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Abstract

This paper proposes a multi-objective optimization model (P1) that determines the optimal selection of

parallel units considering the trade-off between the availability of a serial producing system and total

investment costs. Model (P1) is solved through the ε- constrained MINLP model (P1’) that maximizes

system availability subject to a series of upper bounds of the total cost, which yields a set of Pareto-optimal

solutions. Convexification to (P1’L) through exact linearization of the constraints and substitution of the

objective function is also presented. Application of the model is illustrated with an example which shows

the capabilities of the model and that the computational requirements are small.
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Introduction

Plant availability has been a critical consideration for

the design and operation of chemical processes, for it

represents the expected fraction of normal operating

time, which impacts directly the ability of meeting de-

mands. Currently, discrete event simulation tools are

used to evaluate reliability/availability of new plants,

which simulate the behavior of every asset in a plant us-

ing historical maintenance data and statistical models

(Sharda and Bury, 2008). However, this approach does

not guarantee optimal solutions.

The goal of evaluating and optimizing reliabil-

ity/availability quantitatively for various kinds of engi-

neering systems and plants has led to the development

of the area of reliability engineering, whose aim is to

rationally consider the ability of a system to function

properly. According to Zio (2009), major questions that

are addressed include the measure/evaluation of system

reliability, the detection of the causes and consequences

of system failures, strategies of system maintenance, and

reliability-based design optimization (RBDO), which is

relevant to the work in this paper.

One of the major challenges is the complexity of the
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system, which is the result of multi-state behaviors that

occur frequently in production plants, and topological

complexities primarily faced by distributed service sys-

tems such as communication and transportation net-

works. Lisnianski et al. (2010) provide a comprehensive

introduction on the study of multi-state system behav-

iors. Specifically, it addresses the use of Markov chain

theory on both statistical and analytical methods. Petri-

net based models have been widely used for the perfor-

mance analysis of computer systems. Bayesian network

is another accepted tool for the analysis of failure prop-

agation in complex networks (Weber et al., 2012).

Compared with the other major research aspects in

reliability engineering, reliability-based design optimiza-

tion (RBDO) arises at the early stages for determining

the topology and parameters of a system. Kuo and

Prasad (2000) give an exhaustive review of this area.

Aside from continuous parameter selections, discrete de-

cisions regarding parallel redundancies are an important

part of RBDO. Various types of methods have been used

to obtain the optimal or suboptimal configurations, such

as genetic algorithms (Coit and Smith, 1996), Monte

Carlo simulation (Marseguerra et al., 2005) and heuris-

tics (Hikita et al., 1992).

Research has also been done in chemical engineering

to quantitatively analyze the reliability of the chemi-



cal plants (Thomaidis and Pistikopoulos, 1994). Rudd

(1962) discusses the estimation of system reliability with

parallel redundancies. Henley and Gandhi (1975) sug-

gest using minimal path method to evaluate failure prop-

agation and the sensitivity of system reliability to unit

reliability. Goel et al. (2003b) consider both design and

planning of production and maintenance in an MILP

model with variable reliability parameters and fixed sys-

tem configuration. Terrazas-Moreno et al. (2010) use

Markov process theory in an MILP model to optimize

the selection of alternative plants and the design of in-

termediate storage for an integrated production site.

Currently, there are virtually no general mixed-

integer programming models for optimal structural de-

sign of a reliable chemical process. This work considers

a multi-objective optimization model to select parallel

units in order to optimize availability and to minimize

cost in serial systems.

Motivating example

To motivate the need for systematic optimization models

for availability, we consider an air separation unit (ASU)

as shown in Figure 1. The production assets include air

compressor, cooling, purification, distillation, etc.

We consider the case when there is no storage. In

that case the failure of any one of the operations can

result in the failure of the whole system. Despite the

complex configuration of the process flowsheet, one can

formulate the process as a serial system of independent

stages as shown in Figure 2 (Goel et al., 2003a), where

the design alternatives are also shown in the form of

standby or parallel units with percentages of capacities

marked on the blocks. The objective is to maximize the

availability of the plant while constraining the total cost.

Figure 1. Typical flowsheet of air separation units

Problem statement

In this section, we develop a new general model based

on abstract configurations as shown in Figure 3, which

can be applied for instance to the ASU case.

