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Abstract 

A multi-scale three-stage population balance model (TSPBM) was developed in combination with the 
multivariate projection models to obtain the unknown kernel constants in population balance model 
(PBM), considering the batch and multi-stage characteristics of the top-spray fluidized bed granulation 
process. Partial least square (PLS) regression is adopted as the particle-scale modeling method in this 
work to describe the relationship between the manipulated operating variables and kernel constants used 
in PBM. Population balance model works as process-scale model describing the evolution of granule 
size distribution (GSD) according to kernel constants. By developing the relationship between the GSD 
and the manipulated operating variables, the developed multi-scale TSPBM is firstly established as a 
prerequisite for optimization strategy design. An online optimization strategy is proposed to improve the 
granule quality of top-spray fluidized bed granulation and to reduce the mismatch between the developed 
model and the actual system. By adjusting the granule growth trajectory on predefined sample intervals, 
the new optimal operating variables of pulse frequency, binder spray rate and atomization pressure are 
determined to ensure the granule size not deviating from desired trajectory. A differential evolution (DE) 
algorithm is used to solve the problem for online optimization problem and adjust the granulation 
operating variables. Experimental results and simulation tests are carried out to validate the effectiveness 
of the proposed TSPBM and the online optimization strategy. The developed TSPBM can accurately 
predict experimental GSD, which is carried out at randomly selected operating conditions. The proposed 
online optimization strategy can improve more than 50% prediction capability comparting with the 
offline optimization method. 
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Wet granulation is a process of enlarging solid 
particles to get granular product with specific size and 
certain properties such as flowability, dissolution rate, 
granule strength and bulk density (Liu et al. 2013; Liu et al. 
2016). It is an important powder processing technique in 

many industries including foods, pharmaceuticals and 
fertilizers. Among the granulation methods, fluidized bed 
spray granulation is more popular by combining the 
traditional mixing, granulating and drying processes 
together into the same equipment, and therefore produces 



  

good quality products improving production efficiency. 
During top-spray fluidized bed granulation, binder liquid is 
sprayed in form of droplet by a spraying nozzle onto 
particles bed fluidized by fluidizing air and upon wetting, 
the particles will be bounded together by liquid bridges to 
form granules (Tan et al. 2006). 

Top-spray fluidized bed granulation is a complex 
process, which is not only influenced by the original 
material composition and properties, but also by the 
operating conditions, such as pulse frequency, binder spray 
rate and atomization pressure, fluidizing air temperature 
(Liu et al. 2014(a); Liu et al. 2014(b)). The size 
distribution is one of the most important properties for 
granules. In order to obtain granules with specific mean 
size and size distribution, it is necessary for a top-spray 
fluidized bed granulation process to work under optimal 
operating conditions for given material composition and 
properties. However, the GSD during a granulation process 
is difficult to be measured online, which causes difficulty 
in optimally controlling the granule size by changing the 
operating conditions.  

Prediction models based on manipulated operating 
variables have been widely used in optimization and 
control of various industrial processes, especially when the 
quality attributes are difficult to measure (Nagy 2007), 
while few attempts have been made to optimize fluidized 
bed granulation process based on process model. This is 
mainly due to the lack of accurate granulation process 
model that could be used for process optimization. 
Although extensive work has been done to understand the 
granulation process (Iveson et al. 2001; Walker et al. 
2006), few direct relationships was found between the 
operating variables and the granule critical quality 
attributes (CQAs). 

Due to complexity of the top-spray fluidized bed 
granulation, it is quite difficult to get a pure first principle 
model that accurately reflects the relationship between the 
operating variables and the GSD. Considering the multi-
stage characteristic of the batch top-spray fluidized bed 
granulation process, the multi-scale modeling method, 
which combines the first principle model with partial least 
square (PLS) regression modeling techniques, is 
introduced for model development of the granulation 
process in this work. A multi-scale three-stage population 
balance model (TSPBM) is established to accurately 
describe GSD evolution on each stage of the granulation 
process. Population balance model is used as the process-
scale model which models of the basic nature of the 
granulation process, while the PLS regression model works 
as particle-scale model to describe the influence that the 
operating variables have on the unknown granulation 
kinetics of the PBMs. Among the PLS regression models, a 
nonlinear multivariate quadratic polynomial is adopted 
(Liu et al. 2014(a)).  

