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Abstract 

This contribution proposes a two-phase framework for dealing with the integrated campaign scheduling, 

dynamic optimization and optimal control of batch processes (MUBSMBO&C). The strategy allows 

evaluation of the optimal campaign schedule of the batch process in real time as well as determination of 

the optimal control actions in order to achieve maximum profit and/or performance. As a result of the 

two-phase architecture, the algorithm does not require solution of a mixed-integer optimization problem 

in real-time and can support virtually any processing recipe including various types of material recycles. 

In order to show its potential, we demonstrate this methodology by applying it to the integrated 

campaign scheduling, dynamic optimization and optimal control of a nopol production campaign carried 

out in a dedicated batch production facility. 
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In the last few decades, optimization techniques have 

been widely applied to many problems of industrial 

relevance, e.g. supply-chain management and planning, 

scheduling, dynamic optimization and optimal regulatory 

control. The resulting benefits have been significant in 

terms of (economic) performance, environmental impact 

and safety. Therefore, there is continuing interest in 

developing more flexible and effective optimization 

strategies for any of the aforementioned classes of 

problems. This paper contributes to this area, by advancing 

a framework for integrating scheduling, dynamic 

optimization and optimal control for batch processes 

(MUBSMBO&C). Note that a number of strategies have 

been reported in the literature to tackle these three classes 

of problems both individually and simultaneously.  

The first applications of dynamic optimization 

(DRTO) and optimal control (NMPC) to batch operations 

date back approximately to 1980. Thirty years later, we 

can find further studies showing how to take advantage of 

these strategies to both improve process performance and 

prevent safety hazards. In addition, various extensions and 

improvements continue to appear, comprising mostly of 

new algorithmic formulations (Rossi et al., 2014), novel 

implementation schemes or explicit incorporation of model 

uncertainty into the framework (Rossi et al., 2016). 

The first application of scheduling algorithms to batch 

operations dates back approximately to 1990. Twenty-five 

years later, we can find several of these algorithms in the 

literature, which we can categorize mostly on the basis of 

how they perform task allocation decisions and what type 

of process models they use. Some illustrative examples 



  
 

include: (I) methods where the process models are simple 

recipes and the tasks allocation is solved via heuristic 

approaches (Chu et al., 2014) or combinatorial methods 

(Hegyháti and Friedler, 2011); (II) frameworks in which 

the process models are linearized or consist of simplified 

recipes and the tasks allocation is performed via mixed-

integer linear programming (MILP) (Sundaramoorthy and 

Maravelias, 2011); and (III) strategies where the process 

models are non-linear and the tasks allocation is carried 

out via mixed-integer non-linear programming (MINLP) 

(Capón-García et al., 2013). 

Finally, very recent contributions propose methods for 

solving the tasks allocation phase in real-time while 

simultaneously providing optimal control actions to all of 

the batch units (SCH-DRTO&C). These methods combine 

scheduling frameworks with NMPC/DRTO strategies and 

can be divided into approaches exploiting linearized or 

piecewise linear process models and those which employ 

complete non-linear process models (Nie et at., 2015). 

Many of these existing SCH-DRTO&C strategies 

suffer from three principal limitations: (I) they cannot 

effectively handle mixed process recipe structures, i.e. 

recipes where some batch operations run in series and 

other run in parallel; (II) they are quite unsuitable for 

handling recycles between and within successive 

production batches; and (III) they require solution of 

MILPs/MINLPs online. Unfortunately, real batch 

processes often include material recycles and their 

associated models are usually strongly non-linear, thus 

solution of these MILPs/MINLPs online may be difficult 

(for example, see the nopol production process). 

Therefore, in this paper, we propose an alternative SCH-

DRTO&C strategy that mitigates these three 

aforementioned limitations (MUBSMBO&C). 

