
 
  

                                                          

 

MODELING AND SIMULATION IN 2004: AN 
INDUSTRIAL PERSPECTIVE  

Herbert Britt*, Chau-Chyun Chen, Vladimir Mahalec and Andrew McBrien 
Aspen Technology, Inc. 
Cambridge, MA 02141 

Abstract 

The use of advanced modeling and simulation tools for both design and operations has long since 
become routine in industry, and their development has been well documented at previous FOCAPD 
meetings. Nevertheless many long-existent needs and new requirements are not met, and both the 
enabling technologies and application of these tools continues to evolve. This paper provides an 
industrial perspective on the current state of modeling and simulation technology, with an emphasis on 
recent developments, emerging technologies, and new industrial applications that promise to have a 
significant impact on industrial practice and economic effectiveness, as well as gaps requiring further 
research. Three main subject areas are covered. The first is physical property modeling, the technology 
for representing the properties and phase behavior of material. The second is systems and architectures 
for modeling and simulation. The third is design environments that enable effective use of models. 
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The topics in this paper have been the focal point of 
FOCAPD meetings since their inception. Many of the 
technologies discussed here were presented at FOCAPD 
meetings in the 1980s, with an expectation of rapid 
adoption. In fact, with the exception of steady-state 
simulation, adoption has been relatively slow and limited, 
and only recently has progress been made on unified 
environments for the development and application of 
consistent models throughout the plant lifecycle. 

In this paper, we present our perspective on the 
current state of modeling and simulation technology and 
related applications. We discuss recent developments, 
industrial applications that can now be successfully 
addressed, areas where more work is needed, and our 
thoughts on future directions. 

Physical Property Modeling 

From pharmaceuticals and polymers to extraction and 
refining, industrial processes hinge upon the physical and 

chemical properties of materials. Without accurate, 
consistent thermophysical properties, engineers cannot 
reliably simulate, compare, design, optimize, and estimate 
the cost of industrial processes and new products. 

Most industrial processes involve complex mixtures 
of chemicals, i.e., products, byproducts, isomers, solvents, 
catalysts, entrainers, and more. Compositions never 
remain constant. They change with variations in 
feedstocks, operating conditions, and product 
specifications. Even small changes in product properties 
can have critical processing and product quality 
consequences. Without access to reliable physical property 
models and data, companies cannot take full advantage of 
their process and economic models to reduce capital and 
operating costs, meet regulatory requirements, and achieve 
product quality goals.  

Although large physical and chemical property 
databases exist, they cannot supply all the data industrial 
enterprises require. The best approach is to leverage 
databases with powerful, consistent, first principles 



  
 
modeling tools that interpolate, extrapolate, and predict 
properties from laboratory data or validated parameters.  

The ability to generate consistent property data with 
first principles models delivers many benefits. Companies 
that start with accurate, consistent data develop better 
products, processes and designs and reduce time to 
market. They can rapidly assess the performance and 
manufacturability of new products. They can run virtual 
tests for dangerous chemical reactions, design new product 
grades, and optimize processes and equipment during 
design and operation. Equally important, companies that 
standardize on property models and data ensure 
consistency throughout the process asset lifecycle.  

Traditional methods for physical property modeling 
are well understood (Chen and Mathias, 2002) and will 
not be considered in this paper. Instead, we will briefly 
consider recent and current developments in six areas that 
we believe will have a significant impact on the practice of 
physical property modeling over the next several years. 
Collectively, these developments extend the range of 
systems and properties that can be effectively modeled in 
industrial practice, given the data available.  

Achievements in Modeling Electrolyte Systems 

The presence of ionic species and the related solution 
chemistry make modeling the properties and phase 
behavior of electrolyte systems unique. However, progress 
over the past two decades enables rigorous modeling of 
chemical processes with electrolytes. Of particular 
significance is the continuing development of the 
electrolyte NRTL (eNRTL) model, a semi-empirical Gibbs 
energy expression that has been developed and proven for 
aqueous strong and weak electrolytes (Chen et al., 1982) 
and ionic liquids (Belveze et al., 2004). Recently the 
model has been extended for aqueous organic electrolytes 
(Chen et al., 2001) and generalized for mixed-solvent 
electrolytes (Chen and Song, 2004), including electrolytes 
in non-aqueous solvents. The eNRTL model has evolved 
into a comprehensive thermodynamically consistent 
framework for modeling virtually all types of electrolyte 
systems encountered in industry today.  

The eNRTL model contains two contributions: one 
from local interactions that exist in the immediate 
neighborhood of any species, and the other from the long-
range ion-ion interactions that exist beyond the immediate 
neighborhood of an ionic species. The model uses the 
segment-based NRTL expression (Chen, 1993) to account 
for the local interactions and the unsymmetric Pitzer-
Debye-Hückel (PDH) formula (Pitzer, 1980) to account 
for the long-range interactions 

Similar to the NRTL model for chemical systems, the 
eNRTL model is a correlative model, not predictive. 
While there are no adjustable parameters in the PDH term, 
the local composition term requires binary parameters that 
must be determined from experimental data before the 
model can be reliably used to interpolate and extrapolate 
phase behavior of multi-component systems. Another 

consideration is that the solution chemistry must be 
accurately represented in terms of ionic species and 
association / dissociation reactions. 

Figures 1 and 2 show the ability of the eNRTL model 
to represent aqueous organic electrolytes and mixed-
solvent electrolytes, respectively. 
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Figure 1.   Water activity vs. electrolyte 
concentration for various aqueous sodium 

carboxylates and model representation (from 
Chen et al., 2001). 
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Figure 2.   The best fit with the eNRTL model 
and the experimental data for potassium 

chloride in methanol-water mixtures (from 
Chen & Song, 2004).  

In spite of the success in modeling electrolyte 
thermodynamics, there are a number of important areas 
that require new developments and innovations. For 
example, more high quality experimental data are needed 
to identify binary interaction parameters. A critical related 
issue is the proper identification and scientific validation 
of the actual chemical species that exist as a result of the 
electrolyte solution chemistry. The arbitrary introduction 
of nonexistent chemical species that are sometimes created 
to fit and reconcile experimental data (called the 
“speciation approach”) puts into question the validity of 
the entire compilation of interaction parameters.  

