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Abstract 

In scheduling, it is important to maintain the terminal inventory levels above threshold values to prevent 

stockout. However, simply enforcing the terminal inventory level above a lead-time-based threshold for 

each product, as it is common practice, does not exploit the relationships of inventory levels among 

products. To overcome this drawback, we propose a new type of terminal constraints for single-stage 

problems, considering single- and multi-unit facilities. Replacing the traditional lead-time-based 

constraints with the proposed linear terminal constraints leads to better closed-loop solutions. Using 

different examples, we show how to obtain the terminal constraints, and we verify their effectiveness 

using instances with and without uncertainty.  
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Introduction

In supply chain (SC) management, lead-time-based 

thresholds of inventory levels can be required to prevent 

stockout, and it has been shown that they also play an 

important role in scheduling (Harjunkoski et al., 2014), 

especially in closed-loop scheduling (Subramanian et al., 

2012; Gupta and Maravelias, 2016). In the optimal 

solution of a scheduling model with no constraints on 

terminal inventory levels, inventory tends to deteriorate at 

the end of horizon, so that the production, transition and 

inventory holding cost can be minimized (Lima et al., 

2011). However, if such a solution is implemented, the 

problem may become infeasible, or the closed-loop 

solution may be very expensive, after the horizon is rolled 

forward. This is because the inventory is depleted at the 

end of the previous horizon, and therefore the demand 

cannot be satisfied. In the SC literature, a lead-time-based 

inventory threshold is generally required for each product 

at the end of the horizon, and is calculated based on the 

statistics of the lead time of SC arcs and demand rate of 

SC nodes (Eppen and Martin, 1988; Kreipl and Pinedo, 

2004). In some scheduling literature, the terminal 

inventory levels are required to be equal to the initial value 

at the start of the horizon or to one of the values in a cyclic 

solution (Shah et al., 1993; Subramanian et al., 2012).  

However, all of the aforementioned approaches 

neglect the relationship of inventory levels among 

products. For instance, in a single-stage, two-product 

network, if the inventory level of one product is high, a 

low inventory level of the other can possibly be 

acceptable, because we can allocate more resources for 

producing the latter without leading to the stockout of the 

former. By doing so, the inventory holding cost can be 

reduced significantly. Accordingly, in this work, we 

present methods to generate terminal constraints for 

single-stage networks, which account for the 

interrelationships among products. These constraints are 

linear, and can be easily incorporated in any mixed integer 

programming (MIP) scheduling model. The proposed 

constraints can also be used when uncertainty is 



 

 

considered (Vin and Ierapetritou, 2001; Guillén et al., 

2006; You and Grossmann, 2008).  

Theoretically, we can prove that for single-unit multi-

product problems without uncertainty, adding the proposed 

terminal constraints leads to recursive feasibility (i.e., the 

scheduling problem remains feasible after we roll the 

horizon). The proof is not shown in this paper, due to the 

limited space. 

Background 

Problem Statement 

The problem we consider can be defined in terms of 

the following sets: 

 i∈I: products, also denoting the corresponding tasks;  

 j∈J: units;  

 Ij: products which can be produced in unit j; 

 Ji: units which can be used to produce product i. 

We study a simplified scheduling problem with 

constant demand rate. The normalized per-period demand 

of product i is denoted by δi. If task i can be processed in 

unit j, we use βij to denote its batch size, and τij to denote 

the processing time. The inventory level of a product 

should be non-negative. We use Si to denote the terminal 

inventory level of product i, and 𝒔 to denote the vector of 

terminal inventory levels; i.e., 𝒔 = [𝑆1, 𝑆2, … , 𝑆|𝐈|]
T. 

The scheduling problem is solved through 

optimization in a rolling horizon approach; i.e., after the 

early part of the solution is implemented, the horizon is 

rolled forward, and the scheduling problem with new 

information is re-optimized. We want to study how to 

constrain the terminal inventory levels in the optimization 

model so that we can (i) ensure recursive feasibility, and 

(ii) decrease the inventory levels compared to the 

traditional lead-time-based threshold constraints. 

Feasibility Model 

We first need to identify the region of feasible 

terminal inventory levels, denoted by 𝐒F ⊆ ℝ|𝐈|. Each 

𝒔 ∈ 𝐒F satisfies that when 𝒔 is the value of the terminal 

inventory levels, the scheduling problem will remain 

feasible in the rolling horizon approach. To obtain region 

𝐒F, we solve a feasibility scheduling model MF 

repeatedly. 