MUBSMBO&C involves an offline and an online 

phase. The first requires solution of a conventional 

campaign scheduling problem and serves to collect key 

information needed for the second phase. The latter relies 

on a modified NMPC/DRTO algorithm (Rossi et al., 

2014), allows updating the offline campaign schedule in 

real time and provides the batch process with optimal 

control actions. Due to this particular two-phase 

architecture, MUBSMBO&C does not require solution of 

an MILP/MINLP online and can support virtually any 

process recipe structure, including various types of 

recycles. However, in its present form, it only supports 

single-product production campaigns or batch processes 

that can be decomposed into a sequence of independent 

single-product production campaigns (the pharmaceutical 

and fine chemicals sectors and other industrial productions 

usually rely on this type of campaign structure). 

We next describe the concepts underlying 

MUBSMBO&C and present a case study in which we 

apply it to a nopol production campaign. We also solve the 

same case study with a simpler and more conventional 

method (ITBSMBO&C) to provide some basis for 

comparison and to draw preliminary conclusions about 

MUBSMBO&C efficiency and resilience. 

Nopol Production Process   

Nopol is an organic compound used in the formulation 

of detergents, nail polishes, perfumes, etc. for which 

several production pathways exist. However, one of the 

common ones simply involves three batch operations, i.e. 

reaction, filtration and vacuum distillation, which are 

executed sequentially but are interconnected with each 

other via three main recycle loops (Figure 1).  

The batch reaction phase is isothermal, usually lasts 

up to 12 h and comprises reacting β-pinene with 

formaldehyde in the presence of a heterogeneous catalyst 

in a solvent (ethyl acetate) to produce the desired nopol. 

Upon reaching desired conversion, the unreacted 

formaldehyde is vented and sent for downstream treatment. 

The batch filtration phase is isobaric, serves to separate the 

heterogeneous catalyst from the mixture of β-pinene, nopol 

and ethyl acetate and is about 0.5 h in duration. The 

vacuum batch distillation phase is isobaric, separates nopol 

from the mixture of β-pinene and ethyl acetate and has a 

duration of between 4 and 10 h. Note that nopol is heat 

sensitive, thus is only recovered from the pot of the batch 

distillation column in order to minimize the temperature 

needed to meet its purity specification. 

Finally, the three recycle loops consist of: (I) recycling 

the heterogeneous catalyst from one filtration phase to the 

following reaction phase; (II) reusing the β-pinene and 

ethyl acetate recovered in a distillation phase as input to 

the next reaction phase; and (III) recycling the residual 

volume of β-pinene, nopol and ethyl acetate left at the end 

of a distillation phase to the next distillation phase.  

Before describing the logic of MUBSMBO&C, we 

call attention to two features of this example. First, the 

optimal schedule of a nopol production campaign can, on 

the basis of the recipe description, be represented as the 

repetition of a number of partially overlapping logical 

blocks (LBs) consisting of a reaction, a filtration and a 

vacuum distillation step in series. This modular and 

periodic feature is not only characteristic to this example 

but is common to batch production campaigns in general. 

The architecture of MUBSMBO&C relies on this modular 

nature. Second, this relatively simple batch process does 

involve two complicating features: multiple recycles and 

batch unit operations with strongly non-linear dynamics. 

These typical characteristics of batch productions, 

motivate the development of alternative SCH-DRTO&C 

strategies, e.g. MUBSMBO&C. 

MUBSMBO&C Framework  

MUBSMBO&C is a framework for addressing the 

integrated campaign scheduling, dynamic optimization and 

optimal control of single-product production campaigns in 

batch processes (multiple instances of the algorithm are 

needed for those batch processes where multiple single-

product campaigns are performed in parallel). 



 

   

 

Figure 1. Flow diagram of the nopol production process 

The algorithm is applicable under two reasonable 

assumptions: (I) the production campaign is assigned 

dedicated batch units; and (II) the supply of raw materials 

and/or utilities is not limiting for scheduling purposes. As 

previously outlined, the method is comprised of an offline 

phase (phase I) and an online phase (phase II), whose 

rationales are outlined below. 

