µ0S

KCX + S +
S2

Ki

(23)

This model has been considered e.g. in (Dramé et al.
(2008))(Schoefs et al. (2004)).

Similarly to what has been done for the chemical tubular
reactor model, let us consider the following time and space
formulations, and change of variables:
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L
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Then equations (17)(18) can be rewritten as follows:
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v
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L

v
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3. MULTIPLE EQUILIBRIUM PROFILES

3.1 The key result

As mentioned above, there are already several results
about the equilibrium profiles of the tubular reactor model.



The results developed in Laabissi et al. (2004) provide
simple conditions for having multiple equilibrium points:

E

RTin
> 4,

k0L

v
< 1 (31)

It happens that these conditions are quite conservative.
Moreover they are difficult to meet in practice (Symp-
tomatically the multiple equilibrium points drawn in Fig-
ure 2 correspond to a set of parameters that do not meet
these conditions).

Fig. 2. Multiple equilibrium profiles of an adiabatic tubular
reactor (each colour corresponds to one of three equi-
librium profiles, both for the reactant concentration
C in the top figure, and for the temperature T in the
bottom figure)

But even more fundamentally, there is an important
missing information in these conditions : the relative
importance of convection and diffusion (that can be
characterized by the Peclet numbers). Indeed it is well
known in chemical engineering (Levenspiel (1999)) that
the convection-diffusion-reaction model is an intermediate
model between the plug flow reactor model (when the dif-
fusion coefficients λea and Dma are equal to zero) and the
CSTR model (when these tend to +∞). As it was already
pointed out in (Varma&Aris (1977)), it is obvious that the
plug flow reactor can generate only one equilibrium point
since it is the solution of a set of first-order differential
equations with fixed initial values (7). And at the other
extreme, it is well known that the CSTR can exhibit three
different equilibrium points. Therefore one can conclude
that there must be a value of the diffusion coefficients
above which the tubular reactor model can exhibit mul-
tiple equilibrium profiles (and below which there is only
one equilibrium profile).

The key result considered here has been first presented in
(Dramé et al. (2008) and is based the following equation:

D
d2x̄1
dz2

− v dx̄1
dz

+ g(x̄x1) = 0 (32)

D
dx̄1
dz

(0)− vx̄1(0) =
dx̄1
dz

(1) = 0 (33)

that represents the steady-state equation of the system.

Let us introduce u(z) := x̄1(1−z) and w(z) :=
dx̄1(1− z)

dz
for all 0 ≤ z ≤ 1. Then equation (32)(33) becomes

du

dz
=−w (34)

dw

dz
=− 1

D
(vw − g(u)) (35)

u(0) = a,w(0) = 0 and w(1) =
v

D
u(1) (36)

So by applying regular perturbation theory (with D more
or less large), the following statement holds. Note that
(34)-(36) can be solved by finding a parameter v = v(a,D)
(depending on a and D), whenever a and D are given, such
that the solution (u,w) of the Cauchy problem in (34)-(36)
satisfies the final condition

w(1) =
v

D
u(1)

Therefore, if there are a1 6= a2 and D > 0 such that
v(a1, D) = v(a2, D), then (34)-(36) has at least two so-
lutions. So the existence of multiple equilibrium profiles is
equivalent to the existence of a1, a2 , . . . , and D > 0 such
that v(ai, D) = v(aj , D) for all i and j.

Now let us assume that D is large enough, and we
introduce

ε =
1

D
,uε = u, and wε =

1

ε
w

and we consider v as a function of ε [v = v(a, ε)] instead
of a function of D. This leads to the following regular
perturbation problem:

duε
dz

=−εwε (37)

dwε
dz

=−(vεwε − g(uε)) (38)

uε(0) = a,wε(0) = 0 and wε(1) =
v

D
uε(1) (39)

Considering the non-perturbed problem, u0 ≡ a, w0(1) =
g(u0), whence va = g(a). Then, for ε = 0, we have

v(a, 0) =
g(a)

a

. If v(a, 0) is a concave function, mutiple solutions are
possible, and the result below directly follows

Proposition 4.1: There exists D∗ > 0 sufficiently large
and v∗ > 0 such that for all D ≥ D∗ the system (53)(54)
has

• (i) at least three solutions if the parameter v satisfies
0 ≤ v < v∗,
• (ii) at least two solutions for v = v∗,

From the theorem of dependence of the solutions of ordi-
nary differential equations on initial conditions,

lim
ε→0

v(a, ε) = v(a, 0) in C2[0, 1] (40)

And the result follows.

