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Abstract

In this work, we initially develop a parallelized multiscale, multidomain modeling scheme that directly

reduces computation time requirements without compromising the accuracy of established chemical mod-

els for a batch protein crystallization process. Then, a double exponentially weighted moving average

(dEWMA)-based model predictive controller (MPC) is applied to a multiscale model of a batch crystal-

lization process used to produce hen-egg-while (HEW) lysozyme crystals to compensate for batch-to-batch

drift in process parameters. The average crystal shape distribution of crystals produced from the closed-

loop simulation of the batch crystallizer under the dEWMA-based MPC is much closer to a desired

set-point value compared to that of MPC based on the nominal process model.
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Introduction

Multiscale process modeling has made possible to im-

prove fundamental understanding and quantitative pre-

diction of complex process behavior and product char-

acteristics and has tremendous potential for significant

contributions to the chemical, pharmaceutical and mi-

croelectronics industries Kevrekidis et al. (2004); Vla-

chos (2005); Christofides et al. (2008). Motivated by

the growing high-performance computing power, an in-

creasing interest for multiscale, multidomain modeling

has been triggered.

More specifically, kinetic Monte Carlo (kMC) mod-

eling has received a growing attention to carry out

dynamic simulations of microscopic/mesoscopic process

behavior. For many problems of practical interest, how-

ever, one needs to simulate systems with larger tempo-

ral and spatial scales than the ones that can be accom-

plished using a serial algorithm and available comput-

ing power. For these problems, motivated by the recent
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efforts to develop parallel computation frameworks for

the simulation of multisacle process models Cheimarios

et al. (2013); Mosby and Matous (2015), it would be de-

sirable to develop efficient parallel kMC algorithms so

that many processors can be used simultaneously in or-

der to accomplish realistic computations over extended

temporal and spatial scales. However, there has been

surprisingly little work done on parallel algorithms for

kMC simulation.

Motivated by this, we have attempted to directly deal

with the problem of reducing computational require-

ments without compromising the accuracy of established

chemical models via a parallelized kMC implementation.

We show that choosing appropriate decomposition strat-

egy is the key to reducing communication among proces-

sors and is ideally suitable for parallel implementation

without compromising precision. Specifically, the mes-

sage passing interface (MPI) settings that use the in-

formation passing between the cores are selected as the

method of choice following a “manager-worker” scheme

and are applied to batch configuration which is one of

the most widely used reactor and crystallization config-



urations in the specialty chemicals and pharmaceutical

industries.

Additionally, from the practical standpoint of oper-

ating batch crystallization processes, unknown system-

atic trends or drifts in the process parameter values, for

example, in initial pH level, operating conditions, and

impurity concentrations in raw materials (e.g., Flores-

Cerrillo and MacGregor (2004)) may be challenging be-

cause even a small change in the pH level may have a

significant influence on the size and shape distribution

of crystal products, and thereby, on the bioavailability

of crystals produced from a batch crystallization pro-

cess. The best known method for handling batch-to-

batch drift is the double exponentially weighted mov-

ing average (dEWMA) formula, which can capture the

changes in the rate of the process drift, and thus, fore-

cast the process drift in the next batch run Su and Hsu

(2004); Tseng and Hsu (2005). Within this context, a

dEWMA-based model predictive controller is proposed

in order to deal with the batch-to-batch dynamics of

the process drift, utilizing both in-batch and post-batch

measurements.

The manuscript is structured as follows: we ini-

tially discuss the multiscale model of our case study,

a batch crystallization process used to produce tetrag-

onal hen-egg-white (HEW) lysozyme crystals. Then, a

general parallel computational framework suitable for

multiscale models is discussed. Additionally, we develop

a dEWMA-based model predictive controller (MPC) in

order to achieve the production of crystals with a desired

shape distribution by handling batch-to-batch paramet-

ric drifts in the batch system. A series of results demon-

strating the computation efficiency of the parallel com-

putation framework and the control performance of a

dEWMA-based MPC will be presented.

