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Abstract 

Internet of Things (IoT) have gained tremendous momentum and importance in recent years. Initiated 

from services and consumer products industries, there is a growing interest in using IoT technologies in 

various industries. In manufacturing, advanced or smart manufacturing and cybermanufacturing are also 

drawing increasing attention. Because IoT devices such as IoT sensors are usually much cheaper and 

smaller than the traditional sensors, there is a potential for instrumenting manufacturing systems with 

massive number of sensors, then big data subsequently collected from IoT sensors can be utilized to 

advance manufacturing. This type of IoT applications has not drawn much attention from either 

academic researchers or industrial practitioners. One possible reason is that the benefits of such 

applications have not been recognized or tested. Therefore, we built an IoT-enabled manufacturing 

technology testbed (MTT) to explore the potential of IoT sensors. In this work, the characteristics of a 

type of IoT temperature sensor were studied and mathematical models were developed to capture these 

characteristics and to accurately reproduce the observed behaviors. Based on the initial findings from 

our MTT experiments, challenges and opportunities for IoT-enabled manufacturing are discussed. 
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The concept of the Internet of Things (IoT) is not new 

as it was first coined in 1999 in the MIT Auto-ID Center, 

which has since gained tremendous momentum and 

importance. Recent advances in radio, network, mobile, 

and cloud technologies have supported the development of 

the first generation IoT services and products (Tarkoma 

and Ailisto, 2013).  

Initiated from services and consumer products 

industries, there is a growing interest in using IoT 

technologies in various industries. Many countries have 

invested significantly on IoT initiatives based on the 

premise that IoT can be an effective way to improve 

traditional physical and information technology 

infrastructure, and will have a significant impact on 

productivity and innovation.  

Despite the fact that the industrial IoT is still in its 

infancy, many applications are being developed and 

deployed in various industries including healthcare, 



  
 

 

inventory and supply chain management, transportation, 

workplace and home support, security, and surveillance, 

etc. (Xu et al., 2014). 

For healthcare services, powered by IoT’s ubiquitous 

identification, sensing, and communication capacities, all 

objects in the healthcare systems (people, equipment, 

medicine, etc.) can be tracked and monitored constantly 

(Alemdar and Ersoy, 2010). In addition, all the healthcare-

related information (e.g., logistics, diagnosis, therapy, 

recovery, medication, etc.) can be collected, managed, and 

shared efficiently (Xu et al., 2014).  

For food supply chain , IoT technologies can address 

the traceability, visibility, and controllability challenges in 

the so-called farm-to-plate manner, from precise 

agriculture, to food production, processing, storage, 

distribution, and consuming (Xu et al., 2014).  

To prevent or reduce accidents in the mining industry, 

IoT technologies were proposed to sense mine disaster 

signals in order to provide early warning, disaster 

forecasting, and safety improvement of underground 

production (Wei et al., 2011).  

For inventory and supply chain management, IoT 

devices enable transportation and logistics companies to 

conduct real-time monitoring of the move of physical 

objects from an origin to a destination across the entire 

supply chain including manufacturing, shipping, 

distribution, etc. (Karakostas, 2013).  

For transportation, IoT technologies can be used to 

enhance a vehicle’s sensing, networking, communication, 

and data processing capabilities; to provide driving 

directions and to enable autopilot that can automatically 

detect pedestrians or other vehicles and take evasive 

steering to avoid collisions (Keller et al., 2011). 
In manufacturing, advanced/smart manufacturing and 

cybermanufacturing are drawing increasing attention as 
well. The essence of these trends is the application of 
increasingly powerful and low-cost computation and 
networked information-based technologies in 
manufacturing enterprises. There is a general consensus 
that factories and plants connected to the Internet are more 
efficient, productive and smarter than their non-connected 
counterparts (Davis et al., 2012; Davis et al., 2015). One 
potential enabler for these advanced/smart or cyber- 
manufacturing is industrial IoT. Industrial IoT devices for 
manufacturing include sensors/actuators, computers with 
wireless networks, and, most importantly, systems that are 
small and easy to embed. They have contributed 
significantly to different aspects of manufacturing such as 
automation and tracking. However, there is one area that 
has been largely overlooked so far – because industrial 
IoT devices such as sensors are usually much cheaper and 
smaller than the traditional sensors, there is a potential of 
instrumenting systems with massive number of sensors. 
The big data collected from these IoT sensors can then be 
used to advance manufacturing. Currently this type of 
industrial IoT application has not drawn much attention 
from either academic researchers or industrial 
practitioners. One possible reason is that the benefits of 

