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Abstract 

Excitement surrounds systems biology because we hope the emerging field will interpret and 
contextualize large, diverse sets of biological measurements and, in doing so, elucidate the mechanisms 
behind complex phenomena not apparent without an integrated perspective.  However, we can easily 
misinterpret the true nature of systems biology and the likely current impacts on advancing the state of 
knowledge in biotechnology and biomedical research.  In this paper, we offer one view of this exciting 
area and accompanying realistic near-term expectations. 
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As recently as a decade ago, the core paradigm of 
molecular biology followed an established path.  Namely, 
a well-defined hypothesis spawned a well-defined 
experiment measuring a few known genes, proteins, and 
perhaps metabolites of the target system.  However, 
genome sequencing and derived technologies such as gene 
expression arrays expanded our cellular view with a bevy 
of new data. Suddenly with a key to the digital code at 
biology's core, we became able to identify and measure 
important classes of intracellular molecules like gene 
transcripts and proteins.   

These developments revealed the obvious: hundreds 
or thousands of molecules that originally were not the 
focus of the traditional experiment were also found to vary 
significantly during the experiment.  Lee Hood 
popularized the term “systems biology” to describe an 
updated, global approach to cellular understanding that 
considers these now accessible genome-scale 

measurements and proceeded to form an institute 
dedicated to the pursuit. 

Here we define systems biology as the field aiming to 
establish connections between and among important 
classes of molecules so as to aid the mechanistic 
explanation of cellular processes.  More specifically, 
systems biology identifies concrete molecular 
relationships for targeted analysis through the 
interpretation of cellular phenotype in terms of integrated 
biomolecular networks. 

At the logical starting point of the systems biology 
hierarchy, one finds the output from a host of other 
computational biology methods and processes that are 
possible in our post-genomic era; for example, 
bioinformatic sequence analysis and comparative 
genomics continue to advance our understanding of gene 
sequence data.  At higher levels of the hierarchy, data 
from gene expression experiments and analysis of 
experimental protein-protein interaction screens, and 



 
protein-DNA binding information allow us to shed light 
upon biomolecular networks.  These networks denote 
possible mechanistic avenues that may be compared across 
organisms to highlight common and differing pathways.  
Similarly, large-scale kinetic models may reproduce 
macroscopic cellular behavior such as the cell cycle.  In 
each case, the insight gained from this work diffuses into 
the public literature, and upon scrutiny, may be used to 
refine databases of biomolecular networks and more 
effectively measure states. 

System biology as practiced at the biomolecular 
network level differs from other computational biology 
counterparts through the simultaneous, systems-level 
integration of both networks and states.  Thus we must 
possess both network and state data to identify specific 
molecular relationships, and much of this information is 
provided by genomic, proteomic and transcriptomic levels 
of the hierarchy. 

Traditionally, we have understood cells as elegant 
coordinated systems, but the sequenced genomes made 
possible the systems-level probing of both concerted 
molecular relationships and the resulting cellular states.  
Far from replacing specific low-level understanding 
explored piecewise in the past, these systematic probes 
rather hasten the discovery of unknown molecular 
relationships and place the existing knowledge in a greater 
context. 

Thus one can see that systems biology is a framework 
in which practitioners can leverage all existing targeted 
analysis techniques and accumulated data.  But if one puts 
metabolism aside, gene expression states and biomolecular 
interaction screens produce large, noisy data sets even for 
relatively simple organisms and at the same time present 
countless avenues for analysis.  How do we approach this 
data, and what can we hope to accomplish? 

As a framework, systems biology aims at providing 
greater understanding for specific cellular mechanisms.  
Traditionally, we have judged our understanding by the 
ability to forward-engineer specific desired responses.  For 
example, in humans, we hope to prevent and combat 
disease.  Analogously, in microbes, we hope to maximize 
product generation.  But when the only thing that is 
available is large, noisy data sets, how can we select a 
specific analysis so as to gain insight for specific 
mechanisms?  