1 Multiscale batch crystallization process

model and parallelization

In a crystallization process, there is large disparity of

time and length scales of phenomena occurring in con-

tinuous phase and crystal surface. As a result, the as-

sumption of continuum may not be valid on the crystal

surface, and furthermore, it is computationally impossi-

ble to model the whole batch system from a molecular

point of view.

Therefore, we present an integrated multiscale mod-

eling and parallel computation framework for crys-

tallization processes that elucidates the relationship

between molecular-level processes like crystal nucle-

ation, growth, and aggregation and macroscopically-

observable process behavior and allows computing op-

timal design and operation conditions. The multiscale

framework encompasses: a) kMC modeling for simu-

lating crystal growth and aggregation and predicting

the evolution of crystal shape distribution, and b) in-

tegrated multiscale computation simultaneously link-

ing molecular-level models (e.g., kMC simulation) and

continuous-phase macroscopic equations (e.g., mass and

energy balance equations), covering entire batch crys-

tallization systems.

1.1 Microscopic model

The solid-on-solid model is employed in this work to

model the growth of lysozyme crystals. Each event of

our kMC simulation is chosen randomly based on the

rates of the three surface microscopic phenomena de-

scribed in Ke et al. (1998); Durbin and Feher (1991).

The adsorption rate is defined as

ra = K+
0 exp

(
∆µ

kBT

)
, (1)

where K+
0 is the attachment coefficient, kB is the Boltz-

mann constant, T is the temperature in Kelvin, and

∆µ = kBT ln (C/S) is the crystal growth driving force,

where C is the protein solute concentration and S is its

solubility. The desorption rate is given by

rd (i) = K+
0 exp

(
φ

kBT
− i

Epb

kBT

)
, (2)

where i is the number of bonds, φ is the binding en-

ergy per molecule of a fully occupied lattice, and Epb

is the average binding energy per bond. Similar to the

desorption rate, the migration rate is shown below

rm (i) = K+
0 exp

(
φ

kBT
− i

Epb

kBT
+

Epb

2kBT

)
. (3)

In this work, we have determined a set of model parame-

ters as follows: Epb/kB = 1077.26 K and φ/kB = 227.10

K for the (110) face, and Epb/kB = 800.66 K and

φ/kB = 241.65 K for the (101) face, and K+
0 = 0.211

s−1.

1.2 Macroscopic model

The following mass and energy balance equations are

employed to compute the dynamic evolution of the pro-

tein solute concentration and temperature in the batch

crystallization process with time:

dC

dt
= −

ρc
Vbatch

dVcrystal

dt
(4)



dT

dt
= −

ρc∆Hc

ρCpVbatch

dVcrystal

dt
−

UcAc

ρCpVbatch

(T − Tj) (5)

where Vcrystal is the total volume of crystals growing

in the crystallizer, Tj is the jacket temperature (i.e.,

manipulated input), Ac = 0.25 m2 is the contact area

of the crystallizer wall and jacket, ∆Hc = −4.5 kJ/kg

is the enthalpy of crystallization, ρc = 1400 mg/cm3 is

the crystal density, ρ(t) = 1000 + C(t) mg/cm3 is the

density of the continuous phase, Cp = 4.13 kJ/K · kg is

the specific heat capacity, Uc = 1800 kJ/m2·h ·K is the

overall heat transfer coefficient of crystallizer wall, and

Vbatch = 1 L is the volume of the crystallizer. The initial

conditions are C(0) = 48 mg/mL and T (0) = 15 ◦C

Additionally, aggregation of protein crystals is con-

sidered. An expression (Eq. 6 below) can be used to

calculate the number of aggregation event taking place

during the time ∆ by taking into account the aggrega-

tion kernel β (Vi, Vj), batch reactor volume Vbatch, colli-

sion efficiency α (Vi, Vj), and concentrations of particles

of volume Vi and Vj as follows Kwon et al. (2013):

Nij = α (Vi, Vj)β (Vi, Vj)mimjV∆ (6)

where mi is the number concentration (i.e., the number

of particles of class i per unit volume) and 1 ≤ i, j ≤

Ctotal where Ctotal indicates the number of classes). The

rate of formation of aggregates of volume Vk from the

collision of particles of volume Vi and Vj is calculated as
1

2

∑
Vi+Vj=Vk

Nij .

