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Abstract

In this paper, we present a three-step procedure for the reduction of independent variables u for surrogate

modelling. First, the linear material balances are introduced to reduce the number of surrogate models

which need to be fit. Second, partial least square (PLS) regression of a sampled space is performed

to obtain new variables (components) and third, the new components are used as input variables for

the fitting of a nonlinear surrogate model. The application of PLS reduces the number of independent

variables through the introduction of linear combinations of the original independent variables u. The

proposed procedure is applied to two examples, the first describes a simple pipe model in which the

minimum number of new independent variables u′ is known and which hence serves as a proof of concept.

The second examples considers the reaction section of the ammonia synthesis gas loop for integrated

submodels. In both examples, it is possible to reduce the number of independent variables by at least a

factor of 2 while maintaining accuracy.
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Introduction

Surrogate models are frequently used to incorporate

complicated models into numerical demanding simula-

tions and are defined as auxiliary models fitted to gen-

erated data. Their applications range from the pro-

duction optimization of oil gas fields (Grimstad et al.,

2016; Foss et al., 2015) and optimization of CFD sim-

ulations (Badhurshah and Samad, 2015) to modelling

of chemical process (Cozad et al., 2014, 2015; Caballero

and Grossmann, 2008). The structure of surrogate mod-

els can range from the simple table look up method, in

which generated data is stored in arrays and extracted

when needed, to splines, Kriging models, artificial neu-

ral networks, and combinations of several different basis

functions.

The optimization of integrated chemical plants using

commercial steady-state flowsheet simulators, like As-

pen Plus R©, Aspen Hysys R©, SimSci PRO/II, or UniSim

Design Suite is in general difficult directly due to the

sequential-modular approach to solve the flowsheet, in
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which each unit operation is solved sequentially (Biegler

et al., 1997). In the situation of several (nested) recy-

cle streams, convergence issues arise leading to cases, in

which it is even not possible to solve the flowsheet. Fur-

thermore, recycle loops can introduce numerical inaccu-

racy. Therefore, the application of surrogate models for

subsystems and hence splitting the main recycle streams

seems advantageous.

Previously, we have proposed (Straus and Skogestad,

2016) a methodology for the optimization of integrated

process which involves splitting the complete flowsheets

into several submodels, fit surrogate models to these

submodels and subsequently combining the surrogate

models into a system of non-linear equations which can

be optimized. However, due to the connection variables,

the number of independent variables (nu) is generally

quite high. This can lead to problems caused by the

dimensional “curse” of surrogate models if regular grids

are used, the exponential dependency of the surrogate

model fitting to nu as given in Eq. (1).

nRG = 2nu (1)



Hence, it is important to keep nu small, preferably less

than four (Grimstad et al., 2016).

The reduction of nu can be based on process knowl-

edge, e.g. neglecting independent variables that are

known to have a negligible influence on the output vari-

ables. Another possibility is to introduce new indepen-

dent variables u′, which can be, among others, derived

via partial least square (PLS) regression. PLS regres-

sion is a linear regression tool in which the predicted

and observable variables are projected into a new space

through the introduction of components. It was devel-

oped by Wold et al. (1983) to solve the multivariate cal-

ibration problem in the case of chemometrics. In this

problem, the number of sampling points is less than

the number of independent variables, i.e. the num-

ber of varied concentrations is smaller than the num-

ber of measured frequencies and an optimal combina-

tion of measurements for concentration regression has

to be found. Similarly, it was applied in the analysis of

genomic data (Boulesteix and Strimmer, 2007). Based

on the mentioned previous applications of PLS regres-

sion, it seems to be a reasonable tool for the reduction

of the number of independent variables. It has to be

noted, that the procedure itself is not limited to partial

least square regression, but can also utilize for example

dimensionless numbers as well.

Procedure for Dimension Reduction

The overall procedure to reduce nu consists of in total

three steps; introduction of the linear material balance

relationships, independent variable dimension reduc-

tion, and fitting of the surrogate model to the new inde-

pendent variables u′. It will be explained in the following

subsections. In addition, this procedure allows the use

of a new model structure which is visualized below in fig-

ure 1. This methodology requires the initial sampling of

a certain number of points np to perform the PLS regres-

sion which will be in the following denoted as UεRnp×nu .

Dimension
Reduction

nc Surrogate
Model

nu ny

Linear
Material
Balances

ny,aux

ny,nl

ny,l

Figure 1. Structure of the proposed new model structure.

