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Abstract 

In this work, a two-stage stochastic programming approach is implemented in a commercial simulator. A 
hybrid algorithm is proposed, where the first-stage decisions (existence of process units and their 
corresponding design parameters) are handled by a genetic algorithm, while the second-stage decisions 
(optimization of operational variables such as flows and temperatures) are optimized through the built-in 
optimization tool of Aspen  Plus©. In this way, a number of individuals (possible values of the first-stage 
variables) are defined, selected and combined through genetic operators, while the second stage 
variables are modified for each individual and different realizations of the uncertain parameters through a 
mathematical programming code (SQP) to minimize its expected cost. Given the complexity of the 
optimization problem under uncertainty, several strategies are proposed to minimize the computational 
requirements of the solution procedure. These strategies resulted in the reduction of up to 75% in CPU 
time for problems involving the optimization of complex separations systems. 
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Chemical processes are usually involved with uncertain 
conditions during operation. Overdesign factors normally 
cope with this situation, but the increase in capital cost is 
rarely justified. During the past decades, several works 
have been proposed to address process synthesis and 
design problems under uncertainty, usually through a two-
stage stochastic programming approach (Grossman et al, 
1983; Acevedo and Pistikopoulos, 1998; Sahinidis, 2003) 
where structural decisions, which remain fixed once 
selected, are differentiated from operational variables, 
which can be adjusted during operation to achieve 
feasibility.  

On the other hand, sequential modular simulators are 
now widely accepted tools that can greatly simplify the 
development of an accurate model that represents a 
chemical process. In addition to sophisticated, rigorous 
models of a number of unit operatio ns and thermodynamic 
properties, advanced simulators, such as Aspen Plus©, 

include optimization routines that have become robust for 
the continuous optimization of operational variables.   

A number of works using process simulators have 
been presented where different strategies are proposed for 
the optimal design of chemical process. However, the 
computational structure of modular simulators has not 
allowed the complete incorporation of the latest 
improvements in mathematical optimization algorithms, 
usually based on the evaluation of the gradients of the 
model, information that is not directly available in the 
simulator. Consequently, some successful strategies are 
based on genetic algorithms, which have been coupled 
with general and dedicated simulators fo r the optimal 
design of heat exchangers (Tayal et al, 1999) and complex 
separations systems (Leboreiro and Acevedo, 2004). 

Genetic algorithms (GA) are stochastic methods based 
on the idea of evolution and survival of the fittest. In a GA, 
a set of values of the optimization variables forms an 
individual; the algorithm starts generating a random set of 



 

individuals to form a population and then repetitively 
evolving it through three basic genetic operators: 
selection, crossover and mutation.  

In this paper, a methodology for optimization under 
uncertainty using process simulators and genetic 
algorithms is presented. A hybrid algorithm is proposed for 
the solution of a two-stage stochastic formulation. The first 
stage decisions are handle by a genetic algorithm, while the 
second stage decisions  are optimized through the built -in 
optimization tool of Aspen  Plus©. In this way, a number of 
individuals (values of the first stage variables such as 
design parameters) are defined, selected and combined 
through genetic operators, while the second stage 
variables (such as flows, concentrations, etc.) are modified 
for each individual through a mathematical programming 
code to minimize its expected cost. The applicability of the 
proposed approach is demonstrated through the 
optimization of complex separation systems where 
extractive and integrated distillation columns are 
considered.  

Two-Stage Optimization programing  

Under the presence of uncertainty, the process 
synthesis and design problems can de formulated by 
defining an expectancy of the objective function as 
follows: 
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where (y,d) are the structural and design variables and (z,x) 
are the operational (control and state) variables. 

θE represents the expected value of the cost function, with 

respect to the uncertain parameters θ  and 
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parameter space where this expectancy can be evaluated 
according to a probabilistic distribution function J(θ) and, 
possibly, upper and lower bounds on the uncertain 
parameters (θ  u,θ  l ). 

The expected value can be estimated by randomly 
generating values of the uncertain parameters from the 
distribution functions and then solving the cost  
minimization subproblems at each of these sample points. 
The expected value can then be formulated as: 
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where Ns is the number of samples used for the evaluation. 
More effective ways for approximating the expectancy 

can also be used (e.g. gaussian quadratures) when the 

number of uncertain parameters is small (Acevedo and 
Pistikopoulos, 1998). 

