

A BRANCH AND BOUND ALGORIHM TO SOLVE
LARGE SCALE MULTISTAGE STOCHASTIC

PROGRAMS

Brianna Christian and Selen Cremaschi*
Department of Chemical Engineering, Auburn University

Auburn, AL 36849

Abstract

The growth in computation complexity of multistage stochastic programs (MSSPs) with problem size
often prevents its application to real-world size problems. In this work, we present a branch and bound
algorithm capable of reducing the resource requirements for the generation and solution of large-scale
MSSPs. Using the algorithm to solve four instances of the pharmaceutical R&D pipeline management
problem revealed that the algorithm used significantly less memory compared to the deterministic
equivalent solutions.

Keywords

Multistage Stochastic Programming, Knapsack Decomposition, Progressive Hedging, Endogenous
Uncertainty, Branch and Bound

Introduction

Applications of optimization under uncertainty in
chemical process industry cover a broad range of problems
including production planning and scheduling, location and
transportation planning, product and process design, and
resource allocation. One approach that is used to model and
solve these problems is stochastic programming (SP). In SP,
a scenario based framework is used to explicitly account for
uncertainty. The main components of a SP are (1) a set of
scenarios representative of the outcomes of the uncertain
parameters, and (2) stages where actions can be taken.
When all uncertain parameters can be considered
independent, scenarios are generated using the Cartesian
product of the realizations of each parameter (Apap and
Grossmann, 2015). Stochastic programs can be classified
based on the number of decision stages. Problems with a
single decision stage, after which uncertainty is realized, are
called two-stage SPs. When uncertainty is revealed
gradually over multiple decision stages the problem is
called a multistage SP (MSSP) (Birge and Louveaux, 2011).

* selen-cremaschi@auburn.edu

The stages in MSSPs are typically tied to time periods,
where uncertainty is revealed at different time periods and
the decisions are made sequentially based on available
information.

The uncertainty in SPs can be grouped into two broad
categories, endogenous and exogenous. The realization of
exogenous uncertain parameters is not affected by the
decisions. In contrast, decisions impact endogenous
uncertain parameters. This impact can either determine
when the uncertainty is resolved or change the
distribution(s) of the uncertain parameter(s).

At the beginning of the planning horizon and before
any decisions are made, all scenarios in a SP are
indistinguishable. As uncertainty is revealed, either through
decisions or naturally, the scenarios begin to be
distinguishable. Once a set of scenarios is differentiable
from the rest, decisions for it may be made independently.
To avoid using unrealized values of the uncertain
parameter(s) when making decisions, non-anticipativity

constraints (NACs) are introduced to the SP formulation.
The NACs of a MSSP with endogenous uncertainty also
depend on the decisions.

Most real-world-size MSSP problems with
endogenous uncertainty are computationally intractable due
to the space complexity of the problem caused by
exponential growth in the size of the variables and the
number of NACs. The number of scenarios increases with
the number of uncertain parameters and the number of
realizations associated with each uncertain parameter.
Several approaches have been developed to address this
complexity. One approach relaxes the NACs using
Lagrangean-relaxation. The problem is then solved using a
duality based approach. (Goel and Grossmann, 2004;
Tarhan et al., 2013). Gupta and Grossmann (2014) recently
presented an improvement to this approach by incorporating
a scenario grouping strategy. Colvin and Maravelias (2010)
increased the size of the pharmaceutical R&D pipeline
management problem that can be solved by using a branch
and cut algorithm that gradually added NACs. Solak et al.
(2010) used a sample average approximation approach,
where candidate solutions were generated using subsets of
the full scenario set. Jiang et al. (2016) introduced a set of
cutting plane inequalities to strengthen the linear relaxation
of the general multistage stochastic unit commitment
problem.

This paper presents a branch and bound algorithm that
uses progressive hedging (PH) combined with the knapsack
decomposition algorithm (KDA) (Christian and Cremaschi,
2015) to solve large-scale MSSPs with endogenous
uncertainty. We test the performance of the algorithm on
pharmaceutical R&D pipeline clinical trial planning
problem. The algorithm solves the problems using less
random-access memory (RAM) than the deterministic
equivalent MSSPs.