Phase I is performed only once before the production 

campaign is carried out and provides key parameters that 

are kept constant in phase II. It relies on conventional 

scheduling algorithms and involves three steps in series.  

First, a regular campaign scheduling problem is solved 

where some additional constraints are imposed to force the 

resulting schedule to be periodic (step A). Next, a set of 

batch operations and/or fractions of batch operations, 

called an equivalent cycle (EC), is identified. This is done 

so that the entire campaign schedule can be described by 

an appropriate number of ECs which are executed 

sequentially (step B). Finally, on the basis of the EC 

structure, the recycles present in the recipe are classified as 

either internal recycles, which connect the operations 

within a given EC, or external recycles, which connect 

operations in different ECs (step C).  

The key information generated in steps A, B, C and 

retained in phase II is the structure of the EC, i.e. the 

number/order of the operations in the EC and their 

starting/ending sequence, and the recycle classification. 

As final remarks, note that although we have 

developed a procedure for addressing step B in general, we 

can not report it here due to space limitations. For 

illustrative purpose, the EC determined by applying step B 

to the nopol production campaign is shown in Figure 2. 

Note that the EC has the reaction operation split into two 

parts so as to accommodate the recycle of catalyst as an 

internal recycle and also defines the nature of the 

additional two external material recycle steps. This EC 

structure is treated as an integrated entity in phase II. 

 

Figure 2. Structure of the equivalent cycle of 
the nopol production campaign and resulting 

recycle classification (R, R* – Fractions of 
batch reaction operations, F – Batch filtration 

operation, D – Batch distillation operation) 

Phase II is an adaptation of the NMPC/DRTO  

algorithm described in (Rossi et al., 2014). It serves to 

determine online the optimal residual number of ECs 

needed to complete the production campaign, to optimize 

some of the variables of the current EC in real time (its 

duration and the times of its constituent operations) and to 

provide the optimal control actions for each of its batch 

operations. It consists of an initialization step performed 

only once and three iterative steps executed in rolling 

horizon fashion until a certain stopping condition is met 

(Figure 3).  



 

   

 

Figure 3.  Architecture of phase II of MUBSMBO&C

The first iterative step serves to re-estimate several 

internal parameters of MUBSMBO&C, the most important 

of which is the residual time available to complete the 

production campaign (step D). The second iterative step 

implies solving a specific non-linear optimization problem 

(NLP), which determines the residual number of ECs, the 

dynamic properties of the current EC and the control 

policies for its batch operations. The objective function of 

this optimization problem measures the profitability and/or 

performance of the fraction of the production campaign yet 

to be completed (all recycle streams are included directly 

or indirectly in this function). This second iterative step 

also takes care of evaluating the current set of control 

actions from the optimization results (step E). Finally, the 

last iterative step comprises the application of the current 

set of control actions to the proper batch units and the 

measurement of their dynamic response (step F). 

The aforementioned stopping condition serves to 

identify when the optimal time of the current EC has been 

reached and thus there is no need to perform another 

MUBSMBO&C basic step. In other words, it allows 

identifying when the current EC must terminate.  

The last key aspect to mention about phase II is that it 

must be executed iteratively as well because we need to 

carry out a series of ECs to complete the whole production 

campaign (see the definition of EC previously provided). 

In particular, we need to execute new phase II calculations 

until the optimal residual number of ECs estimated at the 

end of the current online phase assumes the value of one. 

This occurs only when it is possible to satisfy all of the 

specifications of the production campaign (production 

volume, product purity, etc.) at the end of the current EC 

and there is no longer a need to perform further ECs. 

As final remarks, note that we can not convey the 

mathematical details of the execution of steps D and E due 

to space limitations. However, the optimization problem 

solved in step E is an NLP, even though one of the 

optimization variables is conceptually integer (the residual 

number of ECs needed to complete the production 

campaign). This is possible due to the special way in which 

we compute this variable, i.e. by rounding a combination 

of continuous variables. Finally, we wish to call attention 

to the important features that MUBSMBO&C does not 

require solution of an MILP/MINLP online and that it 

supports any type of process recipe structure, including 

various types of material recycles between batch 

operations internal and external to the EC.   

