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Introduction 
Thomas A. Adams II, Matt Bassett, Selen Cremaschi, and Monica Zanfir 

 
The Foundations of Computer Aided Process Design 

(FOCAPD) conference is the leading conference series in 
the field of chemical process design. Held only once 
every five years, FOCAPD is not a routine research con-
ference. It is a special time for the process design com-
munity to come together and discuss the biggest trends 
in the field from a big picture perspective. 

FOCAPD focuses on the big picture. All speakers are 
selected and invited by the conference organizers, and 
we use a single-track approach so that attendees gather 
together to hear all the speakers. Speakers are asked not 
to focus on their own research findings and accomplish-
ments, but rather to talk about the latest trends and for-
ward directions in their fields more generally. We want to 
know what is exciting about the field, and where it is 
headed next. We want the whole community at each talk 
so we can engage in lively discussions after each one 
about the future of our profession. 

This year’s program includes 42 invited keynote and 
plenary speakers and 121 contributing posters, covering 
the most important topics to FOCAPD. The conference 
proceedings boasts a total of 134 peer-reviewed papers 
containing the latest original research from our partici-
pants in five subject areas: 

  Advances in PSE Design 

  Design and Emerging Fields 

  Design and Energy Transitions 

  Design and Sustainability 

  Design Education and Future of Design 

This year, FOCAPD was organized jointly between 
the CACHE Foundation, inc. and the American Institute 
for Chemical Engineers. We thank our AIChE partners for 
their excellent support in conference administration man-
agement.  

We also thank our many sponsors. At the Confer-
ence Partners level we thank Chemstations, the Chemical 
Engineering department at Auburn University, and Lilly. 
At the Conference Supporters level, we thank the Depart-
ment of Chemical and Biological Engineering at the Uni-
versity of Wisconsin-Madison, the Chemical and Biologi-
cal Engineering department at Princeton, the Davidson 
School of Chemical Engineering at Purdue University, The 
Texas A&M Energy Institute, Linde, and Corteva Agrisci-
ence. We also thank the National Science Foundation for 
a grant which paid for the registration fees of 41 stu-
dents, postdocs, junior faculty, and early career re-
searchers.  

This year marked a new chapter in the FOCAPD se-
ries by moving our conference proceedings to the open 
access Systems and Control Transactions book series, 
published by PSE Press, an imprint of the CACHE Foun-
dation. We believe this will increase the impact of the 
conference by removing paywall barriers to our research. 

We wish you an inspiring conference and a memo-
rable stay in Breckenridge! 

Conference Chairs and Proceedings Editors 

Dr Thomas A Adams II 
Professor PEng 
Norwegian University of 
Science and Technology 
(NTNU) 
Department of Energy and 
Process Engineering 

 

Dr Matt Bassett 
Senior Manager 
Coupa Software 
Supply Chain Design and 
Planning 

 

Dr Selen Cremaschi 
Professor 
Auburn University 
Department of Chemical 
Engineering 

 

Dr Monica Zanfir 
Linde Engineering R&D 
Associate Director 

 
   



 

   xii 

Peer Review Policy 
TERMINOLOGY 

We use the following terminology: 

 Conference Paper: This is a peer-reviewed research paper describing an original research contribution and 
published in the conference proceedings. 

 Extended Abstract: This is an optional original paper of unspecified length that is contributed by an invited 
speaker. 

APPLICATION 

 All conference papers are subject to peer review.  

 Extended abstracts are not subject to peer review. 

PUBLICATIONS 

 All conference papers which have passed peer review and have been accepted by the conference chairs will 
be published in the conference proceedings.  

 All extended abstracts which have been accepted by the conference chairs will be published in the conference 
proceedings. 

 The conference proceedings will clearly identify which publications are conference papers and which are 
extended abstracts, and therefore, whether or not they were subject to peer review. 

PEER REVIEW PROCESS 

Initial Screening 
The conference chairs will screen the initial submissions (one-page abstracts) of contributed papers. At their 

option, chairs may choose to reject these submissions for any reason, but the primary reasons for rejection at this 
stage are (a) subject does not match conference themes and topics; (b) in appropriate, unprofessional, unethical, or 
dishonest material; (c) duplicate submissions; (d) abandoned submissions; (e) multiple submissions from same pre-
senter; (f) obvious poor quality; (g) reasonable suspicion of machine-generated text; (h) need to limit acceptances 
because of conference space constraints. Chairs may also transfer papers between sessions at this stage. 

Conference chairs will then invite authors of the one-page abstracts that have passed the initial screening to 
submit a conference paper for peer review. 

Conference Paper Peer Review 
Conference chairs act as editors. They will assign peer reviewers to assess the quality of the conference papers 

and manage the peer review process for each paper. Peer reviewers are generally selected from the International 
Scientific Committee who are scientists, engineers, or researchers with technical expertise in the conference topic. 
Peer reviewers must be considered technical experts in their field, hold a PhD, and have published peer reviewed 
scientific works previously. Each work must be reviewed by a minimum of two peer-reviewers. 

A “single-blind” peer review system is used, in which the peer reviewers have access to the identities of the 
authors, but the authors are never given the identities of the peer reviewers. This is consistent with most journal peer-
review procedures in our field. 

Peer reviewers will be given a set of quality criteria that may include scientific and technical quality, quality of 
writing, originality and novelty, appropriateness for the conference topic and theme, interest to the community, and 
other factors of merit. Peer reviewers are expected to be rigorous and critical in their technical assessments and 
adhere to the highest standards in the field in order to ensure high quality. Peer reviewers are asked to comment on 
their assigned conference papers and issue a recommendation to the conference chairs based on this quality criteria. 



 

   xiii 

Reviewers may recommend one of the following: 

 Accept Paper. No technical changes are necessary before publication. Only typographical, spelling, grammar, 
or other minor changes are necessary which do not require technical review. 

 Accept Paper with Minor Revisions. Some minor technical issues need to be addressed either through 
technical changes to the manuscript or through rebuttal to reviewer comments. The reviewer does not believe 
the issues are significant enough to require additional technical review by the reviewers. The reviewer has 
provided enough commentary such that the editor can decide if the minor issues have been addressed in a 
future revision.  

 Revise Paper with Re-Review. Major technical issues need to be addressed either through technical changes 
to the manuscript or through rebuttal to reviewer comments. The reviewer believes the issues are significant 
enough to require that the revised manuscript receive additional review by the reviewers. 

 Reject Without Reconsideration. The technical issues are so significant that it is unlikely that an acceptable 
manuscript could be produced by the deadline; or, the manuscript is out of scope, inappropriate, or computer-
generated.  

Peer reviewers may be asked to provide numerical scores or rankings, as well as provide written comments in-
tended for the chairs and/or the authors. Peer reviewers are encouraged to provide specific and constructive feedback 
that will aid the authors in improving the work and provide advice to the chairs. 

The conference chairs are responsible for making the final decision on each paper and may require several rounds 
of author changes if necessary to meet quality standards. Conference chairs are not required to follow the recommen-
dations of the peer reviewers in making these decisions. It is possible that conference chairs will choose to not accept 
some papers that still pass through rigorous technical peer review, especially when limited by available space or when 
papers do not sufficiently promote conference objectives. Conference chairs may also transfer papers between ses-
sions as desired. 

CONFLICTS OF INTEREST AND ETHICAL GUIDELINES 

The chairs and peer reviewers must ensure they do not have a conflict of interest that may bias their decisions, 
such as ensuring that authors are at “arm’s length” and have no financial conflicts of interest. Peer reviewers and chairs 
must disclose if they have such a conflict of interest with a specific submission, and if so, a different chair and/or peer 
reviewer should be assigned to handle that submission. 

To help determine conflicts of interest, and for all other ethical guidelines, we use the Systems and Control Trans-
actions ethical guidelines described at: https://psecommunity.org/contributor-guidelines 
   



 

   xiv 

International Scientific Committee 
 
Luke Achenie Virginia Polytechnic Institute 
Rakesh Agrawal Purdue University 
Styliani Avraamidou University of Wisconsin - Madison 
Bhavik Bakshi The Ohio State University 
Michael Baldea The University of Texas at Austin 
Ana Barbosa-Povoa Instituto Superior Tecnico 
Joule Bergersen University of Calgary 
Burcu Beykal University of Connecticut 
Debangsu Bhattacharyya West Virginia University 
Larry Biegler Carnegie Mellon University 
Rahul Bindlish Dow 
Fani Boukouvala Georgia Tech 
Richard Bratz MIT 
Kyle Camarda University of Kansas 
Alejandro Cano Siemens Process Systems Enterprise 
Leo Chiang Dow 
Giancarlo Dalle Ave Hitachi Energy Research 
Prodromos Daoutidis University of Minnesota 
Maria SoledadDiaz Universidad Nacional del Sur, Planta Piloto de Ingeniería Química 
Alexander Dowling Notre Dame 
Mario Eden Auburn University 
Mahmoud El-Halwagi Texas A&M University 
Ali Elkamel University of Waterloo 
Nor Farida Harun NETL Morgantown 
Tatiana Felix Ferreira Federal Univ. of Rio de Janerio 
Eric Fraga University College London 
Rafiqul Gani PSE For Speed 
Sal Garcia Lilly 
Emre Gençer MIT Energy Initiative 
Jaffer Ghouse Woodside Energy 
Apostolos Giovanoglou Siemens Process Systems Enterprise 
Vipin Gopal Walgreens Boots Alliance 
Chrysanthos E.Gounaris Carnegie Mellon University 
Ignacio Grossmann Carnegie Mellon University 
Kevin Harding University of Witwatersrand 
Faruque Hasan Texas A&M 
Bri-Mathias Hodge University of Colorado Border & NREL 
Steve Honkomp P&G 
Yinlun Huang Wayne State University 
Marianthi Ierapetritou University of Delaware 
Zheyu Jiang Oklahoma State University 
Iftekar Karimi National University of Singapore 
Donghoi Kim SINTEF Energy 
Sophie (Sun Hye) Kim Dow 
Antonnis Kokossis National Technical University of Athens 
Carl Laird Carnegie Mellon University 



 

   xv 

Ajay Lakshmanan Amazon Web Services 
Jay Lee University of Southern California  
Can Li Purdue University 
Patrick Linke Texas A&M University at Qatar 
Steve Lombardo OFI 
Christos Maravelias Princeton University 
Mariano Martin University of Salamanca 
David Miller OLI Systems 
Ruth Misener Imperial College London 
Alexander Mitsos RWTH Aachen University 
Nashaat N. Nassar University of Calgary 
Chinedu Okoli Proctor and Gamble 
Costas Pantelides Siemens Process Systems Enterprise 
Stratos Pistikopoulos Texas A&M University 
Sreekanth Rajagopalan Dow 
Edna Soraya Rawlings Sandia National Labs 
Matthew Realff Georgia Tech 
Rex Reklaitis Purdue University 
Gerardo Ruiz-Mercado US EPA 
Luis-Ricardez Sandoval University of Waterloo 
Warren Seider University of Pennsylvania 
Jeffrey Siirola Purdue University 
John Siirola Sandia National Lab 
Shweta Singh Purdue University 
Eva Sorensen University College London 
Yuhe Tian West Virginia University 
Ana I. Torres Carnegie Mellon 
Gavin Towler Honeywell 
Saadet Ulas Acikgoz Honeywell UOP 
Fernando V. Lima West Virginia University 
Venkat Venkatasubramanian    Columbia University 
Xiaonan Wang Tsinghua University 
John Wassick CMU/Dow 
Kirti Yenkie Rowan University 
Victor M. Zavala University of Wisconsin - Madison 

 
 

 
 
 



Part 1
Peer-Reviewed Articles
Section 1: Invited Plenary and Keynotes

1



Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.129960 Syst Control Trans 3:2-9 (2024) 2 

Thermo-Mechanical Exergy of a Substance in Cold 
Applications Approaching Absolute Zero 
Thomas A. Adams II* 
Norwegian University of Science and Technology (NTNU), Department of Energy and Process Engineering, Trondheim, Norway 
* Corresponding Author: thomas.a.adams@ntnu.no

ABSTRACT 
In this work, we consider the thermo-mechanical exergy of a substance for cold applications, even 
as it approaches absolute zero. This is relevant for cold-service applications such as refrigeration, 
liquefied natural gas, air separation, and liquid hydrogen. We demonstrate how the optimization 
formulation for the determination of exergy is the most suitable way for process systems engineers 
to think about exergy. We provide an illustrative example by computing thermo-mechanical exergy 
of neon approaching absolute zero. We also discuss how this result relates with the Third Law of 
Thermodynamics, both how it is used to compute thermo-mechanical exergy, but also what it 
implies about the validity of the results and the equations used to compute them.  

Keywords: Exergy, thermo-mechanical exergy, absolute zero, neon, low temperature 

1. INTRODUCTION
Exergy is a thermodynamic property of matter and

energy which describes both the quantity and the quality 
of an energy source by combining the First and Second 
Laws of Thermodynamics. It is quite useful in the design 
of chemical process systems, especially energy conver-
sion systems common in chemical engineering. Exergy as 
a metric helps in identifying process bottlenecks, improv-
ing system efficiency, making prudent design decisions, 
understanding energy quality, and as an approximation 
for value or cost. As a result, it is increasingly popular as 
a systems analysis tool in scientific research, with exergy 
analyses considered in over 2500 journal articles pub-
lished in 2022 alone (Figure 1), growing exponentially at 
about 14% per year.  

1.1 General Definition 
Although there are several competing definitions for 

exergy, the Moran et al. [1] definition is the most useful, 
the most general, and the easiest to understand for 
chemical engineering purposes. Our emphasis is in bold, 
and the definition is quoted as: 

Definition 1. (Definition of Exergy) 

Exergy is the maximum theoretical work ob-
tainable from an overall system consisting of a 

system and the environment as the system 
comes into equilibrium with the environment 
(passes to the dead state). [1] 

This describes exergy generally, for all kinds of systems, 
and considering all forms of energy that contribute to the 
calculation of exergy. For the process systems engineer, 
it is convenient and useful to understand this definition in 
terms of an optimization problem [2]: 

𝑒𝑒 = max
𝒫𝒫

𝑤𝑤 (1) 

Figure 1. Scientific publications involving exergy 

https://psecommunity.org/LAPSE:2024.1501
mailto:thomas.a.adams@ntnu.no
https://doi.org/10.69997/sct.129960
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where 𝑒𝑒 is the exergy of the system, 𝒫𝒫 is a process that 
brings the system into equilibrium with its environment 
within the set of all such processes ℙ such that 𝒫𝒫 ∈ ℙ, 
and is 𝑤𝑤 is work that is produced by 𝒫𝒫. Process engineers 
understand optimization, and so it makes sense then to 
understand exergy in the form of an optimization prob-
lem. In plain language, it means that one way to compute 
the exergy is to find a process 𝒫𝒫 that produces the abso-
lute most amount of work possible, exploiting everything 
possible that can be exploited, using perfect, reversible, 
and lossless process steps.  𝒫𝒫 does not have to be 
unique; many processes could do this in theory. This con-
cept is general and applies to all forms of exergy.  

1.2 Thermo-mechanical exergy 
In this work, we consider only the specific thermo-

mechanical exergy (𝑒𝑒𝑡𝑡𝑡𝑡) of substances (noting that pho-
tons are not considered substances for this analysis), 
which includes the contribution of temperature, pressure, 
and phase of a substance. It does not consider exergy 
arising from chemical composition of that substance, 
atomic energy, motion, height, electrostatic charge, 
stress, strain, or other forms of energy.  

As shown in [2], the following equation is one solu-
tion to the optimization problem of eq. (1) for the case of 
the thermo-mechanical exergy of a substance at state 1 
(𝑒𝑒1tm) relative to environmental reference state 0: 

𝑒𝑒1tm = |ℎ1 − ℎ∗| + (ℎ∗ − ℎ0) − 𝑇𝑇0(𝑠𝑠1 − 𝑠𝑠0) (2) 

where ℎ and 𝑠𝑠 are the specific enthalpy and specific en-
tropy (on a per mass or per mole basis) of a substance at 
state 0, *, or 1 [1, 2]. State 0 describes the surrounding 
environment, typically chosen by the person doing the 
analysis to be at about 1 atm and between 15—25°C for 
systems on the surface of the earth. State * is an inter-
mediate state at pressure 𝑝𝑝∗ = 𝑝𝑝0 and 𝑠𝑠∗ = 𝑠𝑠1, such that 
the work required/produced from isentropic pressure 
change between state 1 and * is |ℎ1 − ℎ∗|, and the work 
required/produced from an isobaric reversible heat 
pump/reversible heat engine between state 0 and * is 
(ℎ∗ − ℎ0) − 𝑇𝑇0(𝑠𝑠1 − 𝑠𝑠0). Eq. (2) uses the so-called “flow ex-
ergy” form, which is exergy for systems in which mass 
can be exchanged with the environment. As discussed 
previously [3], eq. (1) differs from the classical thermo-
mechanical exergy expression below ambient pressure. 
The classical form of thermo-mechanical exergy has his-
torically been expressed as [4]: 

𝑒𝑒1tm = (ℎ1 − ℎ0) − 𝑇𝑇0(𝑠𝑠1 − 𝑠𝑠0) (3) 

Note that eq. (2) reduces to eq. (3) for 𝑝𝑝1 ≥ 𝑝𝑝0. How-
ever, our previous work [2] showed that eq. (3) is inac-
curate for 𝑝𝑝1 < 𝑝𝑝0 because it does not solve the optimiza-
tion problem in eq. (1). In short, it arises from a theoretical 
model that is not general enough and constrains the 
problem to a suboptimal solution. As a result, if eq. (3) is 

used for 𝑝𝑝1 < 𝑝𝑝0 it can result in too-low or even negative 
values of 𝑒𝑒1tm, which is not meaningful. 

In this work, we address a much-neglected aspect 
of thermo-mechanical exergy of a substance, namely, its 
behaviour as the temperature of a substance approaches 
absolute zero. We discuss considerations relating to the 
Third Law of Thermodynamics and the Unattainability 
Principle regarding absolute zero. We provide a proof 
that 𝑒𝑒1tm is finite as 𝑇𝑇1 → 0 𝐾𝐾 that is general for all pres-
sures. This work also contains enthalpy-pressure-exergy 
and temperature-exergy diagrams of neon, with the latter 
being first quantified values approaching absolute zero in 
the literature to the best of the author’s knowledge. 

2. 𝑒𝑒1tm AS TEMPERATURE APPROACHES
ABSOLUTE ZERO

2.1 The Third Law of Thermodynamics 
The Third Law of Thermodynamics deals with the 

thermodynamic properties of matter as it approaches ab-
solute zero. A modern definition is “that any process can-
not reach absolute zero temperature in a finite number of 
steps and within a finite time” [5]. This leads to several 
useful corollaries. 

Corollary 1 

The absolute entropy of a substance in thermal 
equilibrium, which is the total entropy of a sys-
tem, tends toward zero, from above, as tem-
perature approaches 0 K.  

This is a rephrasing of the description in [6]. The excep-
tion to this rule is if the substance has a degenerate 
ground state at absolute zero; but nevertheless, the ab-
solute entropy (𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎) would still be finite and zero in 
nearly all cases, and if not, very small [7]. This leads to a 
second corollary, directly quoted here: 

Corollary 2 

The heat capacity of a substance tends toward 
zero, from above, as temperature approaches 
0 K. [7] 

A simple explanation is that a substance at absolute zero 
cannot have any heat capacity. If it were to absorb even 
the slightest bit of energy, such as from a single photon 
collision, the temperature of the substance must in-
crease. Otherwise, by definition, it would not have been 
at absolute zero in the first place. However, since it is in-
credibly difficult to experimentally measure heat capacity 
near absolute zero, models and extrapolations are 
needed [6].  

2.2 𝑒𝑒1tm of a substance is finite as 𝑇𝑇 → 0 𝐾𝐾 
In this section, it should be noted that this proof 
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applies only to the thermo-mechanical exergy of sub-
stances, not matter generally, nor exergy generally. 

2.2.1 Enthalpy 
We start with eq. (3) because it is easier to follow, 

noting that this equation is valid for 𝑝𝑝1 ≥ 𝑝𝑝0. We first note 
that ℎ0, 𝑇𝑇0, and 𝑠𝑠0 are fixed environmental reference con-
siditions and of course finite. Therefore, to show that 𝑒𝑒1tm 
is finite, we need only to show that ℎ1 and 𝑠𝑠1 are finite as 
𝑇𝑇1 → 0 𝐾𝐾. ℎ1 for any pure substance is: 

ℎ1 = ℎ𝑟𝑟𝑟𝑟𝑟𝑟 + ∫ 𝐶𝐶𝑃𝑃(𝑇𝑇)𝑑𝑑𝑇𝑇𝑇𝑇1
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

    (4) 

Where 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 is some arbitrarily chosen temperature at the 
thermodynamic reference state such that ℎ𝑟𝑟𝑟𝑟𝑟𝑟 is defined 
(usually to be 0) at 𝑇𝑇 = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟. In this formulation, the heat 
capacity equation 𝐶𝐶𝑃𝑃(𝑇𝑇) applies to the same pressure as 
state 1. It is important to note that the thermodynamic 
reference state here need not be the same as the envi-
ronmental reference state. For convenience, write the 
equations such that the chosen reference state is at the 
same phase as at absolute zero (such that we do not 
have to consider latent heats as 𝑇𝑇 → 0 𝐾𝐾).  

In the limit as 𝑇𝑇1 → 0 𝐾𝐾, eq. (4) becomes:  

ℎ0K = ℎ𝑟𝑟𝑟𝑟𝑟𝑟 + ∫ 𝐶𝐶𝑃𝑃(𝑇𝑇)𝑑𝑑𝑇𝑇0𝐾𝐾
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

   (5) 

Note the integral term evaluates to a negative number for 
any thermodynamic reference temperature 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 > 0 𝐾𝐾. 
𝐶𝐶𝑃𝑃(𝑇𝑇) is finite at any 𝑇𝑇 and approaches zero in the limit as 
𝑇𝑇 → 0 𝐾𝐾 by Corollary 2. As a result, the integral term must 
be finite as well, and so must be the enthalpy.  

2.2.2 Entropy 
Corollary 1 does not imply that 𝑠𝑠1 → 0 because 𝑠𝑠1 is 

not the absolute entropy, it is the thermodynamic entropy 
relative to the thermodynamic reference state. However, 
the absolute entropy 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎, which is the entropy calculated 
on an absolute scale, and the specific entropy 𝑠𝑠, which is 
the entropy calculated relative to a reference condition, 
are easily related by a constant: 

 𝑠𝑠1𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑠𝑠1 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟   (6)  

The thermodynamic reference entropy 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 is defined to 
be zero at some 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0 𝐾𝐾, with a corresponding abso-
lute reference entropy equal to 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑠𝑠0𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 + ∫ 𝐶𝐶𝑃𝑃(𝑇𝑇)

𝑇𝑇
𝑑𝑑𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

0 𝐾𝐾 . 
𝑠𝑠0𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 is usually zero (but at least non-negative) and finite 
(corollary 1) and ∫ 𝐶𝐶𝑃𝑃(𝑇𝑇)

𝑇𝑇
𝑑𝑑𝑇𝑇𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟

0 𝐾𝐾  is non-negative and finite 
(corollary 2), so 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 is non-negative and finite. By eq. (6) 
𝑠𝑠1 is finite and usually negative as 𝑇𝑇1 → 0𝐾𝐾 unless the ref-
erence condition chosen is absolute zero. 

2.2.3 Exergy 
Since ℎ1 and 𝑠𝑠1 are finite as 𝑇𝑇1 → 0 𝐾𝐾, and ℎ0, 𝑇𝑇0, and 

𝑠𝑠0 are known and constant, 𝑒𝑒1tm is also finite as 𝑇𝑇1 → 0𝐾𝐾 

(so far shown only for the 𝑝𝑝1 ≥ 𝑝𝑝0 case). Moreover, since 
exergy can never be negative [2], 𝑒𝑒1tm is always positive 
and finite, except at the environmental reference state, 
where it is zero. Modifications to this analysis to include 
enthalpy or entropy terms considering phase change or 
multiple species do not change the result that the exergy 
must be finite at absolute zero. 

2.2.4 When 𝑝𝑝1 < 𝑝𝑝0 
For sub-ambient pressures as 𝑇𝑇1 → 0 𝐾𝐾, ℎ1 ≤ ℎ∗ ≤ ℎ0. 

Since ℎ0 and ℎ1 are finite, ℎ∗ is always bounded between 
them. Therefore, 𝑒𝑒1tm in eq. (1) is always finite in the limit 
as 𝑇𝑇1 → 0 𝐾𝐾, at any pressure.  

2.2.5 Remarks 
Petela [8] presented a similar proof that 𝑒𝑒1tm is finite 

as 𝑇𝑇1 → 0 𝐾𝐾, but the proof required that the 𝐶𝐶𝑃𝑃(𝑇𝑇) equation 
had a particular form (𝐶𝐶𝑃𝑃(𝑇𝑇) = 𝑚𝑚𝑇𝑇3). It also used eq. (3) 
and so did not apply to pressures below 𝑝𝑝0. In fact, the 
author used weak language concerning eq. 3, declaring 
that 𝑒𝑒1tm “might be expressed as [eq. (3)]” (emphasis 
ours) [8]. This kind of language is strangely common in 
the exergy literature when referring to eq. (3), and per-
haps indicates a general uneasiness when using it. 
Therefore the above proof is stronger and applies to all 
pressures. 

It is also interesting to note also that for a pure sub-
stance, �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
ℎ

< 0 and �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
ℎ
 tends toward zero from 

above as 𝑇𝑇1 → 0 𝐾𝐾. This is visually apparent as nearly ver-
tical iso-entropy lines on a pressure-enthalpy diagram 
below atmospheric pressure and at low temperature, as 
shown repeatedly in [3], and also evident on the example 
for neon in Figure 2, discussed in the next section. As a 
result, ℎ∗ → ℎ1 from above as 𝑇𝑇1 →  0𝐾𝐾. So, eq. (2) tends 
toward to eq. (3) as 𝑇𝑇1 → 0 𝐾𝐾 at low pressures. 

3. EXAMPLE WITH NEON 
Neon is a noble gas used as a cryogenic refrigerant, 

especially in refrigerant blends, at temperatures poten-
tially down to its normal boiling point near 27 K (–300°C) 
[9, 10]. It also forms diverse crystalline structures below 
its fusion point (near 24.5 K). As temperatures approach 
absolute zero, many different crystalline configurations 
have been observed or predicted using quantum me-
chanics-based modelling approaches. For example, as 
solid neon is cooled, it can in theory undergo many tran-
sitions between crystalline configurations, including core 
melting. This can cause the heat capacity curves to be 
non-monotonic in the solid region, but they still tend to-
ward zero as temperature approaches absolute zero [11].  