The Branch and Bound Algorithm

The algorithm is summarized in Fig. 1. At the
initialization step, the values for the relative gap between
the upper bound and the lower bound (α), and the tolerance
(ε) are set. Next, the iteration count, i, is set to zero. The
algorithm starts by generating a feasible solution, φi, using
the KDA, which is a heuristic algorithm that solves the
original MSSP by decomposing it into a series of knapsack
problems. The Equivalent Expected Net Present Value
(EENPV) for the KDA solution provides the initial lower
bound, LB0. The algorithm next determines the branching
variable(s) by comparing the values of decision variables
that have been fixed in the current branch to values of
decision variables in the KDA solution, φi. From the
decisions variables in φi that have not yet been fixed in the
current branch, the ones that occur at the earliest time period
are selected as the branching variable(s).

Assuming that there is one binary branching variable,
two new linear programs (LPs) are generated; in one, the
branching variable takes the value of one, in the other, the
value of zero. In both LPs, the values of decision variables

that were fixed in the parent branch are carried over. The
solution of each of these LPs provides an upper bound, Un,
for each branch n. The LPs are added to the set of active
branches, N, and the parent branch is removed. After
determining the upper bound for each branch, the algorithm
determines the upper bound for the problem, UBi, for
iteration i. It is defined as max {𝑈𝑈𝑛𝑛 ∀𝑛𝑛 ∈ 𝐍𝐍}, and Q is the
set of fixed decisions corresponding to the upper bound of
the problem, UBi.

Un = LP with
fixed z

φi = KDAGreedy Solution
with Q fixed

Initialize Algorithm

α < ε

Select Binary
 Branch Variable(s), z, from φi-1

Q in φi-1?

End

No

No

Yes

Yes

UBi = argmax{ENPV(Un) for n in N}
With Current Branch Decisions, Q

i = 0

 LBi =argmax{ENPVφi}

φi = KDA Solution

Generate 2|z| UB
Branches, n є N

k < |N|

k = 0

k = k + 1

ENPVφ(i-1) < ENPVφ(i)

 LBi =ENPVφ(i)

Yes

 LBi =ENPVφ(i-1)

No

i = i + 1

Yes

α = (UBi - LBi)/UBi

No

Figure 1. The branch and bound algorithm

The algorithm continues by comparing the decisions in
Q with values of the decision variables in the KDA solution,
φi-1. If the values of the decision variables match then the
lower bound of the problem, LBi, is equal to the lower
bound of the previous iteration, LBi-1. Otherwise, the
algorithm solves the MSSP where the values of the decision
variables in Q are fixed using the KDAGreedy algorithm,
and generates a new feasible solution, φi. If the EENPV of
φi is greater than LBi-1, the lower bound, LBi, takes the value

of the EENPV of φi. If the EENPV of the KDA solution is
lower than LBi-1, the value of LBi is set equal to LBi-1. The
algorithm updates α using LBi and UBi. If α is lower than ε
or the maximum iteration count is reached, the algorithm
terminates. Otherwise, the algorithm increments the
iteration count and selects new branching variables. At
termination, φi provides the solution of the MSSP at a
relative gap of α.

A Progressive Hedging Upper Bound

The LPs used for determining the upper bound are
solved using the Progressive Hedging (PH) approach
originally presented in Rockafellar and Wets (1991) and
adapted by Watson and Woodruff (2011). The PH approach
is proven to converge to the optimum of convex MSSPs
with exogenous uncertainty. It decomposes the MSSP into
individual scenario quadratic programs (QPs) with a
modified objective function, and uses the solutions of these
QPs to converge to the MSSP solution. This scenario-wise
approach allows solving linear MSSPs with exogenous
uncertainty without generating the full MSSP.
The SP formulation with exogenous uncertainty can be
written as ()∑ ∈+ Ss sss yfpcxmin , () SsQyxts ss ∈∀∈, .. where
c is the cost associated with the constrained decision vector
x, ps is the probability that the scenario s will occur, and fs
represents the cost of the scenario specific decisions ys. The
decision vector x represents the decisions which must be
identical in all scenarios. By writing the decision vector as
a single variable enforceable in all scenarios, Watson and
Woodruff (2011) implicitly enforce the NACs.