Online Scheduling, Dynamic Optimization and Control 

of the Nopol Production Process 

We validate MUBSMBO&C by applying it to the 

problem of integrated campaign scheduling, dynamic 

optimization and optimal control of a nopol production 

campaign, which is performed in a dedicated production 

facility.  We also perform the optimization with a simpler 

version of the integrated optimization strategy, 

ITBSMBO&C, which involves solving the integrated 

campaign scheduling, dynamic optimization and optimal 

control of every individual batch operation of the 

production campaign. This latter strategy requires first the 

definition of proper production campaigns for each of 

these batch operations according to the output of step A of 

phase I of MUBSMBO&C. Then, it involves applying a 

slightly modified version of phase II of MUBSMBO&C to 

the same single batch operations individually (the 

equivalent cycle comprises a single batch operation in 

every different application instance). The two most 

relevant differences between MUBSMBO&C and 

ITBSMBO&C are the following: (I) ITBSMBO&C does 

not support the dynamic update of the residual time 

available to complete the production campaign of every 

single batch operation; and (II) ITBSMBO&C only allows 

optimal management of a single batch operation at a time. 

 



 

   

Table 1. Principal economic and process-related data associated with the nopol production campaign 
optimized/designed online (productivity target of nopol: 925 [kg], minimum molar purity of nopol: 0.975 [-]) 

Physical quantity MUOpt – NoD MUOpt – MD SUOpt – NoD SUOpt – MD 

Number of LBs or ECs [-] 8 8 8 8 

Productivity of nopol [kg] 925.0 925.0 925.0 921.6 

Molar purity of nopol [-] 0.97501 0.97515 0.97514 0.97500 

Net income [$] 2504 2521 2520 2505 

 

Figure 4. Trajectories of the reboiler heat duty related to the eighth batch distillation phase

We apply the two aforementioned frameworks to two 

different scenarios, namely one where process disturbances 

are present and the other where such disturbances are  

absent. The two MUBSMBO&C-based cases are named 

MUOpt – NoD and MUOpt – MD, where acronyms NoD 

and MD stand for the absence and presence of process 

disturbances, respectively. The two corresponding 

ITBSMBO&C-based cases are named SUOpt – NoD and 

SUOpt – MD. The set of process disturbances applied in 

cases MUOpt – MD and SUOpt – MD includes 

perturbations affecting the batch reaction and batch 

distillation phases. The most critical disturbance affects all 

batch reaction phases from the fifth onwards, i.e. all ECs 

and LBs from the fifth onwards, and consists of 20% loss 

in the mass of heterogeneous catalyst. The other 

disturbances affect the fifth, seventh and eighth distillation 

phases and comprise multiple variations in the operating 

pressure of the distillation column (+ 20 – 30 %) as well as 

the insurgence of a heat loss in the reboiler heat duty of the 

column (eighth distillation phase). 

Illustrative dynamic profiles resulting from the 

MUBSMBO&C and ITBSMBO&C strategies are shown in 

Figure 4. This figure shows the optimal profiles of the 

reboiler heat duty associated with the eighth distillation 

phase and cases MUOpt – NoD, MUOpt – MD, SUOpt – 

NoD and SUOpt – MD (the same trends are observed in 

different distillation phases). This heat duty is probably the 

most important operational variable that MUBSMBO&C 

and ITBSMBO&C can dynamically adjust. It is clear that 

the two frameworks generate significantly different results 

both in the presence and in the absence of process 

disturbances. This is because they differ in the conceptual 

aspects mentioned at the beginning of this section. 