To answer this last question, we must begin by 
anchoring systems biology analyses to specific questions 
and build upon the existing, strong core infrastructure of 
targeted analyses.  In the context of a well-studied system, 
it is much easier to identify potentially fruitful data 
characteristics that, upon detailed study, can lead to a gain 
of our knowledge.  Batteries of induced, well-defined 
perturbations (such as gene deletions or environmental 
changes) to a base system, represent an effective way to 
attribute specific responses to specific mechanisms. 
In summary, systems biology offers a powerful paradigm 
for probing cellular processes, and eventually gaining 
mechanistic insight.  As engineers with a rich heritage of 

systems analysis, we stand poised to take full advantage of 
this opportunity.   

Prior Systems Approaches to Biological Research 

Although the term “systems biology” only recently 
entered the popular lexicon, engineers have applied 
integrated, systemic approaches to understand cellular 
processes for many years.  From our laboratory's 
perspective, we employ the following approaches that use 
systems-level analysis to forward-engineer desired 
responses.  Although the approaches encompass 
comparatively smaller systems, we may incorporate the 
lessons from each as we move forward at a larger scale. 

Metabolic Control Analysis 

Metabolic pathways and, in general networks of 
reactions, are characterized by substantial stoichiometric 
and (mostly) kinetic complexity in their own right. A 
commonly applied assumption to these systems is that of a 
single rate limiting step leading to great simplification of 
the reaction network and often yielding analytical 
expressions for the conversion rates. This assumption, 
however, is not justified for most biological systems for 
which kinetic control is not concentrated in a single step 
but rather distributed among several enzymatic steps. As a 
result, instead of a single rate limiting step, a more 
appropriate measure of the kinetic effect of each enzyme 
in a pathway is the flux control coefficient, simply defined 
as the change impacted on the pathway flux in response to 
an infinitesimal change in the concentration of the 
enzyme. Flux control coefficients are properties of the 
entire system, and theorems of Metabolic Control Analysis 
(MCA) show how these coefficients can be determined 
from experiments or models of the local network elements, 
i.e kinetics of the pathway enzymes. The concepts of 
MCA and distribution of kinetic control in a reaction 
pathway have had profound impact on the identification of 
target enzymes for genetic modification for the purpose of 
amplifying the product flux through a pathway (Kacser 
and Burns, 1973; Stephanopoulos et al., 1998). Most 
importantly, they rationalized the need for multiple 
enzyme amplification to achieve the goal of flux 
amplification, as verified experimentally recently (Koffas 
et al., 2003). 

Signaling Pathways 

Signal transduction is the process by which cells 
communicate with each other and their environment. They 
involve a multitude of proteins that may be present in 
active and inactive states. In their active (phosphorylated) 
state they act as catalysts for the phosphorylation (i.e., 
activation) of subsequent steps in the signaling cascade. 
The end result is the activation of a transcription factor 
that, in turn, activates gene transcription events. Despite 
the fact that several of the known proteins participate in 
more than one signaling cascades, such systems were 



 
being studied until recently in isolation from one another. 
A corollary of this approach was, of course, that a single 
gene can be activated by a single ligand, or that a single 
ligand leads to the activation of a single gene. Neither 
conclusion is true, and signaling pathways branch and 
interact with one another creating a rather intricate and 
complex signaling network. The usual approaches for 
studying such systems based on mass action kinetics of the 
individual activation reactions are rather inadequate for 
the treatment of the overall network, both from a 
parameter identification and data validation standpoint. A 
different approach, making use of activation ratios for the 
analysis of integrated signaling networks was proposed 
recently (Femenia, 2004). Clearly this is an area of 
immense importance in biomedical mechanism 
identification and drug discovery and more tools are 
required both in the computational and experimental areas. 
These are the goals of the recently formed Alliance for 
Cellular Signaling, a NIH funded project involving several 
laboratories and research centers (www.signaling-
gateway.org). 

Flux Map Reconstruction 

Metabolic pathway fluxes, defined as the actual rates 
of metabolite interconversion in metabolic network, are 
most informative measures of the actual physiological 
state of cells and organisms. As they depend on enzymatic 
activities as well as metabolite concentrations, such fluxes 
provide an accurate representation of carbon and energy 
flows through the various pathway branches and they are 
important in identifying critical reaction steps that impact 
flux control for the entire 
pathway. Flux 
determination is thus an 
essential component of 
strain evaluation and 
metabolic engineering 
(Stephanopoulos, 1999). 