A strong need remains unfilled for a predictive model 
for electrolyte thermodynamics. Recent attempts to extend 
UNIQUAC and UNIFAC to model electrolyte solutions 



  

are less than satisfactory (Iliuta et al., 2002). Proper 
molecular insights and theoretical rigor are yet to be 
structured into the UNIQUAC/UNIFAC equations to 
account for the presence of ions. Other un-met needs 
include engineering models for viscosity and densities of 
electrolyte solutions (Gorensek et al., 2003).  

Perhaps the biggest opportunity lies in the 
development and compilation of public databanks for 
electrolyte solution chemistries and model interaction 
parameters. This effort would require skilled 
thermodynamicists to take measurements, compile, 
review, and selectively include experimental data for use 
in the determination of interaction parameters. Such a 
public, validated databank would be of tremendous, 
lasting value.  

Advances in Polymer Process Modeling 

Polymer process modeling is another area in which 
there have been tremendous accomplishments. Merely ten 
years ago, few engineers would have foreseen the 
possibility of rigorously modeling polymer processes with 
conventional process simulators. When heat and mass 
balance calculations were needed, polymers were often 
approximated as heavy hydrocarbons. When engineers 
attempted to model polymerization chemistries, they either 
had to limit their efforts to modeling only single-phase 
reactions or use polymer thermodynamic models with 
composition-dependent interaction parameters that offered 
little extrapolation capability. Lack of experimental data 
and engineering models for polymer thermodynamics 
gravely limited the value of early polymer modeling 
efforts. Consequently, these models offered only limited 
value in describing the behavior of industrial polymers, 
especially for multiple phase reaction systems. Typically, 
even these simple reactor models could not be integrated 
into process simulators for process studies. 

Today, proven polymer thermodynamic models, such 
as the polymer NRTL activity coefficient model of Chen 
(1993) and the PC-SAFT EOS of Gross and Sadowski 
(2002), with composition-independent model parameters, 
have become available for use in process simulators to 
allow for interpolation and extrapolation of phase 
behavior. Rigorous mathematical equations that describe 
the development of polymer molecular structure are an 
integral part of unit operation models (reactors, mixers, 
flashes, etc.) to allow for computation and tracking of 
polymer molecular structure and the corresponding 
product quality. Numerous polymerization kinetic models 
have been integrated into commercial simulators. Multi-
phase equilibrium calculations are an integral part of unit 
operation models including reactor models.  

Central to the task of polymer modeling is the ability 
to compute and track the development of molecular 
structure such as polymer chain length, polymer molecular 
weight distribution (MWD), copolymer composition, 
polymer particle size distribution, etc. Fig. 3 shows the 
representation of MWD using a four-site Ziegler-Natta 
polymerization model that computes the MWD from the 

reaction mechanism, reaction rate constants, and reactor 
conditions.  
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Figure 3.   Representative MWD and 
deconvolution results indicating that a four-site 

kinetic model is sufficient (from Khare et al., 
2004). 

Today’s process simulators provide innovative 
modeling capabilities to address additional polymer 
modeling issues, i.e., mass transfer and structure-property 
relationship. Mass transfer plays a more important role in 
polymer systems than in conventional chemical systems. 
For example, the addition polymer propagation reaction 
rate is controlled by the mass transfer rate of monomers 
through the viscous polymer melt. Polymer producers 
define product quality in terms of specific end-use 
properties rather than polymer molecular structure. For 
example, polyolefin producers are concerned about Melt 
Index (MI) or Melt Flow Ratio (MFR). Therefore, it is 
essential that polymer modelers find ways to relate end-
use properties to polymer molecular structure. 

Process simulators are now routinely used to model 
practically all major polymer production processes. 
Engineers and chemists use process models to help them 
develop new catalysts, design new processes, monitor and 
control polymer production and grade transitions, and 
design new product grades. Numerous publications have 
appeared recently that describe achievements in polymer 
process modeling. Examples include modeling of low-
density polyethylene tubular reactor process (Bokis et al., 
2002), modeling of gas-phase polypropylene processes 
with stirred-bed reactors (Khare et al., 2004), modeling of 
nylon-6 polymerization processes (Seavey et al., 2003), 
modeling of slurry high-density polyethylene processes 
(Khare et al., 2002), etc. Chen (2002) lists some additional 
success stories reported by industry. 

Polymer process models are increasingly used online 
to serve as monitoring systems and to improve existing 
control systems (Froisy et al., 1999; Schmidt and Mähling, 
2001). This is due to advancements in integrated process 
modeling systems and on-line state estimation technology 
for large-scale first principle models (Papastratos et al., 
1999). It is now straight forward to build and validate a 
steady state polymer process model, to convert the steady 



  
 
state model to a dynamic one that incorporates controllers, 
to bring the steady state model online as online calculators 
for process monitoring purposes, to bring the dynamic 
model online and have the model state variables validated 
with real time data, to apply the dynamic model on line as 
look-ahead predictors, to apply the dynamic model as 
operator training simulators, etc. The online validated 
dynamic model can then be used to generate linear state-
space models to be used with model predictive controllers. 

While polymer process modeling is becoming widely 
used, innovations in polymer process modeling technology 
are needed to address unsolved challenges and new 
opportunities resulting from the inherently complex 
polymer chemistry and physics. 

One problem that has drawn attention recently is the 
computation of phase equilibrium for polymer systems 
while taking into account the distribution of polymer 
molecular weight distribution in various phases (See Fig. 
4). Industrial polymers are polydisperse. After the feed 
polymer phase separates, the molecular weight distribution 
of polymer in the light phase will be different from that in 
the heavy phase. Recently, Behme (2003) introduced an 
efficient algorithm for solving two-phase (VL and LL) 
phase equilibrium calculations for polymer systems with 
molecular weight distribution. Research is on-going to 
enhance robustness of the algorithm. 

TP Flash

Phase II Stream

Phase I Stream

Feed Stream

MWDF

MWDI

MWDII
TP Flash

Phase II Stream

Phase I Stream

Feed Stream

MWDF

MWDI

MWDII

 

Figure 4.   A two-phase TP flash for a mixture 
containing a polydisperse polymer (from 

Behme et al., 2003). 

