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Abstract 

Computational models are interesting tools to facilitate the translation from the laboratory to the patient. 

In regenerative medicine, computer models describing bioprocesses taking place in bioreactor 

environment can assist in designing process conditions leading to robust and economically viable 

products. In this study we present a low-cost computational model describing the neotissue (cells + 

extracellular matrix) growth in a perfusion bioreactor set-up. The neotissue growth is influenced by the 

geometry of the scaffold, the flow-induced shear stress and a number of metabolic factors. After initial 

model validation, a Genetic Algorithm optimization technique is used to find the best medium 

refreshment regime (frequency and percentage of medium replaced) resulting in a maximal amount of 

neotissue being produced in the scaffold in a 28 days of culture period. 
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Introduction 

Bone tissue engineering (TE) is a field that combines 

expertise from medical and engineering sciences to come 

up with solutions for large or non-healing bone defects. 

Nowadays, the most common technique for producing 

neotissue (cells and the extracellular matrix they produce) 

in vitro, lies in the combination of different elements such 

as scaffolds and mesenchymal stem cells (MSCs). In this 

process, the role of (perfusion) bioreactors is to ensure the 

supply of nutrients to and removal of metabolic waste from 

the system (Papantoniou et al., 2013 and Grayson et al., 

2011). In addition, they provide mechanical stimulation to 

the cells to help maintain their viability and stimulate 

biological activity. Regular 3D porous scaffolds are being 

used because of their ability to induce reproducible culture 

conditions that can control specific cell behavior such as 

proliferation and differentiation. Furthermore, scaffolds 

can provide fundamental patterns for subsequent cell 

growth and neotissue (Melchels et al., 2011). MSCs have 

been shown to be able to differentiate into a variety of cell 

types, including osteoblasts (bone forming cells) and 

chondrocytes (cartilage forming cells) (Sonnaert et al., 

2014), depending on the specific biochemical and 

biomechanical environment.  

Despite the extensive amount of past and continuing 

research efforts, the translation of the TE products from 

bench to bed side remains a challenge. There is a clear 

need to further elucidate the intricate mechanisms involved 

in the neotissue formation as well as to develop proper 

monitoring and control tools to follow-up the bioreactor 

processes (in real-time).  Computational models could play 

a significant role to help in the clarification of the 

biological mechanisms taking place during the neotissue 

growth within the scaffold (Guyot et al., 2015 and Hossain 

et al., 2015). Moreover, the use of computational models 

will enable us to optimize the whole process by finding the 

optimum values for the bioreactor culture settings (e.g. 

fluid flow rate, nutrients concentration and medium 

refreshment rate).  

In this study, we present a computational model 

describing the neotissue growth in porous structures during 

dynamic culture conditions in a perfusion bioreactor. As 

the purpose of the model is for it to be used in the context 

of process optimization, the computational cost was a key 

factor in the model development.  A mechanistic model 

describing the 3D neotissue growth in a mechanistic 

manner such as the model developed by Guyot et al (2015) 

is computationally too expensive to be used in rigorous 

optimization routines, so a cheaper homogenized model 

was developed.  In order to find the best culture strategy 

(represented in the context of this study by the frequency 



  
 

and percentage of medium replacement), a Genetic 

Algorithm (GA) optimization technique was used. The 

results obtained by GA point towards bioreactor conditions 

that would lead to an increased volume of neotissue in the 

same timeframe. 

Methods 

Experimental Set-up 

Calibration and testing of the presented models was 

performed with the help of experimental data that was, 

partly, generated for the purpose of model validation by 

researchers from the Tissue Engineering Unit of the 

Skeletal Biology and Engineering Research Centre of the 

KU Leuven (Sonnaert et al., 2014). The set-up used to 

generate this data consisted of three different 

compartments which are cells, scaffolds and perfusion 

bioreactor. Schematic representation of the perfusion 

bioreactor and the scaffold used in this study are shown in 

figure 1. 

 

Figure 1. Schematic representation of the 
perfusion bioreactor and the scaffold used in 

this study.  The green volume inside the gyroid 
scaffold (centr) reprents the neotissue.  

 

The following sections describe theses three 

compartments in details. 

Cells: The type of cells used in this experimental set-

up is human Periosteal Derived Cells (hPDCs). This cell 

type has been chosen for its pluripotency and its ability to 

form bone tissue engineered construct. All the necessary 

ethical approval for prelevation and use of these cells are 

in place. 

