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Abstract
This paper presents an efficient branch and bound approach to address the global optimization of con-
strained optimization problems with twice differentiable functions. A lower bound on the global minimum
is determined via a convex nonlinear programming problem in which all nonconvex functions are sub-
stituted by their convex underestimators. This work refines the classical � BB eigenvalue perturbation
method for the convex underestimation of twice differentiable functions. New convex underestimators are
proposed based on a smooth, piecewise quadratic, perturbation function. The � parameters, coefficients of
the quadratic terms in the perturbation function, are calculated using eigenvalue analysis techniques. For-
mulae defining the linear coefficients and the constants of the piecewise quadratic perturbations function
are derived from continuity, smoothness and end point conditions. The piecewise quadratic form of the
perturbation is far more flexible that the quadratic form employed in the classical � BB methodology. This
flexibility and improved bounds on the � values lead to a vast improvement over the classical aBB method.
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Introduction
Nonlinear programming and mixed integer nonlinear pro-
gramming formulations have become ubiquitous in the de-
sign and planning of chemical processes, yet are often
solved using software that cannot determine the global so-
lution to these formulations. The � BB algorithm is a deter-
ministic global optimization algorithm that can be applied
to a broad class of nonconvex NLP and MINLP problems
[Maranas and Floudas, 1994, Adjiman et al., 1996, 1998a,b,
Floudas, 2000]. This algorithm employs a convex relax-
ation strategy to determine rigorous lower bounds on the
global minimum solution. In this algorithm the refinement
and convergence of the lower bound to within a predefined� of the global solution is affected using the branch and
bound technique. The tightness of the convex underestima-
tors of the nonconvex functions has a strong influence on
the amount of computation needed for convergence of the� BB algorithm. This paper extends and refines the convex
underestimation approach used in the � BB to underestimate
general ��� continuous functions.

The convex underestimator, 	�

����������� , of a gen-
eral ��� continuous function, ��
�������� , is defined in the

� BB algorithm as, 	�������
! "�#�����#$&%��'�(�*)
where %+
,�����-� is a concave quadratic perturbation func-
tion. This function has the form%�������
! �. / 021 � / � � / $�� / �3��� / $4� / �3)
where � / and � / are, respectively, the lower and upper
bounds on � / . Notice that by making the � / parameters
sufficiently large the Hessian matrix of the underestimator,5 � �6�#�'���7$�%������8� , can be forced to be positive semidefinite.
When the � parameters are all nonnegative %��'�(� is positive
for all �9�;: where :=<>�#� denotes the hyperrectangle
defined by upper and lower bounds on the elements of � . It
follows from the nonnegativity of % and the positive definite-
ness of the Hessian of 	 that 	 is a convex underestimator
of � over the domain : .

Adjiman et al. [1998a] proposed the use of the interval
extension ?A@ instead of

5 �B�#����� itself to calculate the � pa-
rameters. The interval extension of the matrix
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����E�� is a matrix of intervals of � . Each element ?F@/HG of the
matrix ?A@ is defined in such a way thatI �B�I � / I � GKJJJJ L �M? @/!G4N'OQP�R,STS �F�M:�)
In practice an interval extension can be calculated using in-
terval arithmetic [Neumaier, 1990]. Adjiman et al. [1998a]
applied the work of Gerschgorin [1931], Kharitonov [1979]
and Neumaier [1992] to compute � vectors that guarantee
the convexity of the underestimator.

In this paper the form of the � BB perturbation func-
tion and the way in which it is calculated are reexamined,
a novel spline based method for convex underestimation is
proposed and an efficient means of computing these tighter
underestimators is elucidated.

A spline-like � underestimator
The size of the domain : effects the result of every step

in the � calculation and strongly influences the tightness of
the resulting convex underestimator. In particular, reduc-
ing : reduces the mismatch between the assumed quadratic
functional form and the ideal form; it reduces the overesti-
mation in the interval extension of the Hessian matrix; and
the maximum separation distance has been shown to be a
quadratic function of interval length [Maranas and Floudas,
1994]. It is therefore useful to construct a convex underesti-
mator using a number of different � vectors, each applying
to a subregion of the full domain : .