1.3 Parallel computation of multiscale model

The simulation of the crystal growth process of crys-

tals formed via nucleation is executed in parallel by us-

ing MPI through which we are able to divide the crys-

tals to multiple cores by achieving the distribution of the

computational cost and memory requirements. More de-

tailed discussion on the step-by-step parallelization will

be discussed in the following section.

1.3.1 Decomposition

We can decompose the nucleation and crystal growth

processes in batch crystallization system into the collec-

tion of tasks where each task is the crystal growth of a

nucleated crystal.

1.3.2 Assignment

As soon as a crystal is nucleated, it will be assigned to

one of the available cores, and it will grow to a larger

crystal via the kMC simulation. Since crystals are con-

tinuously nucleated, the total size of tasks assigned to

each core grows with time. More specifically, nucleated

crystals are assigned following the order described in Ta-

ble 1 (i.e., crystal number modules is equal to the num-

ber of cores available). We note that this is a number-

based allocation assuming that all cores have identical

processor speed and memory.

core crystal number crystal number

worker 1 1 n+ 1

worker 2 2 n+ 2
...

...
...

worker n n 2n

Table 1. The order that nucleated crystals are assigned

to each core. Suppose there are 2n crystals.

The collision probability of whether an aggregation

event takes place between two crystals with volumes Vi

and Vj during a time period can be calculated via Eq. 6.

Next, the aggregation event is executed when a random

number generated from [0, 1) is less than the collision

probability. If an aggregation event occurs, we pick a

crystal from each class i and j, respectively, and the

smaller crystal between those two crystals will be re-

moved from the kMC simulation while its volume will

be added to the larger one, making it an aggregate where

its volume is equal to the total volume of the two crystals

before the aggregation event. This process applies to all

possible pairwise combinations of crystal volumes over

the course of the entire batch crystallization simulation.

Worker n

(Core n)

C & T ΔVcore n

Worker 1

(Core 1)

Manager

(Core 1)

(mass and energy

balance equations)

C & T

. . .

C& T ΔVtotal = ΔVcore 1 + ··· + ΔVcore n

Crystal 1

(kMC)

Crystal n+1

(kMC)

Crystal 2n+1

(kMC)

Crystal n

(kMC)

Crystal 2n

(kMC)

Crystal 3n

(kMC)
. . . . . .

ΔVcore 1

ΔVcore 1 = ΔV1+ΔVn+1+ΔV2n+1+ ··· ΔVcore n = ΔVn+ΔV2n+ΔV3n+ ···

Worker 2

(Core 2)

C & T

. . .

ΔVcore 2

ΔVcore 2 = ΔV2+ΔVn+2+ΔV2n+2+ ···

Crystal 2

(kMC)

Crystal n+2

(kMC)

Crystal 2n+2

(kMC)

Figure 1. Manager-worker parallel computation scheme

for multiscale model of batch crystallization process.



1.3.3 Orchestration

Fig. 1 illustrates schematically how the information

passing between the cores is managed with the MPI set-

tings in order to link the macroscopic model (i.e., mass

and energy balance equations for the continuous phase)

to microscopic model (i.e., kMC model). The coupled

simulation follows the “manager-worker” MPI compu-

tational scheme: there is a core (i.e., manager) that is

responsible for collecting the change in the total volume

of crystals assigned to each core (i.e., worker) at each

time step, which corresponds to the amount of solute

transported from the continuous phase to the crystal

surface. Then, the manager core computes the change

in the total volume of the crystals in the crystallizer

at each time step and computes the protein solute con-

centration C and the temperature T for the continuous

phase in the crystallizer using mass and energy balance

equations. The updated C and T will be sent back to

the worker cores, and those values at each core will re-

main identical until they are updated again after a time

step. Then, the crystals assigned to each core will grow

with an updated condition via kMC simulations.