According to Figure 4, we would also expect 

significant differences in both the economic performance 

and the resilience (capability of rejecting disturbances) of  



  
 

MUBSMBO&C and ITBSMBO&C. However, the data 

summarized in Table 1 shows that no significant difference 

in economic performance arises between the two 

approaches. The net income achieved at the end of the 

nopol production campaign is essentially the same in cases 

MUOpt – NoD, MUOpt – MD, SUOpt – NoD and SUOpt 

– MD. This is mainly a consequence of the nature of the 

nopol production process, where the principal cost is due 

to raw materials and this cost is essentially the same as 

long as the same production target is achieved. On the 

other hand, Table 1 also suggests that MUBSMBO&C is 

more resilient than ITBSMBO&C because it always 

satisfies the purity and productivity specifications of the 

production campaign. ITBSMBO&C fails to satisfy the 

productivity specification in presence of process 

perturbations. This last aspect originates from the fact that 

ITBSMBO&C does not support the dynamic update of the 

residual time available to complete the production 

campaigns of the single batch operations. In fact, in the 

presence of process disturbances, the loss of heterogeneous 

catalyst, which occurs in the fifth reaction phase, causes 

the overall time needed to complete all of the reaction 

phases to increase. ITBSMBO&C cannot handle this 

situation because it cannot dynamically increase the 

residual time available to complete the production 

campaign of the batch reaction phase. Therefore, it must 

violate the productivity specification of the nopol 

production campaign. This type of issue clearly does not 

arise under the MUBSMBO&C approach. 

Based on this case study, we suggest that 

MUBSMBO&C performs at least as well and is more 

resilient than ITBSMBO&C. Moreover, ITBSMBO&C 

can be expected to offer better and more resilient 

performance than typical hierarchical strategies for 

managing batch production campaigns in which the 

scheduling phase is solved at a higher level and dynamic 

optimization and control are applied at a lower level. We 

believe that MUBSMBO&C is more effective than these 

conventional approaches as well. These initial results 

suggest that the SCH-DRTO&C-like framework for batch 

processes that we have developed is a promising approach 

for achieving both good performance and resilience for 

(periodically operated) general batch operations. 

Finally, we make some observations regarding the 

computational performance of the MUBSMBO&C 

strategy. The average time to evaluate a single set of 

control actions in any execution of phase II is about 1 min. 

This result is achieved on a conventional laptop computer 

with 8 GB of RAM and a dual core processor i7 – 451U 

2.0 GHz. This level of computational efficiency is 

sufficient for online application for this particular case 

study but also in many other realistic situations. This level 

of performance is a direct consequence of a framework that 

does not require solution of MILPs/MINLPs online and 

suggests that MUBSMBO&C should have more favorable 

scalability than the existing SCH-DRTO&C-like methods, 

which tackle integrated scheduling, dynamic optimization 

and optimal control problems via direct mathematical 

programming approaches. 

Conclusions 

This contribution proposes a framework,  

MUBSMBO&C, which tackles the problem of integrated 

campaign scheduling, dynamic optimization and optimal 

control of single-product production campaigns involving 

batch operations. The two principal advantages of the 

methodology lie in its applicability to batch processes with 

arbitrary recipe patterns, including recycles, as well as in 

its avoidance of the need for online solution of 

MILPs/MINLPs. The MUBSMBO&C framework is 

validated via the integrated campaign scheduling, dynamic 

optimization and optimal control of a nopol production 

campaign. Additionally a simpler strategy, ITBSMBO&C, 

is also used to solve the same problem for purposes of 

comparison. The results achieved in the test case suggest 

that MUBSMBO&C performs at least as well and is more 

resilient than ITBSMBO&C. Moreover, the results 

suggest, but of course do not prove, that it is superior to 

many conventional hierarchical strategies for managing 

batch production campaigns. Finally, MUBSMBO&C 

seems to offer good computational efficiency and appears 

to be more scalable than SCH-DRTO&C-like methods that 

require online solution of MILPs/MINLPs.   
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