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Abstract

Integrated scheduling and control is a new approach that seeks to unify the objectives of the various

layers of optimization in manufacturing. Recent efforts in this field have used a continuous-time, slot-

based formulation. This work investigates combining scheduling and control using a novel discrete-time

formulation, utilizing the full process model through the entire horizon. This discrete-time form lends

itself to optimization with time-dependent constraints and costs. This work demonstrates the value of

time-based parameters in this paradigm by applying cooling constraints and energy costs of a sample

diurnal cycle. A psuedo-binary variable method is presented to ease the computational burden of this

approach. The formulation is applied with a generic CSTR system in open-loop simulations over a 48-hour

horizon.
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1 Introduction and Background

Current process control and optimization strategies are

typically divided into major sections including base layer

controls, advanced controls, real-time optimization, and

planning and scheduling (Soderstrom and Hedengren,

2010). Each of these levels works at a different time

scale, ranging from milliseconds to seconds for base

controls, up to weeks or months at the planning and

scheduling level.

In an effort to simplify models and decrease computa-

tion time, each of these layers receives a minimal amount

of information to fulfill an objective. However, this lack

of information creates lost opportunities. For exam-

ple, the “optimal solution” determined by the scheduler

is sometimes impossible to implement in practice e.g.

in the required time to transition between products in

continuous manufacturing (Capón-Garćıa et al., 2013).

Further, the objectives of individual optimizations can

sometimes counter each other (such as a controller goal

to reach a set point against a scheduler goal to maximize
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profits) (Harjunkoski et al., 2009).

This control structure is largely an artifact of the

development of process control and the computational

limits during these developmental periods (Baldea and

Harjunkoski, 2014). Thus, each field has grown within

an isolated domain, without much coordination, some-

times at the expense of truly optimal solutions (Baldea

and Harjunkoski, 2014).

With ever-increasing computational power, the seg-

regation of optimization is being reanalyzed and ex-

tended through efforts such as model predictive con-

trol (MPC) for supply chain management (Subramanian

et al., 2014), economic MPC (Ellis et al., 2014; Angeli

et al., 2012), Dynamic Real-time Optimization (DRTO)

(Pontes et al., 2015; Harjunkoski et al., 2014; Biegler

et al., 2015), and combined nonlinear estimation and

control (Hedengren et al., 2014; Lima et al., 2013).

Economic Model Predictive Control (EMPC) mixes

the benefits of the optimization layers with an objec-

tive function centered around profit or reducing oper-

ating expenses, rather than reaching a setpoint, and is

therefore reminiscent of a scheduler. However, EMPC



requires a very short time horizon to be able to solve in

real-time for closed-loop control situations (Ellis et al.,

2014).

Similarly, Dynamic Real-Time Optimization

(DRTO) has an economic objective function. DRTO

is solved more frequently than scheduling problems

and leverages the predictive power inherent in a first-

principles model to calculate intermediate set points

used by MPC for optimal product transitions (Pontes

et al., 2015; Ellis et al., 2014).

These past efforts have proven valuable in practice

(Soderstrom and Hedengren, 2010). Now, researchers

are attempting to take this blend of benefits one step fur-

ther by more directly integrating control and scheduling.

In light of ever-increasing computational potential, an

integrated optimization scheme is the future of process

control. The suggestions and early implementations of

fully combining scheduling and control go back at least

a decade (Flores-Tlacuahuac and Grossmann, 2006).

Approaches to the integration are sometimes viewed

in two classes: top-down (adding scheduling to the

control paradigm) or bottom-up (adding control to

the scheduling paradigm) (Baldea and Harjunkoski,

2014). Some researchers have investigated incorporat-

ing explicit process dynamics in the scheduling model

with differential and/or algebraic constraints (Flores-

Tlacuahuac and Grossmann, 2006), even for multi-

product parallel CSTRs (Flores-Tlacuahuac and Gross-

mann, 2010). Another approach has been named the

scale-bridging model (SBM), which is a simplified model

of the process that encompasses most of the important

dynamics that can be used in the scheduling framework

(Du et al., 2015; Baldea et al., 2015, 2016). Prata et al.