In this paper, a multi-scale TSPBM model is 
developed to describe the GSD evolution of each stage of 
the top-spray fluidized bed granulation process. Based on 
the developed model, an online optimization strategy is 

proposed to improve the granule size distribution 
prediction of top-spray fluidized bed granulation, which 
utilized an improved differential evolution (DE) algorithm 
to solve the optimization problem. Experimental results 
and simulation tests illustrate the effectiveness of both the 
multi-scale TSPBM and the proposed online optimization 
strategy. 

The remaining parts of this paper are organized as 
follows: Section 2 introduces the experimental work. 
Section 3 builds the multi-scale TSPBM for a top-spray 
fluidized bed granulation process. Section 4 proposes an 
online optimization strategy based on the multi-scale 
TSPBM. Section 5 concludes the work. 

2. Experimental data    

The main part of experimental data used for the multi-
scale TSPBM development could be found from our 
previous work (Liu et al. 2013).  

A lab-scale batch top-spray fluidized bed granulator 
(MP-MicroTM, GEA Process Engineering Ltd, UK) was 
used to carry out the granulation experiment. The 
microcrystalline cellulose (MCC) was used in the 
experiment with all the primary particles having diameter 
from 150 to 180 mm obtained by sieving the original 
materials (Gamble et al. 2011). The binder material is 
Hydroxypropyl methylcellulose (HPMC), which is 
dissolved into ionized water to make 6% w/w binder 
liquid. Formulation for each granulation experiment is 46.5 
g of MCC and 3.5 g of dry binder HPMC. Details of the 
experimental setup can be found in the same paper (Liu et 
al. 2013). In summary, in total 15 experiments were carried 
out to investigate three operating variables of pulsed 
frequency, binder spray rate and atomization pressure. The 
pulsed frequency was defined as the ratio of the pulsed and 
spraying time in a spray cycle which was constant as 2 
minutes in the experiments. The range of pulsed frequency 
from 0 to 1 was investigated. The ranges of binder spray 
rate and atomization pressure were 0.9–1.5 g/min and 10–
20 psi, respectively. In order to keep the same level of 
fluidization during granulation, the inlet fluidizing air 
velocity was adjusted manually in real time from 0.6 m3/h 
to 2 m3/h in each experiment. For each experiment, 
samples were taken at three different points of 30%, 70%, 
and 100% of the total amount of binder liquid sprayed for 
particle size distribution analysis by sieving method. 
Further two experiments had been carried for the model 
validation.   

3. Three-stage PBM of top-spray fluidized bed 
granulation 

3.1 Multi-scale modelling  
According to the granule mechanisms occurred on 

different time period, the top-spray fluidized bed 
granulation process could be divided into multiple stages. 
In this work, by preliminary experimental investigation of 
mean granule size evolution, the top-spray fluidized bed 
granulation process is divided into three stages with time 



  

percentage and granulation mechanisms as follows: Stage I 
(first 30% of experiment time) – layering growth and 
aggregation, Stage II (middle 40% of experiment time) – 
aggregation, and Stage III (last 30% of experiment time) – 
aggregation and breakage. On each stage, a population 
balance model is used to describe evolution of granule size 
distribution based on their respective granulation 
mechanisms with the kernel constants. The values of these 
kernel constants are affected by the operating conditions of 
the granulation process and once the operating conditions 
are fixed then the kernel constants values used in PBM of 
each stage are fixed. Therefore, a relationship should be 
developed between these undetermined kernel constants 
and the manipulated operating variables. It is quite difficult 
to build the relationship simply by mechanistic analysis 
and deduction. Therefore, PLS regression method is 
considered to model the relationship between the kernel 
constants and the manipulated operating variables during 
the top-spray fluidized bed granulation process based on 
the experimental data. Diagram of modelling approach of 
multi-scale TSPBM is presented in Fig. 1, which includes 
three main steps. The first step is to determine the PLS 
regression model and to determine the 
aggregation/breakage kernels used in PBM. Subsequently, 
parameter estimation was carried out using the PBM based 
on experimental granule size distribution at time of 30%, 
70% and 100% binder sprayed to calculate the kernel 
constants in PBM of each stage for each experiment. The 
differential evolution (DE) algorithm is adopted in the 
parameter estimation. Finally, the parameters of PLS 
regression model of each stage is fitted based on kernel 
constants calculated from step II. So far, a multi-scale 
model with combination of the PLS regression model and 
population balance model is developed for each stage of 
the granulation process forecasting the GSD of the 
granulated product with input of operating variables.  
3.2 Population balance model  

