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Abstract 

A Mixed-Integer Linear Programming model is proposed to determine the optimal number, location and 
capacity of the warehouses required to support a long-term forecast for a business with seasonal demand. 
Discrete transportation costs, dynamic warehouse contracting, and the handling of safety stock are the 
three main distinctive features of the problem. Four alternatives for addressing discrete transportation 
costs are compared. The most efficient formulation is obtained using integer variables to account for the 
number of units used of each transportation mode. Contracting policies constraints are derived to ensure 
warehouses are used for continuous periods. Safety stock with risk-pooling effect is considered using a 
piecewise-linear representation. To solve large-scale problems, tightening constraints, and simplified 
formulations are proposed. The simplified formulations are based on single-sourcing assumptions and 
yield near-optimal results with a large reduction in the solution time with a small increase in the total cost. 
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Introduction 

Supply chains have become increasingly complex in  recent 
years. Globalization has made a large number of new 
markets and sourcing options available. The response from 
many companies to this situation has been to focus on their 
core business, outsourcing the logistics and warehousing 
operations. Strategic decisions can have a large impact in 
the success of a company. This is why such decisions must 
be made using the best tools available. 

A Mixed-Integer Linear Programming model that 
includes discrete transportation costs, dynamic 
warehousing contracting policies and safety stock with risk-
pooling effect (Eppen, 1979), is proposed in this paper. 

These features are especially important when the logistics 
and warehousing operations are outsourced. The goal of the 
proposed model is to determine the optimal number, 
location and size of warehouses in a supply chain for a 
business with seasonal demand. This is not a trivial task 
because decisions on production of each commodity, 
transportation mode selection, flow and inventory must be 
optimized simultaneously. The features considered make 
the model more realistic, but at the same time significantly 
harder to solve. This is why efficient model formulations 
and solution strategies must be developed. This paper 



  
 
focuses on developing efficient formulations for the 
problem. 

The paper is a contribution to the research in the facility 
location problem. The extensive literature in the area is 
covered in the comprehensive reviews by Owen and Daskin 
(1998), Klose and Drexl (2005), Melo et al. (2009), 
Farahani et al. (2013). 

Discrete transportation costs are present in most supply 
chains. However, only a handful of problems consider this 
characteristic (Bravo and Vidal, 2013). Discrete costs mean 
that the transportation cost is fixed per each truck or 
container, whether the unit is full or not. The total cost is 
then a piecewise constant function of the transported 
amount. Park and Hong (2009) use an assignment problem 
approach. Another option is to use integer variables to 
represent the number of transportation units. This is 
presented by Manzini and Bindi (2009), Brahimi and Khan 
(2014), and Quttineh and Lidestam (2014). Gao et al. (2010) 
use a piecewise function to represent the transportation cost. 
In this work we compare 4 alternatives of modeling the 
discrete transportation costs and identify the most efficient 
one (minimum solution time) for the current application. 

Another important feature considered is the warehouse 
contracting policies. Since the inventory storage service is 
supplied by an external company, constraints to ensure a 
continuous service must be enforced. Constraints derived 
from propositional logic impose two conditions: 1) once a 
warehouse is opened it must remain opened by at least a 
certain amount of time; 2) if a warehouse is closed, it will 
not be available for reopening before a certain amount of 
time. 

The handling of safety stock is another novel aspect of 
this article. Daskin et al. (2002) consider safety stock with 
risk-pooling effect (Eppen, 1979), with a nonlinear 
formulation. You and Grossmann (2008), and Miranda and 
Garrido (2009) propose similar formulations. We propose a 
piecewise-linear formulation that implicitly considers 
demand variability and the risk-pooling effect. 

With all the complicating issues included, obtaining the 
optimal solution becomes a challenging task. To solve 
larger problems tightening constraints and simplifying 
formulations are considered. These formulations have a big 
impact on the solution time, with only a small increase in 
the objective value. 

Problem Description 

Given a set of plants producing a specified number of 
products, it is required to determine the location, number 
and size of warehouses to serve several customers in a 
region. The goal is to minimize the transportation and 
inventory costs. A monthly demand forecast is available. 
Therefore, the planning horizon is divided in monthly 
periods. Figure 1 depicts the problem and also outlines the 
main nomenclature used in the paper. 