such applications have not been recognized or tested. 
Therefore, in this work, we built an IoT-enabled 
manufacturing technology testbed (MTT) to explore the 
potential of industrial IoT sensors. Specifically, the MTT 
system is a continuous stirred tank reactor (CSTR) 
equipped with 28 IoT temperature sensors. In section II, 
the design and configuration of the MTT system is 
detailed. In section III, various experiments were 
conducted to test the functionality of the IoT-enabled 
MTT, as well as to getter better understanding of the IoT 
sensor behaviors; simulation results that accurately 
reproduce IoT sensor behavior are also reported. Finally, 
in section IV based on what we learned from the MTT 
system, the challenges and opportunities for IoT-enabled 
cybermanufacturing are discussed.  

IoT-enabled Manufacturing Testbed (MTT) Setup  

Simulation is a powerful, flexible tool often utilized 

by control engineers to understand complex dynamic 

systems and to test out new algorithms. However, the 

fidelity of the simulated system is limited by the 

understanding on the system, (i.e., the model that 

describes the system). Currently, industrial IoT is still in 

its infancy and there is insufficient understanding on the 

property, capacity and performance of IoT sensors to 

enable accurate simulation. Therefore, in this work, 

instead of relying on simulation to generate the big data 

delivered by IoT devices, we developed an IoT-enabled 

manufacturing technology testbed (MTT) to understand 

the properties and characteristics of IoT sensors, as well as 

to identify the challenges and opportunities presented by 

IoT-enabled manufacturing systems. 

Currently, available IoT devices on the market are 

mainly for daily use consumer products such as cell 

phones and home security systems, and limited options are 

available for industrial applications. Based on the 

availability of IoT devices, their functionality, cost and 

potential industrial applications, we decided to use 

temperature sensors to develop the IoT-enabled MTT 

system, which is a continuous stirred tank reactor (CSTR) 

equipped with 28 IoT sensors (water proof DS18520 IoT 

temperature sensors), plus corresponding data acquisition, 

transmission and storage systems. As discussed earlier, 

these IoT sensors are small and easy to embed. Therefore, 

they offer the opportunities to instrument systems with 

mass number of sensors. With 28 sensors, the IoT-enabled 

MTT allows us to measure the temperature distribution 

within the reactor directly, without assuming ideal mixing.  

In the final design of the IoT-enabled CSTR system, 

sensors are placed in three different levels: top, middle and 

bottom levels in the tank; in each level, sensors are 

distributed uniformly across the cross-sectional area of the 

tank. The selected design not only allows for the capture 

of non-ideal mixing within the tank, but also allows easy 

scale up. The corresponding sensor housing unit was 

designed and fabricated in house. The base of the sensor 



  

 

housing unit (i.e., the tank lid) was fabricated using 3D 

printing, and 12 rods were inserted into the base and fixed 

with epoxy. IoT temperature sensors were then fixed to the 

rods at different heights. Figure 1 shows the setup of the 

IoT sensors within the CSTR made of transparent 

polycarbonate material. 

For the data management system, the final 

architecture follows the publish/subscribe model enabled 

by the MQTT protocol, a lightweight messaging transport 

that allows for a small code footprint while utilizing 

minimal bandwidth. Both of these advantages are a key 

concern when dealing with small, embedded devices using 

high-latency or unreliable networks. As shown in Figure 2, 

a single MQTT server acts as a central broker for devices 

to subscribe and publish to. Publishers send data to the 

server, while subscribers wait for incoming data that 

matches their subscription topic. Raspberry Pi was used as 

local computer that houses different publishers 

(DataCollector program), a desktop computer in a remote 

central location houses the broker, the subscriber 

(DataLogger program) and Cassandra CQL database. The 

Raspberry Pi sends the data collected from different 

sensors to the broker via the Auburn University wireless 

network. Figure 3 shows the actual set up of the MTT 

system. Currently, wireless versions of IoT temperature 

sensors are not available, therefore, the sensors are 

connected with wired LANs to the Raspberry Pi. When a 

wireless version becomes available, they can directly 

communicate with Raspberry Pi devices through the 

wireless network. 