Figure 2. The diagram of ASU reliability design alter-

natives

A set of potential units j ∈ Jk for each stage k are

given with fixed availabilities, cost rates, and operating

priorities(indicated by j), which means that a unit can

only be active when all installed units that have higher

priorities fail (see Figure 3). When the number of avail-

able units is less than one, the stage is considered to

have failed. The system has two kinds of processing

stages, stages where potential parallel units are iden-

tical (k ∈ Kiden), and stages where potential parallel

units have the same capacities, but are distinct in terms

of availability, cost, etc (k ∈ Knon)(see Figure 4).

Figure 3. A serial system

This paper proposes a multi-objective optimization

model that makes design decisions regarding the instal-

lation of each of the potential parallel units in order

to maximize system availability and minimize total

cost. For each stage k, one available unit is needed for

the stage to be available. The model is solved as an

ε-constraint optimization problem that maximizes the

availability with a parametrically varied upper bound

of the total cost, and yields a set of Pareto-optimal

solutions. It is also shown that the original non-convex

MINLP can be reformulated as an MINLP with linear

constraints and a convex objective function.



(a) Stage with identical re-

dundancies

(b) Stage with non-

identical redundancies

Figure 4. Sample diagrams for single stages

Multi-objective optimization problem (P1)

In this section, we present the constraints of the

multi-objective optimization problem (P1) and the ε-

constraint optimization problem (P1’) that generates

Pareto optimal solutions.

Defining yk,j as the binary variable that indicates

the installation of unit j in stage k, constraint (1) states

that for each stage at least one unit should be installed.

nk∑
j=1

yk,j ≥ 1, k ∈ K (1)

Constraint (2) is a symmetry breaking constraint for

stages k ∈ Kiden, which requires that a unit can be only

be selected if the one with higher priority is selected.

yk,j+1 ≤ yk,j , k ∈ Kiden, j ∈ Jk (2)

All possible scenarios are enumerated to evaluate the

availability Pk of the stage, where pik is the availability

of the units in stage k ∈ Kiden (see Figure 4(a)).

Pk = pik

nk∑
j=1

yk,j(1− pik)j−1, k ∈ Kiden (3)

For stage k ∈ Knon with non-identical redundancies,

the availability is represented by subtracting the proba-

bilities of unavailable scenarios(Rudd, 1962), assuming

that pnk,j stands for the availability of unit j in stage

k ∈ Knon.

Pk = 1−
∏
j∈Jk

(1− pnk,jyk,j), k ∈ Knon (4)

For example, for the stage shown in Figure 4(b), we have

Pk = 1− (1− pk,1yk,1)(1− pk,2yk,2)(1− pk,3yk,3)

Notice that multi-linear terms of 0-1 variables are in-

troduced, which will be linearized as shown in the next

section. Based on equations (3) and (4), the availabil-

ity of the system consisting of stages k ∈ K is given by

equation (5):

A =
∏
k∈K

Pk (5)

The total cost of each stage is the summation of invest-

ment and repair cost.

Ck = (ci instk + ci repak)

nk∑
j=1

yk,j , k ∈ Kiden (6)

Ck =

nk∑
j=1

yk,j(c
n instk,j + cn repak), k ∈ Knon (7)

The total cost of the entire system is then given by equa-

tion (8):

Ctot =
∑
k∈K

Ck (8)

As stated above, problem (P1) maximizes system avail-

ability (9) and minimizes total cost (10) subject to con-

straints (1) − (8):

maxA (9)

minCtot (10)

Note that (P1) is non-convex due to constraints

(4) and (5). The bi-criterion optimization problem

(P1)((1)−(10)) is solved with the ε-constraint optimiza-

tion problem (P1’)((1)−(9) and (11)), which maximizes

system availability (5) subject to the upper bound of

total cost as shown in equation (11). The upper bound

is varied parametrically to generate the Pareto-optimal

curve.