Let �#�����U
V�#�W�X� be a ��� continuous function. For
each variable � / ��� , let the interval Y � / Z � /\[ be partitioned
into ] / subintervals. The endpoints of these subintervals
are denoted �_^/ Z � 1/ Za`B`a`bZ ��c2d/ where � /  e�f^/Ug � 1/Ug `B`a` g��h/ g `B`a` g � c d/  � / . In this notation the i
j�k interval isY � hCl 1/ Z �(h/ [ . A smooth convex underestimator of �#����� over: is defined by 	��'�(�m
! "�#�����#$&%��'�(�
where%��'�(��
H �. / 021 % h/ ��� / � N'O,P � / �&Y � hCl 1/ Z � h/ [ Z (1)% h/ ��� / �4
H n� h/ ��� / $�� hol 1/ �3��� h/ $�� / �qpsr h/ � / put h/ ) (2)

In each interval Y � hCl 1/ Z �(h/ [ , �#h/wvyx
is chosen such that5 �C	��'��� , the Hessian matrix of 	2����� , is positive semi-

definite for all members of the set zB�{�{:|
}� / �Y � hCl 1/ Z � h/ [6~ . % h/ �'� / � is the quadratic function associated
with variable � in interval i . The function %������ is a
piecewise quadratic function contructed from the functions% h/ �'� / � .

The continuity and smoothness properties of %��'��� are
produced in a spline-like manner. For %��'�(� to be smooth the%�h/ functions and their gradients must match at the endpoints��h/ . In addition, we require that %������� x at the vertices of
the hyperrectangle : . To satisfy these requirements, the fol-

lowing conditions are imposed for all �� �� Z )B)a) Z8� :% 1/ �'� ^ / �� x
(3)% h/ ��� h/ �� n% h*� 1/ ��� h/ � N'O,P�R,STS i� e� Z )a)B) Z ] / $}� (4)%�c d/ �'�_c d/ �� x
(5)� %�h/� � / JJJJ Lo�d  � % h*� 1/� � / JJJJJ Lo�d

N'O,P#R�S�S i� e� Z )a)B) Z ] / $}�Q) (6)

These conditions expand into a set of linear equations
with the solution,r 1/  �� c2d l 1.h 021U� h

/ ��� h/ $�� c d/ ��������� c d/ $4� ^/ � (7)

r h/  nr 1/ p hCl 1.G 021 �
G / N'O,P#R�S�S i� �� Z )a)a) Z ] / (8)

t h/  y$mr 1/ � ^ / $ hol 1.G 021 �
G / � G / N'O,P�R,STS i� �� Z )a)B) Z ] / ) (9)

where � h/  �$���h/ �'��h/ $�� hol 1/ �#$�� h*� 1/ �'� h*� 1/ $4�(h/ � .
Geometrical interpretation
The construction of the convex underestimator for a non-

convex function�#�'���� �$�����pW� x � � $&������$&���f�
over the domain �&�}Y x Z � [ is illustrated in Figures 1(a) and
1(b). Figure 1(a) shows the nonconvex function �#����� along
with underestimators of �#�'�(� . A convex underestimator de-
fined using the classical � BB approach requires the � value
to be large enough to cancel the negative curvature at all
points in the domain. Noting that the second derivative,�(� �������� w� x $��B�,� $u¡ x �_� , is a monotonically decreasing
function of � , the most negative curvature occurs at �4 ¢� ,
hence the � parameter is defined by �b� �6�£�C� using the for-
mula, �  $ 1� �(� ���¤�C� ��¥¦)
The classical � BB underestimator,	2�����K ��#�'�(�#$s��¥f�¤��$4�(�3�'� $ x � Z
is shown in Figure 1(b). This underestimator can be im-
proved by partitioning the domain into three subintervals
of equal length, Y �_^ Z � 1 [ , Y � 1 Z ��� [ , Y ��� Z � � [ , where �_^A x