(2008) showed the benefit of integrating scheduling and

control to optimize transition times in a polymeriza-

tion reactor, and also found that the optimization prob-

lem grows rapidly with increasing number of products.

Zhuge and Ierapetritou (2012) showed the value of a

closed loop implementation of simultaneous scheduling

and control over an open loop implementation to reject

disturbances. Others have taken a more theoretical ap-

proach by employing the Benders’ decomposition frame-

work to particular problems (Chu and You, 2013) or by

using Dinkelbach’s algorithm to find a global optimum

in online implementations (Chu and You, 2012). Still

others have explored the integration of scheduling and

control in batch processes (Capón-Garćıa et al., 2013;

Nie et al., 2012).

One development that will increase the available in-

formation to the optimizers is the continuing transition

to a smart electrical grid. As the electricity grid transi-

tions to a “smart grid,” stakeholders will be empowered

to perform energy transactions (Farhangi, 2010). Indus-

trial plants could also take advantage of the variable cost

of electricity.

Demand Response (DR) seeks to manage both

volatile demand and renewable energy in order to in-

crease efficiency of the electrical grid. DR incentivizes

consumers to behave in ways that benefit the electrical

grid as well as themselves by utilizing variable pricing to

reduce consumption during peak hours when the relia-

bility of the grid is jeopardized (U S Department of En-

ergy, 2006). Generation should match consumption in

order to maintain grid reliability (Mendoza-Serrano and

Chmielewski, 2013). DR is a major reason why variabil-

ity of energy prices is expected to increase (Deng et al.,

2015). Industrial manufacturing processes can benefit

from DR by decreasing energy consumption when the

cost of electricity is high and increasing consumption

when electricity costs are low.

Although residential makes up the largest portion

of electrical grid consumers, tremendous opportuni-

ties exist for industrial participants (Mendoza-Serrano

and Chmielewski, 2013). Previous efforts to quantify

the benefits of DR for the industrial sector include

petroleum refining (Mendoza-Serrano and Chmielewski,

2013), chemical processing (Feng et al., 2015), and gas

production (Air Separation Unit) (Huang et al., 2011).

This work utilizes a Continuously Stirred Tank Re-

actor (CSTR) with a first-order, irreversible reaction to

illustrate the benefits of adjusting operations based on

periodic electricity price changes. Previous efforts to

implement DR in chemical manufacturing processes re-

quired capital equipment. This work utilizes a standard

CSTR and requires no additional capital equipment.

Moreover, the periodic constraint of effective maximum

cooling is added to the model. During the heat of the

day, effective maximum cooling is reduced compared to

nighttime operation. Periodic constraints for Nonlinear

Model Predictive Control (NMPC) have been previously

formulated (Huang et al., 2011). In this work, periodic

constraints of both effective maximum cooling and elec-

tricity price are utilized in the optimization.

2 Test System

In this section we present the CSTR model used in

this work. The model is applicable in various industries



from food/beverage to oil and gas and chemicals. The

notable assumptions of a CSTR include:

• Continuous flow in and out

• Well mixed

• Constant density

The model shown in Eqs. 1 to 4 is an example of an

exothermic, first order reaction of A ⇒ B where the

reaction rate is defined by an Arrhenius expression and

the reactor temperature is controlled by a cooling jacket.

The fluid in the cooling jacket undergoes an external,

arbitrary cooling process where ∆Hcool is the effective

cooling rate.

dCA
dt

=
q

V
(CA0 − CA)− k0e

−EA/RTCA (1)

dT

dt
=

q

V
(Tf−T )− 1

ρCp
k0e

−EA
RT CA∆Hr−

UA

V ρCp
(T−Tc)

(2)

dTc
dt

=
qcool
Vj

(Tcin − Tc) +
UA

VjρCp(T − Tc)
(3)

∆Hcool = ρCp.coolqcool(Tc − Tcin) (4)