Intracellular flux 
determination requires the 
enumeration and 
satisfaction of all 
intracellular metabolite 
balances along with the use 
of sufficient measurements 
typically derived from the 
introduction of isotopic 
tracers and metabolite and 
mass isotopomer 
measurement by Gas 
Chromatography-Mass 
Spectrometry. It is 
essentially a problem of 
constrained parameter 
estimation in very over-
determined systems. Over-
determination provides the 

requisite redundancy for reliable flux estimation. These 
methods are basically methods of network reconstruction 
and the obtained fluxes represent properties of the entire 
system. As such, they accurately reflect changes 
introduced through genetic or environmental 
modifications and therefore can be used for the assessment 
of their impact on cell physiology and product formation 
and guide the next round of cell modifications. These 
methods are truly systemic approaches to network 
reconstruction and flux determination and allow the 
generation of high resolution flux estimates of parallel 
pathways with many branching points and reversible 
reactions. A recent example where these methods have 
been applied to the complete identification of a metabolic 
network while satisfying all redundant balances can be 
found in (Klapa et al., 2003). In a variation of these 
methods, fluxes can be determined such as to satisfy a 
maximum growth criterion. The approach, known as Flux 
Balance Analysis (FBA), has yielded maximum growth 
flux estimates for a variety of organisms whose pathways 
were reconstructed from genomic information (Ibarra et 
al., 2002). 

Metabolic Engineering 

Metabolic Engineering is known as the field of study 
aiming at the improvement of strains using modern genetic 
tools. Strains are modified by introducing specific 
transport, conversion or deregulation changes that yield 
flux redistribution and product yield improvement 
(Stephanopoulos et al., 1998). As these modifications rely 
to a significant extent on modern methods from molecular 

Figure 1: Abstracting networks from pathways using component 
connectivities.  The top view integrates gene, transcript, and protein levels 
and represents protein-protein interactions with an undirected edge and 

protein-DNA transcriptional relationships with a directed edge.  The 
networks lump the interactions into these two categories, but do not describe 
the specific nature of each connection.  For instance, from the presence of a 

connection alone, GAL80 may not be identified as a GAL4 transcription 
repressant deactivated by galactose-GAL3 complex binding.  We also clarify 

that interaction screens give only putative network connections, not the 
underlying mechanisms described here for the galactose system. 

http://www.signaling-gateway.org/
http://www.signaling-gateway.org/


 
biology, a central question that naturally arises is: what is 
the real difference between genetic engineering and 
metabolic engineering? We submit that the main 
difference is that metabolic engineering is concerned with 
the entire metabolic system, in contrast to the specific 
focus of genetic engineering with the over-expression of a 
particular gene. In other words, while genetic engineering 
can be successful in getting a gene overexpressed or 
otherwise modified, this may have 
very little impact on the final goal of 
altering cell physiology. By 
examining the properties of the 
metabolic network in its entirety, 
metabolic engineering attempts to 
identify targets for amplification as 
well as assess rationally the effect of 
such changes to the properties of the 
overall network. As such, metabolic 
engineering is a progenitor of 
functional genomics and systems 
biology in the sense that it represents 
the first organized effort to 
reconstruct and modify pathways 
making use of genomic tools and 
guided by the information of post-
genomic developments 
(Stephanopoulos and Vallino, 1991). 

Continuing and Expanding the 
Systems Paradigm in Post-Genome 
Research 

In a genetic circuit board 
representation of a cell, a low-level 
model replete with kinetic 
parameters describes the precise 
wiring joining the components.  With 
a perfect genetic circuit board 
description, a model can propagate 
an input signal through the board and 
determines the output.   

Although we now know the 
genetic components for many 
organisms and can screen possible 
connections among components, we 
rarely understand the precise wiring.  
And even if knowledge of the wiring 
were available we would additionally 
need to worry about the nature and 
timing of the signals being 
exchanged by the various 
components.  Figure 1 shows how 
connectivity networks may be 
abstracted from a genetic switch. In 
this case, we understand the protein 
signals and transcription activator 
mechanisms involved, but more 
generally a genetic interaction screen gives only the more 

abstract network representation without providing any 
more detail.  But how does one go about modeling?  And 
if we were missing (needed) components such as 
previously unreported genes, how would we ever know?  
And how would their absence affect our modeling effort?  
Also, should we accept this lack of knowledge as a given 
in our effort?  Or should we continue to strive and further 
hone our skills in gene discovery, gene and protein 