A pressure-enthalpy-exergy diagram of fluid-phase 
neon is shown in Figure 2. The enthalpy, entropy, phase, 
and temperature lines were computed using CoolProp 
[12]. The iso-exergy lines are computed using eq. (2) with 
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an environmental reference state of (𝑇𝑇0, 𝑝𝑝0) = (25°C,  
1.01325 bar). 𝑒𝑒1tm increases as neon gets colder or as the 
pressure deviates (above or below) the reference pres-
sure. Due to the limits of the model used [12], the figure 
cannot be extended below –250°C.  

3.1 Heat Capacity Curves for Crystalline Neon 
To produce a meaningful thermo-mechanical exergy 

curve for neon down to absolute zero, we used experi-
mentally determined [13] heat capacity values for 20Ne 
and 22Ne from 3 to 23 K, which are only slightly different. 
Recent statistical moment method computations explain 
these curves well, showing that heat capacity should 
smoothly approach zero as temperature approaches zero 
[14] (see also Corollary 2).  

Therefore, we used the average experimental heat 
capacity of the 20Ne and 22Ne isotopes to represent the 
solid phase neon more generally for the purposes of dia-
gram construction. We then constructed a simple model 

valid between 0 < 𝑇𝑇 < 23 𝐾𝐾: 

𝐶𝐶𝑃𝑃,𝑁𝑁𝑟𝑟(𝑇𝑇) = 2.3246 𝑇𝑇2 + 5.1511 𝑇𝑇  (7) 

where the heat capacity of bulk crystalline neon 𝐶𝐶𝑃𝑃,𝑁𝑁𝑟𝑟 is 
in J/kg-K. We note that it is an extrapolation to use this 
curve below 3 K but it evaluates to zero at 0 K and follows 
the quadratic-like trend in that region predicted by the 
statistical moment method models [14]. The resulting 
curve is shown in Figure 3. 

We chose to use the as-reported experimentally de-
termined values of ℎ [13] as a function of temperature in 
the 3 K to 23 K region because of the known effect of 
core melting and various transitions on the heat capacity 
function [11] which are not reflected in eq. (7). However, 
eq. (7) was used to estimate the entropy from 0 K to 23 
K analytically. The enthalpy of fusion at 1.01325 bar was 
taken to be 16.259 kJ/kg [15] which when using a melting 
point of 24.56 K for that pressure gives an entropy of fu-
sion of 0.662 kJ/kg-K. All entropy and enthalpy 

 
Figure 2: Pressure-enthalpy-exergy diagram of neon using eq. (2) for cold applications. This diagram applies to 
fluid phases only within model limits. Closed circle (•): Envronmental reference state at 𝑇𝑇0 = 25°C, 𝑝𝑝0 = 1.01325 bar. 
Blue lines (—): 𝑒𝑒𝑡𝑡𝑡𝑡 in kJ/kg. Red lines (—): specific entropy in kJ/kg-K. Black lines (—): temperature in °C.  
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calculations above the melting point were performed us-
ing an equation of state for neon as computed by [12].  

 
Figure 3. The heat capacity model for solid neon used in 
computing thermo-mechnical exergy at very low 
temperatures. Black lines (—): model. Circle: (○) 
Experimental data for 22Ne. Square: (□) Experimental 
data for 20Ne. Data from [13]. 

The final temperature-exergy diagram, computed 
using eq. (2), is shown in Figure 4. Four lines are shown 
for four selected pressures: one at the reference 

pressure 𝑝𝑝0 (1.01325 bar), one below the reference pres-
sure (0.8 bar), one above it (8 bar) but below the critical 
point of neon, and one above (40 bar) the critical point. 
Thermo-mechanical exergy was only computed below 
the melting point for the 1.01325 bar pressure case since 
heat of fusion data were only available at that pressure, 
even though it is expected to be very similar at other 
pressures. Thermo-mechanical exergy could only be cal-
culated for the gas phase for the 0.8 bar state due to lim-
itations in the equation of state model.  

4. DISCUSSION 

4.1 Qualitative Assessment 
As temperature moves down from 𝑇𝑇0, decreasing to-

ward the melting point, all four pressure lines curve 
smoothly upward, forming a convex shape. For the sub-
critical pressure lines, this ends upon reaching the two-
phase region, where it jumps sharply upward, reflecting 
the heat of condensation. The supercritical pressure case 
does not experience a jump; instead, the slope of the ex-
ergy curve transitions to something concave, with a less 
steep slope, closely matching the liquid curves for the 
1.01325 bar and 8 bar cases in both quantity and slope. 
The liquid phase region is small for the atmospheric 

 
Figure 4: The thermo-mechanical exergy of neon at selected pressures as a function of temperature. We note 𝑒𝑒tm 
at exactly 𝑇𝑇 = 0 𝐾𝐾 is not physically realizable in a finite time. 
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pressure case (only about 2.5 K). Essentially, the lines for 
the compressible fluids all collapse onto each other as 
they transition into the crystalline phases.  As noted pre-
viously, this is because lim

𝑇𝑇→0𝐾𝐾
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
→ 0. 

In the crystalline region, exergy continues to in-
crease as 𝑇𝑇 → 0 𝐾𝐾 but with decreasing slope as the heat 
capacity is likewise approaching zero. The final estimate 
for thermo-mechanical exergy approaching absolute 
zero for neon at atmospheric pressure relative to 25°C 
and 1.01325 bar reference conditions is 1,790 kJ/kg. It 
should be noted that it does not make sense to speak of 
𝑒𝑒1tm at 0 K exactly because it is unreachable in practice. 

Finally, there is an open argument as to whether the 
“flow” form of thermo-mechanical exergy (eq. (2)) or the 
“closed” form of thermo-mechanical exergy is the more 
useful choice to describe the exergy of a substance for 
chemical process systems engineers for use as an anal-
ysis tool. The closed form is: 

𝑒𝑒1tm = (𝑢𝑢1 − 𝑢𝑢0) + 𝑝𝑝0(𝑣𝑣1 − 𝑣𝑣0) − 𝑇𝑇0(𝑠𝑠1 − 𝑠𝑠0) (8) 

where 𝑢𝑢 and 𝑣𝑣 are the specific internal energy and spe-
cific volume, respectively. The closed form and flow 
forms differ by a term 𝑣𝑣1(𝑝𝑝1 − 𝑝𝑝0) sometimes called the 
“flow work” [1], which is work associated with the sub-
stance flowing into the environment and/or the boundary 
of the system expanding or contracting. However, for 
𝑝𝑝1 = 𝑝𝑝0, this term is zero, making the flow and closed 
forms identical. Moreover, because there is very little in-
fluence of pressure on exergy in the crystalline state, the 
𝑒𝑒1tm values calculated by eqs. (2), (3), and (8) converge to 
the same trajectory as 𝑇𝑇1 → 0 𝐾𝐾. 

4.2 Comparison to Literature Predictions 
Although Figure 4 is the first such quantitative dia-

gram in the open literature that we can find, it is interest-
ing to compare against two previous hypothetical 
sketches of what such a diagram would look like. Figure 
5 shows two previously published curves from two pre-
vious works, for an arbitrary substance.  

In Figure 5 (top), 𝑒𝑒1tm in the vacuum pressure (𝑝𝑝 < 𝑝𝑝0) 
case is sometimes negative, in contrast to Figure 4 where 
𝑒𝑒1tm > 0 always. This is because that work [4] assumes 
the form of eq. (3) to compute 𝑒𝑒1tm, which as shown pre-
viously cannot be correct precisely because it can result 
in negative values [2]. It is also interesting to note that 
the thermo-mechanical exergy of the vacuum pressure 
case in Figure 5 (top) has the same qualitative shape as 
the high-pressure case, whereas in Figure 4, the slope of 
the line in the vacuum pressure case increases more 
quickly as temperature increases, while the 𝑝𝑝 ≥ 𝑝𝑝0 cases 
have very similar slopes at all temperatures as 𝑇𝑇 in-
creases. As discussed in [2], the behaviour shown in Fig-
ure 4 is because the mechanics of mass exchange with 
the environment for systems above atmospheric pres-
sure are different than those for systems below it. Also, 

Figure 5 (top) does not consider phase change, nor does 
it account for the switch to a concave shape as 𝑇𝑇 → 0 𝐾𝐾. 

 

 
Figure 5: Two hypothesized sketches of 𝑒𝑒tm as a function 
of 𝑇𝑇 and 𝑝𝑝 in previous works. Top: Reprinted from Kotas 
[4] with digital enhancements. Bottom: Reprinted from 
Petela [8] with digital enhancements, noting the open 
circle at 𝑇𝑇 = 0 𝐾𝐾. Note that 𝜀𝜀𝜕𝜕ℎ and 𝑏𝑏 in the sketches are 
equivalent to our notation 𝑒𝑒1tm. 

Figure 5 (bottom) [8] shows a more accurate pre-
diction below 𝑇𝑇0. However, in Figure 5 (bottom) 𝑒𝑒1tm in-
creases very quickly as 𝑇𝑇 increases above 𝑇𝑇0, rapidly 
overtaking the maximum cold 𝑒𝑒1tm at 𝑇𝑇 → 0 𝐾𝐾. In the final 
result of Figure 4, 𝑒𝑒1tm for neon grows very quickly as 𝑇𝑇 →
0 𝐾𝐾 and far more slowly as 𝑇𝑇 increases above 𝑇𝑇0. This pre-
diction in Figure 5 is curious. It arises because that work 
assumes that heat capacity near 0 K is cubic (𝐶𝐶𝑝𝑝(𝑇𝑇) =
 𝑘𝑘𝑇𝑇3 for some constant 𝑘𝑘), which is quite reasonable—in 
fact we considered a cubic version of eq. (7) and 
achieved almost identical results. However, in making the 
drawing, it assumes that 𝐶𝐶𝑝𝑝(𝑇𝑇) = 𝑘𝑘𝑇𝑇3 for all 𝑇𝑇, with no bal-
ancing factors of lower order terms, which is not reason-
able. Thus in the drawing of Figure 5 (bottom), 𝑒𝑒1tm(𝑇𝑇) is 
quartic (~𝑇𝑇4) and this term dominates. This was thought 
to be correct because the exergy of heat radiation also 
grows ~𝑇𝑇4 above 𝑇𝑇0 and follows a very similar shape to 
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Figure 5 (bottom) except without the jumps due to phase 
change, and so it was thought to be justified by analogy. 
However, the real example of Figure 4 shows that this is 
not the case. 

4.3 𝑒𝑒tm in cryogenic applications and 
relationship to the Unattainability Principle 

Figure 4 is useful because it shows a clear upper 
bound on thermo-mechanical exergy of neon as temper-
ature approaches absolute zero. In the context of the 
definition of exergy, this is the thermodynamically limited 
maximum work that could be produced by very cold sub-
stances from thermo-mechanical processes. However, 
there are some key points for discussion.  

It is well known that the processes which produce 
the maximum theoretical work in eq. (1) must be reversi-
ble [1] and in fact, some theorists have gone so far as to 
require reversibility in the very definition of exergy itself 
[16]. From the optimization perspective, this means the 
optimization problem formulation for exergy can be 
posed in the reverse [2]: 

𝑒𝑒 = min
𝒬𝒬

𝑤𝑤     (9) 

where 𝒬𝒬 is a process that brings the system from equi-
librium with its environment to the state of interest within 
the set of all such processes ℚ such that 𝒬𝒬 ∈ ℚ, and is 𝑤𝑤 
is work that is required by 𝒬𝒬. By computing a finite value 
for 𝑒𝑒tm as a substance approaches absolute zero, this im-
plies that this is the minimum amount of work that must 
be consumed in order to bring a substance to absolute 
zero, which would be finite. 

However, consider the Principle of Unattainability, 
which Kieu [17] words as “cooling any system to absolute 
zero temperature in a finite number of steps and within a 
finite time is physically impossible by any procedure, no 
matter how idealized the procedure.” Razek [18] states 
that “it is impossible to cool, using finite resources, any 
finite quantum system below a certain minimal tempera-
ture 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚.” This is a stronger claim because it means that 
not only is absolute zero unattainable, but for quantum 
systems at least, there are temperatures above 0 K that 
are also unattainable. Shargut and Brodyanskii [19] reject 
the application of eq. (3) “in the region close to” absolute 
zero as being meaningless (and therefore by extension 
also rejecting the more general form eq. (2) or the closed 
form eq. (8) as noted in section 4.1) precisely because it 
yields something not infinite. They claim this violates the 
Third Law of Thermodynamics (which may not be strictly 
equal to the Unattainably Principle [17], discussed later).  

How then can we interpret these apparent contra-
dictions? How useful is the computed value of 𝑒𝑒1tm in cry-
ogenic applications? First, it should be noted that the 
Third Law was used both in the proof of the finiteness of 
𝑒𝑒1tm approaching absolute zero (namely that the absolute 
entropy of a substance is zero at absolute zero) and in its 

computation (that the heat capacity of a substance must 
be zero at absolute zero), not only in this work but also 
through alternative approaches in [8]. So, the Third Law 
itself cannot imply infinite exergy.  

Second, when considering the definition of exergy 
and its subsequent optimization formulations, there is no 
constraint that the theoretical process that produces the 
maximum work requires finite time. In fact, it is theoreti-
cally possible to cool a substance to absolute zero using 
finite energy in an infinite amount of time [18, 20]. In op-
timization terms, the process 𝒬𝒬 which solves eq. (9) takes 
infinite time but results in a finite 𝑤𝑤. In fact, some recent 
work provides an interesting proof that the Third Law and 
the Principle of Unattainability are not strictly identical, 
and therefore the “possibility, logically and physically 
speaking, of attainability of absolute zero...by non-adia-
batic means” remains [17]. So perhaps the solution 𝒬𝒬 is 
non-adiabatic. However, we note that there is ongoing 
disagreement in the equivalency of the Third Law and the 
Principle of Unattainability. 

Finally, there is a more existential issue, namely that 
definition 1 applies to exergy generally, not thermo-me-
chanical exergy specifically. This distinction is important. 
Most process systems engineers find it very practical to 
decompose exergy into various types that can be 
summed together to get a final exergy value, using a va-
riety of different taxonomies to do this [3]. For example, 
the exergy owing to chemical potential (molecular bonds 
and concentration differences), height above a reference 
point (potential energy due to gravity), kinetic energy of 
motion, temperature, pressure, and phase, are concep-
tually decomposable in many real applications. However, 
it has also been shown that these different kinds of exer-
gies are strongly interlinked, and such decompositions 
are not applicable in many cases. For example, the ex-
ergy associated with phase (e.g. saturated vapour vs. 
saturated liquid) is not isolatable because it affects both 
thermo-mechanical and chemical exergy [3]. Marmolejo-
Correa [21, 22] also showed that even the decomposition 
into temperature and pressure-based contributions was 
not meaningful because the solutions to eq. (1) are not 
unique, so it is not possible to take any given thermo-me-
chanical exergy and uniquely describe it as the sum of a 
temperature and a pressure component. Therefore, the 
quantification of exergy at absolute zero in general out-
side of thermo-mechanical contributions remains an 
open problem. Nevertheless, the practicality of compu-
ting 𝑒𝑒1tm down to absolute zero remains because it is a 
good and meaningful descriptor, useful in the analysis of 
real cryogenic processes that considers the First, Sec-
ond, and Third Laws of Thermodynamics. 

5. CONCLUSIONS 
Using neon as an illustrative example, we 
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demonstrated how the thermo-mechanical exergy of 
substances changes due to the impacts of pressure and 
phase across subcritical gas, subcritical liquid, supercriti-
cal fluid, and crystalline phases as temperature de-
creases toward absolute zero. Although pressure im-
pacts exergy in the gas phase, it has almost no impact on 
substances in compressed phases. For example, liquid 
and supercritical liquid phases at the same temperature 
have virtually indistinguishable thermo-mechanical exer-
gies. Furthermore, contrary to previous predictions, cal-
culations using real data for neon shows that 𝑒𝑒1tm grows 
much more slowly as temperature increases away from 
𝑇𝑇0 than it does as temperature decreases away from 𝑇𝑇0.  

For practicing engineers, the general form of 
thermo-mechanical exergy in eq. (2) can be used even 
for very cold situations. The most common applications 
in chemical process systems engineering are in as-
sessing the quality and performance of refrigeration sys-
tems, organic Rankine cycles, and in work recovery from 
stored very cold substances, such as in the regasification 
of liquified natural gas or liquid hydrogen.  
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ABSTRACT 
Sustainability of the chemical and materials industry (CMI) requires it to achieve net-zero emis-
sions of greenhouse gases and other resources while making decisions that have a net-positive 
impact on nature and society.  Many corporations, nations, and universities have pledged to meet 
such goals but systematic models, methods, and tools to guide this transition are missing. We pre-
sent a framework to meet this need.  It involves developing a comprehensive, open access model 
of the global CMI.  In addition to existing technologies, this model includes emerging alternatives 
for renewable energy, circularization, and carbon capture, utilization and storage. Systematic 
methods help identify innovation opportunities and develop roadmaps that account for long-term 
changes such as technology evolution and climate change.  Meeting the goal of net-zero emis-
sions requires inclusion of life cycle impacts.  Nature-positive decisions need to encourage eco-
logical protection and restoration.  This is enabled by a multiscale framework for determining the 
absolute environmental sustainability of products and processes by accounting for the availability 
of ecosystem services and their carrying capacities at multiple spatial scales.  People-positive 
decisions need to account for the benefits to society versus harm.  Issues of social justice and eq-
uity also need to be included in the decisions.  More work has focused on the goal of net-zero 
greenhouse gas emissions but the need for better models, methods and applications remains.  Na-
ture- and people-positive decisions need to consider spatial and temporal variation of ecological 
and social systems.  Meeting these challenges presents many novel opportunities for socially-
relevant process systems engineering. 

Keywords: Environment, Life Cycle Analysis, Process Design, Process Synthesis, Interdisciplinary, Net-zero, 
Ecosystem services, Social equity

MOTIVATION 
The last few decades have witnessed a growing in-

terest and urgency in incorporating sustainability in all 
aspects of human activities including process systems 
engineering. In process design, early efforts focused on 
meeting regulations expanded to waste minimization 
from individual processes and then the entire life cycle. 
From being a necessary evil, when the environment was 
included as a constraint in process design, environmental 
protection is becoming a source of competitive ad-
vantage, and is routinely included as an objective along 
with conventional economic goals. These efforts have re-
sulted in methods for reducing the environmental impact 

of manufacturing processes [1]. Expanding the system 
boundary to include the life cycle has helped in reducing 
the chance of unintended harm due to emissions shifting 
along the life cycle.  However, these efforts are not 
enough for ensuring sustainability for the following rea-
sons. 

 Reducing emissions is necessary but not good
enough. This is because for many categories, it is
urgent that we reduce emissions to zero or even
negative. The most important in this category is
GHG emissions, but zero emissions are also
needed for water, particularly in arid regions of the
world, and eventually for all other emissions and
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resources as well. 

 Environmental sustainability requires all human 
activities to respect nature’s capacity, but most 
approaches do not include ecosystems and their 
capacity in system design.  These approaches 
need to not only account for and respect nature’s 
limits but also encourage protection and 
restoration of ecosystems.  

 Chemical processes have substantial positive and 
negative impacts on society. The positive impact 
includes improvement in our standard of living, 
employment opportunities and economic growth, 
while negative impacts are due to resource use, 
emissions, and other side effects. The net impacts 
on society need to be positive while preventing 
social inequities and injustice. 

To address these shortcomings, human activities 
need to have net-zero emissions and resource use while 
resulting in nature- and people-positive decisions [2]. 
The goal of net-zero emissions of greenhouse gases 
(GHG) is currently the most active area of global effort 
across disciplines.  It is covered by the United Nations 
Framework Convention on Climate Change and most cor-
porations, university campuses, and nations have 
pledged to achieve net-zero GHG emissions within a few 
decades. Nature-positive means that decisions should 
result in restoration and protection of natural ecosystems 
and their biodiversity.  This will result in the production of 
ecosystem goods and services, which are essential for 
sustaining human activities and well-being. Many nations 
and corporations are pledging to make nature-positive 
decisions so that biodiversity loss can be stopped and 
reversed by 2050 [3,4]. People-positive means that any 
negative impact of human activities should be less than 
the positive impacts. In addition, the impact should also 
be socially just, that is, the negative impact should not be 
a function of factors such as race or class [5]. Studies of 
the positive economic benefits and negative health im-
pacts and climate change due to air pollution of sectors 
in the U.S. economy identify sectors with net-negative 
impact. 

These goals are analogous to the triple bottom line 
[1] but take this farther by accounting for specific goals 
of the Paris Accord for reducing GHG emissions, respect-
ing nature’s capacity, and doing more good than harm to 
people.  Such pledges and efforts toward meeting them 
are commendable.  However, achieving these goals in an 
economically feasible manner poses a formidable chal-
lenge since it will require transformation of industry and 
its supply chain in a manner and at a scale that is likely to 
be unprecedented. It will require innovation, and while 
accounting for diverse stakeholders, may result in com-
promise or win-win solutions. The need for such trans-
formation is urgent since the impacts of the current 

approach continues to worsen the effects of climate 
change, ecological degradation, and societal inequities.  
As conveyed in a recent emissions gap report, “the inter-
national community is falling far short of the Paris goals, 
with no credible pathway to 1.5°C in place. Only an urgent 
system-wide transformation can avoid climate disaster” 
[6]. 

Process Systems Engineering (PSE) has a unique 
opportunity to contribute to meeting these challenges 
since they require a systems view and can benefit from 
its methods and tools [7]. For industry, campuses, and 
nations to meet their pledges, they need data, models 
and methods to evaluate current activities, identify 
emerging options, and to guide the transition.  This paper 
defines the problem and identifies the challenges in be-
coming net-zero, nature-positive and people-positive.  
We present a framework for meeting these goals, sum-
marize current efforts and identify future needs and op-
portunities.  

FRAMEWORK FOR GUIDING THE 
TRANSITION 

A general framework for guiding industry transition 
to a net-zero, nature-positive and people-positive future 
is shown in Figure 1. It relies on advanced PSE methods 
for modeling the current and future chemical and materi-
als industry (CMI) pathways, evaluating trade-offs, guid-
ing innovation and developing roadmaps to meet the 
specified pledges.  More details about each step are pro-
vided in the rest of this section. 

 
Figure 1. Framework for guiding the transition to net-zero 
emissions, nature- and people-positive decisions. 

Modeling the CMI 
Transforming the chemicals and materials industry 

(CMI) to meet the goals of net-zero, nature-positive and 
people-positive decisions requires models of the indus-
trial activities and their life cycles.  Ideally, such a model 
should include details about the underlying stoichiome-
try, reactions, cost, and technologies of current and 
emerging technologies. Such models have been 
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developed by companies such as S&P Global and used in 
academic research [8,9]. However, such models do not 
permit widespread academic research due to their li-
censing constraints and high cost.  A recent model of the 
CMI [10] overcomes these barriers due to its open access 
license and no cost for non-commercial use. This model 
can provide the superstructure of current and emerging 
technologies relevant to CMI. The matrix representation 
enables easy linking with life cycle inventory datasets 
from which the trade-offs between economic, environ-
mental, social, and circularity objectives for different 
pathways may be identified. 

Table 1. Ranking innovations for sustainable circular 
economy of grocery bags based on improvement poten-
tial (UU*) and readiness level (RL) [11]. 

Rank Innovation RL UU* Ranking 
criterion 

 Catalytic pyrolysis 
of segregated 
LDPE 

   

 Alkaline hydrolysis 
of PLA to LA using 
ionic liquids 

   

 Linear alkyl ben-
zenes from sorted 
PE 

 

 1.83  

 Bio-polyethylene 
from sugarcane 
based 
bio-ethanol har-
vested in Brazil 

  
 
 

Guiding Innovation 
The desired transition to net-zero, nature-positive 

and people-positive is unlikely with currently used alter-
natives.  Therefore, innovations in technologies, policies, 
and behavior are needed.  Approaches such as hotspot 
analysis and sensitivity optimization can be used to de-
termine where to focus future research efforts.  Results 
from applying such an approach to alternatives relevant 
to develop sustainable and circular grocery bags are 
shown in Table 1 [11]. Here, the improvement metric, UU* 
is the distance between utopia points of the Pareto sur-
face with current alternatives and the surface after in-
cluding the new alternative.  The ranking criterion is the 
geometrics mean of the readiness level and UU*.  Finding 
potential innovations can rely on fundamental knowledge 
in chemistry databases, trade and patent literature and 
journals [12].  Artificial Intelligence methods for text min-
ing and large language models can also help [13]. 

 

 
Figure 2. Roadmapping results for transforming grocery 
bags to net-zero GHG emissions [14]. 

Roadmapping 
Once adequate alternatives are available for meet-

ing a goal such as net-zero emissions, a roadmap needs 
to be developed to guide the transition.  Given the long 
time horizon of the roadmap, the roadmapping approach 
should account for changes over this time period in as-
pects like technology evolution, climate change, im-
provement in the energy grid and changes in the econ-
omy.  Such a problem has recently been formulated as a 
long-term planning problem which can be solved by 
methods such as robust optimization and multi-period 
stochastic programming [14].  Typical results from appli-
cation of this approach to roadmapping for grocery bags 
with net-zero emissions is shown in Figure 2.  This frame-
work models technology evolution as continuous time 
Markov chains and may be linked with integrated assess-
ment models of climate change and other large-scale 
changes. 

NET-ZERO EMISSIONS 
Net-zero emissions are achieved when the direct 

and indirect emissions over the entire life cycle are zero.  
Some definitions consider a 90% reduction to be ade-
quate for making claims of “net-zero”.  Accounting for 
net-zero emissions relies on the approach of life cycle 
assessment and life cycle inventory databases.  How-
ever, unlike the broad focus on diverse resources and im-
pacts in LCA, most current efforts toward net-zero emis-
sions focus only on GHG emissions.  For industry to reach 
net-zero emissions, available alternatives belong to three 
broad categories: input-side technologies such as use of 
renewable sources of energy, circularity technologies 
such as mechanical and chemical recycling, and output 
side technologies such as carbon capture, utilization and 
storage (CCUS).  For the hard-to-decarbonize CMI sec-
tor, circularity technologies are of critical importance 
since along with reducing GHG emissions, they can sim-
ultaneously reduce consumption of resources and pollu-
tion due to plastics.  Reliance on CCUS may be essential 
for meeting goals of the Paris Accord.  Reliance on re-
newable resources is also critical, but such technologies 
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are much more materials intensive than nonrenewable 
technologies.  This may result in larger land use change 
and biodiversity loss due to agriculture, mining, and other 
land-intensive activities.  Land use change can also con-
tribute to achieving net-zero emissions by the implemen-
tation of nature-based solutions such as reforestation.  
For such solutions, it may be best to avoid tree planta-
tions but rely on restoring native vegetation and biodiver-
sity.  This is likely to simultaneously contribute to all three 
goals of net-zero, nature-positive and people-positive 
solutions. 

 
Figure 3. Transgression of the ecological boundary for 
climate change for methanol in selected nations [17].  
Orange bar shows the transgression determined by 
direct downscaling without considering geographical 
variation in nature’s capacity [16]. 