�

3.2 Biochemical tubular reactor model

This idea has been first followed in the analysis of a
biochemical reactor model (Dramé et al. (2008)). The
equilibrium profiles (x̄1, x̄2) are solutions of:



1

Pem

d2x̄1
dz2

− dx̄1
dz
− k1µ(x̄1, x̄2)x̄2 = 0 (41)

µ(x̄1, x̄2)x̄2 − γx̄2 = 0 (42)
1

Pem

dx̄1
dz

(0)− x̄1(0) =
dx̄1
dz

(1) = 0 (43)

The system has obviously the trivial solution (x̄1, x̄2) =
(0,0) which corresponds to the prices washout (S̄, X̄) =
(S̄in,0). In the following ware interested in the solutions
that satisfy µ(x̄1, x̄2) = γ. We readily obtain:

x̄2 =
(1− x̄1)(M + αkdx̄1)

kdKC
(44)

withM = µ0−kd−αkd. The function g(x̄1) is then written
as follows:
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KC
(45)

The function v(a, 0) is readily derived, and from direct
computations, we have:
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−k1LM
KCa2

(M + αkDa
2) (46)

∂2v(a, 0)

∂a2
=

2k1LM
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It follows that a −→ v(a, 0) is concave (Figure 3).

Fig. 3. The function v(a, 0) as a function of a for the
biochemical reactor model

3.3 Chemical tubular reactor model

The development for the biochemical reactor model has
been followed here also. A specific aspect is that one of
the equilibrium equations is a differential equation while
the other one is an algebraic equation. We further explore
this idea for the adiabatic tubular reactor with equal Peclet
numbers, and take advantage now of the notion of reaction
invariant (an important property of the reaction system
models, see e.g. in (Dochain et al. (1992, 2009)). Indeed
if we consider the following change of variables :

y1 = x1, y2 = x1 − δx2 (48)
(where y2 formally corresponds to a reaction invariant),
the equilibrium equations of the adiabatic tubular reactor
are rewritten as follows:

d2ȳ1
dz2

− Pedȳ1
dz

+ PeDa (δ − ȳ1 − ȳ2)e
ηȳ1
1+ȳ1 = 0 (49)

d2ȳ2
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− Pedȳ2
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with the following boundary conditions:

z = 0 :
dȳ1
dz

= Pe ȳ1,
dȳ2
dz

= Pe ȳ2 (51)

z = 1 :
dȳ1
dlz

= 0,
dȳ2
dz

= 0 (52)

and Pe = Peh = Pem while ȳi(z)(i = 1, 2) holds for the
equilibrium profile values of yi(t, z).

It is straightforward to see that the solution of (50) com-
bined with the two related boundary conditions (51)(52)
is : ȳ2(z) = 0.

The analysis of the equilibrium profiles of the tubular
reactor model is therefore that of the following differential
equation:

d2ȳ1
dz2

− Pedȳ1
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+ PeDa (δ − ȳ1)e

ηȳ1
1 + ȳ1 = 0 (53)

z = 0 :
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dlz

= 0 (54)

Recall that Pe =
vL

D
with D = Dma =

λea
ρCp

and let us

consider the real valued function g defined by

g(ȳ1) = PeDa (δ − ȳ1)e

ηȳ1
1 + ȳ1 (55)

From direct computations, one can check that the first-
order and second-order derivatives with respect to a are
equal to:

∂v(a, 0)

∂a
= k0Le

− η

1 + a
[
−(η + δ)a2 + δ(η − 2)a− δ

a2(1 + a)2

]
(56)
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The first-order derivative
∂v(a, 0)

∂a
is equal to zero if

−(η + δ)a2 + δ(η − 2)a− δ = 0 (58)
The discriminant ρe of this second-order equation in a is
equal to:

ρe = ηδ(ηδ − 4δ − 4) (59)
If (µ− 4)δ > 4, equation (58) has two solutions:

a =
δ(η − 2)

2(η + δ)
± 1

2(η + δ)

√
ηδ(ηδ − 4δ − 4) (60)

By a careful examination of
∂2v(a, 0)

∂a2
, it can be shown that

the function a −→ v(a, 0) can be locally concave for some
values of the parameters δ and η and has the following
form (Figure 4).

4. CONCLUSION

This paper has been concerned with the analysis of two
tubular reactor model, one with an exothermic reaction
and diffusion terms for the mass and energy balance
equations in adiabatic conditions with the same Peclet
number for mass and energy dispersion, and one with a



Fig. 4. The function v(a, 0) as a function of a for the
chemical reactor model (δ = 1, η = 10)

biochemical growth reaction involving substrate inhibition
and diffusion terms for the mass balance of the substrate
concentration. The central result shows at the multiplic-
ity of equilibrium profiles takes place once the diffusion
coefficient is large, in line with the perception that the
tubular model with diffusion is an intermediate model
between the plug flow (with no diffusion), for which only
one equilibrium is possible, and the CSTR model (infinite
diffusion coefficient), for which three equilibrium points
are possible. It still remains to show that the multiplicity of
equilibrium profiles also applies for the tubular reactor in
non-adiabatic case with different Peclet numbers. At this
point the easiest way to address this issue is to consider
this case as a perturbed one of the one analyzed here. Yet
a detailed analysis has still to be performed.
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