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Abstract

This paper studies one example of dynamic optimisation of systems subject to hydraulic transportation

delays. Properly taking into account the variability of the delay in optimisation is a challenging problem,

of importance in several applications. While stationary conditions have been derived in earlier works, here

we investigate practical numerical aspects and propose a direct resolution method using an orthogonal

collocation approach and a state of the art interior point solver. On the basis of the benchmark process

considered here, we compute optimal solutions, discuss their surprisingly rich structure and explore the

relevance of different numerical schemes.
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Introduction

The problem of controlling systems governed by

transport phenomena has attracted considerable atten-

tion in the recent years. This certainly stems from the

fact that these phenomena are ubiquitous in applica-

tions, and in process industries in particular: screw ex-

trusion [1], filling dynamics in internal combustion en-

gines [2, 3], crushing-mills [4], multiphasis flows [5, 6],

microfluidics [7], blending operations [8], to name a few.

When actuators and sensors are not collocated, signifi-

cant time delays appear in the dynamics. The situation

becomes very involved when flow rates are manipulated

variables. Then, the delays also become control depen-

dant, with non negligible variations.

Our work is particularly focused on plants where hy-

draulics are present. Under a plug-flow assumption, the

delay in a transport pipe (from the inlet to the outlet)

is implicitly defined by the relation [9, 10]

1

V

∫ t

t−D(t,q)

q(τ) dτ = 1 (1)

where q is the flow rate in the pipe (any given branch of
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the flow sheet of the plant), V its dead volume and D the

delay affecting the properties that are being transported

and measured at the outlet of the line.

While the incidence of fixed delays on control strate-

gies have been abundantly studied, the cases of time-

varying delays or input dependant delays have received

much less attention so far. This is so because the closed-

loop analysis is much more convoluted, as underlined in

the studies by [11, 12, 13, 14, 15, 16, 17, 18, 19], among

others. In short, the outcome of these works is that

some guarantee can be given to the closed-loop stability

of predictor-feedback controllers for such systems. Con-

cerning open-loop design (i.e. design of optimal tran-

sient trajectories) the literature does not propose many

results for such hydraulic-type varying delay.

Recently, first order necessary optimality conditions

of such problems have been studied in [20] but, to the

best of the authors’ knowledge, little has been done re-

garding actual numerical resolution of such problems.

This is a serious concern in view of real-world appli-

cations. In this paper, we aim at bridging this gap

between theory and applications. We address the di-

rect numerical resolution of the dynamic optimization

of a benchmark problem, a flow rate controlled wa-

ter heater with downstream measurement. We start
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Figure 1. Schematic of the water heating process from

[21]

by presenting the example under consideration in this

study, then we quickly review the well-known colloca-

tion method we seek to apply. Lastly, we discuss the

structure of the solutions that arise from the optimisa-

tion and the relevance of several numerical schemes. It

appears that the surprisingly rich structure of the opti-

mal solution (featuring periodic transient patterns) can

only be finely captured with a relatively accurate dis-

cretisation scheme, the finite volume method.

Problem statement

The system under consideration here is a flow rate

controlled water heater with downstream measurements

first introduced in [21] to outline the challenges asso-

ciated with closed-loop control of systems featuring hy-

draulic time delays. The system is represented on Fig. 1.

It is composed of a tank filled with a constant volume

V of water and heated by a fixed thermal flux Q. A

controlled flow rate of water q passes through the tank,

coming in at a fixed inlet temperature Tin. Since water

gets heated as it flows through the tank, the outlet tem-

perature of the tank is higher than Tin. After having

left the tank, water flows through a pipe of (constant)

cross-section S over a length L. The variable one seeks

to control is the temperature Tout at the outlet of this

pipe.