Another important area is the modeling of polymer 
solution viscosity. Recent works of Song et al. (2003) and 
Novak (2003) have provided useful models that accurately 
correlate available viscosity data for polymer systems. 
However, it is not known whether such models provide 
the predictive power to extrapolate beyond available data 
ranges or simple polymer-solvent systems. Fig. 5 shows 
the correlation of viscosity data for a polystyrene-styrene 
solution. 

A critically evaluated database of kinetic parameters 
for polymerization would have tremendous value. The 
industry needs the rate constants as a basis for 
development of high quality polymer process models, but 
individually they lack the resources to measure, regress, 
evaluate and compile the kinetic parameters. The IUPAC’s 

continuing efforts in developing such a database for free-
radical polymerization (Buback et al., 1995 and 2002) are 
an excellent contribution. 
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Figure 5.   Newtonian viscosity of polystyrene-
styrene solutions at T = 333.15 (K) and Mw = 

366000 (g/mol) (from Song et al., 2003). 

Modeling in the Pharmaceutical Industries 

Process modeling is not practiced extensively in the 
pharmaceutical industry except for solvent recovery and 
emission reduction studies. Recently we identified a new 
application area where physical property modeling can 
bring much benefit to the pharmaceutical industry. The 
industry deals with hundreds of new drug candidates each 
year. Chemists and engineers need to develop process 
recipes for these new molecules and the recipes often 
involve multiple reaction steps and separation steps such 
as crystallization or extraction.  

A critical consideration in the pharmaceutical process 
design is the choice of solvents and solvent mixtures, from 
among hundreds of typical candidates, for reaction, 
separation, and purification (Frank et al., 1999; Kolar et 
al., 2002). Phase behaviors, such as solubility, of the new 
molecules in solvents or solvent mixtures weigh heavily in 
the choice of solvents in the recipe development. Little if 
any experimental data are available for the new molecules. 
Although limited solubility experiments may be taken as 
part of the trial and error process, solvent selection is 
largely dictated by researchers’ preferences or prior 
experiences. Predictive models that allow for computation 
of phase behavior are desperately needed. Existing 
solubility parameter models such as that of Hansen 
(Hansen, 1999) offer little predictive power. Group 
contribution models such as UNIFAC (Fredenslund et al., 
1975) are also inadequate due to missing functional groups 
and the collapse of functional group additivity rule with 
large, complex molecules.  

We have developed a NRTL-based segment 
contribution activity coefficient (NRTL-SAC) model for 
fast, qualitative estimation of solubility of organic 
nonelectrolytes in common solvents and solvent mixtures. 
Conceptually, the approach suggests that one account for 
the liquid nonideality of mixtures of small solvent 
molecules and complex pharmaceutical molecules in terms 
of a few pre-defined conceptual segments with pre-



  

determined binary interaction characteristics. Examples of 
the conceptual segments are hydrophobic segment, polar 
segment, and hydrophilic segment. The number of 
conceptual segments for each molecule, solvent or solute, 
is not determined from molecular structure, but rather 
from regression of available experimental phase 
equilibrium data for systems that contain the molecule. 
The molecular make-up in terms of these conceptual 
segments becomes molecular descriptors for the solvent 
and solute molecules: hydrophobicity X, polarity Y- and 
Y+, and hydrophilicity Z. In practice, we first develop a 
molecular descriptor databank for common solvents. Then 
we determine molecular descriptors for new drug 
molecules from the limited experimental data that may 
become available.  

Impact of Molecular Simulation 

With the ever-increasing computing speed, molecular 
simulation has evolved dramatically over the past twenty 
years. It has impacted process modeling in a number of 
ways: 1) help elucidate fundamental physical and chemical 
interactions and support development of new theories and 
models, 2) complement experiments for data generation 
especially for systems that are not readily amenable to 
existing experimental procedures, and 3) provide an 
alternative approach to extend and improve on existing 
applied thermodynamic models (Chen and Mathias, 2002). 

While we do not foresee use of rigorous ab initio 
calculations any time soon for process modeling and 
simulation, we see other benefits from molecular 
simulation. One example is the recent use of the COSMO-
SAC quantum mechanical model (Lin and Sandler, 2002) 
for the prediction of activity coefficients of highly non-
ideal chemical systems. The model computes 
thermodynamic properties in three steps: 

Once the molecular descriptors are identified for 
solvent and solute molecules, the model offers a practical 
tool for chemists and engineers to qualitatively estimate 
activity coefficients and compute solubilities in 
pharmaceutical process design (Bakken et al., 2003). The 
model is: 

R
I

C
II γγγ lnlnln +=  (1) 

1. The screening charges originating from the 
solvation of the solute molecule are 
determined from quantum mechanical 
calculations with the “Conductor-like 
Screening MOdel” (COSMO). 

where the combinatorial term, γI
C is computed from the 

Flory-Huggins term for the entropy of mixing and the 
residual term, γI

R, is set equal to the local composition (lc) 
contribution of the  polymer NRTL model (Chen, 1993).  2. The screening charge density is discretized 

into finite surface elements to produce the σ-
profile, which represents the number of 
surface elements with a given charge density. 

As an example, Fig. 6 shows the calculated 
solubilities vs. the experimental solubilities for 
hydrocortisone in 11 different solvents at 298.15 K. The 
chemical structure of hydrocortisone is represented by the 
molecular descriptors, (X, Y-, Y+, Z), of (0.401, 0.970, 
1.248, 0.611).  

3. The σ-profile enables prediction of the excess 
Gibbs energy of any mixture and the activity 
coefficients of various components through 
exact statistical thermodynamics.  
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The activity coefficient of a molecule i in solution S is 
determined solely from the σ-profiles of the component 
molecules and the surface segment interactions 

[ SG
SimimSmi

i
Si

m

p
a
A

/
eff

/ ln)(ln)(ln)(ln γσσσγ
σ

+Γ−Γ= ∑ ]  (2) 

where  is the Staverman-Guggenheim combinatorial 
activity coefficient of component i in solution S, and 

 is the activity coefficient a surface segment with 

charge density 

SG
Si /γ

)( mj σΓ

mσ  in a solution j.  
While COSMO-SAC is generally less accurate than 

the UNIFAC group contribution method, COSMO-SAC 
has proven to be a viable predictive model that is 
complementary to UNIFAC, especially for systems where 
UNIFAC methodology fails either due to missing 
UNIFAC groups or inadequacy with the functional group 
additivity rule. The application of COSMO-SAC requires 
a library of σ-profiles for each molecule of interest. Such a 
library could be as valuable to industry as the DIPPR or 
UNIFAC databanks. We strongly encourage its 
development. 