We propose to incorporate the corner points of a regular

grid of the sampling space in order to not extrapolate

data within the investigated sampling space and add

additional points through Latin hypercube sampling or

orthogonal sampling to guarantee a proper distribution

of the points.

Definition of Linear Relationships

Linear input-output relationships can be always de-

fined for mass balances and in certain cases for the en-

ergy and force balances. This can be reasoned by the

knowledge of the flowsheet topology in the case of pro-

duction optimization. However, the application of linear

relationships may require the introduction of auxiliary

variables yaux. In the case of a reaction within the sub-

model, the extent of reaction ξ in combination with the

stoichometric factor νi allows the reduction of the num-

ber of surrogate models to be fitted. If, on the other

hand, a separation takes place in the submodel or a

split is present, the mass balances can be introduced

via a separation coefficient p. The introduction of lin-

ear relationships hence reduces the number of surrogate

models which have to be fitted.

In addition, the introduction of linear mass balances

results in mass consistency. If this step would not be

conducted, the combination of surrogate models could

lead to creation or removal of mass due to model inac-

curacy rendering their application doubtful.

Dimension Reduction

As mentioned, the application of PLS regression

yields as a result linear combinations of the initial in-

dependent variables, which represent the nonlinear out-

put variables ynl and/or yaux for the given sampled data

best. It is important to mention, that a PLS regression

should be performed for each of the output variables

ynl and yaux as otherwise components are chosen with

a trade-off for fitting the output variables to the inde-

pendent variables.

An additional advantage of the application of PLS re-

gression is that it gives an overview about the influence

of the independent variables u on the derived nonlinear

output values ynl and yaux. This can be utilized for the

addition of points to the sampling grid in the relevant

direction, but will not be elaborated further. The lin-

ear combinations of the components defined are hereby

independent of the total number of components. This

means, that the linear combination of the first compo-



nent will be the same if nc = 1 or nc = nu. Therefore,

it is useful to perform the PLS regression directly for

nc = nu components and only use the first k compo-

nents for the definition of the surrogate model in the

subsequent fitting. Before applying PLS regression, it is

additional advantages to perform variable transforma-

tions for the independent variables. If it is for example

known, that the partial pressure of components or the

total flow play a crucial role, it is useful to redefine the

matrix for the sampled space U in terms of total flow Q

and mole fractions xi or partial pressures pi.

The SIMPLS algorithm used by MATLAB for PLS

regression is strongly depending on the scaling of the

variables. Hence, it is crucial to scale the sampled space

appropriately. If the scaling is not performed properly,

the first component will point towards the space instead

of capturing the true component. In the following, the

standard score will be applied for scaling the sample

space U which is defined as

Uscaled = (U − µU ) ◦ /σU (2)

where µU is the mean value and σU the standard devi-

ation in the matrix U with respect to each of the inde-

pendent variables u. Using the standard score, we scale

the input matrix U in way that we assume the vari-

ance of each independent variable is equal. However, in

cases where we would like to preserve the changes in the

independent variables, the scaled matrix Uscaled can be

further adjusted using a scaling matrix SU , for example,

corresponding to the percentage change in the sampling

space.

Surrogate Model Fitting

The surrogate model is then fitted to the new inde-

pendent variables c = u′ defined as linear combinations

of the original independent variables u. The fitting of

the surrogate model is an iterative procedure in which

the number of components, nc is increased until a fitting

criteria is fulfilled. Alternatively, the explained variance

per component in the response (ynl and/or yaux) can

be utilized as a starting point. The type of surrogate

model is not important for this procedure. For exam-

ple, artificial neural networks, splines, Kriging models,

or polynomials can be applied. However, due to the in-

troduction of new independent variables, it is necessary

that the surrogate model basis functions do not require a

regular grid as a regular grid will not exist after variable

transformation through PLS.

Algorithmic Approach

The above procedure can also be written as a pseudo-

code for the calculation of the surrogate models as shown

below.

Algorithm 1 Procedure for independent variable re-

duction.

1: Define sampling grid A of the problem.

2: Sample training and validation space.

3: Define linear relationships if possible.

4: for k = 1 to ny,nl + ny,aux do

5: Perform PLS regression with nc,j = nu.

6: while εj > threshold do

7: Fit surrogate model g′ to nc,j = k.

8: xsm,j = g′(nc,j)

9: εj =
|xval,j−xsm,j |

xval,j
.

10: k = k + 1

Example 1: Pipe Model

The pipe model is used as a proof of concept model.

