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Abstract

Planning, scheduling, and control decisions often involve conflicting priorities from multiple stakeholders

(e.g., due to different perceptions of risk). We present a new framework for multi-stakeholder optimiza-

tion to compute optimal compromise solutions among stakeholders. In this setting, stakeholder opinions

are interpreted as random variables, establishing a parallel between stochastic and multiobjective opti-

mization. Risk metrics are used to shape the distribution of stakeholder satisfactions. We demonstrate

the approach by considering the operation of a combined heat and power utility system that monetizes

excess capacity by participating in energy markets. Stakeholders express their perceived risk by dis-

counting (weighting) potential revenues from different market products. We find that despite strongly

conflicting priorities, the proposed framework is able to identify efficient compromise solutions where each

stakeholder is at least 95% satisfied. We compare compromise solutions computed using the conditional

value-at-risk and entropic value-at-risk metrics and discuss how the selection of risk metric impacts the

distribution of stakeholder satisfactions.
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Introduction

Operational decision-making often must balance

conflicting technical, economic, safety, environmental,

and social objectives. Applications include design of

sustainable and resilient supply chains (Gebreslassie

et al., 2012), planning and schedule with economic

and environmental metrics (Grossmann and Guillén-

Gosálbez, 2010), operation of large multi-product fa-

cilities (Blömer and Günther, 1998), and control of

multi-product reactors and separation systems (Logist

et al., 2009). Such settings involve a high degree of

ambiguity as objectives are difficult to monetize and

decision-makers often disagree on how to establish pri-

orities. This is especially true for hidden objectives such

as safety, equipment wear-and-tear, value of preventive

maintenance, soft operating limits, perceived risk, etc.

Ambiguity is often addressed by calculating Pareto solu-
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tions that capture trade-offs between objectives. These

strategies, including the Normal Boundary Intersection

method (Das and Dennis, 1998; Jia and Ierapetritou,

2007; Logist et al., 2009), become computationally in-

tractable in settings with many objectives. Moreover,

such settings often only consider a single decision-maker

that must pick a “suitable” Pareto solution. This poses

a limitation as many decisions involve multiple stake-

holders with conflicting opinions on how to prioritize

many metrics. For instance, the U.S. Environmental

Protection Agency (EPA) recently identified over a hun-

dred metrics for evaluating the sustainability of different

system designs (Ruiz-Mercado et al., 2012). Recently,

we have proposed a multi-stakeholder context with the

goal of computing optimal compromise solutions (Dowl-

ing et al., 2016b). In this work, we observe that this

perspective aligns with many decision-making settings

arising in operations were engineers and operators may

disagree on the relative importance of different objec-

tives. As such, ambiguity is addressed by using sam-



ples of stakeholder opinions and computing Pareto solu-

tions that minimize a metric of collective dissatisfaction.

We prove that minimizing entropic value-at-risk (EVaR)

and conditional value-at-risk (CVaR) results in Pareto

optimal compromise solutions. The size of the proposed

formulation scales linearly with the number of objec-

tives and stakeholders, making it suitable for settings

with many objectives and stakeholders.

Definitions

We define the decision variable vector x ∈ <nx and

we assume this to lie in the compact and nonempty fea-

sible set X ⊆ <nx . We consider n objective functions

fi : X → < for i ∈ O = {0...n−1} and the corresponding

objective vector f(x) := (f0(x), f1(x)..., fn−1(x)). We

assume that the objective functions remain bounded in

X . We define the multiobjective optimization (MOO)

problem,

min
x∈X

(f0(x), f1(x)..., fn−1(x)). (1)

Throughout the paper the minimization operand im-

plies global minimization. We scale the objective func-

tions to lie in the interval [0, 1] by using the coordinates

of the utopia and nadir points as follows. We define,

f
i

:= min
x∈X

fi(x), i ∈ O (2a)

xi := argmin
x∈X

fi(x), i ∈ O. (2b)

Here, the coordinates of the utopia point are given by

f
i
. Traditionally the coordinates of the nadir point are

given by:

f i := max{fi(x0), fi(x1), ..., fi(xn−1)}, i ∈ O. (3)

We previously observed this may lead to a pessimistic

nadir point (Dowling et al., 2016b). Instead we consider

an alternate nadir point definition:

x∗i := argmin
x∈X

wT f(x)

s.t. fi(x) ≤ f
i
,

(4)

where w satisfies wi = 0 and wi′ 6=i > 0. The alternate

nadir point f
∗

with elements f̄∗i is defined as:

f
∗
i := max{fi(x∗0), fi(x

∗
1), ..., fi(x

∗
n−1)}, i ∈ O. (5)

We scale the objectives as,

fi(x)←
fi(x)− f

i

f
∗
i − f i

, i ∈ O. (6)

We can prevent visiting regions beyond the nadir points

(of no interest) by imposing the constraints:

0 ≤ fi(x) ≤ 1, i ∈ O. (7)

Thus using a pessimistic nadir point impacts scaling

and leads to a larger feasible space.

