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Abstract 
A major challenge in computational peptide and protein design is the systematic generation of novel peptides 
and proteins which are either compatible with existing target template structures or with arbitrarily postulated 
new three dimensional structural folds. In this paper, an account of the recent advances in de novo protein 
design is presented, followed by background and previous work on the design of Compstatin, a 13-residue cyclic 
peptide that binds to complement component C3 and inhibits complement activation. A novel integrated 
framework based on global optimization, mixed-integer optimization, in vitro and in silico characterization 
via NMR experiments, as well as experiments for the synthesis and functional characterization of peptides, 
is introduced for the computational design of peptides and proteins. The experimental functional analysis 
provides validation to the in silico predicted novel peptide sequences which are shown to exhibit 16-fold 
improved activity over the synthetic therapeutic peptide Compstatin. This overview paper is based on advances 
reported in glepeis et al. (2003a), Morikis et al. (2004), and glepeis et al. (2004). 
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Introduction 

The de novo peptide and protein design, first sug- 
gested almost two decades ago, begins with a pos- 
tulated or known flexible protein three-dimensional 
structure and aims at identifying amino acid se- 
quence(s) compatible with this structure. Initially, 
the problem was denoted as the "inverse folding prob- 
lem" (Drexler, 1981; Pabo, 1983) since protein design 
has intimate links to the well-known protein folding 
problem (C. Hardin and Luthey-Schulten, 2002). In 
contrast to the characteristic of protein folding to as- 
sociate a given protein sequence with its own unique 
shape, the inverse folding problem exhibits high levels 
of degeneracy; that is, a large number of sequences will 
be compatible with a given protein structure, although 
the sequences will vary with respect to properties such 
as activity and stability. 

C o m p u t a t i o n a l  M e t h o d s :  In silico protein design 

allows for the screening of overwhelmingly large sec- 
tors of sequence space, with this sequence diversity 
subsequently leading to the possibility of a much 
broader range of properties and degrees of function- 
ality among the selected sequences. Allowing for all 
20 possible amino acids at each position of a small 50 
residue protein results in 2050 combinations, or more 
than 1065 possible sequences. From this astronomical 

number of sequences, the computational sequence se- 
lection process aims at selecting those sequences that 
will be compatible with a given structure using effi- 
cient optimization of energy functions that model the 
molecular interactions. 

In an effort to make the difficult nature of the en- 
ergy modeling and combinatorial optimization man- 
ageable, the first attempts at computational protein 
design focused only on a subset of core residues and 
explored steric van der Waals based energy functions 
through exhaustive searches for compatible sequences 



(Ponder and Richards, 1987; Hellinga and Richards, 
1991). Over time, the models have evolved to in- 
corporate improved rotamer libraries in combination 
with detailed energy models and interaction poten- 
tials. Although the consideration of packing effects 
on structural specificity is sometimes sufficient, as 
shown through the design of compatible structures us- 
ing backbone-dependent rotamer libraries with only 
van der Waals energy evaluations for a subset of 
hydrophobic residues (Desjarlais and Handel, 1995; 
Dahiyat and Mayo, 1996), there has been extensive 
research to develop models including hydrogen bond- 
ing, solvent and electrostatic effects (Dahiyat et al., 
1997; Raha et al., 2000; Street and Mayo, 1998; No- 
halle et al., 2001). These functional additions to 
the design models are especially important for full 
sequence design since packing interactions no longer 
dominate for non-core residues (e.g., surface and in- 
termediate residues). The incorporation of these ad- 
ditional non-core residues increases the potential for 
diversity, and therefore enhances the probability for 
improving functionality when compared to the parent 
system. An additional complication is the need to ac- 
count for changes in amino acid compositions and in- 
herent propensities through the appropriate definition 
of a reference state (Koehl and Levitt, 1999; Wernisch 
et al., 2000; Raha et al., 2000). Overall, there is no 
consensus between model parameterizations, and it is 
unclear which methods are more valid and suitable for 
generic protein design. 

Once an energy function has been defined, se- 
quence selection is accomplished through an optimiza- 
tion based search designed to minimize the energy ob- 
jective. Both stochastic and deterministic methods 
have been applied to the computational protein design 
problem. Stochastic approaches are appealing because 
their heuristic nature can be used to control termina- 
tion, and both genetic algorithm (Jones, 1994) and 
Monte Carlo methods (Wernisch et al., 2000; Desjar- 
lais and Handel, 1999) have been applied to the pro- 
tein design problem. However, these methods involve 
some element of chance and thus may lack consistency 
and reliability in locating the global minimum (Voigt 
et al., 2000). Deterministic methods, such as the dead- 
end elimination algorithm (Desmet et al., 1992), of- 
fer the advantage of convergence to a consistent solu- 
tion. These methods may not be globally determin- 
istic in that heuristic modifications must be applied 
to make convergence tractable for complex systems 
(Gordon and Mayo, 1999; Wernisch et al., 2000). Re- 

cent advances in the dead-end elimination algorithms 
include a hybrid exact rotamer optimization method 
which improves the computational performance (Gor- 
don et al., 2003) and the introduction of conforma- 
tional splitting which expedites the roramer elimina- 
tion process and allows for complete protein design 
(Pierce et al., 2000). Restrictions on methods based 
on the dead-end elimination are the requirement for 
a pairwise representation of the energy function, and 
more importantly the postulation of a fixed template. 
Recent methods attempt to avoid the problem of op- 
timizing residue interactions by manipulation of the 
shapes of free energy landscapes (Jin et al., 2003). 
Another class of methods focus on a statistical the- 
ory for combinatorial protein libraries which provides 
probabilities for the selection of aminoacids in each 
sequence position (Zhou and Saven, 2000; Kono and 
Saven, 2001; Saven, 2001, 2003). 