,� 1  1� , ���4 �� and � �  §� . As �b� �6�'�(� is a monotoni-
cally decreasing function, the � values in each interval are
derived from the upper bounds on the respective intervals as
follows, � 1  W¨ R�© z x Z $ 1� �(� ����� 1 � ~  x���� W¨ R�© z x Z $ 1� �(� �����_�o� ~  "¥ 1�� �  W¨ R�© z x Z $ 1� �(� ����� � � ~  ���¥f)
The classical � BB perturbation functions and underestima-
tors over each of the smaller intervals are depicted in Fig-
ures 1(a) and 1(b) ( $�$ ). A convex underestimator over
the whole interval is constructed by adding a linear functionr / �ªp«t / to the � BB perturbations over each of the subinter-
vals �� 9� Z )a)B) Z � . The parameters r / and t / , defining these



linear functions are chosen so that the overall perturbation
function is smooth and is zero at the end points. These val-
ues are calculated using the Equations 7 to 9. The piecewise
quadratic perturbation function, shown in Figure 1(a) ( $ ) is
defined as follows:%��'�(�K W% 1 �'�(� N'O,P �F�&Y x Z 1� [%��'�(�K W% � �'�(� N'O,P ���&Y 1� Z �� [%��'�(�K W% � �'�(� N'O,P �F�&Y �� Z � [% 1 �'�(�K ¡¦) ¡,¡,¡
¬o�% � �'�(�K ¥¦) �,�,�Q�f� x ) ¡,¡,¡
¬ª$����3���­$ x ) �,�Q�,�Q�p®�¦)H�,�,�¦�a�¯pW�Q) x �°¬ x% � �'�(�K ��¥f�¤�,) x $4�(�3�'� $ x ) ¡Q¡°¬,�q$&¥¦)H�,�Q�,����p�¥¦)H�,�Q���
In Figure 1(a) the endpoints of the quadratic pieces are
labelled A, B, C and D. At the endpoints A and D, the
conditions % 1 �'�_^o�7 x and % � ��� � �7 x , respectively, are en-
forced. Two conditions are enforced at each of the interior
points B and C, to enforce the smoothness of the piece-
wise quadratic function. At point B, % 1 �'� 1 �� w%��,��� 1 � and±*²8³± L JJJ L ³  ±*²£´± L JJJ L ³ apply, and at point C, %,�Q���_�o�+ µ% � ���_�o�
and

±*²£´± L JJJ L ´  ±*²£¶± L JJJ L ´ apply. The convex underestimator,

which is the difference, �#������$"%��'�(� , is shown in Figure
1(b) ( $ ).

Nonconcave perturbation
Consider a function �#�'�(� , in which the function is convex

in one subdomain and concave in another. In the � spline
approach 	��'��� can be convex even if the � values are neg-
ative in the regions in which �#�'�(� is strictly convex. The
underestimation property is guaranteed by the concavity of%��'��� . The concavity of %��'�(� is, in turn, a result of the non-
negativity of the � values. In this section we discuss how the
underestimation property of 	������ can be maintained when
some � values are indeed negative.

The underestimation property, 	������µ·��#�'�(� for all�F� : , is ensured by the following condition:¨¹¸�ºL,» @ %��'�(� v¼x )
Instead of solving minimization problems, the key idea is
to adjust the � ’s to prevent the creation of local minima
at any nonvertex point in : by prohibiting the occurrence
of stationary points on convex regions of the perturbation
function. A tight convex underestimator is derived by start-
ing with %��'��� , with non-negative � values as defined in
Section , and making the zero � ’s negative one at a time,
while maintaining the convexity of 	��'��� and avoiding the
generation of stationary points on the convex portions of % .
Computational Performance

The Shubert function �#�'�(�U
H ½¾/ 021 �°¿ OQÀ �¤�£��pW���£�­pÁ�£� was

used to construct the objective function in the following
minimization problem:¨¹¸TºL,»�Â l 1 ^aÃ 1 ^¤Ä ¶ �#��� 1 �¤�#�'� � �2p��#��� � �8�#�'� � �3)
The lower bounding problem was formulated in two ways
which will be referred to as “A” and “B”.