The multiobjective optimization setting is illustrated

in Figure 1. We use the following standard definitions

of (weak) Pareto optimality (Miettinen, 1999):

Definition 1 (Weak Pareto Optimality) A decision

x∗ with objectives fi(x
∗), i ∈ O is a weak Pareto solu-

tion of MOO if there does not exist an alternate solution

x̄ with objectives fi(x̄), i ∈ O satisfying fi(x̄) < fi(x
∗)

for all i ∈ O.

Definition 2 (Pareto Optimality) A decision x∗

with objectives fi(x
∗), i ∈ O is a Pareto solution of

MOO if there does not exist an alternate solution x̄ with

objectives fi(x̄), i ∈ O satisfying fi(x̄) ≤ fi(x
∗) for all

i ∈ O and at least one index i satisfying fi(x̄) < fi(x
∗).

Any Pareto solution of MOO is a weak Pareto solu-

tion. There are different methods to compute elements

of the Pareto set, such as the weighting method. Con-

sider a weight vector w ∈ <n. We define the elements of

w as wi and we assume that these satisfy the condition:

wi ≥ 0, i ∈ O (8a)∑
i∈O

wi = 1. (8b)

In some cases we require a stronger condition:

wi > 0, i ∈ O (9a)∑
i∈O

wi = 1. (9b)

Consider now the weighted problem:

min
x∈X

wT f(x). (10)

A minimizer of (10) is Pareto optimal if (9) holds and

weakly Pareto optimal if (8) holds. This implies that

pessimistic nadir points, (2) - (3), are constructed from

only weakly Pareto optimal solutions, whereas alternate

nadir points, (4) - (5), are constructed from Pareto op-

timal solutions. See Dowling et al. (2016b) for proofs of

these statements.
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Figure 1. Multiobjective and multi-stakeholder settings.

Multi-Stakeholder Framework

Consider m stakeholders and assume that each stake-

holder j ∈ S := {0, ..,m − 1} prioritizes the multi-

ple objectives of MOO according to the weight vector

wj ∈ <n. We define the elements of wj as wj,i and we

assume them to satisfy either (8) or (9). Each stake-

holder j ∈ S seeks to solve its individual weighted opti-

mization problem:

x∗j := argmin
x∈X

wT
j f(x). (11)

The solution of problem (11) yields the objective vec-

tor f∗j := f(x∗j ) with elements f∗j,i and corresponding

weighted cost wT
j f∗j . This weighted cost is ideal in the

sense that it assumes that stakeholder j does not com-

promise with the rest of the stakeholders. We note that

x∗j is a weak Pareto solution of MOO if wj satisfies (8)

and is a Pareto solution if wj satisfies (9).

To deal with conflicting priorities among multi-

ple stakeholders we need to measure the satisfac-

tion/dissatisfaction of stakeholders with a given deci-

sion. To do so, we define the dissatisfaction function of

stakeholder j at decision x as:

dj(x) := wT
j (f(x)− f∗j )

= wT
j f(x)−wT

j f∗j (12)

We define the vector of dissatisfactions d(x) :=

(d0(x), d2(x), ..., dm−1(x)). From optimality of x∗j with

respect to (11) we have that wT
j f(x) ≥ wT

j f∗j and thus

dj(x) ≥ 0 for all x ∈ X and j ∈ S. Moreover, because

the values of the objective functions fi(x) lie between

zero and one and the weights satisfy either (8) or (9),

we have that dj(x) ∈ [0, 1] for all x ∈ X .

To clarify these concepts consider two arbitrary de-

cisions x̄, x that yield dj(x̄) < dj(x) for a given stake-

holder j. This means that stakeholder j will be more sat-

isfied under decision x̄ than under decision x. Because of

a possible conflict in priorities, however, another stake-

holder j′ might be less satisfied under decision x̄ than

under decision x (i.e., dj′(x̄) > dj′(x)). To compute a

stakeholder compromise we thus need to solve the multi-

stakeholder optimization (MSO) problem:

min
x∈X

(d0(x), ..., dm−1(x)). (13)

Stakeholder priorities may be viewed as random vari-

ables. We propose computing compromise solutions by

minimizing a risk metric of the distribution of stake-

holder dissatisfactions:

min
x∈X

R(d(x)), (14)

where R : Rn → R is a function that we call a risk

metric. We will show that certain types of risk metrics

yield Pareto efficient compromise solutions.

Definition 3 Consider two vectors d, d̄ ∈ Rm. We say

that the risk metric R : Rm → R is strongly monotone

if d̄j < dj, ∀ j ∈ {0, ...,m− 1} =⇒ R(d̄) < R(d).