The most widely used population balance equations in 
granulation system was established by (Hounslow et al. 
1988), which could be used to describe changing rates of 
the GSD density functions, shown as: 
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Where 𝑛𝑛(𝑡𝑡, 𝑙𝑙) is the number density function in terms 
of the particle diameter, 𝛽𝛽(𝑡𝑡, 𝑙𝑙, 𝜇𝜇)  is the length-based 
aggregation kernel describing the frequency that particles 
with diameter 𝑙𝑙 and 𝜇𝜇 collide to form a particle of volume 
order of 𝑙𝑙3 + 𝜇𝜇3 , 𝑆𝑆(𝑡𝑡, 𝑙𝑙)  is the length-based breakage 
selection rate constant describing the rate at which particle 
are selected to break and 𝑏𝑏(𝑙𝑙|𝜇𝜇)  is the breakage kernel 
describing the formation of particles of diameter 𝑙𝑙 from the 
breakup of particle of diameter 𝜇𝜇. 

Population balance equations are extremely complex. 
Except under special circumstances, it is almost impossible 
to obtain analytical solutions for the equations, so 
generally they are solved by numerical methods. In this 
paper, the discrete method proposed by Hounslow  
(Hounslow et al. 2001) is used to solve the equations. The 
granule size domain is divided into a number of size bins 
in a geometric series, and the number density function in 
each bin can be derived. 
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Stage III  
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Where 𝑁𝑁𝑖𝑖  is the discretized number density function 
meaning the number of granules in the range of (𝐿𝐿𝑖𝑖, 𝐿𝐿𝑖𝑖+1). 
𝐺𝐺0 is layering growth constant, 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 is the total number of 
discrete bins, 𝛽𝛽𝑖𝑖,𝑗𝑗  is the aggregation kernel between 
granules in the ith and jth size bins. 𝑆𝑆𝑖𝑖  is the particle 
breakage selection rate.  

As described in discrete PBM of Eq.4-6, a size 
independent granule layering growth rate 𝐺𝐺0 is used, which 
is modelled as function of operating conditions. An 
aggregation model can generally be split into two parts as 
(Iveson 2002)  
𝛽𝛽(𝑡𝑡, 𝑙𝑙, 𝜇𝜇) = 𝛽𝛽0(𝑡𝑡,𝛩𝛩,𝛹𝛹)(𝑙𝑙 + 𝑢𝑢)3                                        (7) 

Where, β0(t,Θ,Ψ)  is the granulation rate constant, 
which incorporates various system parameters Θ, such as 
the binder spray and fluidization operating conditions for a 
top-spray fluidized bed granulator, and nonequipment 
parameters Ψ, such as physical properties of the powder 
mixtures. In this work, β0  is a function of operating 
conditions, which will be described in following section.  

A breakage selection function can also be described as 
the following two parts (Tan et al. 2004; Ding et al. 2006) 
𝑆𝑆(𝑡𝑡, 𝑙𝑙) = 𝑆𝑆0(𝑡𝑡,𝛩𝛩,𝛹𝛹)𝑙𝑙3                                                     (8) 



 

   

 
Figure 1. Schematic diagram of modelling approach of TSPBM

Where 𝑆𝑆0(𝑡𝑡,𝛩𝛩,𝛹𝛹)  is the breakage selection rate 
constant, which is also modelled in terms of operating 
conditions. The breakage kernel 𝑏𝑏(𝑙𝑙|𝜇𝜇)  describes the 
formation of fragments of diameter l from the breakage of 
particles of diameter µ, which is described as 
𝑏𝑏(𝑙𝑙|𝜇𝜇) = 6𝑙𝑙2

𝜇𝜇3
                                                                     (9) 

Solving population balance equations using the 
discrete method, the number of particles in each size bin 
can be determined, and then the GSD can be obtained 
directly to predict the quality of the final product of the 
granulation process. However, the population balance 
equation contains unknown kernel constants including 
layering growth constant, agglomeration constant and 
breakage constant. These parameters must be determined 
in advance in order to solve the balance equations. When 
the material properties and device parameters have been 
fixed, these parameters are then determined by the 
manipulated operating variables during granulation 
process. Therefore, it is critical to search for the 
relationships between the kernel constants of population 
balance equations and the operating variables. 
3.3 PLS regression model linking operating conditions to 

kernel constants in PBM   
Based on our previous study of a top-spray fluidized 

bed granulator, it was shown that the quality of end 
granules was affected significantly by the binder solution 
spray conditions (Liu et al. 2013). Therefore, for the given 
materials and formulation, the layering growth rate 
constant granulation rate constant 𝐺𝐺0 , aggregation rate 
constant β0  and breakage rate constant 𝑆𝑆0  should be a 

function of the binder solution spray conditions of the 
pulsed frequency x1, binder spray rate x2  and atomization 
pressure x3 , which can be represented as a non-linear 
quadratic model as 

