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Abstract

Optimization problems involving two decision makers at two different decision levels are referred to as bi-

level programming problems. In this work, we present a novel algorithm for the exact and global solution

of two classes of bi-level programming problems, namely (i) bi-level mixed-integer linear programming

problems (B-MILP) and (ii) bi-level mixed-integer quadratic programming problems (B-MIQP) containing

both integer and continuous variables at both optimization levels. Based on multi-parametric theory, the

main idea is to recast the lower level problem as a multi-parametric programming problem, in which

the optimization variables of the upper level problem are considered as parameters for the lower level.

The resulting exact parametric solutions are then substituted into the upper level problem, which can be

solved as a set of single-level deterministic mixed-integer programming problems. The algorithm will be

further illustrated through two numerical examples.
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Introduction

Optimization problems involving two decision makers

at two different decision levels are referred to as bi-level

programming problems: the first decision maker (upper

level; leader) is solving an optimization problem which

includes in its constraint set another optimization prob-

lem solved by the second decision maker (lower level;

follower). This class of problems has attracted consider-

able attention across a broad range of research commu-

nities, including economics, sciences and engineering. It

was applied to many and diverse problems that require

hierarchical decision making such as transportation net-

work planning (Migdalas (1995)), urban planning (Tam

and Lam (2004)), economic planning (Gao et al. (2011)),

design under uncertainty (Ierapetritou and Pistikopou-

los (1996); Floudas et al. (2001)), and design and control

integration (Tanartkit and Biegler (1996)).
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This work focuses on a novel approach for the solu-

tion of sub-classes of multi-parametric bi-level program-

ming problems of the following general form:

min
x

F (x, y)

s.t. G(x, y) ≤ 0

H(x, y) = 0

min
y

f(x, y) (1)

s.t. g(x, y) ≤ 0

h(x, y) = 0

x1, ...xi ∈ <, y1, ..., yj ∈ <

,where x is a vector of the upper level problem vari-

ables and y is a vector of the lower level problem vari-

ables.

Challenges and Previous work

Bi-level programming problems are very challeng-

ing to solve, even in the linear case (shown to be NP-



hard by Hansen et al. (1992) and Deng (1998)). To

strengthen this results Vicente et al. (1994) proved that

even checking strict or local optimality is NP-hard. For

classes of problems where the lower level problem also

involves discrete variables, this complexity is further in-

creased, typically requiring global optimization meth-

ods for its solution. Solution approaches for mixed in-

teger bi-level problems with discrete variables in both

levels mainly include reformulation approaches (Mitsos

(2010); Saharidis and Ierapetritou (2009)), branch and

bound techniques (Gumus and Floudas (2005)) or ge-

netic algorithms (Nishizaki and Sakawa (2005)), all of

which result in approximate solutions. It is worth men-

tioning that, to our knowledge, there do not exist any

rigorous approaches for the exact solution of bi-level

mixed-integer quadratic problems, with or without un-

certainty, in the open literature.

In this paper, we present a novel global optimiza-

tion algorithm for the exact and global solution of dif-

ferent classes of bi-level programming problems, more

specifically (i) having linear or convex quadratic opti-

mization levels, (ii) containing continuous and/or in-

teger variables in either or both optimization levels,

and (iii) having right hand sitde uncertainty in one

or both optimization levels. The algorithms are based

on multi-parametric theory (Acevedo and Pistikopou-

los (1997)) and our earlier results (Faisca et al. (2009,

2007); Oberdieck et al. (2016b)). The main idea is to

recast the lower level problem as a multi-parametric pro-

gramming problem, in which the optimization variables

of the upper level problem are considered as parameters

for the lower level. The resulting exact parametric solu-

tions are then substituted into the upper level problem,

which can be solved as a set of single-level deterministic

mixed-integer programming problems.