The model gives the pressure drop over a pipe as a func-

tion of the independent variables inlet pressure pin, tem-

perature Tin, and component molar flows Ṅi,in. The to-

tal number of independent variables nu is hence given

by nu = 2 + nchem in which nchem is the number of

chemicals in the gas stream.

Model

The model itself consists of an isothermal pressure

drop given in Eq. (3)

p2in − p2out = 4f
L

D

RTinM̄

A2
Ṅ2 (3)

Based on step 1 in the procedure, we can introduce

as linear balances the constant temperature assumption

and the mass balances

Tin = Tout (4)

Ṅi,in = Ṅi,out for i = 1...nChem (5)

This leaves as a nonlinear relationship the calculation

of the outlet pressure. Hence, one surrogate model has

to be defined. Simulations with 3, 5, and 8 chemicals

are performed to demonstrate the procedure. The sam-

pled space is given by a 2-point regular grid with an

additional 100 (1000 and 5000 respectively for 5 and 8

chemicals) points defined as a Latin hypercube. This

corresponds in each case to about 2.5 points in a regu-

lar grid. After performing the PLS regression, a 1-layer



cascade-forward neural network with 5 hidden neurons

was fitted using the new independent variables defined

via PLS regression and the performance of the surrogate

model was evaluated with 104 points sampled as a Latin

hypercube with the same bounds.

Results of the Reduction in Independent Variables

From Eq. (3), we can directly see that four indepen-

dent variables, pin, Tin, M̄ , and Ṅ , are sufficient for the

full characterization of the system and it is not neces-

sary to know the exact composition of our gas stream as

long as we now the average molar mass M̄ . As the PLS

components are always taking into account the previous,

unchanged linear combinations, it has to be noted, that

a similar performance cannot be expected.

A PLS regression with 2, 3, and 4 components gives

the results in figure 2. It can be seen that the num-

ber of variable reduction through PLS allows as little as

3 independent components. Increasing the number of

components to 4 only marginally improves the perfor-

mance of the surrogate model fitting. This is confirmed

by the explained variance through PLS regression for

the response variable pout; from 2 to 3 components, it is

increased from 77.71% to 99.56% whereas the increase

to 4 components only has an influence on the explained

variance in the predictor variable matrix Uscaled. Anal-

ogous results can be found in the case of 5 and 8 chem-

icals. The increased accuracy for 5 and 8 chemicals is

given by the increased number of points the surrogate

model is fitted to, as the regular grid for the initial inde-

pendent variables u is exponentially increasing with the

number of independent variables as shown in Eq. (1).

Increasing the sampling space in the case of 3 chemicals
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Figure 2. Relative error achieved after surrogate model

fitting for the pipe model.

to the same number as points as in the case of 8 chem-

icals results in similar relative errors, confirming this

reasoning.

Example 2 - Reaction Section of the Ammonia

Synthesis Loop

The reaction section of the ammonia synthesis gas

loop is an example of an integrated process. The model

consists of 2 reactor beds and is illustrated in figure 3.

To exploit the produced heat and improve reactor uti-

lization through shifting of the thermodynamic equilib-

rium, several heat exchangers are introduced preheating

the feed to the first bed by cooling the effluent of both

beds.

In this model, we have two nested recycle loops

(M-R1-HEx2-M and M-R1-HEx2-R2-HEx3-M) and a

third recycle loop in contact with the nested (HEx1-

S-HEx3-HEx4-HEx1). Incorporating this model into

a big flowsheet may lead to time-consuming flowsheet

evaluations which makes it not useful for optimiza-

tion. The number of independent variables nu = 10

is given by the variables of the feed stream (7 vari-

ables: pin, Tin, and Ṅi,in) plus the two split ratios

through the valve and heat exchanger 2 as well as the

outlet temperature (TRef,4) of heat exchanger 4. The

split ratio through heat exchanger 3 is defined via the

aforementioned split ratios to maintain no mass ac-

cumulation in the split. nu = 10 is generally con-

sidered much too high for surrogate modelling as it

would for example in the case of B-splines only allow 3

points for the surrogate model design (Grimstad et al.,

2016) corresponding to 59, 049 flowsheet evaluations.

Figure 3. Flowsheet of the reaction section of the am-

monia synthesis loop.



Hence, independent variable reduction is necessary and

the outlined procedure will be applied.