Several sequence selection approaches have been 
tested and validated by experiment, thereby firmly 
establishing the feasibility of computational protein 
design. The first computational design of a full se- 
quence to be experimentally characterized was the 
achievement of a stable zinc-finger fold (/3/3c~) using a 
combination of a backbone-dependent rotamer library 
with atomistic level modeling and a dead-end elim- 
ination based algorithm (Dahiyat and Mayo, 1997). 
Recently, Kuhlman et al. (2003) introduced a compu- 
tational framework that iterates between sequence de- 
sign and structure prediction, designed a new fold for 
a 93-residue c~//3 protein, and validated its fold and 
stability experimentally. Despite these accomplish- 
ments, the development of a computational protein 
design technique to rigorously address the problems 
of fold stability and functional design remains a chal- 
lenge. One important reason for this is the almost 
universal specification of a fixed backbone, which does 
not allow for the true flexibility that would afford more 
optimal sequences, and more robust predictions of sta- 
bility. Moreover, several models which attempt to in- 
corporate backbone flexibility highlight a second diffi- 
culty, namely, inadequacies inherent to energy mod- 
eling (Desjarlais and Handel, 1999). The need for 
empirically derived weighting factors, and the depen- 
dence on specific heuristics limit the generic nature 
of these computational protein design methods. Such 
modeling based assumptions also raise issues regard- 
ing the appropriateness of the optimization method 
and underscore the question of whether it is sufficient 
to merely identify the globally optimal sequence or, 



more likely, a subset of low lying energy sequences. 
An even more difficult problem relevant to both flex- 
ibility and energy modeling is to correctly model the 
interactions which control the functionality and activ- 
ity of the designed sequences. 

Compstatin 

Compstatin is a 13-residue cyclic peptide that has the 
ability to inhibit the cleavage of C3 to C3a and C3b. 
The effect of targeting the C3 cleavage is triple and 
results to hindrance in: (i) the generation of the pro- 
inflammatory peptide C3a, (ii) the generation of op- 
sonin C3b (or its fragment C3d), and (iii) further com- 
plement activation of the common pathway (beyond 
C3) with end result the generation of the membrane 
attack complex (MAC). A C3-binding complement in- 
hibitor was identified as a 27-residue peptide using a 
phage-displayed random peptide library (Sahu et al., 
1996). This peptide was truncated to an equally active 
13-residue peptide named compstatin with sequence 
I[CVVQDWGHHRC]T-NH2 , where the brackets de- 
note cyclization through a disulfide bridge formed 
by Cys2-Cys12 (Sahu et al., 1996), (Morikis et al., 
1998). Acetylation of the N-terminus of compstatin 
(Ac-compstatin) resulted to a 3-fold increase in activ- 
ity (Sahu et al., 2000), (Morikis et al., 2002), (Soulika 
et al., 2003). 

Compstatin blocked the cleavage of C3 to the 
pro-inflammatory peptide C3a and the opsonin C3b 
in hemolytic assays and in human normal serum 
(Sahu et al., 1996), (Sahu et al., 2000), prevented 
heparine/protamine-induced complement activation 
in baboons in a situation resembling heart surgery 
(Soulika et al., 2000), inhibited complement activa- 
tion during the contact of blood with biomaterial in 
a model of extra-corporeal circulation (Nillson et al., 
1998), increased the lifetime of survival of porcine kid- 
neys perfused with human blood in a hyper-acute re- 
jection xenotransplantation model (Fiane et al., 1999), 
blocked the E coli -induced oxidative burst of granu- 
locytes and monocytes (Mollnes et al., 2002), and in- 
hibited complement activation by cell lines SH-SY5Y, 
U-937, THP-1 and ECV304 (Klegeris et al., 2002). 
Compstatin was stable in biotranformation studies 
in vitro in human blood, normal human plasma and 
serum, with increased stability upon N-terminal acety- 
lation (Sahu et al., 2000). Compstatin showed little 
or low toxicity and no adverse effects when these were 
measured (Fiane et al., 1999), (Nillson et al., 1998), 

(Soulika et al., 2000). Finally, compstatin showed 
species-specificity and is active only with human and 
primate C3 (Sahu et al., 2003). A recent mini-review 
provides a detailed account of the advances using ra- 
tional design methods experimental combinatorial de- 
sign approaches, molecular dynamics, and novel opti- 
mization methods (Morikis et al., 2004). In the fol- 
lowing section, we outline these advances. 

Rational design of compstatin analogs: The 
three-dimensional structure of compstatin in solution 
revealed the presence of a major conformer consisting 
of a Type I/%turn located at a position opposite to 
the disulfide bridge (Morikis et al., 1998). The molec- 
ular surface of compstatin consists of a polar part that 
includes the /%turn and a hydrophobic part that in- 
cludes the disulfide bridge. 