Theory and Algorithm

A known property of the general bi-level program-

ming problem is that the feasible set of the inner prob-

lem is parametric in terms of the decision variables of

the outer problem. To effectively utilize this property,

Pistikopoulos and co-workers have presented a series of

algorithms based on multi-parametric programming the-

ory, which can address different classes of continuous

multilevel programming problems(Faisca et al. (2007)).

Expanding on the work of Pistikopoulos and co-

workers, the approach presented here is based upon

the Multi-parametric Mixed-integer Linear Program-

ming (mp-MILP) and Multi-parametric Mixed-Integer

Quadratic Programming (mp-MIQP) algorithm of

Oberdieck and Pistikopoulos (2015). The proposed al-

gorithm will be introduced through the general form of

the B-MILP problem (2), but a similar approach can be

used for the solution of B-MIQP problems. The main

difference will be the substitution of the solvers from

mp-MILP to mp-MIQP solvers. Finally, two numerical

examples will be used to further illustrate the use of the

algorithm.

min
x

F (x, y) = c1
Tx+ d1

T y

s.t. A1x+B1y ≤ b1
Aeq1x+Beq1y = beq1

min
y

f(x, y) = c2
Tx+ d2

T y (2)

s.t. A2x+B2y ≤ b2
Aeq2x+Beq2y = beq2

x1, ...xi ∈ <, y1, ..., yj ∈ <
xi+1, ..., xk1 ∈ Z+, yj+1, ..., yk2 ∈ Z+

As a first step, we establish bounds for all integer

and continuous variables, by solving problems (2.1) for

the upper level variables x, and similar problems for

the lower level variables y, to obtain bounds on both x,

xL ≤ x ≤ xU , and y, yL ≤ y ≤ yU .

xLl = min xl

s.t. A1x+B1y ≤ b1
Aeq1x+Beq1y = beq1

A2x+B2y ≤ b2
Aeq2x+Beq2y = beq2 ,

(2.1)

xUl = min −xl
s.t. A1x+B1y ≤ b1

Aeq1x+Beq1y = beq1

A2x+B2y ≤ b2
Aeq2x+Beq2y = beq2

Then, the B-MILP is transformed into a binary B-

MILP by expressing integer variables that are not bi-

nary, xi+1, ..., xn1
and yj+1, ..., yn2

, in terms of binary

0-1 variables, ´xi+1, ..., ´xn3 ∈ {0, 1} and ´yj+1, ..., ´yn4 ∈
{0, 1}, according to the formula in Floudas (1995)(Sec-

tion 6.2.1, Remark 1). The acute accent will be omitted

in the following steps for simplicity.

As a next step, the lower level problem of the B-

MILP, is transformed as a mp-MILP problem (2.2), in

which the optimization variables of the upper level prob-

lem, x , are considered as parameters for the lower level.



min
y

d2
T y + c2

Tx

s.t. B2y ≤ b2 −A2x (2.2)

Beq2y = beq2 −Aeq2x

xL ≤ x ≤ xU

The solution of (2.2) using POP R©toolbox

(Oberdieck et al. (2016a)), results to the complete

profile of optimal solutions of the lower level problem

as explicit functions of the variables of the higher level

problem with corresponding boundary conditions (2.3).

y =



ξ1 = m1 + n1x if H1x ≤ h1
ξ2 = m2 + n2x if H2x ≤ h2
...

...

ξk = mk + nkx if Hkx ≤ hk

(2.3)

,where Hkx ≤ hk is referred to as critical region,

CRk, and k denotes the number of computed critical

regions.

The computed solutions (2.3) are then substituted

into the upper level problem, which can be solved as a set

of single-level deterministic mixed-integer programming

problems, (2.4).

z1 = min
x

c1
Tx+ d1

T ξ1(x)

s.t. A1x+B1ξ1(x) ≤ b1
Aeq1x+Beq1ξ1(x) = beq1

H1x ≤ h1
z2 = min

x
c1

Tx+ d1
T ξ2(x)

s.t. A1x+B1ξ2(x) ≤ b1
Aeq1x+Beq1ξ2(x) = beq1 (2.4)

H2x ≤ h2
...

zk = min
x

c1
Tx+ d1

T ξk(x)

s.t. A1x+B1ξk(x) ≤ b1
Aeq1x+Beq1ξk(x) = beq1

Hkx ≤ hk

The solutions of the above single level MILP prob-

lems correspond to all the local optimal solutions of the

original B-MILP, as parametric programming has the

ability to explore the whole parametric space and find

all solutions. The final step of the algorithm is to com-

pare all the local solutions to obtain the exact and global

optimum.