𝐺𝐺0(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3 +
𝑎𝑎12𝑥𝑥1𝑥𝑥2 + 𝑎𝑎13𝑥𝑥1𝑥𝑥3 + 𝑎𝑎23𝑥𝑥2𝑥𝑥3 + 𝑎𝑎11𝑥𝑥12 + 𝑎𝑎22𝑥𝑥22 + 𝑎𝑎33𝑥𝑥32      

                                                                                 (10) 
𝛽𝛽0(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + 𝑏𝑏3𝑥𝑥3 +

𝑏𝑏12𝑥𝑥1𝑥𝑥2 + 𝑏𝑏13𝑥𝑥1𝑥𝑥3 + 𝑏𝑏23𝑥𝑥2𝑥𝑥3 + 𝑏𝑏11𝑥𝑥12 + 𝑏𝑏22𝑥𝑥22 + 𝑏𝑏33𝑥𝑥32                                                                                        
                                                                                       (11) 

𝑆𝑆0(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥1 + 𝑐𝑐2𝑥𝑥2 + 𝑐𝑐3𝑥𝑥3 + 𝑐𝑐12𝑥𝑥1𝑥𝑥2 +
𝑐𝑐13𝑥𝑥1𝑥𝑥3 + 𝑐𝑐23𝑥𝑥2𝑥𝑥3 + 𝑐𝑐11𝑥𝑥12 + 𝑐𝑐22𝑥𝑥22 + 𝑐𝑐33𝑥𝑥32                                                                                        
                                                                                       (12) 

Where 𝑎𝑎0 , 𝑎𝑎1……, 𝑎𝑎33, 𝑏𝑏0 , 𝑏𝑏1……, 𝑏𝑏33 , 𝑐𝑐0 , 𝑐𝑐1……, 
𝑐𝑐33  are constants, which need to be fixed based on 
estimated kernel constants. 

When building the multi-scale model, we first 
substitute the obtained experimental granule size 
distribution data into the population balance equations, and 
estimate the unknown kernel constants. Then the operating 
conditions and estimated kernel constants will be 
considered as inputs and outputs to fix the coefficients in 
the PLS regression model. The DE algorithm is also used 
in estimating coefficients of PLS regression model. From 
the obtained 17 batches of experimental data, 15 batches 
are selected for model development and 2 batches are 
selected for model validation. Since the entire granulation 
process is divided into three stages in this work, a model 
between the kernel constants and the operating variables is 
needed in each stage. After the multi-scale TSPBM is 



  

developed, the model is utilized to predict the GSD of the 
15 experiments used for model development with the 
comparison shown in Fig 2.  

From Fig. 2, it can be seen that the developed multi-
scale TSPBM model can predict accurately the GSD for 
most experiments in each stage, except experiment 1, 7, 9, 
13 in stage III, which may be due to the error in sampling 
and measurement. Comparing the prediction of each stage, 
it can be seen that the model shows a cumulative prediction 
error as experiment time increase and has largest 
prediction error in stage III. This is because that the GSD 
in previous stage will be used as initial condition in current 
stage and any prediction error in last stage will be brought 
into the current stage producing a larger prediction 
mismatch. Further, the two validation experiments have 
been shown in Fig 3. For short, only the comparison of 
GSD for stage III is presented, from which it can be seen 
the experimental GSD can be accurately predicted by the 
developed multi-scale TSPBM. In summary, multi-scale 
TSPBM established in this work works well in describing 
the GSD evolution during the top-spray fluidized bed 
granulation process. 