Figure 6.   Hydrocortisone Solubility in 11 
Different Solvents at 298.15 K (from Chen and 

Song, 2004). 

NRTL-SAC works well not only for small molecules, 
but also for oligomers and polymers. We are extending the 
NRTL-SAC model to cover organic salts so that the model 
can be applied to all pharmaceutical molecules.  
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Figure 7.   Comparison of TXY phase diagram prediction results for water - 1,4-dioxane at 760 mmHg with 
NRTL (left), UNIFAC-Dortmund (mid-left), UNIFAC (mid-right) and COSMO-SAC (right). NRTL practically 
duplicates the experimental data. All four models correctly represent the minimum azeotrope, but UNIFAC 

incorrectly predicts a liquid phase split (from Oba et al., 2003). 

Opportunities with Cellular Process Modeling 

The emergence of bioinformatics promises an 
unprecedented volume and complexity of data. Such 
biological data reflect highly complex relationships in 
multiple scales, from gene sequence, to proteomics, to 
protein-protein interaction, to sub-cellular and cellular 
systems, to morphology, physiology, to whole organisms. 
The exploitation of this biological data has become a new 
challenge and a dramatic opportunity for drug discovery 
and many other fields. In-silico biology (first principles 
modeling of biological systems) will become a technology 
driver to transform this biological data into knowledge for 
drug discovery R&D and personalized medicine.  

Among potential benefits from in-silico biology are 
knowledge discovery and management, target validation, 
and lead optimization. The human genome encodes the 
complete set of all possible pharmaceutical targets. Virtual 
cell simulators provide the mathematical modeling 
framework to capture human knowledge of metabolic and 
signaling pathways and facilitate biological simulations 
with predictive power to assist in drug discovery.  

Biological cells can be characterized as a living 
chemical plant, with chemical components, reaction and 
signal pathways, material and energy flux, etc. Cellular 
“chemical plant” behaviors are subject to various 
physiochemical and biological constraints such as material 
balance, electroneutrality, reaction stoichiometry, 
thermodynamic constraints, flux capacity constraints, 
kinetic and regulatory constraints.  

Development of virtual cell simulators, as a 
computational framework for whole cell modeling and 
simulation, are at its infancy and it promises to be a new 
world for human imagination and creativity. We expect 
such a simulator would facilitate modular and iterative 
development and validation of biological cell models 
based on a hierarchical assembly of metabolites, proteins, 
genes, metabolic networks, cellular pathways, enzymatic 
reaction and transport mechanisms, gene circuit, 

regulatory networks, intracellular organelles and 
structures, etc.  

Role of Property and Process Models in Product Design 

The chemical industry has experienced a rapid shift 
from commodity chemicals into specialized chemical and 
biochemical products (Cussler and Wei, 2003). 
Commodity chemicals are increasingly produced in the 
developing countries while chemical producers in the 
developed countries must move to specialized chemical 
products that compete on performance and quality rather 
than manufacturing cost. 

This shift creates new demands, requirements, and 
opportunities for process modeling technologies and tools: 

- Instead of solving large-scale systems of 
nonlinear equations for simulating 
continuous, highly integrated petrochemical 
plants, specialty chemical producers are 
interested in quickly and rigorously modeling 
the dynamic behavior of relatively small 
batch reactors with overhead condensers.  

- Instead of using process models for the 
purpose of heat and mass balance calculations, 
polymer producers use models to design new 
product grades. These models help them 
understand how polymerization chemistries, 
process recipes, and equipment design affect 
the development of polymer molecular 
structure. Such molecular structure and 
resulting product properties determine the 
quality and grades of the product they sell.  

- Instead of equation-of-state models for dew 
point and bubble point calculations, lubricant 
producers require predictive viscosity models 
for solvent-polymer additive mixtures as their 
products are sold based on its impacts on 
solution viscosity.  

- Instead of being concerned with fluid 
properties such as vapor pressure, heat 



  

capacities and densities, medicinal chemists 
are interested in solubilities at physiological 
conditions for millions of drug-like molecules 
in the compound libraries that they screen in 
discovery of lead molecules.  

However, like chemical process design for large-scale 
petrochemical plants, the keys to success in chemical 
product design are: 1) the fundamental understanding of 
underlying chemical and physical phenomena (molecular 
structure, chemical reactions, thermophysical properties, 
mass transfer, etc.) and 2) the molecular insights required 
to develop first principles models to correlate and predict 
chemical and physical properties and phenomena. The 
challenge with product design will be met by coupling 
past achievements in process modeling with new 
knowledge that captures the essence of the fundamental 
driving forces and physical laws that ultimately determine 
the quality of products we discover and design. 

One intriguing area for product design is lead 
molecule discovery and optimization in drug R&D. As a 
result of high throughput screening and combinatorial 
chemistry, a major opportunity emerges with the modeling 
and predictions of absorption, distribution, metabolism, 
excretion and toxicity (ADMET) for candidate drug 
molecules. Current modeling efforts are primarily based 
on neural networks, empirical rules, or group contributions 
that offer little fundamental understanding. Models that 
are based on molecular insights or first principles are 
desperately needed to advance the state-of-the-art, and 
they offer a fertile area of activity for chemical engineers. 

Computer-Aided Molecular Design (CAMD) (e.g. 
Ostrovsky et al., 2003) is a promising area which exploits 
optimization technology (MINLP) similar to that used for 
process design. However, practical industrial application 
has yet to be demonstrated. 