1.3.4 Pseudo-code

Algorithm 1 Parallel computation of the multiscale

batch crystallization process model

for i = 1 → n do

if i == 1 then ⊲ Manager core

1. assign nucleated crystals over ∆t to each

core according to Table 1

2. compute ∆Vtotal(t) =
∑

n

i=1
∆Vi(t)

3. update C(t) and T (t) through Eqs. 4–5

4. compute the total number of collisions

between crystals via Eq. 6

else ⊲ Worker core

1. have crystals assigned to each core grow

via Eqs. 1–3

2. compute ∆Vi(t) and send it to the manager

core

end if

end for

Please note that ∆Vtotal(t) is the change in the total

volume of crystals in the crystallizer from t − ∆t to t

seconds, and ∆Vi(t) is the change in the total volume

of crystals particularly assigned to the core i from t −

∆t to t seconds. The reader may refer to Kwon et al.

(2014a,b) for the use of the parallelization scheme to

different applications including the plug flow crystallizer

and the continuous stirred tank crystallizer with a fines

trap and a product classification unit.

1.4 Results

In this work, the Hoffman2 cluster at UCLA which

consists of 1200 nodes with a total of 13,340 cores and

over 50TB of memory, is used along with MPI settings

for the simulations of all the batch crystallization runs.

It is presented in Table 2 that the simulation times

required to complete a batch simulation decrease as the

number of cores is increased. Also, the corresponding

speedup presents that as the number of cores is dou-

bled, the speedup achieved in comparison to the the-

oretical maximum speedup (i.e., the theoretical max-

imum speedup should be n times when n processors

are used) decreases, because of overhead costs gener-

ated by communication taking place between multiple

cores. Overall, it is clear that the batch crystallization

process is greatly benefiting from the use of MPI for the

kMC simulations.

ncores time (h) speedup ideal speedup

1 34.97 1.00 1

2 17.63 1.98 2

4 8.98 3.89 4

8 4.71 7.44 8

16 2.47 14.18 16

32 1.38 25.28 32

64 0.92 38.15 64

Table 2. The time required to run a batch simulation

and the speedup achieved by using different numbers of

cores. Please note that ncores is the number of cores and

the speedup is defined as t1
tn
, where t1 is the time the

process takes on 1 core and tn is the time the process

takes on n cores.

2 R2R-based MPC

2.1 MPC

We assume that a model predictive controller (MPC)

is available for in-batch control. Specifically, the domi-

nant dynamic behavior of the evolution of crystal shape

distribution in the batch crystallization process is mod-

eled through a moments model and the manipulated in-

put is the jacket temperature. The detailed MPC for-

mulation can be found in Kwon et al. (2015).



2.2 dEWMA-based model predictive control

Because of its ability to handle batch-to-batch para-

metric drifts Bulter and Stefani (1994); Simith et al.

(1998), a dEWMA scheme is integrated with the MPC

to updated the MPC model parameters after each batch

and the closed-loop performance is evaluated along with

that of the MPC with the nominal process model. In the

dEWMA scheme, the predicted value of average crystal

shape for the kth batch run can be formulated as follows:

˜〈α(tf )〉k = ̂〈α(tf )〉k + êk +∆êk (7)

where ˜〈α(tf )〉k is the predicted average crystal shape at

the end of the kth batch, ̂〈α(tf )〉k is the predicted aver-

age crystal shape using only the nominal process model

that consists of Eqs. (1)-(3) and (7)-(14) in Kwon et al.