NATURE-POSITIVE DECISIONS 
To determine whether decisions are nature-positive 

requires knowing the ecological impact of an activity and 
ensuring that ecological protection and restoration ex-
ceeds this impact.  Such decisions can benefit from 
knowledge about the goods and services provided by na-
ture, since that can help quantify ecological impact and 
restoration.  A popular approach related to nature-posi-
tive decisions is based on the concept of planetary 
boundaries [15], which identifies the “safe operating 
space” for humanity.  This space is based on ensuring 
that human activities do not exceed global ecological lim-
its for impacts like climate change, biodiversity loss, wa-
ter scarcity etc.  This approach has been used to define 
metrics for absolute environmental sustainability, and 
such metrics have been calculated for various processes 
and products [16,17]. The result is insight into the extent 
to which a specific human activity transgresses planetary 
boundaries.  Most such approaches rely on normative 
methods to downscale global planetary boundaries to lo-
cal scales in proportion to quantities such as economic 
value addition, emissions, population, etc.  Unfortunately, 
approaches based on direct downscalling of planetary 

boundaries [16] need not encourage ecosystem restora-
tion and protection because such an approach can “give 
away” ecosystem capacity from privately owned land to 
others due to their larger contribution in terms of the se-
lected downscaling approach [17].  This approach utilizes 
ecological data and models to determine ecological 
boundaries at multiple spatial scales can provide insight 
into the degree of transgression of ecological boundaries 
and encourage. 

PEOPLE-POSITIVE DECISIONS 
For a decision to be people-positive, its benefits to 

society should outweigh any harm. Such quantification 
may be done by representing the benefits and harm in 
monetary units.  The benefits may be indicated by the 
economic value added by the activity while the harm can 
be quantified by the monetary value of lost time due to 
illness, disability or death.  Such a study of the US econ-
omy found that for sectors such as fossil-based electric-
ity generation, sewage treatment, and stone quarrying, 
the negative impact from air pollution and climate change 
are larger than the economic value addition from these 
sectors [18].  Using the framework of techno-ecological 
synergy for designing integrated networks of industrial 
and ecological systems can convert a net-negative man-
ufacturing process into a net-positive TES system.  This 
is by planting native and biodiverse trees in the vicinity of 
the manufacturing process to reduce the impact of air 
pollution while also obtaining other ecosystem services 
[19]. 

Another aspect of people-positive decisions in-
volves accounting for social justice and equity.  This in-
volves at least two aspects: Industry has contributed to 
social inequity due to the establishment of regions where 
the negative impacts of industrial activity are borne dis-
proportionately by disadvantaged communities resulting 
in the formation of regions such as “cancer alleys” [20]. 
Secondly, a minimum consumption of resources and 
emission of pollutants is necessary to ensure that the 
basic needs of a community or region are met.  Thus, for 
decisions to be ecologically safe and socially just, they 
need to respect ecological limits while meeting basic 
needs.  This operating space is referred to as the “safe 
and just space” (SJS) for humanity.  People-positive en-
gineering decisions require quantification of the SJS and 
its inclusion in process engineering methods.  A recent 
step in this direction considers specific ecosystem ser-
vices and determines the safe space or “ecological ceil-
ing” using the TES framework described in the previous 
subsection.  The just threshold or “social foundation” is 
determined as a function of the minimum food-energy-
water consumption of the population in a selected region 
that is needed for their well-being, and the technologies 
used for meeting their needs.  Based on this information, 
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the SJS has been determined for various nations in terms 
of the ecosystem services of carbon sequestration and 
water provisioning [21].  Such results are being incorpo-
rated in process and supply chain design problems and 
will be included in the revised version of this manuscript. 

CONCLUSIONS 
Rather than just reducing emissions and environ-

mental impact, designs for sustainability need to also 
meet goals of net-zero emissions particularly for green-
house gases, respect nature’s capacity while protecting 
and restoring ecosystems, and contribute to societal 
well-being and equity.  Many corporations, universities 
and nations have pledged to meet such goals.  This work 
describes a framework to guide industry transformation 
toward meeting these goals of net-zero emissions, and 
nature- and people-positive designs and decisions.  A 
basic requirement for such work is the availability of a 
comprehensive superstructure model of the chemicals 
and materials industry that incudes current and emerging 
technologies.  The effect of business strategies and eco-
nomic policies should also be included in such models.  
Developing the roadmap to meet corporate goals re-
quires advanced optimization methods and approaches 
for dealing with uncertainties.  Discovering innovations 
may be enabled by mining chemistry and engineering da-
tabases.  Quantifying the metrics of net-zero emissions 
relies on life cycle assessment.  Metrics for nature-posi-
tive decisions can use ecological models and data at mul-
tiple spatial scales, while those of people-positive deci-
sions need to consider demographics and social equity.  
Meeting these goals is an urgent need that requires en-
gineering to go beyond its traditional narrow, techno-
centric boundary.  Companies that are successful at nav-
igating these challenges are more likely to grow and 
prosper while addressing economic, environmental and 
social needs. 
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ABSTRACT 
Following the discovery of the least squares method in 1805 by Legendre and later in 1809 by 
Gauss, surrogate modeling and machine learning have come a long way. From identifying patterns 
and trends in process data to predictive modeling, optimization, fault detection, reaction network 
discovery, and process operations, machine learning became an integral part of all aspects of 
process design and process systems engineering. This is enabled, at the same time necessitated, 
by the vast amounts of data that are readily available from processes, increased digitalization, 
automation, increasing computation power, and simulation software that can model complex phe-
nomena that span over several temporal and spatial scales. Although this paper is not a compre-
hensive review, it gives an overview of the recent history of machine learning models that we use 
every day and how they shaped process design problems from the recent advances to the explo-
ration of their prospects. 

Keywords: Surrogate modeling, Artificial Intelligence, Historical view, Data-driven analysis, Process synthesis 

A BRIEF HISTORY OF MACHINE 
LEARNING 

The roots of machine learning (ML) can be traced 
back to the early 19th century when the method of least 
squares was first discovered by Legendre in 1805 and 
later by Gauss in 1809 [1]. However, the main concept of 
computers learning from experience without explicitly 
being programmed has roots tracing back to more recent 
history, the mid-20th century.  

The foundational idea of neural networks emerged 
in the 1940s and 1950s when researchers began explor-
ing mathematical models inspired by the structure and 
functioning of the human brain. Warren McCulloch and 
Walter Pitts' paper, "A Logical Calculus of Ideas Immanent 
in Nervous Activity," was published in 1943, where they 
proposed a mathematical model of an artificial neuron 
which was the first idea of using a computational model 
for neural networks [2]. This foundational paper laid the 
groundwork for subsequent developments in neural net-
work theory. The term "neural network" itself gained 
prominence in the 1950s and 1960s as researchers like 
Frank Rosenblatt developed the perceptron, an early 

form of a neural network designed for pattern recognition 
tasks. While the perceptron had limitations, the idea of 
using computational models to simulate neural processes 
became a cornerstone in the evolution of artificial neural 
networks (ANNs) and ML. Around the same timeline, re-
sponse surface methodology was introduced by Box and 
Wilson [3], and the term “machine learning” was coined 
by Arthur Samuel [4].  

Throughout the following decades, various model-
ing approaches and algorithms, including Gaussian pro-
cess (GP) regression, backpropagation algorithm, sup-
port vector machines (SVMs), and Random Forest (RF), 
emerged in the ML landscape. Especially, the establish-
ment of the backpropagation algorithm was a pivotal mo-
ment in the resurgence and widespread adoption of neu-
ral works starting 1980s, enabling researchers to revisit 
the complex problems that were not possible to address 
before. This ultimately led to the application of neural 
networks in various scientific and engineering domains, 
including process design and operations, and to the de-
velopment of more complex algorithms. These include 
reinforcement learning, deep learning, natural language 
processing, and generative artificial intelligence (AI) 
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which are emerging areas of research within process 
systems engineering [5,6]. Although NN models have 
been the primary modeling strategy in process design 
problems due to their ability to capture nonlinearities very 
accurately, we will also demonstrate that SVMs and tree-
based ensemble models like RF and gradient boosted 
trees are also studied in depth.  

PAST APPLICATIONS OF ML IN PROCESS 
DESIGN 

With these developments underway, it was also im-
perative to revisit optimal design problems from the lens 
of ML models and process synthesis. Regression analysis 
and parameter estimation for kinetic or thermodynamic 
models were already performed for process design, da-
ting back to the 1960s. However, with the increasing 
computation power and the development of process sim-
ulation software, optimal design problems recognized the 
need for surrogate ML models due to: (1) the “black-box” 
nature of the simulation software that lacks the derivative 
information that is imperative for optimization; (2) the 
computational expense associated with sample-based 
derivative-free optimization techniques; and (3) the high 
mathematical complexity of process synthesis problems 
(mixed-integer nonlinear program – MINLP) that become 
intractable with high number of variables and constraints. 
Hence, earlier introduction of ML techniques in process 
design focused on replacing highly complex and/or noisy 
simulations with relatively simpler representations, espe-
cially within optimization frameworks to alleviate the 
mathematical complexity.  

For example, Caballero and Grossmann used kriging 
surrogate models to replace noisy unit operations in 
modular flowsheet optimization [7]. Likewise, Davis and 
Ierapetritou used kriging surrogates for tertbutyl methac-
rylate production design and process synthesis [8]. He-
nao and Maravelias used ANN surrogate models trained 
using the data collected from the process simulator to re-
place complex unit operations (e.g., distillation column, 
expansion valves, heaters/coolers, flash vessels, absorp-
tion columns) and reformulated these ANNs to incorpo-
rate within their superstructure optimization framework 
[9]. Fahmi and Cremaschi also used ANNs to substitute 
for thermodynamics and mixing models, as well as unit 
operations for process synthesis of biodiesel production 
[10]. One of the key challenges using ANNs was also 
noted in this work, where these models were “data hun-
gry” (i.e., large amounts of data were required to train ac-
curate ANN representations). The modeling complexity 
of the ANNs also made it challenging to incorporate them 
in large-scale optimization problems without any efficient 
reformulation strategies. Equation 1 shows the mathe-
matical structure of a general feed-forward NN, repre-
sented by a repeated composition of functions, 

𝑦𝑦 = 𝒇𝒇(𝒙𝒙;𝜽𝜽) = 𝑓𝑓𝐿𝐿 ∘ 𝑓𝑓𝐿𝐿−1 ∘ … ∘ 𝑓𝑓2 ∘ 𝑓𝑓1(𝒙𝒙;𝜽𝜽) (1) 

where 𝑦𝑦 is the output of the network, 𝒙𝒙 are the inputs to 
the network, 𝑓𝑓𝑖𝑖 is a layer in the neural network with trans-
formations applied by the activation functions, and 𝜽𝜽  are 
the weights and biases for the entire network. In simpler 
terms, this mathematical structure generates highly non-
linear expressions (except for purely linear activation 
functions) that create additional complexities for optimi-
zation algorithms to handle (Equation 2). 

𝑦𝑦 = 𝑓𝑓𝐿𝐿(𝑓𝑓𝐿𝐿−1 (𝑓𝑓𝐿𝐿−2(… . 𝑓𝑓1(𝒙𝒙)))) (2) 

Especially, within a global optimization framework, 
this nested functional form can be intractable as well. 
Motivated by this, most recent progress focused on using 
more simplified surrogate models for process design and 
synthesis problems, as well as developing novel reformu-
lation strategies that exploit the mathematical properties 
of activation functions. Next, we discuss these develop-
ments and other key progress in this area. 

CURRENT PROGRESS  

Reformulation of ML Models 
One of the most recent key breakthroughs in using 

ML in any optimization framework (e.g., process design, 
synthesis, or operations) is the ability to reformulate deep 
NNs with rectified linear unit (ReLU) activation functions 
into a mixed-integer linear program (MILP) [11-13]. By 
recognizing ReLU activation functions as max-affine 
spline operators that are piecewise linear (Equation 3), 
ANNs can be exactly reformulated with big-M constraints 
to create a MILP that can be solved to global optimality 
with off-the-shelf solvers. 

𝑦𝑦 = max{0, 𝑧𝑧} = �0       𝑖𝑖𝑓𝑓 𝑧𝑧 < 0
𝑧𝑧   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

(3) 

This enabled MILP-reformulated ANNs to be em-
bedded in a variety of problems including optimizing the 
extractive distillation process [] sustainable hydrogen 
production using sorption enhanced steam methane re-
forming [] as well as for modeling flexibility index con-
straints in biorefinery design by superstructure optimiza-
tion []  This technique is also extended to other acti-
vation functions that are nonlinear [] and different 
modeling strategies such as tree-based ML models as 
they also partition the modeling space with piecewise lin-
ear models (Figure )  

Mišić [19] and Mistry et al. [20] encoded trained gra-
dient boosted regression trees, which are ensemble de-
cision tree models), to MILP models that are later embed-
ded into optimization problems. This technique is further 
extended as a black-box optimization algorithm in the 
ENTMOOT framework [21] and implemented as an open-
source software package named OMLT [22]. The ap-
plicability of the tree-based reformulation is also 
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demonstrated on an optimal layout design problem of an 
offshore windfarm [23]. 

Figure 1. A demonstration of how decision tree models 
(A) partition the space with piecewise linear models; and
(B) map this partitioning onto decision trees for a visual
representation.

Despite reformulation strategies alleviating a portion 
of the nonlinearity issues in NN and tree-based ensemble 
models we also observe that large-scale process syn-
thesis problems still rely on more simplistic models For 
instance Demirhan et al used linear surrogate models to 
model the conversion of a Haber-Bosch reactor within 
the renewable ammonia process synthesis problem that 
has  continuous  binary variables and  
constraints [] Under such large-scale global optimiza-
tion problems reformulating MILP representations of NN 
or tree-based models of individual units will amplify the 

number of binary variables which will further increase 
the complexity of the overall optimization model Hence 
the use of ML in large-scale synthesis problems is still 
contingent on the overall problem complexity even when 
ML models offer highly accurate predictions  

ML Algorithms as Constraints 
Nowadays, the use of ML is not limited to modeling 

individual unit operations or an entire flowsheet, but it 
can also serve as constraints to process design prob-
lems. Especially, process simulations are typically subject 
to black-box constraints that lack explicit analytical ex-
pressions relating the decision variables to constraint vi-
olations (i.e., the constraint violations can only be ob-
tained once the simulation run is completed). Constraint 
handling can be achieved in many ways, including aug-
mented Lagrangian formulations, penalty, filter, or barrier 
methods [25].   

Figure 2. The feasible region derived by fitted surrogates 
using regression analysis (purple) is shown on a contour 
plot of the objective function. Black dots show the 
sampling points for the input space. The constraints are: 
𝑥𝑥2 + 𝑦𝑦2 − 200 ≤ 0;  𝑥𝑥 − 5𝑦𝑦 + 10 ≤ 0;  25𝑥𝑥 −  2𝑦𝑦2 +  4𝑦𝑦 − 5 ≤
0; −𝑥𝑥 − 2𝑦𝑦2 + 4𝑦𝑦 − 5 ≤ 0. 

On the other hand, ML tools can be leveraged to 
handle constraints individually as a regression task 
[26,27], where constraint violations are modeled as less 
than or equal to constraints with surrogate models (Fig-
ure 2), or holistically as a classification task [28-30], 
where a separating model between feasible and infeasi-
ble solutions are established. A conceptual demonstra-
tion of a nonlinear constraint being modeled as a classi-
fier using SVM with Gaussian radial basis function kernel 
is provided in Figure 3.  

This is achieved by using a dataset of simulated 
samples with their binary outcome (feasible/infeasible) to 
train one or more classification models instead of 
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individually modeling actual violation values as done in 
the regression analysis. The trained classifier can then be 
used with a data-driven optimizer or implemented in a 
superstructure model using the aforementioned reformu-
lation strategies. In that respect, SVM classifiers are 
shown to effectively model the implicit constraints of nu-
merically infeasible differential algebraic equations of a 
steam cracker reactor design problem [28,29]. SVM clas-
sifiers are also used for modeling feasibility constraints in 
the vertex formulation of modular design problems [30].  

Figure 3. An SVM-based classifier trained to mimic the 
nonlinear constraint, 𝑦𝑦 < 1/(𝑥𝑥3 − 𝑥𝑥2 + 1): (A) The original 
constraint within the bounded space; (B) The map of the 
feasible region captured by SVM. The predictive 
performance of the classifier on a blind testing set: 
Accuracy = 100%; Sensitivity = 100%; Specificity = 100%; 
F1 score = 100%. 

 While these studies show promise for using clas-
sifiers, the offline model training is still time-consuming 
(i.e., several thousand samples are collected from the 
simulator to create the model) with no efficient way to 

recycle or integrate the already collected data into the 
decision-making process. Also, understanding the uncer-
tainties surrounding these models as well as their mis-
classification rate is of utmost importance for constraint 
modeling, as misclassifications can lead to infeasible so-
lutions or designs, whereas in regression-based models, 
such misviolations are less likely to happen. 

Large Language Models & Generative AI for 
Process Design 

Choosing the right sequence of unit operations and 
connections to create a flowsheet is a fundamental prac-
tice in process design, whether it is done heuristically or 
through superstructure optimization. With the launch of 
ChatGPT, the key question becomes whether natural lan-
guage processing or generative techniques can be uti-
lized for process design and discovery. As a language 
model, ChatGPT is designed to understand and generate 
human-like text based on the input it receives. However, 
chemical engineering problems, such as process flow-
sheet generation, are based on recognizing the sequence 
of unit operations. This comes with the caveat of lack of 
suitable data to be able to train the large language mod-
els that can generate a flowsheet automatically [31]. For 
instance, there could be 20+ different representations for 
the same unit [32] or process flowsheets are most likely 
proprietary or unavailable to extract the information nec-
essary for the AI model development [33]. 

To overcome these limitations, Vogel et al. devel-
oped SFILES 2.0 [33] to represent flowsheets using a 
graph notation, analogically similar to the text-based 
SMILES notation for representing chemical structures. 
This was primarily developed to topologically describe a 
flowsheet with the disadvantage of not storing any infor-
mation about the sizing or the operating conditions of the 
units. Along the idea of ChatGPT, Vogel et al. also inves-
tigated the automatic completion of flowsheets using 
causal language modeling [34]. Their results show that 
the generative AI model can learn the topological pat-
terns in flowsheet data and can automatically complete 
flowsheets. However, like the issues faced in ChatGPT, 
the generated flowsheet may not make practical sense, 
as the developed model does not intake contextual infor-
mation about the process. Using the SFILES notation, 
Hirtreiter et al. also investigated the automatic genera-
tion of control structures for flowsheets [35]. While the 
predictive accuracy of the trained models was relatively 
high, significant limitations are also noted by the authors. 
Especially, concerns regarding safety indicators, under-
standing the process dynamics and operational objec-
tives, and lack of information on the equipment sizing and 
operating conditions for the units pose major questions. 
These promising developments show that natural lan-
guage processing and large language models can pro-
vide a “warm start” for flowsheet generation and facilitate 
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some of the time-consuming tasks. However, more re-
search needs to be done in this area to be able to improve 
confidence in model predictions while providing a holistic 
view of process design beyond just the topological inves-
tigation. 

CONCLUSIONS 
Artificial Intelligence and machine learning (ML) 

models are now an essential component of process de-
sign with efficient model integration and reformulation 
strategies paving the way. Constraint handling with ML 
models to flowsheet generation using large language 
models, we see new and innovative ways of how ML is 
used for process design problems. While the main moti-
vation for using ML models is to alleviate the model com-
plexities and such models have proven to be successful 
over the course of decades, domain knowledge and 
model interpretability will still play the most important 
role despite the promise these models hold.  The ability 
to understand why a model makes a particular prediction 
and to reason if predicted results are physically sound or 
whether a generative model-derived process flow dia-
gram is safe to implement becomes critically important. 
This judgment requires a deep fundamental understand-
ing of the process, engineering expertise, and other rele-
vant domain knowledge. Incorporating safety and risk 
measures, and combining ML models with first-principles 
information to create hybrid models are a few avenues 
that researchers are currently investigating. Neverthe-
less, the importance of interpretability and understanding 
the process relevance of the predictions will persist in 
this field.  
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ABSTRACT 
Sustainability encompasses many wicked problems involving complex interdependencies across 
social, natural, and engineered systems. We argue holistic multiscale modeling and decision-sup-
port frameworks are needed to address multifaceted interdisciplinary aspects of these wicked 
problems. This review highlights three emerging research areas for artificial intelligence (AI) and 
machine learning (ML) in molecular-to-systems engineering for sustainability: (1) molecular dis-
covery and materials design, (2) automation and self-driving laboratories, (3) process and sys-
tems-of-systems optimization. Recent advances in AI and ML are highlighted in four contemporary 
application areas in chemical engineering design: (1) equitable energy systems, (2) decarbonizing 
the power sector, (3) circular economies for critical materials, and (4) next-generation heating and 
cooling. These examples illustrate how AI and ML enable more sophisticated interdisciplinary mul-
tiscale models, faster optimization algorithms, more accurate uncertainty quantification, smarter 
and faster data collection, and incorporation of diverse stakeholders into decision-making pro-
cesses, improving the robustness of engineering and policy designs while focusing on the multi-
faceted goals and constraints in wicked problems. 

Keywords: Artificial Intelligence, Machine Learning, Multiscale Modelling, Interdisciplinary, Optimization 

INTRODUCTION 
Creating engineered solutions to help achieve UN 

sustainable development goals (e.g., clean water and 
sanitation, affordable and clean energy, responsible con-
sumption and production), 1 requires managing complex 
trade-offs across diverse molecular, material, device, 
process, and infrastructure scales2. As such, break-
throughs at a single scale are often insufficient to realize 
global impact. Moreover, these wicked problems3,4 re-
quire interdisciplinary teams to manage interdependen-
cies across social, natural, and engineered complex sys-
tems. 

Using four contemporary sustainability challenges in 
chemical engineering, this short paper argues recent ad-
vances in artificial intelligence (AI) and machine learning 
(ML) methods for product and process design offer new
capabilities to accelerate decision-making across molec-
ular-to-system length and timescale. For brevity, we di-
rect the reader to several excellent review articles and
editorials for technical overviews of AI5,6, ML7–11, and data

science (DS)12–14 methods used in chemical engineering.  
This paper focuses on advances and opportunities for AI, 
ML, and DS for product and materials design, which we 
argue is inherently multiscale and interdisciplinary. Many 
now consider AI as an academic discipline, and ML is a 
field within AI15. Similarly, DS is an interdisciplinary field 
focused on extracting knowledge from data, which his-
torical roots in applied statistics16. We do not dwell on the 
formal distinction between AI, ML, and DS. 

MOTIVATING APPLICATIONS 
We start by framing four sustainability challenges, 

each of which presents many opportunities for innova-
tions in designing materials, products, and processes. 
However, fully realizing the benefits of technology devel-
opment requires holistic systems engineering ap-
proaches, which AI and ML help facilitate. 

Equitable Energy Transitions 
Social, natural, and engineered systems around the 

https://psecommunity.org/LAPSE:2024.1504
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globe must adapt to climate change17. While the poorest 
and most marginalized have contributed minimally to 
global emissions, they are impacted the most by climate 
change18. Thus, it is critical to consider equity and envi-
ronmental justice dimensions of technologies and poli-
cies to transition the global energy economy from fossil 
to renewable resources. Decision-making must consider 
many objectives and perspectives from diverse stake-
holders19 to manage complex interdependencies across 
social, natural, and engineered systems. Best practices 
to broaden representation in policy processes18 can be 
integrated with systems thinking to enable participatory 
research on materials and chemical products focused on 
the authentic needs of poor and marginalized communi-
ties. 

Decarbonizing the Power Sector 
A key aspect of climate adaptation is decarbonizing 

electricity generation through greater adoption of car-
bon-neutral or renewable energy sources. One key tech-
nical challenge is that non-dispatchable renewable 
sources, carbon capture systems, and nuclear genera-
tors are often less flexible than fossil fuel generators. 
New sources of dynamic flexibility are needed to contin-
uously balance electricity generation and production and 
ensure resiliency to extreme events (e.g., weather). 
Technoeconomic analysis of grid-connect systems, in-
cluding power generators, storage systems, building, and 
(chemical) manufacturing processes, must consider the 
time-varying value of electrical energy, ancillary services, 
and demand response incentives20–23 while considering 
uncertainty24 and trade-offs between flexible operation 
and emissions25. Moreover, systems modeling can help 
inform the value of flexibility26,27 and set performance tar-
gets for materials development, e.g., degradation in en-
ergy storage systems28. However, introducing new gen-
erators, energy storage, or integrated energy systems 
can distort prices in energy markets29,30, which empha-
sizes the need for system-of-systems modeling to as-
sess the economics of new technologies properly. Ex-
pansion planning31,32 and similar decision-support tools33 
are needed to establish multi-decade decarbonization 
pathways34,35 that ultimately inform materials design and 
technology development. 

Circular Economies for Critical Materials 
Reducing society's carbon footprint requires robust 

supply chains of critical minerals and materials (CMMs), 
including rare-earth elements (REEs)36. CMMs and REEs 
are essential to modern technologies, including energy 
storage, permanent magnetics in high-efficiency motors, 
and wind turbines. However, primary sources of REEs 
(and many CMMs) are environmentally costly to extract, 
separate, and refine37. Moreover, global pandemics, pol-
icies, and geopolitics can complicate CMM and REE 

supply chains38,39. Thus, there is a need for new materials 
that enable new separations and processes to recycle 
CMMs and REEs from distributed sources such as used 
batteries and consumer electronics40. In these proceed-
ings, Dougher et al.41 elaborates on opportunities for pro-
cess systems engineering to accelerate membrane sep-
arations for CMMs and REEs. 

Next Generation Heating and Cooling 
As part of climate adaptation, recent international 

agreements mandate the phaseout of hydrofluorocarbon 
(HFC) refrigerants due to their high global warming po-
tential. However, recycling existing HFCs requires new 
materials such as membranes42,43, sorbents44, ionic liq-
uids45–51, and deep eutectic solvents52 to separate (near)-
azeotropic mixtures. Beyond vapor recompression sys-
tems, new technologies such as solid-state devices may 
improve performance and lower carbon footprints53. Sim-
ilarly, thermoelectric materials and devices can be engi-
neered to power distributed electronics or convert waste 
heat into electrical energy54. These technologies require 
sophisticated co-optimization of materials composition55, 
manufacturing processes56,57, and device designs while 
considering performance targets from systems models. 
 Policy-mandated phase-outs and transformations in 
the heating and cooling section provide another example 
of complex interactions between social, natural, and en-
gineered systems58. Systems-of-system models are 
needed to understand the development of HFC recycling 
supply chains and consumer behavior, e.g., adopting new 
technologies to establish a circular economy, especially 
considering changing climates. For example, policy inter-
ventions may be needed to ensure that next-generation 
heating and cooling technologies remain affordable for 
everyone. New materials and technologies must be 
benchmarked using systems models that capture these 
complexities. 