 

Figure 1: Network structure of supply chain 

Optimization Model 

The uncapacitated facility location model is the core 
optimization formulation to solve supply chain design 
problems. It can be formulated with the following general 
model: 
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𝑥𝑥, 𝑠𝑠 ≥ 0, 𝑦𝑦 ∈ {0,1}  (5) 

Indices (i,j,k) denote the plant, warehouse and customer 
respectively. x represents flow, s represents stock and y is 
the binary variable indicating the use of a warehouse in a 
given period. FC, HC, CT and PC are the fixed, holding 
transportation and production costs, respectively. D 
represents the demand. Note that in the above model, the 
transportation cost is a linear function of the amount 
transported. We will replace that function with the 
appropriate discrete representation after determining the 
most efficient formulation. 

Discrete Transportation Costs 

In the first alternative considered, given by Eq. (6), 
integer variables are defined to compute the number of 
transportation units of each mode m used in a given link 
(warehouse j to customer k, for example) at a given time 
period t (ujkmt). The inequality states that the transported 



 

capacity, given by the right hand side, must exceed the 
selected amount to be transported. 
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The second alternative is based on direct interpolation 
on the cost function (Figure 2). The transportation cost is 
obtained interpolating with the transported quantity into the 
piecewise function, SOS2 variables are used to represent the 
function. Eq. (7)-(10) are the constraints included in this 
alternative. 

Figure 2. Piecewise cost function example 
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 ∀𝑗𝑗, 𝑘𝑘, 𝑝𝑝, 𝑡𝑡 (7) 
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where (𝑃𝑃𝑋𝑋𝑛𝑛,𝑃𝑃𝐶𝐶𝑛𝑛) are the breakpoints of the piecewise 
function 

The third and fourth alternatives are based on the 
disjunctive nature of the piecewise constant function. The 
transported amount can only be in one of the defined 
intervals of the cost function from Figure 2. This leads to 
the disjunction from Eq. (11). 
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The disjunction can be reformulated using the Big-M 
from Eq. (12)-(13) (Raman and Grossmann, 1994), or the 
Convex Hull from Eq. (14)-(15) (Balas, 1998). Eq (16)-(17) 
are common for both formulations. 
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The four alternatives were compared for different 
model sizes of the problem. The results are presented in 
Table 1. The values indicate the optimality gap after 10 min 
of run with a target of 0.5%. When a value of 0.5% is 
reported the model solved the problem in 10 minutes or less. 
NF indicates that no feasible solution was found after the 
time limit was reached. The instance code indicates the 
problem size. For example, T6C4P5 indicates 6 periods, 4 
customers and 5 products. The 10-minute limit was chosen 
because the instances from the experiment are quite small 
compared to the size of the actual problem.  

Table 1. Optimality gap after 10 min 

Instance Integer 
Variables SOS2 BigM Convex 

Hull 
T6C4P1 0.5% 0.5% 0.5% 0.5% 
T6C4P5 0.5% 8.7% 0.6% 81% 

T12C8P5 0.5% 12.6% NF NF 
T36C8P5 0.5% NF NF NF 
As summarized in Table 1, the model with integer 

variables (Eq. 6) was able to solve all the instances in less 
than 2 minutes. Therefore, it is selected as the most efficient 
alternative to model discrete freight costs for the current 
application. A possible explanation for this result is the 
small number of variables and constraints of the model with 
integer variables compared to the other alternative models. 
For each integer variable many extra variables and 
constraints are required in the other formulations. 

Warehouse Contracting Policies 

When the warehousing service is outsourced 
contracting must be done for continuous periods of time. 
When a contract is started, the warehouse must remain 
opened for at least a minimum number of periods. When a 
contract is finished it cannot be renewed right away, it must 
remain closed for at least a number of periods. This 
restriction avoids the generation of short gaps in the use of 
a warehouse, which are difficult to fill with another 



  
 
customer. To enforce these restrictions, a minimum 
contracting length L and a minimum waiting period for 
contract renewal W are defined. The binary variable 𝑦𝑦𝑗𝑗𝑗𝑗 
represents whether a warehouse j is used in period t or not. 
New binary variables 𝑦𝑦𝑗𝑗𝑗𝑗𝑠𝑠  and 𝑦𝑦𝑗𝑗𝑗𝑗

𝑓𝑓  to indicate when a 
contract is started and finished, respectively, are also 
defined. With these elements, Eq. (18)-(21) are added to the 
model. 