Figure 2: Determining genetic pathways activated by GAL80 gene 
deletion\For a set of protein-protein (pp) signaling and protein-
DNA (pd) regulatory interactions among genes involved in the 

galactose pathway, differential gene expression after GAL80 gene 
deletion reveals the corresponding activated subnetworks.  Even 

without galactose present, the removal of the GAL80 triggers 
cellular pathways through genetic elimination of GAL4 

transcription factor represent.  Node color indicates differential 
expression statistical significance for the particular gene, while 

node outline color and interaction edges between nodes indicates 
activated subnetworks.  Significance of differential expression does 
not distinguish between upregulation and downregulation states; 

thus, both GAL80 (here, eliminated) and GAL1 (here, upregulated) 
will possess high confidence in differentially activity.  (courtesy 

Trey Ideker, UCSD) 



 
annotation, gene expression analysis, protein-protein 
interaction elucidation etc.? 

Clearly, it is unavoidable that initially we will have to 
adopt a high-level cellular view devoid of detailed 
mechanistic knowledge.  We know the genetic 
components, and pair-wise screens give us putative 
connections.  Also properly applied data mining methods 
can uncover previously unsuspected gene relationships 
and consequently a pathway’s members.  In general, 
transcriptome data, proteome data, RNA interference data 
mass spectrometry data, and so forth can provide a good 
starting point that permits us to construct putative genetic 
interaction networks.  Often, putative genetic interaction 
networks consist of protein-protein and protein-DNA 
interactions gleaned from these methods.  Understanding 
the methods by which we determine and refine the 
network databases facilitates our appropriate use of the 
data. 

Protein-protein interactions provide diverse cellular 
functionalities including the fulfillment of signaling roles. 
For instance, a cascade of signaling reactions accompanies 
the binding of an extracellular stimulant and initiates a 
shift in gene expression programs in response.  For both 
yeast two hybrid and mass spectrometry (MS) of purified 
protein complexes, the large set of potential interactions 
makes the high-throughput screening methods prone to 
false positives (Aebersold and Mann, 2003).  Subsequent 
analyses refine this data by integrating other weaker, 
indirect interaction indicators as well such as 
coexpression.  Regulatory interactions control gene 
transcription. After a cell senses an environmental 
perturbation through a signaling pathway, a shift in 
transcriptional program occurs chiefly via trans-regulatory 
proteins binding to cis-regulatory upstream activation 
sequence DNA. While we often infer regulation through 
gene expression patterns, chromatin immunoprecipitation 
offers the leading direct, high-throughput experimental 
assay of gene regulation in yeast and mammals (Lee et al., 
2001).  Just as with protein-protein interactions, merging 
relevant data sets upgrades data quality. 

Using these putative biomolecular networks, one 
notable analysis in yeast by Ideker and colleagues 
demonstrated that, for galactose pathway perturbations, 
the networks connected many of the differentially active 
genes (Ideker et al., 2001).  Effectively, this result 
reinforces the intuitive notion that genes in a biomolecular 
pathway are upregulated and downregulated together in 
response to a perturbation. Going a step further, Ideker's 
Cytoscape software platform and the accompanying 
ActiveModules plugin identify the biomolecular pathways 
most affected by sets of perturbations. These types of 
abstracted models process global data and output 
potentially interesting relationships that may be 
investigated with lower-level, more detailed modeling and 
experiments. 

Currently, Cytoscape represents the best software 
platform for visualizing biomolecular relationship 
networks and searching those networks for active 

subnetworks. A Cytoscape analysis requires inputting 
connectivities as well as differential state data for each 
component. Typically, protein-protein and protein-DNA 
interactions among genes are integrated with differential 
gene expression data. The component connectivities 
distinguish among the unidirectional nature of protein-
protein interactions and the directional nature of protein-
DNA interactions. Given this molecular relationship map 
and differential states, Cytoscape then allows searching for 
differentially active subnetworks mediating the perturbed 
state. Searching for active subnetworks requires a 
methodology for scoring a given subnetwork before 
subsequent comparison with other subnetworks. Scoring a 
subnetwork  first requires scoring individual components. 
For a gene, high confidence in differential expression 
contributes to the activity of any subnetwork containing 
this gene.  Global optimization techniques such as 
simulated annealing techniques allow robust determination 
of the most active subnetworks.  Figure 2 shows one such 
active subnetwork search (Ideker et al., 2002). 

