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Abstract

We present a strategy for the simultaneous solution of scheduling and advanced control based on our re-

cently introduced PAROC framework and software platform. A rolling horizon optimization and schedul-

ing model is proposed linked to a control-aware process model that is able to capture the system dynamics.

A bridging model approach is applied to handle the mismatch between (i) the scheduling and the con-

trol level in terms of time step and (ii) the schedule and the “high fidelity” process model in terms of

model-process mismatch. The proposed approach is demonstrated with its application to a domestic

cogeneration unit.
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Introduction

Determining the operating conditions that result into
profitable, stable and sustainable processes has been in
the epicenter of process systems engineering. A gen-
eral representation of such a problem, involving the op-
timization of design and operational characteristics of a

process is presented in (1).
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(1) corresponds to a large scale mixed integer dy-
namic optimization (MIDO) problem, representing the
interactions amongst process design, scheduling and
control - as discussed in Pistikopoulos and Diangelakis
(2016) and references therein. z(t) are the states, u.(t)
are the control derived variables, y(¢) are the outputs,
d(t) is the uncertainty, SP(t) are the scheduling derived
setpoints, Y'(¢) are the binary decision variables, D are
the design variables. Design and control interactions are
discussed, amongst others, in Mohideen et al. (1996);
Ross et al. (1999) and Sakizlis et al. (2003). The inter-
actions of control and scheduling are discussed, amongst
others, in Kopanos and Pistikopoulos (2014); Subrama-
nian et al. (2013); Zhuge and Ierapetritou (2014) and
Du et al. (2015).

Here, based on (1), we focus on the simultaneous
solution of advanced control and scheduling, following
the steps of the PAROC framework (Pistikopoulos et al.,
2015), applied to a domestic CHP (Diangelakis et al.,
2014).



Simultaneous scheduling and control via the
PAROC framework

The proposed methodology for the integration of
scheduling and control consists of two main steps.
Firstly, a control scheme is deployed for the process at
hand. Secondly, the process with its developed control
scheme is then used to derive an approximate model,

based on which a scheduling formulation is derived.

Process Control Strategy (PCS)

Figure 1 presents the PAROC framework (Pis-
tikopoulos et al., 2015) featuring the following.

PCS 1: “High Fidelity” Dynamic Modeling —
The development of the “high fidelity model”, its quality
and robustness determine the validity of the framework.
The modeling of the system takes place in gPROMS®)
Process Systems Enterprise (2016).

PCS 2: Model Approximation — The resulting
dynamic models of the first step (most commonly DAE
or PDAE programs), although sufficiently accurate com-
pared to the real process, are far from ideal in terms of
multi-parametric programming utilisation. Therefore,
reduction techniques and identification methods are em-
ployed for to (i) reduce the model complexity while (ii)

preserving the model accuracy.

PCS 3: Design of the Multi-Parametric Model
Predictive Controllers — The design of the controllers
is based on the validated procedure described in Pis-
tikopoulos et al. (2012). The resulting multi-parametric
program is solved via the POP®) (Oberdieck et al., 2016)
toolbox in MATLABG®), thus acquiring the map of op-
timal control actions.

PCS 4: Closed-Loop Validation — The proce-
dure is validated through a closed loop procedure, where
the controllers are tested against the original model
of Step 1. This can happen either via the interoper-
ability between software tools such as gPROMS® and
MATLAB®) via gO:MATLAB or via the straight imple-
mentation of the controllers in the gPROMS®) simula-
tion via the use of C++ programming and the creation

of Dynamic Link Libraries.

This “high fidelity” model with the control scheme
is then utilized for the derivation of the approximate
model upon which the scheduling strategy is based.
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Figure 1. The PAROC framework.

Process Scheduling Strategy (PSS)

The solution of multi-parametric scheduling prob-
lems has been previously discussed in Ryu and Pis-
tikopoulos (2007) and Wittmann-Hohlbein and Pis-
tikopoulos (2013). In Kopanos and Pistikopoulos (2014)
the procedure for deriving and solving scheduling prob-
lems via multi-parametric programming, using a state-
space model representation (Subramanian et al., 2013)
and a mp-MILP reformulation is presented. The model
used in that work is based on a stochastic model ap-
proach as it does not consider information regarding
the process itself or its dynamics. Utilizing such an ap-
proach without including process information, for an in-
tegrated scheduling and control application, will result
into a schedule that is not consistent with the process
and will therefore create a mismatch between the high-
fidelity mathematical model and the state-space model
representation used in the schedule. In this work we pro-
pose a scheduling formulation via a state-space model
that is based on the closed-loop control behavior of the
high-fidelity model. Furthermore, since the scheduling
formulation is (i) typically a mixed integer linear pro-
gramming problem that does not account for any mis-
match between the schedule level and the process level
and (ii) it focuses on the mid-term economic optimiza-
tion of the process, the proposed scheme needs to ac-
count for those aspects. Taking into account that the
control is of several orders of magnitude more frequent
in terms of calculations, the use of a rolling horizon op-

timization formulation that will (i) bridge the time-scale



gap between schedule and control and (ii) take into ac-
count the process model mismatch needs to be derived.
The proposed methodology is presented in Figure 2 and
described below.
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Figure 2. Derivation of scheduling and surrogate

model.