The rational design of analogs with higher in- 
hibitory activity has been discussed and compared to 
similar efforts for other low-molecular mass comple- 
ment inhibitors in a recent mini-review (Morikis and 
Lambris, 2002). The rational or SAR design was based 
on the available three-dimensional structure of comp- 
statin, structural NMR studies of the designed new 
analogs, kinetic binding studies to C3 and its frag- 
ments, and complement inhibitory activity measure- 
ments. The three-dimensional structure revealed the 
overall fold of compstatin and intra-molecular inter- 
actions involving hydrogen bonding, hydrophobicity, 
electrostatics, van der Waals forces, disulfide bridge, 
and polar interactions with solvent molecules. These 
data provided insights into the structural stability of 
compstatin and, in combination with additional NMR 
studies, into the structural stabilities of the designed 
analogs. Radical site-specific replacements were used 
to determine the effect of gross aminoacid differences 
in structure, binding, and activity, and conservative 
replacements were used for fine-tuning of the design, 
together with additions/deletions, alanine scan, in- 
corporation of non-natural aminoacids with directed 
properties, methylation, and alternative cyclization 
(Sahu et al., 1996), (Morikis et al., 1998), (Sahu et al., 
2000), (Morikis et al., 2002), (Soulika et al., 2003). 

The analog with highest inhibitory activity iden- 
tified using this method, named Ac-H9A, had 4-fold 
higher activity than the parent peptide compstatin 
(see Table 1). These efforts include a prior bench- 
mark of acetylation of the N-terminus that resulted to 
a 3-fold increase of inhibitory activity. 

Experimental combinatorial design of comp- 
statin analogs: The technique of phage-displayed 



random peptide libraries to randomly identify pep- 
tides that are capable of binding to specific targets 
and altering their functionality is widely used. Comp- 
statin was identified using a phage-displayed peptide 
library and screened for binding against C3b (Sahu 
et al., 1996). This technique was used again for pep- 
tide binding against C3 (Soulika et al., 2003), but this 
time incorporating findings from our rational design. 
Specifically, 7 aminoacids were kept fixed while 6 were 
allowed to randomly vary. 

Four binding clones to native C3 were identified 
using this method. Complement inhibitory activity 
measurements of synthetic acetylated peptides with 
the sequences of the binding clones identified one ana- 
log with 4-fold higher activity than compstatin (Table 
1). This analog was named Ac-IIL/H9W/T13G and 
its sequence is given in Table 1. NMR experiments of 
this analog demonstrated similar structural character- 
istics as compstatin, Ac-compstatin, and the equally 
active rationally designed analog Ac-H9A (Table 1). 
The hydrophobic cluster and the Type I/3-turn were 
preserved in Ac-IIL/H9W/T13G and a novel feature 
was observed by the introduction of a second Trp at 
position 9. 

The experimental combinatorial design identified 
an equally active analog as the rational design, but in 
combination two important features for activity were 
revealed: (i) position 9 was amenable to further op- 
timization, and (ii) side chain ring stacking involving 
one residue inside the/3-turn and one outside could be 
important to optimize activity. The case of the latter 
was re-enforced by the computational combinatorial 
design, which will be described below. 

Molecu la r  d y n a m i c s  s tud ies  of c o m p s t a t i n :  

Small peptides in solution form ensembles of inter- 
converting conformers. Compstatin showed better 
defined structure when the disulfide bridge between 
Cys2 and Cys12 was intact and less defined struc- 
ture when the disulfide bridge was broken. The flex- 
ibility of compstatin in solution was shown by anal- 
ysis of NMR parameters such as spin-spin coupling 
constants, chemical shifts, temperature dependence of 
chemical shifts, and NOEs (Morikis et al., 1998). The 
structure of a major conformer of compstatin was de- 
termined using NMR data and computational mod- 
eling and global optimization (Morikis et al., 1998), 
(Klepeis et al., 1999). 

Molecular dynamics (MD) simulations of the en- 
tire NMR ensemble of 21 structures, the average min- 
imized structure, and the global optimization struc- 

ture revealed the presence of five families of inter- 
converting conformers at 1 ns of simulation time 
(Mallik et al., 2003). The major population of these 
conformers was a coil conformation with a Type I 
/3-turn with probability of 44%. This is in agree- 
ment with the estimated population of a major con- 
former of compstatin from the original NMR data us- 
ing spin-spin coupling constant analysis that was 42- 
63% (Morikis et al., 1998). The remaining MD con- 
formers (and their populations) were /3-hairpin with 
Type II/3-turn (22%), /3-hairpin with Type I/3-turn 
(17%), /3-hairpin with Type VIII /3-turn (9%), and 
partial a-helix-partial coil (9%). It should be noted 
that 91% of the MD conformers contained some type 
of a/3-turn and 61% contained a Type I/3-turn (Mallik 
et al., 2003). This demonstrates the significance of 
the presence of a turn for structural stability of comp- 
statin. These data introduce the concept of a dynamic 
peptide in the drug design process as opposed to the 
widely-used, yet overly simplified, static view. 