4. Online optimization strategy for controlling granule 
growth 

Based on the developed multi-scale TSPBM of the 
top-spray fluidized bed granulation process in Section 3, 
the optimal operating conditions of pulsed frequency 𝑥𝑥1 , 
binder spray rate 𝑥𝑥2  and atomization pressure 𝑥𝑥3  can be 
determined, with the aim of obtaining the end granules 
with the desired mean size, by solving the following 
optimization problem as: 
Min𝑥𝑥1,𝑥𝑥2,𝑥𝑥3{(𝐷𝐷�𝑚𝑚 − 𝐷𝐷�𝑚𝑚�𝑡𝑡𝑓𝑓�)2}                                         (13) 

s.t. 𝜕𝜕𝜕𝜕(𝑛𝑛,𝑙𝑙)
𝜕𝜕𝜕𝜕

= 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑡𝑡) (𝑓𝑓: Multi-scale TSPBM 
model) 

0 < 𝑥𝑥1 < 1 
0.9 𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚⁄ < 𝑥𝑥2 < 1.5 𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚⁄  

10 𝑝𝑝𝑝𝑝𝑝𝑝 < 𝑥𝑥3 < 20 𝑝𝑝𝑝𝑝𝑝𝑝 
Where, 𝐷𝐷�𝑚𝑚  is the desired mean diameter of final 

granules; 𝑡𝑡𝑓𝑓 is the granulation completion time at which a 
fixed amount of binder solution has been sprayed; 𝐷𝐷�𝑚𝑚�𝑡𝑡𝑓𝑓� 
is the mean size of the final granules given by 

𝐷𝐷�𝑚𝑚�𝑡𝑡𝑓𝑓� = ∑ 𝑉𝑉𝐹𝐹,𝑖𝑖𝑑𝑑𝑝𝑝𝑝𝑝
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1                         (14) 

Where, 𝑉𝑉𝐹𝐹,𝑖𝑖 is the volume fraction of end granules at 
size interval i = 1,2,…, 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚; 𝑑𝑑𝑝𝑝𝑝𝑝 is the geometrical mean 
of the size interval i = 1,2…,𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚. 

The above optimization is called offline optimization. 
Once the optimal operating conditions are obtained, they 
will be implemented into the system and never be changed 
until the experiments finished. However, it is well known 
that the drawback of an open-loop optimization problem is 
that it relies on accuracy of the process model. For a batch 
top-spray fluidized bed granulation process it is undoubted 
that there exists the model mismatch between the 
developed TSPBM and actual granulation process which 

contributes to an increasing deviation between real particle 
size and desired aim as experiment progresses. Hence, an 
online optimization strategy has been developed, by 
carrying out two more optimizations on end of stage I and 
stage II, respectively, based on the current online measured 
volume-mean granule size at the end of stage I and stage II.  

The new optimal operating conditions obtained from 
the new optimization on end of stage I and stage II will be 
implemented into the system respectively and help to 
ensure the real granule growth not deviating from the 
desired trajectory. A testing case was carried out with 
desired granule size of 500 um for comparison of 
effectiveness between offline optimization and online 
optimization strategy with results shown in Table 1. From 
the result, it can be concluded that the proposed online 
optimization strategy works more accurate than offline 
optimization in producing desired mean granule diameter.  

5. Conclusions  

In this work, a multi-scale three-stage population balance 
model (TSPBM) was developed. By developing the 
relationship between the GSD and the manipulated 
operating variables, the developed multi-scale TSPBM is 
firstly established as a prerequisite for control strategy 
development. By adjusting the volume-mean granule size 
increasing trajectory on predefined sample intervals, the 
new optimal operating variables of pulse frequency, binder 
spray rate and atomization pressure are determined to 
avoid the granule growth deviating from desired trajectory. 
A differential evolution (DE) algorithm is used to solve the 
problem for online optimization problem and adjustment 
of the granulation operating variables. Experimental results 
and simulation tests are carried out to validate the 
effectiveness of the proposed TSPBM and online 
optimization strategy. Two experiments at randomly 
selected conditions were carried out and can be accurately 
predicted by the developed model. With the aim mean 
granule size of 500 microns, the online optimization 
strategy produced final granule size of 512 microns, while 
the offline optimization provided a value of 542 microns.  
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Figure 2. Comparison between experimental data and multi-scale TSPBM predicted GSD for: (a) stage I, (b) stage II 
and (c) stage III (red: experiment, blue: predicted, x-axis: particle size in um, y-axis: volume fraction)
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Figure 3. Comparison of GSD between experimental and 
model predicted for (a) validation 1 and (b) validation 2 in 
stage III (red: experiment, blue: predicted).  

Table 1. Comparison between offline optimization and 
online optimization strategy 

Methods Final value 
(um) 

Increase from aim 
value (%) 

Aim 500 -- 
Offline optimization  542 8.4 
Online optimization  517 3.4 
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