AI & ML FOR MOLECULAR-TO-SYSTEMS 
These four motivating examples emphasize the 

complexities of engineering new materials, chemical 
products, and processes to help meet sustainable devel-
opment goals. This section highlights recent advances in 
AI and ML to address these challenges. 

Molecular Discovery and Materials Design 
 Computer-aided molecular design (CAMD) methods 
integrate predictive models to engineer novel molecules 
and materials, often in conjunction with processes59,60. 
Classic examples include co-optimizing refrigerants and 
refrigeration cycles, creating designer solvents (e.g., 
ionic liquids) for a wide range of separations and reac-
tions (e.g., CO2 capture, crystallization, pharmaceutical 
manufacturing), and engineering new materials for 
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energy storage (e.g., electrolytes). Advances in deep 
learning61 combined with massive datasets enabled by 
new data/text mining62 can provide CAMD approaches 
with more accurate models to predict thermophysical 
and mixture properties as a function of molecular/mate-
rials structure. 
 Molecular simulations accelerate the engineering of 
new molecules and materials by providing new scientific 
insights or predicting properties at conditions impractical 
to measure. AI and ML offer several opportunities to im-
prove the speed and accuracy of molecular simulations63. 
For example, ML surrogate models and Bayesian Optimi-
zation (BO)64 can improve the speed and accuracy of pa-
rameter estimation for force fields65,66. We proposed67 
and refined68 an ML-assisted optimization workflow to 
develop new force fields for seven refrigerants. Moreo-
ver, these physically interpretable force fields accurately 
predict properties not considered in calibration69. An al-
ternative approach is to replace the force field 

expression with an ML model70,71. Both ML approaches 
are important because the lack of accurate force fields 
has historically hindered the use of molecular simulations 
to engineer some new classes of chemical products and 
functional materials. 

Generative AI methods are emerging to engineer 
new molecules, materials, and synthesis pathways72,73. 
One popular approach uses variational autoencoders to 
reduce molecular descriptors into a latent space. BO64 or 
reinforcement learning74 can then optimize molecules in 
the latent space. ML frameworks are also emerging to co-
optimize the material design, manufacturing, and end-
use. For thermoelectric materials, we recently developed 
data science and BO methods to optimize photonic sin-
tering57 (advanced manufacturing), aerosol jet printing56 
(additive manufacturing), and dopant composition55 (ma-
terial design). These studies combined ML with expert in-
tuition and laboratory experiments. 

 
Figure 1: Overview of opportunties for AI and ML to accelerate molecular-to-systems engineering (adapted from 
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Automation and Self-Driving Laboratories  
 Self-driving laboratories (SDLs) are revolutionizing 
molecular discovery and materials design by combining 
recent advances in robotic automation with ML75,76. Most 
SDLs use black-box data-driven ML models to predict 
experiment outcomes (e.g., material properties, synthe-
sis yields) from input decisions. AI methods such as BO 
or active learning plan the next sequence or batch of ex-
periments. SDLs have successfully optimized materials 
and chemical syntheses, including learning the Pareto 
trade-offs between competing objectives, e.g., material 
properties77. 
 Many functional materials for unit operations need 
to be optimized in the context of broader systems, which 
is likely too complex for SDLs with only data-driven ML 
models. For example, designing new membranes is not 
as simple as maximizing one property, such as selectivity 
or permeability, but instead, deciding how to balance ma-
terial properties in the context of the broader separation 
system78,79. Instead, we propose combining automation 
and dynamic experiments for membrane characterization 
with science-based mathematical models80. Then model-
based design of experiments methods81 can be used to 
first distinguish between competing transport mecha-
nisms and then optimize experiments to reduce model 
uncertainty. ML surrogate models can help reduce the 
computational burden of optimal experiment design82 
and model calibration83. Ultimately, this approach results 
in mathematical models with quantified uncertainty, i.e., 
digital twins84, for process and infrastructure scale opti-
mization. 
 

Process and System-of-Systems 
Optimization 
 AI and ML provide new capabilities to improve the 
computational tractability, accuracy, and ease of imple-
mentation of integrated multiscale optimization across 
molecular, material, device, process, and infrastructure 
scales. 
 ML hybrid83,85 or reduced-order surrogate models 
provide new scale-bridging approaches, especially con-
sidering the recent advances in computational optimiza-
tion with embedded ML models86,87. For example, Rall et 
al.88 used artificial neural network (ANN) surrogate mod-
els to incorporate high-fidelity ion transport membrane 
model performance predictions into the global super-
structure optimization of a separation process. This 
methodology is especially powerful because it integrates 
rigorous models from another discipline (e.g., membrane 
science) with process systems engineering analyses. 
There is a significant opportunity for surrogate models to 
quantitatively establish (membrane) material property 
and device performance targets using process and sys-
tems models78,79. 

 Similarly, ML surrogate models can enhance sys-
tems-of-systems modeling. For example, Jalving et al.89 
trained ANN surrogate models to predict how replac-
ing/retrofitting a generator impacts transmission net-
work-wide outcomes in a wholesale electricity market. 
These ANNs were then embedded into the steady-state 
co-optimization of generator design and operation. This 
example highlights the complex interactions between in-
dividual agents (e.g., generators) in the context of a 
larger system (electric market). In the broader sustaina-
bility context, systems-of-systems models combine eco-
nomic, societal, and environmental submodels90,91. ML 
surrogate models provide new opportunities to further in-
tegrate these with technology submodels (e.g., materials, 
processes, supply chains, infrastructure) while leverag-
ing multi-objective computation optimization. Moreover, 
ML surrogate models can enable next-generation deci-
sion-support tools where diverse stakeholders interact in 
real time with system-of-system optimization models to 
facilitate negotiations. Data reduction and visualization 
approaches are critical to understanding and explaining 
trade-offs between tens or more (often correlated) ob-
jectives in sustainability problems25.  
 ML also provides new methods to quantify and mit-
igate uncertainty in decision-making. For example, Ken-
nedy and O’Hagan hybrid models92 can quantify the ep-
istemic (model-form) uncertainty from simplifications in 
multiscale models93,94. We argue that Bayesian inference 
methods, which interpret probability as a belief, are con-
ceptually aligned with stochastic and chance-con-
strained programming, which optimize over a probability 
distribution, i.e., the posterior from Bayesian model cali-
bration. In contrast, frequentist statistical methods inter-
pret probability as long-term error rates. Frequentist 
methods output confidence regions conceptually aligned 
with uncertainty sets for robust optimization. This per-
spective helps align the foundations of the data science 
and ML methods used to characterize uncertainty with 
the choice of optimization under uncertainty paradigm. 
Computational tractability remains a significant challenge 
to incorporating uncertainty in multiscale simulation and 
optimization problems. ML facilitates improved decom-
position methods95, aggregation and clustering96, and 
branching strategies97. New generative AI methods are 
emerging to either accelerate or replace classical mixed 
integer optimization algorithms, e.g., fast sensitivity anal-
ysis98. 
 Finally, generative AI can accelerate the problem 
formulation and time to solution. For example, generative 
AI for flowsheet synthesis99 can dramatically reduce the 
time to screen novel materials (e.g., new catalyst) in the 
context of a chemical manufacturing process. Likewise, 
generative AI can propose model reformulations, variable 
and constraint scaling, and initialization to improve model 
diagnostics100,101 to reduce the barriers to nonlinear 
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optimization. These advances would make sophisticated 
optimization paradigms more accessible to general 
chemical engineering practitioners instead of highly spe-
cialized experts. 

CONCLUDING REMARKS 
 AI and ML improve the tractability of multiscale op-
timization, use data more effectively to quantify and mit-
igate uncertainty, and facilitate automation and faster 
time to solutions. These new capabilities complement re-
cent trends in modeling software102 that enable process 
systems engineers to guide the development of novel 
molecules, materials, devices, processes, and systems to 
address global grand challenges such as sustainable de-
velopment. AI and ML provide methods that help facili-
tate bidirectional feedback across diverse scales and 
disciplines2. The described themes and opportunities are 
broadly relevant to sustainability challenges beyond the 
four motivating examples, such as recycling plastics, re-
mediating legacy pollutants (e.g., perfluoroalkyl and 
polyfluoroalkyl substances (PFAS), lead), and decarbon-
izing chemical production (e.g., H2, ammonia, biofuels). 
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ABSTRACT 
This paper discusses the symbiotic relationship between technology research and development 
(R&D) and energy transition modeling. On the one hand, energy system modeling has a noteworthy 
history of providing macroscopic views and critical insights concerning the role that myriad tech-
nologies may play in the future energy system.  On the other hand, R&D can lead to both incre-
mental and disruptive technological advances that can shape energy transition planning.  In this 
work, we focus on the bidirectional flow of information between the two with a particular focus on 
highlighting the potential role of carbon capture, storage, and sequestration technology. 

Keywords: Energy, Multiscale Modelling, Carbon Capture, Carbon Dioxide Sequestration 

INTRODUCTION 
As nations, communities, and organizations con-

tinue to determine their role in the energy transition, en-
ergy system modeling offers a means for these entities 
to understand and appreciate the intricacies of today’s 
massive energy system. This is particularly relevant as 
there has been increasing interest in understanding how 
the world will address the so-called “energy trilemma,” 
which involves providing low-emissions energy, at low 
cost, while ensuring energy security from geopolitical risk 
and economic hardship. Thanks to their macroscopic 
purview, energy system models can help policymakers 
understand the trade-offs associated with different en-
ergy transition pathways so that they can strike a balance 
amongst different objectives.  At the corporate level, they 
can inform the direction of a company’s technology R&D 
portfolio as certain technologies may play to the organi-
zations strengths and capabilities and appear more prof-
itable under a wide range of energy transition scenarios 
while others may only appear profitable under a narrow 
range of scenarios or may differ widely from the corpo-
rate focus. Meanwhile, technology R&D plays a signifi-
cant role in shaping the assumptions and parameters that 
populate an energy system model. Improvements in cost 
and efficiency may allow for certain technologies to be-
come more favorable under a range of societal energy 
transition goals.      

Figure 1. 2022 Global CO2 emissions [Gt] and 
corresponding percentage. Source: (Liu et al., 2023) 

In 2022, global greenhouse gas emissions totalled 
roughly 36.1 Gt (Liu et al., 2023); see Figure 1. While there 
exist competitive, low- to zero-carbon technologies to 
highly decarbonize sectors such as power generation 
and light-duty vehicle transportation, there remain “diffi-
cult-to-eliminate emissions related to aviation, long-dis-
tance transportation, and shipping; structural materials; 
and highly reliable electricity total[ing] … 27% of global 
CO2 emissions from all fossil fuel and industrial sources” 
(Davis et al., 2018). Zero-carbon technologies may exist 
for these sectors, but their competitiveness and availa-
bility are far less established relative to the incumbent 
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technologies and infrastructures (Fankhauser et al., 
2022).  Meanwhile, as shown in Figure 2, global commer-
cial (i.e., non-light-duty) transportation, industrial, and 
power demand are projected to increase significantly by 
2050, particularly in China, India, and other non-OECD 
countries.  

 
Figure 2. Global energy demand (past, present, and 
projected) by sector and country. Source: (ExxonMobil 
Global Outlook, 2023) 

Numerous organizations indicate that society 
should pursue a multitude of technologies to decarbonize 
the energy sector. For example, the United Nations Inter-
governmental Panel on Climate Change reports that 
“global modelled mitigation pathways reaching net zero 
CO2 and GHG emissions include transitioning from fossil 
fuels without carbon capture and storage (CCS) to very 
low- or zero-carbon energy sources, such as renewables 
or fossil fuels with CCS, demand-side measures and im-
proving efficiency” (IPCC, 2023, B.6.3). Individual corpo-
rations must decide which options within this portfolio 
they will pursue based on their insights and analysis. 

In what follows, we discuss the interplay between 
energy system modeling and process modeling as they 
relate to the energy transition and technology R&D.  We 
first discuss current trends in energy system modeling 
and then offer potential directions for future research.  
We then link this discussion with the role of process mod-
eling for technology R&D for a specific CCS application. 
We conclude by discussing opportunities and challenges 
associated with the bidirectional flow of information be-
tween energy system and process models. 

ENERGY SYSTEM MODELING 
For decades, energy system models have assisted 

planners, policymakers, and stakeholders gain insights 
related to short- and long-term policy decisions. Survey-
ing over 30 energy system models, Lopion et al. (2018), 
Groissböck (2019), Prina et al. (2020), and Fodstad et al. 
(2022) review a diverse set of reputable decision support 
tools based on attributes including data requirements, 
foresight, methodology (e.g., simulation, optimization), 
operational/process granularity, sectoral coverage, spa-
tial and temporal resolution, transparency, uncertainty, 
and more.  

Energy system models are often partitioned into 
top-down and bottom-up models. Top-down models em-
phasize connections between the energy system and the 
larger economy. Due to their simplified energy system 
representation, they are not always appropriate to ana-
lyze sector-specific policies (Prina et al., 2020). In con-
trast, bottom-up models seek to integrate highly resolved 
components and interconnections between energy sub-
sectors. “These detailed models from a techno-economic 
point of view allow the user to compare the impact of dif-
ferent technologies on the energy system and to evalu-
ate the best future alternatives to lower GHG emissions 
for the achievements of the energy targets. However, the 
bottom-up approach does not take into account the con-
nections between the energy system and the macro-
economic sectors, thus neglecting the impacts on these 
sectors” (Prina et al., 2020).  Hybrid models have there-
fore become popular in recent years to strike a balance 
between the two approaches. 

State-of-the-art energy system models operate at 
multiple scales (Kakodkar et al., 2023) capturing global 
detail (as found in integrated assessment), national detail 
to investigate domestic trends and impacts, and sectoral 
detail to explore technological transitions in fundamental 
end-use sectors. Optimization- and simulation-based 
models are the most common tools, each with their own 
idiosyncrasies to handle behavioral assumptions of indi-
vidual actors (i.e., energy sector supply and demand par-
ticipants).  Model outputs typically provide strategic in-
sights to policymakers concerning equity and cost-effec-
tive outcomes of alternative energy transitions. We dis-
cuss how individual corporations may consume model 
outputs below.   

Influence of Energy System Models on 
Technology R&D  

In 2022, the IPCC published the Working Group III 
contribution to the Sixth Assessment Report on Mitiga-
tion of Climate Change (IPCC AR6, 2022) and utilized 
more than 1,200 potential pathways with underlying so-
cioeconomic development assumptions, energy system 
transformations, and land use change until the end of the 
century. The IPCC report identified 311 scenarios as 
“Lower 2°C,” which are defined as pathways with a 67% 
likelihood of limiting peak warming to below 2°C through-
out the 21st century. These scenarios imply a range of 
lower-emission growth opportunities as highlighted in 
Figure 3, which looks across the IPCC Lower 2°C scenar-
ios and illustrates the average (blue bars) growth poten-
tial of various lower-emission solutions. While all these 
solutions are needed, the black bars represent the wide 
range of growth potential across the IPCC Lower 2°C 
scenarios. To support further deployment of these tech-
nologies at scale, additional policies and technology ad-
vancements are needed to incentivize investments and 
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influence consumer behavior. Striking the right balance in 
investments at a pace consistent with policy support and 
technology advancements is crucial (P.26 & 28, Exx-
onMobil ACS 2023). 

 
Figure 3. Growth of lower-carbon solutions between 
2020 and 2050 in IPCC “Lower” 2oC scenarios. Source: 
(ExxonMobil ACS, 2023) 

Figure 3 offers a concrete example of how energy 
system models and integrated assessment models can 
influence technology R&D decisions.  The figure summa-
rizes outcomes from models in the open literature from 
diverse groups with different technology performance 
and cost assumptions bases. These outcomes give rise 
to a wide range of potential technology adoption, with 
certain technologies that are commonly called on at 
scale, such as CCS. Corporations may use this macro-
scopic analysis to guide the resources that they allocate 
towards certain decarbonization technologies that they 
believe will be most competitive in a low-carbon future.  

Technology R&D can also benefit from more micro-
scopic energy system model output, that includes sector 
and sub-sector modeling.  While large scale modeling 
identifies key technology types, it does not assess the 
performance at a resolution necessary to evaluate im-
portant process trade offs. Resilience and robustness of 
a technology mix may depend on geographic or temporal 
factors arising from demand variation and fuel supply. 
Examples include electricity grid power system modeling 
that includes weather and seasonal demand inputs.  In-
dustrial end-use planning that places a premium on con-
tinuity of operation may contemplate exposure to fuel 
price variation favoring diversity or flexibility of fuel type. 

Open Research Questions on Energy System 
Models 

We conclude this section on energy system model-
ling with future research opportunities and directions. 
Prina et al. 2020 highlight four “engineering” challenges 
for the community: resolution in time, space, techno-eco-
nomic detail, and sectoral coupling. While these points 

are valid, numerous “economic” and “policy” challenges 
exist and are ripe for future research. Therefore, in con-
trast to Prina et al. 2020, we highlight orthogonal dimen-
sions including behavioral economics (including endoge-
nous demand modeling), policy uncertainty, technology 
“spillover” effects, applications of artificial intelli-
gence/machine learning, and sustainability objectives.  

While a rich literature exists on how to model and 
algorithmically handle high-resolution spatio-temporal 
representations of supply (Kakodkar et al., 2023), Nikas 
et al. (2020) assert that demand-side modeling is far less 
mature. “Values, choices, cohesion, culture, and lifestyle 
shifts in society are indirectly narrated as assumptions,” 
but not interwoven into the model with the same granu-
larity as given to the supply side (O’Neill et al., 2017). Re-
bound effects, whereby improvements in technology ef-
ficiency lead to an overall increase in energy consump-
tion, are well documented, but rarely modeled. Individu-
als do not always behave rationally or make decisions 
based solely on cost optimization. Li (2017) and the ref-
erences therein highlight “the energy efficiency gap” as a 
prime example of how energy efficiency measures, which 
could offer a “cost-effective contribution to GHG mitiga-
tion, fuel poverty reduction, and energy security objec-
tives,” have historically witnessed non-cost barriers pre-
vent or diminish their widespread adoption. In short, 
greater attention to endogenous demand modeling is 
needed.   

Rarely does a policy get implemented without unin-
tended consequences.  Well-intentioned policies may fail 
to deliver desired results.  In Europe, inexpensive Asian 
palm oil is being passed off as used cooking oil because 
it receives additional credits as the latter; meanwhile, 
palm oil extraction may be causing deforestation abroad 
(Reuters 2023). Following a cautionary introduction enti-
tled “The EV transition is harder than anyone thinks,” 
Charette (2023) highlights recent examples of unin-
tended policy consequences in the EV transition and 
other sectors. While vehicle-to-grid (V2G) capabilities 
have the potential to offer energy and reserves to the 
power grid, modeling V2G policies and vehicle owners’ 
V2G willingness and behavior remains a challenge. 

Technology “spillover” effects may also have a man-
ifest impact on energy system model output. Nemet 
(2012) presents examples and evidence of inter-technol-
ogy spillovers for energy technologies in which seem-
ingly unrelated innovations and improvements in one 
technology impact those of another.  “For example, the 
very commonly used General Electric LM6000 50 MW 
gas turbine is directly descended from the TF39 high-by-
pass turbo-fan engine developed for military aircraft, 
such as the C5 Galaxy, in the 1960s” (Nemet 2012). 
Meanwhile, spatial spillover effects, in which innovations 
and cost reductions in one region influence those of an-
other, are well documented (Stephan et al., 2019). 
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Although some research has been done to address en-
dogenous experience curves and spillover in energy sys-
tem modeling domain, e.g., (Louwen et al., 2020) and 
(Straus et al., 2021), more research is warranted. 

AI is emerging as a potential tool to assist key steps 
in energy system modeling. At the front end, applications 
include capturing information and synthesizing data sets 
to improve input to energy system models.  Improve-
ments can be expected in terms of the fidelity and geo-
graphic uniformity of data sets for existing energy gen-
erators and infrastructure, as well as sharpening esti-
mates of future demand inputs.  Examples include match-
ing separate cost and production data sets where asset 
identifiers differ; combining satellite and areal data to 
identify capacity in regions where information is incom-
plete, e.g., powerlines or residential solar use in emerging 
countries; demand prediction that combines smart meter, 
satellite and survey information. Downscaling of highly-
resolved data sets and data imputation for incomplete 
data sets are other possibilities. AI tools may find appli-
cation in terms of efficient algorithm and constraint de-
velopment.  Examples include efficient approximation to 
expensive non-linear non-convex problems; formulating 
constraints that involve multi-objective input, e.g., esti-
mating the total available land resource for renewables 
based on resource quality and societal or stakeholder 
goals.  Ultimately, AI tools may lead to the synthesis of 
disparate data to provide system-level case sets that re-
flect a wholistic picture of energy system supply and de-
mand. 

In certain settings, energy system models should at-
tempt to incorporate multiple objectives. Current energy 
systems are typically constructed with an emphasis on 
total cost minimization and bounds on greenhouse gas 
emissions (Algunaibet et al., 2019). Thakker and Bakshi 
(2022) present a multi-scale multi-objective optimization 
framework capable of designing chemical reaction path-
ways, life-cycle value-chains, and economic cash flows 
in an integrated manner from a superstructure network 
containing alternative solutions.   Sustainability, poverty, 
affordability, education, and other metrics should be con-
sidered.  How do we model, or at least incorporate, sus-
tainable development goals (SDGs) (IPCC AR6, 2022)?  
We need new approaches to include SDG-based metrics 
in quantitative assessments in energy system modeling.  

TECHNOLOGY R&D 
As shown in Figure 4, energy system models and 

technology R&D have a symbiotic relationship. Energy 
modeling informs R&D possibilities by helping to identify 
what role a technology type could play in terms of de-
ployment scale and rate, given an assessment of perfor-
mance and cost attributes; in other words what technol-
ogies are robustly important.   Conversely, energy 

modeling can illustrate how targeted R&D improvements 
in technology performance and cost could lead to a wider 
or more rapid adoption; in other words what it would take 
for a technology to play a larger role. 

Figure 3 illustrates that CCS technology is expected 
to play a major role in IPCC “Lower” 2oC energy transition 
scenarios.  More granular modeling could help differenti-
ate specific forms of CCS technology in terms of potential 
impact.   Applications include point source capture as well 
as distributed opportunities, requiring different modeling 
approaches.   In the case of CCS there is a common un-
derlying technology that could be used for a wide range 
of applications:  amine-based capture.   Process model-
ing bridges to the final step of how to implement a spe-
cific technology. 

 
Figure 4. Bidirectional flow of information between 
energy system models and technology R&D models. 

Amine Based Carbon Capture Process 
Based on the need to decarbonize various sectors 

of the global economy, a great deal of R&D has focused 
on point source post-combustion carbon capture.  While 
there are many different avenues to take CO2 out of a flue 
gas stream, to date aqueous amine-based process tech-
nology has been proven to be the simplest and most 
cost-effective method (Herzog 2018).  One of these 
amine-based technologies can be seen in Figure 5. 

Figure 5. KM CDR Process™ for Postcombustion CO2 
Capture.  Courtesy of MHI. 

As seen in Figure 5, the process is quite simple.  Flue 

https://www.sciencedirect.com/topics/engineering/chemical-reaction-pathway
https://www.sciencedirect.com/topics/engineering/chemical-reaction-pathway
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gas is cooled via direct contact cooling with water (1).  It 
is then sent to an absorption tower (2) where it is con-
tacted with a proprietary, industry performance leading 
amine-based solvent (KS21) (Kamijo 2023).  The flue gas 
is decarbonized via an intrinsic chemical reaction be-
tween the CO2 acid gas and the basic amine solution.  De-
pending on the design, the percentage CO2 removal can 
be anywhere from 90% to 99% removal.  Based on recent 
IEA reports, higher capture rates should be investigated 
based on the need to reduce CO2 avoided (still CO2 leav-
ing the top of the tower) (Thambimuthu 2023).  In addi-
tion to the amine treating, there are additional clean up 
steps that occur at the top of the tower (wash sections).  
The CO2 that was captured in the aqueous amine solvent 
moves with the liquid through heat exchangers and is 
sent to the regeneration tower (3).  It is here that steam 
is used to heat and strip off the CO2 as a product gas 
where it can either be compressed/stored or utilized.  
The regenerated amine is then sent back through the 
other side of the heat exchanger and the cycle starts 
again in the absorption towert (2). While a relatively sim-
ple process, substantial effort is required to model and 
predict the process performance accurately. 

Process Modeling Methodologies 
When it comes to process modeling, it is always im-

portant to understand the model objective.  Depending 
on these objectives, multiple modeling platforms and 
strategies can be used.  Generation of heat and material 
balances are very useful for understanding steady state 
energy consumption and steam balance of a CCS plant.  
These flowrates are also important when designing de-
tailed equipment lists.  By combining the two, OPEX and 
CAPEX can be estimated, financial models developed, 
and the famous “$/tonne CO2” capture metric can be cal-
culated.  It is vital that the underlying assumptions and 
approximations employed are understood when report-
ing out such values. 

For example, for scoping level estimation of process 
performance, one may use equilibrium based models for 
the three towers in Figure 5.  This requires an under-
standing of how to translate a theoretical stage into a 
specific packing height.  Another more accurate method 
would be to explicitly solve for the packing height via rate 
based tower models.  Software platforms such as Pro-
Max, ProTreat, and AspenPlus all have these features.  
The Rochelle research group and CCSI are two excellent 
examples on how to develop these models.  Surrogate 
models can also be developed for detailed process mod-
els.  Platforms such as Aspen and IDAES are very good 
for building such reduced order models. 

Linking Process with Plant Economics 
While developing models that capture the funda-

mentals is important for optimization of technical 

parameters, it is not enough.  Economics must also be 
understood to make CCS technology investment deci-
sions.  This can be a challenge as the skillsets of a re-
search or process engineer may lack project or capital 
cost estimation.  Thus, there has been development on 
the linkage between process simulators and economic 
evaluation. For example, the IDAES equation-oriented 
modeling platform (Miller et al., 2018) has the capability 
to integrate with cost estimation tools from the Depart-
ment of Energy (DOE) and the National Energy Technol-
ogy Laboratory (NETL) as seen in Figure 6. 
 

 
Figure 6. Multiscale IDAES Modeling Platform. 

Another example for linking process flowsheet sim-
luation with captial estimation is from AspenTech.  
Through the concurrent engineering concept of digital 
thread, a single modeling platform can integrate multidis-
ciplanary teams all working on the same platform.  

Through the use of phenomenological, process 
scale up models, researchers are able to evaluate novel 
improvement concepts for active materials (amine sol-
vents) at the molecular level.  For process engineers, op-
timal contactor/tower design can be evaluted for these 
new solvents and integrated into a process design.  Var-
ious trade offs can be explored on either technical (steam 
balance) or economic ($/tonne CO2 captured) metrics.  
The end result is a tailored design based on a firm set of 
model assumptions.  This is critical when utilizing these 
models for energy system modeling. 