We note that strong monotoneity holds for certain

norms of a vector space (such as the Lp norm) but a risk

metric does not necessarily need to satisfy the properties

of a norm. In this work, we only require risk metrics to

satisfy strong monotoneity.

Theorem 1 A minimizer of (14) is Pareto optimal so-

lution of MOO if the risk metric R(·) is strongly mono-

tone and (9) holds.

Proof: Assume decision x∗ is a minimizer of (14)

but is not Pareto optimal. This implies an alternate

decision x̄ exists where fi(x̄) ≤ fi(x
∗) for all i ∈ O

and fi(x̄) < fi(x
∗) for at least one i. This implies

dj(x̄) < dj(x
∗) for all j ∈ S because wj,i > 0, which im-

plies R(d(x̄)) < R(d(x∗)). Thus x∗ is not a minimizer

of (14) and we establish a contradiction. �

We consider variants of two risk metrics in this

paper: Conditional Value-at-Risk (CVaR) (Rockafel-

lar and Uryasev, 2000) and Entropic Value-at-Risk

(EVaR) (Ahmadi-Javid, 2012), both adapted to finite-

dimensional vector spaces. Both of these metrics are pa-

rameterized by a probability level α ∈ [0, 1]. CVaRα(d)

is the average of the largest entries of the vector d (in

the 1− α tail) and can be computed as:

CVaRα(d) = inf
v∈R

v +
1

(1− α)m

m−1∑
j=0

[dj − v]+

 , (15)



where [v]+ := max{v, 0} for v ∈ R. In Dowling et al.

(2016b), we prove that CVaR is strongly monotone and

thus Theorem 1 holds.

Next, we consider the entropic value-at-risk metric,

EVaRα(d) = inf
v>0

{
1

v
log

(∑m−1
j=0 ev·dj

(1− α)m

)}
. (16)

Both CVaR and EVaR converge to the average (L1-norm

scaled by 1/m) of the entries vector d for α = 0 and the

worst-case entry (L∞-norm) for α = 1. Moreover, EVaR

upper bounds CVaR:

1

m
‖d‖1 ≤ CVaRα(d) ≤ EVaRα(d) ≤ ‖d‖∞ (17)

Thus by considering CVaR or EVaR in (14), we general-

ize previous approaches that minimize average or worst-

case dissatisfactions (Dyer and Forman, 1992; Hu and

Mehrotra, 2012).

Theorem 2 EVaRα(·) is strongly monotone.

Proof: Summations, exponentials and logarithms all

preserve strong monotoneity, thus from inspection of

(16) it is clear that EVaR is strongly monotone. �

This implies that solving (14) using EVaR also pro-

duces Pareto efficient compromise solutions. We finally

note that many other risk metrics satisfy Property 3,

including weighted sums of strongly monotone risk met-

rics (e.g., 1
m‖ · ‖1 + EVaRα(·)). This flexibility is useful,

as the choice of risk metric shapes the distribution of

stakeholder satisfactions. (We will demonstrate this in

the next case study.)

Case Study: Market Participation of CHP

Operating strategies for industrial processes and sup-

ply chains are undergoing a paradigm shift caused by

fluctuating energy prices. Large energy consumers can

realize substantial cost savings by adjusting electricity

demands (and generation) to take advantage of variabil-

ity in prices. Recently, Dowling et al. (2016a) analyzed

cost savings opportunities for combined heat and power

generators using historical data for California markets.

We found that strategic operation and market partici-

pation can result in up to 37% energy cost reductions.

For a 100 MWe facility, this would represent around 2.5

million USD per year. These savings result from par-

ticipation in both Day-Ahead (DAM) and Real-Time

Markets (RTM).

Directly participating in markets involves risks from

price volatility. The RTMs are more lucrative but also

more volatile than the DAM. The CHP operators thus

seek to determine the time-varying generation and mar-

ket participation schedule while satisfying on-site steam

and electricity demands from manufacturing facilities.

In this study, we account for risk by prioritizing differ-

ent revenue streams and fuel costs:

min (DAM revenue, RTM revenue, Fuel costs)

s.t. Market participation model

CHP physical and operational constraints

(18)

This is analogous to operating a multi-product sup-

ply chain by prioritizing products based on perceived

risks. In the CHP example, the multiple products are

electrical energy and ancillary services that may be sold

in different markets. Detailed market and CHP models

are described in Dowling et al. (2016a). Stakeholders

express their intuitions about risk by weighting the ob-

jectives. Alternately, CHP operation may be formulated

as a stochastic program. This requires a detailed risk

model, which is unavailable in many cases. In this case

study, we consider ten stakeholders, whose priorities are

given in Table 1. For this problem, the objectives are

already expressed in consistent units and stakeholder

weights may be interpreted as perceived risk. For exam-

ple, stakeholder 3 discounts DAM and RTM revenues

by 20% and 50%, respectively, and believes fuel costs

are slightly over-predicted. In contrast, stakeholder 10

perceives negligible risk and does not discount market

revenues. The weights are rescaled to satisfy (9b).