The algorithm can be extended to problems includ-

ing right-hand-side uncertainty on both lower and upper

Table 1. Algorithm for the solution of B-MILP problems

Step 1: Establish integer/continuous variable bounds.

Step 2: Transform the B-MILP into a binary B-MILP.

Step 3: Recast the lower level as a mp-MILP, in which

the optimization variables of the upper level problem are

considered as parameters.

Step 4: Solve the resulting mp-MILP problems to ob-

tain the optimal solution of the lower lever as explicit

functions of the upper level variables.

Step 5: Substitute each multi-parametric solution into

the upper level problem to formulate k single level MILP

problems.

Step 6: Solve all k single level problems and compare

their solutions to select the exact and global optimum.

levels, with the solution of a single level mp-MILP in-

stead of the MILP at the last step of the algorithm.

The proposed algorithm, summarized also in Table

1, will be further illustrated through two numerical ex-

amples.

Numerical examples

Two numerical examples will be solved to illustrate

the use of the proposed algorithm. The first one is

a bi-level programming problem with a mixed-integer

quadratic programming problem (MIQP) at the first

level and a mixed-integer linear programming problem

(MILP) at the second level. The second example illus-

trates the extension of the algorithm to tackle uncertain-

ties and supply the parametric solution of the problem.

Example 1: MIQP-MILP

Consider the following example consisting of a

mixed-integer linear programming problem at the lower

level, and a mixed-integer quadratic programming prob-

lem at the higher level.

min
x1,2,y3

4x1
2 − x22 + 2x2 + x3y3 + 5y1 − 6y3

s.t. y1 + y2 + y3 ≤ 1

min
x3,y1,2

−x1 + x2 − 2x3 − y1 + 5y2

s.t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5

−8x1 − 4.9x2 − 3.2x3 ≤ 5

3.3x1 + 4.1x2 + 0.02x3...

...+ 4y1 + 4.5y2 ≤ 1

−10 ≤ x1,2 ≤ 10

x1, x2, x3 ∈ <, y1, y2, y3 ∈ {0, 1}



As the problem is already in the form of a binary

mixed-integer bi-level programming problem, Steps 1

and 2 are not needed, therefore we proceed to Step 3.

Following Step 3, the lower level problem is reformu-

lated as a mp-MILP problem (3.1), in which the opti-

mization variables of the upper level problem that ap-

pear in the lower level, i.e. x1, x2, are considered as

parameters.

min
x3,y1,2

−2x3 − y1 + 5y2 − x1 + x2

s.t. 2.5x3 ≤ 11.5− 6.4x1 − 7.2x2

−3.2x3 ≤ 5 + 8x1 + 4.9x2

0.02x3 + 4y1 + 4.5y2 ≤ 1− 3.3x1 − 4.1x2

−10 ≤ x1,2 ≤ 10

The above problem is then solved using a mp-MILP

algorithm, and yields the optimal parametric solution

shown in Table 2.