BIDIRECTIONAL FLOW AND FUTURE 
DIRECTIONS 

Although there has been extensive work done in the 
post carbon capture technology space, there is still more 
work to do.  To have an advantaged amine technology, a 
multiscale, model-centric approach can be used to look 
at materials (amines), contactors (traditional or intensi-
fied), and process configurations to best integrate with 
current and future power generation and manufacturing 
plants.  As stated before, there is also a need to look at 
the energy systems scale of states, countries, or even 
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globally.  However, computational intensity becomes an 
issue based on the shear difference in magnitudes of 
these systems (molecules to global energy economy).  
Thus, more academic, government lab, and industrial 
work should focus on the development of fit for purpose 
models.  These can include: 1) transient models to under-
stand load following and 2) reduced order models for in-
tegration in more complex modeling systems (such as 
IDAES).  

A few examples of bidirectional flow of information 
from post-combustion capture with aqueous amines and 
energy systems modeling include: 1) reduced-order 
models (ROMs) as surrogates; 2) transient response of 
power plants (non- steady operation); and 3) degradation 
of amine solvent solutions in the presence of flue gas im-
purities.  It is in these three areas that the authors feel 
like future work should be directed.  One great example 
of this type of work is the FOCUSS (Flexibility Operated 
Capture Using Solvent Storage) project with SSE Ther-
mal, AECOM, and the University of Sheffield.   
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ABSTRACT 
The planetary boundaries (PBs) define ecological limits that are critical to preserve the stability of 
the Earth. Six of them have already been exceeded, which calls for urgent action to optimize in-
dustrial systems capable of operating within the safe operating space that they define for human-
ity. Here we discuss the challenges and opportunities of including PBs in a range of application 
domains in Process Systems Engineering, focusing on chemicals and fuels production and the use 
of mathematical programming coupled with life cycle assessment to support sustainable decision-
making.  

Keywords: Environment, Renewable and Sustainable Energy 

INTRODUCTION 

The role of the planetary boundaries in the 
transition to sustainable chemicals 

The chemical sector currently faces the challenge of 
curbing its carbon emissions to meet the climate goals. 
This will require replacing fossil carbon with renewable 
carbon as main feedstock, either in the form of captured 
CO2 from the air, waste (e.g., polymer waste) or biomass. 
Unfortunately, emerging renewable-carbon based tech-
nologies often lead to inherent trade-offs when com-
pared to the fossil business-as-usual counterpart, not 
only in terms of cost vs. environmental impacts, but also 
between environmental categories. For example, chemi-
cals produced via carbon capture and utilization (CCU) 
are often expensive due to the high cost of electrolytic 
hydrogen, while at the same time could worsen human 
toxicity impacts owing to the large amounts of renewable 
power required to activate the CO2 molecule [1].  

This occurrence of burden-shifting (one impact, 
e.g., global warming, improves at the expense of wors-
ening others) should be carefully investigated to ensure
a truly sustainable transition to a defossilized chemical
sector. However, while the environmental assessment
methods that exist today are useful for comparing alter-
native technologies, they provide very limited insights
into their impact in absolute terms. Because of this, the

broad implications of the large-scale deployment of tech-
nologies, specifically concerning their potential global 
environmental collateral damage, remain unclear, which 
can lead to spurious conclusions and wrong advice.  

Figure 1. Planetary boundaries defined on nine Earth-
system processes. Earth-system processes are coloured 
according to the current trangression level (note that the 
upper end of the zone of increasing risk has not yet been 
quantitatively defined for the novel entities PB [3]).   

The planetary boundaries (PBs) provide an excellent 
framework to evaluate the global damage on the planet 
of emerging routes and the severity of burden-shifting 
when attempting to combat climate change. The PBs, 
originally proposed by Rockström et al. [2], define limits on 
nine Earth-system processes (Fig. 1), all key for 
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regulating the stability of the planet. For each Earth-sys-
tem process, thresholds were proposed that define a 
safe operating space (SOS) for humanity for many cen-
turies to come. Exceeding such limits could trigger critical 
events that could challenge the resilience of the planet 
and shift its equilibrium state to a new one with unknown 
consequences. According to the latest update, six PBs 
(out of nine) have been already transgressed [3], which 
calls for urgent action to design and operate chemical 
systems within the ecological limits of the Earth.  

The PBs were not originally intended to be directly 
applied to industrial systems, yet recent work linking 
emissions data to impacts on the PBs control variables 
enabled their application to chemical processes. Stand-
ard life cycle assessments (LCAs), the current prevalent 
approach to evaluate chemical technologies environ-
mentally, lack absolute thresholds to interpret impact val-
ues. This shortcoming limits their application to relative 
comparisons, as already said. Specifically, given two al-
ternative technologies, we could conclude with a stand-
ard LCA that one is less environmentally impactful than 
the other in a given category, but whether they are truly 
sustainable in absolute terms would remain unclear. The 
PBs explicitly address this specific question by compar-
ing impact values with a given threshold derived from the 
carrying capacity of the planet Earth (Fig. 2). If the 
threshold is exceeded, the system is deemed unsustain-
able, and would be considered sustainable otherwise. 
Hence, coupling LCA with PBs allows to explicitly evalu-
ate whether industrial systems operate sustainably 
within the Earth’s ecological capacity. 

 
Figure 2. Application of PBs to the assessment of indus-
trial systems. A threshold based on the PBs is established 
to interpret the impact values quantified via LCA.  

PLANETARY BOUNDARIES IN PROCESS 
SYSTEMS ENGINEERING (PSE) 

Planetary boundaries application to industrial 
systems 

The PBs assessment of technologies comprises two 
steps (Fig. 3). First, a share of the SOS is assigned to the 

system studied following some downscaling (sharing) 
principles. The SOS should be shared among all eco-
nomic activities jointly, so shares of the total budget need 
to be defined and allocated to the specific system inves-
tigated prior to the assessment. This is a controversial 
step on which there is no consensus yet and that can re-
sult in different environmental budgets depending on the 
principle applied. Once the threshold is established for a 
given chemical system, a standard LCA is conducted. 
However, in the impact phase, impacts on the control 
variables of the PBs (rather than standard LCIA metrics) 
are determined using recently developed planetary dam-
age models [4-5]. In the last LCA step, the results are in-
terpreted, and conclusions and recommendations are 
provided considering the planet-wide impact of the stud-
ied industrial system.  

The added value of performing an absolute LCA 
based on the PBs is that it allows classifying systems as 
sustainable or unsustainable in each Earth-system pro-
cess. This, in turn, allows interpreting environmental 
trade-offs by quantifying the extent to which processes 
contribute to trespassing global boundaries, noy only 
those linked to climate change.   

 

Figure 3. Application of PBs to the assessment of indus-
trial systems. First, a share of the SOS is determined. 
Then, the transgression level is calculated by comparing 
the impact values with such a share.   

PBs were originally defined to monitor the environ-
mental state of the planet Earth. Here I argue that they 
could also be incorporated into the design and operation 
of sustainable industrial systems as additional con-
straints/criteria, to enforce that they ultimately comply 
with global environmental guardrails that are essential for 
ensuring sustainable development. This paradigm shift 
towards PBs-based decision-making opens the door for 
a myriad of applications, within the chemical sector and 
beyond, for which computer-aided tools quantifying ex-
plicitly the PBs impact of engineering decisions across 
scales could be developed. While, in principle, any indus-
trial process could be evaluated using the PBs, PBs stud-
ies are (arguably) better suited to large-scale systems 
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with large potential impacts that could destabilize Earth-
system processes. For example, PBs assessments of bulk 
chemicals, such as ammonia, might be more relevant as 
their current fossil production routes emit large amounts 
of CO2 contributing strongly to the transgression of the 
climate change boundary, regarded as a core planetary 
boundary. On the other hand, PBs assessments of chem-
icals produced at smaller scales might be less appealing, 
as the implications for the planet’s stability will likely be 
less critical. Note, however, that the control variable for 
the novel entities PB is, in principle, independent of the 
quantities produced (i.e., percentage of synthetics re-
leased into the Earth system) [3], so the above might not 
hold fully true for this case.   

Overall, the PBs framework provides valuable in-
sights out of reach for standard LCAs, and here I suggest 
that they are adopted in sustainability problems to com-
plement other environmental metrics, ultimately guiding 
research and policymaking more sensibly. 

Application domains in Process Systems 
Engineering 

The PBs offer a comprehensive framework to design 
sustainable chemical systems operating within the SOS. 
In essence, this could be accomplished by leveraging the 
existing life cycle optimization framework [6], widely ap-
plied in PSE [1, 7-8], in conjunction with the recently pro-
posed PBs characterization factors [4-5]. Following the 
life cycle PBs-based optimization approach, an optimiza-
tion model shall be formulated where life cycle assess-
ment principles are explicitly included via linear con-
straints linking mass and energy flows with emissions 
data and their PBs impact, as shown in the general com-
pact formulation below.  

𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑠𝑠. 𝑡𝑡. ℎ(𝑥𝑥,𝑦𝑦) = 0

𝑔𝑔(𝑥𝑥,𝑦𝑦) ≤ 0

�𝐶𝐶𝐶𝐶𝑖𝑖𝑝𝑝𝐿𝐿𝐶𝐶𝐿𝐿𝑖𝑖 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝
𝑖𝑖

∀𝑝𝑝

𝑥𝑥 ∈ ℜ𝑛𝑛,𝑦𝑦 ∈ {0,1}𝑚𝑚

 

Here, 𝑓𝑓(𝑥𝑥,𝑦𝑦) represents the objective function to be 
optimized, often related to economic performance, 
whose value is determined from the continuous variables 
𝑥𝑥 (e.g., temperatures, pressures, capacities of supply 
chain (SC) nodes, etc.), and binary variables 𝑦𝑦 (e.g., se-
lection of unit operations in a process flowsheet or SC 
entities in a network problem). Equality and inequality 
constraints describe the system studied and may include, 
in addition to the formulas required to compute the ob-
jective function value, equations linked to mass and en-
ergy balances and thermodynamic constraints in process 
synthesis problems, or capacity limitations and mass bal-
ances in supply chain problems. An inequality constraint 

can be added to the model to impose a maximum impact 
on the PBs. To this end, we link the life cycle inventories 
entries i (i.e., life cycle feedstock requirements, emis-
sions and waste calculated for the functional unit taken 
as a basis in the LCA calculations) to the impact on the 
control variables of the PBs using tailored characteriza-
tion factors 𝐶𝐶𝐶𝐶𝑖𝑖𝑝𝑝 defined for each Earth-system process 
p; moreover, we enforce that the resulting impact should 
not surpass the share of the SOS allocated to that partic-
ular system. Such a PBs constraint might be relaxed, al-
lowing the system to transgress the PBs share, while pe-
nalizing such transgression in the objective function us-
ing slack variables and penalty coefficients.  

The optimization model can take distinct forms de-
pending on the scope of the analysis, e.g., MILP/LP in 
sectoral and supply chain problems or an MINLP in pro-
cess synthesis or molecular design problems. We can 
then capitalize on the rich optimization theory and exist-
ing software tools to identify solutions with minimum PBs 
impact (for further details on mathematical programming 
applied to sustainable process systems engineering, see 
[9-12]) Moreover, standard LCAs, extensively employed 
in the environmental assessments of a wide range of 
chemical technologies, can be easily enlarged in scope to 
evaluate the PBs impact, thereby providing additional in-
sights. These conventional LCAs have become very pop-
ular in chemical engineering, with increasing applications 
in the evaluation of low TRL chemical technologies [13].   

 
Figure 4. Examples of application domains across scales, 
including network models optimization (at the sector 
level), supply chain optimization, and process design.  

Focusing on PSE application domains (Fig. 4), the 
areas of sectoral analysis (network modeling), supply 
chain optimization and process synthesis seem to offer 
the largest potential for applying the PBs framework. In 
network models, a superstructure of technologies is pos-
tulated to find the best portfolio to cover the demand of 
given products, often at minimum cost. Superstructures 
were for example defined for biomass routes to chemi-
cals and fuels [14], CCU technologies [1] and chemical 



 

Guillén-Gosálbez / LAPSE:2024.1506 Syst Control Trans 3:39-43 (2024) 42 

recycling pathways [15]. Here the problem is often for-
mulated as an LP, using simplified equations based on 
linear yields to model technologies. Such simplified net-
work models are typically employed to generate insights 
into the best routes to meet some demand (top-down) or 
the best technologies to transform given feedstock into 
valuable products (bottom-up). The spatial scope can be 
quite broad, particularly when considering global de-
mands and capacity limitations based on the global avail-
ability of resources. Network models are very well suited 
to identify technologies that are truly sustainable in ab-
solute terms. Here, a share of the global SOS can be al-
located to the demanded products to define environmen-
tal constraints that should not be violated, as we did in 
recent work where we studied how to produce plastics 
sustainably within the PBs [16].   

At a higher level of detail, supply chain (SC) models 
optimize the network topology and associated opera-
tions, including the location and capacities of nodes (e.g., 
plants, warehouses, distribution centers) and the pro-
duction rates and transport flows between the SC enti-
ties. The inclusion of PBs in standard SC formulations is 
of particular relevance when considering technological 
decisions, which often lead to critical trade-offs. For ex-
ample, we recently included PBs in the optimal design of 
hydrogen supply chains, finding solutions that decrease 
substantially the pressure exerted on the Earth-system 
processes by replacing grey with green H2 [17]. 

PBs could also be considered in process design 
problems to find the optimal topology and operating con-
ditions to optimize economic performance while respect-
ing global environmental limits. One option here is to for-
mulate the design problem in global terms, focusing on 
finding the optimal design of a plant of standard size that 
could be installed across the world to cover the global 
demand of given chemicals. Because the technology 
(chemical pathway) is already fixed here, the potential for 
environmental gains is typically more modest. This is be-
cause once a chemical route is selected, processes im-
plementing such a pathway often operate near the stoi-
chiometric amounts of the required reactants, which of-
ten constitute the main environmental hotspot contrib-
uting the most to total impacts. Notably, although heat 
integration can still play a role, impacts (particularly in 
bulk chemicals) are sill mostly dictated by the raw mate-
rials’ environmental footprint. Consequently, implement-
ing alternative unit operations and optimized operating 
conditions is unlikely to reduce the impact sharply unless 
the provenance of the reactants is modified (e.g., grey 
vs. green H2 in carbon capture and utilization routes).  
However, given the large production volumes of some 
chemicals, particularly bulk chemicals, even marginal im-
provements are worthy to pursue. Recently, we intro-
duced PBs in the design of a methanol flowsheet, letting 
the model select the hydrogen source depending on the 

objective function optimized. We found that substantial 
reductions in global impacts can be attained by resorting 
to renewable carbon feedstock [18].  

Lastly, PBs can also be easily incorporated into 
standard LCAs. For example, using absolute sustainabil-
ity LCAs based on the PBs, we showed that almost all 
widespread fossil chemicals transgress at least one PB 
due to their large CO2 emissions [19]. We also demon-
strated with LCAs based on PBs that current fossil plat-
form chemicals require around one quarter of a planet to 
operate, also owing to their large carbon footprint, and 
investigated ways to defossilize chemicals production 
sustainably by shifting to renewable carbon sources [5].   

CONCLUDING REMARKS 
The chemical sector should transition to defossilized 
technologies to close the carbon loop and operate 
sustainably within the Earth’s ecological capacity. This 
will require assessing and minimizing the unintended 
detrimental effects of emerging routes on environmental 
categories beyond climate change. In this context, the 
planetary boundaries offer an excellent framework to 
perform holistic assessments and identify solutions 
operating within the safe operating spare for humanity. 
Here I argue that due to its systems thinking and powerful 
computer-aided tools, Process Systems Engineering is in 
a unique position to embrace this new methodology in 
current assessments and optimizations of sustainable 
industrial systems, from molecules, through process to 
supply chains, sectors and the planet level.  

By incorporating the impact on the PBs explicitly in 
decision-support tools, the broad environmental 
implications of chemical systems will become clearer. 
This will allow us to identify the most promising 
technologies consistent with the planet’s ecological 
capacity early on, guiding experimental research and 
policy-making more effectively.  
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ABSTRACT 
In designing low-carbon processes, the unintended emission of CO2 remains a significant concern 
due to its global environmental impact. This paper explores carbon management within chemical 
processes, specifically examining the correlation between the process material balance (PMB) and 
CO2 emissions to understand and identify the potential for reducing these emissions. We interro-
gate the foundational issue of carbon discharge by analyzing the interplay among mass, energy, 
and entropy balances, which collectively influence the PMB.  We introduce the concept of the 
Target Material Balance (TMB), which represents the material balance of a process corresponding 
to minimum CO2 emissions within the given constraints. We could ask what decisions in the design 
and operation of processes result in higher CO2 emissions than the TMB. We will focus on the 
interaction between reactions and recycles and how the arrangement of recycles in processes can 
inadvertently change the PMB, thereby increasing CO2 emissions substantially above that of the 
TMB. We will demonstrate how recycle streams can be introduced to modify the PMB to approxi-
mate the TMB more closely. We will finally illustrate these concepts using simple examples, which 
demonstrate that a carbon-emitting process, such as reforming, can have the TMBs adjusted to 
create a design that not only reduces carbon emissions but eliminates them entirely.  

Keywords: Carbon Dioxide, Process Synthesis, Energy, Optimization, Methane Reforming, Process Material 
Balance, Target Material Balance, Minimizing CO2 Emissions, Work Analysis, Entropy Analysis 

INTRODUCTION 
Process Systems Engineering (PSE) is a connecting 

force in chemical engineering, providing both a scientific 
foundation and computational resources to tackle current 
and future challenges in areas like energy, environmental 
science, the 'industry of tomorrow,' and sustainability [1]. 
The methodologies developed within PSE can be classi-
fied into heuristic, insight-based, and mathematical opti-
mization approaches [2]. Heuristic methods leverage the 
designer's experience and intuition, while insight-based 
approaches depend on deep understanding and analyti-
cal insights. 

Heat exchanger network synthesis, commonly re-
ferred to as "pinch analysis,” is a heuristic method devel-
oped by Linnhoff and team in the late 1970s [3][4]. The 

approach offers a systematic method for reducing en-
ergy consumption in industrial processes by optimizing 
heat recovery systems.  

Mathematical optimization techniques systemati-
cally enumerate various potential unit operations, alter-
nate system configurations, process integration struc-
tures, operating modes, and other crucial aspects within 
a superstructure representation. Sorin et al. [5] use a re-
ducible superstructure to minimize a system's exergy. 
However, the effectiveness of a superstructure-based 
solution is contingent on the comprehensiveness and 
richness of the proposed superstructure and process 
units, with no assurance of identifying the global optimum 
of the system. 

The second law of thermodynamics, or entropy, is-
seldom explicitly employed in process design [6]. In-
stead, entropy's application is primarily implicit, such as 
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in determining phase and reaction equilibria, rather than 
being directly utilized in the process design or synthesis. 
Echoing this sentiment, Leites et al. (2003) [7] identify a 
"lack of understanding" of how second law methodolo-
gies can enhance process reversibility as a principal fac-
tor behind suboptimal designs, which in turn leads to el-
evated energy consumption. A review of the methodolo-
gies for conducting exergy and energy analyses of ther-
mal power plants notes that most approaches either 
adopt a superstructure methodology or focus on the 
analysis and optimization of a specific proposed flow-
sheet [8]. This highlights a gap in leveraging thermody-
namic principles, specifically entropy, more effectively 
and explicitly in pursuing energy-efficient process de-
signs. 

The second law of thermodynamics is implicitly 
used in process design, for example, by minimizing Gibbs 
Free Energy to predict chemical and phase equilibrium [9] 
[10], analyze the temperature dependence of reactions in 
novel chemistries [11], or predict the effect of feed com-
position on unwanted side reactions [12].  

These methods fall short in offering guidance on the 
explicit application of second-law analysis for ascertain-
ing the performance limits of a reversible process. The 
scope of the pinch approach has been extended to en-
compass targeting for both work and heat exchangers 
[13]. A superstructure methodology is utilized in order to 
identify the optimal network configuration.  

Process Targeting refers to any methodical proce-
dure for determining the fundamental performance limits 
of a proposed process pathway based on its inputs and 
outputs. It enables designers to compare process path-
ways purely based on thermodynamics, unconstrained 
by the specifics of design and equipment. This concep-
tual phase offers the broadest optimization space of any 
stage of design; the optimization spaces of all subse-
quent stages of design are just subsets of the optimiza-
tion space defined during Process Targeting. 

By omitting this phase of design, the chosen super-
structure or flowsheet may operate within a constrained 
optimization space that may not contain the global opti-
mal performance and, hence, may impose unnecessary 
performance limits. The majority of a process’s economic 
and environmental impacts are determined during the 
conceptual stage of design [14], so it is crucial that the 
superstructure or flowsheet chosen contains sufficient 
richness and appropriate interconnections so that its per-
formance is contained in full optimization space. 

There is also an argument to be made for Process 
Targeting based on the scientific principle of Falsifica-
tionism – a hypothesis regarding process performance 
cannot be falsified by a plant design failing to meet the 
stipulations of the hypothesis because that failure could 
be attributable to specific design decisions or equipment 
limitations. Conversely, if the fundamental performance 

limits defined by Process Targeting do not meet the stip-
ulations of a hypothesis, then that hypothesis is suffi-
ciently falsified.  

Hence, initiating the design procedure with Process 
Targeting is important for two main reasons – it is more 
compatible with the defined scientific method than other 
design approaches that start with equipment and/or a 
pre-defined flowsheet, and it allows for consideration of 
a broader optimization space for finding the best-per-
forming processes. 

This manuscript seeks to demonstrate this design 
approach by applying it to a straightforward chemical 
system in the earliest stages of design, by defining a Tar-
get Material Balance (TMB) which serves as a perfor-
mance target against which subsequent Process Material 
Balances (PMBs) can be compared at each stage of de-
sign. At each stage of design, the available optimization 
space narrows down to a selected subset of the space 
defined by previous design decisions and, correspond-
ingly, the limits of the PMB gradually become more con-
strained with each subsequent design decision. 

The TMB serves as a goal, indicating an optimum 
point in terms of a selected objective function [15], and 
decisions made at each stage of design can be evaluated 
in terms of how the new constraints it imposes impacts 
the PMB, that is moves it further from the TMB. 

This approach is intended to adhere to the 
knowledge-generation standards defined by the Falsifi-
cationist scientific method and to thereby circumvent de-
sign decisions that impose unnecessary constraints dur-
ing the early design stages. 

The proposed approach [15] [16] [17] uses the de-
ceptively simple concepts of material, energy and en-
tropy balances during the conceptual phase of design, as 
the first  and second laws of thermodynamics dictates 
the outer limits of the optimization space and therefore, 
the bounds of the PMB. 

Heuristics to improve the reversibility of a process 
have been suggested, including reducing driving forces  
and the design of the reactor among others  [7]. How-
ever, the nuanced impact of choices related to recycles 
on the PMB tends to be overlooked in the initial design 
phases. These decisions may inadvertently set the 
bounds of process efficiency and CO2 emissions, their 
impact being locked into subsequent design stages, ulti-
mately influencing the profitability and performance of 
the operating plant. Recognizing this intricate interplay 
underscores the need for a more comprehensive integra-
tion of mass, energy and entropy/work considerations in 
the early design stages. 

THEORY 
A process can be defined by the set of material bal-

ances and associated extents [18].  Consider a set of N 
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species, where a species j is denoted by 𝐴𝐴𝑗𝑗 and 1 ≤ 𝑗𝑗 ≤
𝑁𝑁. We specify that 𝑗𝑗 must either be a feed to or a product 
(final or intermediate) of the process. We can represent 
the set of species as vector AT= {A1, A2…, AN} where AT 
represents the transpose of vector A. Let nj be the num-
ber of moles of species 𝐴𝐴𝑗𝑗. We can represent the compo-
sition of a process stream as vector nT = {n1, n2, …, nN}. 

We denote the number of independent material bal-
ances (IMBs) that describe the relationship between the 
elements of A as S. IMBs have also been called independ-
ent chemical reactions, but in this paper, we will refer to 
IMBs, as the IMBs may not reflect or coincide to the ac-
tual individual reactions occurring in the process. Differ-
ent procedures to determine the IMBs have been re-
ported by Yin, (1989) [6]. 

The stoichiometric matrix 𝒗𝒗, with elements 𝑣𝑣𝑖𝑖𝑗𝑗 where 
1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 and 1 ≤ 𝑗𝑗 ≤ 𝑆𝑆, is defined such that the S IMBs 
can be written as 𝛖𝛖𝑨𝑨 = 𝟎𝟎. We define the extent vector ε  
of the S IMBs as εT= {ε1,ε2, …,εs}. The relationship between 
the molar composition of the reaction mixture 𝒏𝒏𝒐𝒐𝒐𝒐𝒐𝒐, the 
initial or feed composition 𝒏𝒏𝒊𝒊𝒏𝒏and the stoichiometric ma-
trix 𝒗𝒗 is given by: 

𝒏𝒏𝒐𝒐𝒐𝒐𝒐𝒐 = 𝒏𝒏𝒊𝒊𝒏𝒏 + 𝒗𝒗𝑻𝑻𝜺𝜺                                                       (1) 

where the range of 𝜺𝜺 is such that all 𝑛𝑛𝑖𝑖 ≥ 0    
We begin by defining properties that will be used to 

analyze heat and work flows in a process. The molar en-
thalpy of component Ai in a mixture at temperature T and 
pressure P is denoted 𝐻𝐻�𝑖𝑖(𝑇𝑇,𝑃𝑃). The molar enthalpies of 
formation of A can be combined into vector 𝑯𝑯�(𝑇𝑇,𝑃𝑃)𝑇𝑇 =
�𝐻𝐻�1(𝑇𝑇,𝑃𝑃),𝐻𝐻�2(𝑇𝑇,𝑃𝑃), … . .𝐻𝐻�𝑁𝑁(𝑇𝑇,𝑃𝑃)�. Similarly, the molar Gibbs 
Free energy of formation vector of A in a mixture at T and 
P is defined as 𝑮𝑮�(𝑇𝑇,𝑃𝑃)𝑇𝑇 =
�𝐺𝐺�1(𝑇𝑇,𝑃𝑃),𝐺𝐺�2(𝑇𝑇,𝑃𝑃), … ,𝐺𝐺�𝑁𝑁(𝑇𝑇,𝑃𝑃)�, where 𝐺𝐺�𝑖𝑖(𝑇𝑇,𝑃𝑃) is the molar 
Gibbs Free energy of formation component Ai  at T and P. 

