
 
  

                                                          

 

LOGIC BASED OUTER APPROXIMATION FOR 
NONCONVEX SYNTHESIS OF PROCESS NETWORK 

PROBLEMS 

Maria Lorena Bergamini and Pio A. Aguirre 
INGAR – Instituto de Desarrollo y Diseño, 

 Santa Fe, Argentina  
 

Ignacio E. Grossmann*

Carnegie Mellon University,  
Pittsburgh, PA 15213, USA 

Abstract 

A new deterministic algorithm for the global optimization of process networks is presented in this work. 
A process network problem can be formulated as a Generalized Disjunctive Program, often involving 
nonconvex functions that may give rise to several local optima. However, flowsheet synthesis models 
have a special structure, which is exploited in this work. The proposed algorithm consists of an iterative 
procedure in which the problem is decomposed into continuous and discrete optimization subproblems. 
The continuous optimization subproblem requires the solution of reduced NLP subproblems to global 
optimality, while the discrete optimization subproblem is obtained through the solution of lower 
bounding problems. This subproblem is constructed replacing the nonconvex terms with piecewise 
estimators and its optimal solution is a lower bound of the solution of the GDP problem. Several 
examples were successfully solved with this algorithm. 
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The synthesis of process networks can be formulated as 
Generalized Disjunctive Programming (GDP) problems 
(Raman and Grossmann, 1994). GDP problems can be 
solved as MINLP problems by replacing the disjunctions 
with its big-M or its convex hull reformulation (Lee and 
Grossmann, 2000). Major methods for MINLP problems 
include Branch-and-Cut, (Stubbs and Mehrotra, 1999) 
Generalized Benders Decomposition (GBD) (Geoffrion, 
1972), Outer Approximation (OA) (Duran and 
Grossmann, 1986) and Extended Cutting Plane (ECP) 
method (Westerlund and Petterson, 1995).    

Lee and Grossmann (2000) presented an optimization 
algorithm for solving general nonlinear GDP problems.  
This algorithm consists of a branch-and-bound search that 
branches on terms of the disjunctions and considers the 

convex hull relaxation of the remaining disjunctions. 
Turkay and Grossmann (1996) have proposed a Logic-
Based Outer Approximation algorithm that solves 
nonlinear GDP problems for process networks involving 
two terms in the disjunction.  

While the above mentioned algorithms assume 
convexity to guarantee convergence to the global optimal 
solution, rigorous global optimization algorithms have 
been proposed. For MINLP problems, it should be 
mentioned the works by Ryoo and Sahinidis (1995), 
Zamora and Grossmann (1999), Smith and Pantelides 
(1999) and Adjman et al (2000). Lee and Grossmann 
(2001) proposed a two-level branching scheme for solving 
nonconvex GDP problems to global optimality. 



  
 

Spatial branch-and-bound methods can be 
computationally expensive, since the tree may not be finite 
(except for ε-convergence). For the case of process 
networks there is the added complication that the NLP 
subproblems are usually difficult and expensive to solve. 
Thus, there is a strong motivation for developing a 
decomposition algorithm for this class of problems.  

We propose a new algorithm for solving nonconvex 
GDP problems that arise in process synthesis. It exploits 
the particular structure of this kind of models, as in the 
case of the Logic Based OA algorithm by Turkay and 
Grossmann. The proposed modifications make the 
algorithm capable of handling nonconvexities, while 
guaranteeing globality of the solution of the optimal 
synthesis of process networks. This is accomplished by 
constructing a master problem that is a valid bounding 
representation of the original problem and by solving the 
NLP subproblems to global optimality.  

GDP Model. 

The GDP model for the synthesis of process networks 
is given as follows, 
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The nonlinear model (1) has continuous variables x 
and c, and Boolean variables Y. The disjunctions in U 
apply for processing units. If unit j exists, a set of 
conditional constraints hj is enforced and a fixed charge cj 
is applied. Otherwise, a subset of continuous variables and 
the fixed charge are set to zero. There also are global 
constraints g in the continuous space and logical 
constraints Ω(Y). 

Piecewise Underestimators. 