Systems and Architectures for Modeling and 
Simulation 

Historical Perspective 

Early development of process simulation started with 
sequential modular simulation (M.W. Kellog in the late 
1950s) and progressed rapidly towards a capability to 
model complex flowsheets while allowing a significant 
degree of customization—best exemplified by the 
FLOWTRAN system developed by Monsanto (Seader et 
al., 1987). In parallel, an intriguing alternative developed 
in the form of equation-oriented simulation that originated 
in mid 1960s from the work by Sargent and Westerberg 
(1964).   

Sequential modular simulation offered the ability to 
solve the pressing business problem of that era, namely to 
compute heat and material balances, and matured into the 
ubiquitous commercial simulators Aspen Plus® and 
Pro/II®. They offered significant advantages from an end-
user viewpoint, such as: 

- Rapid modeling of large flowsheets, 
- Extensive libraries of physical property 

models, unit operation models and component 
databanks, 

- Limited need to initialize calculations due to 
built-in algorithms to select tear stream and 
initialize models, 

- Modular architecture that enabled custom 
models to be included in the simulation. 

Inherent weaknesses have been: 

- Slow convergence of recycle systems where 
recycle to feed ratio is high, 

- Systems with complex recycles or high 
degree of heat integration are slow and 
difficult to converge and require significant 
expertise, 

- Optimization is limited to a process 
flowsheets with a very small number of 
variables and without complex recycles or 
heat integration. 

The desire to optimize a plant design or find the best 
operating conditions has continued to drive the research in 
equation oriented simulation until today, resulting in a 
large body of work by the students of Sargent and 
Westerberg and in the first equation-oriented simulator, 
SPEEDUP (Pantelides, 1988). SPEEDUP was a primarily 
an equation-oriented model writing environment with the 
ability to solve various types of problems (e.g., steady-
state and dynamic simulation, optimization). This direction 
continued in SPEEDUP’s conceptual successors 
(ASCEND – Carnegie Mellon (Piela et al., 1991), 
gPROMS – Imperial College and PSE (Barton and 
Pantelides, 1994), ACM – AspenTech), which, among 
other things, extended the capabilities to include dynamic 
optimization and parameter estimation.  

In parallel to the “SPEEDUP branch”, an effort began 
at Shell Development in the late 1970s to optimize the 
real-time operation of large, continuous plants (ethylene 
plants & refinery units). The business need to implement 
process optimizers in a profitable manner rapidly oriented 
this effort towards development of an equation-oriented 
simulator that was supported by a library of models. 
Conceptually, this was very similar to the sequential 
modular simulators of that era, the main difference being 
the equation-oriented approach to solution. While 
successful in optimizing plant operation in real time, this 
effort highlighted the strengths and weaknesses of the 
equation-oriented approach, such as: 

Strengths: 
- Ability to converge highly complex 

flowsheets, 
- Rapid convergence from a good starting point, 
- Ability to easily solve flowsheets with any set 

of feasible specifications, not just those on 
“inputs”. 



  
 

Weaknesses: 
- Need for an excellent starting point, which in 

real-time applications was provided by the 
plant, 

- Initial assembly of a large flowsheet required 
that each node of the network be initialized 
separately and that the flowsheet be assembled 
step-by-step, 

- Handling of the phase transitions that take 
place as operating conditions vary requires 
techniques vastly different than those used in 
closed form models for sequential modular 
simulation, 

- Optimization of flowsheets with a large 
number of degrees of freedom could not be 
routinely handled by even the most advanced 
SQP algorithms of the day (Powell, 1978). 

The need for cost-effective commercial real-time 
optimization (RTO) solutions resulted by the early 1990s 
in DMO from the DMC Corporation, an equation-oriented 
system that solved the issues of optimization with a large 
number of degrees of freedom, as well as development of 
models capable of converging through phase transitions. 
However, DMO had not solved the issue of initialization 
and the need to gradually assemble a flowsheet from its 
converged subflowsheets. 

In parallel with the above developments, HyproTech 
introduced a computational architecture for interactive 
simulation that combines sequential modular computation 
with certain elements of the equation oriented approach 
(Svrcek et al., 1984). This easy to use paradigm, delivered 
to the user’s desktop in early PC and Windows versions, 
has created a mass market of everyday engineering users. 

Progress to Date 

AspenTech has been fortunate to assemble personnel 
and technologies that represent all three simulation 
approaches: sequential modular, equation based, and 
interactive. This has enabled us to combine the strengths 
of both the sequential modular and equation based 
approaches (Aspen Plus Version 11): 

- Good initialization of a flowsheet is provided 
by sequential modular iterations through a 
flowsheet, 

- Equation-oriented mode of the models can 
handle multiple phase transitions, such as 
vapor/liquid/liquid and liquid/solid systems, 

- Physical property models provide analytical 
derivatives, 

- The optimization algorithm has been enhanced 
to enable solutions of systems with an order of 
magnitude larger number of degrees of 
freedom, as well as mixed integer NLP 
models, 

- Architectural ideas from ASCEND have 
formed a basis for a new generation equation-

oriented system architecture, capable of 
handling engineering simulations, multi-time 
period models, and mixed integer LP and NLP 
systems, 

- Aspen Custom Modeler® (ACM) can be used 
to develop equation-oriented models (with 
model-specific initialization procedures) to run 
within Aspen Plus or any simulator that 
supports the CAPE- OPEN standard 
(Braunschweig et al., 2000), 

- Degrees of freedom and structural analysis 
tools ensure feasible specifications, and 

- User specifications are similar to those for 
sequential modular simulators. The switch 
between the sequential modular and equation-
oriented algorithms is simply a choice of 
another convergence method. 

Therefore, this integrated architecture represents a 
major step toward the goal of model centricity (consistent 
models and solutions for all applications). There is only 
one version of the plant model because sequential modular 
and equation-oriented models and algorithms are 
implemented within a single architecture. Any changes to 
the process flowsheet are applicable to both modes of 
convergence. 

From a plant lifecycle viewpoint, this means that a 
model that is developed for optimization of plant operating 
conditions can be readily used for plant revamp design.  
Changes to the plant optimization model, dictated by the 
need to accurately represent plant operation, are 
immediately available for process engineering studies.   

