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Abstract

This paper contemplates the amenability of Robust Optimization to address problems that involve en-

dogenous uncertainty, i.e., uncertainty that is affected by the decision maker’s strategy. To that end, we

extend generic polyhedral uncertainty sets that are typically considered in RO into sets that depend on

the actual decisions. Such dependency allows us not only to capture functional changes in correlations

that may be induced by given decisions, but also to alleviate conservatism effects from non-materialized

model parameters. Case studies from process network capacity expansion, offshore oilfield development,

and clinical trial planning showcase the effect of various levels of uncertainty in the optimal solutions as

well as the modeling potential and favorable computational tractability characteristics of the proposed

framework, which can be utilized in both short-term and long-term decision making.
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Introduction

Uncertainty is inherent in virtually any operation we

wish to optimize. Parameters affected by other agents

such as market prices and demand, unexpected events

such as disruptions, or simply incomplete information

about the system, may render solutions of deterministic

models suboptimal or even infeasible when parameter

realizations deviate from their nominal values. To that

end, multiple approaches have been proposed so as to

account for uncertainty during the optimization process.

Robust Optimization (RO) (Ben-Tal and Ne-

mirovski, 1999) offers an attractive option, especially for

applications where distributional information about the

uncertainty is limited and/or where solution feasibility is

top priority. RO seeks solutions that remain feasible for

any possible uncertainty realization from within a con-

sidered uncertainty set. The set captures known correla-

tions among uncertain parameters, but knowledge of de-

tailed probability distributions is not typically required

to construct such a set. Multiple types of uncertainty

sets (e.g., ellipsoidal, cardinality-constrained budgets,

polyhedral) can be used in this context, exploiting cor-

∗gounaris@cmu.edu

relations among uncertain parameters as a mechanism

to control the trade-off between robustness and perfor-

mance. A common characteristic across traditional un-

certainty sets utilized in RO is their “static” nature, i.e.,

the range of parameter realizations they admit is not af-

fected by the value of the decision variables. This fact

leads to two important limitations. Firstly, static sets

do not suffice to model settings where one’s decisions

may render a model parameter physically meaningless

(e.g., the yield of a reaction step that was not selected

in the optimal flowsheet) or where one’s decisions affect

the underlying probability distribution from which the

parameter realization draws (e.g., deciding to enter a

market sooner will give us access to a larger demand).

Secondly, the use of a static set may lead to overly con-

servative solutions in cases where non-materialized pa-

rameters contribute in correlations among parameters.

In order to overcome the above challenges, we re-

cently proposed the use of decision-dependent uncer-

tainty sets (DDUS) in the context of process schedul-

ing (Lappas and Gounaris, 2016). In that work,

the effects of processing times corresponding to non-

materialized tasks were removed dynamically from the

uncertainty set. The purpose of this paper is to assess



the concept of using DDUS so to handle endogenous

uncertainty via the RO methodology in a number of ap-

plications of interest to the Process Systems Engineering

(PSE) community.

Robust Optimization

Consider an optimization problem with continuous

decision variables, x ∈ X , binary decision variables, w ∈
W, and uncertain parameters, q ∈ Q:

min
x∈X ,w∈W

f (x,w, q)

subject to gi (x,w, q) ≤ 0 ∀i
(1)

The fundamental idea behind RO is to guarantee

the constraint satisfaction for any parameter realization

from within the uncertainty set, and then seek to iden-

tify the best feasible solution assessed against the worst

possible realization of the uncertainty. The RO problem

can thus be cast as the following bi-level problem:

min
x∈X ,w∈W

max
q∈Q

f (x,w, q)

subject to gi (x,w, q) ≤ 0 ∀ q ∈ Q ∀ i
(2)

We remark that the problem stated above involves

infinitely many constraints and, in order solve it, one

shall typically apply standard reformulation techniques

from Semi-infinite Programming.

Traditional Uncertainty Sets

One of the most critical elements of applying the

RO methodology is the selection of the uncertainty

set against which robust feasibility is sought. The

shape and size of the set can have a direct impact

on the solution conservatism, and extensive literature

effort has focused on how to best exploit parameter

correlations so as to reduce this conservatism. The

most popular uncertainty sets used in RO are the

ellipsoidal (Ben-Tal and Nemirovski, 1999) and the

cardinality-constrained (Bertsimas and Sim, 2004) ones.