PSS 1: “High Fidelity” Model with control
scheme — The “high-fidelity” model with the control
scheme is the basis upon the scheduling strategy is de-
signed. It is the result of the application of the PAROC
framework as described in the previous subsection.

PSS 2:
model similar to the one in Kopanos and Pistikopoulos
(2014) is then derived as follows. The fig: Approx model

with the control scheme of the first step is utilized to

Approximate model — A state-space

create sets of data that correlate the desired set-points
of the system operation with the real outputs. An iden-
tified approximate state-space model is created with (i)
linear dynamics in discrete time, (ii) discretization step
of several orders of magnitude larger than the time step
of the control and (iii) awareness of the process dynam-
ics.

PSS 3: mpMILP and mpQP reformulation
and solution — The approximate state-space model is
used to formulate a MILP problem that corresponds to
the economic scheduling of the process at hand. The
multi-parametric version of this procedure is described
in detail in Kopanos and Pistikopoulos (2014). The re-
sulting approximate model involves a mismatch against
This is handled by a scale
bridging model procedure. Note that, as described in

the online process model.

Equation 1, the unification of design, scheduling and
control can be expressed by a large scale MIDO prob-
lem, both the mismatch and the different time scales
considered is a mathematical artifact inherent to the
procedures used to make the problem approachable via
the available optimization techniques. In order to han-

dle the aforementioned mismatch, a QP formulation is

derived that minimizes the mismatch between the sched-
ule predicted output and the “high fidelity” model with
the control scheme. The scale bridging model recalcu-
lates the optimal scheduling action and the control set-
points on the control time interval level. Note that in
the case of multiple modes of operation as a result of
an optimal schedule (e.g. in process with multiple prod-
ucts) multiple scale bridging models need to be derived.
Both formulations are solved explicitly.

PSS 4: Closed-Loop Validation — The closed
loop validation of the scheme involves all three stages
and formulations. In a similar manner as in the PAROC
framework the receding horizon optimization policies are
tested against the original high fidelity model using the
same computational tools. An overall depiction of the
closed loop formulation is shown in Figure 3. In the fig-
ure, SP stands for set point, v stands for optimization
variable and y for system output (and it denotes the
feedback). OP is the operating policy that the solution
at each stage dictates for the lower stage. Furthermore,
M M is the process mismatch and the subscripts T's and
Tc correspond to the scheduling and control time inter-
vals and denote the frequency of the information ex-

change between the different stages.
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Figure 3. Closed loop application of the receding hori-
zon optimization policies against the process “high-
fidelity” model.

Combined Heat and Power (CHP) system

The approach described in the previous section is
applied on the CHP model of our previous works (Dian-
gelakis et al., 2014). For the sake of brevity the reader is
referred to Diangelakis et al. (2016) for the full control
scheme of the domestic CHP unit via decentralization
and multi-parametric programming. Here we summa-

rize the control scheme as follows:

1. Two decentralized - coordinated controllers handle



the power generation subsystem and the heat pro-

duction subsystem, respectively.

2. The scheme features a dual operating mode as the
CHP process can be regarded as a multi-product
process. Power generation focused or heat produc-
tion focused operation is subjected to economic cri-

teria.

3. The controllers deployed are explicit Model Predic-

tive Controllers.

Figures 4 and 5 summarizes the control schemes op-

eration.
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Figure 4. Power generation focused operation.
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Figure 5. Heat production driven operation

As described in the previous section, the controlled
“high fidelity” model is approximated using the System
Identification Toolbox(©) in MATLAB(). Note that the
controller scheme handles the power production level
and the hot water temperature and flow. On the con-
trary, the scheduling approach described in Kopanos
and Pistikopoulos (2014) focuses on electrical power and
heat generation as a whole, i.e. it does not differentiate
between water temperature and flow rate setpoints. Fur-
thermore, the schedule takes into account the presence
of a heat storage tank. The model used for scheduling

purposes is presented in Equation 2.

Eryrs =0.9989E1 + 99.4867Rr
Bryrs =97.977Br 4+ 0.9079E
4+ 11.9421Q1 — 11.9421 D1 — 11.94212%
Pr=—Er+Wp+ 28

(2)

Where Er and By are the power generation and stor-
age tank heat, Ry is the change in the power generation
level, Qr is the amount of heat acquired from external
sources, Dr is the amount of heat disposed to external
sinks at a cost, Wr is the amount of electrical power
acquired from external sources and Pr is the amount
of power disposed to an external sink at a profit. Fi-
nally, ZZ and Z% are the electrical and thermal de-
mands treated as uncertain but bounded parameters.
Note that T's stands for the scheduling time intervals
which, in this case, is equal to 100 control intervals (T'c).
The formulation of the mpMILP follows the formulation
of Kopanos and Pistikopoulos (2014) with the exception
that in this work the CHP system is considered to be
always on operation. Binary decision variables model
the selection between buying or selling power/heat as
the simultaneously doing both is not permitted.