Benefits to Process Design and Plant Operation 

The integration of the equation-based and sequential 
modular approaches enables engineers to tackle problems 
that had been unsolvable in practice. Most importantly, the 
same model can be used for many different applications, 
since a user can set specifications on and optimize over 
any feasible set of variables. Some of the business 
problems that can be solved through use of the integrated 
sequential modular / equation-oriented capability are: 

- Optimal sizing to meet design targets for a 
given plant throughput, e.g. size distillation 
towers so that the tray loading is at a 
specified value, or size heat exchangers in a 
network to operate at the target approach 
temperatures, 

- Maintain plant operation at optimum, e.g. 
optimize reactor conversion and associated 
plant operation over time to determine the best 
trade-off between operating and catalyst 
regeneration costs, 

- Prediction of operating conditions at the 
capacity constraint, e.g. what is the feed rate to 
a distillation tower when it operates at a tower 
flooding limit on a given tray, or what is the 



  

feed rate to a furnace at its radiant heat density 
limit? 

- Computation of un-measured equipment 
performance indicators for use in multivariable 
control, e.g. downcomer filling and jet 
flooding for current operating conditions in a 
distillation tower or radiant heat density in a 
furnace.  

Another model centricity milestone was the 
integration of steady-state and dynamic simulation in a 
single, easy to use environment (HYSYS). With this 
integration, operability, control, and safety studies can be 
conducted simultaneously with and using the same 
assumptions as the process design. 

Clearly, we could continue by listing many other 
business problems that now can be solved very 
successfully in a daily practice of the engineering 
community. An example of such applications, which 
exploits the use of equation-oriented modeling for design-
type problems, is presented at this conference by Myers 
and Hanratty (2004),. 

Future Direction for Modeling and Applications 

The ultimate goal of modeling and simulation is to 
enable the process industries to make the best decisions in 
all aspects of enterprise operation (plant design, plant 
operation, supply chain management, regulatory 
compliance, etc.). A fundamental requirement is to enable 
usage of consistent models as decision support tools in all 
of these areas. This business need dictates our views on 
future technology directions. 

We believe that models will become an even more 
ubiquitous, fundamental basis for decision making, largely 
transparent to the user. Better decisions will be enabled 
by: 

- Models being available whenever a decision needs 
to be made, 

- Consideration of the entire solution space and 
associated uncertainty, 

- Ability to routinely solve problems that today 
require special attention or have no solutions, 

- Consistency of all models that support a related set 
of business processes. 

New Types of Solutions 

Process Design: Effective methods have been 
developed for process synthesis in areas where physical 
characteristics enable special methodology, such as heat 
exchanger networks (Linnhoff, 1993) or separation 
systems (Westerberg and Wahnschaft, 1996). Often these 
methods utilize some simplification of the general MINLP 
problem. For example, Aspen Water solves the waste-
water system design problem by exploring possible 
topologies using MILP, then using NLP to optimize the 
detailed conditions within this structure, then iterating to 
explore other structures. 

However, design of a general plant structure is a 
MINLP problem with complex nonlinear subproblems. 
Widespread adoption of these methods in practice will 
require a significant investment in software for both 
problem formulation and solution that can readily be used 
by design engineers. Recent work on MINLP methods for 
design (e.g., Lee and Grossman, 2003) shows industrial 
promise. 

Control & Optimization: Current practice employs 
distinct models and algorithms for advanced process 
control and for real-time optimization. This division 
originates in limited capabilities (40 years ago) to develop 
plant models. Consequently, the control field proceeded 
with empirical models (linear or nonlinear), while real-
time optimization employed steady-state models to 
optimize large continuous plants. There has been 
substantial application of non-linear controllers in 
industry, but still based on empirical models. A promising 
direction is the combination of empirical and first-
principles models, which could lead to a merger of 
advanced control and real-time optimization into a single 
discipline and the ability to handle steady-state 
optimization and dynamic optimization/control problems 
in a consistent way (e.g., transition to a new steady-state).   

Guarantee of optimal results:  Global optimization is 
a tool to improve decision quality (e.g. better gasoline 
blending) and not just an interesting research topic. Recent 
developments (Floudas, 2000) offer the potential to solve 
real-world problems and are being implemented in 
commercial software. While initial applications may be for 
specialized problems, we expect their use to be widespread  

Uncertainty: Today’s modeling and design 
applications typically provide a single point solution that 
is based on data and assumptions which will never be 
exactly correct. We see the potential for a major paradigm 
shift to solutions which deal with risk and uncertainty—
either that provide a better understanding of the solution 
variability and causal factors, or that provide a solution 
that explicitly takes uncertainty into account. There has 
been a great deal of work in this area (see Cheng et al., 
2002 for a review), and we feel that it will see industrial 
application. 

Empirical modeling: Data driven statistical techniques 
such as neural networks, latent variable methods, and 
image analysis can be used to predict, monitor or control 
behavior of processes that are difficult to model from first 
principles or may not even be measurable by traditional 
instrumentation. We believe that significant benefits can 
be obtained from using a combination of first-principles 
models and empirical methods (e.g., Model-based SPC). 
Such a development is likely to provide a further stimulus 
for advancements in this arena. 

Approximations and extensions of first principles 
modeling:  Advances in computer hardware and modeling 
software have enabled us to build more and more details 
into models. This leads to two types of issues in practice: 
is the model so complex that an average user cannot use it, 



  
 
and can the available solution methods solve the problem 
and do so in a reasonable amount of time?  

Computational requirements for physical property 
calculations (particularly for dynamic simulation) have 
been significantly lowered through use of simplified 
thermo-physical models that also provide correct 
derivatives (e.g. Aspen Dynamics®). Recently there have 
been promising developments that would significantly 
lower computational requirements for models with a large 
number of components (Briesen and Marquardt, 2003). 
These developments have the potential to make accurate 
results available at an order of magnitude lower cost. 
There are several potential business uses for such 
technology, and we expect that it will rapidly develop and 
become widely available. 

An opportunity for more rigorous models is in the 
area of fluid dynamics. Typically, process models are 
developed with a detailed treatment of physical properties, 
phase equilibrium and reaction kinetics but with simplified 
fluid dynamics, while CFD models treat fluid dynamics 
rigorously, but with highly simplified or ignored 
chemistry. There is great benefit from models that treat 
both chemical and physical phenomena accurately, for 
example in reactor and design and analysis. Recently, 
commercial software vendors have begun to tackle this 
problem (Zitney et al., 2002; Bezzo et al., 2000). 