In this work, we will focus on general polyhedral uncer-

tainty sets, which generalize the latter. Assuming that

the original (deterministic) model for the problem of in-

terest is of linear or mixed-integer linear form, these sets

maintain this property also for the reformulated robust

counterpart model. A general polyhedral uncertainty

set adheres to the following form:

Q =


q ∈ RNQ, p ∈ {0, 1}NP :

Hq +Gp ≤ d

qL ≤ q ≤ qU

 , (3)

where NQ corresponds to the number of continuous un-

certain parameters, q, and NP to the number of binary

uncertain parameters, p. MatricesH andG store the pa-

rameter coefficients, having as many rows as the number

of correlations in the set. Vector d stores the right hand

side constants. Finally, qL and qU are bounds for the

admissible realizations of continuous uncertain parame-

ters. We remark that for cases involving binary uncer-

tain parameters (NP 6= 0), some solution approaches

require certain restrictions on the data, such as total

unimodularity of matrix G and an empty matrix H.

Endogenous Uncertainty

In order to properly motivate the use of DDUS, we

provide here some background on uncertainty charac-

terization. Uncertain parameters can be classified as

exogenous, when they are independent of decisions, and

endogenous, when the decision maker can manipulate

their stochastic support. There are various flavors of

endogeneity. In certain cases, a decision may render a

parameter referenced in a model physically meaningless

(e.g., the price of a product under development that did

not hit the market). In other cases, a decision may af-

fect the timing of parameter realization (e.g., the period

in which we decide to drill an oil well will be the time

at which we will learn the true magnitude of our initial

well production rate). Finally, a decision may affect the

distribution from which an uncertain parameter draws

(e.g., the technology we choose will affect the range of

possible yields for the process).

Most optimization problems studied in RO literature

consider only exogenous uncertainty (e.g., uncertainty

in product prices and demand in non-monopolistic mar-

kets, weather conditions), which in RO can be mod-

eled using traditional, non decision-dependent uncer-

tainty sets. However, there are still many important

problems where uncertainty is subject to the optimizer’s

decisions (Jonsbr̊aten et al., 1998). In a monopolis-

tic market, for instance, a decision to vastly increase

the production will have a negative effect on product

prices. Other examples arise in oilfield development

planning (Goel and Grossmann, 2004), network capac-

ity expansion (Goel and Grossmann, 2006), network in-

terdiction problems (Peeta et al., 2010), and the plan-

ning of clinical trials (Colvin and Maravelias, 2008), to

name but a few. These problems are typically han-

dled via two-stage or multi-stage Stochastic Program-

ming approaches. However, the enforcement of non-



anticipativity restrictions leads to formulations of ex-

cessive size. In order to address the aforementioned

challenges, significant efforts have been made regard-

ing better modeling and solution approaches (Apap and

Grossmann, 2015). Alternative approaches that model

these problems as Markov decision processes have also

been proposed.

The above application settings constitute examples

where the use of traditional (static) uncertainty sets in

RO can prove limited. On the one hand, constant uncer-

tainty set coefficients do not allow functional changes in

the applicable correlations they model, i.e., they cannot

adapt to changes in underlying distributions. On the

other hand, referencing the “realized” value of a param-

eter that did not materialize in the given solution leads

to an expansion of the space of possible realizations of

those parameters that did indeed materialize, introduc-

ing unnecessary conservatism. This is not to mention

that doing so would be unrealistic in practice, since the

“realization” of a non-materialized parameter retains no

physical meaning.

Decision-dependent Uncertainty Sets

In order to address problems with endogenous un-

certainty, we extend the static uncertainty set of Eq. (3)

into a set that depends on the discrete decision variables,

w, as follows:

Q (w) =



q ∈ RNQ, p ∈ {0, 1}NP :

H (vq(w) ◦ q) +G (vp(w) ◦ p)

≤ Dw + d

qL ≤ q ≤ qU


, (4)

where vq(w) ∈ {0, 1}NQ and vp(w) ∈ {0, 1}NP are

problem-specific, binary-valued functions of our discrete

decision variables that govern the materialization of

each uncertain parameter, q or p, while matrix D con-

tributes decision-dependency to the right-hand-sides. In

a DDUS, qL and qU retain their definitions as bounds

for the admissible realizations of parameters q, but these

bounds should now be wide enough to apply under all

possible decisions w ∈ W for which the corresponding

elements of vq(w) attain the value of one.