The solutions obtained for every critical region are

then substituted into the upper level problem to formu-

late five new single level MIQP problems. More specifi-

cally, the value of the optimization variable of the lower

level, x3, is substituted in the upper level in terms of

the upper level optimization variables, x1 and x2; and

the definition of the critical region is substituted in the

upper level as a new set of constraints.

z1 = min
x1,2,y3

4x1
2 − x22 + 2x2

− (−165x1 − 205x2 + 50) y3 − 6y3

s.t. −y3 ≤ 1

−0.624x1 − 0.780x2 ≤ −0.175

0.624x1 + 0.781x2 ≤ 0.198

x1 ≤ 10
... (3)

z5 = min
x1,2,y3

4x1
2 − x22 + 2x2

− (−2.56x1 − 2.88x2 + 4.6) y3 − 6y3

s.t. −y3 ≤ 1

0.044x1 + 0.999x2 ≤ 4.565

0.626x1 + 0.780x2 ≤ 0.175

−0.624x1 − 0.781x2 ≤ 0.570

−10 ≤ x1 ≤ 10

−x2 ≤ 10

Solving all the single level MIQP problems in (3)

results to the solution in Table 3.

As a final step the solutions of all the single level

problems are compared. The solution with the minimum

objective value corresponds to the global minimum of

the initial bi-level programming problem.

Table 2. Example 1: Parametric solution of the lower

level problem

CR Definition Variables

1

−0.624x1 − 0.780x2 ≤ −0.175 x3 = −165x1 −
205x2 + 50

0.624x1 + 0.781x2 ≤ 0.198 y1 = 0

x1 ≤ 10 y2 = 0

2

0.624x1 + 0.781x2 ≤ −0.570 x3 = −2.56x1−
2.88x2 + 4.6

−0.624x1 − 0.780x2 ≤ 0.594 y1 = 0

x1 ≤ 10 y2 = 0

3

−0.626x1 − 0.780x2 ≤ 0.596 x3 = −165x1

0.624x1 + 0.781x2 ≤ −0.570 −205x2 + 50

−0.626x1 − 0.780x2 ≤ 0.594 y1 = 1

x1 ≤ 10 y2 = 0

4

0.626x1 + 0.780x2 ≤ −0.596 x3 = −2.56x1−
0.044x1 + 0.999x2 ≤ 4.565 2.88x2 + 4.6

−10 ≤ x1 ≤ 10 y1 = 1

−x2 ≤ 10 y2 = 0

5

0.044x1 + 0.999x2 ≤ 4.565 x3 = −2.56x1−
0.626x1 + 0.780x2 ≤ 0.175 2.88x2 + 4.6

−0.624x1 − 0.781x2 ≤ 0.570 y1 = 0

−10 ≤ x1 ≤ 10 y2 = 0

−x2 ≤ 10

Table 3. Example 1: Single level solutions

CR Variables Objective

1

x1 = 0.370

-7.962x2 = −0.042

y1,2 = 0,y3 = 1

2

x1 = 0.458

-2.015x2 = −1.129

y1,2 = 0,y3 = 1

3

x1 = 0.423

2.286x2 = −1.133

y2,3 = 0,y1 = 1

4

x1 = 0

-115x2 = −10

y2,3 = 0,y1 = 1

5

x1 = 0.449

-1.969x2 = −1.088

y1,2 = 0,y3 = 1



Example 2: mpMIQP-MILP

The algorithm introduced in this paper can be also

extended to bi-level problems with uncertainty in one or

both levels.

For simplicity, the same problem solved in Example

1 was also used for this example, but x2 will be now

considered as an uncertainty instead of an optimization

variable. Therefore, the problem considered in this ex-

ample is the following:

min
x1,y3

4x1
2 + x3y3 + 5y1 − 6y3 − x22 + 2x2

s.t. y1 + y2 + y3 ≤ 1

min
x3,y1,2

−x1 − 2x3 − y1 + 5y2 + x2

s.t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5

−8x1 − 4.9x2 − 3.2x3 ≤ 5

3.3x1 + 4.1x2 + 0.02x3...

...+ 4y1 + 4.5y2 ≤ 1

−10 ≤ x1,2 ≤ 10

x1, x2, x3 ∈ <, y1, y2, y3 ∈ {0, 1}

Again for this case the problem is already bounded

and in a binary form. Starting from Step 3, the lower

level of the programming problem is transformed into

a mp-MILP problem. Both the higher level variables

and parameters are being treated as parameters for the

lower level.

