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Abstract 

The economic benefit realized from energy storage units on the electric grid is linked to the control 

policy selected to govern grid operations. Thus, the Optimal Sizing and Placement (OSP) of such units 

is also dependent on the operating policy of the power network. In this work, we first introduce 

Economic Model Predictive Control (EMPC) as a viable economic dispatch policy for transmission 

networks with energy storage. However, the numeric basis of EMPC makes it ill-suited for the OSP 

problem. In contrast, the method of Economic Linear Optimal Control (ELOC) can be easily adapted to 

the OSP problem. However, the relaxation of point-wise-in-time constraints, inherent to ELOC, will 

introduce a systematic underestimation of operating costs. Thus, we introduce a novel 2-step OSP 

algorithm that begins with the ELOC-based approach to determine the placement of energy storage 

units. Then, an EMPC-based gradient search is used to determine optimal sizes. While the current effort 

focuses on power networks, it is postulated that the proposed methodology can be extended to create a 

new paradigm for solving the generic integrated process design and control problem.  
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It is generally recognized that the intermittent nature of 

renewable power generation is a key barrier to wider 

deployment on the grid. Grid-scale Energy Storage 

Systems (ESS) can alleviate this problem by accumulating 

and time-shifting excess power to periods of peak demand. 

ESS also offers arbitrage opportunities since electricity 

price variation in deregulated markets can be exploited. 

The issue of Optimal Sizing and Placement (OSP) of 

storage units on the grid will be critical to the success of 

such endeavors. However, prerequisite to the OSP activity 

is a definition of the operating (or control) policy for 

transmission networks with storage. Our goal is to present 

computationally tractable methods of addressing both of 

these questions.  

Studies such as Harsha and Dahleh (2015), Rao et al. 

(2015), Keshmiri et al. (2010), have applied various 

stochastic methods to govern grid operations on networks 

with renewable power. These approaches are generally 

prone to computational issues since complexity increases 

exponentially with the dimensionality of the problem. As 

such, alternative policies (Qin et al., 2016) or model 

modifications (Ruiz et al. 2010) are often pursued. Our 

approach will be to adopt Economic Model Predictive 

Control (EMPC), as a control strategy for networks with 

storage. Xie and Ilić (2009) applied EMPC to economic 

dispatch while considering an environmental objective 

along with traditional generation costs. However, the 

inclusion of ESS was not examined. 

In contrast to the extensive studies on storage control, 

few have focused on the OSP question. This is perhaps 

because the placement of pumped hydro systems, the most 

common large-scale energy storage technology, is dictated 



  
 

 

largely by geographical considerations. Denholm and 

Sioshansi (2009) explored the transmission-related value 

of placing ESS near the renewable source, but network 

topology was ignored. Sjödin et al. (2012) used chance 

constraints to describe a loss-of-load probability criterion 

for storage management and design. This was extended to 

an alternating current (AC) model in Bose et al. (2012). In 

both cases, the OSP question was addressed for a fixed 

storage budget. That is, the capital cost of the ESS – which 

typically will include fixed installation costs and hence 

binary decision variables, thus significantly changing the 

nature of the problem – was not included in the objective. 

Most recently, Torchio et al. (2015) proposed a mixed 

integer semi-definite programming approach that can 

handle fixed installation costs. 

Our approach to the OSP problem will involve 

introducing a surrogate control policy with proven EMPC-

like performance. This control strategy, termed Economic 

Linear Optimal Control (ELOC), can also be solved 

efficiently to a global solution. These properties make 

ELOC a good candidate for decoupling the OSP problem. 

As sketched in Figure 1, our proposed 2-step solution 

strategy begins by solving the ELOC version of the OSP 

problem to a global solution. Then, based on the similarity 

of both optimal control strategies, it is expected that both 

the EMPC and ELOC based formulations will results in 

identical storage unit placements. Thus, one can use the 

ELOC-based placement along with the size estimate as the 

initial point for an EMPC-based gradient search to 

determine the optimal storage sizes.   

 

 

 

 

 

 

 

 

 

 

Figure 1.   Proposed 2-step OSP solution strategy  

(1) ELOC-based solution (2) EMPC-based solution 

 

The outline of the paper is as follows. We will start by 

describing our model of an electric power network with 

energy storage. Then, using a simple 5-bus network 

example, application of EMPC will be shown to yield 

satisfactory performance. Then, we will introduce the 

ELOC problem and illustrate that its solution generates a 

feedback policy that is very similar to that of EMPC. 