In model MF, s is used as a given parameter to denote 

the initial inventory levels. If model MF is feasible, a 

scheduling solution whose terminal inventory level is 

equal to the given s will lead to recursive feasibility 

(Figure 1); i.e., 𝒔 ∈ 𝐒F. By enumerating s and solving MF 

iteratively, we can obtain region 𝐒F (shown in orange in 

Figure 2).  

Model MF, involving task-unit assignment and timing 

decisions, is as follows, 

Minimize: ∑ 𝛼𝑖𝑗𝑊𝑖𝑗𝑡

𝑖,𝑗∈𝐉𝑖,𝑡

+∑𝜋𝑖𝐿𝑖𝑡
𝑖,𝑡

 (1) 

Subject 

to: 

 

𝐿𝑖,𝑡+1 = 𝐿𝑖𝑡 +∑𝛽𝑖𝑗𝑊𝑖𝑗,𝑡−𝜏𝑖𝑗+1

𝑗∈𝐉𝑖

− 𝛿𝑖, ∀𝑖, 𝑡 

(2) 

 𝐿𝑖,0 = 𝑆𝑖 − 𝛿𝑖, ∀𝑖 (3) 

 ∑ 𝑊𝑖𝑗𝑡′

𝑖∈𝐈𝑗,𝑡−𝜏𝑖𝑗+1≤𝑡
′≤𝑡

≤ 1, ∀𝑗, 𝑡 
(4) 

where 𝑡 ∈ {0,1, … , 𝑇} is the index for time points; variable 

𝐿𝑖𝑡 ∈ ℝ+ denotes the inventory level of product i at time t, 

and 𝑊𝑖𝑗𝑡 ∈ {0,1} is 1 if task i starts in unit j at time t. The 

objective, as shown in Eq. (1), is to minimize production 

cost and inventory holding cost, where αij is the production 

cost of task i in unit j, and πi is the inventory holding cost 

of product i. Material balance is expressed in Eq. (2) and 

(3). At each time, only one task can be processed in a 

certain unit, which is enforced by Eq. (4).  

 

Figure 1. To check if 𝒔 ∈ 𝑺𝐹, we solve model 

MF with given initial inventory levels 

 

Figure 2. Methods to obtain region 𝑺𝐹 and 

terminal constraints 

Region 𝐒F, obtained by solving MF repeatedly, might 

be non-convex, and therefore should be approximated by a 

set of linear terminal constraints. Good terminal 



 

 

constraints should lead to a close approximation of region 

𝐒F.  

Campaign Model 

Before writing the terminal constraints, we need to 

find how frequently each task is being carried out in a 

“typical” scheduling solution. We do so by solving an 

auxiliary linear programming (LP) model MC. The model 

determines how many times a task should be processed in 

a unit in the campaign mode. Variable 𝑐𝑖𝑗 ∈ ℝ+ in model 

MC denotes the number of batches that task i is processed 

in unit j. The value of 𝑐𝑖𝑗  is to be used as a parameter when 

writing the terminal constraints (shown in purple in Figure 

2). Model MC is as follows,   

Minimize: ∑
𝛽𝑖𝑗

𝛿𝑖
𝑐𝑖𝑗

𝑖,𝑗∈𝐉𝑖

 (5) 

Subject 

to: 
ℎ ≥∑𝜏𝑖𝑗𝑐𝑖𝑗

𝑖∈𝐈𝑗

, ∀𝑗 (6) 

 ∑𝛽𝑖𝑗𝑐𝑖𝑗
𝑗∈𝐉𝑖

≥ 𝛿𝑖ℎ, ∀𝑖 
(7) 

 ∑𝑐𝑖𝑗
𝑗∈𝐉𝑖

≥ 1, ∀𝑖 (8) 

where variable ℎ ∈ ℝ+ represents the campaign time. The 

objective function in Eq. (5) minimizes the total 

production in a campaign. In Eq. (6), the campaign time is 

required to be greater than the total production time for 

each unit. The production amount should be greater than 

the demand, as shown in Eq. (7). To avoid the trivial 

solution in which all variables are zero, Eq. (8) requires 

that each task is processed at least once. Because the 

values of cij appear linearly on both sides of the terminal 

constraints (presented in the next two sections), it is their 

relative ratios that are important, and therefore variables cij 

are defined to be continuous, rather than integer. 

We assume that the scheduling problem is feasible 

(i.e., when the initial inventories are enough, there is 

always a schedule in which production can meet demand). 

This LP model yields the number of batches in different 

units to meet demand. 

