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Abstract

The production routing problem (PRP) considers the coordination of production, inventory, distribution,

and routing decisions in a supply chain. In this work, we focus on production routing in the industrial

gas business, where the challenge lies in the simultaneous optimization of complex and power-intensive

production plants and highly integrated supply chains with vendor-managed inventory (VMI). We present

a multiscale PRP (MPRP) model with two time grids, to which an MILP-based heuristic solution approach

is applied to solve large-scale instances. The proposed MPRP framework is applied to a real-world

industrial gas supply chain with 2 plants, approximately 240 customers, 20 vehicles, and a planning

horizon of 4 weeks. The results show that the proposed solution method clearly outperforms available

alternative approaches in terms of solution quality.
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Introduction

Industrial gas supply chains are among the most

complex in the process industry. In the so-called mer-

chant liquid business, industrial gas companies dis-

tribute liquid products (liquid oxygen, nitrogen, argon,

hydrogen, etc.) in bulk to the customers using tractor-

trailers. These supply chains are typically very large,

with multiple plants and hundreds of customers. The

industrial gas industry is one of the first to adopt the

concept of vendor-managed inventory (VMI), which al-

lows the direct control of customers’ inventories. VMI

significantly increases the flexibility of the supply chain,

but also increases the complexity in decision-making.

Moreover, the production process (cryogenic air separa-

tion) is highly power-intensive; hence, rapid operational

changes in response to time-sensitive electricity prices

have to be considered.

Because of the strong interdenpendencies in the sup-

ply chain, production and distribution operations have
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to be coordinated, which has become a major goal in

integrated supply chain management in recent years

(Láınez and Puigjaner, 2012). Glankwamdee et al.

(2008) formulate a simplified production-distribution

linear programming (LP) model in which the distribu-

tion part is approximated by resource constraints on

truck and driver hours required for the planned deliver-

ies. Marchetti et al. (2014) propose a production routing

framework in which a heuristic is applied to generate

a number of routes a priori, where a route is defined

as a set of customers that can be visited in one trip.

These routes are then included in the integrated model

such that the assignment of routes to available vehi-

cles can be optimized. In their proposed frameworks,

Glankwamdee et al. (2008) and Marchetti et al. (2014)

apply rather simplistic models of the production pro-

cesses, which can be a serious drawback as process dy-

namics are not accurately represented, and hence, so-

lutions may be suboptimal or even infeasible when im-

plemented in practice. Zamarripa et al. (2016) apply a

rolling horizon heuristic to large-scale instances of the

model proposed by Marchetti et al. (2014), obtaining



near-optimal solutions in shorter computation times.

The PRP in its classical form (Adulyasak et al., 2015)

is formulated as a mixed-integer linear program (MILP)

and integrates the lot-sizing problem (LSP) and the in-

ventory routing problem (IRP). Zhang et al. (2016b)

extend the classical PRP by replacing the LSP with a

more detailed scheduling formulation designed for com-

plex continuous production processes. In addition, a

second, finer time grid is created to accommodate the

production part while the IRP is formulated using the

coarse time grid. Furthermore, an MILP-based heuristic

approach has been developed in order to solve instances

of industrially relevant sizes. This paper complements

the work by Zhang et al. (2016b) with a thorough anal-

ysis of a real-world industrial case study, where we focus

on the comparison between the proposed approach and

alternative solution strategies that are more commonly

used in practice.

Problem Statement

We consider an industrial gas business that produces

and sells a set of products i ∈ I, namely liquid oxygen

(LO2), liquid nitrogen (LN2), gaseous oxygen (GO2),

and gaseous nitrogen (GN2). While LO2 and LN2

(product subset Ī) can be stored and transported to cus-

tomer sites using tractor-trailers, GO2 and GN2 (prod-

uct subset Î) are nonstorable and have to be distributed

via pipelines immediately after their production; hence,

routing decisions only involve liquid product customers.

The supply chain consists of a set of continuous air sep-

aration plants p ∈ P and a number of product-specific

customers, of which each customer c ∈ Ci has a given

demand and storage capacity for product i.