The PH algorithm used in this work is given in Fig. 2.
After initializing the iteration counter (k) to zero, the
algorithm solves the deterministic optimization problem for
each scenario, finding x(k) (Fig. 2, Step 2). Next, the average
values for the decision vector, , and the weights, ws

(k)
, are

calculated (Fig. 2,Steps 3 and 4). In Step 5, the iteration
counter is incremented, and new QPs are constructed using
the values of 𝑥̅𝑥(k) and ws

(k). Solutions of these QPs are used
to update the values of 𝑥̅𝑥(k) and ws

(k) (Fig. 2, Steps 7 and 8).
The convergence of the algorithm is checked in Step 10
using the value of g(k) calculated in Step 9 (Fig. 2). If the
algorithm is within ε, it terminates. Otherwise, it returns to
Step 5.

The PH algorithm requires the knowledge of the
scenarios and their differentiation time periods. The
problems of interest in this work are MSSPs with integer
decision variables and endogenous uncertainty, where the
differentiating events can be specified but not when and if
they would occur. To ensure that the solutions obtained by
the PH algorithm are true upper bounds for these problems,
the integrality constraints of the MSSP are relaxed, and
appropriate upper and lower bounds for these variables are
introduced. Next, all NACs except the current-stage NACs
are removed, which yields a two-stage SP. For the problems
considered in this work, the values of the uncertain
endogenous parameters are realized gradually as the
corresponding series of decisions are taken. To ensure that

the ‘current-stage’ NACs are always enforced, we used a set
of problem specific logical statements that tracks the value
of differentiating decision variables and determines if any
uncertainty realizations have occurred. The solutions
obtained by the PH algorithm (Fig. 2) to these relaxed two-
stage SPs are used to update the upper bounds of the MSSP
(Fig. 1) at each iteration.

Figure 2. The progressive hedging algorithm
(Watson and Woodruff, 2011)

Updating the Lower Bound Using the KDAGreedy
Algorithm

The lower bound of the problem is found using a
modified version of the KDA (Christian and Cremaschi,
2015). The original KDA uses a series of knapsack
problems to find a feasible solution for MSSPs with
endogenous uncertainty. The KDA starts by decomposing
the decision variables into a set of items. Each item has an
associated value and weight. The value of the item is based
on the expected potential gains from the associated decision
variable. The weight of the item corresponds to the resource
requirements associated with the decision variable. The
KDA starts by packing an initial knapsack with the items
based on overall weight limitations. The selected items are
used to determine the value of the decision variables at the
first time period in the planning horizon. The uncertainty
associated with those decision variables are realized, and
the KDA generates a new knapsack problem for each
realization. Based on the realizations, the algorithm decides
which items are eligible to be considered in each of the
newly created knapsack problems, and solves them.
Solutions determine the values of the decision variables,
which in turn results in realizations of associated uncertain
parameters. The KDA algorithm continues until the end of
the planning horizon. To ensure that the KDA solution does
not over-utilize resources early in the planning horizon, the
algorithm introduces a heuristic overscheduling constraint.
The constraint prevents selection of items if there are not
sufficient resources (i.e., maximum weight) for potential
knapsack problems that may be generated due to the
realizations of the item in consideration in the future.
Details of the KDA can be found elsewhere (Christian and
Cremaschi, 2015).