Ctot ≤ cos t bar (11)

Convexified formulation

Equation (4) for nonidentical units in (P1) involves

multi-linear terms, and so does the objective function

of (P1’), which causes the problem to be nonlinear

and non-convex. In problem (P1’L) we propose to lin-

earize constraint (4) in order to convexify the prob-

lem by expanding the products over linear terms in

(4) as summations over multi-linear terms, and then

linearize them. Since in (4), the multiplication was

done over the set Jk, we first propose the following

new sets and parameters to enumerate the subsets of

Jk: S stands for subsets of Jk; Sk is the power set

of Jk: Sk = {S|S ⊆ Jk}. For example, if there are

3 potential units in stage 1 (J1 = {1, 2, 3}), then the

number of subsets in the power set S1 is 23 = 8, S1 =

{∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}. The bi-

nary parameter αj,S is defined to indicate whether unit j

belongs to subset S. αj,S = 1 means that unit j belongs



to subset S. Again, consider J1 = {1, 2, 3} as an exam-

ple, then for S = {1, 2}, α1,S = 1, α2,S = 1, α3,S = 0.

The following equation is used to generate the subsets.

αj,S = bmod(mS − 1, 2j)

2j−1
c

Here αj,S is the digit on the jth place of the binary form

of mS − 1.

The binary variables zk,S are defined based on the sets

and parameters described above:

zk,S =
∏
j∈S

yk,j , k ∈ Knon, S ∈ Sk

Following from the definition of zk,S , we have,

zk,S ⇔
( ∧

j∈S
yk,j

)
, k ∈ Knon, S ∈ Sk, S 6= ∅

zk,S = 1, k ∈ Knon, S = ∅

which can be reformulated as the following linear in-

equalities (Raman and Grossmann, 1991),

zk,S ≤ yk,j , k ∈ Knon, j ∈ S, S ∈ Sk, S 6= ∅ (12)

zk,S ≥
∑
j∈S

yk,j − |S|+ 1, k ∈ Knon, S ∈ Sk (13)

Based on the above definitions of the subsets S, the

power set Sk and the variable zk,S , equation(4) is then

reformulated as follows:

Pk = 1−
∏
j∈Jk

(1− pnk,jyk,j), k ∈ Knon

= 1−
∑
S∈Sk

(
∏
j∈S

(−pnk,jyk,j))(
∏

j∈Jk\S

1), k ∈ Knon

= 1−
∑
S∈Sk

(
∏
j∈S

(yk,j))(
∏
j∈S
−pnk,j), k ∈ Knon

= 1−
∑
S∈Sk

zk,S
∏
j∈S

(−pnk,j), k ∈ Knon (14)

As an example, the diagram shown in Figure 4(b) that

has 3 distinct parallel units yields

Pk = 1− (zk,1 + zk,2(−pk,1) + zk,3(−pk,2)

+ zk,4(−pk,1)(−pk,2) + zk,5(−pk,3) + zk,6(−pk,1)(−pk,3)

+ zk,7(−pk,2)(−pk,3) + zk,8(−pk,1)(−pk,2)(−pk,3))

Thus, the expression of Pk, k ∈ K are all linear in

(P1’L). On the other hand, let

A′ = lnA = ln(
∏
k∈K

Pk) =
∑
k∈K

lnPk (15)

Since logarithmic functions are monotone, maximizing

A′ is equivalent to maximizingA. Therefore, the original

objective function (9) can be replaced by (16):

maxA′ =
∑
k∈K

lnPk (16)

Since each term in the above summation is concave, A′ is

concave. Maximizing the concave function is equivalent

to minimizing a convex function. Thus, the reformu-

lated problem (P1’L) ((1)−(3), (5)−(8) and (11)−(16))

is a convex MINLP (i.e. the relaxed NLP is convex).

Illustrative examples

In this section, we illustrate the applications of the pro-

posed model on a serial system that has 4 stages and

3 potential units for each stage displayed in Figure 5

with their corresponding availabilities. Each rectangle

represents a single processing unit. The parallel units in

stage 1 and 2 are identical respectively, while those in

stages 3 and 4 are distinct. (P1) is applied and solved

by reformulating into its ε- constrained model (P1’), a

non-convex MINLP. It is then reformulated as the con-

vex MINLP (P1’L). The model is implemented in GAMS

24.4.1 on an Intelr CoreTM i7, 2.93GHz. Commercial

solvers BARON 14.4.0, SCIP 3.2, DICOPT(based on

CONOPT 3.16D and CPLEX 12.6.1.0) and SBB 24.7.3

were used.