In these equations, CA is the concentration of reactant

A, CA0 is the feed concentration, q is the inlet and outlet

volumetric flowrate, V is the tank volume (q/V signifies

the residence time), EA is the reaction activation energy,

R is the universal gas constant, UA is an overall heat

transfer coefficient times the tank surface area, ρ is the

fluid density, Cp is the fluid heat capacity, k0 is the

rate constant, Tf is the temperature of the feed stream,

CA0 is the inlet concentration of reactant A, ∆Hr is the

heat of reaction, qcool is the flowrate of coolant, Vj is

the volume of the cooling jacket, T is the temperature

of reactor, Tc is the temperature of cooling jacket, Tcin

is the temperature of cooling return line and Cp.cool is

the cooling fluid heat capacity, Table 1 lists the CSTR

parameters used.

This system is a simple test problem used to demon-

strate this method. However, this formulation can be

easily applied to various systems by simply replacing

this model with an applicable system model.

Table 1. Reactor Parameter Values

Parameter Value

V 400m3

qcool/Vjacket 5hr−1

EA/R 8750K
UA
V ρCp

0.523hr−1

k0 1.8e10hr−1

Tf 350K

CA0 1mol/L
∆Hr

ρCp
−209Km

3

mol

3 Problem Formulation

In this example, one reactor can make multiple prod-

ucts by varying the concentrations of A and B in the out-

let stream. The manipulated variables in this optimiza-

tion were ∆Hcool and q, which are bounded by 2MW ≤
∆Hcool and 100m3/hr ≤ q ≤ 120m3/hr. The sam-

ple problem used three products over a 48-hour horizon.

The product descriptions are shown in Table 2, where

the product specification tolerance is ±0.005mol/L.

Table 2. Product specifications.

Product CA Max Demand Price

(mol/L) (m3) ($/100 m3)

1 0.35 1920 24

2 0.12 2400 27

3 0.25 2880 21

Four test cases were considered to develop the inte-

gration of time-based parameters:

1. Static pricing and cooling constraints

2. Static pricing, diurnal cooling constraint function

3. Static cooling constraint, diurnal pricing function

4. Diurnal pricing and cooling constraint functions

Case 1 is the standard, time-independent case that

should largely replicate results of a continuous-time,

slot-based formulation.

The diurnal cycles of energy price and effective cool-

ing constraints were generalized by simple sinusoidal

curves, as shown in Figure 1. The energy price varies be-

tween $10-$90 per MWh, with the static price represent-

ing the average of $50 per MWh. The effective cooling

constraint represents the amount of cooling done that af-

fects the system; in other words, the cooling done minus



losses to the environment, etc. Therefore, higher ambi-

ent temperature during the day reduces effective cooling

to the reactor because of heat loss to the environment,

while more cooling is possible during the colder night.
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Figure 1. Plots of maximum effective cooling constraint

and time-of-day pricing over 48 hours.

The objective function is shown in Eq. 5, where B

is the binary variable that determines if product p is

produced at time t, Π is the price of product p and E is

the price of energy consumed at time t.

maximize
∑
t

∑
p

(qtΠpBp,t)− Et

s.t. Process Model (Eqs. 1 - 4)

(5)

Pseudo-Binary Variables

Fine time resolution dictates a large number of inte-

ger variables. To avoid the extra computation required

by mixed-integer nonlinear programming (MINLP)

solvers, this work utilized a pseudo-binary variable ap-

proach for B. Using Eq. 6, the gradient-based solver

is provided a gradient to recognize the location of prod-

ucts. In Eq. 6, h represents the max height of the func-

tion and must exceed 1, tol is the product tolerance (ie

±0.01) and CA,prod is the specified concentration of the

desired product. In this format, the function exceeds 1

in the range of product specifications and within (0,1)

elsewhere. Equation 7 then caps the function to 1, cre-

ating a binary range.

f(CA) = h10log(1/h)/tol2(CA,prod−CA)2 (6)

B(CA) ≤ f(CA), B ∈ [0, 1] (7)

To force B closer to a binary form, the height (h) can

be increased, as shown in Figure 2. In this work, h was

manually increased and solved again, with each solution

initializing the next. However, this method is related to,

but has the opposite effect of, the barrier method used in

interior point solvers. It is the authors’ opinion that this

form would be better implemented within a solver where

(h) could be updated on a per-iteration basis. This is a

point of future work.
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Figure 2. Plot showing convergence of pseudo-binary

variable.