−yjt + 𝑦𝑦𝑗𝑗𝑗𝑗−1 + 𝑦𝑦𝑗𝑗𝑗𝑗𝑠𝑠 ≥ 0 ∀𝑗𝑗, t > 1 (18) 
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≥ 𝐿𝐿𝑦𝑦𝑗𝑗𝑗𝑗𝑠𝑠  ∀𝑗𝑗, 𝑡𝑡 + 𝐿𝐿 − 1
≤ |𝑇𝑇| (19) 

−yjt + 𝑦𝑦𝑗𝑗𝑗𝑗+1 + 𝑦𝑦𝑗𝑗𝑗𝑗
𝑓𝑓 ≥ 0 ∀𝑗𝑗, 𝑡𝑡 < |𝑇𝑇| (20) 
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+ 𝑊𝑊𝑦𝑦𝑗𝑗𝑗𝑗
𝑓𝑓 ≤ 𝑊𝑊 ∀𝑗𝑗, t + W ≤ |T| (21) 

Safety Stock with Risk-Pooling Effect 

The safety stock can be expressed by Eq. (22) (Daskin 
et al., 2002).  

𝑠𝑠𝑠𝑠 = 𝑧𝑧𝑧𝑧√𝐿𝐿𝑇𝑇  (22) 

To represent the safety stock with risk-pooling effect 
using only linear constraints we need to analyze this 
equation. First, for a given service level z and lead time LT, 
the safety stock is proportional to the absolute variance 𝜎𝜎, 
which is also proportional to the demand. Additionally, to 
account for the risk-pooling effect, the proportionality 
constant must decrease with the number of customers 
served, which is indirectly also represented by the 
demanded amount. The safety stock can then be 
approximated by a piecewise-linear function (Figure 3). Eq 
(23)-(26) are the constraints to model the function. 

Figure 3. Safety stock piecewise-linear function 
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�𝜆𝜆𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 1
𝑛𝑛

 ∀𝑗𝑗, 𝑝𝑝, 𝑡𝑡 (25) 

𝜆𝜆𝑗𝑗𝑝𝑝𝑡𝑡𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆2  (26) 

Tightening Constraints 

The various features considered by the model make it 
more realistic but at the same time harder to solve. This is 
why additional effort needs to be made to solve larger 
instances. The first alternative explored is to include valid 
inequalities in the formulation that are not strictly required 
to obtain the optimal solution, but contribute to 
strengthening the relaxation, and thus, potentially solve the 
problem faster. Four families of tightening constraints were 
studied. However, only one of them resulted in a modest 
speed up in the solution time. Namely,   

𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑚𝑚𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ≤  �𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝

 ∀𝑗𝑗, 𝑘𝑘, 𝑡𝑡,𝑚𝑚 (27) 

Equation (27) illustrates the valid inequalities for the 
warehouse-customer link, similar constraints are added for 
plant-warehouse and warehouse-warehouse. Constraints 
from Eq. (27) provide a tighter upper bound for the 
transportation units. They indicate that the number of 
transportation units used in a given link at a specific time 
periods will be at most the number of units that would be 
used if that transportation mode is unique.  

Simplifying Approximations   

Another strategy to decrease the solution time is to 
make reasonable assumptions to simplify the MILP model 
to obtain approximate solutions. Two formulations are 
proposed based on assumptions of customer service policies.  

The first simplified formulation assumes that a given 
customer receives a given product from a single warehouse. 
In the following, we will refer to this formulation as JKP, 
because only one of the combinations warehouse-customer-
product is allowed (single-sourcing). For example, if a 
customer demands products A and B, it could receive 
product A from one warehouse (W1), and product B from 
another warehouse (W2), but it could not receive the same 
product from two separate warehouses. The assumption is 
reasonable because products supply tend to follow 
minimum plant-warehouse-customer cost routes. The 
deviation from this assignment only occurs when 
limitations of capacity are reached. On the other hand, the 
network design is primarily driven by transportation costs 
on the warehouse-customer side. The modeling effect is that 
the variable that represents the flow between a warehouse j 



 

and a customer k for a given product p in time period t, 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 , 
is replaced by the term 𝐷𝐷𝑘𝑘𝑘𝑘𝑘𝑘𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗 , product between a new 
binary variable, 𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗, and the Demand, 𝐷𝐷𝑘𝑘𝑘𝑘𝑘𝑘 . An additional 
constraint is needed to ensure the combination warehouse-
customer-product is unique. The variable 𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗 takes a value 
of one if warehouse j supplies product p to customer k 

�𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗 = 1
𝑗𝑗

 ∀k, p (28) 

It is important to observe that with the JKP formulation, 
a large number of continuous variables, 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , are replaced 
by smaller yet significant number of binary variables, 
𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗 .Thus it is not straightforward to predict a decrease in 
solution time. However, our experiments, presented in the 
next section show that the impact of the reformulation is 
indeed positive. The second observation is that since this 
model represents a restriction of the original model, the 
objective value provides a valid upper bound cost of the 
original problem. This bound is typically no more than 1% 
higher than the optimal cost.  