Terminal Constraints for Single-unit Problems  

Since we consider only one unit here, the unit index j 

is dropped. Starting from a case of 2 tasks (products), the 

MIP model MF is feasible if inventory levels Si satisfy the 

following constraints: 

𝑆1
𝛿1

≥ 𝜏1 (9) 

𝑆2
𝛿2

≥ 𝜏2 (10) 

𝑐1𝜏1𝑆1
𝛿1

+
𝑐2𝜏2𝑆2
𝛿2

≥ (𝑐1𝜏1 + 𝑐2𝜏2)(𝜏1 + 𝜏2) (11) 

where c1 and c2 are obtained by solving the model MC. 

More generally, the terminal constraints can be 

written as, 

∑
𝑐𝑖𝜏𝑖𝑆𝑖
𝛿𝑖

𝑖∈𝐈𝑝

≥ (∑𝑐𝑖𝜏𝑖
𝑖∈𝐈𝑝

) ∙ (∑𝜏𝑖
𝑖∈𝐈𝑝

) , ∀𝑝 ∈ 𝐏(𝐈) (12) 

where P(I) denotes the power set of I (i.e., the set of all 

subsets of I) except the empty set, indexed by p; 𝐈𝑝 

denotes the products that are included in the subset p. 

Because Eq. (12) is written for each subset of I except the 

empty set, the total number of constraints is 2|𝐈| − 1. 

We can prove that if inventory levels Si satisfy Eq. 

(12), model MF will be feasible regardless of horizon 

length. Thus, by enforcing this type of terminal 

constraints, we ensure that there is always a feasible 

solution for the next scheduling problem after rolling the 

horizon. 

The constraints in Eq. (12) can be categorized into |I| 

groups, denoted by group 1, group 2, etc., according to the 

number of products included in subset p. In other words, 

group k consists of the constraints with |𝐈𝑝| = k. For 

example, there are |I| constraints for group 1, as follows, 

𝑆𝑖
𝛿𝑖
≥ 𝜏𝑖 , ∀𝑖 (13) 

To better understand Eq. (12), we define 𝑡𝑖 = 𝑆𝑖/𝛿𝑖, 
denoting the number of periods for which the inventory 

itself can meet the demand, and 𝑡𝑖 is henceforth referred to 

as normalized inventory. Constraints of group 1 can be 

written as,  

𝑡𝑖 ≥ 𝜏𝑖 , ∀𝑖 (14) 

which means that for each product, the normalized 

inventory should be greater than or equal to the processing 

time, so that the inventory is sufficient to last during the 

execution of the first batch. 

For the other groups, we define 𝜌𝑖 = 𝑐𝑖𝜏𝑖 and 

𝜌𝑝 = ∑ 𝑐𝑖𝜏𝑖𝑖∈𝐈𝑝
, denoting the production time of a task and 

the total production time of a subset of tasks. Eq. (12) can 

be rewritten as follows, 

∑(
𝜌𝑖
𝜌𝑝

𝑡𝑖)

𝑖∈𝐈𝑝

≥ ∑𝜏𝑖
𝑖∈𝐈𝑝

, ∀𝑝 ∈ 𝐏(𝐈) (15) 

If we view p, the subset of tasks, as a pseudo-task, Eq. (15) 

can be interpreted as a generalization of Eq. (14). On the 

right hand side (RHS) is the processing time of the 

pseudo-task, which is the summation of processing time of 

all tasks in the subset. On the left hand side is the 

normalized inventory of the pseudo-task; the weight 𝜌𝑖/𝜌𝑝 

is the ratio of the production time of task i to the 

production time of all the tasks in subset p. If task i has a 

longer production time, the initial inventory of task i plays 



 

 

a more important role in the pseudo-task, and thus the 

weight is higher. 

Terminal Constraints for Multi-unit Problems  

If all units are identical, there is a solution of MC 

with cij = cij’ for all i, j, j'. Thus, we can drop index j again. 

Model MF with initial inventory levels satisfying Eq. (12) 

is still guaranteed to be feasible; when all the units are 

synchronized to carry out the same task, the inventory 

profile will be the same as that in the single-unit case.  