Model Centricity (model consistency)   

In addition to process simulation and optimization, the 
process industries utilize numerous other modeling and 
optimization tools for specific business problems, such as 
production planning, scheduling, and distribution. Each 
application has been approached from a different 
viewpoint, using the most appropriate technology and 
devising a user paradigm specific to the business task at 
hand. As an example, traditionally there are separate 
modeling / optimization environments used for production 
planning (simplified models / plan production over 
multiple time periods) and for plant optimization (rigorous 
models / optimize for current operating conditions).   

Theoretically, one could use rigorous models to 
compute the operating constraints and then modify the 
planning model correspondingly. In practice, this happens 
only as an exception and many planning models do not 
represent the true capabilities of the plant. If models that 
are used to make various business decisions are not 
consistent and accurate, then the business decisions 
themselves are not consistent and accurate. Significant 
opportunities will be missed. 

How can we achieve model consistency throughout 
the decision making process? With the current disparate 
application-specific modeling environments, this can be 
accomplished by adjusting parameters in one model based 
on predictions from another model (“reference model”). 
However, this still leaves us with multiple modeling 
environments, multiple software systems, and multiple 
interfaces to maintain. Models will be consistent in the 

vicinity of the operating point where the update was last 
carried out, but they may not be inherently consistent.   

What is needed is software that can model a variety of 
physical systems and is architected to deliver consistent 
solutions for a variety of business problems. This will be 
the subject of the next section. 

Future Direction in Software for Modeling  

Our goal is to be able to model systems represented 
by any type of network or flowsheet, where network nodes 
are modeled at the level of accuracy dictated by the 
business application. Network models would have node 
models from different domains. One could configure 
planning and scheduling models that consist mostly of 
simplified models, but that model selected nodes by using 
more accurate models from process simulation, or one 
could configure plant optimization models that use high 
accuracy models in critical areas of the plant, while using 
simpler planning or scheduling models for the remainder 
of the plant. 

Process simulation is a simulation with one set of 
events. Simulation of a production schedule is a simulation 
with multiple sets of events. A simulation infrastructure 
with event management capabilities could handle both 
types of simulation, as shown in Fig. 8. At the heart of the 
architecture is the ability to assemble network models 
consisting of node models that can operate in either 
sequential modular or equation oriented mode as shown in 
Fig. 9. 

Scheduling Event Manager 
Monitors externally imposed events (e.g. arrival of a feedstock, change 
of the operating mode on a process unit) and sets conditions for the 
Model Framework to simulate or optimize. 

Distributed Simulation Manager 
Enables specification of a network model consisting 
of node simulators (models) that originate from 3rd 
parties and reside across geographically distributed 
locations. 

Sim & Opt Executive (simulate, optimize) 

Assembles a model of a network and 
solves it in a single or multi-time period 
(simulation, optimization) for a single set 
of events, I.e. single set of conditions. 

Network Node 
Model (See 
Figure 9) 

 

Figure 8.   Conceptual Architecture for 
Generic Simulation Infrastructure.  
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Figure 9.   Network Node Model for Generic 
Simulation Infrastructure. 

In order to facilitate deployment of models within any 
business application, the entire model behaves as a 
software service, communicating though a defined API 
(data and methods). The model framework, which has 
some similarities to the “model server” described by 
Pantelides and Britt (1995), generates either single or 
multi-time period models, while each network node is 
represented by a model that can operate as an equation-
oriented model or as a closed form model. Let us consider 
how this architecture can create various types of 
simulation and optimization systems: 

- Simulation for process design & 
optimization:  Node models are typical 
engineering models of today. In addition, 
each model can operate as a steady-state or as 
a dynamic model, thereby enabling seamless 
transition between steady-state and dynamic 
simulation, and it can be solved through 
sequential-modular or equation-oriented 
methods. 

- Production planning:  Any node that can 
operate under several different operating modes 
(as in refinery planning) is replicated into a 
corresponding number of nodes. Each node 
model can be a simplified, linear model (as is 
the case in most planning systems today) or by 
more accurate non-linear models that could be 
either approximate non-linear models or 
rigorous nonlinear models. 

- Multivariable process control: The entire 
process unit could be represented by a single 
empirical model (as it is common today) or by a 
network of empirical and first principles 
models. 

- Simulation of a schedule: The Scheduling 
Event Manager shown in Fig. 8 interprets a 
schedule generated through additional methods. 
The architecture enables, for instance, a 
dynamic tank model to be a part of the plant 
model.   

The described architecture also streamlines a number 
of model management issues (case management, library 
management, implementation in a plant environment, and 
imbedding within decision making tools, etc.). 

Collaborative Process Design Environments 

Process and product design involves many disciplines 
and is highly collaborative. Models and data are shared 
among users and disciplines both informally and in a 
formal process of approval and issuing. It is estimated that 
engineers spend 60% of their time searching for data from 
disparate sources, collating and transcribing the data, and 
filing the results. While we have no quantitative data, the 
time spent duplicating models for different purposes and 
in reconciling their differences is certainly also significant. 
The opportunity cost is high. The construction industry 
consortium FIATECH (www.fiatech.org) has estimated 
that improved collaborative design processes have the 
potential to reduce time to plan and implement a capital 
project by 20-50%, reduce capital costs by 15% and 
reduce operating costs by 2%, which typically would yield 
a 2 point increase in Operating Return on Net Assets. 

However, it is not meaningful to converge all 
applications used across the design life-cycle into a single 
integrated system; each discipline has unique objectives 
and workflow, places different requirements on process 
and data models, and requires specialized functionality in 
their tools and applications.  

A number of software architectures have been 
proposed that attempt to minimize data transcription time 
and cost and reduce the opportunity for error. In the 
simplest form, tools are connected directly by interfaces 
(Fig. 10). This approach can offer a simple and easy-to-
implement solution for data exchange between a few tools. 
However, the cost becomes prohibitive in anything other 
than simple cases—if we have N tools in a system, we 
must construct N*(N-1) interfaces.  

 

Figure 10.   Point to Point Integration. 