De Novo  Prote in  Des ign  Frame- 

work 

In Klepeis et al. (2003a), a novel two-stage computa- 
tional peptide and protein design method is presented 
to not only select and rank sequences for a particular 
fold but also to validate the stability and specificity 
of the fold for these selected sequences. The sequence 
selection phase relies on a novel integer linear pro- 
gramming (ILP) model with several important con- 
straint modifications that improve the tractability of 
the problem and enhance its deterministic convergence 
to the global minimum. In addition, a rank-ordered 
list of low lying energy sequences are identified along 
with the global minimum energy sequence. Once such 
a subset of sequences have been identified, the fold val- 
idation stage is employed to verify the stabilities and 
specificities of the designed sequences through a de- 
terministic global optimization approach that allows 
for backbone flexibility. The selection of the best de- 
signed sequences is based on rigorous quantification 
of energy based probabilities. In the sequel, we will 
discuss the two stages in detail. 

I n  silico S e q u e n c e  S e l e c t i o n  

To correctly select a sequence compatible with a given 
backbone template, an appropriate energy function 
must first be identified. Desirable properties of energy 



models for protein design include both accuracy and 

rapid evaluation. Moreover, the functions should not 

be overly sensitive to fixed backbone approximations. 

In certain cases, additional requirements, such as the 

pairwise decomposition of the potential for application 

of the dead-end elimination algorithm (Desmet et al., 

1992), may be necessary. 

Instead of employing a detailed atomistic level 
model, which requires the empirical reweighting of en- 

ergetic terms, the proposed sequence selection pro- 

cedure is based on optimizing a pairwise dis tance-  

dependen t  interaction potential. Such a statistically 

based empirical energy function assigns energy values 

for interactions between amino acids in the protein 

based on the alpha-carbon separation distance for each 

pair of amino acids. Such structure based pairwise 
potentials are fast to evaluate, and have been used in 

fold recognition and fold prediction (Park and Levitt, 

1996). One advantage of this approach is that there is 

no need to derive empirical weights to account for indi- 

vidual residue propensities. Moreover, the possibility 

that such interaction potentials lack sensitivity to lo- 

cal atomic structure are addressed within the context 

of the overall two-stage approach. In fact, the coarser 

nature of the energy function in the in silico sequence 

selection phase may prove beneficial in that it allows 

for an inherent flexibility to the backbone. 

A number of different parameterizations for pair- 

wise residue interaction potentials exist. The simplest 

approach is the development of a binary version of the 

model such that each contact between two amino acids 

is assigned according to the residues types and the re- 

quirement that a contact is defined as the separation 

between the side chains of two amino acids being less 

than 6.5 ~ (Meller and Elber, 2001). An improvement 

of this model is based on the incorporation of a dis- 

tance dependence for the energy of each amino acid 
interaction. Specifically, the alpha-carbon distances 

are discretized into a set of 13 bins to create a finite 

number of interactions, the parameters of which were 

derived from a linear optimization formulated to favor 

native folds over optimized decoy structures (Tobi and 

Elber, 2000; Tobi et al., 2000). The use of a distance 

dependent potential allows for the implicit inclusion 

of side chains and the specificity of amino acids. The 

resulting potential, which involves 2730 parameters, 

was shown to provide higher Z scores than other po- 

tentials and place native folds lower in energy (Tobi 

and Elber, 2000; Tobi et al., 2000). Recent work has 
resulted in improvements through the use of physical 

constraints and extension of the parameterization to 

include/3-carbon interactions to better represent side- 

chain placement (Loose et al., 2003). 

The linearity of the resulting formulation based on 

this distance-dependent interaction potential is also 

an attractive characteristic of the in silico sequence 

selection procedure. The development of the formu- 

lation can be understood by first describing the vari- 

able set over which the energy function is optimized. 

First, consider the set i = I,... ,n which defines the 

number of residue positions along the backbone. At 

each position i there can be a set of mutations repre- 

sented by j{i} = I,..., mi, where, for the general case 

mi = 20Vi. The equivalents sets k - i and l - j are 

defined, and k > i is required to represent all unique 

pairwise interactions. With this in mind, the binary 

variables y~ and y~ can be introduced to indicate the 

possible mutations at a given position. That is, the y~ 

variable will indicate which type of amino acid is ac- 

tive at a position in the sequence by taking the value 

of 1 for that specification. Then, the formulation, for 

which the goal is to minimize the energy according to 

the parameters that multiply the binary variables, can 

be expressed as : 

min ~-]n mi n mk jI J I i=1 Ej=I E k = i + l  E/=I Eik(Xi,Xk)YiYk 
mi j 

subject to E j = I  Yi -- 1 V i 

y~ , yt k - 0 - 1  V i , j , k , 1  

The parameters E J l ( x i , x k )  depend on the distance 

between the alpha-carbons at the two backbone po- 

sitions (xi ,  xk)  as well as the type of amino acids at 

those positions. The composition constraints require 

that there is exactly one type of amino acid at each 

position. For the general case, the binary variables 

appear as bilinear combinations in the objective func- 

tion. Fortunately, this objective can be reformulated 

as a strictly linear (integer linear programming) prob- 

lem (Floudas, 1995): 

min }-]n mi n mk jI jI i=1 Ej=I E k = i + l  E/=I E i k ( X i ' X k ) W i k  

mi j 
subject to E j = I  Yi -- 1 V i 

jI < y~ V i , j , k  1 y~ + yt k - 1  <_ Wik _ 

jI < yIkV i j k ,  1 0 < _  wik _ , ,  

y~ , yt k - 0 - 1  V i , j , k , 1  

This reformulation relies on the transformation of the 

bilinear combinations to a new set of linear variables, 

jt while the addition of the four sets of constraints Wik, 
serves to reproduce the characteristics of the original 



formulation. For example, for a given i, j, k, 1 com- 
jI bination, the four constraints require Wik to be zero 

when either y~ or y~ is equal (or when both are equal 
jI to zero). If both y~ and y~ are equal to one then Wik 

is also enforced to be one. 