However, because units are not required to be 

synchronized (i.e., we have more flexibility with multiple 

units), Eq. (12) is too conservative. In order to make the 

feasible region defined by the terminal constraints larger, 

which would lead to lower inventory levels and lower cost, 

we relax some of the constraints. At the same time, we 

make sure that very few, if any, values of s that do not 

belong to region 𝐒F will be included in the feasible region 

defined by the relaxed terminal constraints. The terminal 

constraints are modified as follows, 

∑
𝑐𝑖𝜏𝑖𝑆𝑖
𝛿𝑖

𝑖∈𝐈𝑝

≥ ∑𝑐𝑖𝜏𝑖
2

𝑖∈𝐈𝑝

+ 𝜇 ∑ 𝑐𝑖𝜏𝑖𝜏𝑖′

𝑖∈𝐈𝑝,𝑖
′∈𝐈𝑝:𝑖

′≠𝑖

, 

∀𝑝 ∈ 𝐏(𝐈) 

(16) 

where μ is a pre-defined parameter between 0 and 1. When 

μ is 1, Eq. (16) reduces to Eq. (12), and no relaxation is 

performed; we suggest to use μ = 1/|J|, because our 

empirical study shows that the feasible region defined by 

such terminal constraints is a good approximation of the 

region 𝐒F. 

If units are non-identical, the exact constraints of 

group 1 can be written as follows, 

𝑆𝑖 ≥ − min
0≤𝑙≤max

𝑗
𝜏𝑖𝑗−1

{−𝛿𝑖 − 𝑙𝛿𝑖 +∑⌊
𝑙

𝜏𝑖𝑗
⌋ 𝛽𝑖𝑗

𝑗∈𝐉𝑖

} , ∀𝑖 (17) 

The RHS represents the maximum backlog of product i, if 

its initial inventory is zero and its production is started in 

all units at time 0. If units are identical, Eq. (17) reduces to 

Eq. (13). 

The constraints for the other groups are harder to 

write, because processing times and batch sizes can vary 

among units. Herein, we introduce the average parameters 

for each task i, (index j is again dropped,) as follows, 

𝑐𝑖 = ∑𝑐𝑖𝑗
𝑗∈𝐉𝑖

 (18) 

𝜏𝑖 =
1

𝑐𝑖
∑𝑐𝑖𝑗𝜏𝑖𝑗
𝑗∈𝐉𝑖

 (19) 

Using these average parameters, the terminal constraints 

can be written as in Eq. (16) for other groups. 

Remarks 

First, we compare the proposed terminal constraints 

with the traditional approach. For the single-stage multi-

product problem, the lead-time-based threshold constraints 

(Eppen and Martin, 1988) are as follows, 

𝑆𝑖 ≥ 𝛿𝑖 ∙ max
𝑗∈𝐉𝑖

(∑ 𝜏𝑖′𝑗
𝑖′∈𝐈𝑗

) , ∀𝑖 (20) 

The region constrained by Eq. (20) is included in the 

region constrained by the proposed terminal constraints. 

We illustrate this through a 2-product example (Figure 3). 

When the problem is a single-unit case, the distance r in 

Figure 3 is zero; otherwise, r ≥ 0. This implies that 

compared to the lead-time-based threshold constraints, the 

terminal constraints can decrease the inventory levels and 

thus the inventory holding cost.  

 

Figure 3. The proposed terminal constraints 

and the constraints of traditional approach 

Second, when uncertainty is considered, a buffer term 

should be added. The main sources of uncertainty include 

the processing time and the demand. If the mean and 

variance of the processing time and the normalized 

demand can be characterized (denoted by 𝜏𝑖̅, 𝛿𝑖̅, 𝜎
2(𝜏𝑖) 

and 𝜎2(𝛿𝑖) respectively), a buffer term Zp defined below is 

added to the RHS of Eq. (12) and (16), 

𝑍𝑝 = 𝜙∑
𝑐𝑖𝜏𝑖√𝜎

2(𝛿𝑖)𝜏𝑖̅ + (𝛿𝑖̅)
2𝜎2(𝜏𝑖)

𝛿𝑖̅𝑖∈𝐈𝑝

 (21) 

in which 𝜙 is the inverse distribution function of a 

standard normal distribution based on a specified service 

level (Eppen and Martin, 1988).  

Examples 

Sinlge-unit 

First, we consider a 2-product example (Table 1). 

Solving MC, we obtain cP1=2, cP2=1. From Eq. (12), the 

terminal constraints are: 

𝑆𝑃1 ≥ 4 (22) 

𝑆𝑃2 ≥ 3 (23) 



 

 

2𝑆𝑃1 + 3𝑆𝑃2 ≥ 35 (24) 

Region 𝐒F, obtained by repeatedly solving MF with 

different initial inventory levels, is shown in Figure 4; we 

also show the proposed terminal constraints defined in Eq. 

(22)-(24), as well as the terminal constraints using other 

value of ci (cP1=2.571, cP2=1, obtained by solving MC with 

a different objective function), which is feasible but not 

optimal for model MC. In this figure, the feasible region 

defined by Eq. (22)–(24) is included in region 𝐒F. We also 

note that any ci that is feasible for MC can be used to 

generate the terminal constraints, and neither the optimal ci 

from MC nor the other feasible ci leads to a better 

approximation. 