We assume that each production plant can operate

in a set of discrete operating modes m ∈ Mp, where

each mode is defined by its production capacity and

cost function. The complexity in the production process

arises from the fact that generally, the products can-

not be produced independently from each other; hence,

correlations in production rates have to be considered.

Furthermore, the dynamic behavior of the plant is con-

strained by restrictions on the rate of change and tran-

sitions between operating modes. The plants have in-

ventory capacities for the liquid products.

Product-specific vehicles are used to transport prod-

ucts from the plants to the customers. Each vehicle is

assigned to one particular plant and is defined by its

capacity, speed, and cost, which may include fuel and

labor costs. For every trip, a vehicle leaves the plant,

visits one or multiple customers, and returns to the plant

at the end of the trip. The length of a trip is limited.

The goal of the MPRP is to optimize the production

schedule and routing decisions for a given scheduling

horizon. For each time period, the production schedule

should provide the following information: the operating

mode, the production rate for each product, and the

amounts of products stored. Routing decisions are made

on the assignment of vehicles to trips and the allocation

of customers to each trip. We assume that products can

be purchased externally at given costs if customers do

not have sufficient inventory to satisfy demand.

Multiscale Model

We apply a discrete-time formulation with two time

grids, one with a fine and the other with a coarse time

discretization, where the scheduling horizon is divided

into time periods of the lengths ∆tf and ∆tc, respec-

tively. For the sake of clarity, we refer to a time period

in the fine time grid as a level-1 time period and to a

time period in the coarse time grid as a level-2 time pe-

riod whenever this distinction is necessary. The sets of

time periods in the fine and the coarse time grids are

denoted by T
f

and T
c
, respectively.

The concept of the multiscale time discretization is

shown in Figure 1, which also illustrates the two main

routing assumptions: (1) every trip is completed within

a level-2 time period; (2) shipments are loaded into the

vehicles in the first level-1 time period of the correspond-

ing level-2 time period.
We propose an MILP formulation with two time scales 
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Figure 1. Multiscale time discretization.

The production scheduling part of the MPRP model

is based on a mode-based formulation developed in pre-

vious works; for more details, see Zhang et al. (2016a,b).

The IRP part is modeled with a set-partitioning for-

mulation, which selects the optimal routes among a set

of prespecified feasible routes. The resulting integrated

model is an MILP. In the following, the MPRP model is

presented in a compact form, which highlights the route



assignment part of the formulation:

min
∑
i∈Ī

∑
p

∑
t∈T c

∑
s∈Sipt

βips xipts + C(y)

s.t. DLipts ≤ Vi xipts ∀ i ∈ Ī , p, t ∈ T c
, s ∈ Sipt

D̂Liptsc ≤ D̂L
max

ict xipts ∀ i ∈ Ī , p, t ∈ T c
,

s ∈ Sipt, c ∈ Cips∑
s∈Sipt

xipts ≤ Lipt ∀ i ∈ Ī , p, t ∈ T c

y ∈ Y
(MPRP)

where Sipt is the set of routes that can be used by vehi-

cles distributing product i and assigned to plant p in level-2

time period t, Cips is the set of customers that can be vis-

ited on route s ∈ Sip, and xipts is a binary variable that

equals 1 if route s ∈ Sipts is selected. Associated with xipts

is the fixed transportation cost βips. The first constraint

limits the delivery quantity, DLipts, in a single trip with the

vehicle capacity, Vi. The delivery to customer c ∈ Cips is

denoted by D̂Liptsc, which is limited by D̂L
max

ict . The num-

ber of available vehicles, Lipt, bounds the number of selected

routes. The remaining variables are aggregated in the vector

y, C(y) denotes the corresponding linear cost function, and

y ∈ Y represents all remaining constraints.

Solution Method

The set-partitioning formulation is known to exhibit a

relatively tight LP relaxation, but it can require an exponen-

tial number of routes to fully describe the problem. However,

at a feasible solution, only a very small fraction of all possible

routes are selected. Hence, instead of working with the full

route set, we propose to only consider a small subset of routes

when solving (MPRP) and dynamically update the route set

such that only candidate routes that can potentially lead to

reduced costs are included.