1. 𝑘𝑘 ≔ 0
2. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆,

𝑥𝑥𝑠𝑠(𝑘𝑘) ≔ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑠𝑠𝑦𝑦𝑠𝑠): (𝑥𝑥, 𝑦𝑦𝑠𝑠) ∈ 𝑸𝑸𝑠𝑠
3. 𝑥̅𝑥(𝑘𝑘) ≔ ∑ Pr⁡(𝑠𝑠)𝑥𝑥𝑠𝑠(𝑘𝑘)

𝑠𝑠∈𝑆𝑆
4. 𝑤𝑤𝑠𝑠(𝑘𝑘) ≔ 𝜌𝜌�𝑥𝑥𝑠𝑠(𝑘𝑘) − 𝑥̅𝑥(𝑘𝑘)�
5. 𝑘𝑘 ≔ 𝑘𝑘 + 1
6. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆,

𝑥𝑥𝑠𝑠(𝑘𝑘) ≔ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑠𝑠(𝑘𝑘−1)𝑥𝑥
 + 𝜌𝜌

2� �𝑥𝑥 − 𝑥̅𝑥(𝑘𝑘)�
2

+ 𝑓𝑓𝑠𝑠𝑦𝑦𝑠𝑠� : (𝑥𝑥, 𝑦𝑦𝑠𝑠) ∈ 𝑸𝑸𝑠𝑠
7. 𝑥̅𝑥(𝑘𝑘) ≔ ∑ Pr⁡(𝑠𝑠)𝑥𝑥𝑠𝑠(𝑘𝑘)

𝑠𝑠∈𝑆𝑆
8. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆,𝑤𝑤𝑠𝑠

(𝑘𝑘) ≔ 𝑤𝑤𝑠𝑠(𝑘𝑘−1) + 𝜌𝜌�𝑥𝑥𝑠𝑠(𝑘𝑘) − 𝑥̅𝑥(𝑘𝑘)�
9. 𝑔𝑔(𝑘𝑘) ≔ ∑ Pr⁡(𝑠𝑠)𝑠𝑠∈𝑆𝑆 �𝑥𝑥 − 𝑥̅𝑥(𝑘𝑘)�
10. 𝐼𝐼𝐼𝐼 𝑔𝑔(𝑘𝑘) < 𝜀𝜀, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡 5.𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

The original KDA is modified by removing the
heuristic overscheduling constraint and changing when new
knapsack problems are generated. Removing this constraint
allows the KDAGreedy algorithm to pack any eligible item
in any knapsack while keeping the feasibility of its solution.
In the original KDA, new knapsacks are only generated
after all uncertainty associated with selected items was
realized. In the KDAGreedy algorithm, new knapsack
problems are generated at every time period allowing non-
zero decision variable values if there are enough resources
at any time period.

Case Studies – Pharmaceutical R&D Pipeline Management
Problem

We use the branch and bound algorithm to solve four
instances of the pharmaceutical R&D pipeline management
problem. A brief overview of the pharmaceutical R&D
pipeline management problem is provided in the section
below. Values for the constants in each case can be found
in Christian and Cremaschi (2015). The branch and bound
algorithm is implemented in Python 3.5. The PH algorithm
and the KDAGreedy utilize Pyomo 4.1 (Hart et al., 2011)
and CPLEX 12.6. The solutions to the deterministic
equivalent MSSP for each case were found using Pyomo 4.1
and CPLEX 12.6. All of the problems in this work were
solved using the Auburn University Hopper Cluster.

The Pharmaceutical R&D Pipeline Management Problem

The pharmaceutical R&D pipeline management
problem consists of a set of new pharmaceutical drug
development projects. The goal of the problem is to
determine the clinical trial schedule which yields the
highest ENPV given uncertainty in the outcome of each
clinical trial. In this work, we use the formulation presented
by Colvin and Maravelias (2008).

The mathematical formulation of the clinical trial
planning problem is characterized by a set of potential new
products [dєD]. Each potential product is required to
complete a series of clinical trials [jєJ]. Completion of
clinical trials is limited by a set of resources [rєR]. Clinical
trials have both an associated resource cost(s) [ρd,j,r] and
monetary cost [Cd,j]. Resource expenditures are limited by
maximum resource availability [ρr

max].
The scheduling of clinical trials occurs along a

discretized planning horizon of n months divided into |T|
time steps [tєT]. Each clinical trial has a fixed duration [τd,j].
The success of the clinical trial is given as a Bernoulli
random variable with a known probability of success [pd,j].
Successful completion of all clinical trials results in
commercial availability, and revenue from the market
success of the product is realized [Revd

max]. Penalties for
having products idle in the pipeline and for reduced active
patent life due to delayed development of a product, γd

L (loss
of patent life) and γd

D (loss of market share), are accessed
when calculating the ENPV.