The solution of the integer linear programming 
problem (ILP) can be accomplished rigorously using 
branch and bound techniques (CPLEX, 1997; Floudas, 
1995), making convergence to the global minimum en- 
ergy sequence consistent and reliable. Furthermore, 
the performance of the branch and bound algorithm is 
significantly enhanced through the introduction of re- 
formulation linearization techniques (RLT). Here, the 
basic strategy is to multiply appropriate constraints 
by bounded non-negative factors (such as the refor- 
mulated variables) and introduce the products of the 
original variables by new variables in order to derive 
higher-dimensional lower bounding linear program- 
ming (LP) relaxations for the original problem (Sher- 
ali and Adams, 1999). These LP relaxations are solved 
during the course of the overall branch and bound 
algorithm, and thus speed convergence to the global 
minimum. The following set of constraints illustrates 
the application of the RLT approach to the original 
composition constraint. First, the equations are refor- 
mulated by forming the product of the equation with 
some binary variables or their complement. For ex- 
ample, by multiplying by the set of variables y~, the 
following additional set of constraints V j, k, 1 is pro- 
duced: 

m i  

j=l 

This equation can now be linearized using the same 
variable substitution as introduced for the objective. 
The set of RLT constraints then become: 

m i  

jI I 
E wik -- Yk V i, k, 1 
j=l 

Finally, for such an ILP problem it is straightfor- 
ward to identify a rank ordered list of the low ly- 
ing energy sequences through the introduction of in- 
teger cuts (Floudas, 1995), and repetitive solution of 
the ILP problem. By using the enhancements out- 
lined above, in combination with the commercial (LP) 
solver CPLEX (CPLEX, 1997), a globally optimal 
(ILP) solution is generated in less than 5 CPU minutes 
on an HP J-2240. 

Fold Stability and Specificity 

Once a set of low lying energy sequences have been 
identified via the sequence selection procedure, the 
fold stability and specificity validation stage is used 
to identify the most optimal sequences according to 
a rigorous quantification of conformational probabili- 
ties. The foundation of the approach is grounded on 
the development of conformational ensembles for the 
selected sequences under two sets of conditions. In the 
first circumstance the structure is constrained to vary, 
with some imposed fluctuations, around the template 
structure. In the second condition, a free folding cal- 
culation is performed for which only a limited number 
of restraints are likely to be incorporated (in the case 
of compstatin and its analogs only the disulfide bridge 
constraint is enforced) and with the underlying tem- 
plate structure not being enforced. In terms of practi- 
cal considerations, the distance constraints introduced 
for the template constrained simulation can be based 
on the structural boundaries defined by the NMR en- 
semble (in the case of compstatin and its analogs a 
deviation of 1.5 angstroms is allowed for each non- 
consecutive Ca-Ca distance from the known NMR 
structures), or simply by allowing some deviation from 
a subset of distances provided by the structural tem- 
plate, and hence they allow for a flexible template on 
the backbone. 

The formulations for the folding calculations are 
reminiscent of structure prediction problems in pro- 
tein folding (Klepeis et al., 2002). In particular, a 
novel constrained global optimization problem first 
introduced for structure prediction using NMR data 
(Klepeis et al., 1999), and later employed in a generic 
framework for the structure prediction of proteins 
(Klepeis and Floudas, 2003) is employed. The global 
minimization of a detailed atomistic energy forcefield 
E / / i s  performed over the set of independent dihedral 
angles, ¢, which can be used to describe any possible 
configuration of the system. The bounds on these vari- 
ables are enforced by simple box constraints. Finally, 
a set of distance constraints, E~ i8 1 = 1 , . . . ,  N,  which 
are nonconvex in the internal coordinate system, can 
be used to constrain the system. The formulation is 
represented by the following set of equations: 

min 
¢ 

subject to 

E f f  

E~ i8(¢) _< E~ ef j - I , . . . , N  

eL < @ < cU i _ l , . . . , N ¢  

Here, i = 1, . . . ,Arc corresponds to the set of dihe- 



dral angles, ¢i, with eL and cu representing lower 
and upper bounds on these dihedral angles. In gen- 
eral, the lower and upper bounds for these variables 
are set to-Tr and 7r. E~ ey are reference parameters 
for the distance constraints, which assume the form 
of typical square well potential for both upper and 
lower distance violations. The set of constraints are 
completely general, and can represent the full combi- 
nation of distance constraints or smaller subsets of the 

defined restraints. The forcefield energy function, Elf 
can take on a number of forms, although the current 

work employs the ECEPP/3  model (N6methy et al., 
1992). 