For this example, the reformulated lower level will be

exactly the same as in Example 1, and can be solve at

Step 4 with the same methodology. Continuing to Step

5, the lower level solutions, corresponding to each criti-

cal region, are substituted into the higher level problem.

z1 = min
x1,y3

4x1
2 + 165x1y3 + 44y3

−205x2y3 − x22 + 2x2

s.t. −y3 ≤ 1

−0.624x1 ≤ −0.175 + 0.780x2

0.624x1 ≤ 0.198− 0.781x2

x1 ≤ 10
... (4)

z5 = min
x1,y3

4x1
2 − 2.56x1y3 − 1.4y3

−x22 − 2.88x2y3 + 2x2

s.t. −y3 ≤ 1

0.044x1 ≤ 4.565− 0.999x2

0.626x1 ≤ 0.175− 0.780x2

−0.624x1 ≤ 0.570 + 0.781x2

−10 ≤ x1 ≤ 10

−x2 ≤ 10

The five resulting single level problems in this case,

Table 4. Example 2: Single level mp-MIQP solution

CR Definition Objective

1.1 −4.824 ≤ x2 ≤ 7.733 2.136x2
2 − 408.010 −

8.154

1.2 7.733 ≤ x2 ≤ 7.812 −x22 − 203x2 − 1406

... ... ...

5.1 0.290 ≤ x2 ≤ 1.241 −x22 − 0.88x2 − 2.219

5.2 −4.824 ≤ x2 ≤ 0.290 2.096x2
2 − 2.674x2 −

1.959

5.3 −4.882 ≤ x2 ≤ −4.824 0.001x2
2 + 0.0092x2 +

0.0002

5.4 1.2407 ≤ x2 ≤ 8.7160 2.136x2
2 − 8.661x2 −

2.607

Table 5. Example 2: Final solution

CR Definition Objective

4.1 −5.014 ≤ x2 ≤ −4.882 0.011x2
2 + 0.009x2 +

0.0002

3.1 −4.882 ≤ x2 ≤ −4.840 2.136x2
2 − 2.575x2 +

6.669

5.3 −4.840 ≤ x2 ≤ −4.824 0.011x2
2 + 0.009x2 +

0.0002

5.2 −4.824 ≤ x2 ≤ −0.015 2.096x2
2 − 2.674x2 −

1.959

1.1 −0.015 ≤ x2 ≤ 7.733 2.136x2
2−408.010x2−

8.154

1.2 7.733 ≤ x2 ≤ 7.812 −x22 − 203x2 − 1406

3.4 7.812 ≤ x2 ≤ 8.799 2.096x2
2−310.374x2+

4.065

3.3 8.799 ≤ x2 ≤ 8.802 −x22 − 203x2 − 701

4.2 8.802 ≤ x2 ≤ 10 −x22−0.880x2−1.095

are in the form of mp-MIQP problems, with the un-

certainty x2 being a parameter for the problem. There-

fore, the mpMIQP algorithm was used for their solution.

Each critical region formed in Step 4 is now divided into

smaller critical regions as another parametric program-

ming problem is solved within them. A summary of the

resulting parametric solutions is presented in Table 4.

As a last step, the solutions generated from each

critical region have to be compared and the minima

through the parametric space are chosen as the final so-

lution of the mixed integer bi-level programming prob-

lem with uncertainty. Figure 1 illustrates all the solu-

tions through the parametric space, and Table 5 sum-

marizes the final solution.



Conclusion and Future Work

This paper introduces a novel algorithm for the so-

lution of a range of classes of mixed integer bi-level pro-

gramming problems with or without integer variables

and uncertainty on both optimization levels. The abil-

ity of the algorithm to give the parametric solution of

such problems can be utilized for the implementation

of a hierarchical model predictive controllers, schedul-

ing and control integration or planning and scheduling

integration. We are currently working on developments

in all three above mentioned areas.
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