The enthalpy of a stream of composition n at tem-
perature T and pressure P is defined by: 𝐻𝐻(𝑇𝑇,𝑃𝑃) =  𝑛𝑛𝑇𝑇 ∙
𝐻𝐻�(𝑇𝑇,𝑃𝑃). The Gibbs Free Energy of a stream at tempera-
ture T and pressure P is similarly defined by: 𝐺𝐺(𝑇𝑇,𝑃𝑃) =
 𝑛𝑛𝑇𝑇 ∙ 𝐺𝐺�(𝑇𝑇,𝑃𝑃). Consider a process, as shown in Fig. 1, where 
the inlet and outlet stream are at ambient temperature To 
and ambient pressure Po, and where a quantity Q of heat 
at To and work W are added to the process, as shown in 
Fig. 1. 

An energy balance across the process gives: 

∆𝐻𝐻 =  𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜(𝑇𝑇𝑜𝑜 ,𝑃𝑃𝑜𝑜) −  𝐻𝐻𝑖𝑖𝑖𝑖(𝑇𝑇𝑜𝑜 ,𝑃𝑃0) = 𝑄𝑄(𝑇𝑇𝑜𝑜) + 𝑊𝑊      (2) 

Similarly, an entropy balance, combined with eq. (2), 
assuming reversibility gives, work or Gibbs Free Energy 
balance: 

 
Figure 1. Schematic diagram of mass, heat, and work-
flows in a generalized process. Note the process is not 
assumed to e either isothermal or isobaric 

∆𝐺𝐺 =  𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜(𝑇𝑇𝑜𝑜 ,𝑃𝑃𝑜𝑜) −  𝐺𝐺𝑖𝑖𝑖𝑖(𝑇𝑇𝑜𝑜,𝑃𝑃0) = 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟                 (3) 

For irreversible processes, the actual work added to 
the process, W, is such that W > Wrev =∆G. (When ∆G<0, 
|𝑊𝑊| < ∆𝐺𝐺) Thus, more work than the reversible limit (tar-
get) is added to processes where ∆G<0, and less work is 
produced than the reversible limit when ∆G>0. 

For the overall process, including utility streams, ∆G 
≤ 0 and typically ∆H ≤ 0 in that the process must be de-
signed so as to supply heat and work requirements. Thus, 
processes need to satisfy the following constraints. 

𝜺𝜺 = (𝜈𝜈𝑇𝑇)−1(𝒏𝒏𝑜𝑜𝑜𝑜𝑜𝑜 −  𝒏𝒏𝑖𝑖𝑖𝑖)     (4) 

∆𝐻𝐻 =  𝝂𝝂𝑇𝑇𝜺𝜺 ∙ 𝐻𝐻�(𝑇𝑇,𝑃𝑃) ≤ 0       (5) 

∆𝐺𝐺 =  𝝂𝝂𝑇𝑇𝜺𝜺 ∙ 𝐺𝐺�(𝑇𝑇,𝑃𝑃) ≤ 0    (6) 

The PMB is given by 𝛖𝛖𝑨𝑨 ∙ 𝜺𝜺  = 0 and is thus set by the 
choice of extents of the IMBs. Furthermore, the PMB also 
sets ∆H and ∆G for the process and ensures that eq.(5) 
and (6) are satisfied. We define the TMB as 𝛖𝛖𝑨𝑨 ∙ 𝜺𝜺∗ = 0, 
where the equality holds for either equation (5) and (6), 
ie ∆𝐻𝐻=0 and ∆𝐺𝐺<0 in a heat-limited process or ∆𝐻𝐻<0 and 
∆𝐺𝐺=0 in a work-limited process. The TMB describes the 
limit or target for the PMB.  

We will explore the relationship between the TMB, 
PMB and flowsheet by  using the concept of the process 
target on a simple, well studied and industrially important 
process, namely production of methanol from natural gas 

Example: Analyzing the overall process for 
conversion of methane to methanol 

Consider reforming methane to produce 1mol/s of 
methanol. We define AT= {CH4, O2, CH3OH, H20, CO2}. 
There are only two IMBs in this case, and the set of inde-
pendent equations will be defined as: 

CH4 + 1/2O2→CH3OH(l)   (I) 

∆HI=-164.3 kJ/mol; ∆GI=-115.6 kJ/mol 

CH4 + 2O2→CO2 + 2H2O(l)   (II)  

∆HII=-890.3 kJ/mol; ∆GII=-817.8 kJ/mol 
Defining the extent of the reactions as εI and εII, re-

spectively, we see that the requirement of a production 
rate of 1 mol/s of methanol, sets the value of εI=1. Thus, 
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we require: 

From eq(4) : εI ∆HI + εII∆HII = -164.3 - 890.3*εII ≤0 

From eq(5): εI ∆GI + εII∆GII = -115.6 – 817.8*εII ≤0 

We see that the above equations are satisfied for 
εI=1 and εII=0. As ∆H and ∆G are negative for IMB (I), the 
process would be exothermic and would be irreversible if 
work was not recovered from the process. Combusting 
more CH4 via IMB (II) will make ∆H and ∆G even more neg-
ative, consequently increasing CO2 emissions. 

The PMB for εI=1 and εII=0 is: 

CH4 + 1/2O2→CH3OH(l)            (PMB1)  

with ∆H=-164.3 kJ/mol and ∆G=-115.6 kJ/mol. 
Thus, in principle, 1 mole of methane is converted to 

1 mole of methanol and no CO2 or water is produced as a 
waste product. The process will also reject heat, and if no 
work recovery is in place, it will lose 115.6 kJ/mol of work 
potential. 

According to Monjur et al. (2021) [20], the PMB for 
a conventional natural gas to methanol process is: 

1.069 CH4 +0.638O2→CH3OH + 0.069 CO2 + 0.134 
H2O           (PMB2) 

with ∆H=-225.7 kJ/mol and ∆G=-172.0 kJ/mol 
PMB2 corresponds to extent εI=1 and εII=0.069. No-

tice that a conventional process produces both CO2 and 
water as waste products and simultaneously rejects more 
heat and work than PMB1. 

 Monjur et al. optimizes the natural gas to methanol 
flow sheet and finds PMB3 with εI=1 and εII=0.055 giving: 

1.055 CH4 +0.610O2→CH3OH + 0.055 CO2 + 0.110 
H2O                (PMB3) 

with ∆H=-213.2 kJ/mol and ∆G=-160.5 kJ/mol 
We see that this improved design reduces the 

amount of CO2 produced and that both ∆H and ∆G across 
the process are also less negative compared to PMB2. 
Thus, the improved process described by PMB3 would 
be less exothermic and have less lost work than PMB2. 
This process still, however, does not match the perfor-
mance of the original PMB 1, where no CO2 was emitted. 

We could then ask how we might improve PMB3 
even further? Without having a process target, one can-
not decide if design decisions were made that impose un-
necessary constraints on the process described by PMB 
3.  One could, for example, falsify the proposition that 
PMB 3 is optimal by proposing that the CO2 and H2O in 
the product be recycled back into the process.  If this 
were done, then PMB 3 would be transformed to PMB 1.  
Notice that introducing the recycles would result in re-
duced flowrates of CH4 to the process and simultane-
ously reduce the heat and work losses. This seems to be 
a win-win for increasing plant profitability and reducing 

environmental impact.  
PMB1 is better than PMB2 or PMB3 in terms of feed 

utilization, less lost work, and lower CO2 emissions. How-
ever, is PMB1 the “best” PMB? The “best” PMB  is the TMB  
which requires that either ∆H or ∆G be zero, and PMB1 
does not satisfy this.  The process target for this system 
is work-limited and the TMB for ∆G=0 corresponds to 
εI*=1 and εII*=-0.141; giving:  

0.859 CH4 + 0.217 O2 + 0.141 CO2 + 0.283 H2O(l) 
→CH3OH(l)    (TMB) 

with ∆H=-35.5 kJ/mol and ∆G=0 kJ/mol 
The TMB corresponds to the process target – no 

process based on IMB’s (i) and (ii) can perform better 
than this. Furthermore, the TMB can be used to compare 
processes via the PMB to identify if there are opportuni-
ties for improvement in process performance. Any im-
provements will result in improved CH4 utilizing, and sim-
ultaneously reduce heat and work losses.    

Examining the TMB, we see that both CO2, and H2O 
are consumed and, by doing so, the reversible process 
would convert 0.859 moles of methane to 1 mole of meth-
anol. It might appear, because of the negative value of 
εII*, that the TMB requires a unit operation where methane 
is “un-combusted” or equivalently where CO2 and H2 are 
converted to CH4. However, (I) and (II) are IMBs and may 
not correspond to actual reactions occurring in the pro-
cess. Although PMB1 was better than either PMB2 or 
PMB3, it is still very far from the TMB.  

In summary, the TMB describes the PMB for a re-
versible process, and so we would not expect a real pro-
cess to match the TMB. However, the TMB gives infor-
mation about how much room there is for improvement in 
the PMB. It can be used as a guide against which design 
decisions are made, so that as we take irreversibilities in 
the process into account by modifying the process and 
thus the PMB, we can benchmark the impact of the deci-
sion on the PMB by comparing it to the TMB. 

This approach can also be used on sections of a 
plant to define the TMB across sections of the plant is 
and, thus, gives insights on how to integrate the mass, 
heat, and workflows between sections so as to approach 
the TMB of the overall process. 

Example: Analyzing the process subsections in 
the conversion of methane to methanol 

Methane to methanol plants typically consist of two 
subsections, namely a section which generates the syn-
thesis gas, a mixture of CO, CO2 and H2, which we will call 
the reformer section followed by a methanol synthesis 
section where the syngas is converted to methanol as 
shown in Fig. 2. 

We will again use a production rate 1mol/s of meth-
anol as a basis. Looking further into the process details, 
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we need to include the components of syngas in the def-
inition of A. Furthermore, water will exist in both the liquid 
and vapor phases (and thus have different G and H), and 
so we will include these as two separate species. 

 
Figure 2. The methane to methanol process broken in a 
reformer and methanol synthesis section. Molar 
flowrates (mol/s) corresponding to the TMB are indicated 
in black, heat flows in red and workflows in blue 

We therefore define AT= {CH4, O2, CH3OH (l), H2O(l), 
H2O(v), CO2, CO, H2}. 

There are 5 IMBs in this case, and we will define the 
IMBs in terms of reactions or unit operations that may be 
occurring in the process, namely: 

CH4 + H2O(v)→ CO + 3H2   (III)    
∆HIII= 206.1 kJ/mol; ∆GIII=142.2 kJ/mol 

CH4 + 2O2→ CO2 + 2H2O(v)   (IV) 
∆HIV=-802.4 kJ/mol; ∆GIV=-800.7 kJ/mol 

CO2 + H2 → CO + H2O(v)   (V)
∆HV= 41.2 kJ/mol; ∆GV= 28.6 kJ/mol 

H2O(l) → H2O(v)    (VI) 
∆HVI= 44.0 kJ/mol; ∆GVI= 8.56 kJ/mol 

CO+2H2 →CH3OH(l)    (VII)
∆HVI= -128.1 kJ/mol; ∆GVI= -29.6 kJ/mol 

We can calculate the extent of these IMBs that cor-
respond to the overall TMB. In order to achieve the TMB 
we require ε*T= {εIII*,εIV*,εV*,εVI*,εVII*} = {0.75, 0.109, 
0.25,0.283,1}. For illustrative purposes, we will specify 
the composition of the syngas, leaving the reformer sec-
tion as having ratio CO:H2 = 1:2. We will further assume 
that the liquid feed water is evaporated in the reformer 
section. Thus, IMBs III, IV, V, and VI will occur in the re-
former section, while only IMB VII will occur in the meth-
anol section because of the specified composition of the 
intermediate syngas is in the stoichiometric ratio defined 
by IMB (VII).  This allows us to determine the TMB of the 
individual sections of the plant that will be consistent with 
the overall TMB. Conditions (5) and (6) can be lifted for 
process subsections, with the understanding that a plant 
subsection with ∆H>0 implies that heat integration needs 
to be done between this plant subsection and the other, 
which will be exothermic, namely with ∆H<0. Similarly, a 
plant subsection with ∆G>0 implies that work integration 

needs to be done between this plant subsection and an-
other with ∆G>0. 

The TMB for the reformer section, TMBRef, can be 
calculated using ε*T= {εIII*,εIV*,εV*,εVI*,εVII*} = {0.75, 0.109, 
0.25,0.283,0} giving: 

0.859 CH4 + 0.217 O2 + 0.141 CO2 + 0.283 H2O(l) 
→CO + 2H2    

(TMBRef) 

with ∆H= 90.14 kJ/mol and ∆G=29.23 kJ/mol 
Similarly, the TMB for the methanol synthesis sec-

tion, TMBMeth, can be calculated using εT*= {εIII,εIV, εV, εVI, 

εVII} = (0,0,0,0,1}, giving: 

CO + 2H2→ CH3OH   (TMBMeth) 

with ∆H= -128.1 kJ/mol and ∆G=-29.23kJ/mol 
We see that both work and heat will need to be 

transferred from the methanol synthesis to the reformer 
section, as indicated in Fig. 2. We will consider the re-
former section further to show how we can use the 
TMBRef to develop a flowsheet and related PMB.  

Example: Development of the Reformer Flowsheet 
using the TMBRef 

The development of the reformer flowsheet is itera-
tive in terms of setting up the flows and recycles and the 
heat and work integration. This paper will focus on set-
ting up the mass flows (Fig. 3) and will show an example 
where heat and mass integration has been incorporated 
(Fig. 4). 

The reformer section consists of a combustion pro-
cess where CH4 is combusted to provide the work to 
drive the reforming reaction, a steam reforming reaction 
and a water gas shift (WGS) reaction to shift the gas to 
the correct CO:H2 ratio of 1:2. The extents of reforming, 
WGS and combustion are initially set by the TMBRef. 

There are two exothermic, work producing reac-
tions, namely combustion and methanol synthesis. The 
amount of work that can be recovered from a process is 
given by ∆H(1-T0/T) [16], where T is the temperature of 
the heat (∆H) added or rejected by the reaction. The 
combustion process is particularly irreversible, as the 
Carnot temperature for combustion of methane is very 
large (~147000K). Thus, the amount of O2 fed to the pro-
cess for combustion must be increased so that the re-
covered work from both the combustion and the metha-
nol synthesis subprocess is sufficient to supply the over-
all process work. This is done by increasing the extent of 
combustion (𝜀𝜀𝐼𝐼𝐼𝐼 > 𝜀𝜀𝐼𝐼𝐼𝐼∗ ) and, consequently, increasing the 
amount of oxygen and methane fed to the combustion 
reaction. This design decision introduces process irre-
versibility which results in the PMB moving away from the 
target TMB.  We describe how the new PMB is calculated 
below. 
  



 

Hildebrandt et al. / LAPSE:2024.1507 Syst Control Trans 3:44-51 (2024) 49 
  

 
Figure 3: Example of the molar flows around the reformer section (mol/s) corresponding to PMB 4. 
 

 

 
Figure 4: (a) Mass flows and (b) heat flows in red and work flows in blue for a process producing 1 mol/s methanol 
which has been heat and work integrated. 
 
 

(a) 

(b) 
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Further design constraints can to specified; for example, 
we set the reforming temperature at 1273K and specify 
the ratio of H2O:CH4=2:1 entering the reformer in order to 
suppress carbon depositing; as we know the flow rate of 
methane entering the reformer  (𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼) this then sets the 
water flowrate entering the reformer (2𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼),  and conse-
quently the flowrate of water in the stream leaving the 
reformer as well as the water recycle flowrate. Setting 
the reforming temperature sets  𝜀𝜀𝐼𝐼𝐼𝐼 as we require that the 
work rejected by the combustion when the heat is re-
jected at 1274K, and methanol synthesis reactions must 
supply the work for the reforming process, i.e.: 

𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼∗ ∆𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼∗  ∆𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 + 𝜀𝜀𝐼𝐼𝐼𝐼∆𝐻𝐻𝐼𝐼𝐼𝐼 �1 − 𝑇𝑇𝑜𝑜
1274� �        (7) 

Solving eq.(7) gives that 𝜀𝜀𝐼𝐼𝐼𝐼 = 0.16, thus setting the 
flowrate of O2 to 0.32 mol/s,  and the flowrate of methanol 
entering the combustion process as 0.16 mol/s, which 
ensures that sufficient work is supplied to the process 
once the irreversibility of work transfer from combustion 
is taken into account, as  shown in Fig. 3. 

In order for the WGS reaction to operate at its Car-
not Temperature Tc, we require that the WGS equilibrium 
constant, KWGS,  be 1 (i.e. ∆G(Tc, p) = 0), which corre-
sponds to an operating temperature of  Tc= 974 K. As we 
know the flow rate of CO, H2 and H2O leaving the WGS  
reactor, we can then determine the amount of CO2 in the 
product stream of the WGS reactor so as to meet the re-
quirement that (KWGS =1); this then allows us to subse-
quently calculate the  CO2 recycle flowrate. The resulting 
flowsheet is shown in Figure 3. The PMB for the overall 
process in Fig. 3 is given by: 

0.91 CH4 + 0.32 O2 + 0.09 CO2 + 0.18 H2O(l) 
→CH3OH      

(PMB4) 

with ∆H= -83.65kJ/mol and ∆G=-42.38 kJ/mol 
 

The PBM for the reformer section is described by: 

0.91 CH4 + 0.32 O2 + 0.09 CO2 + 0.18 H2O(l) →CO + 
2H2      (PMBRef) 

with ∆H= 44.4 4kJ/mol and ∆G=-12.8 kJ/mol 
The PMBIV consumes less CO2 than the TMB; how-

ever, it is considerably better than the PMB’s 1, 2 or 3 
given earlier. This is mainly due to the use of recycles to 
ensure that we approach the TMB more closely than in 
the previous processes. The process flowsheet can be 
iteratively developed to ensure that the workflows to 
each section are such that ∆G≤0 for each reaction sys-
tem. Work can, for example, be added to a process by 
operating at high pressure when there is a decrease in 
moles of gas across the process. The exact operating 
pressure can be calculated to ensure that the correct 
amount of work is added via this route. The flow sheet 
can be developed, taking temperature constraints and 

work flows to ensure that  ∆G≤0  in each reactor, and an 
example of the flow sheet that is mass, heat and work 
integrated is given in Figure 4 [8].  This process not only 
consumes CO2, but also produces 67 kW of work (based 
on a production rate of 1 mol/s methanol). 

CONCLUSION 
The TMB represents the overall process material 

balance for either a reversible process (in the case of a 
G-limited process) or an adiabatic process (in the case of 
an H-limited process). The TMB also sets the limiting pro-
cess heat and work flows.  The TMB represents the limit 
of performance of the process; thus the overall material 
balance across a process, which we refer to as the PMB, 
may at best, in the limit approach the TMB. The further 
the PMB is from the TMB, the more room for improvement 
there may be. Any design decision that results in a sizable 
departure of the new PMB from the TMB therefore rep-
resents the introduction of irreversibility which constrains 
the performance limits for subsequent design steps.  

The TMB can be calculated using only the Gibbs 
Free Energy and Enthalpies of formation of the feed and 
product species. The TMB in the case of a G-limited pro-
cess corresponds to the situation where the chemical po-
tential of the feed (s) is conserved in the product.  It also 
represents the limiting amount of CO2 that is emitted from 
a process.   

A design procedure can, therefore, reliably and fal-
sifiably search for optimal processes by first defining the 
TMB and comparing the subsequent PMBs resulting from 
subsequent design decisions against that benchmark. In 
this way, the TMB can be used as a tool for iterative de-
sign, which conserves as much of the feasible optimiza-
tion space as possible through each stage of design. 

The TMB can also be modified by the inclusion of 
specific constraints that may reduce the optimization 
space, such as heat transfer occurring at temperatures 
other than the process or reaction Carnot temperature. 
Thereafter, in the case of reversible reactions, recycles 
can be introduced to ensure that the desired extent of 
reaction is achieved.  In this way one can work toward 
the desired TMB rather than accepting the PMB given by 
a simulation. 

While the TMB represents a performance bench-
mark that might not be achievable in real processes, it is 
useful as a means of identifying, and hopefully avoiding, 
design decisions that prematurely constrain the optimi-
zation space for design which can in some case result in 
both carbon release and inefficient utilization of the feed. 
It is also a useful basis of comparison between processes 
of differing levels of technological maturity, where it can 
identify which processes have the most inherent poten-
tial regardless of current levels of optimization and equip-
ment design, making them a useful tool for long-range 
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planning and R&D investment decisions. 
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ABSTRACT 
This work presents an overview of the path towards the use of renewable and nonconventional 
resources for a sustainable chemical and process industry. The aim is not only to lead the way to 
meet the sustainable development goals but also to maintain the style and quality of life achieved 
by the technologies and products developed within this sector. Alternative raw materials are to be 
used and processed differently while a new paradigm for utilities is to be established. The devel-
opment of technologies and their deployment faces several barriers that we as process engineers 
can help overcome by providing insight into the alternatives, the thresholds to achieve to become 
competitive, and strategic analyses.  

Keywords: Process Design, Renewable and Sustainable Energy, Modelling, Process Synthesis, Energy Storage 

INTRODUCTION 
The current chemical and process industry stands at 

a crossroads. Over the last decades its products have 
provided a lifestyle and wellbeing to society non prece-
dented. Even though there are thousands of chemicals, 
most of them can be directly related to eight building 
blocks (ammonia, methanol, ethylene, propylene, ben-
zene, toluene, and mixed xylenes) that are typically pro-
duced from fossil resources. Energy intensive chemical 
production processes consumed 14% of global oil and 9% 
of global gas and released 13% of global industrial direct 
CO2 emissions in 2020,1,2 it represents the largest energy 
consumer and the third largest direct CO2 emiter.3 Adding 
to production the use of the product, the chemical indus-
try accounts for 45% of global greenhouse gas (GHG) 
emissions. Therefore, reducing the use of resources this 
sector, it is possible to cut the global emissions by 39% 
(22.8 Bt).4 These processes can be divided into different 
business such as chemicals (including consumer prod-
ucts and pharma), food and beverage, petroleum refin-
ing, iron and steel, cement, among others that required 
utilities of different grades.5 Thus, the transition towards 
a new process industry starts from the raw materials but 
it also must include the utilities required to process them 
into the final products, such as thermal and electrical en-
ergy or water, see Figure 1.6  

Figure 1. More sustainable production system 

In the path to meet the sustainable development goals 
both aspects are to be addressed simultaneously. How-
ever, the problem has been addressed by pieces by dif-
ferent research groups. The efforts have been placed ei-
ther on evaluating alternative sources for the chemicals 
or the production of utilities. A wider and more systematic 
view7 is required for the integration of resources and 
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technologies, and the selection of the best use of the nat-
ural resources towards sustainability.  

In this perspective, we present the different efforts 
and challenges at process scale and at strategic level as 
well as the barriers8 new technologies face that include 
the social perspective.9 Once the information is on the ta-
ble, the opportunities that process system engineering 
has to offer to help overcome those barriers and contrib-
ute to the sustainable transformation of the chemical in-
dustry are presented. Chemical engineering has contrib-
uted to the past industrial transitions, there is no reason 
to think why it is not possible to do that again. 

STATE OF THE ART ON THE 
TRANSFORMATION TECHNOLOGIES 

In the path towards a sustainable chemical and pro-
cess industry there have been several efforts in parallel, 
raw materials, utilities and the process design itself, but 
that are intrinsically related. Over the last years there has 
been a trend to evaluate the possibility of substituting the 
production of basic chemicals from biomass and waste, 
specifically the major building blocks, see Figure 2.  

 
Figure 2. Use of CO2 as raw material 

Renewable Raw Materials 
It is expected that by 2050 the chemical system will 

reduce the use of fossil feedstock down to 10-42%.1 

While the early works focused on the use of biomass and 
wastes to produce biofuels such as ethanol or biodiesel1, 
the extension of the application to substitute fossil fuels 
has been limited so far. Beyond ethanol and glycerol, as 
biodiesel major byproduct,10 that can be used as a source 
of other chemicals including monomers, (i.e. ethylene, 
butadiene), the production of platform chemicals from bi-
omass (i.e. Dimethyl furfural, xylitol)11, as well as specialty 
chemicals, (i.e. limonene, phenols)12,13 has been the fol-
low-up effort. So far two main barriers have been identi-
fied, their economics, the higher production cost1 and the 
tight margins of the bulk chemicals 14 together with the 
fact that the petrochemical industry and the related 

business are well established. The additional processing 
steps required in waste processing add cost to the final 
product, even if the raw material is cheap or even free,15,16 
so that the use of residues is first and foremost a waste 
management strategy before a true starting point for a 
circular economy. Only in the case of high added value 
products it is interesting to use biomass as a resource 
and biorefineries that produced them as principal prod-
uct, together with others including biofuels and/or utili-
ties are the most interesting processes.12,13 The similari-
ties between the crude oil refineries and thermochemical 
biorefineries have provided the opportunity to retrofit 
conventional facilities into biobased ones.17 

The discussion extends and holds true for CO2 as raw 
material.18,19 The increase in the CO2 concentration in the 
atmosphere is one of the major concerns because of its 
effect on global warming. While it is possible to capture it 
from point sources such as industries (cement, steel) and 
power plants, direct air capture (DAC) has become an in-
teresting technology to reduce the CO2 already in the at-
mosphere. However, recent works show that the energy 
consumption to capture and further use of the CO2 can 
represent a high share leading to a high level of related 
emissions due to the capture step unless less carbon in-
tense technologies and resources are used to produce 
PV panels and wind turbines.20 Utilization of CO2 rather 
than just sequestration21 can provide a way to create a 
circular economy around it, once the levels in the atmos-
phere are back into acceptable ones. The use of renew-
able energy to process CO2 is one of the first cases of 
integrating alternative energy sources as utilities within 
major chemical processes. As a result, CO2 has been the 
base for e-fuels including methane, methanol, Dimethyl 
ether (DME), Fischer Tropsch-fuels among others. The 
reduction of CO2 via hydrogenation14 or electroreduc-
tion22,23 are possible technologies that have been evalu-
ated towards the production of methanol or ethylene and 
all the way to polymers. However, some are still at low 
TRL. In addition, most of them can be produced also from 
biomass, several studies compare both alternatives.14 
Comparing CO2 and biomass as raw material for the same 
product, biomass-based processes require more pro-
cessing stages to prepare the syngas, but in general they 
are more mature technologies while the need for renew-
able based electricity results in higher investment costs 
in Solar panels and wind turbines. In addition, the need to 
overdesign of the units to operate over a year or the stor-
age of hydrogen represents an additional burden. Bio-
mass based products show lower production costs14,24 
but biomass availability is limited, and it has a wider spec-
trum of final products represents a decision on the best 
use is yet to be taken. But it has to be made not at pro-
cess level, but a more strategic one which calls for a mul-
tiscale approach. 