The flowchart in Figure 2 shows the main steps in the

proposed algorithm. We start with an initial set of candi-

date routes, which could be all single-stop routes or a sub-

set of them obtained through a customer inventory analysis.

The MPRP is then solved with the current set of candidate

routes. Based on the solution of (MPRP), the route set is

updated. To solve large-scale instances, it is crucial to keep

this route set small. The algorithm stops if no new routes

are added, the solution has not improved for a number of

consecutive iterations, or the time limit is reached.

Algorithm 1 shows the general scheme for generating

routes based on the current solution of (MPRP), which pro-

vides an estimate of the amount of product that needs to be

delivered to each customer in each time period. Using this

information, the algorithm identifies inefficiencies in the cur-

rent selection of routes and proposes new candidate routes

Create initial set of routes, i.e. 
set all 𝑆𝑖𝑝, 𝐶𝑖𝑝𝑠 , 𝛽𝑖𝑝𝑠 , and 𝑆 𝑖𝑝𝑡  

Solve (MPRP) 

Update all 𝑆𝑖𝑝, 𝐶𝑖𝑝𝑠 , 𝛽𝑖𝑝𝑠 , and 𝑆 𝑖𝑝𝑡  

Stop? 

Stop 

yes 

no 

Figure 2. Flowchart for the proposed solution algorithm.

that may improve the solution.

At each iteration, the algorithm is applied to every prod-

uct i ∈ Ī, plant p, and time period t ∈ T c
. First, the pro-

cedure RemoveRoutes(i, p, t,Ω) removes routes that have

not been selected for Ω consecutive iterations from the set

Sipt. Next, we examine every selected route s for which

the delivery quantity is less than the vehicle capacity, i.e.

DLipts < Vi. The procedure CreateRoutesA(i, p, t, s) gen-

erates new routes, if possible, by inserting additional cus-

tomers into the current route s. A selection of these new

routes are added to the route set Sipt based on a ranking

of the potential savings. Besides underutilized vehicles, an-

other indicator for distribution inefficiency is the purchase of

products at high costs, which usually occurs due to the lack

of efficient multistop routes. Hence, in the next step, we con-

sider customers whose demands are met by purchasing addi-

tional products, i.e. all c ∈ Ĉip for which PCict > 0, where

Ĉip is a subset of Ci and denotes the the set of customers

that can be reached from plant p. Similar to CreateR-

outesA(i, p, t, s), the procedure CreateRoutesB(i, p, t, c)

generates multistop routes involving customer c and adds

them to Sipt based on a ranking of the potential savings.

Algorithm 1 General scheme for route generation

based on current solution.

1: for all i ∈ Ī , p, t ∈ T
c
do

2: RemoveRoutes(i, p, t,Ω)

3: for all s for which xipts = 1 and DLipts < Vi do

4: CreateRoutesA(i, p, t, s)

5: end for

6: for all c ∈ Ĉip for which PCict > 0 do

7: CreateRoutesB(i, p, t, c)

8: end for

9: end for

The proposed solution algorithm is inspired by the con-



cept of column generation, with the main difference being

that here, new columns are generated by using a heuristic

rather than by solving a rigorous pricing problem. As a re-

sult, convergence to the optimal solution cannot be guaran-

teed, which is the main limitation of the proposed algorithm.

For more details on the algorithm, we refer to Zhang et al.

(2016b).

Industrial Case Study

The proposed MPRP framework is now applied to a real-

world industrial test case provided by Praxair. We consider a

supply chain consisting of 2 plants, P1 and P2, and approxi-

mately 240 customers. The two plants have a combined fleet

of 10 LO2 and 10 LN2 tractor-trailers. While Plant P1 has to

satisfy demand for both liquid and gaseous products, Plant

P2 only serves liquid product customers.

Cryogenic air separation is highly power-intensive such

that the vast majority of the variable production cost is the

cost of electricity. Electricity prices can vary significantly

across different locations. In this case, Plant P1 participates

in the day-ahead market in which the price varies over time,

whereas Plant P2 purchases power at a constant unit price.

A forecast of the day-ahead prices is available for the given

planning horizon.

The MPRP is solved for a planning horizon of 4 weeks,

where we choose ∆tf and ∆tc to be 4 h and 12 h, respec-

tively, resulting in 168 level-1 and 56 level-2 time periods.