Exogenous parameters can be accommodated in the

above scheme by setting the corresponding elements of

the materialization indicators, vq(w) or vp(w) to the con-

stant value of one. Furthermore, non-decision depen-

dent correlations among exogenous parameters can also

be accommodated by setting to zero the corresponding

rows of matrix D. Interestingly, the DDUS of Eq. (4)

retains the properties of its static precursors of Eq. (3)

with regards to the model class of the resulting robust

counterpart formulation. We should however remark

that, when robustification is performed via the stan-

dard dualization approach, an exact linearization (i.e.,

Glover inequalities) is required to reformulate bilinear

terms that occur between variables w and the newly

introduced dual variables. Typically, this has mild com-

putational impact and scales well with the number of

binary variables referenced in the DDUS.

In the following, we briefly illustrate a number of

modeling conveniences that DDUS afford us:

1. A correlation as shown in Eq. (5) would allow for

the introduction of decision-dependent bounds for

parameter realization and, more generally, allow

for the introduction of decision-dependent distribu-

tional information in the set.

q ≤ d1w1 + d2w2 + d3w3 (5)

2. A correlation as shown in Eq. (6) would allow for

the introduction of a decision-dependent cardinality

budget, where the maximum number of parameters

that can attain their worst-case realization is lim-

ited based on (e.g., investment-related) decisions.

Figure 1 illustrates this concept.

p1 + p2 + p3 ≤ w1 + w2 + w3 (6)

Figure 1. Cardinality budget DDUS for various de-

cisions w1+w2+w3 = n, where n is 0 (no color), 1

(green), 2 (orange), and 3 (blue). Red dots signify

admissible realizations.

3. In the case where a parameter is not materialized

as a result of a decision, the contribution of that

parameter in the set can be removed by dynamically



projecting the set into a lower dimension. This can

be achieved, e.g., with a correlation as shown in

Eq. (7). Figure 2 illustrates the difference in the

form of the DDUS when parameter q2 does and does

not materialize (as governed by binary variable w2).

w1q1 + w2q2 + w3q3 ≤ d1w1 + w2d1 + w3d3 (7)

Figure 2. Polyhedral DDUS for the cases of two

(magenta) and three (teal) materialized parameters.

Case Studies

Here we present the construction of DDUS for a num-

ber of problems that feature endogenous uncertainty and

that have been previously studied in the PSE literature

using primarily Stochastic Programming methodologies.

This now enables us to realistically cast and study these

problems as RO problems too. Details about the prob-

lem statements, their notation, and exact data for the

various benchmark instances can be found in the corre-

sponding cited references. The symbols ξ and φ refer

to constants that we use to tune the size and shape, re-

spectively, of the polyhedral uncertainty sets we derive.

Exact values for those constants are provided later, in

the Computational Results section.

Case Study I: Capacity Expansion Problem

The first case study is from Goel and Grossmann

(2006) and refers to the capacity expansion of a process

network, where intermediate product B has to be pro-

cessed by process 3 so as to produce a high-value prod-

uct A. Product B itself can be either purchased directly

from the market, produced in-house by process 1 using

raw material C, or produced in-house by process 2 us-

ing raw material D. The above options are not mutually

exclusive and can be utilized in conjunction. Moreover,

the cost for the installation of necessary equipment has

to be accounted, if processes 1 or 2 are to be chosen.

The overall objective is to maximize the profit within a

10-period horizon.

The endogenous uncertain parameters involved in

this problem are the production yields, θit, for each unit

i ∈ I and time period t ∈ T . The endogeneity stems

from the fact that, if a unit is not operated in a given

time period, the corresponding production yield does

not retain a physical meaning. To that end, the binary-

valued function associated with the materialization of

each θit parameter would be vθit = bit, where bit is the

binary decision of operating unit i in time period t. Fur-

thermore, the problem features one additional parame-

ter, the total demand for product A, δ. Since this is an

exogenous parameter, the corresponding materialization

indicator is vδ = 1.