Table 1. Stakeholder preferences for three objectives.

Stakeholder w′DAM w′RTM w′fuel
Cautions about RTM markets:

1 0.8 0.2 1.1

2 0.9 0.3 1.0

Cautious about DAM and RTM markets:

3 0.8 0.5 0.9

4 0.6 0.8 1.0

5 0.7 0.7 0.9

6 0.6 0.7 1.0

7 0.6 0.5 1.0

Supportive of DAM and RTM markets:

8 0.8 0.7 0.9

9 0.7 0.9 1.0

10 1.0 1.0 1.0

Using these weights, we solve (18) by minimizing

stakeholder dissatisfactions using CVaR and EVaR risk
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Figure 2. Stakeholder ideal solutions and compromise

solutions shown in scaled objective space.

metrics. Figure 2 compares the utopia point, nadir

point, stakeholder preferred solutions, and compromise

solutions. The individual stakeholder preferred solu-

tions are widely spread throughout the objective space

while the compromise solutions are tightly clustered to-

gether. All of these solutions are guaranteed to be

Pareto efficient and appear to lie on a plane. Figures

3 and 4 compare the distribution of stakeholder satis-

factions for compromise solutions computed with CVaR

and EVaR. With EVaR, the difference in satisfaction

level between the most and least satisfied stakeholders

shrinks as α increases from 0 to 1. This does not hap-

pen with CVaR. We recall that EVaR bounds CVaR,

thus EVaR places more emphasis on extreme dissatis-

factions of stakeholders. Although the individual stake-

holder ideal solutions are spread out in the space, the

compromise solutions present stakeholder satisfactions

in the range of 96-99% for all stakeholders (stakehold-

ers are highly satisfied with the compromise). In con-

trast, stakeholders 9 and 10 are only 77-78% satisfied

when stakeholder 1 is the sole decision-maker (i.e., (11)

is solved for j = 1). This illustrates that the proposed

framework can identify Pareto solutions with meaningful

interpretations in terms of stakeholder satisfaction (as

opposed to standard multiobjective approaches). More-

over, under a systematic framework like the one pro-

posed, stakeholders can compare the impact of their

opinions on their individual satisfaction and on the satis-

factions of the rest of the stakeholders. Such information

can be used to facilitate negotiations.
Finally we compare the operating profiles for differ-

ent solutions in Figure 5 and Table 2. Stakeholder 3

prefers participation in the DAM market, whereas stake-
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Figure 3. Stakeholder satisfactions for CVaR compro-

mise solutions.
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Figure 4. Stakeholder satisfactions for EVaR compro-

mise solutions.
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holder 9 prefers the RTM. The compromise solutions are

between these two extremes, with CVaR slightly prefer-



ring DAM participation relative to EVaR. Both of these

compromise solutions (CVaR and EVaR with α = 0.5)

have nearly identical fuel costs (3.34 and 3.37 k$, respec-

tively) and total electrical energy sales (15.0 and 14.8

MWhe). The downwards spike in DAM market revenue

at time 20 hours corresponds with a massive upwards

spike in RTM revenues, caused by RTM price volatility.

DAM and RTM participation compete over the finite

generation capacity.

Table 2. Comparison of compromise, single objective,

and stakeholder preferred solutions.

Min. CVaR EVaR Stakeholder

Fuel α = 0.5 α = 0.5 3 9

Fuel Cost
2.98 3.34 3.37 3.57 3.77

(k$)

DAM Rev.
0.13 0.64 0.58 0.96 0.14

(k$)

RTM Rev.
0.50 0.96 1.02 0.83 1.99

(k$)

Fuel Used
218 247 247 261 276

(MWht)

Energy Sold
0.0 15.0 14.8 20.8 26.7

(MWhe)

Avg. Price
- 59.9 61.3 52.3 53.4

($/MWhe)

Conclusions

Operational decision-making settings often involve

multiple decision-makers with conflicting priorities. We

present a framework for computing compromising so-

lutions and facilitating conflict resolution. Stakeholder

opinions are cast as objective weights and are inter-

preted as random variables. We prove that any strongly

monotone risk metric can be used to balance stakeholder

dissatisfactions and calculate Pareto optimal compro-

mise decisions. We demonstrate the benefits of the

framework by considering the operation of a CHP sys-

tem participating in multi-product electricity markets.

Ambiguity from perceived risk in different products is

captured via stakeholder opinions. The proposed frame-

work is applicable to a broad class of operational settings

including resilient supply chains, integrated design and

operation planning, and process control. The method

can also handle a large number of stakeholders and ob-

jectives and does not require computing Pareto sets.
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