(2015), êk is the estimated model prediction error, and

∆êk is used to compensate for the error in the param-

eter estimation caused by the change in the rate of the

process drift. For a dEWMA-based MPC, an offset from

the nominal model is approximated by êk+∆êk, which

is described in detail as follows:

1. At the end of the kth batch run, average crystal size

and shape of crystals are measured (i.e., post-batch

measurements).

2. Then, the average crystal shape measured from

Step 1, 〈α(tf )〉k, is used to compute the esti-

mated model prediction error, êk, and the estimated

change in the rate of the process drift, ∆êk, through

the following equation:

êk+1 = ω1

[
〈α(tf )〉k − ̂〈α(tf )〉k

]
+ (1 − ω1)êk (8)

∆êk+1 =ω2

[
〈α(tf )〉k − ̂〈α(tf )〉k − êk

]

+ (1− ω2)∆êk

(9)

where 0 < ω1 ≤ 1 and 0 < ω2 ≤ 1 are the learning

factors.

3. Then, the predicted average crystal shape for the

k + 1 batch run, ˜〈α(tf )〉k+1
, that accounts for the

change in the rate of the process drift is obtained

by the following equation:

˜〈α(tf )〉k+1
= ̂〈α(tf )〉k+1

+ êk+1 +∆êk+1 (10)

and is used in the model employed in the MPC to

compute a set of optimal jacket temperatures Tj

which will drive the temperature T in the crystal-

lizer to a desired value.

4. Increase k by 1 and repeat Step 1 to Step 4.

We note that the first equation, Eq. (8), is used to esti-

mate the offset in the average crystal shape (i.e., output)

and the second equation, Eq. (9), is used to capture an

additional offset in the average crystal shape due to the

change in the rate of the process drift.
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Figure 2. The evolution of the cumulative process drift

with an exponentially decaying rate from batch-to-batch.

2.3 Application of dEWMA-based MPC to Batch Crys-

tallization

One of the reasons that the control of the size and

shape distributions of crystals produced from a batch

process may be difficult is minor contaminations in the

feedstock container which 1) may lead to a significant

drift of key process parameters from batch-to-batch and

2) cannot be identified immediately, and thus, their un-

desired effect on the product quality continues to the

next batch runs. To tackle this problem, the proposed

dEWMA-based MPC where a dEWMA scheme is used

to simultaneously approximate the batch-to-batch dy-

namics of the drift and adjust the jacket temperature in

order to suppress the effect of the process drift in the

next batch.

The controller performance of the dEWMA-based

MPC is evaluated in response to an exponentially decay-

ing process drift whose rate decays exponentially from

1 (i.e., nominal system) to 0.95 over 10 batch runs (see,

e.g., Fig. 2). While the closed-loop performance of the

MPC with the nominal process model becomes progres-

sively worse (Fig. 3) due to the increasing mismatch

between the process model and the actual batch crystal-

lization process, it is shown in Fig. 3 that the dEWMA-

based MPC is able to produce crystals with a desired

shape distribution.
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Figure 3. The evolution of the average crystal shape

at t = 20000 seconds obtained from the kMC simula-

tions from batch-to-batch under the MPC with the nom-

inal process model and the dEWMA-based MPC with

(w1,w2)=(0.5,0.5), with the desired set-point 〈αset〉 =

0.88.

3 Conclusions

In this work, we proposed a parallelized multiscale,

multidomain modeling scheme to directly reduce the

computation time and memory requirements without

compromising the accuracy of simulation results for a

batch protein crystallization process. The parallelized

multiscale modeling strategy that consists of the three

steps of decomposition, assignment, and orchestration

was applied to a batch crystallization process multiscale

model. Then, a dEWMA-based MPC is designed and

applied to a multiscale model of a batch crystalliza-

tion process used to produce HEW lysozyme crystals.

Lastly, for comparison purposes, the performance of the

dEWMA-based MPC was favorably compared with that

of the MPC based on the nominal process model.
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