We apply the proposed algorithm to this large-scale MPRP

and present the solution obtained after one hour runtime.

Note that due to confidentiality reasons, we cannot disclose

detailed information about the supply chain network, plant

specifications, and actual product demands. Therefore, all

results are given as dimensionless quantities, and numerical

values are normalized if necessary.

Figure 3 shows the electricity consumption and price pro-

files for both plants over the entire planning horizon. One

can see that the electricity price at Plant P2 is significantly

higher than the average electricity price at Plant P1. As

a result, in order to reduce energy cost, Plant P2 is shut

down three times for extensive periods of time and also at

the end of the planning horizon. One can further see that

the solution suggests load shifting at Plant P1 in order to

take advantage of low-price hours.

There is a trade-off between production and distribu-

tion costs that is not apparent from Figure 3. Although the

electricity price is almost always lower at Plant P1, it does

not utilize its full production capacity, i.e. more production

could be shifted from Plant P2 to Plant P1. However, the

higher production cost is offset by the reduction in distribu-

tion cost because more customers are located closer to Plant

P2 than to Plant P1.

Figures 4 and 5 show the product flows and inventory
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Figure 3. Electricity consumption and electricity price

profiles for each plant.

profiles for the liquid products at Plants P1 and P2, respec-

tively. In Figure 4, one can clearly see the effect of load

shifting at Plant P1. At Plant P2, inventory is accumulated

during hours of production such that products can be drawn

from the inventory and distributed to the customers when

the plant is shut down, as depicted in Figure 5.
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Figure 4. Production quantities, shipments, and inven-

tory levels of LO2 and LN2 at Plant P1.
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Figure 5. Production quantities, shipments, and inven-

tory levels of LO2 and LN2 at Plant P2.

We compare our solution with the ones obtained from

two alternative solution methods. The first method is a typ-

ical two-phase heuristic. In Phase 1, the MPRP is solved



with a simplified distribution model only considering direct

shipments. The delivery quantities obtained from Phase 1

are then used as fixed orders in Phase 2, where routing de-

cisions are made. Since the orders are fixed, the routing

problem decomposes into independent subproblems, one for

each product i, plant p, and time period t ∈ T
c
. In the

following, we refer to this approach as Heuristic PH1. The

second approach is an extension of Heuristic PH1, referred

to as Heuristic PH2, which further incorporates fixed costs

for customer visits. The fixed distribution costs in Heuris-

tic PH2 prevent the model from suggesting a large number

of deliveries with small quantities; however, they also intro-

duce additional binary variables that considerably increase

the computational complexity.

Heuristics PH1, PH2, and H3, with the latter being our

proposed algorithm with dynamic route generation, apply

equivalent representations of the production side; however,

the distribution side is modeled with different levels of accu-

racy. For this comparative study, we first apply Heuristics

PH1, PH2, and H3 to obtain the production plan and the

plant-to-customer allocation decisions for each of the three

solution approaches. Then, the same routing tool is applied

to the three sets of plant-to-customer allocation decisions

to determine optimal (or near-optimal) routes and accurate

routing costs.

Table 1 compares the solutions obtained from Heuristics

PH1, PH2, and H3. The table shows the breakdown of the

total costs (TC) into the production costs (CPD) and distri-

bution costs (CDI) for each plant. In this test case, no addi-

tional product purchase is required, and inventory costs are

negligible; hence, these costs are omitted. Furthermore, the

table shows the computation time for each solution method.

In terms of total cost, Heuristic H3 outperforms both Heuris-

tics PH1 and PH2, with relative cost savings of 8.7 and 2.4 %,

respectively, which can be attributed to the more rigorous

modeling of routing decisions. One can see that compared

to Heuristics PH1 and PH2, Heuristic H3 suggests produc-

ing less at Plant P1 and more at Plant P2. This production

plan results in higher total production cost, but in overall

proves to be the better choice since the routing cost can be

significantly reduced by distributing more from Plant P2.

Table 1. Comparison of costs and solution times for the

industrial test case.