Sustainable Process Design 
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Process design towards efficiency in the use of en-
ergy and raw materials is and has been the first step to-
wards sustainability. Selection of processing paths and 
technologies is an important synthesis problem to be 
solved. The catch is that novel technologies present a 
lack of information on their operation and/or the uncer-
tainly in their performance. Modelling and simulation are 
key for process synthesis and represent a challenge 
when dealing with novel technologies, but first principles 
can help and provide the first approach while artificial in-
telligence (AI) is becoming a powerful tool also. Apart 
from the economic feasibility, the distributed availability 
of the resources also jeopardizes the facilities using al-
ternative resources. No longer scale-up and economies 
of scale play an important role but scale down and the 
effect that it has on the selection of technologies to build 
a process.25 Distributed production and modularization 
are part of the new design approaches for the exploita-
tion of biomass, solar and wind energy.26 This is also true 
for the case of small nuclear reactors27, see Figure 3, 
which also adds the social acceptance as a variable to 
the deployment of non CO2 based technologies. To help 
in the path, circular process design, such as the effort in 
plastic recycling,30,31 creating a circular economy around 
CO2, process integration to avoid the use of external 
chemicals2 and intensification32 are additional tools to be 
developed an implemented. 

Renewable Utilities 
It is also important to highlight another line of work 

that typically progresses in parallel with the production of 
chemicals. The transformation processes require energy 
and cooling. Even if the raw material is a residue or a re-
newable resource, the utilities required must also be pro-
vided avoiding fossil-based CO2 emissions. This has 
been a common weakness in the analysis of the process. 
Either the utilities are decarbonized and/or new technol-
ogies are to be implemented. However, even new pro-
cesses using unconventional raw materials have been 
built based on the same principles, so that the same util-
ities are used.28,29  

Utilities refer to electricity and heat representing 20 % 
and 80% respectively of the total energy consumption in 
the production of chemicals.29 Therefore, utilities decar-
bonization means heat decarbonization,28,35,36 all the way 
from steam decarbonization,37 either using biofuels20 or 
hydrogen for high temperature requirements38, to the 
electrification of the units, refrigeration cycles39 including 
heat pumps cycle lay out and fluid selection,40 or the use 
of Solar based ones such as gasification or reforming or 
to provide energy for endothermic reactions in general.41 
In addition, recovering heat from waste streams to pro-
duce power33, and water network34 design require addi-
tional analysis but is proven to reduce the need for exter-
nal resources.  

 
Figure 3. Scale down of technologies. effect on the 
facility and on the surroundings27 

As in the case presented for the transformation 
stages, the use of nonconventional utilities requires unit 
and process design. In addition, novel process ap-
proaches such as intensification, plasma technology, ul-
trasound microwaves and others have reduced the costs 
and the generation of wastes.29 Some of them are related 
to the use of utilities differently. The design of such novel 
units is still in their infancy and involves the concept of 
process and product design and requires considering ad-
ditional principles beyond traditional chemical engineer-
ing since solar and electrical heating are involved. 
Transport phenomena, unit operations and reactor engi-
neering need to team up with electrical engineering and 
electro chemistry and can play an important role for the 
new technology to become competitive. The role of min-
erals and their availability to build these units can repre-
sent another limitation on the extent of the expansion of 
the penetration of renewable energy.42 So far only pilot 
plant scale studies are available. The MeOH is among the 
fist examples of defossilization considering both the raw 
materials and the utilities involved.24  

CO2 utilization as well as utilities decarbonization is 
linked to the use of renewable energy and electricity and 
green hydrogen. Carbon capture and utilization (CCUS) 
involves the production of chemicals out if it, including 
methane, DME, methanol or urea creating a circular econ-
omy for CO2. But it is also possible to fully avoid the use 
of carbon-based chemicals developing non-carbon-
based based power plants44,45 via the temporal storage of 
hydrogen ammonia, MgH244 or Liquid organic hydrogen 
Carriers (LOCHs). In all these cases, the integration of 
solar and wind within the chemcial transformation is key 
and affects process design. 

Challenges of Process Operation Integrating 
Variable Resources 

Management of highly volatile resources such as wind 
and the Sun calls for process and resource integration46 
as well as smart storage, where chemicals can play an 
important role47 to reduce the need to build batteries be-
yond the minerals availability.48 The operation of 

https://www.iaea.org/sites/default/files/styles/original_image_size/public/smr-vs-npp-v5.png?itok=T0hG-c-M
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processes that rely on variable resources, variable be-
cause of their composition, i.e. biomass, or availability, 
solar and wind, results in demand site management prob-
lems that have been addressed at small scale45 due to 
their complexity. In addition, most of the work in heat in-
tegration of power to heat for process industries integra-
tion has used the pinch technology, but the use of math-
ematical optimization has proven a powerful tool that has 
been used traditionally in the petrochemical industry and 
for the penetration of renewables but the full electrifica-
tion results in problems that are mathematically really 
complex due to the variability of the resources and novel 
tools are being developed49,50  

Assessment of Process Sustainability 
One question arises here, when a new process is more 

sustainable than the one is trying to substitute. Recent 
studies have posed that question and presented interest-
ing results for several examples.51,52 Further analysis is re-
quired to cover the entire spectrum. One on the current 
limitations is the tools to quantify the environmental im-
pacts. LCA analysis present limitations when novel tech-
nologies are evaluated due to the lack data to character-
ize them. Similarly, the technoeconomic analysis of pro-
cesses involving novel biomass pretreatments, energy 
collection technologies as well as new units that substi-
tute the current state of the art to provide utilities53 to the 
process represent an additional challenge.  

DEPLOYMENT OF TECHNOLOGIES 
Process level provides the feasibility analysis of the 

technology and the economic and environmental evalua-
tion that can establish the need for improvements until it 
can become competitive. But for the production of really 
high added value products, i.e. polymers or active ingre-
dients for food or the pharma industry,12,13 additional in-
centives are needed to substitute/modify production 
processes that require several years amortization. By en-
forcing emission levels and providing incentives54 is how 
Europe,55 or the US have been moving towards net zero 
emissions. However, the transition, the deployment of a 
decarbonized chemical industry, is to be carried out at a 
larger scale, at strategic scale. It is at this scale that the 
incentives need to be designed. 

Multiscale approaches have been typically presented 
within the process community to be able to present stra-
tegic decisions to the decision makers, either stakehold-
ers or the governments, see Figure 4.17 These models re-
quire real data, that sometimes are not easy to find, the 
proper scale-up of the process so that the comparison 
among alternatives is consistent,56 an issue that is some-
times overlooked, and the problem, if formulated, is 
highly complex to solve. Several cases of study are avail-
able for biofuels, power at country and continental 

level57,58,59 showing certain limitations as how far we can 
get. European size examples for electricity and fuels 
alone are the work of many groups and special solution 
techniques, variable aggregation, reduced area and time 
discretization are to be implemented.57 

However, these studies use the resources towards a 
particular target. The actual issue is when the raw mate-
rials are to be shared to meet the current demand of all 
products, how far is it possible to get using waste bio-
mass, residues, and renewable resources in general1. The 
ultimate question is what is the best use of the limited 
resource? what to produce out of it? Therefore, the deci-
sion boils down to the availability of natural resources re-
quired60, including water61, area, or mineral among others 
and the social, environmental, and economic advantages 
of producing it via that path. Area, water, and nutrients 
are needed to grow biomass, area is required to install PV 
panels and wind turbines as well as heliostat fields. To 
build these units as well as others such as electrolysers, 
or bateries62 we need minerals. Preliminary studies show 
that it is not possible to cover the first generation of elec-
trified systems, the one that will allow start recycling.60 
On the one hand the actual availability of area, harvesting 
sites and soil properties have lately been analyzed via 
GIS, originally for food production63 but also as a potential 
for energy crops64. To reduce the use of area several 
strategies arise such as the use of the residues from food 
production, beyond the needed for animal feed, as well 
as novel developments in PV panels that are transparent 
and allow for biomass growing in the same field65. On the 
other hand, planetary boundaries have been presented 
as a way to evaluate how far it is possible to go with the 
natural resources,60,66 but show several issues on how we 
allocate the possible growth. Such a problem is basically 
the combination of some of the ones presented for the 
different cases but has not been addressed so far.  

Strategic studies also allow evaluating the social is-
sues that the deployment of the new system can bring to 
regions that host the new facilities44. How to measure cir-
cularity and the social impact of the transformation of in-
dustry require further analysis and metrics beyond the 
ones available such as job based5 indexes and marginal-
ization.67 The challenge may not be to decarbonize indus-
try but to get to zero net emissions and to create an 
economy that makes the best use to the resources sub-
stituting those that are harmful for the system creating 
circular economies for those wastes to avoid accumula-
tion in the system. 
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Figure 4. Deployment of technologies 

OVERCOMING THE BARRIERS: 
INCENTIVIES AND SOCIAL IMPACT 

The transition to a new system presents opportunities 
in terms of generation of wealth and jobs due to the in-
stallation of transformation facilities. But at the same 
time, the transition is closing down business, i.e. coal 
mining and thermal power plants.44 As such, the decision 
on where to install them poses a number of social im-
pacts. The first barrier to address is the social or behav-
ioral one. Acceptance of a technology has been related 
to the psychology in product selection, that has been a 
field of study over the last decades. There is a high acti-
vation energy to change. This is similar to customer loy-
alty to a brand. To address these issues, international 
agencies campaign to present the need and benefits, 
such as the United Nations with the SDGs68 and the effort 
to convince the population that another production and 
consumption system is possible. These organizations re-
quire systematic studies to provide with reliable data to 
be able to come to those advertisements. Acceptance of 
a technology may have an additional positive outcome. 
On the one hand, society can push their governments to 
change if the people are convinced. On the other hand, it 
can be a barrier. One example is nuclear power. Recent 
efforts focus on small reactors to avoid the society con-
cerns on large facilities close to the cities, see Figure 3.27 
Psychological factors also affect the investors since they 
need to envision benefits.54 Apart from this barrier, tech-
nical barriers are in place.69 The technical barriers are the 
ones presented along the first sections of the paper. It is 
something we as engineers are directly involved in. The 
third barrier is the so-called Organizational barrier. It de-
pends on the companies that are running the business. It 
is somehow related to the first one in the sense that there 
is a psychological aspect behind. They need to see the 
advantage of the new technology. It can also be linked to 
the incentives that they are going to get.54,70 Being the 
first operating a technology provides expertise, at a cost. 
Technology lock-in only appears when it is widely used71. 
Governments, agencies and other associations, (i.e. EU, 
UN) play a role in that. The creation of incentives, to 

reduce taxes or impose ones to certain technologies, 
help in the development of the technologies and reduce 
bureaucracy, 54,72 and present targets such as the ones in 
emissions or temperature increase, has been the usual 
one. From the systematic studies of the entire system, it 
is possible to design and define such incentives since 
they identify the bottlenecks of the technologies them-
selves as well as their deployment. The competitors also 
represent a barrier. New technologies come to take a 
piece of the cake and represent a threat to a running 
business. However, some of the companies are already 
diversifying their portfolios to embrace alternative re-
sources.54 Finally, political barriers are somehow linked to 
the ideology that not all the times is linked to scientific 
facts and have an effect on the organizational and the 
social but also on the development of the technologies 
due to the incentives Governments can assign and the 
campaign in favor or against it.  

We as process system engineers can play a role in 
most of them by providing tools, and results that can sup-
port the selection of new technologies, the breakeven 
points (the threshold effect) for one technology to be de-
ployed as well as scenario based analysis for the decision 
makers to be aware of economical, environmental and 
social issues as well as defining the incentives73 required 
for a particular transition to occur or for a technology to 
enter the market 

CONCLUSIONS 
In this perspective we aimed at presenting the current 
trends to pave the way towards a more sustainable pro-
duction system, but in particular, to transform the chem-
ical and process industry into a more sustainable opera-
tion. The barriers new technologies are to face come 
from society itself as well as the stakeholders. Process 
system engineering, with its systematic analysis of tech-
nologies and multi scale studies, are in a pivotal role to 
provide insights for the decision makers to select the 
best use of resources considering not only economics 
and environmental metrics, but also the social impact 
that the deployment of the new technologies can have. 

ACKNOWLEDGEMENTS 
The author acknowledges H2MetAmo project from the 
Planes complementarios of the Plan de Recuperación, 
Transformación y resiliencia 

REFERENCES 
1. Meng, F et al. (2023) Planet-compatible pathways 

for transitioning the chemical industry PNAS 120 (8) 
e2218294120 

2. Gabrielli, P., Rosa, L., Gazzani, M., Meys, R., Bardow, 



 

Martín / LAPSE:2024.1508 Syst Control Trans 3:52-59 (2024) 57 

A., Mazzotti, M., Sansavini, G. (2023) Net-zero 
emissions chemical industry in a world of limited 
resources, One Earth, https:// 
doi.org/10.1016/j.oneear.2023.05.006 

3. Chung, C., Kim, J., Socacoo, B.K., Griffiths, S., 
Bazilian, M., Yang, M. (2023) Decarbonizing the 
chemical industry: A systematic review of 
sociotechnical systems, technological innovations, 
and policy options. Energy Res. Soc. Sci. 96, 102955 

4. https://www.weforum.org/agenda/2023/03/chemic
als-industry-low-carbon-economy/ 

5. Rightor, E., Whitlock, A., Elliott, R.N. (2020) Benefical 
electrification in industry. ACEEE. 

6. USDOE(2022) Industria decarbonization Roadmap. 
USDOE DOE/EE 2635 

7. Martin, M., Grossmann I.E. (2018) Optimal 
integration of renewable based processes for fuels 
and power production: Spain case study. Applied 
Energy 213, 595-610 

8. Abdul Qadir, S., Al-Motairi, H., Tahir, F., Al-Fagih, L. 
(2021) Incentives and strategies for financing the 
renewable energy transition: A review, Energy 
Reports, 7, 3590-3606 

9. Chung, C., Kim, J., Socacoo, B.K., Griffiths, S., 
Bazilian, M., Yang, M. (2023) Decarbonizing the 
chemical industry: A systematic review of 
sociotechnical systems, technological innovations, 
and policy options. Energy Res. Soc. Sci. 96, 102955 

10. Almena, A., Bueno, L., Díez, M., Martín M (2018) 
Integrated biodiesel facilities: Review of 
transformation processes of glycerol based 
production of fuels and chemicals. Clean Technol. 
Environ. Pol. 20:1639–1661 

11. Galán, G.; Martín, M., Grossmann, I.E. (2021) 
"Integrated Renewable Production of Sorbitol and 
Xylitol from Switchgrass. Ind. Eng. Chem Res. 60,15, 
5558-5573  

12. Criado, A., Martín, M., (2020) Integrated 
multiproduct facility for the production of chemicals, 
food and utilities from oranges. Ind. Eng. Chem. Res. 
59, 16, 7722-7731 

13. Guerras, L.; Sengupta, D.; Martín, M., El-Halwagi, M. 
(2021) Multi-layer approach for product portfolio 
optimization: Waste to added value products. Acs. 
Sust. Chem. Eng. 9, 18, 6410–6426 

14. Martín, M (2017) Artificial vs natural reuse of CO2 for 
DME production. Are we getting any close? 
Engineering. 3(2) 166-170    

15. Hernández, B., Martin, M .(2017) Optimal Integrated 
Plant for Production of Biodiesel from Waste ACS 
Sust. Chem. Eng., 5 (8),  6756–6767. 

16. Sánchez A, Martín M.* (2018) Optimal renewable 
production of ammonia from water and air, J.  Clean. 
Prod., 178, 325-342 

17. Floudas, C.A., Niziolek, A.M., Onel, O., Matthews, 

L.R., 2016, Multi-Scale Systems Engineering for 
Energy and the Environment: Challenges and 
Opportunities. AIChE J. 62(3), 602-623 

18. Artz, J., Müller, T.E., Thenert, K., Kleinekorte, J.,  
Meys,R., Sternberg, A., Bardow, A., Leitner, W., 
(2018) Sustainable Conversion of Carbon Dioxide: 
An Integrated Review of Catalysis and Life Cycle 
Assessment. Chemical Reviews 118 (2) 434-504 

19. Ioannou, I., Javaloyes-Antón, J., Caballero, J.A., 
Guillén-Gosálbez, G. (2023) Economic and 
Environmental Performance of an Integrated CO2 
Refinery. ACS Sust. Chem. eng. 11 (5) 1949-1961 

20. Galán, G., Martín, M., Grossmann, I.E. (2023) 
Systematic comparison of natural and engineering 
methods of capturing CO2 from the air and its 
utilization . Sust Prod. Consumpt. 37, 78-95 

21. Gabrielli, P., Rosa, L., Gazzani, M., Meys, R., Bardow, 
A., Mazzotti, M., Sansavini, G. (2023) Net-zero 
emissions chemical industry in a world of limited 
resources, One Earth, https:// 
doi.org/10.1016/j.oneear.2023.05.006 

22. Kim, J., Henao, C.A., Johnson, T.A., Dedrick, D.E., 
Miller, J.E., Stechel, E.B., Maravelias, C.T., (2011) 
Methanol production from CO2 using solar-thermal 
energy: process development and techno-
economic analysis. Energy Environ. Sci., 4, 3122-
3132 

23. Sharp, S, González-Hernández, S., Chen, C., 
Sheehan, S.W., (2021) Alcohol production from 
Carbon dioxide: Methanol as a fuel and Chemical 
Feedstock. Joule, 5 (1), 59-76 

24. Chen, C., Lu, Y., Banares-Alcantara, R. (2019) Direct 
and indirect electrification of chemical industry 
using methanol produftion as a case study. Appl. 
Energy. 243, 71-90 

25. Sánchez, A., Martín, M.  (2018) Scale up and Scale 
down issues of renewable Ammonia plants: 
Towards modular design. Sust. Prod. Consump., 16, 
176-192 

26. Baldea, M., Edgar,T.F., Stanley, B.L., Kiss, A.A. 
(2017) Modular manufacturing processes: Status, 
challenges, and opportunities AIChE j. 63 (10), 
4262-4272 

27. https://www.iaea.org/newscenter/news/what-are-
small-modular-reactors-smrs 

28. Martín , M. (2023) Heat decarbonization: Towards a 
sustainable utility system. Joule. 7,1, 15-17 ,  

29. Mallapragada D.S. et al (2023) Decarbonziation of 
the chemical industry though electrification: barriers 
and opportunities. Joule 7, 23–41 

30. Li, H., et al.  Expanding plastics recycling 
technologies: chemical aspects, technology status 
and challenges (2022) GREEN CHEMISTRY 24 (23), 
9329-9329 

31. Hernández, B., Kots,P., Selvam, E., Vlachos, D.G., 

https://www.iaea.org/newscenter/news/what-are-small-modular-reactors-smrs
https://www.iaea.org/newscenter/news/what-are-small-modular-reactors-smrs


 

Martín / LAPSE:2024.1508 Syst Control Trans 3:52-59 (2024) 58 

Ierapetritou, M.G., (2023) Techno-Economic and 
Life Cycle Analyses of Thermochemical Upcycling 
Technologies of Low-Density Polyethylene Waste 
ACS Sust. Chem Eng.  11 (18), 7170-7181 

32. Li, Q., Finn, A.J., Doyle, S.J., Smith, R., Kiss, A.A. 
(2023) Synthesis and optimization of energy 
integrated advanced distillation sequences 
Separation and Purification Technology 315, 123717 

33. Anteportalatina-García, V.M., Martín, M (2022) 
Process synthesis for the valorisation of low-grade 
heat: Geothermal brines and Industrial waste 
streams. Renew. Energ.  198, 733-748  

34. Ahmetović, E., Grossmann, I.E., Kravanja, Z., 
Maréchal, F., Klemeš, J.J., Savulescu, L., Dong, H.  
(2023) Combined water and heat integration in the 
process industries Frontiers in Chemical 
Engineering 4, 1012754 

35. Madeddu, S., Ueckerdt, F., Pehl, M., Peterseim, J., 
Lord, M., Kumar, K.A., Krúger, C., Luderer, G. (2020) 
The CO2 reduction potential for the European 
industry via direct electrification of heat supply 
(power- to heat). Environ. Res. Lett. 15 124004 

36. Kim, J.K. (2022) Studies on the conceptual design of 
energy recovery and utility systems for electrified 
chemical processes. Renew. Sust. Energy. Revs. 
167. 112718 

37. Pérez Uresti, S.I., Lima, R., Martín, M., Jiménez-
Gutiérrez, A. (2023) On the design of renewable-
based utility plants using time series clustering. 
Comp. Chem Eng. 170, 108124 

38. Gilbert, T., Menon, A., Dames, C., and Prasher, R. 
(2022) Heat Source and Application Dependent 
Levelized Cost of Decarbonized Heat. Joule  7(1) 
128-149 

39. Chen, B., González-Ayala, J., Calvo Hernández, A., 
Luo, R., Yang, H., Guo, J. (2023) A novel 
electrochemical system with adiabatic pre-charging 
and pre-discharging processes for efficient 
refrigeration. Energ. Convers. Manage. 293, 117518  

40. Vermani, S (2022) thermodynamic modelling of high 
temperature heat pump systems. Msc Thesis TU 
Delft 

41. Martín, M., (2022) Challenges and Opportunities of 
Solar thermal energy towards a sustainable 
chemical industry   Comp. Chem. Eng. 165, 107926  

42. Chang, l., Taghizadeh-Hesary, F., Mohsin, M. 
820239 Role of mineral resources trade in 
renewable energy development. Renew. Sust. Ener. 
Revs. 181, 113321 

43. Davis, S.J. et al (2018) Net- zero emissions energy 
systems. Science, 360, eaas9793, 1419 

44. Heras, J., Martín, M., (2020) Social issues in the 
energy transition: Effect on the design of the new 
power system. Applied Energy. Applied Energy 278 
(2020) 115654  

45. Sánchez, A., Castellano, E., Martín, M. (2023)  
Methanol and Ammonia as Emerging Green Fuels: 
Evaluation of a New Power Generation Paradigm. 
Renew. Sust. Revs. 175, 113195  

46. Rightor, E., Whitlock, A., Elliott, R.N. (2020) Benefical 
electrification in industry. ACEEE. 

47. Sánchez, A., Martín, M., Zhang, Q. (2021) Optimal 
Design of Sustainable Power-to-Fuels Supply 
Chains for Seasonal Energy Storage Energy. 234, 
121300  

48. Michaux, S., (2021) Assessment of the Extra 
Capacity Required of Alternative Energy Electrical 
Power Systems to Completely Replace Fossil Fuels 
GTK Open File Work Report 42/2021 

49. Hart, W.E., Laird, C.D., Watson, J.P, Woodruff, D.L., 
Hackebeil, G.A., Nicholson, B.L., Siirola, J.D., Pyomo 
optimization modelling in python. Springer 

50. Chen, Q., Johnson, E.S., Bernal, D.E., et al. (2022) 
Pyomo. GDP: an ecosystem for logic-based 
modeling and optimization development 
Optimization and Engineering 23 (1), 607-642 

51. Tulus, V., Pérez-Ramírez,  J.,  Guillén-Gosálbez, G. 
(2021) Planetary metrics for the absolute 
environmental sustainability assessment of 
chemicals Green Chemistry 23 (24), 9881-9893 

52. Cao, G., Handler, R.M., Luyben, W.L., Xiao, Y., Chen, 
C-h., Baltrusaitis, J. (2022) CO2 conversion to 
syngas via electrification of endothermal reactors: 
Process design and environmental impact analysis. 
Energ. Convers. Manag. 265, 115763 

53. Pérez Uresti, S., Martín, M., Jiménez Gutierrez, A 
(2019) Estimation of renewable-based steam costs. 
Applied Energy 250 (2019) 1120–1131 

54. Abdul Qadir, S., Al-Motairi, H., Tahir, F., Al-Fagih, L. 
(2021) Incentives and strategies for financing the 
renewable energy transition: A review, Energy 
Reports, 7, 3590-3606 

55. A.SPIRE Board of Directors (2020) 
Processes4Planet Transforming the European 
Process Industry for a sustainable society 

56. Martín, M., Taifouris, M., Galán, G. (2023) 
Lignocellulosic biorefineries: A multiscale approach 
for resource exploitation. Bioresourc. Tecnol. 385, 
129397 

57. Potrč, S.,  Čuček, L.,  Martin, M.,  Kravanja, Z. (2021) 
Sustainable Renewable Energy Supply Networks 
Optimization – The Gradual Transition to a 
Renewable Energy System within the European 
Union by 2050. Renewable and Sustainable Energy 
Reviews 146,111186   

58. Elia, J.A., Baliban, R.C., Floudas, C.A., Gurau, B., 
Weingarten, M.B., Klotz, S.D., 2013. Hardwood 
Biomass to Gasoline, Diesel, and Jet Fuel: 2. Supply 
Chain Optimization Framework for a Network of 
Thermochemical Refineries. Energy Fuels. 27(8), 



 

Martín / LAPSE:2024.1508 Syst Control Trans 3:52-59 (2024) 59 

4325–4352 
59. Marvin, W.A., Schmidt, L.D., Benjaafar, S., Tiffany, 

D.G., Daoutidis, P. (2021) Economic optimization of 
a lignocellulosic biomass-to-ethanol supply chain. 
Chemical Engineering Science 67 (1), 68-79 

60. Michaux, S., (2021) Assessment of the Extra 
Capacity Required of Alternative Energy Electrical 
Power Systems to Completely Replace Fossil Fuels 
GTK Open File Work Report 42/2021 

61. Di Martino, M., Linked, P., pistikopoulos, E.N. (2023) 
a comprehensive classification of food-energy-
water nexus optimization studies: state of the art. J 
clean prod. 420. 138293 

62. Zhang, C., Zhao, X., Sacchi, R., You, F. (2023) Trade-
off between critical metal requirement and 
transportation decarbonization in automotive 
electrification. Nature Comm. 14:1616 

63. https://geomarvel.com/analyze-food-security-
with-gis/ 

64. Fiorese, G., Guariso, G. (2010) A GIS-based 
approach to evalaute biomass potential from energy 
crops at regional scale. Environ. Modell. Soft. 25 (6) 
702-711 

65. Lee, K., Um, H.-D., Choi, D., park., J., Kim, N., Kim, 
H., Seo, K. (2020) The development of transparent 
photovoltaics. Cell reports Phys. Sci. 1 (8) 100143 

66. Galan-Martin, A., Tulus, V., Diaz, I., Pozo, C., Perez-
Ramirez, J., Guillen-Gosalbez, G. (2021) 
Sustainability footprints of a renewable carbon 
transition for the petrochemical sector within 
planetary boundaries One Earth 4 (4) 565-583 

67. Matheson, F.I., Dunn, J.R., Smith, K.L., Moineddin, R., 
Glazier, RH. (2012) Development of the Canadian 
Marginalization Index: a new tool for the study of 
inequality. Canadian Journal of Public Health/Revue 
Canadienne De Sante’e Publique, S12–6 

68. https://sdgs.un.org/goals 
69. Chung, C., Kim, J., Socacoo, B.K., Griffiths, S., 

Bazilian, M., Yang, M. (2023) Decarbonizing the 
chemical industry: A systematic review of 
sociotechnical systems, technological innovations, 
and policy options. Energy Res. Soc. Sci. 96, 102955 

70. Erickson, E.D. ,Tominac, P.A., Zavala, V.M. (2023) 
Biogas production in United States dairy farms 
incentivized by electricity policy changes Nature 
Sustainability, 1-9 

71. Struben, J., Sterman, J. D. (2008) Transition 
challenges for alternative fuel vehicle and 
transportation systems Environment and Planning B: 
Planning and Design, 35, 1070 – 1097 

72. Nicole, T., Jaehyung, A., Igor, V., Oleg, L., Lyubov, 
K., Sergey, B., Olga, K. (2022) Renewable energy 
incentives on the road to sustainable development 
during climate change: A review Frontiers in 
Environmental Science, 10,  

10.3389/fenvs.2022.1016803   
73. Martín-Hernández, E., Hu, Y., Zavala, V.M., Martín, 

M, Ruiz-Mercado, G (2022) Analysis of incentive 
policies for phosphorus recovery at livestock 
facilities in the Great Lakes area Resources, 
Conservation and Recycling 177, 105973 

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 
 

https://scholar.google.com/citations?view_op=view_citation&hl=es&user=qIm39l8AAAAJ&citation_for_view=qIm39l8AAAAJ:JV2RwH3_ST0C
https://scholar.google.com/citations?view_op=view_citation&hl=es&user=qIm39l8AAAAJ&citation_for_view=qIm39l8AAAAJ:JV2RwH3_ST0C
https://sdgs.un.org/goals


Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.184280 Syst Control Trans 3:60-66 (2024) 60 

Life Cycle and Sustainability Analyses for Designing 
Chemical Circular Economy  
David Pereza, John D. Cheaa, Jose D. Hernandez-Betancurb, and Gerardo J. Ruiz-Mercadoc* 
a Oak Ridge Institute for Science and Education, hosted by Office of Research & Development, US Environmental Protection 
Agency, Cincinnati, OH 45268, USA. 
b Faculty of Mines, Universidad Nacional de Colombia, Medellin 050041, Colombia and Department of Chemical Engineering, Uni-
versidad de Salamanca, Salamanca 37008, Spain 
c Office of Research & Development, US Environmental Protection Agency, Cincinnati, OH, 45268, USA and Chemical Engineering 
Graduate Program, Universidad del Atlántico, Puerto Colombia 080007, Colombia 
* Corresponding Author: ruiz-mercado.gerardo@epa.gov

ABSTRACT 
Sustainability and circular economy enclose initiatives to achieve economic systems and industrial 
value chains by improving resource use, productivity, reuse, recycling, pollution prevention, and 
minimizing disposed material. However, shifting from the traditional linear economic production 
system to a circular economy is challenging. One of the most significant hurdles is the absence of 
sustainable end-of-life (EoL)/manufacturing loops for recycling and recovering material while min-
imizing negative impacts on human health and the environment. Overcoming these challenges is 
critical in returning materials to upstream life cycle stage facilities such as manufacturing. Chemi-
cal flow analysis (CFA), sustainability evaluation, and process systems engineering (PSE) can sup-
ply chemical products and processes performances from environmental, economic, material effi-
ciency, energy footprint, and technology perspectives. These holistic evaluation techniques can 
improve productivity, source material reduction, reuse, recycling, and prevent and minimize re-
leases and disposal rates. Therefore, this contribution offers a computational framework that co-
vers CFA, sustainability assessment, and risk evaluation for quantifying the benefits and chal-
lenges of chemical circular economy routes versus conventional linear systems. Finally, this con-
tribution shows promising techniques and challenges for employing CFA, sustainability evaluation, 
and PSE as multicriteria decision-making tools for designing a closed-loop chemical management 
infrastructure and transforming the US chemical industry sector from linear to circular. 

