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Abstract 

Global optimization of mixed-integer nonlinear bilevel optimization problems is addressed using a 
novel technique. For problems where integer variables participate in both inner and outer problems, the 
outer level may involve general mixed-integer nonlinear functions. The inner level may involve 
functions that are mixed-integer nonlinear in outer variables, linear, polynomial, or multilinear in inner 
integer variables, and linear in inner continuous variables. The technique is based on reformulating the 
mixed-integer inner problem as continuous via its convex hull representation (Sherali and Adams 1990; 
1994) and solving the resulting nonlinear bilevel problem by a novel deterministic global optimization 
framework. For problems where the integer variables are only in the outer problem, both the inner and 
outer problems may be nonlinear in both inner and outer variables. These are solved by a direct 
extension of the global optimization framework of Gümüş and Floudas (2001). 
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Hierarchical decision making is of primary importance in 
many real world engineering problems. In chemical 
engineering design, often the main cost-based design 
objective is constrained by process property objectives. 
These can be modeled within a bilevel programming 
(BLP) framework where an (outer) optimization problem 
is constrained by another (inner) optimization problem. 
Applications of the BLP in chemical engineering are many 
and diverse, such as in design under uncertainty (Floudas 
et. al, 2001), design with chemical equilibrium (Gümüş 
and Ciric, 1997), and metabolic engineering (Burgard and 
Maranas, 2003) problems. If these problems involve 
discrete decisions in addition to continuous ones, the 
mixed-integer BLP problems arise. 

The conventional solution method of the continuous 
BLP is to transform it into a single level problem by 
replacing the inner problem with the set of equations that 
define its Karush-Kuhn-Tucker (KKT) optimality 

conditions. However, the KKT optimality conditions use 
gradient information, so the conventional approach is not 
applicable when integer variables exist. Further, relaxing 
inner problem integer variables into continuous ones to 
obtain gradient information does not provide a valid BLP 
lower bound (unlike single-level mixed-integer problems). 
Thus, the conventional KKT-based methods inherently fail 
in locating the true optimal solution. However, it is 
extremely desirable to develop a technique that locates the 
global optimum of mixed-integer BLPs. Furthermore, it is 
worth noting that rigorous deterministic solution 
approaches do not exist in the open literature. 
Developments in this area will greatly expand the scope of 
problems that can be addressed via bilevel optimization. 

The mixed-integer BLP inner problem is first 
transformed into mixed-binary and then reformulated as 
continuous by its convex hull representation. This 
reformulation eliminates the limitations that arise in the 



   
 
use of KKT transformation, as KKT optimality conditions 
of the reformulated inner problem are both necessary and 
sufficient. Epsilon global optimality in a finite number of 
iterations is theoretically guaranteed.  
 
Problem Formulation 
 
The general mixed-integer nonlinear BLP is of the form: 
 
 minx  F(x, y)     (1) 
s.t. G(x, y) ≤ 0 
 H(x, y) = 0 
 miny  f(x, y) 
 s.t. g(x, y) ≤ 0 
  h(x, y) = 0 
 x1,…,xi ∈ ℜ, y1,…,yj ∈ ℜ 
 xi+1,…,xn1 ∈ Z+, yj+1,…,yn2 ∈YIN ⊆ Z+.  
 
where x is a vector of outer problem variables, of which i 
are continuous and n1-i are integer, y is a vector of inner 
problem variables, of which j are continuous and n2-j are 
integer, F(x, y) and f(x, y) are outer and inner objective 
functions, H(x, y) and h(x, y) are outer and inner equality 
constraints and G(x, y) and g(x, y) are outer and inner 
inequality constraints. 

The nonlinear mixed integer BLP can be classified 
into four categories depending on participation of integer 
and continuous variables: (I) Integer Upper, Continuous 
Lower; (II) Purely Integer; (III) Continuous Upper, Integer 
Lower; (IV) Mixed-Integer Upper and Lower.  

The specific mathematical structure of mixed integer 
nonlinear BLP is of great importance in developing 
corresponding solution strategies. For problems of Type 
II, enumeration methods can be applied. However, BLPs 
of Type III and IV are very difficult to solve. 
 
Type I: Integer Upper, Continuous Lower BLP 

 
Solving BLPs of Type I is straightforward.  The lower 

problem involves only continuous variables, so a KKT-
based solution procedure is applicable. If the inner 
problem objective and constraints satisfy the convexity 
requirements of KKT optimality conditions, then the inner 
problem is replaced with its necessary and sufficient 
optimality conditions. Else, global optimization algorithm 
of Gümüş and Floudas (2001) is applied. This approach 
involves nonlinear problem relaxation prior to KKT 
transformation, and an iterative branch and bound scheme.  