Typically, a lack of robust interaction data for higher 
organisms, such as mammals, limits searching for 
response-mediating pathways. Among other difficulties, 
the sheer magnitude of the possible interactions among 
tens of thousands of genes prevents systematic interaction 
screens for such systems. However, experimental efforts 
have documented many genetic relationships for specific 
pathways in numerous publications over the years.  
Ingenuity Systems and the Stanford Genome Technology 
Center recently made available the results of exhaustive 
literature searches that document known genetic 
interactions. Furthermore, the reasonably characterized 
central metabolism in human and mouse parallel yeast 
metabolic pathways. These genetic and metabolic 

Figure 3: Bridging genetic measurements 
and macroscopic phenotype with metabolic 

pathways.  For a given genetic or 
environmental perturbation, protein 

signaling and transcriptional regulators 
orchestrate metabolic changes that manifest 

a new macroscopic phenotype such as 
growth rate, disease, or product production.  

In this way, understanding the metabolic 
changes leading to the new macroscopic 

phenotype elucidates changes occurring at 
the genetic level. 



 

networks offer the opportunity to apply the pathway 
analysis techniques for yeast to human and mouse 
transcriptional data. 

A high-level screen may reveal a potentially 
interesting pathway (subnetwork) that activates in 
response to a stress condition.  As any researcher with 
gene clustering results can attest, the following question 
arises: How do you gain mechanistic insight simply based 
on a set of interesting genes?  Unlike gene clusters 
however, previously identified genetic interactions link the 
screened active networks and provide a launching pad for 
gaining mechanistic insight.  We then hope that 
subsequent specific, low-level exploration of the 
differentially active subnetworks will provide such 
mechanistic insights. 

Realistic v. Unrealistic Expectations 

The wide scope of both data and analysis tools 
justifiably leads to ambitious expectations for systems 
biology.  After so many years of studying genes in 
isolation or just small groups of genes at a time, a deluge 
of information gives us snapshots of a dynamic world 

where cells divide, organisms 
develop, tumors take root, etc.  
No one can deny the 
opportunities that present 
themselves, but one must also 
be mindful that the problem 
which we set out to address is 
several orders of magnitude 
larger than those with which 
we are experienced.  
Consequently, it is important 
that we temper our expectation 
of immediate results.  We 
would like to suggest that 
researchers bear in mind the 
following points: 

Despite the wealth of 
available genomic data there 
are still lots of genes of whose 
presence we are unaware and 
which are involved in 
important interactions.  A 
commonly repeated mis-
statement is that the genomic 
effort and the analysis that 
followed have generated all 
the data that would be 
necessary to effectively 
practice systems biology.  
However, as recent results 
have demonstrated this could 
not be further than the truth:  
genomic maps are 
continuously updated by 
discarding or adding 

(occasionally substantial amounts of) genes, new 
important protein interactions are elucidated for pathways 
that were considered well understood, etc. (Berns et al., 
2004; Dornan et al., 2004) 

Figure 4: Hierarchy for perturbation and response.  The introduction of 
intracellular galactose at the small molecule level initiates genetic 

pathways resulting in galactose phosphorylation at the small molecule 
level in preparation for further metabolic processing.  Changes at the 

small molecule level typically occur on the order of seconds, while 
changes in gene expression program typically occur on the order of 

minutes.  Thus, although an immediate responses may be mediated strictly 
at the small molecule level, the longer term responses stem from a change 
in gene expression program.  Also, macromolecule perturbations such as 

peptide hormone introduction initiate changes beginning at the 
macromolecule rather than small molecule level. 

Constructing biomolecular networks for new systems 
demands significant resources and expertise.  
Biomolecular networks incorporate a multitude of 
relationships connecting several types of components.  At 
the genome-scale, constructing interaction maps requires 
extremely large experimental investments and subsequent 
analysis and curation.  For instance, global protein-protein 
interaction maps exist for only a handful of model species 
and represent the work of large collaborative efforts.  
Even reconstructing well-studied and well-documented 
networks such as metabolic pathways in a genome context 
requires years of curation for a lone researcher.  Thus, a 
do-it-yourself approach for a new biomolecular network is 
not a possibility. 