Taking this idea further, we can also assume that a 
customer receives all its demanded products from a given 
warehouse. In this formulation (JK), the binary variable zjk 
indicates this assignment. As before, the variable xjkpt is 
replaced by Dkpt zjk, but additionally the transportation units 
in the warehouse-customer links can be precalculated 
offline, eliminating the integer variable ujktm. In this way, 
the number of binary variables added is much less than 
before. Furthermore, a large number of continuous and 
integer variables is eliminated. Since the assumption is even 
more restrictive the resulting objective value yields an 
upper bound to both, the original problem and the JKP 
formulation. 

Case Studies 

To illustrate the importance of considering discrete 
transportation costs a case study with 8 plants, 10 
warehouses, 6 customers, 5 products, 24 time periods and 4 
transportation modes is presented. The problem was solved 
using a continuous transportation costs formulation 
(proportional to transported amount), and discrete 
transportation costs (cost per transportation unit). The 
objective value and solution time is presented in Table 2, 
whereas Figures 4 and 5 illustrate the resulting supply chain 
networks 

Table 2. Comparison between considering 
discrete and continuous transportation costs 

Instance 
Continuous Freight 

Cost  
Discrete Freight 

Cost 
Objective CPU(s) Objective CPU(s) 

T6C4P1 84.1 53 262.4 10350 

The results show a very large difference in both 
solution time and objective value. This indicates then, even 
though the continuous costs model can solve much faster 
than the discrete transportation costs model, it fails to 
correctly estimate the costs and design the optimal network. 
It also fails to identify the mix of transportation modes used, 
because if the number of units available of each mode is not 
restricted it will always select the lowest cost mode. For 
these reasons, it is very important to consider discrete 
transportation costs in a supply chain design model to obtain 
the optimal design and plan. 

The second case study analyzes the effect of tightening 
constraints and the simplified formulations JKP and JK. 
They were evaluated in instances of different sizes. The 
results are presented in Table 3. “Orig” indicates the 
original formulation. “Orig-t” indicates the original 
formulation with the tightening constraints, and JK and JKP 
are the simplified formulations. As seen in Table 3, the 
introduction of tightening constraints yields a small 
reduction in solution time for instances C10P10T24 and 
C15P15T36. There is no reduction in solution time by using 
the simplified formulations for the smallest instance, 
C10P10T12. However, up to 95% reductions are observed 
for the larger problems. The objective values of the JK and 
JKP formulations are very close to the optimum.  

 

 
Figure 4. Optimal network for continuous cost model 
 

 
Figure 5. Optimal network for discrete cost model 



  
 

Conclusions 

In this paper we have addressed the optimal network design 
for a supply chain with seasonal demand as a facility 
location problem. The best formulation to model the 
distinctive characteristics of the supply chain under study 
was identified among several options and solved for a mid-
size case study. 

The use of integer variables resulted in the most 
efficient formulation to address discrete transportation costs. 
The safety stock was modeled using a piecewise- linear 
approximation, and specific contracting policy constraints 
were derived from propositional logic. 

The importance of using discrete transportation costs 
was illustrated with the first case study. Most real 
applications have this kind of cost structures, yet most 
models developed simplify this by considering that the costs 
are proportional to the transported amount. We have 
showed that this simplification can result in poor supply 
chain network designs and incorrect costs estimations. 

All the features considered contribute to have more 
realistic models, especially when outsourcing logistic 
operations. But at the same time they pose a challenge in 
solving the optimization model. The first steps towards 
solving larger problems are presented. Valid inequalities   
that help to tighten the relaxation were derived. It was 
shown that the simplified formulations JKP and JK help 
significantly to reduce the solution time, allowing to solve 
larger problems with a small increase in the objective value. 
Larger problems will require designing efficient 
decomposition algorithms. 
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Table 3. Case study 2 objective values and solution times 

Instance  Orig Orig-t JKP JK 
C10P10T12 Obj 2816 2816 2816 2823 
 CPU(s) 13 13 19 14 
C10P10T24 Obj 5447 5447 5453 5458 
 CPU(s) 583 579 60 97 
C15P15T36 Obj 10353 10353 10353 10434 
 CPU(s) 9472 9461 477 408 