The folding formulation represents a general non- 

convex constrained global optimization problem, a 
class of problems for which several methods have been 
developed. In this work, the formulations are solved 
via the aBB deterministic global optimization ap- 

proach, a branch and bound method applicable to the 
identification of the global minimum of nonlinear opti- 
mization problems with twice-differentiable functions 
(Adjiman et al., 1998a,b, 2000; Klepeis et al., 1999; 
Klepeis and Floudas, 1999; Floudas, 2000; Klepeis 
et al., 2002). A converging sequence of upper and 
lower bounds is generated, with the upper bounds 
on the global minimum obtained by local minimiza- 
tions of the original nonconvex problem, while the 
lower bounds belong to the set of solutions of the 
convex lower bounding problems that are constructed 
by augmenting the objective and constraint functions 
through the addition of separable quadratic terms. 

In addition to identifying the global minimum en- 
ergy conformation, the global optimization algorithm 

provides the means for identifying a consistent ensem- 
ble of low energy conformations (Klepeis and Floudas, 
1999; Klepeis et al., 2003b,c). Such ensembles are use- 
ful in deriving quantitative comparisons between the 
free folding and template-constrained simulations. In 

this way, the complications inherent to the specifica- 
tion of an appropriate reference state are avoided be- 
cause a relative probability is calculated for each se- 
quence studied during this stage of the approach. The 
relative probability for template stability, Ptemp, can 
be found by summing the statistical weights for those 
conformers from the free folding simulation that re- 

semble the template structure (denote as set temp), 
and dividing this sum by the summation of statistical 
weights for all conformers from the free folding simu- 

lation (denote as set total). 

E~et~mp exp[-~E~] 
Ptemp }-~-~tot~l exp[-flE~] 

Here exp[-flEi] is the statistical weight for conformer 
i. For compstatin, the template constrained optimiza- 
tions required approximately six CPU hours on a sin- 
gle P-III 600 MHz processor running Linux. The free 
folding optimizations were run on a cluster of 64 P- 
III 600 MhZ processors running Linux, and the paral- 
lelized branch-and-bound algorithm utilized about 4-5 
wallclock hours per sequence. 

Peptide Synthesis and Complement In- 
hibition Assays 

Peptide synthesis and purification was performed as 
described previously (Sahu et al., 1996, 2000). In- 
hibitory activity of compstatin and its analogs on the 
complement system was studied by measuring their 
effect on the classical pathway. Complement activa- 
tion inhibition was assessed by measuring the inhi- 
bition of C3 fixation to OVA-anti-OVA complexes in 
normal human plasma. Briefly, microtiter plates were 

coated with ovalbumin, followed with anti-ovalbumin 
antibodies and normal human plasma (generally di- 

luted 1/160) in the presence or absence of peptides di- 
luted in gelatin Veronal buffer2+ (VBS, 0.1% gelatin, 
0.5 mM MgC12, 2 mM CaC12). Complement activa- 
tion was assessed using a goat anti-human C3 HRP 
conjugated antibody to detect deposition of activated 
C3b/iC3b. Color was developed by adding peroxidase 
substrate and optical density measured at 405 nm. 
The concentration of the peptide causing 50% inhi- 
bition of C3b/iC3b deposition was taken as the IC50 
and used to compare the activities of various peptides. 
All peptides were analyzed at least three times. 

Computational 
tal Findings 

and Experimen- 

In  si l ico Sequence Selection 

The first stage of the design approach involves the 
selection of sequences compatible with the backbone 
template through the solution of the ILP problem. 
The formulation relies only on the alpha-carbon co- 

ordinates of the backbone residues, which were taken 
from the NMR-average solution structure of comp- 
statin (Morikis et al., 1998). 



A full computational design study from compstatin 
would result in a combinatorial search of 2013 
8 x 1016 sequences. However, in light of the results 

of the experimental studies of the rationally designed 
peptides, a directed, rather than full, set of computa- 
tional design studies were performed. First, since the 
disulfide bridge was found to be essential for aiding 
in the formation of the hydrophobic cluster and pro- 
hibiting the termini from drifting apart, both residues 
Cys 2 and Cys 12 were maintained. In addition, because 

the structure of the type-I/3 turn was not found to be 
a sufficient condition for activity, the turn residues 
were fixed to be those of the parent compstatin se- 
quence; namely GlnD-Asp6-TrpT-GlyS. In fact, when 

stronger type I /3  sequences were constructed, which 
was supported by NMR data indicating that  these 
sequences provided higher /3 turn populations than 
compstatin, these sequences resulted in lower or no 
activity (Morikis et al., 2002). Therefore, the further 
stabilization of the turn residues, which would likely 
be a consequence of the computational peptide de- 
sign procedure, may not enhance compstatin activity. 
This is especially true for Trp 7, which was found to be 

a likely candidate for direct interaction with C3. For 
similar reasons, Val 3 was maintained throughout the 

computational experiments. 

After designing the compstatin system to be con- 
sistent with those features found to be essential for 
compstatin activity, six residue positions were selected 
to be optimized. Of these six residues, positions 1, 4, 
and 13 have been shown to be structurally involved 
in the formation of a hydrophobic cluster involving 

residues at positions 1, 2, 3, 4, 12, and 13, a nec- 
essary but not sufficient component for compstatin 
binding and activity. The remaining residues, namely 

those at positions 9, 10 and 11, span the three po- 
sitions between the turn residues and the C-terminal 
cystine. For the wild type sequence these positions are 
populated by positively charged residues, with a total 
charge of +2 coming from two histidine residues and 
one arginine residue. 