Results and Discussion

The branch and bound algorithm was first used to solve
a toy-box sized two-product two-clinical-trial case. We
present the first five iterations of the algorithm in Fig. 3.
The initial lower bound obtained by KDA is 1097. The
algorithm uses the solution from the initial lower bound to
select decisions variables to branch on. In this problem, the
algorithm selects the first clinical trial of both Drug 1
andDrug 2 starting at the first time period, i.e., (D1, P1, 0)
and (D2, P1,0). Selecting two decision variables to branch
on creates four branches marked as 1A, 1B, 1C, and 1D in
Fig. 3. The LPs are generated, and their upper bound
solutions – obtained by the PH algorithm – are 1141.83
(1A), 1139.53 (1B), 1138.34 (1C), and 1136.03 (1D)

Figure 3. Five iterations of the branch and bound algorithm for the two-product two-clinical trial case study

Decisions:
(D1,P1,0)=0
(D2,P1,0)=0
∀s ∈S

UB: 1141.83
LB: 1097.21

Decisions:
(D1,P1,0)=0
(D2,P1,0)=1
∀s ∈S

UB: 1139.53
LB: 1097.21

Decisions:
(D1,P1,0)=1
(D2,P1,0)=0
∀s ∈S

UB: 1138.34
LB: 1104.21

Decisions:
(D1,P1,0)=0
(D2,P1,0)=1
∀s ∈S

UB: 1136.03
LB: 1104.21

Decisions:
(D1,P1,1)=0
(D2,P1,1)=0
∀s ∈S

UB: 1126.15
LB: 1104.21

Decisions:
(D1,P1,1)=1
(D2,P1,1)=0
∀s ∈S

UB: 1121.29
LB: 1104.21

Decisions:
(D1,P1,1)=0
(D2,P1,1)=1
∀s ∈S

UB: 1128.44
LB: 1104.21

Decisions:
(D1,P1,0)=1
(D2,P1,0)=1
∀s ∈S

UB: 1136.03
LB: 1104.21

Decisions:
(D1,P1,1)=0
∀s ∈S

UB: 1139.53
LB: 1104.21

Decisions:
(D1,P1,1)=1
∀s ∈S

UB: 1126.24
LB: 1104.21

Decisions:
(D1,P1,2)=0
∀s ∈S s.t.

(D2,P1) Passes
UB: 1108.78
LB: 1104.21

Decisions:
(D1,P1,2)=1
∀s ∈S s.t.

(D2,P1) Passes
UB: 1134.68
LB: 1104.21

Decisions:
(D2,P1,1)=0
∀s ∈S

UB: 1134.68
LB: 1104.21

Decisions:
(D2,P1,1)=1
∀s ∈S

UB: 1138.34
LB: 1104.21

1D1C
1B1A

2A 2B 2C 2D

3A 3B

4A 4B

5A 5B

 5

Because the upper bound of 1A is the highest, the algorithm
sets the values of the decision variables associated with (D1,
P1, 0) and (D2, P1,0) equal to zero, and calls KDAGreedy.
The solution obtained by the KDAGreedy suggest starting
the first clinical trials of D1 and D2 at the second time
period (t=1). The algorithm generates four new branches
(2A-D), and finds their upper bounds using PH. The
algorithm continues by selecting the end branch with the
highest upper bound (e.g, 1B for the third iteration) until the
stopping criteria are met.