Even when you work with a biomolecular network 
database, do not expect a full system picture.  In the post-
genomic era, the effort to uncover the structure and 
function of genetic regulatory networks gave birth to many 
databases each of which attempts to distill the most salient 



 
features from incomplete and at times flawed knowledge.  
For yeast, databases document over 80,000 putative 

protein-protein interactions for the yeast two-hybrid 
(Y2H) protein-protein screen (Aebersold and Mann, 
2003).  Of these interactions, only a few thousand agree 
between the individual screens among labs.  Clearly, 
“accepted” interactions vary significantly across databases 
and over time even under the best-case scenario.  Of 
course, we must note that yeast databases benefit from 
heavy experimentation and scrutiny as well as a relatively 
smaller interaction space explored (pairwise interactions 
among approximately 6000 genes).  In other organisms 
with lower levels of direct interaction experimentation and 
scrutiny (e.g., E. coli) or much larger interaction spaces 
(e.g., mouse and human), databases represent even less of 
a full picture.  Furthermore, many databases do not 
distinguish among direct and indirect interactions, 
especially where direct interaction screens are not feasible: 
for instance, a human genetic interaction in the Ingenuity 

database will often be an observation in the literature that 
“gene X affects gene Y.”   

Making the necessary 
measurements for your system 
demands significant resources 
and expertise.  Presently, the 
only broadly available tool for 
measuring gene expression is the 
DNA chip.  Moreover, 
conducting a transcriptional 
experiment requires training, and 
large-scale studies naturally 
incur significant costs.  Going 
further and measuring protein 
levels, protein states, regulatory 
elements, and metabolites 
requires complex and specialized 
equipment and each can 
consume one or more full 
graduate student careers.  
Consequently, systems biology 
necessitates the creation of 
partnerships and the 
collaboration among cross-
disciplinary faculty members.  
No one group or department 
possesses all the technology or 
computational tools necessary 
for a full analysis.  Biologists, 
engineers, chemists, physicists, 
mathematicians and computer 
scientists must learn to speak one 
another’s language and to work 
together. 

It is unlikely that a 
single/complex microarray 
experiment will elucidate 
interactions you want to know.  
Large amounts of data and the 
presence of noise aside, many 

relevant interactions simply do not result in large, direct 
transcriptional changes.  The practitioner must be mindful 
of the fact that transcript levels do not correlate well with 
protein levels, and protein levels do not correlate well with 
activity level. 

Figure 5: Metabolic states  Just as differential transcription changes 
may be determined with gene expression arrays, differential metabolite 
levels may be determined with high-throughput assays.  Here, this table 
compares metabolite levels for wild type and mutant yeast strains under 

aerobic and anaerobic conditions. 

Patience is advised as the more complex hypotheses 
derived from systems approaches are disproportionately 
more demanding to validate.  For a perturbation, 
differential gene expression and network searching reveals 
active putative biomolecular networks.  Often, the 
networks span dozens, if not hundreds, of genes.  The 
larger active networks provide the statistical support 
necessary for signal recognition in the midst of the noise 
within the individual gene measurements and the noise 
within the imperfect putative networks.  Figure 2 shows 
that even for a small network, a single gene removal 
causes a cascade of activation and deactivation among 
many genes.  While we can demonstrate cause and 



 
eventual effect, verifying the specific mechanism for each 
gene’s activation/deactivation becomes a herculean task. 

Vision 

Ultimately, systems biology hopes to unravel the 
complex underpinnings of macroscopic phenomena like 
cell division, animal development, tumor growth etc. 
through the integration and analysis of data of different 
modalities.  With time, we refine our genetic network as 
well as our ability to accurately monitor transcripts and 
proteins.  Also, the current state of the art enables us to 
more accurately determine specific genetic interactions 
active under any genetic or environmental perturbation.   

However, we still need to link the genetic interactions 
to the macroscopic phenomena that we observe.  For 
instance, we may discover that under a certain condition a 
transcription factor causes activation of a previously 
unknown pathway.  In the best case scenario where we can 
determine and model the specific binding involved, we can 
only postulate on reasons why the pathway became 
activated and how the pathway influences the observed 
macroscopic phenotype. 