Heuristic PH1 Heuristic PH2 Heuristic H3

TC 100.00 93.46 91.26

CPDP1 32.67 32.66 31.88

CPDP2 13.05 13.12 15.01

CDIP1 42.53 36.61 32.40

CDIP2 11.75 11.07 11.97

ST [s] 218 900 3600

Figure 6 shows for each day of the planning horizon the

number of customers to visit as suggested by each of the

three solutions. While Heuristic PH1 proposes to visit on

average 66 customers per day, the average numbers of vis-

ited customers per day are 30 and 25 for Heuristics PH2

and H3, respectively. Heuristic PH1 creates many deliveries

with small quantities, which leads to inefficient routes. This

effect is mitigated in Heuristic PH2 by introducing fixed dis-

tribution costs, ultimately resulting in lower routing costs.

However, the improved solution quality comes at the cost of

higher computational expense. While Heuristic PH1 solves

in 218 s, the solution from Heuristic PH2 is obtained after

900 s. Among the three solution approaches, Heuristic H3

obtains the best solution, but only after 3600 s.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
u

m
b

e
r 

o
f 

V
is

it
e

d
 C

u
st

o
m

e
rs

 

Day 
 Heuristic PH1  Heuristic PH2  Heuristic H3

Figure 6. Comparison of the numbers of customers to be

visited on each day of the planning horizon as suggested

by Heuristics PH1, PH2, and H3.

In practice, under normal circumstances, the plant-to-

customer allocation is fixed, i.e. each customer is assigned to

a particular plant and only receives delivery from this plant,

which may limit the flexibility in the supply chain operations.

To compare the differences between the proposed solutions

and the current practice, we show in Figure 7 for each of the

three solutions the changes in plant-to-customer allocation

compared to the current plant-to-customer allocation. Here,

an allocation change is defined as one customer that is to be

visited in the corresponding solution from a plant different

from the one to which it is currently assigned. The number

of allocation changes can be interpreted as a measure for the

amount of disruption in the default assignment required to

obtain the suggested solution. In practice, small changes are

desired; a large number of allocation changes may suggest

that the current plant-to-customer allocation or the current

assignment of vehicles to plants is inadequate. In this case,

significantly fewer allocation changes, on average 7 per day,

are required for Heuristic H3 than for Heuristics PH1 and

PH2, which require on average 24 and 11 allocation changes

per day, respectively.

Another advantage of Heuristic H3 is that it only consid-

ers feasible routes; hence, the proposed deliveries are guar-

anteed to be feasible. In contrast, Heuristics PH1 and PH2

may make plant-to-customer allocation decisions that are in-

feasible in the subsequent routing step, in the sense that not

all proposed deliveries can actually be made. In this particu-
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Figure 7. Comparison of the numbers of plant-to-

customer allocation changes from the current assign-

ment required for Heuristics PH1, PH2, and H3.

lar test case, routing infeasibility does not occur because the

customers are located relatively close to each other such that

the limit on the travel distance is not an issue. However, in

other supply chain networks with longer inter-customer dis-

tances, the situation of routing infeasibility may very well

arise when Heuristics PH1 and PH2 are applied.

Conclusions

In this work, we have applied a previously developed

MPRP framework to a large-scale real-world industrial gas

supply chain. The MILP MPRP model involves two different

time grids. While a detailed mode-based production schedul-

ing model captures all critical operational constraints on the

fine time grid, vehicle routing is considered in each time pe-

riod of the coarse time grid. In order to solve the industrial-

scale MPRP, an iterative MILP-based heuristic approach has

been applied, which solves the MILP model with a restricted

set of candidate routes at each iteration and dynamically up-

dates the set of candidate routes for the next iteration.

The main features of the model have been demonstrated

in the industrial case study. In particular, the results show

the level of detail at which production scheduling is consid-

ered, which is necessary because of the time-sensitive electric-

ity prices. Also, the trade-off between production and distri-

bution costs is captured well in the integrated model. More-

over, the computational results show that the proposed algo-

rithm outperforms available alternative solutions in terms of

solution quality, although longer computation times are re-

quired. With a runtime of one hour, a solution was achieved

that improves the solution obtained from a standard heuris-

tic approach by approximately 9 %.
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