Model

The flowsheet was modelled in MATLAB and com-

promises a non-linear system of equations with 282

states. The reactor beds are modelled as CSTR-cascades

and the heat exchangers using the Number of Transfer

Units Method. In step 1 of the proposed procedure, lin-

ear relationships for the mass balances are introduces

using the extent of reaction ξ as

Ṅi,out = Ṅi,in + νiξ (6)

This leaves nonlinear relationships for pout, Tout, and ξ.

Hence, 3 surrogate models have to be fitted in total. The

sampled grid is given by a 2 point regular grid and 5000

additional points defined as a Latin hypercube. The fit-

ted surrogate models are 3-layer cascade-forward neural

networks with 2, 5, and 5 hidden neurons in the layers

respectively. The resulting model is then validated with

105 points sampled as a Latin hypercube. It has to be

mentioned, that the neural network structure was not

optimized with respect to the different output variables

y. In addition, the sampling space was chosen too small

for the fitting of a non-linear model to a regular grid

as it corresponds to 2.39 points for each independent

variable.

Results of the Reduction in Independent Variables

Compared to the pipe model, it is this time not

possible to define the minimum number of components

(nc,min) necessary to fit a surrogate model to accurately

predict the outlet pressure pout, the outlet temperature

Tout and the extent of reaction ξ. In this situation, it

is useful to start at a minimum value for the number

of components of nc = 5 and continue in a positive or

negative reaction, depending on the fit of the surrogate

model. From experience it is expected, that it can be

beneficial to describe the problem in terms of a total

flow Qin and mole fractions xi,in for PLS regression in-

stead of using the mole flows Ṅi,in. In order to fulfill

that the numbers of independent variables remain the

same, one mole fraction has to be left out, in this case

the mole fraction of one of the inerts methane or argon,

as they are the least interesting.

The results for the outlet pressure pout can be found

in figure 4. From this figure, we see that the pres-

sure drop over the system can be accurately describe by
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Figure 4. Relative error of the outlet pressure as a func-

tion of the number of PLS components nc.

four or more components obtained via PLS regression.

In absolute values, the maximum and mean error for

four components are given by 0.2 bar and 0.02 bar re-

spectively. Here, it is interesting to note that the ex-

plained variance in the response pout is increasing from

one to four components from 96.9% to 99.94%, which

corresponds to the improved fit of the surrogate model

shown in figure 4.

Similar to the outlet pressure pout, the outlet tem-

perature Tout can be adequately described with four or

more PLS component as shown in figure 5. In general,

the maximum and mean relative error is higher than in

the case of the outlet pressure. However, the maximum

and mean error is only 0.20 ◦C and 0.02 ◦C respectively.

Analogous to pout, a drastic improvement can be found

by increasing the number of PLS components from 1 to

4. The improvement in the explained variance in the

response Tout is increasing in these steps as well from

99.83% to 99.99% showing that the explained variance

can be used for analyzing results, but not for prediction

of the accuracy of the model fit. Otherwise, one would

conclude that one component would be sufficient.
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Figure 5. Relative error of the outlet temperature as a

function of the number of PLS components nc.
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Unlike the outlet pressure and temperature, the extent

of reaction ξ does not result in a similar good fitting as

it can be seen in figure 6. This can be explained by the

influence of all independent variables in the first four

components defined via PLS indicating the difficulty to

find linear combinations. This is also visible in the in-

crease in the explained variance in the response ξ from

82.01% with nc = 1 to 97.89% with nc = 5. This find-

ing correlates with the improve of the fit as it was in the

case of the pressure and temperature. The maximum

and mean relative error using 5 PLS components corre-

sponds hereby to an error of 7.72 mol/s and 0.86 mol/s

respectively. Despite the relatively high error in these

calculations, it is possible to apply the extent of reaction

surrogate model with 5 PLS components into the pro-

cedure outlined by us previously (Straus and Skogestad,

2016).

Conclusion and Outlook

The developed three-step procedure was applied to

two examples, a pipe model and the reaction section

of the ammonia synthesis loop. In both cases, it was

possible to obtain surrogate models with high accuracy

considering the reduction in the variable space. Incorpo-

ration of the surrogate model into a flowsheet consisting

of a synthesis-gas make-up section, the reaction section,

and a separation section results in a maximum relative

error of 0.1% in all streams.

A detailed study looking into the application of this

procedure to the reactor loop modelled in Aspen HYSYS

is currently in development consisting of a similar flow-

sheet topology and 11 independent variables. The first

results indicate that similar performance can be ex-

pected for this detailed model.
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