We define a budget correlation among the material-

ized uncertain parameters for each unit, which reflects

the fact that any process is expected to perform close to

its nominal performance, on average across the horizon.

In addition, each of the parameters is bounded around

their nominal realization values, θ0it and δ0. The nomi-

nal values were chosen as the average among the low and

high scenario levels reported in the paper. The DDUS

we use is as follows:

Q (b) =

θ ∈ R|I||T |, δ ∈ R :∑
t∈T

bitθit ≥ (1− ξφ)
∑
t∈T

bitθ
0
it ∀ i ∈ I

(1− ξ) θ0it ≤ θit ≤ (1 + ξ) θ0it ∀ i ∈ I ∀ t ∈ T

(1− ξ) δ0 ≤ δ ≤ (1 + ξ) δ0


(8)

Case Study II: Offshore Oil Planning Problem

The second study originates from Goel and Gross-

mann (2004) (specifically, example 4 in that paper),

where an oil company has identified 5 offshore oil re-

serves and wants to plan its activities so as to develop

them. In order to extract oil from each reserve, a well

platform has to be installed with the necessary pipelines

that transfer the oil to the production platform and, ul-

timately, to the shore. In addition, the company has

at its disposal multiple extraction technologies, which

come at given costs and which can achieve different ini-

tial production rates. The objective is to maximize the

net present value of the oilfield development project over

a 15-year planning horizon.

The endogenous uncertain parameters involved in

this problem are the initial deliverabilities, initDelivf ,

of each field f ∈ F . These parameters are of endogenous

nature because they do not retain a physical meaning

if a well is not drilled. The materialization indicator



functions in this case are vinitDelivf = wAf + wBf + wCf ,

where w
A/B/C
f are binary variables that decide the type

of extraction technology (A, B, or C) used in each case.

Note that the model enforces that, for each field f ∈ F ,

at most one of these variables can attain the value of

one and, hence, the indicators vinitDelivf are properly re-

stricted to binary evaluations. Finally, the total reserve

sizes, Sizef , for each field f ∈ F , are also uncertain.

Since these are exogenous uncertain parameters, their

materialization indicators are vSizef = 1.

Motivated from the probability distributions as-

sumed in the referenced paper, we impose budget cor-

relations to restrict the deviations from their nominal

values of the sums (across all fields) of initial deliver-

abilities and total reserve sizes. In addition, each of the

oilfield sizes is bounded around their nominal realiza-

tion values, Size0f , while the initial deliverabilities are

bounded around the nominal realization values yielded

by the corresponding technologies that were chosen in

each case (denoted as αf , βf and γf for technologies A,

B, and C, respectively). All nominal values were cho-

sen as the medium scenario levels reported in the paper.

The DDUS we use is as follows:

Q (w) =

initDeliv ∈ R|F|, Size ∈ R|F| :∑
f∈F

(
wAf + wBf + wCf

)
initDelivf ≥

(1− ξφ)
∑
f∈F

(
αfw

A
f + βfw

B
f + γfw

C
f

)
(
wAf + wBf + wCf

)
initDelivf ≥

(1− ξ)
(
αfw

A
f + βfw

B
f + γfw

C
f

)
∀ f ∈ F(

wAf + wBf + wCf
)
initDelivf ≤

(1 + ξ)
(
αfw

A
f + βfw

B
f + γfw

C
f

)
∀ f ∈ F

initDelivf ≥

(1− ξ) min {αf , βf , γf} ∀ f ∈ F

initDelivf ≤

(1 + ξ) max {αf , βf , γf} ∀ f ∈ F

(1− ξ)Size0f ≤ Sizef ≤ (1 + ξ)Size0f ∀ f ∈ F


(9)

Case Study III: Clinical Trial Planning Problem

The final case study comes from Colvin and Mar-

avelias (2008) (specifically, example 2 in that paper)

and constitutes an R&D portfolio optimization problem.

Here, a pharmaceutical company has the opportunity to

pursue the development of 5 potential drugs. Before any

of them can generate revenue for the company, however,

it has to undergo a series of 3 clinical trial phases of

given durations. Only those drugs that succeed in all

three phases are approved by the regulator and enter

the market. There are costs associated with performing

each trial, and the company has to plan the use of its

limited R&D resources over the next 36-month horizon

so as to maximize its portfolio’s net present value.