Neglecting heat losses, the average temperature in

the tank Ttank(t) satisfies the following balance equation

dTtank(t)

dt
=

Q

ρcpV
+
q(t)

V
(Tin − Ttank(t))

, f(Ttank, q)

(2)

where ρ, cp and Q are the density of water, its specific

heat and the power of supplied heat, respectively. As-

suming instantaneous mixing in the tank, one has

Tout(t) = Ttank(t−D(t, q)),

with∫ t

t−D(t,q)

q(τ) dτ = LS

Given some desired reference signals Tref and qref ,

the optimal control problem under consideration in this

article is, classically,

min
q,Tout

∫ T

0

wT · ‖Tout(t)− Tref (t)‖2

+ wq · ‖q(t)− qref (t)‖2 dt

s.t. ẋ = f(Ttank, q)

Tout(t) = Ttank(t−D(t, q)),

Ttank(t ≤ 0) = T0

qmin ≤ q(t) ≤ qmax

(3)

In this work, we consider a direct simultaneous res-

olution approach for (3) using orthogonal collocations

as described in [22]. Interestingly, encompassing the in-

put delayed equation in this framework is a challenge, as

it results into discontinuous discretized equations. The

discontinuity appears in the definition of the indices of

the discrete variables. Depending on the values of the

discrete unknowns, the indices appearing in the system’s

equations are changing, implicitly, and discontinuously.

As a consequence, instead of working directly with

the delayed equation, a better idea is to replace it with

the original transport equation

∂tT (x, t) = −u(t) ∂xT (x, t), x ∈ [0, L], u(t) =
q(t)

S

T (0, t) = Ttank(t), Tout(t) = T (L, t)

(4)

Formally, this change of representation does not gener-

ate any approximation (equation (1) corresponds to the

transport lag of (4), exactly).

Numerical treatment of the transport equation

In this section, we describe the numerical methods

used to deal with the transport equation (4) before pre-

senting their results, outlining practical numerical dif-

ficulties and discussing the interesting features of the

optimal solutions.



Finite differences (FD) discretisation

The first straightforward approach we consider is

to discretise the transport partial differential equation

(PDE) (4) using finite differences (FD) into a set of N−1

ODEs, n = 2...N

dTn
dt

= −q(t)Tn(t)− Tn−1(t)

∆V
, ∆V =

VL
N − 1

T1(t) = Ttank(t), Tout(t) = TN (t)

(5)

Here, collocations are applied on the new set of ODEs

including the tank and the discretised transport dynam-

ics (2)-(5), (see [22]).

Finite volumes(FV) discretisation

In a second approach, space is classically divided into

a set of cells over which averaged properties are defined

(see [23]) (with a running index j)

Tj(t) =
1

∆x

∫ x
j+1

2

x
j− 1

2

T (x, t) dx

Then, conservation laws imply that the evolution of the

averaged property of each cell only depends on the en-

ergy flux at its boundaries, yielding

Tj(ti+1) = Tj(ti)−
∆t

∆x
(Fj+ 1

2
(ti)− Fj− 1

2
(ti))

Ultimately, the numerical scheme consists of choosing

an appropriate expression of the numerical flux. In this

paper, we consider a second order accurate scheme,

Fj+ 1
2
(ti) =

u(ti)Tj−1(ti) +
1

2
u(ti)(1−

u(ti)∆t

∆x
)(Tj(ti)− Tj−1(ti))

It should be remembered that this type of finite vol-

umes numerical schemes is only stable if the Courant-

Friedrichs-Lewy [24] condition is verified

u∆t

∆x
< 1 (6)

In this approach, the transport PDE is directly trans-

formed into a set of algebraic equations and we only

need to apply collocations on the rest of the problem.

Optimization results

All computations were performed using a 2.60 GHz

Intel(R) Core(TM) i7-4720HQ processor on a 64 bits

system with a 16.0 GB RAM. The discretized optimisa-

tion problems were solved using IPOPT 3.11.8 through

AMPL. The interior point NLP solver IPOPT is well

suited to handle large problems such as those arising in

dynamic optimization, see [25].

In the reference case we run our simulations on, we

set Q = 1.107 J.s−1, V = 1 m3, L = 0.5 m, S = 1 m2,

wT = 1.103 and wq = 0. On all our plots, TTank, Tout,

Tout
exact and Tref respectively refer to the temperature

in the tank, the temperature at the outlet of the pipe as

predicted by the optimizer, the real temperature at the

outlet of the pipe (computed a posteriori from a high fi-

delity simulator using the optimised input sequence and

an explicit characteristics scheme) and the reference be-

ing tracked. Finally, nfe and nedpd are the number of

elements of the discretization of the time and space do-

mains respectively. The control input is a 0-order hold

with time intervals of length 0.1s.