The time variant part of the model in Equation 2
is discretized to the control time step and utilized for
the formulation of the scale bridge with focus on the
process-model mismatch, i.e. the formulation of the
scale bridge handles the mismatch between the system
states of Equation 2 by providing a “more discrete” op-
timization variable profile. Given the selectivity of the
schedule in terms of buying or selling heat two scale
bridging optimization formulations need to be designed.
Each formulation is a quadratic problem with box con-
straints on the optimization variables, states and mis-
match that is reformulated to an mpQP and solved
explicitly using Oberdieck et al. (2016). The critical
regions for the schedule mpMILP as well as the scale
bridge for acquiring heat through an external source are
presented in Figures 6 and 7. The solution of the scale
bridge of disposing heat to an external heat is omitted
for the sake of brevity.

Note that the By axis in Figure 7 extends from 0 to
150 while the one on Figure 6 from 0 to 10000. The rea-
son the remaining parameter values were omitted from
depiction is that the parametric actions for the given set
of fixed parameters and for values of 150 < By < 10000,
for this scale bridging solution is the same, i.e. there

aren’t any more critical regions but rather a simple ex-
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Figure 6.

tension of the depicted region for ~ 120 < By < 10000.

The closed loop validation of the system takes place
as described in Figure 3. Note that the system oper-
ates in the power generation focused approach when the
amount of power produced matches the demand (that is
without selling or buying power) or when the ratio of the
power demand covered by the production is larger than
the ratio of the heat demand covered by the production.
The exact opposite holds true for the heat production
focused operation.

Results

The closed loop validation of the operational scheme
that includes the schedule, 2 scale bridges and the con-
trol scheme is presented in Figure 8. Note that the
setpoints for the control are not strict step change but
rather the result of the scheduling and scale bridging
optimization problems. Furthermore, Figure 9 shows
how one of the optimization variables of the scheduling
formulation problem, namely (), the amount of heat ac-
quired from external sources, provides the setpoint for
the scale bridge models that calculate the optimal action
in the control level time step while taking into account
the process-model mismatch.

The controllers meet the setpoints as shown in Fig-
ure 8 with a mismatch of less than 2% for a steady set-
point. In case where a sudden setpoint change occurs,
especially in the case of the temperature profile, the set-
point is met within the 10s windows of the scheduling
problem time step. The momentary temperature vio-
lation of the water temperature at approximately 110s
is the result of the challenging aspect of the schedule
not being aware of the temperature but only of the
heat production. The scale bridging models behavior
as shown in Figure 9 manages to take the process-model
mismatch into account. The difference in the @ profile
is attributed to (i) the rapid change of the amount of
power required from the grid, (ii) the change of policy

from a power production focused operation to a heat
production focused operation and (iii) the dynamics of
the water flow system that is unable to reduce the flow
rate so drastically thus causing the system to buy less
heat from external sources than predicted. In this case
the cost of operation predicted by the schedule is less
than the actual cost because of the system dynamics.
In an opposite case where less heat acquisition would be
predicted but more would be acquired (for the aforemen-
tioned reasons) the cost would be affected in the exact
opposite way. Although the mismatch is treated via this
approach, the error of discretization is still present and
this is a characteristic case of it.
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Figure 8. Closed loop validation results for simultaneous

scheduling and control optimization.
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Figure 9. Closed loop validation results for simultaneous

scheduling and control optimization.

Conclusions and future work

In this work we presented a framework for the si-
multaneous process scheduling and control via multi-
parametric programming and the PAROC framework.
The framework was applied on a domestic cogenera-
tion system. After the development of an advanced
control scheme, we developed a control aware model
that was utilized to derive and solve offline (i) the eco-



nomic scheduling problem and (ii) the scale bridging
model. The three different optimization levels were
cross-validated against the original model of the process
and their performance was assessed.

The advantages of the proposed approach are; (i)
the state-space representation of the scheduling formu-
lation is a priori control aware as it describes the con-
trolled model response; (ii) the mismatch between the
“high-fidelity” — controller model and the scheduling for-
mulation is handled by a surrogate quadratic program-
ming problem; (iii) the ability to obtain explicit expres-
sions enables the closed loop validation and optimiza-
tion within the advanced modeling environment. The
proposed strategy provides one further step towards the
unification of design and operational optimization (Pis-
tikopoulos and Diangelakis, 2016).

The inclusion of more than one CHP units in the
scheduling formulation and the ability for the unit to
switch off is the subject of our ongoing work. Further-
more, different approaches in bridging the gap between

the different rolling horizon optimization problems are

investigated.
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