The Apache Cassandra database allows for high 

availability and scalability without compromising 

performance, which is ideal when dealing with the volume 

of data produced in an IoT sensor enabled environment. 

 

Figure 1.  IoT sensors in the CSTR system 

Furthermore, in the event of real time monitoring 

scenarios, Cassandra offers linear scalability as well as 

proven fault tolerance. Lastly, Cassandra offers support for 

replicating across multiple datacenters which allows for 

low latency for users which is once again ideal given the 

possible number of users in an IoT sensor enabled 

environment. With several rounds of modifications and 

improvements, the data management system has achieved 

a sampling frequency of about 0.8 seconds per sample per 

sensor, and the sampling speed is independent from how 

many sensors are plugged into the system (allowing for 

future scaling of the system). In addition, the most recent 

version of the system has optimized the functionality 

offered by the MQTT protocol library to drastically reduce 

rogue connectivity issues, significantly limiting loss of 

connection despite sub-optimal network conditions. 

 

Figure 2.  System architecture: publish 
/subscribe model enabled by MQTT protocol  

 

Figure 3.  Actual setup of the MTT system 

Designed Experiments and Findings 

In order to test the functionality of the IoT-enabled 

MTT, as well as to gain better understanding of the 

behavior of the IoT sensors, steady state behavior and step 

response of the MTT were tested and analyzed. Additional 

experiments are designed and being conducted to 

investigate the mixing pattern and heat (mass) transfer 

within the CSTR. 

Steady-state behavior 

In order to study the behavior of IoT sensors, we first 

collected data over a period of time from the CSTR that is 

stabilized at room temperature. Figure 4 shows the data 

collected from two Raspberry Pi’s (RPi’s), and each RPi 

hosts seven sensors. In Figure 4, the bold red line 



  
 

 

represents the reference temperature obtained using a 

mercury thermometer; while the other thin colored lines 

represent measurements obtained from different IoT 

sensors. 

 
(a) (b) 

Figure 4.  Steady-state behavior of IoT 
temperature sensors 

Figure 4 shows that the IoT sensor responses are quite 

different from traditional mercury thermometers in the 

following aspects. First, many IoT sensors exhibit noisy 

behavior at steady state. Although some of the sensors 

show consistent readings, such behavior seems to be 

random, (i.e., different sensors may show consistent 

readings during different test runs). Second, this noisy 

readings fall in fixed grids due to the bit resolution of the 

analog-to-digital (AD) conversion. In most of the cases, 

the IoT readings change in the multiples of 0.0625 oC; a 

couple of IoT sensors changes in the multiples of 0.5 oC, 

as the orange line shown in Rpi-3 in Figure 4. Third, the 

sensors all contain persistent bias over time. 

Step response 

In these experiments, the temperature in the reactor 

was initially at room temperature; after 5~10 minutes of 

sampling, the water temperature is suddenly changed to 38 
oC (hot step) or 4.5 oC (cold step). Such step changes are 

achieved through moving the sensors and their housing 

unit together into a duplicated identical reactor with same 

amount of hot or cold water. Data collection continued 

even during the switch. After the switch, another 20~30 

minutes of sample were collected. Figure 5 (a) and (b) 

show the step responses obtained through IoT sensors 

during hot and cold step changes, correspondingly. Figure 

5 (c) shows the zoom-in of the transient response during 

the switch while Figure 5 (d) shows the zoom-in after the 

switch. The gradual decrease or increase of temperature 

after the step change in Figure 5 (a), (b) and (d) was due to 

the heat transfer between the reactor and ambient 

environment. 