Numerical results of the optimization for the FD

method are reported in Fig. 2-3-4. The case depicted on

Fig. 2 exhibits a good match between the transported

temperature predicted by the optimizer and its real

value during the transient phase, despite some difficulty

to encompass the non-smooth points of the transported

profile. Around equilibrium, on the other hand, the ac-

curacy of the model is not sufficient to capture high

frequency, non-smooth variations, leading the controller

to introduce undesirable parasitic oscillations. The set-

tings of Fig. 3 (qmin lowered) worsen the situation by

leading to a sharper profile that further outlines this

limitation of the FD approach, leading to a large pre-

diction mismatch during the transient phase and terrible

behaviour around steady state. Finally, Fig. 4 illustrates

the same case as Fig. 3 where we have tried to refine

the spatial discretization of the PDE to improve the ac-

curacy of the optimiser model. While this comes at a

significant computational cost (doubling the discretiza-

tion leads to a multiplication by a factor close to 8 of

the computational load, as expected for a well condi-

tioned optimization problem [26]), the solution is only

marginally improved. This shows the limitation of the

FD method.

Numerical results of the FV method are given on

Fig. 5-6. While Fig. 5 confirms the relatively good re-

sults obtained through the FD method in Fig. 2 with

the benefit of getting us rid of spurious oscillations, the

results of Fig. 6 display a spectacular improvement as

compared to the FV approach of Fig. 3-4. On the other

hand, we also outline that the computational cost of the

FV method is one order of magnitude larger than for

the FD one. This is due to the fact that the stability

of the numerical scheme imposes the CFL condition (6)
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Figure 2. FD discretization, CPU time = 35.08 s

nfe=100, nedpd=50, qmin=0.5 m3.s−1, qmax=5 m3.s−1.

[easy case, good performance]

and forces us to adopt a very refined time grid to be able

to reach acceptable spatial resolution for the transport

phenomenon.

Numerical challenges

Because of the time delay, the influence of the con-

trol is diminished and problem (3) inherits singular fea-

tures. As a result the Hessian of the discretized versions

of problem (3) is ill-conditioned and remains so as the

temporal mesh is refined. The solver, IPOPT, automat-

ically deals with this issue by adding an inertia term

to the Hessian to make it full rank (see [25]) but this

is known to lead to degraded performances in terms of

convergence speed.

An alternative approach to alleviate this issue is to

convexify the problem by adding explicitly a penalty

term on the control in the objective function. Practically

speaking, this means taking wq > 0 (we set wq = 50)

in (3). As shown on Fig. 7, when applied to the FD

method, this greatly improves the structure of the so-

lution which emulates the behaviour of Fig. 6. This

can also be of great practical interest when using the

FV method considering that it reduces the computation

time by about 45%, as illustrated on Fig. 8.

Another difficulty that we want to outline is that due

to condition (6), using an FV approach to discretize the

transport equation easily leads to a very large problem.

In our example, the order of magnitude of the number

Time [s]
0 1 2 3 4 5 6 7 8 9 10

[m
3
"
s!

1
]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Input

Time [s]
0 1 2 3 4 5 6 7 8 9 10

[/
C

]

0.5

1

1.5

2

2.5

3

3.5

Ttank

Tout

Tout
exact

Tref

Figure 3. FD discretization, CPU time = 31.841 s

nfe=100, nedpd=50, qmin=0.25 m3.s−1, qmax=5,

m3.s−1. [difficult case, poor performance]
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Figure 4. FD discretization, CPU time = 246.053 s

nfe=100,nedpd=100,qmin=0.250 m3.s−1,

qmax=5 m3.s−1. [difficult case, poor performance

despite mesh refinement]
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Figure 5. FV discretization, CPU time = 181.403 s

nfe=3500, nedpd=50, qmin=0.5 m3.s−1,

qmax=5 m3.s−1. [easy case, good performance]
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Figure 6. FV discretization, CPU time = 230.045 s

nfe=3500,nedpd=50,qmin=0.25 m3.s−1,

qmax=5 m3.s−1. [difficult case, good performance]
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Figure 7. FD discretization, CPU time = 18.202 s

nfe=100, nedpd=50, qmin=0.25 m3.s−1,

qmax=5 m3.s−1. [difficult case, penalty cost, good

performance]
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Figure 8. FV discretization, CPU time = 127.591 s

nfe=3500,nedpd=50,qmin=0.25 m3.s−1,qmax=5 m3.s−1.