The endogenous uncertain parameters involved in

this problem are αij , indicating the success or not of

a clinical trial of drug i ∈ I in trial phase j ∈ J .1 En-

dogeneity arises due to the fact that such a parameter

has no physical meaning if the corresponding trial is not

attempted. The materialization indicator function in

this case is vαij =
∑
t∈T Xijt, where Xijt is the binary

decision to pursue trial (i, j) in time period t ∈ T .

According to the data provided in the referenced pa-

per, a trial has a higher probability to succeed in later

phases than in earlier ones. To that end, we impose

phase-specific correlations to restrict the average num-

ber of failures that may occur in the corresponding trials

in a manner that is consistent with this observation. The

DDUS we use is as follows:

Q (X) =

α ∈ {0, 1}|I||T | :∑
i∈I

∑
t∈T

Xijtαij ≥∑
i∈I

(1− ξij)
∑
t∈T

Xijt ∀ j ∈ J


(10)

Computational Results

In order to investigate the trade-off between robust-

ness and performance, we instantiated and solved each

case study with 3 levels of uncertainty, namely low

(L), medium (M), and high (H). More specifically, for

case studies I and II, these levels of uncertainty cor-

respond to (ξ, φ) settings of (0.1, 0.25), (0.2, 0.50), and

(0.3, 0.75), respectively. For case study III, we chose

values ξij = 5 (1− ρij) ξ, where ξ refers to the three lev-

els above for L/M/H and constants ρij correspond to

the probability of drug i successfully undergoing trial in

phase j (data from the referenced paper).

Table 1 shows normalized optimal objective values,

elucidating the amount of risk premium (difference be-

tween nominal deterministic and robust optimal solu-

tions2) that has to be paid in order to insure against var-

1Unlike the previous case studies, the uncertain parameters

in this example are of discrete (binary) nature.
2Since all case studies are maximization problems, the robust



ious levels of uncertainty. The table also compares with

robust solutions obtained using standard non-DDUS.3

We observe that DDUS-based RO solutions feature bet-

ter objective values compared to their non-DDUS coun-

terparts, recovering much of the risk premium paid by

the latter (yet without any compromises in the level of

insurance against risk). This can be attributed to the

fact that, in the case of non-DDUS, the non-materialized

parameters (which are not dynamically removed from a

non-DDUS) attain their best possible values (since they

do not affect the optimal solution), driving the mate-

rialized ones (which can negatively impact the optimal

solution) to attain worse realizations.

Finally, Table 2 presents formulation sizes and as-

sociated solution statistics. We observe that, for

these problems, DDUS-based RO did not require ex-

cessive sacrifices in terms of computational tractability.

Table 1. Price of Robustness

Case Study Determ.
DDUS non-DDUS

L M H L M H

I 100 90 84 79 71 65 44

II 100 87 79 60 69 63 41

III 100 71 65 54 57 45 36

Table 2. Computational Statistics

Case Study I Case Study II Case Study III

Det. RO Det. RO Det. RO

geom. avg. CPU time 0.1 1.4 2.2 7.4 0.1 1.4

avg. #Nodes 32 57 144 612 56 182

# Bin. Variables 45 45 125 125 84 84

# Cont. Variables 105 1,120 632 5,487 221 1,865

# Constraints 231 657 435 2,937 335 2,612

Conclusions

In this paper, we studied problems involving endoge-

nous uncertainty, which are abundant in PSE practice.

In order to efficiently address these problems with an RO

framework, we extended generic polyhedral uncertainty

sets into their decision-dependent counterparts, which

offer extra modeling flexibility as well as reduce solu-

tion conservatism. The application of RO with DDUS

was illustrated in three case studies motivated from the

stochastic programming literature. Our computational

solutions always exhibit lower objective values.
3The non-DDUS were derived by setting all materialization

indicators to the value of one and by replacing the right

hand side terms Dw with maxw∈W:{v(w)=1}Dw.

results demonstrated that DDUS can provide consider-

ably less conservative solutions while maintaining the

computational tractability advantages of RO. Finally,

we remark that while the DDUS introduced in this work

are presented in a polyhedral form, this does not pre-

clude the implementation of more involved DDUS of el-

lipsoidal or conic nature.
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