Metabolism links the genetic interactions with 
macroscopic phenotype.  The responses propagated 
through protein-protein and protein-DNA interactions are 
ultimately incorporated as adjustments to metabolic 
pathways to fulfill the new cellular demands.  
Unfortunately, transcript and protein levels and states do 
not correlate with metabolic activity.  Figure 3 shows a 
cartoon propagation of a cellular perturbation manifested 
macroscopically through active metabolic pathways. Upon 
traumatic injury, the human body responds by initiating a 
shift in gene expression which propels the body into a 
hypermetabolic state. Likewise, an oxygen deficiency in 
yeast initiates a shift in gene expression which maximizes 
energy production by diverting metabolic fluxes from the 

TCA cycle to produce ethanol. For eukaryotic organisms, 
signaling and regulatory pathways at the genetic level alter 

metabolic state by 
interconverting small 
molecules in such a way as to 
fulfill the new cellular 
demands through tight 
enzymatic control.  In the 
galactose utilization example, 
perturbations at the small 
molecule level propagate 
through signaling and 
regulatory pathways at the 
genetic level to generate 
responses at the small 
molecule level (see Figure 4). 

  The cellular response 
hierarchy requires bridging 
activated genetic networks to 
cellular phenotype by 
incorporating a small molecule 
perspective into biomolecular 
networks. Since genetic 

networks indirectly mediate metabolic adjustments, active 
genetic networks infer responses whereas metabolic 
measurements directly assay response mechanism. 
Documented metabolic pathways and the known genetic 
relationships provide the ability to integrate genetic 
interaction networks with metabolism.  The availability of 
genetic interaction and metabolic networks, gene 
expression states, and metabolic levels and reaction fluxes 
provide an opportunity to conduct integrated pathway 
analyses and further discern genetic interactions with 
direct metabolic measurements. 

Figure 6: Connecting biomolecular networks  Because macroscopic 
phenotype adjustment occurs through metabolic pathways, activated 

genetic pathways must be viewed in small molecule context to provide 
insight into the macroscopic phenotype.  Here, reaction nodes connect 

small molecule (s.m.) nodes to enzymes at the genetic level. 

This metabolomic information is an experimentally 
accessible feature of the cell that reveals important and 
extensive phenotypic information. As we mention above, 
it is difficult to understand how these pathways mediate a 
macroscopic phenotype.  Generally, it is not possible to 
draw accurate metabolic conclusions using only genetic 
data. For instance, an increase in transcriptional activity 
does not necessarily imply increase in protein levels; 
moreover, once translated a protein may or may not be 
enzymatically active. 

The shortcomings of the current state-of-the-art 
metabolic analysis result not from a lack of investigator 
interest but from the difficulty of measuring metabolic 
states.  Diverse chemical properties make broad, 
simultaneous measurement of metabolites difficult.  
Indeed, unlike transcriptional states, high-throughput 
metabolic state measurements have only recently begun to 
mature.  Metabolic analysis techniques that use gas 
chromatograph mass spectrometry (GCMS) measure 
metabolite levels and reaction fluxes for central carbon 
metabolism with increasing throughput.  (Villas-Boas 
2003)  Figure 5 displays sample results of metabolite 
levels differing among genetic and environmental 
perturbations.  Incorporating this metabolic state data into 



 
a tool like Cytoscape requires expanding the genetic 
interaction network to include metabolism and associating 
differential state data with each metabolic node -- see 
Figure 6. For the characterized yeast metabolic network, 
interfacing reactions with genes and small molecules to 
those reactions using the built-in small molecule and 
reaction node capabilities is straightforward.  For 
associating differential metabolic state data with each 
node, differential metabolite levels and reaction fluxes 
may be employed. 

With metabolic state data supplementing genetic 
pathway activities, we may anchor our analysis and 
address basic questions.  How do the changes in genetic 
state cause metabolic changes?  How do the metabolic 
changes account for our macroscopic phenotype 
observations?  The metabolic state data provide the direct 
mechanistic insight necessary to tackle these questions 
when combined with well-defined perturbations across 
genetic and environmental perturbations. 
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