Figure 4 plots the log (base 10) of the CPU time
consumed by the algorithm versus the relative gap ((UBi-
LBi)/UBi) for the two- and three-product cases. Labels on
the marker on the graph identify the number of completed
iterations. In all three cases, the slopes in Fig. 4 are
approximately linear indicating a logarithmic relationship
between the CPU time and the relative gap. Therefore, the
decision variables branched on in earlier iterations have a
larger impact on the relative gap then the decisions
branched on in later iterations, which initially improves the
upper bound rapidly. The quality of the PH upper bound is
limited due to the linear relaxation of the MSSP and use of
only next stage NACs. Premature termination of the
algorithm in the two-product three-trial case was also
caused by the PH upper bound. To ensure that the PH-
algorithm solution provides a true upper bound for the
problem, all integrality constraints are relaxed. Hence, the
solutions at the upper bound allows partial investments (i.e.
non-integer results) on some of the clinical trials. The
KDAGreedy only generates feasible solutions, in which
these non-integer decision variables become zero and are
never branched on. For the three-product three-trial case
study, the algorithm ran for the maximum allowable wall
time of ten days. At termination, the relative gap was 2.6%.
The time needed to run each algorithm to completion is
shown in Table 1. As expected, compared to the
deterministic equivalent MSSP (also in Table 1), the branch
and bound algorithm takes significantly longer to close the
gap.

One of the challenges with solving real-world size
MSSPs is the space complexity of the problem (i.e. the
RAM required to generate the problem). As can be seen
from Table 1, the branch and bound algorithm uses
significantly lower random-access memory (RAM) than its
deterministic equivalent counterpart for all case studies.

The RAM usage of the branch and bound algorithm for the
three-product case is higher than both two-product cases
and the five-product case. This increase in RAM usage is
caused by the number of iterations the algorithm completed.
In each iteration, at least two new branches are created. The
storage of these branches gradually increase memory
requirements of the algorithm.

Figure 4. Plot of CPU time vs. relative gap for
the two- and three-product case studies

The impact of parallelizing the PH algorithm is studied
for the five-product three-clinical trial case study. The
problem has a total of 1024 scenarios. Table 2 shows the
number of threads used for parallelization for each instance
of the problem along with the approximate number of
problems solved per thread per PH iteration. Because
CPLEX 12.6 recommends allocating additional processor
cores for solution of the QPs when available, six cores were
allocated for each thread. This also improved the efficiency
of the PH algorithm.

Based on the number of iterations completed,
parallelization has the greatest impact when nine threads are
used. In the case where nine threads were used, 183
iterations were completed and the relative gap of the
problem was reduced to 6.4%. However, our limited
computational experiments showed that increasing from

Table 1. Resource usage, relative gap, and computational time results for the deterministic equivalent MSSP
and the branch and bound algorithm

 Deterministic Equivalent Branch and Bound

 RAM
(MB)

Relative
Gap

CPU Time
(HH:MM:SS)

RAM
(MB)

Relative
Gap

CPU Time
(HH:MM:SS)

Two-Product Two-Trial 2.45 0.001 0:00:01 0.05 0.005 0:03:08
Two-Product Three-Trial 5.93 0.001 0:00:01 0.48 0.017 0:01:01
Three-Product Three-Trial 89.79 0.001 0:00:03 26.07 0.026 615:07:05
Five-Product Three-Trial 1430.15 0.001 0:00:42 2.12 0.068 643:41:52

i=1

i=10
i=25 i=44

i=1

i=10

i=25
i=44
i=50

i=1 i=10
i=25

i=44 i=50

i=100
i=500

i=1000

i=2263

0

0.02

0.04

0.06

0.08

0.1

1 100 10000

R
el

at
iv

e
G

ap

Time (CPU Secs)
Two-Product Two-Clinical-Trial
Two-Product Three-Clinical-Trial
Three-Product Three-Clinical-Trial

 6

Table 2. Parallelization results for the five-
product case study

Number of
Threads

Completed
Iterations

Relative
Gap

Problems
Per Thread

3 39 0.0684 341
6 41 0.0772 170
9 183 0.064 113

three threads to six threads had an inverse effect on the
solution quality. The current implementation of the branch
and bound algorithm selects decisions to branch on from the
KDA decision tree. In general, the algorithm selects
decision variables from the KDAGreedy solution that have
non-zero values starting with the variables earliest in the
planning horizon. When the algorithm selects which
decision variables to branch on, it selects all the decisions
in one particular branch of the KDA decision tree. Because
the object that holds the decision tree is not ordered, the
algorithm may not always select the same branch (i.e.,
corresponding to the same realizations) from the KDA
decision tree. The performance of the algorithm when the
parallelization studies were conducted suggests that it is
particularly sensitive to the order in which decision
variables are selected for branching.