Based on the structural and functional character- 
istics of those residues involved in the hydrophobic 
cluster, positions 1, 4 and 13 were allowed to select 
only from those residues defined as belonging to the 
hydrophobic set (A,F,I,L,M,V,Y). In addition, this set 
included threonine for position 13 to allow for the se- 
lection of the wild type residue at this position. In 
positions 9, 10 and 11 all residues were allowed, ex- 
cluding cystine and tryptophan. Table 2 summarizes 

the preferred selection at each position according to 
the composition of the lowest lying energy sequences. 
It should be noted that  if t ryptophan (W) is allowed 
to be in the aforementioned hydrophobic set, then se- 
quences with t ryptophan (W) in position 4 and alanine 
(A), or phenyl (F), or t ryptophan (W) in position 9 

are predicted among the most promising ones by the 
proposed novel in silico sequence selection framework 
(position 1 is I, position 10 is R and position 13 is T, 
as in set D of Figure 1). 

The sequence selection results exhibit several im- 
portant  and consistent features. First, position 10 
is dominated by the selection of a histidine residue, 
a result that  directly reinforces the composition of 
the wild type compstatin sequence. In contrast, posi- 
tion 11 is found to have the largest variation in com- 
position, with both polar, hydrophobic and charged 
residue being part of the set of optimal low lying 
energy sequences. At position 9, a subset of those 
residues chosen for position 11, are selected. When 
considering those positions involved in the hydropho- 
bic cluster of compstatin, it is evident that  valine pro- 
vides strong forces at each position. However, the re- 
sults for position 4 contrast with those at position 1 
and 13 in that  tyrosine, rather than valine, is the pre- 

ferred choice for the lowest as well as a large majority 
of the low lying energy sequences. 

It should be noted that  because the compstatin 
structure was determined via NMR methods, there 
exists an ensemble of 21 structures for which alter- 
native templates could be derived. These alternative 
templates were studied as a means of incorporating 
backbone flexibility into the sequence selection pro- 
cess, and the results proved to be consistent and in 
qualitative agreement with those for the average tem- 
plate structure. 

F o l d  s t a b i l i t y  a n d  s p e c i f i c i t y  

t i o n s  f o r  s e l e c t e d  s e q u e n c e s  

c a l c u l a -  

Based on the sequence selection results a handful of 
optimal sequences were constructed for use in the sec- 
ond stage of the computational design procedure. Fig- 
ure 1 presents that  peptides studied which are further 
classified into sets A, B, C and D. 

M u t a t i o n s  in Set  A: For all sequences fur- 
ther characterized via the fold stability calculations, 
residue 10 was set to histidine, a prediction consistent 
with the composition of the parent peptide sequence. 
Moreover, since the variation in the residue compo- 



sition for position 11 is predicted to be rather broad, 

position 11 was restricted to be arginine in subsequent 

sequences (except Set C). The first set of sequences 

was constructed to better analyze the effect of the ty- 

rosine substitution at position 4, with the justification 

to focus on this substitution being an at tempt to as- 

sess the unusually dominant selection of tyrosine at 

position 4. The consistent element of the sequences 

belonging to set A is the assignment of tyrosine to 

position 4. To further isolate any substitution with 

respect to the parent peptide sequence, sequences A1, 

A2 and A3 assume the parent compstatin composition 

of histidine at position 9. Moreover, sequence A1 re- 

sembles the parent peptide sequence at positions I and 

13 as well, while sequences A2 and A3 are constructed 

so as to add the valine substitutions incrementally; 

first at position 13 for sequence A2 and then at both 

positions 1 and 13 for sequence A3. Sequences A1 

and A3 exhibit substantial increases in fold stability 
over the parent peptide sequence (Table 1). These 

results highlight the significance of the tyrosine sub- 

stitution at position 4, and may help to further clarify 

certain features of the proposed binding model for the 

compstatin-C3 complex (Morikis et al., 2002). 

M u t a t i o n s  in Set B: To further explore the com- 

bination of position 9 substitutions with the presence 

of tyrosine at position 4, several additional sequences 
were constructed. The B1 and B2 constructions repre- 

sent a reduction in the number of simultaneous muta- 

tions from the parent peptide sequence. In effect these 

two sequences correspond to the individual combina- 

tions of sequence A2 with both sequence A4 and se- 

quence A5 such that position 1 is taken from sequence 

A2, while position 9 matches the substitutions incor- 

porated into sequences A4 and A5. An additional se- 

quence, B3, is formulated as a combination of sequence 

A3 and the position 9 substitution of histidine to tryp- 

tophan as taken from control sequence X2. Each of 

the three designed sequences demonstrate significant 
increases in fold stability relative to the original comp- 

statin sequence (Table 1). 

M u t a t i o n s  in Set C: Another set of two additional 

sequences were identified with the only difference be- 

tween them being the specification of the residue at 

position 4. For sequence C1, tyrosine was assigned 

to position 4, while sequence C2 was selected to have 

valine at this position. For both sequences, threonine 
was specified at positions 9 and 11, while positions 1 

and 13 were set to isoleucine and valine, respectively. 

The choice of isoleucine for position 1 helps to reduce 

the number of simultaneous changes from the parent 

peptide sequence. 

For both sequence C1 and sequence C2 the stabil- 

ity calculations indicate a substantial decrease in sta- 

bility when compared to the parent peptide sequence. 