Table 1. Data of the single-unit 2-product 

example  

product (i) P1 P2 

processing time (τi) 2 3 

batch size (βi) 7 9 

normalized demand (δi) 2 1 

Second, we consider an example with three products 

P1, P2, P3, and the parameters are τi=2, βi=12, δi=2. We 

obtain cP1=cP2=cP3=1. Region 𝐒F and the proposed 

terminal constraints are shown in 3D-plots in Figure 5; 

using the terminal constraints, we approximate the non-

convex region 𝐒F by a convex region, and the latter is 

included in the former. 

 

Figure 4. Region 𝑺𝐹 and terminal constraints 

for single-unit 2-product example 

Multi-unit 

We consider an example with 2 products and 2 

identical units; data in Table 1 are used, except that the 

normalized demand is doubled. The solution of MC leads 

to cP1=1, cP2=0.5. Region 𝐒F and the feasible regions 

defined by terminal constraints in Eq. (16) using different 

values of parameter μ are shown in Figure 6. When we use 

μ =1/|J| (i.e., μ=0.5 in this example), the feasible region 

defined by the terminal constraints is a better 

approximation of region 𝐒F, compared to that using μ=1. 

 

Figure 5. Region 𝑺𝐹 and terminal constraints for single-unit 3-product example



 

 

Figure 6. Region 𝑺𝐹 and terminal constraints 

for multi-unit example 

Rolling Horizon Implementation 

For simplicity, we use MF as the scheduling model. 

First, we consider the case without uncertainty. Using the 

single-unit 2-product instance (Table 1), we choose a 

horizon of 12 periods, and the initial inventory levels are 

16 and 8 respectively for P1 and P2. After obtaining a 

solution, we roll the horizon forward by 12 periods, and 

solve MF of the new horizon. Model MF is solved for 6 

iterations, and therefore the schedule from time 0 to time 

72 is obtained. When no terminal constraints are applied, 

model MF becomes infeasible after one iteration; by 

introducing slack variables allowing negative inventory 

levels, we observe that 23 out of the 72 periods were 

subject to stockout. When adding the terminal constraints, 

model MF remains feasible for all 6 iterations (i.e., no 

stockout was incurred). 

Using the same instance, we evaluate the terminal 

constraints under uncertainty. The demand in each period 

is subject to a normal distribution, 𝒩(𝛿𝑖, (0.3𝛿𝑖)
2), with δi 

given in Table 1. In each iteration, we solve the 

deterministic model, observe the uncertain demand of the 

first period in the model, and roll the horizon forward by 1 

period. We compare the solutions using the terminal 

constraints to those using the traditional lead-time-based 

threshold constraints; i.e., model MF with Eq. (12) was 

compared to MF with Eq. (20). Due to the uncertainty, 

inventory buffers were added in the model. First, 𝐿𝑖𝑡 was 

required to be greater than 1.6 ∙ 0.3𝛿𝑖 ∙ 𝜏𝑖, instead of 

simply being non-negative; 1.6 is the value of parameter 𝜙 

used in Eq. (21), at a service level of 95%. Second, in Eq. 

(12) and (20), the same buffer of 1.6 ∙ 0.3𝛿𝑖 ∙ 𝜏𝑖 was added 

to variable 𝑆𝑖.  
We obtained 200 samples for both models (with 

Eq.(12) and with Eq. (20)). For each sample, MF was 

repeatedly solved for 72 iterations to obtain the closed-

loop schedule from time 0 to time 72. In Table 2, we show 

the average inventory levels (considering both products) 

and the average number of periods that were subject to 

stockout. The proposed terminal constraints reduced 

inventories by 19.6% on average compared to the lead-

time-based threshold constraints, while both methods led 

to very rare stockout (less than 0.4%). 

Table 2. Results comparing the proposed terminal 

constraints Eq. (12) with the traditional 

constraints Eq. (20) 

 
inventory levels stockout periods 

Eq. (12) 13.58 0.33 

Eq. (20) 16.90 0.32 

Conclusions 

We proposed a novel type of terminal constraints for 

single-stage production scheduling problems. The 

proposed constraints consider the relationship among 

products and lead to recursive feasibility when scheduling 

is implemented in a rolling horizon manner. In problems 

under uncertainty, the proposed terminal constraints can 

achieve substantial savings on inventory holding cost by 

lowering the inventory levels, compared to the traditional 

lead-time-based threshold constraints. 
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