BLP with Inner Integer Variables 

A natural first attempt to solve BLPs with integer 
inner variables is to transform the mixed-integer problem 
into an equivalent form in the continuous domain. This is 
performed in two steps: (i) transform integers into (0-1) 
binaries, (ii) transform the resulting problem that involves 
binary and continuous variables to a continuous problem.  

Integer to Binary. Each integer variable, y, with lower 
and upper bounds yL ≤ y ≤ yU, is converted into a set of 
binary variables using the formula (Floudas, 1995): 
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where z is the vector of (0-1) variables, N is the minimum 
number of (0-1) variables needed, and INT truncates its 
real argument to an integer one. 

Binary to Continuous. Binary variables can be 
transformed into continuous ones by adding zTz – z = 0, 
for 0 ≤ z ≤ 1. This constraint is nonconvex and within a 
global optimization procedure it will be underestimated 
into a continuous relaxation of z. However, note that (Bard 
and Moore, 1990):  
Observation 1: Relaxed BLP solution does not provide a 
valid lower bound on mixed-integer BLP solution.  

Thus, even if the relaxed problem solution is integral, 
an optimal solution of the continuous relaxation may not 
be a globally optimal solution of the original BLP. The 
integral relaxed BLP solution is globally optimal if and 
only if the following property is satisfied: 
Property 1: If inner problem constraint set, YIN, defines a 
vertex polyhedral convex hull, YIN, and all the vertices of 
the convex hull lie in YIN, then the optimal inner problem 
integer solution is equivalent to its linear programming 
relaxation. As a result, KKT conditions of relaxed inner 
linear problem are necessary and sufficient to define the 
optimal inner problem integer solution. 
 The property is valid when outer variables also exist 
in the inner problem, such that the vertex polyhedral 
convex envelope is defined parametrically in the outer 
variables. Now that the integer problem solution lies at a 
vertex point, KKT optimality conditions locate the true 
optimal solution (Gümüş and Floudas, 2004). 

 
Global Optimization of BLPs of Type II, III and IV 

 
This procedure is based on a reformulation/ 

relinearization scheme combined with a global 
optimization framework. The key idea is that if the inner 
problem constraint set is represented as its vertex 
polyhedral convex envelope, then Property 1 is satisfied, 
and the mixed-integer inner problem can be converted into 
an equivalent continuous problem. This convex hull 
representation is obtained for several classes of inner 
problems via the reformulation/ relinearization technique. 

 
Reformulation/Relinearization 

The mixed-binary inner constraint set is transformed into 
the continuous domain by converting it first into a 
polynomial problem and then relinearizing it into an 
extended linear problem by a method based on the work of 
Sherali and Adams (1990, 1994). First, a set of polynomial 
factors is introduced that multiply every constraint: 
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Then, binary linear, multilinear and polynomial terms are 
relinearized by using the property y2 = y for quadratic 
terms, and by introducing new variables (zii) to transform 
multilinear terms into linear terms via successive 
substitution (e.g. bilinear to linear: yiyj=zij). 

This technique is used for problems where inner 
problem is (i) purely integer linear or polynomial, or (ii) 
mixed-integer linear, multi-linear or polynomial in inner 
variables. Note that outer variables can be mixed-integer 
nonlinear without a restriction in form. The resulting 
linear set of equations defines a polyhedron with its 
extreme points the feasible 0-1 solutions of the inner 
problem, explicitly characterizing its convex hull. 

 
Inner Problem KKT Conditions and Complementarity  
 
After reformulation/relinearization, inner problem is 
replaced by the set of equations that define its necessary 
and sufficient KKT optimality conditions at constant x: 
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hr(x, y*) = 0;  gr(x, y*) + s* = 0, 
λ* s* = 0  (cs); λ*, s* ≥ 0,                      (4) 
 
where fr, hr and gr are the reformulated inner objective, 
equality and inequality constraints, λ and µ are Lagrange 
multipliers of inner inequality and equality constraints, 
and s are slack variables associated with complementarity. 

Active Set Strategy  

The complementarity condition constraints (cs) involve 
binary decisions on the inner problem active constraint set, 
imposing a major difficulty in solution of the transformed 
problem. To overcome this difficulty, Active Set Strategy 
(Grossmann and Floudas, 1987) is employed, that involves 
the reformulation of the complementarity constraints: 

 
λ – UY ≤ 0;    s – U(1 – Y) ≤ 0;  λ, s ≥ 0;   Y Є {0,1}     (5) 

 
where U is an upper bound on slack variables s and Y are 
additional binary variables due to complementarity. If 
inequality constraint j is active, Yj=1, and if inactive, Yj=0.  
Note that now the integer variable set includes binary 
variables Y in addition to outer problem integer variables. 
 