Nevertheless, between sequence C1 and C2 there is 

strong evidence for the preference of tyrosine at po- 
sition 4. This prompted closer examination of the 

residue selections at position 9 and position 11, the 

two remaining positions not involved in the hydropho- 

bic clustering of compstatin. In particular, the speci- 

fication of threonine at both positions 9 and 11 results 

in a negative net charge balance due to the aspartate 

at position 6, especially because of the replacement of 

arginine by threonine at position 11. This validates 

further the placement of arginine at position 11 for 

the previous set of sequences (Table 1). 

M u t a t i o n s  in Set D: The final set of sequences 

was designed in accordance with additional reductions 

in the number of simultaneous mutations relative to 

the parent peptide sequence. Specifically, sequence 

D1 and sequence D2, resemble sequence B1 and se- 
quence B2 with threonine instead of valine as the C- 

terminal residue, a specification matching the compo- 

sition of the original parent peptide sequence. Both 

sequences provide significant increases in fold stabil- 

ity. For sequences D1 and D2 the differences with 

respect to the parent peptide sequence are isolated 

to the residue before and after the/3 turn. Both the 

position 4 tyrosine and position 9 phenylalanine sub- 

stitutions provide enhancements to the fold stability 

of the compstatin structure, and represent unforeseen 

and unpredictable enhancements over the parent pep- 

tide sequence (Table 1). 

Experimental Validation 

A number of the designed sequences presented above 

were constructed and tested experimentally for their 

activity, without performing NMR-based structural 

analyses. Since the ultimate goal is to enhance the 

functional activity of compstatin, such achievements 

must be complemented and verified through exper- 

imental studies. Rather than performing massive 

chemical synthesis of peptide analogs, a few selected 

analogs were tested against the theoretical prediction. 

Table 1 shows the experimentally measured percent 
complement inhibition and peptide D1 is currently 



the most active compstatin analog available. The 
C2A/C12A analog is inactive (Morikis et al., 2002) 
and has been used as a negative control for the inhi- 
bition measurements. Table 1 summarizes the results 
from the inhibitory activity experiments in compari- 
son to the theoretical fold stability results. 

Qualitatively, the predicted increases in fold stabil- 
ity and specificity are in excellent agreement with the 
results from the experimental studies. This is espe- 
cially significant given that the predictions correspond 
more directly to fold stability enhancements while the 
experiments directly test inhibitory function. 

The comparison between experimental and com- 
putational results indicate that the most active comp- 
statin analogs are sequences D1 and B1, as suggested 
by the optimization study. The common characteristic 
of these two sequences is the substitutions at positions 
4 and 9, the two positions flanking the t3 turn residues, 
Gln5-Asp6-TrpT-GlyS. In particular, the combination 
of tyrosine at position 4 and alanine at position 9 are 
key residues for increased activity and lead to an 16- 
fold improvement over the parent peptide compstatin 
(see Table 1). 

Conclusions and Future Work 

A novel computational structure-activity based 
methodology for the de novo design of peptides and 
proteins was presented. The method is completely 
general in nature, with the main steps of the approach 
being the availability of NMR-derived structural tern- 
plates, combinatorial selection of sequences based on 
optimization of parameterized pairwise residue in- 
teraction potentials and validation of fold stability 
and specificity using deterministic global optimiza- 
tion. The optimization study led to the identification 
of many active analogs including a 16-fold more active 
analog, as validated through immunological activity 
measurements. These results are extremely impressive 
and represent significant enhancements in inhibitory 
activity over analogs identified by either purely ratio- 
nal or experimental combinatorial design techniques. 
The work provides direct evidence that an integrated 
experimental and theoretical approach can make the 
engineering of compounds with enhanced immunolog- 
ical properties possible. 
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Table 1: Sequence and experimental relative activity of compstatin analogs with improved activity that were 
identified by rational design, experimental combinatorial design, and the novel in silico de novo protein design 
approach. Boldface is used to indicate that amino acids were fixed. Brackets indicate the disulfide bridge. 
Relative complement inhibitory activity is derived from IC5o measurements. 

Peptide Sequence Relative activity Reference 
Compstatin 
Ac-Compstatin 
Ac-H9A 
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A c -  I [ C V V Q D W G H H R C ] T -  NH2 
A c -  I [ C V V Q D W G A H R C ] T -  NH2 

A c -  L [ C V V Q D W G W H R C ] G -  NH2 
A c -  V [ C V Y Q D W G F H R C ] V -  NH2 
A c -  V [ C V Y Q D W G A H R C ] V  - NH2 
A c -  I [ C V Y Q D W G F H R C ] V  - NH2 
A c -  I [ C V Y Q D W G A H R C ] V -  NH2 
A c -  I [ C V Y Q D W G A H R C ] T  - NH2 
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Table 2: Preferred residue selection for positions 1, 4, 9, 10, 11 and 13 of compstatin, as compared to the wild 
type sequence. Only residues with greater than 10 % representation among the lowest lying energy sequences 
are considered optimal. Provided in decreasing order. 

Position Wild type Optimal 
1 I A,V 
4 V Y,V 
9 H T,F,A 
10 H H 

11 R T,V,A,F,H 
13 T V,A,F 

I I I cIvIvIQIDIwIGIHIHIRIcITI Compstatin 
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Figure I: Set of sequences tested for fold stability. 
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