If a standard interface that translates the internal data 
to a standard neutral exchange format is provided for each 
application, only N interfaces are required. This 
simplification demonstrates the power of data exchange 
standards (which applies equally to any of the other 
architectures discussed here). Unfortunately, despite 
enormous effort and available data modeling technology, 
efforts to develop successful public standards for design 
data exchange have not been successful. The most relevant 



  
 
example is pdXi (Motard et al., 1995), but the same is also 
true for the much more data intensive detailed design and 
engineering disciplines. 

The architecture in Fig. 10 facilitates data exchange 
but does not provide management or security of the data 
exchange or work flow. Thus, this approach is best suited 
to a single-user performing a set of closely coupled 
analyses, such as simulation and heat exchanger design. 
AspenTech has directly interfaced its major design tools 
with Aspen Plus and HYSYS to support this workflow. 

The so-called “hub and spoke” architecture (Fig. 11) 
does provide workflow management and security of data 
exchange. In a hub and spoke implementation, tools are 
located among their respective users, and each is 
connected to a central database. Data are exchanged by 
being stored in the database then retrieved by tools used 
later in the design life-cycle. This approach suffers two 
distinct limitations. Firstly, any data that must be 
transferred between tools must be represented in the 
schema (ideally, an industry standard) of the central 
database. As new tools are integrated, the schema must be 
extended. In practice, schemas cannot be extended 
arbitrarily; at some point they must be re-engineered. This 
is a major task, and data migration is a serious problem. 
Secondly, the central database is a common failure point. 

 

Figure 11.   Hub and Spoke Architecture. 

The hub and spoke architecture does provide a highly 
flexible, dynamic and concurrent environment. In the 
special case of a team of engineers of the same discipline, 
collaborating on the same design (for example, a lead 
engineer and one or more process engineers designing a 
single process unit), this advantage far outweighs the 
disadvantages of hub and spoke, and this architecture is 
close to ideal. Aspen Zyqad™ exemplifies this approach. 

The limitations of hub and spoke for disparate 
workgroups and disciplines are overcome in the so-called 
“publish and subscribe” architecture (Fig. 12). Again the 
tools are located among their respective users, but they are 
connected to a data transport bus. Data are exchanged by 
being “published” by the authoring application; all 
applications “subscribe” to receive any classes of 
messages that might contain data that they might use. The 
data transport bus delivers published data to each of the 
applications subscribed to a particular message class. This 
architecture can be built with a high degree of redundancy, 
and information buses feature guaranteed delivery of 
messages – should the bus fail, the messages will not be 

lost but will be delivered from a cache once the bus is re-
started.  

 

Figure 12.   Publish and Subscribe 
Architecture. 

During a plant’s operational life-cycle, design is 
ongoing (e.g., during revamps and debottlenecking). 
Equally, the data derived during design can be highly 
valuable to support day-to-day operations such as RTO, 
maintenance, troubleshooting and equipment substitution. 
The design data, if available, are an asset in their own 
right throughout the plant’s life. In addition to facilitating 
data exchange and work flow integration, successful 
infrastructures will also support creation of the 
information asset as the design progresses. A life-cycle 
database might be one application connected to the 
information bus to collect messages and build the 
information asset as the design progresses (Fig. 13). 

 

Figure 13.   Publish and Subscribe 
Architecture with Information Asset Database. 

Collaborative design is an emerging field, and 
although most of the difficulties are practical, they have 
proven to be resistant to progress. Today, each owner 
company and engineering contractor has its own work 
processes. The work process has a significant impact on 
what data must be exchanged in an information package 
(including how the data must be structured). Until work 
processes are aligned, each client/contractor pairing will 
require a bespoke implementation of the infrastructure. 
Conversely, competitive differentiation between 
contractors arises in part from their work processes. 
Equally, today’s bidding environment disincentivises data 
exchange. Our conclusion, after having been actively 
involved in several public and proprietary efforts to 
develop collaborative systems and standards, is that 
business goals will need to be aligned if the potential 
savings from collaborative design are to be achieved. 



  

Conclusions 

As we have seen, significant advances in technology 
have been made over the past few years in each of the 
three areas covered in this paper: physical property 
modeling, simulation and optimization, and collaborative 
design. Notably though, only steady-state simulation and 
related physical property modeling have achieved 
universal adoption. To cite just a few remaining “gaps”: 

- Many seemingly mature technologies such as 
dynamic simulation and synthesis methods 
remain the domain of specialists, 

- Mature, generic tools for design optimization 
and for handling uncertainty are not available, 

- Industry standard data models for process 
design and plant asset data have not been 
widely adopted. 

Thus, there remain huge opportunities for both the 
wider industrial application of mature technologies and 
continued technology development. However, with some 
exceptions, the gaps are not a result of inadequacies in the 
underlying math and chemical science technologies. 
Rather, they result from a combination of factors, such as: 

- Absence of proven, repeatable, broad-based 
economic return 

- Immature understanding of how to formulate 
problems and package available technology 
for practical solutions to real problems of 
industrial interest. 

- Shortcomings in usability (by non-experts) and 
sustainability in available software, both in 
engineering and online applications.  

- Difficulties in finding a successful model for 
how to develop standards for data, models, and 
workflow, and ensure that they are adopted. 
With the exception of CAPE-OPEN, such 
success as there has been has arisen when a 
vendor has worked with its own customer base 
to develop a de facto standard. 

As we have seen in this paper, application 
development has largely proceeded along two tracks—
model/simulation-centric and design/data-centric—while 
properties represent a third, more or less independent, 
area. While it is important to maintain a focus in each of 
these three areas in order to successfully address the gaps 
discussed above, their convergence is also necessary to 
realize the full promise of CAPD. Thus, we foresee: 

- The development of product design software 
with built-in engineering and mathematics 
analogous to that available today for process 
design, as well as support for integrated 
product and process design. 

- Emergence of matched modeling and 
optimization approaches that enable true 
model centricity and global optimization. For 

example, cost models that are compatible with 
design optimization solutions. 

- Software architectures that combine the 
model/simulation-centric and design/data-
centric tracks, largely achieved by treating 
models as another form of information asset in 
Fig. 13, separate from specific applications. 

Progress will result from the continued partnership of 
academia, manufacturers, and software vendors. 
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