BLP Underestimation  
 
After the above steps, resulting single level problem may 
contain nonlinear terms due to complementarity and 
stationarity conditions. Further, nonlinear terms may exist 
due to outer problem variables in either the inner or outer 

problem constraints. Thus, the resulting is a mixed integer 
(nonlinear) optimization problem, and should be solved by 
a global optimization procedure such as SMIN-αBB or 
GMIN-αBB (Adjiman et. al, 2000; Floudas, 2000). The 
steps of the proposed framework are summarized below. 
 
Global Optimization Algorithm 

 
Step 1 Establish variable bounds by solving the problems: 

yL,  y U =  min   y, - y 
                  s..t.  inner  problem constraint set 

to obtain simple lower and upper bounds on  y, yL ≤ y ≤yU. 
Step 2 If inner integer variables are not binary convert into 
a set of binaries using Eq. (2). 
Step 3 Obtain the vertex polyhedral convex envelope of 
the inner problem feasible region via reformulation/ 
linearization (Sherali and Adams, 1990). Inner problem is 
now linear in both inner binary and continuous variables 
and parametric in outer problem variables, x. 
Step 4 Replace the inner problem with the set of equations 
that define its necessary and sufficient KKT optimality 
conditions. The resulting problem is single level. 
Step 5 Solve to global optimality. Inner integer variables 
are all separable, linear and binary at the beginning of this 
step. If the final problem is a Mixed Integer Linear 
Problem (MILP), then use CPLEX. Notice that the 
problem is an MILP only for simplest cases. If there are 
continuous nonlinear variables, but integer variables are 
all binary, linear and separable, use SMIN-αBB. If there 
are nonlinear integer terms, then use GMIN-αBB 
(Adjiman et. al, 2000; Floudas, 2000).  
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Figure 1. Algorithm Flowsheet for Type II, III, IV BLP. 
 
Illustrative Example 
 
The following problem (Sahin and Ciric, 1998) can not be 
solved to global optimality using current deterministic 
approaches in the literature for integer BLPs. 
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Here, variable bounds are given, with 0 ≤ x ≤ 10, and the 
inner variables y1 and y2 already defined as binaries.  
Step 3: Inner problem has Ny=2 binary variables. Hence, 
multiply the inner constraint y1 + y2 ≥ 1 with factors of 
degree Ny=2: y1y2, y1(1-y2), (1-y1)y2, (1-y1)(1-y2). Eliminate 
redundant constraints. Inner constraint set becomes: 
 

)7(,01,0 212121 ≥−−+≥ yyyyyy
 

 
Assign a new variable, z12, where z12=y1y2, and introduce:  
 

)8(,1,0,0,0 122112212112 −≥+−−≥−≥−≥ zyyzyzyz
 

Note that from Eq. (7) and Eq. (8), z12 is eliminated via 
direct substitution. Thus, Eq. (7) is reformulated as: 
  

)9(.01,01,01 2121 ≥−≥−≥−+ yyyy
 
The inner problem is now continuous and linear in inner 
variables y, and parametric in outer variables x.  
Step 4: Replace inner problem with the set of equations 
that define its necessary and sufficient KKT conditions: 
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λ – UY ≤ 0;      s + UY ≤ U, 

Y Є {0,1};   s, λ > 0;    0 ≤ y ≤ 1     (10) 

 
where for every constraint j, λj are Lagrange multipliers, sj 
are slack variables and Yj are complementarity binaries.

 Step 5: Resulting single level problem contains nonlinear 
terms, but integer variables are all binary, linear and 
separable. Solve to global optimality using SMIN-αBB 
(Adjiman et. al., 2000; Floudas, 2000). Global optimal 
solution is at (x*, y*) = (6.038, 2.957, 0, 1). 
 
Example 
  
Consider an Integer Linear Fractional BLP: 
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 (Thirwani and Arora, 1997). The novel framework locates 
the global optimum solution at (F*, x*, y*) = (-0.667, 0, 3). 
 
Conclusions 

 
A novel global optimization framework that solves 

several classes of mixed-integer nonlinear bilevel 
optimization problems is presented. If inner problem is 
nonlinear and outer problem is linear, then the BLP is 
solved using the method of Gümüş and Floudas (2001). 
Else, a novel method is introduced that is based on 
reformulation of the mixed-integer inner problem feasible 
space to generate its convex hull, with vertices 
corresponding to binary solutions.  This allows the 
equivalence of the inner optimization problem to the set of 
equations that define its KKT optimality conditions, with 
which it is replaced. The resulting single level problem is 
solved to global optimality. This is arguably the first 
deterministic technique that can solve several classes of 
mixed-integer nonlinear BLPs to global optimality. 
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