Figure 5. Case study

Table 1. Installation cost

Installation cost (k$)

1 2 3

1 50

2 40

3 80 70 65

4 150 120 90

The two MINLP models are solved with the upper

bound of the total cost varying by 60 from 460 to 820

respectively. The results of the non-convex MINLP’s



Table 2. Repair cost

Repair cost (k$)

1 2 3

1 20

2 4

3 30 28 26

4 60 48 44

Figure 6. Pareto curve

(P1’) and their linearized version, the convex MINLP’s

(P1’L) are identical, which are shown in Figure 6. Since

the design decisions are discrete, the calculated values

of Ctot might be less than the limit value.

In Figure 6, the small charts next to each data

point indicates the design decisions in refer to the

legend. As the upper bound of the cost increases,

the maximum system availability increases. Figure

(6) shows that the optimal designs for larger budgets

usually have more units, ranging from 4 to 9. However,

it is not merely a process of adding on units. As the

upper bound of the total cost increases, some units

are added, while some are discarded. Also note that

the kinks in the Pareto curve are due to the discrete

changes in system configuration. Table 3 compares the

computational results of single models (P1’) and (P1’L).

Table 3. Computational results of (P1’) and (P1’L)

P1’ P1’ P1’L P1’L

No. Eq. 21 21 97 97

No. Vars. 22 22 50 50

No. Dis. Vars. 12 12 40 40

Solver BARON SCIP DICOPT SBB

Mean time 0.27s 0.11s 0.61s 0.88s

If we duplicate the stages with non-identical units by

six times and consider the expanded system (example

1’) with 14 stages in total, the computational results

are as shown in Table 4.

Clearly, the size of problem (P1’L) is larger than that

of (P1’), and the solution time of (P1’L) on example

1 is longer than that of (P1’). However, the solution

time of (P1’L) on example 1’ using DICOPT is shorter

than that of (P1’) on BARON and SCIP, which proves

that the convexity of (P1’L) brings in time efficiency

that should become more significant for larger problems.

Table 4. Computational results of (P1’) and (P1’L) for

example 1’

P1’ P1’ P1’L P1’L

No. Eq. 51 51 317 317

No. Vars. 72 72 170 170

No. Dis. Vars. 42 42 140 140

Solver BARON SCIP DICOPT SBB

Mean time 1.57s 1.08s 0.77s 3.28s

Conclusion

Assuming units with fixed availabilities, the multi-

objective optimization model (P1) has been presented

for selecting designs in serial systems to maximize the

system availability while minimizing the cost. (P1) is

solved with the non-convex MINLP model (P1’), which

maximizes system availability with the total cost con-

strained. The convexified version of (P1’), (P1’L) is ob-

tained through exact linearizations and redefining the

objective function as the maximization of a concave

function. (P1’) and (P1’L) are verified to have the same

optimal solutions. The Pareto curve for an illustrative

example is shown and discussed.

Nomenclature

Indices
k Stage

j Parallel unit, smaller j has priority over larger

j

l Dummy variable for j

S Subset of Jk

Set
K Set of processing stage (e.g. absorption)

Kiden Set of stages with identical parallel units

Knon Set of stages with non-identical parallel units

(Kiden and Knon is a partition of K)

Jk Set of parallel units for each state

Sk The power set of Jk: Sk = {S|S ⊆ Jk}

Parameter
nk Number of potential parallel units in stage k

pik Availability of single units in stage k with iden-

tical parallel units



pnk,j Availability of single unit j in stage k with non-

identical parallel units

ci instk Investment for single units in stage k with iden-

tical parallel units

ci repak Repair cost for single units in stage k with iden-

tical parallel units

cn instk,,j Investment for single unit j in stage k with non-

identical parallel units

cn repak,,j Repair cost for single unit j in stage k with non-

identical parallel units

cost bar Upper bound of total cost

Variables
yk,j Binary variable that indicates whether unit j of

stage k is selected

zk,j,S Binary variable that is used to convexify multi-

linear terms of yk,j

Pk Availability of stage k

A Availability of the entire system

Ck Total cost for stage k

Ctot Total cost of system
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