The key point of the algorithm is the construction of a 
master problem that rigorously underestimates the 
objective and overestimates the original feasible region. 
To accomplish that, a convex GDP is derived, replacing 
the nonconvex terms in (1) by piecewise underestimators. 

Let  be a nonconvex function and let D 

be the domain of interest. Let  be an 
underestimator of f constructed over D. Consider a 
partition of the domain D: . The piecewise 
underestimator over the partition is formulated as follows, 

RRf m →:

RRf mu
D →:
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If  is such that has zero approximation gap in the 

boundary of D, the estimator matches f in the 
boundary of the active subregion D

u
Df

uf
k.  

These underestimators are included in the problem 
through its big-M or its convex hull reformulation. Thus, 
new binary variables w are added, representing the active 
subdomain Dk. 

Lower Bounding Problems. 

Assume the function f, g and h are the sum of convex, 
concave and bilinear terms. This is not a very restrictive 
assumption since Smith and Pantelides (1999) have shown 
that a suitable reformulation may transform any problem 
in an equivalent one with convex, concave univariate and 
bilinear terms.  

Given a gridpoint set K, a new GDP problem is 
obtained by replacing the nonconvex terms by the 
piecewise underestimator constructed over the grid K.  
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of ,  and are the convex terms in f, g and hog o
jh j 

respectively. , , and  are piecewise 

underestimators of the nonconvex terms. They are 
expressed in terms of the original variables x, the new 0-1 
variables w and the continuous variables t that are needed 
for defining the approximation in the grid. The subindex K 
means that these estimators are constructed using the 
gridpoint set K. The problem (3) is a relaxation of (1), and 
therefore the optimal solution of (3) is a lower bound to 
the solution of (1). If the optimal solution of (3) is a grid 
point, this is the global optimal of (1), since the 
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underestimators have zero gap at the grid points. Also note 
that, if the original problem (1) has only concave, bilinear 
and linear fractional term, problem  (3) is linear. 

Reduced NLP and Local Bounding Problem.  

Fixing the structure of the process network in (1) 
(Y=Yk) yields an NLP problem, where only the variables 
and constraints related to the existing units are involved.  
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Problem (4) is nonconvex and therefore it may not 
have a unique optimal solution. In order to obtain the 
global optimal solution a local bounding problem is 
constructed, replacing the nonconvex terms in (4) by the 
corresponding piecewise underestimators. The following 
convex MINLP is obtained, 
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Bound Contraction. 

Having a fixed network structure allows to fix some 
variables to zero and contract the bounds for other 
variables. Tight variable bounds reduce the search space in 
the global optimization of the NLP problem, and reduce 
the approximation gap of the underestimators. 

Bound contraction is performed in the variables 
involved in nonconvex terms, following the procedure 
proposed by Zamora and Grossmann (1999).  

(5)in  sconstraint
..

maxmin/
GUBZts
xi

≤   (6) 

Problem (6) is a convex MINLP since it involves 
binary variables related to the piecewise estimators. 
However, if the domains for nonconvex terms are 
partitioned in only one region, it can be solved as a NLP 
problem. 

Algorithm. 

Initialization: Initialize global lower and upper 
bounds GLB and GUB, and local lower and upper bounds 
LLB and LUB. Set local and global convergence 
tolerances ε and η. 

Outer Optimization: Set the global variables bounds 
and the initial gridpoint set K. Solve (3) and denote ZL* the 
optimal solution and Y* the values of the boolean 
variables. Update GLB = ZL* and LLB = ZL*. Fix Y = Y*. 
Check global convergence: if GUB – GLB ≤ η stop. 
Otherwise, go to Bound contraction step. 

Bound Contraction: solve (6) for the variables 
involved in nonconvex terms, and update the bound for 
those variables. 