Then, we will return to the OSP problem to illustrate how 

EMPC and ELOC can be combined to arrive at a more 

efficient solution strategy, as compared to the original 

EMPC-based approach. 

System Description 

To develop a dynamic model of a power network with 

storage, we assume that a storage device is present at each 

node. Then, a power balance at each node m is given by 
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where ES,m is the energy in the storage unit at node m, PS,m 

is the power sent to the storage unit, PG,m is power 

generated from a conventional plant, PL,m is power 

consumed by the load and Pnm is the real power 

transmitted from node n to node m. If the direct current 

(DC) approximation is applied, then Pnm = Bnm (θn – θm), 

where the constant Bnm is the susceptance of the 

transmission line, and n, m are the voltage angles at the 

two nodes. If the network is augmented with renewable 

power, then Eq. (2) will include the term PR,m – PC,m, 

where PR,m is the power available from the renewable 

source. While this cannot be dispatched, it can be 

curtailed. This option is represented by the non-negative 

PC,m term. In essence, if PC,m > 0, the situation is such that 

renewable power is available but the system is unable or 

unwilling to consume it completely. Clearly, this is 

undesirable and a motivation for storage. In addition, there 

will be pointwise-in-time safety and capacity limits on 

process equipment. Finally, it is assumed that the marginal 

cost of renewable power generation is negligible, but the 

cost of conventional power produced takes the following 

quadratic form:  
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Figure 2.   5-bus Transmission Network with ESS 

 

As an example, consider the 5-bus network of Figure 

2 in which there is renewable energy generation at bus 4 

and potential for energy storage installation at buses 3, 4 

& 5.  Accordingly, [ES,3, ES,4, ES,5]
T is the vector of state 

variables. Manipulated variables are selected as [PG,1, PG,2, 

P14, P23, P35, P45, PC,4]
T. Generally, the voltage angles, θm, 

should also be used as manipulated variables since they 

dictate the power flows, Pnm. However, due to the 

topology of our example network, there is a one-to-one 

relationship between the angles and the power flows 

which indicates that we can work directly with the power 

flow variables. Lastly, consumer loads and renewable 

power, [PL,3, PL,4, PL,5, PR,4]
T are considered as 

Equipment variables (placements and sizes) 
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disturbances. In state space notation, the vectors of state, 

manipulated and disturbance variables are defined as s, m 

and p respectively. Defining the vector of performance 

variables as q = [sT, mT]T, the power network model can be 

described as 

pGuBsAs ppp )()()(                                                     (4) 
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The cost curve coefficients of the dispatch-capable 

generators are assumed to be c0,1 = 2000, c1,1 = 10, c2,1 = 

0.092, c0,2 = 450, c1,2 = 25, c2,2 = 0.3. 

 

 

Economic Model Predictive Control (EMPC) 

If the network model is discretized, EMPC can be 

described in the following form  
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where k and i are the predictive and actual time indices 

respectively and sk|i refers to the prediction of sk made at 

time i. At a current time i, an estimate of the state si|i, 

along with a forecast of disturbances p  k|i, k = i,…i+N-1 

should be available. Then, problem (7) is solved for the 

optimal sequence mk|i*. Following a receding horizon 

framework, only the first input, mi|i*, is implemented on 

the actual system 
i

p

di

p
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p
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pGmBsAs )()()(

1



. At time 

i+1, si+1|i+1 and p  k|i are updated based on new information 

and a new sequence mk|i+1* is calculated. It is common to 

impose constraints on the final state, sN|i, which if selected 

appropriately, will provide certain guarantees for closed-

loop stability (Rawlings et al., 2012). It has also been 

noted that EMPC performance improves with horizon size, 

N, but this comes at the price of increased computational 

effort (Adeodu and Chmielewski, 2013; Mendoza-Serrano 

and Chmielewski, 2015).   

In this work, the disturbance pi is modelled as the 

output of a finite-dimensional linear shaping filter, driven 

by zero-mean white noise.  
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The superscript (f) serves to distinguish shaping filter 

matrices from process (p) matrices. Assuming that the 

internal state of the disturbance model is known (or 

estimated), a Zero Future Information forecast (Mendoza-

Serrano and Chmielewski, 2014) can be simulated at each 

time step, using 
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where x(f)
i|i= x(f)

i is the internal state at time i. The shaping 

filter matrices in continuous time form are defined as A(f) = 

diag (A11, A22, A33), G
(f ) = diag (G11, G22, G33), where 
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The spectral density of the white noise driving the shaping 

filter is given as Sw = diag [Sw1 Sw2 Sw3], where 
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and τh = 1h, τl = 1.5h, χ = 0.05, χw = 0.1, wc = 2π/24 and 

wcw = 2π/72.  