This function is suitable for this use because product

specification variables are typically within a known, rel-

atively small bound. Thus, the function f can provide

a gradient through the entire range with initially small

h.

4 Results

The results of each of the four test cases are described

below. Each case has two plots. The first shows the

system state variables, the second shows the maximum

∆Hcool(MW ) constraint with the system ∆Hcool and

(in cases 2 and 4) the energy price curve is overlayed

with the right axis showing price units.

Case 1

This case is the first known implementation of

scheduling using the full process model through the en-

tire horizon and is the only known implementation of a

combined scheduling and control formulation with dis-

crete time. This case proves that this formulation is

successful in combining scheduling and control.

This first test case produces the maximum amount

of product 2 (the most profitable). Product 2 (CA =

0.12) is produced at a lower rate because of the constant

energy constraint.
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Figure 3. Case 1: Static pricing and cooling constraints.

Case 2
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Figure 4. Static pricing, diurnal cooling constraints.

The diurnal cooling constraint curve applied in case

2 allows product 2 to be produced at a higher rate. The

rate is decreased during the hottest part of the day,

reaching the production rate of case 1 for only a brief

period. Further, the transitions between products oc-

cur at different times when the max cooling constraint

is higher because the extra cooling allows transitions to

occur more quickly.

The profit for this case increased ˜20% over case 1.

This shows the value of considering time-dependent con-

straints in combined scheduling and control. This ben-

efit further justifies a discrete-time formulation for the

ease of applying these constraints.

Case 3
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Figure 5. Static cooling constraint, diurnal energy price.

Case 3 largely follows case 1, except that production

rates decrease when energy prices peak. Energy costs

too much during these times and production generates

negative revenue so the optimizer minimizes production

to the lower bound of q (100 m3/hr). Also, the transi-

tions occur at slightly different times to compensate for

different production rates and to transition during times

of cheaper energy.

The profit in this case increased only slightly (˜2%),

but lowering the lower bound of q would easily increase



this benefit. Again, time-dependent parameters are

shown to be worth considering.

Case 4
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Figure 6. Diurnal constraint and price.

Case 4 implements the positive effects of cases 2 and

3 — the transitions occur at different places, produc-

tion rate of product 2 is maximized and production at

peak energy prices is decreased. The overall profit is the

highest of the 4 cases.

Summarized Results

Table 3. Economic Summary of Results

Case Product Production (m3) Profit

1 2 3 ($)

1 1105 2288 1748 4632

2 1004 2328 2144 5656

3 1132 2264 1584 4712

4 1004 2304 2012 5684

In summary, transitions are treated differently (dif-

ferent net costs, start times and durations) with time-

dependent constraints. These considerations can have

a significant economic impact, with diurnal constraints

increasing profits ˜20% in this example.

It is also anticipated that, under the right circum-

stances, the scheduler may go so far as to switch prod-

ucts in response to these diurnal cycles, forcing extra

transitions that would not be possible in current imple-

mentations of slot-based combined scheduling and con-

trol formulations where the number of slots frequently

equals the number of products. In other cases, the

scheduler may order products differently with time-

based constraints in consideration. Further, this method

is easily applied to other time-dependent parameters be-

yond diurnal cycles, such as feed stock price predictions.

5 Conclusion

This work applied a novel, discrete-time formula-

tion of combined scheduling and control. This method

provided a schedule of sequential products using the

full model dynamics through the entire horizon. The

discrete-time formulation easily allowed the implemen-

tation of time-based parameters. This work applied

time-dependent parameters of diurnal cycles of energy

price and maximum effective cooling of a CSTR. This

optimization improved open-loop scheduling profit pre-

diction over 20%. This work also implemented a psuedo-

binary approach to assist the gradient-descent solvers.