[difficult case, penalty cost, good performance]



of variables describing it is 105. Besides of the concerns

already raised above regarding the associated computa-

tional load, this also leads to a large memory use that

can prove to be cumbersome.

In the light of previous investigations, we suggest

that for applications where performance focus is not too

demanding, an FD approach with a suitable control pe-

nalization term is probably the easiest way to implement

such optimization. If the accuracy achieved this way

is not sufficiently good, it may be necessary to switch

to an FV approach. This, in turn, will require larger

computing resources and possibly the use of some spe-

cific strategy such as the advanced step MPC framework

presented in [27] to deal with the induced computational

delays in a closed-loop implementation.

Structure of the solution

The point that the authors find most intriguing

about the various numerical results that have arose

throughout this study is the apparently pseudo-periodic

structure of the transient state of the optimal solutions

computed. Let us denote τ the pseudo-period of the

transient part of the input signal.

Despite its complex structure, this type of solu-

tion does not necessarily contradict the physical in-

tuition. Indeed, low flow-rate regimes correspond to

phases where the water in the tanks gets heated while

high flow-rate regimes lead to a quick flush of the outlet

pipe (thus allowing hot water to reach faster the out-

let of the pipe). This cyclic functioning could hence

be described as “heat and flush”. A typical example

of this structure is presented on the case of Fig. 9, for

the purpose of which parameters of the systems have

been modified to outline this behaviour (V = 5m3,

Q = 3.107J.s−1).

In order to gain insight into this phenomenon, we

conduct a study of the relation between the value of τ

and that of the dimensioning parameters of the prob-

lem : V , Q and VL. The following reference settings

are chosen : V = 1 m3, Q = 1.107 J.s−1, VL = 0.5 m3,

Tref = 8 ◦C. τ is found to be mostly insensitive to V

while it exhibits a very structured dependency on Q and

VL, as outlined on Fig. 10-11. It should be noted that

while Tref is not considered here as a characteristic pa-

rameter of the system, τ still depends on it. As a con-

sequence, the results presented on Fig. 10-11 cannot be

directly related to the trajectories of Fig. 2-6 (since op-

timisation was run with different values of Tref ).
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Figure 9. “Heat and flush behaviour”, nfe=5000, nedpd

= 40, qmin = 0.25 m3.s−1, qmax = 3 m3.s−1
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Conclusion

In this work, we have presented the results of a prac-

tical attempt to compute the optimal trajectory for a

system featuring hydraulic time delays. We presented

and discussed the relative merits of two alternative nu-

merical schemes balancing computational load versus

accuracy. In practical applications, either of them may

turn out to be more appropriate depending on the lim-

iting factors of the setting and the focus put on perfor-

mance.

With that said, we have shown that no matter the ap-

proach considered, even for a simple system, taking into

account time delays through a transport equation in an

optimization problem leads to large dimension systems

requiring fairly large computation time. While meth-

ods such as advanced-step NMPC could be considered

to deal with this difficulty, the authors also believe it

would be interesting to investigate the performance of a

resolution using an indirect method. Indeed, as shown

in [20], first order necessary optimality conditions can

be derived directly using the delayed equation solution

of the transport PDE, thus allowing to vastly lower the

dimension of the problem to solve.

Finally, the optimal solutions have a relatively rich

nature, featuring periodic like patterns (here the “heat

and flush”). The pseudo-periodic transient’s period can

easily be related to the value of the various physical

parameters of the system. We have not been able so far

to provide a theoretical explanation of this phenomenon

but will further investigate it in the future.
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