Conclusions and Future Directions

In this work, we successfully implemented a branch
and bound algorithm that reduces the RAM requirements
for solving large-scale MSSPs. The algorithm was applied
to four instances of the pharmaceutical R&D pipeline
management problem. Our studies reveal that, in all case
studies, the CPU time for the algorithm is higher than the
deterministic MSSP. However, the RAM usage of the
algorithm is less than half of the amount required for
solving the deterministic equivalent MSSP. Despite having
a slower convergence time, the first iteration of the
algorithm provides a true bound on the solution. For larger
problems we expect longer computation times due to the
convergence times of the PH algorithm and linear scaling in
the RAM requirements.

For future work, two paths have been identified to
increase the effectiveness and efficiency of the algorithm.
First, the algorithm will be modified to branch on the
variables with the non-integer values in the upper bound if
the KDAGreedy algorithm fails to provide a branching
decision variable. Second, we plan to investigate different
rules for selecting the branching variables and further
parallelization approaches for the algorithm.

Acknowledgements

We acknowledge the Auburn University Hopper
Cluster for support of this work. Financial support for this
work is provided by the US National Science Foundation
through the Auburn University Integrative Graduate

Research and Education Traineeship (IGERT) program
(Award# 1069004), and the NSF Career Grant (Award #
1623417).

References

Apap, R., and Grossmann, I. E. (2015). Models and computational
strategies for multistage stochastic programming under
endogenous and exogenous uncertainties.

Birge, J. R., and Louveaux, F. (2011). Introduction to Stochastic
Programming. Springer New York. Retrieved from
https://books.google.com/books?id=Vp0Bp8kjPxUC

Christian, B., and Cremaschi, S. (2015). Heuristic solution
approaches to the pharmaceutical R&D pipeline
management problem. Computers and Chemical
Engineering, 74, 34–47.

Colvin, M., and Maravelias, C. T. (2008). A stochastic
programming approach for clinical trial planning in new
drug development. Computers & Chemical Engineering,
32, 2626–2642.

Colvin, M., and Maravelias, C. T. (2010). Modeling methods and
a branch and cut algorithm for pharmaceutical clinical trial
planning using stochastic programming. European Journal
of Operational Research, 203(1), 205–215.

Goel, V., and Grossmann, I. E. (2004). A stochastic programming
approach to planning of offshore gas field developments
under uncertainty in reserves. Computers and Chemical
Engineering, 28(8), 1409–1429.

Gupta, V., and Grossmann, I. E. (2014). Multistage stochastic
programming approach for offshore oilfield infrastructure
planning under production sharing agreements and
endogenous uncertainties. Journal of Petroleum Science
and Engineering, 124, 180–197.

Hart, William E., Watson, Jean-Paul , and Woodruff, David L..
(2011) Pyomo: modeling and solving mathematical
programs in Python. Mathematical Programming
Computation 3(3): 219-260.

Jiang, R., Guan, Y., & Watson, J. (2016). Cutting planes for the
multistage stochastic unit commitment problem.
Mathematical Programming (Vol. 157). Springer Berlin
Heidelberg.

Rockafellar, R. T., & Wets, R. J.-B. (1991). Scenarios and Policy
Aggregation in Optimization Under Uncertainty.
Mathematics of Operations Research, 16(1), 119–147.

Solak, S., Clarke, J. P. B., Johnson, E. L., and Barnes, E. R. (2010).
Optimization of R&D project portfolios under endogenous
uncertainty. European Journal of Operational Research,
207(1), 420–433.

Tarhan, B., Grossmann, I. E., and Goel, V. (2013). Computational
strategies for non-convex multistage MINLP models with
decision-dependent uncertainty and gradual uncertainty
resolution. Annals of Operations Research, 203(1), 141–
166.

Watson, J. P., & Woodruff, D. L. (2011). Progressive hedging
innovations for a class of stochastic mixed-integer resource
allocation problems. Computational Management Science,
8(4), 355–370.