Scaffolds: 3D additively manufactured open porous 

Ti6Al4V scaffolds produced using a non-commercial, in-

house developed selective laser melting machine were used 

(Van Bael et al., 2012). The outer dimensions of the 

cylindrical scaffold were 6mm diameter and 6mm height.  

The scaffolds used in this study had a triply periodic 

internal structure (Gyroid, Dcup or Schwarz). For scaffolds 

with a Gyroid structure, 2 different sizes of internal 

periodicity were tested (Gyroid10, G10, having a bigger 

pore size than Gyroid 7, G7) 

Perfusion Bioreactor culture: Prior to the start of the 

experiment, cells were trypsinized with Tryple Express 

(Invitrogen) and seeded on the scaffolds. A static drop-

seeding protocol was used for seeding cells onto pre 

wetted 3D Ti scaffolds. 0.2 million cells per scaffold were 

seeded and left to attach overnight (t=24h). Scaffolds were 

positioned in the bioreactor perfusion chambers with a 

random orientation (top-bottom) with respect to the 

direction of drop seeding (Impens et al., 2010). Scaffolds 

were cultured for 28 days. For dynamic culturing, TE 

constructs were placed in an in-house developed perfusion 

bioreactor equipped with parallel perfusion circuits. Each 

perfusion chamber (Length=26 mm, Diameter=6mm), 

holding a single scaffold, was connected to an individual 

medium reservoir containing 10 ml of cell culture medium 

via a Tygon (Cole Parmer) tubing and a two stop tubing 

(BPT, Cole Parmer) connected to a peristaltic pump (IPC 

24, Ismatec SA). Basic Growth Medium was fully 

refreshed (100%) every three days for the entire culture 

period.  

Model Set-up 

Guyot et al (2015) developed a model describing the 

neotissue growth in great detail, making it computationally 

very expensive. In this study, we have adapted the model 

in order to reduce the cost but maintain a similar level of 

mechanistic detail by essentially removing all references to 

spatial heterogeneity. The evolution of different model 

species such as neotissue volume (Vn), oxygen 

concentration (Co), glucose concentration (Cg) and lactate 

concentration (Cla) are modeled based on Michaelis-

Menten kinetics as follows:  
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In Eq. (1), the neotissue volume (Vn) is expressed as a 

function of oxygen (Co), glucose (Cg), pH level (pH), mean 

curvature () of the neotissue inside the 3D scaffold and 

the shear stress ( caused by the medium that is perfused 

through the scaffold. As neither flow-induced shear stress 

nor mean curvature can be calculated in a spatially 

homogenized model, relationships between these variables 

and the neotissue volume (nf%) were derived from the 

mechanistic heterogeneous model developed by Guyot et 

al. (2015) shown Eq. (6) and (7) below, with parameters si 



  

and ci determined through a fitting procedure for each 

scaffold geometry. 
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The influence of oxygen and glucose concentrations 

on the produced neotissue in Eq. (1) are taken into account 

through the functions h1 and h2 where neotissue volume 

reduces when the level of these species decrease.  
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In Eq. (2) to Eq. (4), the right hand side terms show 

the production or consumption of the species by the cells 

which is modeled using the Michaelis-Menten kinetics. 

Equation (5) is proposed by Hossain et al., (2015), in 

which they give a linear relation between the lactate 

concentration and the pH level. 

 

Lactate production in the medium is in direct relation 

with the pH level of the medium according to Eq. (5) and 

has a negative influence on the neotissue growth. This 

behavior is incorporated with the introduction of the local 

pH and its negative effect on cells when the medium 

becomes more acidic. In (Wuertz et al., 2009), authors 

determined a detrimental effect of pH on cells using Eq. 

(10) where the neotissue growth rate decreases linearly 

when the pH level of the medium decreases. 
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In Chapman et al., (2014), authors introduce a growth 

model for cell aggregates in hollow fiber bioreactors where 

cell population growth varies depending on wall shear 

stresses experienced by cells. These findings have been 

incorporated in this study through Eq.  (11). Using this 

function enables us to take into account an optimal shear 

stress ( ) range enhancing growth as well as a detrimental 

value of   that inhibits growth. This function is defined as 

follows: 
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According to this function, the shear stress has a 

beneficial effect on cells enhancing the growth if it is 
between a1 and a2 ( 1sf ). For values of  above the 

threshold a3, the shear stress has a detrimental effect and 

inhibits the cellular activity resulting the growth to become 
zero ( 0sf ). 