A Hybrid Algorithm for Process Synthesis Under 
Uncertainty 

The hybryd algorithm proposed here is based on the 
solution of the first stage optimization problem through a 
genetic algorithm. The algorithm starts by generating a set 
of different values of the design variables (individuals) to 
form a population. At each iteration, each individual is 
evaluated and the best are selected to form a new 
generation by combining the values of the design 
parameters that each individual represents (crossover). 
Randomly, some of these parameters are modified 
(mutation) to increase the search space and prevent a 
premature convergence. Typically, the genetic algorithm is 
run for a predefined number of generations, hoping to find 
the optimal selection (best individual) at the end of the 
procedure. The code used in this work (Carroll, 1996) 
already includes some of the most commonly accepted 
strategies reported in the literature to improve the 
performance of a basic GA, such as different alternatives 
for mutation (jump and creep mutation), crossover (single 
point and uniform) and elitism, passing the best 
individuals, according to their fitness, from one generation 
to the next without being modified by the genetic 
operators. 

In the two -stage formulation, the evaluation of each 
individual requires the solution of the second-stage 
subproblems, that is, the operational optimization of the 
selected designs for a number of realizations (samples) of 
the uncertain parameters to estimate its expected cost.  

For each individual, the values of the design 
parameters and the selected realizations of the uncertain 
parameters are transfered to an interphase which processes 
the information and resets the model in Aspen Plus©. 
Inside the simulator, the second-stage subproblems are 
optimized using a built-in function, and the results are sent 
back to the interphase to be manipulated and evaluated 
through a set of decision statements with the aim to 
discard or improve the information. 

Enhancing the Performance of the Algorithm 

The performance of the proposed algorithm is affected 
in terms of the solution time by three critical problems. 
First, the large number of individuals that are needed to 
ensure that the GA obtains a good solution; second, the 
large number of samples needed to evaluate the expectancy 
in a typical Monte Carlo simulation, and third, the amount 
of flowsheet simulations performed by a sequential 
modular simulator to converge to an optimal solution. 

A set of strategies are then implemented to improve 
the performance of the procedure. For the first-stage 
problems, a reduction of the search space is obtained 
through a number of logical constraints, imposing 
restrictions in the codification of the optimization variables 
for the GA. In this way, ranges of values of the design 
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parame ters are changed dynamically for each individual 
depending on the selection of the main variables.  A 
second strategy is the incorporation of a convergence 
criterion based on a variable mutation operator (Leboreiro 
and Acevedo, 2004). The main idea of this  strategy is to 
force the convergence of the population, i.e. to have 50% 
of the individuals within 10% of the best solution, by 
reducing the mutation probability after a number of 
generations. Once this convergence has been achieved, 
the mutation probability is set to a very large value for one 
generation (“mutation shock”), so as to alter most of the 
individuals, except for those that are passed by elitism. The 
idea behind this step is to speed up the process of finding 
a better solution by introducing new genetic information to 
the population, thus increasing the search capacity of the 
algorithm. The heuristic algorithm of  Leboreiro and 
Acevedo (2004) was adjusted to account for the 
confidence intervals that the estimation of the expected 
value implies.  

To decrease the number of inner optimization 
subproblems a stratified sampling technique is used, where 
the number of samples for the evaluation of the expected 
cost of each individual is determined from an estimated 
flexibility of the design, the actual expectancy compared to 
that of the best individual and an the estimation of its 
variance. 

In this way, the expectancy is first estimated from a 
minimum number of samples, and this value is improved 
using more samples only if the ratio of feasible to infeasible 
points is larger than a selected minimum and the estimated 
expectancy is of the same order of magnitude than the best 
individual and its variance is still too large. In any other 
case, the estimation is considered sufficiently good. 

The idea behind this procedure is to have more 
accurate estimations only for those individuals that have a 
good chance to be selected by the GA to form the new 
generation and to use an optimal number of samples for 
this estimation as defined by the variance. 

For the third problem Aspen Plus has already released 
an equation oriented module where continuous 
optimization problems can be effectively solved. Although 
still limited, this module greatly diminishes solution times. 

Proposed Algorithm 

The final algorithm considering the proposed 
strategies for the minimization of the computational 
requirements consists of the following steps. 

0. Initialization 
0.1 Define a flowsheet to model the process in 

Aspen Plus© and the constraints to reduce the 
search space of the GA  

0.2 Define the fixed parameters for the process 
model, the genetic algorithm (mutation 
probabilities, convergence criteria etc.) and 
the evaluation of the second-stage 
subproblems (minimum flexibility, minimum 
number of samples, desired variance) 

0.3 Initialize the best solution as an infinite value. 
 
1. First-stage problem 
1.1 If a population is not available, define randomly 

a first set of individuals (values of structure 
and design variables) and go to Step 2. 