In formulation A the functionÅ ��� 1 Z � � �Æ "�#��� 1 �¤�#�'� � �
is treated as a general ��� continuous function and the lower
bounding problem is formulated applying � underestima-
tors to bivariate functions. The following lower bounding
formulation results:¨¹¸�ºL�»�Â l 1 ^BÃ 1 ^8Ä ¶ Å ��� 1 Z � � �qp Å ��� � Z � � �*) ��Ç �

The lower bounding formulation B is as follows:¨¹¸�ºL�»�Â l 1 ^BÃ 1 ^8Ä ¶ Ã È »oÉ(ÊyË � p Ë ½À8Ì¦Í�Î£Ï ¿*Ð�Ð O � �'� 1 �Ñ· Ë 1� �'� � �Ñ· Ë �� �'� � �Ñ· Ë �Ë � Ë 1 p Ë 1 Ë � p Ë 1 Ë � · Ë � ��Ò¹�Ë � Ë 1 p Ë 1 Ë � p Ë � Ë 1 · Ë �Ë � Ë � p Ë � Ë � p Ë � Ë � · Ë ½Ë � Ë � p Ë � Ë � p Ë � Ë � · Ë ½
In this formulation the objective function is underestimated
through the introduction of auxiliary variables Ë 1 Z )B)a) Z Ë ½ ,the use of convex envelopes for the underestimation of bi-
linear terms [McCormick, 1976], and the use of � -spline
underestimators for the underestimation of the univariate
Shubert function.

Computational results for both formulations are tabu-
lated in Table 1.

The � -spline underestimator performed far better than
the classical � BB for both formulations. In formulation A
the classical � BB took �,Óf�oÔ of the iterations required by
the � -spline method and in formulation B this percentage
increased to �¦� Z �Q�,�°Ô . These results can be attributed pri-
marily to the quality of the � -spline underestimator being
better for univariate functions that for bivariate ones.

Conclusions
The convex underestimator for �¯� continuous functions
proposed in this paper is a refinement of the classical� BB underestimator. The new underestimator is based on
a smooth, piecewise quadratic, perturbation function with
varying curvature. The perturbation may be nonconcave, yet
is guaranteed to form a convex underestimator when sub-
tracted from the nonconvex function. In some cases the new
underestimator closely approximates the convex envelope of
the nonconvex function. The main computational effort in
the calculation of the parameters of the � -spline underesti-
mator lies in the evaluation of the interval Hessian matrix
in a potentially large number of subregions of the function
domain. This effort can be offset by storing the interval Hes-
sian data that are generated at the nodes in the branch and
bound tree and reusing this information in other nodes of the
tree. Computational results show that the proposed underes-
timator is indeed more effective than the classical approach.



References

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global op-
timization method, Õ BB, for general twice differentiable NLPs-
II. implementation and computional results. Computers &
Chemical Engineering, 22:1159–1179, 1998b.

C. S. Adjiman, I. P. Androulakis, C. D. Maranas, and C. A.
Floudas. A global optimization method, Õ BB, for process de-
sign. Computers & Chemical Engineering Supplement, 20:
S419–S424, 1996.

C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A
global optimization method, Õ BB, for general twice differen-
tiable NLPs-I. theoretical advances. Computers & Chemical
Engineering, 22:1137–1158, 1998a.

C. A. Floudas. Deterministic Global Optimization: Theory, Algo-
rithms and Applications. Kluwer Academic Publishers, 2000.
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(a) Geometric interpretation of conditions on
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perturbations over partial domains: ç�ç , piece-
wise quadratic perturbation: ç .
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Figure 1: Geometric interpretation of perturbation and underestimation functions

method iters CPU

A
classical � BB 250952 34169

spline � BB 73427 6303

B
classical � BB 51150 62021

spline � BB 998 1672

Table 1: Computational comparison with classical � BB
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