The function describing the effect of curvature on 

growth is expressed using a linear function as follow: 

 )(cf   (12) 

An overview of all parameter values used in this study 

is provided in Table 1. Parameters A,  are 

homogenization parameters required to capture a 3D 

heterogeneous reality by means of a homogenized set of 

equations, determined through a fitting procedure. A 

sensitivity analysis of this fitting was performed showing 

that the fitting is most sensitive to the value of A. 

Table 1. Overview of all parameter values used in 
this study. 

Parameter Value Reference 

A  1.8e-17 Estimated 

  251 Estimated 

  28e4 Estimated 

  0.61 Estimated 

  0.4817 Estimated 

1s  -3e-5 (Guyot et al., 2015) 

2s  1.5e-4 (Guyot et al., 2015) 

1c  20 (Guyot et al., 2015) 

2c  -250 (Guyot et al., 2015) 

1T  60 (Guyot et al., 2015) 

2T  70 (Guyot et al., 2015) 

1a  0.01 (Chapman et al., 2014) 

2a  0.03 (Chapman et al., 2014) 

3a  0.05 (Chapman et al., 2014) 

OV  1.09e-17 mol/cell/s (Lambrechts et al., 2014) 

gV  9.5e-17 mol/cell/s (Zhou et al., 2013) 

oK  1.82e-3 mM (Carlier et al., 2014) 

gK  0.3 mM (Hossain et al., 2015) 



  
 

Cells  2.5e13 cells/m3 (Guyot et al., 2016) 

 

Model Implementation 

The model was implemented in Matlab®.  The 

capacity of predicting the evolution of the neotissue growth 

using the model developed in this study, is tested on four 

additional scaffold geometries. These scaffolds all had 

triply periodic internal surfaces and have been suggested as 

interesting structures in the context of tissue engineering 

(Shin et al., 2012). 

Model Optimization 

In the above described bioreactor experiments 

performed for studying the neotissue growth in the 

scaffold, the entire medium supply (100%) flowing 

through the perfusion bioreactor in a closed loop is 

refreshed every 3 days based on historic data (which might 

be suboptimal). As the frequency of the refreshment along 

with the fraction of medium being refreshed have great 

impact on the produced neotissue, we can perform the 

optimization procedure for finding the best time and 

fraction for refreshing the medium, yielding the maximum 

amount of neotissue in 21 days. In this study we have used 

a Genetic Algorithm (GA) for this purpose. The ability of 

the GA method in solving parameter estimation was 

demonstrated by Chatterjee et al. (1996). Based on natural 

selection and genetics (Malhotra et al. 2011), GA searches 

for the global maximum or minimum of a function without 

having any knowledge of the problem. Starting from 

multiple guess points (chromosomes/ individuals) forming 

the initial population, GA fits (evaluates) each individual 

directly to the objective function. Then it selects parents, 

by an appropriate method, and reproduces through natural 

operators (crossover, mutation) evolving to a new better 

fitting population. To apply the GA into our problem, there 

are two parameters that we varied, time between medium 

refreshments (between 1 and 96 hours) and the fraction of 

medium refreshed (between 0 and 100%).  

Results 

Simulation Results 

The simulation results for different model species 

during 21 days of culture using Gyroid7 scaffold are 

depicted in Fig. 2 and Fig. 3. The culture medium in this 

simulation is refreshed every 3 days. As it is shown in the 

following figures, the neotissue volume filling percentage 

in the scaffold over time (Fig. 3 bottom) increases resulting 

in a drop in the oxygen (Fig. 2. top) and glucose (Fig. 3. 

top) concentrations as the increasing amount of cell will 

increasingly consume oxygen and glucose. On the other 

hand, the concentration of lactate, a waste product (Fig. 2. 

bottom) increases over time with increasing neotissue 

volume filling. 

 

Figure 2.   Oxygen (top) and Lactate (bottom) 
concentrations over 21 days of culture with 
medium refreshment every 3 days for gyroid 

scaffold(G7). 

 

Figure 3.   Glucose concentration (top) and 
neotissue volume filling percentage (bottom) 

over 21 days of culture with medium 
refreshment every 3 days for gyroid 

scaffold(G7). 