1.2 Evaluate the aptitud (total cost) of each 
individual and update the best solution. 

1.3 If population convergence did not increase in 
the last five generations, reduce the mutation 
probability by half. 

1.4 If the population converged and the best 
individual has not changed, then stop with the 
best individual as the optimal solution; else, 
set the mutation probability to a large value. 

1.5 Perform the basic genetic operators: selection, 
crossover and mutation to obtain a new 
generation of designs to evaluate. 

 
2. Second-stage problem 
2.1 Select an individual from the new population. 
2.2 Generate a minimum number of samples. 
2.3 Optimize the operational cost of the individual 

at each sample point through Aspen Plus©. 
2.4 Estimate the flexibility of the design from the 

number of feasible solutions obtained. If the 
estimation is less than the minimum flexibility 
required, define the expected cost through a 
penalty function and return to  Step 2.1. 

2.5 Evaluate the expected cost as in (2). If the 
expected cost is one order of magnitude larger 
than that of the best individual, return to 2.1. 

2.6 If the calculated variance is larger than 10% of 
the expected value, increase the number of 
samples to evaluate the individual. 

Numerical Example: Extractive Distillation 

In this problem, the separation of a highly non-ideal 
mixture is analyzed. A process stream that contains toluene 
and n-heptane must be separated by extractive distillation, 
using phenol as a solvent (Henley and Seader, 1981). This 
solvent is in turn recovered in a second column, where the 
toluene is obtained as a second product and the phenol is 
recycled to the first column. The uncertain variables 
considered are the composition of the feed stream and its 
molar flow. These parameters are supposed to change 
accordingly to normal distributions functions with me an 
value of 0.5 and standard deviation of 0.05 for the 
composition of n-heptane, and mean value of 400 lbmol/hr 
with a standard deviation of 40 for the total flow fed to the 
column. The objective of the process is to obtain n-
heptane with a molar purity of at least 99% as the main 
product and toluene with 90% purity as a byproduct. 



 

 

Fig. 1 Flowsheet for the Extractive  Process 

 
The first stage variables, handled by the GA, are the 

number of stages, column diameters, and  feed locations  
for each column.   

The second-stage subproblems are defined and 
evaluated through an Aspen Plus© optimization block, 
using RadFrac as the model for each column. The 
specification of the optimization subproblems includes the 
reflux ratios and flow of fresh solvent as optimization 
variables. The constraints are given by minimum 
requirements for the purity of both products and the range 
of flood factors allowed for each column to ensure 
adequate column performance. 

The objective function is defined as the sum of the 
capital and operational costs. The capital cost is related to 
the first stage variables, and is calculated through the 
Equipment Module Costing technique, which involves a 
rigorous costing method and is widely accepted for 
preliminary costs in chemical plants. The operational cost 
is given by the utility costs and the cost of the fresh 
solvent.  

The optimal solution obtained considers 57 stages and 
a diameter of 9 ft for the first column, and 16 stages and a 
diameter of 5.3 ft for the second. This design presents an 
estimated flexibility of 70%, varying the reflux ratios from 4 
to 6 approximately for the first column, and from 0.5 to 1 
approximately for the second. Although this flexibility 
could be regarded as low, it is due to the relatively large 
variances of the uncertain parameters and the narrow 
feasible region that the operation of the integrated columns 
presents. 

From the numerical point of view, the proposed 
strategies reduced the computational requirements in mo re 
than 75% for some cases. The most important effect was 
obtained from the convergence procedure, which reduced 
the number of generations evaluated by the GA in more 
than 40% for all cases, and sometimes in more than 65%. 
Another important contribution was the optimization of the 
number of samples, which drastically reduced the number 
of optimization subproblems solved. For this specific 

problem, however, using specialized quadratures (Acevedo 
and Pistikopoulos, 1998) was the most effective way to 
estimate the expected value. 

Conclusions 

A two-stage stochastic framework was presented 
where the advantages of a process simulator are combined 
with a genetic algorithm for the synthesis and design of 
chemical process under uncertainty. 

The use of sophisticated process models and the 
flexibility of the optimization algorithm could allow the 
search of new, more efficient process, with relatively little 
effort form the process engineer. The computational 
requirements, however, are very large and, although the 
implementation proved to be very robust and the proposed 
procedure reduced drastically the solution times, more 
strategies to improve its performance are still required. On 
this line, present work includes the utilization of more 
efficient sampling techniques, using real codification for 
the genetic algorithm and the discretization of the design 
variables. The approach is also being applied to 
heterogeneous separation systems and to the optimization 
of complete flowsheets under uncertainty. 
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