  
 

 

Economic Dispatch with EMPC 

The process and shaping filter models of the 5-bus 

example were discretized using the sample and hold 

method with a sample time of 0.5h. Figure 3 compares the 

closed-loop EMPC trajectories for the baseline case 

(without storage) with the scenario of ES,3
max = 1500MWh, 

ES,4
max = 0 and ES,5

max = 0. The storage acts as a fast 

reserve, enabling the conventional generators to operate at 

steadier, inexpensive levels. It is also observed in Figure 4 

that for the baseline case, the available renewable power is 

more likely to be underutilized, as indicated by the more 

frequent and larger non-zero values of PC,4. These 

instances coincide with periods of low demand or 

limitations on the P45 transmission line. The economic 

motivation for ESS is apparent as the average operating 

cost is reduced from 20,613$/h to 19,336$/h (6.2%).  

 

 
Figure 3.  EMPC: Optimal power generated 

 

 
Figure 4. EMPC: Unutilized renewable power. 

 

 

Economic Linear Optimal Control (ELOC)  

In contrast to EMPC, where the sum of instantaneous 

operating costs within a finite horizon is minimized, the 

ELOC objective is the expected value of the operating cost 

(Peng et al, 2005). Typically, the optimal steady state 

operating point will be on a process boundary. This 

indicates that during dynamic operation, the disturbance is 

likely to cause constraint violations. This calls for the 

selection of a more conservative operating point, denoted 

as the Backed-off Operating Point (BOP). Essentially, 

some economic benefit is forfeited to reduce the likelihood 

of constraint violation. The central feature of ELOC is the 

determination of the BOP, q , and a companion linear 

feedback gain, L, that will enable the average of the 

economic objective to be minimized, while the statistical 

constraints of (21) are observed. Thus, the ELOC problem 

is stated as   
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ρj is the jth row of the identity matrix with the same 

dimension as Σz and α is the number of standard deviations 

between the steady state target and process boundaries. 

Crucially, a globally optimal solution to Problem (15) can 

be efficiently obtained using the method provided in 

Zhang et al. (2015).                                       

 

Economic Dispatch with ELOC 

For our 5-bus example, the ELOC objective is 
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The ELOC feedback policy, mi -    = L(si -   ), was 

obtained from the global solution of Problem (15) using 
1 . From the inventory utilization trajectories in Figure 

5, it is noted that both control strategies (EMPC and 

ELOC) yield similar performances and hence, similar 

costs. Expectedly, pointwise-in-time constraints are not 

enforced in the ELOC. Therefore, the ELOC is not 

implementable for operational purposes, although a 

method to re-introduce these constraints, dubbed 

‘Constrained ELOC’ is described in Mendoza-Serrano and 

Chmielewski (2015). The guarantee of an analytic, global 

solution to the ELOC problem and the similarity between 

ELOC and EMPC are persuasive motivations for the 

ELOC to be utilized in the OSP problem.  

 
Figure 5.   Comparison of EMPC and ELOC trajectories 

 

 



  

 

Optimal Sizing and Placement of Energy Storage 

The objective to be minimized in the OSP problem is the 

net present value, equal to the sum of the present value of 

average operating costs and the capital cost of storage. For 

the latter, we adopt the sixth-tenth rule to relate storage 

capacity to cost and also include a fixed installation cost: 
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The operating strategy selected will describe the implicit 

relationship between the average operating cost, E[g(q)] 

and storage capacity,
max

,mS
E .  

 

EMPC-based OSP 

As illustrated in the first example, if given storage 

sizes and placements, EMPC can be used to numerically 

evaluate the average operating cost as 

  
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where qi is obtained from the EMPC simulation and M is a 

suitably large simulation period. Therefore, EMPC can be 

used as a black-box function in conjunction with a solver 

that can handle the discontinuities associated with the 

binary variables δm. However, such solvers, typically 

based on simulated annealing algorithms (Kirkpatrick et 

al. 1983), can be computationally expensive. Of course, 

the non-smooth form of Problem (23) precludes the use of 

standard gradient search methods since they cannot see 

beyond the discontinuity and may drive the search 

trajectory away from the true optimum. However, such 

methods may be applied if the storage placement is fixed. 