Experimental Validation of the Model 

Figure 4 shows the comparison between experimental 

data and computational results for neotissue filling of the 

Gyroid scaffold (G10) over 28 days of culture. As 

depicted, a good qualitative and quantitative correlation is 

obtained for the G10 scaffold for neotissue volume (around 

22% at day 28). The computational cost of the model 

developed in this study is very low (around 1 minute to 

calculate the neotissue growth in 21 days), allowing for a 

rigorous optimization procedure to be executed without 

running into computational problems. 



  

 

Figure 4.   Percentage of predicted scaffold 
filling over time (continuous line) compared to 
experimental data (dots) for gyroid scaffolds 

(G10). 

Model Optimization Results 

Figure 5 represents the results obtained by GA. As it is 

depicted, brighter spots in Fig. 5 correspond to higher 

neotissue fillings (above 85%). Therefore, if we select the 

time of refreshment below 50 hours and also choose the 

refreshment amount above 70% of the present medium, 

more neotissue will be produced in the scaffold during the 

same culture time (encircled area in Fig. 5). In other 

words, decreasing the medium refreshment time or 

increasing the amount of medium being refreshed will 

yield in higher neotissue volumes. 

 

Figure 5.   Representation of neotissue filling 
for different combinations of medium 

refreshment time and medium refreshment 
amount where the grayscale color shows the 
scaffold filling in % with the brighter spots 
corresponding to a higher degree scaffold 

filling. 

Discussion 

In this work, a computational model describing the 

neotissue growth in regular scaffolds in a perfusion 

bioreactor has been developed and the first results of a 

computational study for optimizing in vitro neotissue 

growth have been presented. In this model all the 

parameters are represented only as a function of time as, in 

order to speed up the calculation process, the spatial 

heterogeneity of different model variables has been 

homogenized. However, this means that the optimization 

of the neotissue volume is performed for the scaffold as 

whole rather than for the individual cells/neotissue areas 

inside the scaffold.   

Nowadays, most of in vitro bioreactor cultures settings 

have been (and are being) determined based on trial and 

error, which results in wasting time and products. As 

mentioned earlier, the presented model could tackle this 

issue by providing to an in-silico tool for culture 

preprocessing to the operator. In this study, we proposed a 

GA technique for finding the best medium refreshment 

regime. As GA has its advantages and disadvantages, other 

general optimizations techniques such as particle swarm 

optimization (PSO) and Bayesian optimization were also 

applied (results not shown), yielding similar results. The 

results obtained by these optimization procedures –

although quite obvious with the simplicity of the 

optimization cost function used at this point- are very 

promising and show that we can do the medium 

refreshment more efficiently to get the maximum amount 

of neotissue in the scaffold. Nevertheless, whereas some of 

the proposed medium refreshment regimes yield in higher 

percentage of final neotissue, they could dramatically 

increase the total cost of the culture as they require overall 

more medium to be used during a given culture time.  

Therefore, future objective functions for optimizing the 

bioreactor set-up will also consider (economic) cost of the 

culture. In Guyot et al. (2016b), the authors propose an 

intelligent method for medium refreshment based on the 

pH level of the medium. It starts by refreshing once a week 

at the beginning of the culture and gradually increases to 

(more than) once a day towards the end due to the 

increased neotissue growth. This way of medium 

refreshment could be applied in the future and the results, 

along with their costs of the culture, can be compared. 

One of the limitations of this study is the absence of an 

equation for the representation of cells and extracellular 

matrix evolution separately. In this study we assumed that 

the produced neotissue is composed of cell and their 

extracellular matrix. In Sonnaert et al. (2014), the authors 

studied the human periosteal-derived cell expansion in a 

perfusion bioreactor leading to proliferation, 

differentiation and extracellular matrix formation based on 

DNA measurements of the neotissue formed inside the 

scaffold during 28 days of culture. Using these data, the 

model presented in this study can be extended to include a 

description of the cells and their matrix in separate 

variables. Future work includes the incorporation of other 

objectives in the cost function as well as the investigation 

of different optimization techniques such as Bayesian 

optimization which are suitable for models which are 

computationally expensive. In a future step, also a 

parameters sensitivity analysis will be conducted in order 



  
 

to investigate the effect of different model parameters on 

the final neotissue volume. 

In summary, this study proposes a model of neotissue 

growth in perfusion bioreactors systems that is specifically 

designed to allow for rigorous optimization of cell culture 

processes through the design of appropriate bioreactor 

settings. 
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