From Figure 5 we can see that: (1) the IoT sensors 

have slightly different time constants. The time constants 

estimated from their step response ranges from ~2.9 to 

~5.3 second, with a mean of ~4.1 second. This behavior is 

similar to traditional sensors; (2) for gradual temperature 

changes, IoT sensors show “stiction” behavior, (i.e., the 

temperature change, either increase or decrease, has to be 

over a certain threshold before the sensor readings 

change). The size of sensor reading increase is similar to 

their steady state behavior, either in the multiple of 0.0625 

oC or multiple of 0.5 oC, again, due to the bit resolution of 

the analog-to-digital (AD) conversion. 

 
(a) (b) 

 
(c) (d) 

Figure 5. Step responses of the IoT sensors 

Sampling interval 

Besides different dynamic responses between IoT and 

traditional temperatures, another major differences is the 

sampling frequency or sampling interval. In our current 

configuration, the sampling frequency is mainly dictated 

by the IoT sensors. Whenever the IoT sensor sends a 

reading to Raspberry Pi, its corresponding publisher 

(DataCollector) will grab it and send it to the broker via 

the wireless network; and the corresponding subscriber 

(DataLogger) will receive it and store it into the Cassandra 

CQL database. Therefore, samples are not collected at 

fixed sampling intervals, instead, they are collected at 

various time intervals, and over the same period of time, 

different sensors will provide different number of 

readings. The sampling interval distribution for sensor #2 

and sensor #8 are given in Figure 6. Over the same 

sampling period (5960 seconds), sensor #2 and #8 

collected 7022 and 6982 samples respectively. 

The main reason for such distribution is cause by the 

hardware (IoT sensor). The specification of the digital 

sensors usually provides information on how fast the 

sampling frequency could be. However, the software does 

play a significant role as well. For example, in our initial 

configuration, only one publisher listens to all the sensors, 



  

 

which results in decreased sampling frequency when more 

sensors are added to the Raspberry Pi. After we switched 

to multi-agent setup, we were able to maintain the 

sampling frequency, no matter how many sensors are 

hosted by the same Raspberry Pi. 

 
(a) (b) 

Figure 6. Sampling frequencies vary among IoT sensors. 

The time interval is in second. 

Simulation results 

One of the main goals of this work is to use the IoT-

enabled MTT to study the dynamic behavior of the IoT 

sensors, and be able to generate simulation models to 

reproduce such behaviors.  

Figure 7 presents some simulation results, where (a) 

shows the simulated steady state response of the 7 sensors 

on Raspberry Pi 1; (b) shows the simulated response by 

sensor #8 for a gradual temperature increase; (c) shows 

some simulated step responses, where the time constants 

obtained from experiments were used to predict sensor 

output for a given step change; (d) shows the distribution 

of sampling interval in one simulated case. Figure 7 shows 

that our simulation models can accurately reproduce the 

IoT sensor responses, and the sensor models can be 

integrated into existing simulators to generate realistic data 

that would be produced in IoT-enabled manufacturing 

processes. In this way, the data analytics algorithm 

development will not be limited by available IoT-sensors, 

and we can easily produce high fidelity big data that 

would be produced in cybermanufacturing and use that to 

test different big data analytics algorithms. 

 
(a) (b) 

 
(c) (d) 

Figure 7. Behaviors of simulated IoT sensors 
mimic their true behaviors 

Challenges and Opportunities  

From the development and initial testing of the IoT-

enabled MTT system, we identified the following 

challenges for IoT-enabled cybermanufacturing, in 

particular, how they translate to challenges to data 

analytics. Although most challenges are interrelated to 

each other, we categorized them into three areas: 

hardware, software and data analytics. 

For hardware considerations, reliability is one of the 

biggest challenges. Reliabilities of the network (wired or 

wireless) connection provide the foundation of the smooth 

operation of a cybermanufacturing system. Reliability of 

the IoT devices is also a challenge, although it could be 

addressed partially by data analytics. Sensor accuracy 

presents another major challenge, as can be seen from the 

data we collected so far. Although each IoT temperature 

sensor has good precision, their accuracy is relative low. 