This work motivates continued investigation into

discrete-time formulations and time-dependent param-

eters in considering both transitions and product man-

ufacturing. In particular, the pseudo-binary approach

should be implemented as part of an interior point

solver. As this method matures, other objectives, such

as on-time delivery, should be incorporated in the ob-

jective.
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Capón-Garćıa, E., Guillén-Gosálbez, G., and Espuña, A.

(2013). Integrating process dynamics within batch pro-

cess scheduling via mixed-integer dynamic optimization.

Chemical Engineering Science, 102:139–150.

Chu, Y. and You, F. (2012). Integration of scheduling and

control with online closed-loop implementation: Fast com-

putational strategy and large-scale global optimization al-

gorithm. Computers and Chemical Engineering, 47:248–

268.

Chu, Y. and You, F. (2013). Integration of production

scheduling and dynamic optimization for multi-product

CSTRs: Generalized Benders decomposition coupled with

global mixed-integer fractional programming. Computers

and Chemical Engineering, 58:315–333.

Deng, R., Yang, Z., Chow, M.-Y., and Chen, J. (2015). A

Survey on Demand Response in Smart Grids: Mathemat-

ical Models and Approaches. IEEE Transactions on In-

dustrial Informatics, 11(3):1–1.

Du, J., Park, J., Harjunkoski, I., and Baldea, M. (2015).

A time scale-bridging approach for integrating production

scheduling and process control. Computers & Chemical

Engineering, 79:59–69.

Ellis, M., Durand, H., and Christofides, P. D. (2014). A tuto-

rial review of economic model predictive control methods.

Journal of Process Control, 24(8):1156–1178.

Farhangi, H. (2010). The Path of the Smart Grid 18. IEEE

Power & Energy Mag.,, (february):1828,.

Feng, J. Y., Brown, A., O’Brien, D., and Chmielewski, D. J.

(2015). Smart grid coordination of a chemical processing

plant. Chemical Engineering Science, 136:168–176.

Flores-Tlacuahuac, A. and Grossmann, I. E. (2006). Simul-

taneous Cyclic Scheduling and Control of a Multiprod-

uct CSTR. Industrial & Engineering Chemistry Research,

45(20):6698–6712.

Flores-Tlacuahuac, A. and Grossmann, I. E. (2010). Simul-

taneous scheduling and control of multiproduct continu-

ous parallel lines. Industrial and Engineering Chemistry

Research, 49(17):7909–7921.

Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro,

P. M., Engell, S., Grossmann, I. E., Hooker, J., Méndez,

C., Sand, G., and Wassick, J. (2014). Scope for industrial

applications of production scheduling models and solution

methods. Computers and Chemical Engineering, 62:161–

193.

Harjunkoski, I., Nyström, R., and Horch, A. (2009). Integra-

tion of scheduling and controlTheory or practice? Com-

puters and Chemical Engineering, 33:1909–1918.

Hedengren, J. D., Shishavan, R. A., Powell, K. M., and

Edgar, T. F. (2014). Nonlinear modeling, estimation and

predictive control in APMonitor. Computers & Chemical

Engineering, 70:133–148.

Huang, R., Harinath, E., and Biegler, L. T. (2011). Lya-

punov stability of economically oriented NMPC for cyclic

processes. Journal of Process Control, 21(4):501–509.

Lima, F. V., Rajamani, M. R., Soderstrom, T. A., and Rawl-

ings, J. B. (2013). Covariance and State Estimation of

Weakly Observable Systems: Application to Polymeriza-

tion Processes. IEEE Transactions on Control Systems

Technology, 21(4):1249–1257.

Mendoza-Serrano, D. I. and Chmielewski, D. J. (2013). De-

mand Response for Chemical Manufacturing using Eco-

nomic MPC. Proceedings of 2013 American Control Con-

ference (ACC), pages 6655–6660.

Nie, Y., Biegler, L. T., and Wassick, J. M. (2012). Inte-

grated scheduling and dynamic optimization of batch pro-

cesses using state equipment networks. AIChE Journal,

58(11):3416–3432.

Pontes, K. V., Wolf, I. J., Embiruçu, M., and Marquardt, W.
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