Inner Optimization: Find the global solution of (4), 
using a NLP global optimizer or through the following 
procedure: 

Upper Bounding: solve (4) with a local optimizer 
and denote ZU* the solution. Update GUB = min{GUB, 
ZU*} and LUB = min{LUB, ZU*}. Check global and local 
convergence: if GUB – GLB ≤ η stop. If LUB – LLB ≤ ε, 
go to New structure. Otherwise go to Local bounding step 

Local Bounding: Update the grid adding the 
solution of the previously solved bounding problem. Solve 
(5) and denote Zl* the solution. Update LLB = Zl*. Check 
global and local convergence: if GUB – GLB ≤ η stop. If 
LUB – LLB ≤ ε, go to New structure. Otherwise go to 
Upper bounding step. 

New Structure: Add an integer cut to become 
infeasible the structure defined by Y*. Unfix the Boolean 
variables. Go to Outer Optimization Step. 

Numerical Example. 

The performance of the proposed algorithm has been 
tested on a number of test problems in the full length 
version of this paper. Here we illustrate it with a heat 
exchanger network problem with two hot stream and two 
cold streams. The mathematical model uses the staged 
superstructure proposed by Yee and Grossmann (1990). A 
superstructure with three stages is proposed. The global 
constraints define heat balances and inlet and outlet 
temperatures. Disjunctions are considered for each one of 
the 16 potential exchangers. If the exchanger exists, the 
exchanged heat, required area and cost is defined. If the 
exchanger does not exist, the exchanged heat, area and 
cost are set to zero. The corresponding GDP problem in 
(1) has 16 boolean variables, 82 continuous variables and 
a total of 112 constraints. 

The arithmetic mean driving force temperature 
difference was used to calculate the areas, and the area 



  
 
cost were modeled as a nonlinear concave function to 
reflect the economies of scale. Moreover, no stream 
splitting was assumed. Thus, the nonconvexities in the 
model are due to the area calculation and the area costs.  
The disjunctive model (1) has 16 bilinear terms (involving 
area, heat load and temperature difference variables) and 
16 concave terms. When these terms are replaced by 
piecewise estimators constructed over the partition for the 
area domains (3) remains linear. In this example, the initial 
grid for the outer optimization steps is constituted by a 
unique interval. Problem (3) has 16 boolean variables, 82 
continuous variables and 254 equations. There are also 16 
binary variables w related to the piecewise estimators. 
Data for this problem were taken from example 4 in 
Zamora and Grossmann (1998). However, while they used 
linear costs for the areas, the exponent considered here is 
0.8 for exchangers and 0.7 for coolers and heaters. 

The algorithm was implemented in GAMS (Brooke et 
al, 1997) on a 1.5 GHz Pentium 4 PC. CONOPT3 was 
used as an NLP solver and XPRESS solved the bounding 
MILP problems. The algorithm found the optimal solution 
in a total time of 57 CPU sec. The global solution has a 
cost of $52265.19, involving 6 units (4 exchangers and 2 
cooler). The optimal structure was found in the first outer 
iteration, and 5 inner iterations were needed to reach local 
convergence. Inner optimization took 4.07 CPU sec (2.25 
CPU sec for solving the NLP problems (4) and 1.82 CPU 
sec for solving the bounding MILP problems (5)). 
However, 12 outer iterations were required to obtain 
convergence to the global optimum. In the subsequent 
iterations, the bound reduction procedure determined that 
the selected structures are suboptimal and the algorithm 
did not solve the NLP subproblems.  

This problem was also solved with BARON 
(Sahinidis, 1996) as an MINLP solver. It found the global 
solution at iteration 5104, but the lower bound could not 
converge in less than 1000 CPU sec. The lower bound was 
35% lower than the global solution. 

Conclusions. 

A new deterministic algorithm for the global 
optimization of synthesis of processes network problems 
has been presented, as well as a new methodology for 
constructing underestimators of nonconvex functions 
based on partitions of the entire domain. In this work, the 
derivation of this class of estimators for univariate 
concave terms and bilinear terms has been developed. 

The proposed algorithm relies on an outer 
approximation methodology. The global solution of the 
problem is achieved by solving problems that are 
relaxations of the original one. As iterations proceed, the 
bounding problem approximates the original problem with 
more accuracy. 

The computational experience suggests that this 
algorithm presents some advantages with respect to typical 
branch and bound algorithms. 
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