This could be a common feature of IoT sensors, because 

of the low cost and small size. Some well-established 

techniques such as filtering can help address some of the 

challenges. Another potential way would be to rely on big 

data generated by many sensors and data analytics to 

obtain accurate measurement of the system. The last but 

not least challenge in hardware is process safety. 

Traditional instruments usually have built-in safety 

considerations (such as air-to-open or air-to-close valves), 

but current IoT devices are lacking such process safety 

considerations.  

For software considerations, wireless communication 

protocols and data management play a big role on the 

overall system performance, as demonstrated in this 

project. In addition, cybersecurity is another area that 

needs additional research. With all the information 

transmitted over the Internet, how to differentiate process 

operation faults from cyberattacks is one of the major 

challenges that need to be addressed. Potential solutions to 

address such challenges tie closely to data analytics. 

For data analytics, four V’s (4V’s) are often used to 

characterize the essence of big data (Zikopoulos et al., 

2012): Volume (the size/scale of the data), Variety (the 

form/format of the data), Velocity (the rate of the data 

being produced), and Veracity (the uncertainty/reliability 

of the data). Big Data analytics is arguably a major focus 

in the next round of smart manufacturing transformation, 

and could become a key basis of competitiveness, 



  
 

 

productivity growth, and innovation (Qin, 2014). Here we 

discuss some challenges that data analytics face in 

addressing the 4 V’s of Big Data.  

For volume: The expected significantly and 

continuously increase in the number of variables is more 

difficult to handle than just large number of observations. 

Effective variable selection will help address these 

challenges to certain extent, but more likely drastically 

new approaches are needed to fundamentally address these 

challenges. We envision that some alternative process/data 

representations will emerge that utilize the complete set of 

variables rather than the filtered or pre-selected variables. 

For Variety: Manufacturing operations generate 

different form of data, such as process data and product 

quality data, each could take different forms, monitor 

different parts of the system, measure different phases of 

the process, sample at different frequencies, etc. Existing 

data analytics usually deal one type of data at a time. New 

methods that can take a mixture of data types (such as 

images, texts, etc.) to build integrated models are desired. 

For velocity: In the era of big data, there will be 

different modes of data analytics, such as streaming, batch, 

or mixed mode. It is expected that different modes of data 

analytics will be used for different purposes. In addition, 

we will probably see more development in different forms 

of incremental modeling or iterative modeling or both to 

address large volume of streaming data for real-time 

statistical analysis and online monitoring (Qin, 2014). 

For veracity: In process industry, veracity means data 

quality or cleanness issues such as missing data, outliers, 

noises, delays and data asynchronism as shown in the IoT 

temperature measurements in this work. While traditional 

data analytics approaches emphasize the cleanness of the 

data to prevent potential misleading conclusions, it has 

been suggested that the next generation data analytics 

tools should consider data errors or messiness as 

unavoidable, and use massive data to develop solutions 

that are robust to the imperfections in the data (Qin, 2014). 

Besides the 4V’s associated with big data, the above 

mentioned challenges in the hardware and software all 

present challenges and opportunities to new algorithm 

development. It is worth noting that recently Wang and He 

(2010, 2011, 2016) proposed a statistics pattern analysis 

(SPA) based framework as a big data analytics tool for 

IoT-enabled manufacturing. In the SPA framework, 

various statistics of different variables, instead of variables 

themselves, are utilized to characterize process dynamics, 

which provides a general way to handle process 

nonlinearity and normality. In addition, SPA does not 

require data pre-processing for measurements collected at 

a variable frequency such as the IoT measurements in this 

work, therefore has advantages in address velocity. 

Because missing data, outliers, noises, delays and data 

asynchronism, as observed in this project, has no or much 

less impact on various statistics compared to variable 

themselves, SPA offers many advantages in address 

veracity issues as well. However, one major challenge 

SPA based data analytics has to address is how to select 

statistics patterns that effectively capture the process 

characteristics. This is non-trivial, particularly for complex 

nonlinear processes that have enormous variables 

measured through IoT sensors. 

Future work will focus on how to make use of the 

data collected from IoT sensors for process monitoring 

and control. 
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