That is, the OSP problem can be decomposed into several 

sub-optimizations, each searching over a unique storage 

placement. This approach is obviously unwieldy as the 

number of placement possibilities increases 

combinatorially with network size.  

 

 
 

Figure 6. Optimal net present value for fixed storage 

placement scenarios  

 

      However, since the current example has only 8 

possible placements, this approach is tractable and can be 

used to find the true global optimum. Using C2 = 105, C1 = 

20C2, γ = 9.28 × 104 and EMPC to estimate E[g(q)] with 

M = 1440h, the result of such an exhaustive search on the 

5-bus network is summarized in Figure 6. It indicates that 

the global solution to the OSP problem is ,0max
3, SE  

,MWh1564max
4, SE and MWh1309max

5,


S
E  with a NPV 

of $1.77 × 109.  

 

ELOC-based OSP 

ELOC’s similarity to EMPC and its attractive solution 

properties can be exploited to improve the likelihood and 

speed of convergence to a global solution. Two 

modifications to the original ELOC problem are required 

to construct the ELOC-based OSP problem. First, the 

elements of qmax in Eq. (21) that correspond to the storage 

capacities are considered as variables.  Then, the objective 

Eq. (15) is replaced with Eq. (23), with the average 

operating cost calculated as 
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Due to the non-convexity introduced by the binary 

variables, it is worthwhile to discuss the solution 

methodology used for the ELOC-based OSP problem. Our 

solution method (Zhang et al., 2015), is based on the 

Generalized Benders Decomposition (Geoffrion, 1972). It 

involves successive iterations between the relaxed master 

problem and a variation of the primal problem known as 

problem Q as shown in Figure 7. An appropriate choice of 

complicating variables ensures that global solution to the 

former, with its nonconvex, nonlinear objective can be 

readily obtained using BARON (Tawarmalani and 

Sahinidis, 2005). Similarly, problem Q can be readily 

solved using a standard semi-definite programming (SDP) 

solver (MOSEK, 2015), since it contains only convex 

constraints.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Solvers used in ELOC-based OSP solution 

procedure 

 

It is expected that the ELOC-based OSP solution will 

lie in the neighborhood of the true optimum such that the 

ELOC unit placement solution, δ*
m, is a global solution. 

Then, to correct for the statistical constraint assumption of 

the ELOC framework, a local EMPC-based search for the 

optimal sizing solution is conducted using the ELOC-

based solution as the initial guess. Returning to the 5-bus 

example, the solution to the ELOC-based OSP problem 

Relaxed Master 

Mixed-integer, non-linear algebraic problem. 

(solved with BARON) 

Problem Q  

Convex semi-definite programming problem.      

(solved with standard SDP tools) 



  
 

 

was found to be ,0max
3, SE  ,MWh3260max

4, SE and 

MWh248max
5, SE . Using this as the starting point, the 

gradient search of the EMPC-based OSP scheme found a 

solution at MWh2090max

4,


S
E , MWh800max

5,


S
E , with a 

NPV of $1.77 × 109.  

 

 

Conclusions 

In this work, we have shown that the numeric based 

EMPC policy is capable of exploiting energy storage units 

within an electric power network. In addition, it was 

shown that the analytic based ELOC policy can achieve 

similar results by sacrificing with respect to the 

enforcement of inequality constraints. However, the 

analytic nature of the ELOC formulation indicates that 

extension to the OSP problem, which is in essence an 

integrated system design and control problem, will result 

in attractive computational properties. In fact, it was 

shown that a global solution to the ELOC-based OSP 

problem can be guaranteed with relatively little 

computational effort. In contrast, the numerically intensive 

EMPC-based OSP formulation will require black-box 

based solution methods (i.e., gradient search or simulated 

annealing) and is ill suited to address integer variables. 

The proposed 2-step procedure captures the benefits of 

both formulations. The first step uses the ELOC-based 

approach to select integer variable values, the energy 

storage locations, along with estimates of the optimal 

storage sizes. Then, a gradient based search using the 

EMPC-based approach is used to determine the optimal 

storage unit sizes.  

Future studies will extend the operating mode of the 

electrical network from the economic dispatch case to the 

unit commitment scenario. While the EMPC approach can 

be easily adapted to address this change, the ELOC 

formulation requires a more creative set of modifications. 

Future efforts will also investigate use of the proposed 2-

step approach for the problem of integrated design and 

control of chemical processes.  
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