Keywords: Supply Chain, Life Cycle Analysis, Modelling, Machine Learning, Wastewater 

INTRODUCTION 

Tracking Chemicals and Releases at 
Industrial End-of-Life Activities 

The Frank R. Lautenberg Chemical Safety for the 
21st Century Act amended Toxic Substances Control Act 
(TSCA) instructs the US Environmental Protection 
Agency (USEPA) to conduct risk evaluations of existing 
high-priority chemicals to find whether a chemical sub-
stance in the US market may pose an unreasonable risk 
of harming the environment or human health across its 
life cycle stages (manufacturing, use, end-of-life (EoL)) 

[1]. Therefore, chemical risk evaluation supports alterna-
tive assessments of selecting chemicals and materials 
with safer profiles and ensures sustainable circular econ-
omy paths (recycling, reusing, and recovering pro-
cesses). However, the list of registered chemicals used 
in US commerce continuously grows. Also, data gather-
ing, reconciliation, and management for performing life 
cycle risk evaluation are time-consuming and challeng-
ing. Notably, evaluating the chemical risk and safety at its 
EoL stage is more difficult due to high uncertainty, less 
data availability, variability, material blends, and the ab-
sence of directing requirements for proper reporting and 
traceability.  
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Several efforts aim to create a data engineering 
framework for building an EoL database and tracking 
chemicals at their EoL stage. This framework performs a 
data engineering procedure to gather, clean, wrangle, 
and integrate information from publicly available USEPA 
databases such as the Toxics Release Inventory (TRI), 
the Facility Registry Service (FRS), and the Substance 
Registry Services (SRS). Furthermore, the framework 
supports data cleaning, filtering, filling data gaps, and 
transformation into machine-readable queries to address 
and enhance chemical risk evaluation of chemicals of 
concern.    
 As described in Figure 1, the first module of the EoL 
framework addresses EoL flows generated by industrial 
facilities (manufacturing and industrial use life-cycle 
stages) and transferred for further EoL management at 
recycling, energy recovery, treatment, and disposal facil-
ities (RETDFs). Also, a case study of methylene chloride 
(dichloromethane) showed the practicality of the devel-
oped framework for tracking and analyzing EoL chemical 
flows from the generator industry sector of a chemical 
(e.g., inorganic chemical manufacturing), conditions of 
use (e.g., reactant, formulation component, products), 
the EoL facility industry sector (e.g., cement manufactur-
ing), EoL activity (e.g., recycling, incineration, landfill), 
and the environmental compartment (e.g., net recycling, 
onsite soil releases, etc.), and estimating potential re-
leases at EoL activities [1].  
 Moreover, Hernandez-Betancur et al. (2021b) 

enhanced the data engineering framework by using EoL 
pollution abatement units (PAU)-level information, chem-
ical process design, and equipment performance data for 
calculating emission factors and distributing releases [2]. 
On-site EoL activities consist of PAUs like distillation, aer-
obic treatment, neutralization, incinerator, etc. The en-
hanced framework also offers structure design alterna-
tives, efficiencies, chemical releases, exposure media, 
operating expenses, and capital expenditures for the 
PAU operations. 
 Although the developed data engineering frame-
work estimates EoL industrial releases and distribution, it 
must supply potential circular economy paths and desti-
nation of recycled/recovered chemical flows transferred 
to upstream chemical life cycle stage facilities (e.g., man-
ufacturing). 

METHODOLOGY 

Data Analytics Techniques Supporting Safer 
Circular Economy Paths 

The presence of chemicals causing significant ad-
verse human health and environmental effects during 
EoL stages is a challenge for implementing sustainable 
materials management efforts towards a circular life-cy-
cle path of chemicals. Therefore, conducting chemical 
risk evaluation and exposure assessment of potential EoL 
scenarios can aid the understanding of the chemical EoL 
management chain for its safer use in a circular life-cycle 

 

Figure 1. A data engineering framework for tracking end-of-life (EoL) chemical transfers to recycling, energy re-
covery, treatment & disposal facilities (RETDFs) for EoL management, on-site EoL industrial operations (pollution 
abatement units, PAU), and recycling loops (adapted from Hernandez-Betancur et al. [3]) 
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environment. 
Thus, we enhanced the data engineering framework 

by implementing probabilistic graphical models like Mar-
kov random field to mimic the relationship between the 
chemical EoL management components like the EoL flow 
generators, RETDFs, and manufacturing facilities [3]. The 
updated framework finds potential safer circular econ-
omy scenarios for recycled chemicals. These circular 
economy scenarios consider whether the recycled 
chemical might end up in industrial, commercial, con-
sumer uses, and processing operations. Additionally, the 
framework can find if the recycling activities target the 
chemical under analysis instead of managing other 
chemical substances, such as the EoL multicomponent 
material flow transfers. The novel approach also consid-
ers regulatory constraints on closing the recycling loop 
operations and supplies an estimation of environmental 
releases related to occupational exposure. 

RESULTS AND DISCUSSION 

Completing life cycle and sustainability analyses 
requires adapting different strategies based on the 
varying levels of information available. In this 
computational framework, data-driven model systems 
may be used to accurately track and predict material 
pathways throughout the life cycle when process, 
chemical, and material exchange information are 
available in larger quantities. Conversely, chemical flow 
analysis (CFA) may be used to qualitatively map the 
allocation of chemicals and quantify the relative mass 
flow distribution across EoL pathways and technologies. 
The output of these material tracking methods can 
establish a basis for sustainability analysis because the 
process efficiency and material releases can be 
calculated. With sufficient process-level information, PSE 
models can enhance the granularity of the chemical 
release approximation, such as releases from individual 
process units. Subsequently, the operation details can be 
acquired and used to identify the potential occupational 
exposure scenarios and areas of improvement 
throughout a chemical life cycle analysis to achieve a 
circular economy.   

Data-Driven Model Systems to Estimate 
Releases from Novel Chemical End-of-Life 
Scenarios 

Hernandez-Betancur et al. (2023a) enhanced the 
EoL database by integrating cross-year and country data 
and considering the change of the regulatory foundations 
across different geographical locations and reporting 
years [4]. Thus, the data engineering framework is scal-
able and adaptable to develop machine learning (ML) 
models for predicting potential EoL activities, chemical 

flow allocation, environmental releases, and exposure 
routes for chemicals outside the comprehensive EoL da-
tabase.  

Hernandez-Betancur et al. (2023b) utilized the EoL 
database created by Hernandez-Betancur et al. (2023a) 
to investigate tree-based ML algorithms to construct an 
EoL release modeling approach influenced by Quantita-
tive Structure-Activity Relationship (QSAR) models often 
used in cheminformatics and toxicology research [5]. In 
addition, the developed ML models use chemical de-
scriptors, EoL chemical transfer quantities, industry sec-
tors, environmental policies, industry-sector value-
added, chemical structure, and chemical prices to predict 
potential EoL activities and the chemical transfer distri-
bution among the EoL activities. Therefore, these ML 
models aid early stage chemical process/product design-
ers in deciding if chemical substances at their potential  
EoL stage meet environmental regulations or need rede-
sign before entering the market. 

Although these data-driven developments based on 
top-down facility information aid the tracking and esti-
mation of EoL chemical releases and finding potential oc-
cupational exposure routes, decision-makers would need 
to incorporate PSE methods and tools to design and eval-
uate chemical processes and implement enhancements 
to minimize or end negative environmental and economic 
impacts at process equipment level toward a more holis-
tic sustainable performance (bottom-up approach).  

Process Systems Engineering to Estimate 
Releases and Evaluate Sustainability from 
Chemical End-of-Life Scenarios 

Chemical process synthesis, design, modeling, and 
simulation developments aid stakeholders in performing 
CFA, occupational exposure, energy footprint, release 
estimation, and life cycle inventory generation during EoL 
chemical stages. For example, Chea et al. (2023) per-
formed a qualitative and quantitative tracking of plastic 
chemical additives to estimate their potential environ-
mental releases, life cycle inventories, occupational ex-
posure, greenhouse gas emissions, energy footprint, and 
environmental impacts within the plastic EoL stage and 
activities [6]. Also, this work shows a sensitivity analysis 
of future chemical additive release scenarios involving 
chemical recycling, increasing recycling rates, and chem-
ical additive extraction. To complement these PSE appli-
cations, Agbleze et al. (2023) showed recent efforts to 
estimate chemical releases and evaluate sustainability 
indicators at the chemical manufacturing stage of exist-
ing chemicals, new manufacturing processes, and dy-
namic operating conditions [7]. Also, this contribution de-
scribes how to apply the Gauging Reaction Effectiveness 
for the ENvironmental Sustainability of Chemistries with 
a multi-Objective Process Evaluator (GREENSCOPE) sus-
tainability assessment tool to evaluate the sustainability 
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of chemicals synthesized from a laboratory-scale reac-
tion or manufactured in a plant-scale reaction [8], [9]. 
GREENSCOPE quantifies and assesses the sustainability 
of a given process or supply from a multi-stakeholder 
perspective, including material efficiency, environmental 
impacts, energy requirements, and cost through mathe-
matical indicators. 

Finally, after describing recent PSE applications on 
EoL material flow analysis for supporting chemical risk 
assessment, sustainability evaluation, and safer circular 
economy paths, the subsequent sections describe cru-
cial PSE applications for managing the EoL stage of novel 
product manufacturing techniques like additive manufac-
turing (AM) and quantifying and tracking chemical re-
leases in unconventional EoL paths like publicly owned 
treatment works (POTWs). These efforts aid decision-
makers in finding new potential chemical exposure routes 
and updating regulatory requirements due to ineffective 
EoL chemical management methods. 

Shifting Additive Manufacturing End-of-Life 
Management Toward a Circular Economy 

AM techniques have been widely used to create 
customized products and parts from a multitude of raw 
material types with high efficiency [10], [11]. However, 
most attention toward AM challenges is centered on the 
manufacturing stage of the material life cycle, emphasiz-
ing releases and occupational hazards [12]–[14]. 

Achieving sustainability and the state of a circular econ-
omy within a given supply chain requires that the fate of 
all materials used is accounted for throughout the life cy-
cle.  

Presently, AM practices can result in potential re-
leases to the environmental compartments, namely land, 
water, and air, and creating new exposure pathways in 
the EoL stage if unmitigated. The variety of materials 
used during the manufacturing stage creates high uncer-
tainties on the fate of the materials. Solid materials for 
EoL management ultimately combine with conventional 
municipal solid waste (MSW) management infrastructure 
at the forefront of AM material management, while liquid 
EoL materials are treated as hazardous waste. Releases 
from the manufacturing stage can go unreported be-
cause improper EoL chemical management methods or 
cleaning practices were used or the total releases at in-
dividual operation sites are lower than the reporting 
thresholds.  

The GREENSCOPE tool was used to find specific 
challenges and process modification opportunities within 
the EoL stage of the AM life cycle. The calculated indica-
tors were compared against best- and worst-case sce-
nario values to compute a sustainability percent score 
ranging from 0 to 100%, in which a 100% score signifies 
the best sustainability scenario. Figure 2 illustrates the 
sustainability analysis, summarizing concerns on the low 
recycling rate of AM EoL materials and the inherently low 

(a) Efficiency (b) Environmental 

 

 

(c) Energy (d) Economic 

 

 

 
Figure 2. GREENSCOPE analysis of additive manufacturing end-of-life material management. Numerical values 
at the plot radii represent calculated metrics related to their respective categories. Points at the radius of each 
plot signify a maximum sustainability score of 100%. 
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renewability. The overall AM life cycle also generates a 
high amount of hazardous EoL materials and their re-
leases to the environment. The total energy consumption 
is relatively low, but the renewability of the energy source 
requires improvement. Alternatively, the various cost as-
pects of AM EoL management processes are close to op-
timality. However, variation can be expected because the 
management infrastructure varies between regions, in 
addition to the variety in material types expected from 
releases and the manufacturing stage.    

Tracking and Estimating Industrial 
Wastewater Transfers to Publicly Owned 
Treatment Works 

 The influx of industrial wastewater with conven-
tional and emerging chemical contaminants to POTWs 
poses potential exposure risks, leading to environmental 
impacts and human health risks caused by polluted water 
discharges, land depositions, and air releases. Quantify-
ing and tracking industrial chemical releases to POTWs 
are necessary to find unaddressed potential exposure 
routes. Therefore, this research effort proposes PSE ap-
proaches to tracking and estimating chemicals of con-
cern across POTWs that foster bottom-up process mod-
eling and chemical allocation to simulate fate and 
transport comprehensively.  
 The work introduces a POTW design, modeling, and 
simulation model that integrates detailed representation 

 

Figure 3. A process flow diagram of a generic publicly owned treatment works (POTWs) vessels(V-0X) and reac-
tors(R-0X). Process units include a primary clarifier (V-01), a secondary clarification unit (V-02), a sludge thick-
ening unit (V-03), a dewatering unit (V-04), aerated and unaerated activated sludge unit (R-01;R-05), and anaer-
obic digestion equipment (R-06) 

Table 1. Methylene Chloride mass flows across streams #1 to #20 describing fate and transport 

Stream           
Flow Rate 
(m/d) 

          

Mass Flow-CHCl (kg/d) in Various Phases 
Liquid            
Solid            

 

Stream           
Flow Rate 
(m/d) 

          

Mass Flow-CHCl (kg/d) in Various Phases 
Liquid            
Solid            

 

 

 
 



 

Perez et al. / LAPSE:2024.1509 Syst Control Trans 3:60-66 (2024) 65 

of individual process units from primary clarification to 
advanced biological treatment, delineating settling char-
acteristics, biological transformations, nutrient removal, 
and sludge management. Process units include a primary 
clarifier, a secondary clarification unit, an aerated and un-
aerated activated sludge unit, an anaerobic digestion 
equipment, and an influent generator model that creates 
influent profiles mimicking POTW influent variations as il-
lustrated in Figure 3. The model captures interactions 
between chemicals of concern and wastewater treat-
ment operations, allowing for the estimation of chemical 
partitioning across unit operations such as sedimenta-
tion, biological treatment, adsorption, volatilization, and 
transport mechanisms. The selection of volatile organic 
compounds (VOC) as the first chemical class for model 
integration stems from their distinct behavior within the 
proposed treatment processes, characterized by their 
volatility, sorption, and biological uptake tendencies. 

Table 1 shows the mass flow changes and notable 
reductions to solid and liquid phase methylene chloride 
(CH2Cl2) from influent to effluent, showcasing removal 
rates at each process unit. The substantial reduction in 
CH2Cl2 concentrations, primarily attributed to biological 
degradation mechanisms within secondary treatment 
(stream # 4-10), along with the lack of adsorption capac-
ity seen throughout the plant, aligns with real-world sce-
narios [15]. 

Our proposed PSE-based approach, employing bot-
tom-up methodologies, offers a valuable tool for as-
sessing the efficiency of different treatment strategies 
and showing potential areas for improvement in EoL 
chemical management. The usability and value of this 
model extend to its potential applications in environmen-
tal risk assessment, regulatory compliance, and the de-
velopment of more effective treatment methodologies.  

CONCLUSIONS 
This work describes a computational framework 

based on data engineering, data-driven modeling and 
PSE models to predict EoL chemical releases and poten-
tial occupational exposure scenarios. This contribution 
also shows a comprehensive EoL database created from 
publicly accessible domestic and international regulatory 
systems. Moreover, this contribution describes the appli-
cation of GREENSCOPE to inform the development of 
more sustainable chemicals by reducing their environ-
mental and human health impacts, implementing pollution 
prevention, and source reduction while increasing eco-
nomic and social benefits. This multi-stakeholder analy-
sis can be extended toward potential trade-off analysis, 
such as trading costs, the highest-performing category, 
investing in recovery processes, better waste treatment 
and management procedures, and selecting renewable 
materials sources for manufacturing. The gradual adop-
tion of material management and selection guidelines and 
process improvement opportunities can allow EoL 

chemical generators to take on a more active role in aid-
ing the shift of linear economy practices toward the state 
of a circular economy.  

Future steps are to understand the near-field expo-
sure associated with circular economy paths and com-
pare the composition and functionality between recycled 
and brand-new products to avoid unintended recycling of 
toxic substances at post-recycling/recovery activities, in-
cluding chemicals not currently subject to USEPA regula-
tory programs. To resolve this problem, we can use data 
engineering and data-driven approaches to effectively 
combine facility, PAU, and equipment level data. This in-
tegration would enable the detection of potential EoL ex-
posure scenarios, calculation of releases, and monitoring 
of upstream recycling scenarios for chemicals of con-
cern. The CFA will utilize PAU/equipment-level data to 
estimate releases inside chemical facilities and allocate 
chemicals into environmental compartments. Facility-
level data will provide insights on regulatory affairs, as 
well as the behavior of the supply chain and interconnec-
tivity of chemicals in the EoL stage of the industry. Future 
research should concentrate on integrating isolated en-
vironmental regulatory data and developing modeling 
pipelines and architecture. These can range from graph 
representation learning for supply chain simulation to hy-
brid modeling for combining top-down (chemical facility 
data and models) and bottom-up (operating units, equip-
ment)approaches. 
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ABSTRACT 
Pharma 4.0 has continued to advance as the industry develops advances in process analytical 
technologies, automation, and digit-ization. Digital twins which transform on-line process meas-
ure-ments into meaningful outputs in real-time are being developed to seize the opportunity made 
possible with this shift. Digital twins can be used for improved process optimization on a range of 
scales, from determining optimal metabolite concentrations in upstream bioreactors to considering 
economic and environmental impacts of process decisions. In this paper, we explore the current 
uses of digital twins in solid-based pharmaceutical space and the bio-pharmaceutical manufac-
turing. Applications cover scale up of upstream processes, product quality control, and consider-
ation of continuous systems. We also describe the intersection of digital twins in flow sheet mod-
eling, sensitivity analysis and optimization, and design space evaluation. Finally, areas requiring 
further im-provement for industry adoption are addressed. 

Keywords: Digital twin, Process Modeling, Pharmaceutical manufacturing, Biopharmaceutical manufacturing 

INTRODUCTION 
The pharmaceutical industry has been on the rise in 

the U.S., dominating the global market with roughly 50% 
of the sales revenue being generated in the U.S. Roughly 
20% of the total revenue generated is directed to re-
search and development (R&D), to bring new drugs to 
market and improve the current manufacturing pro-
cesses. In the last two decades, research efforts have fo-
cused on improving the predictive ability of the current 
manufacturing practices to increase production rates, re-
duce resource losses and improve the overall effective-
ness of manufacturing. With advances in digitization, In-
ternet of Things (IoT), and automation, the pharmaceuti-
cal industry is transitioning towards Industry 4.0 [1]. 
Known as Pharma 4.0 in the pharmaceutical industry, this 
transition aims to improve efficiency, productivity, re-
sponsiveness and flexibility, with varying market de-
mands of drug products and biologics [2]. A crucial com-
ponent of this transition involves the development of a 
digital twin framework (a digital replica of the physical 
manufacturing system), which has been shown to be 
quite effective in risk assessment and regulation-

compliant manufacturing [1]. 
Process systems engineering tools have been used 

in the development of digital twins to ensure regulation-
compliant manufacturing of drug products [3]. Predictive 
models developed for digital replicas prove valuable in 
correlating equipment, process, and material parameters 
with the critical quality attributes (CQAs) of pharmaceu-
tical products. This ensures that the drug products meet 
quality standards set by regulations, making production 
more efficient and flexible. Additionally, these models as-
sist in identifying and addressing potential risks [4].  

The US FDA approved the 100th mAb in 2021 with 
870 more in clinical development as of 2021 [5]. Process 
development of these therapeutics involves several 
stages including cell line development, media formula-
tion, scale up, and screening product quality [6]. These 
therapeutics are produced to treat various types of dis-
eases, some of which are chronic and affect a large pa-
tient population. This leads  to a drastic increase in de-
mand for therapeutics which require large scale, robust, 
economically feasible manufacturing processes to pro-
duce [7]. A large number of novel, blockbuster biothera-
peutics are falling off patent in this decade. This is 
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leading to the rise of a biosimilar market. The number of 
biosimilars approved has been increasing every year [8]. 
Biosimilar products can lead to significantly lower costs 
compared with the novel therapeutic [9]. Hence, the mar-
ket is shifting to the most affordable biosimilar. Efficient 
process development enables affordability of biosimilars. 
The US FDA has set guidelines for Quality by Design to 
improve the understanding between process conditions 
and product quality [10]. Understanding these relation-
ships could require large amounts of experimental data 
by using statistical design of experiments. Application of 
process models can improve process understanding, 
cheaply evaluate large numbers of process conditions 
which help to reduce the design space, improve process 
control, and simulate the effect of process perturbations 
and critical material attributes on critical quality attrib-
utes. Robust process models can help monitor the pro-
cess without the need for a large number of expensive 
analytical measurements required in traditional process 
analytical techniques [11]. Hence, the development of re-
liable process models used within digital twins is crucial 
for effective process monitoring and for guiding key ex-
periments to reduce the overall experimental expendi-
ture. Reducing the time required to perform expensive 
experiments can speed up process development time-
lines which is crucial for the staying on the cutting edge 
in the fast-paced biopharma industry and succeeding in 
the biosimilars boom that is to come. 

MODELING COMPONENTS OF A DIGITAL 
TWIN 

A digital twin is a digital informational construct of a 
physical system, created as an entity on its own and 
linked with the physical system [12]. It consists of a phys-
ical component, a virtual component, and automated 
data communications between the physical and virtual 
components [13]. The following sections highlight the 
modeling components of a digital twin for solid-based 
pharmaceutical and biopharmaceutical manufacturing 
processes [14]. 

Solid-based pharmaceutical manufacturing 
In solid-based pharmaceutical manufacturing, vari-

ous models have been developed to better understand 
the different steps involved [15]. This is not a compre-
hensive list but is offered as examples of such models. 
Loss-in-weight (LIW) feeders are used to feed ingredi-
ents in the continuous manufacturing processes. Data-
driven models [16], first-order delay differential equation 
[17], semi-empirical models [18] and Discrete Element 
Models (DEM) [19] have been developed for this step. 
Continuous blenders blend various powdered materials 
to create a consistent powder mixture. DEM [20], Popu-
lation Balance Model (PBM) [21], hybrid PBM-DEM [22], 

compartment models [23] and residence time distribu-
tion models [24] have been utilized to simulate the 
blender unit. Roller compactors produce compacted rib-
bon products from powder materials under high pressure 
exerted by rotating rolls. These modeling effort includes 
steady state models [25] and dynamic models [26]. Data 
driven models, PBM and DEM are widely used for wet 
granulation [27, 28], which is used to achieve particle en-
largement with the addition of liquid binders. For the tab-
let press unit, Kawakita equation, Heckel equation and 
their variations have been widely used [15]. 

Biopharmaceutical manufacturing 
In the biopharmaceutical space, digital twins have been 
developed to model many unit-based operations. These 
include bioreactor scale-up using computational fluid dy-
namics (CFD), product quality modeling, metabolic mod-
eling, modeling of bioreactor physical parameters, and 
modeling of perfusion systems. The models of each op-
eration may be combined to provide a digital twin of the 
upstream manufacturing process, illustrated in Figure 1. 
On-line measurements are taken continuously thanks to 
the advancements in process analytical technologies 
(PAT). The digital twin can be run alongside the physical 
twin, informed by continuous PAT measurements, which 
can inform model-based control of the bioreactor. For 
off-line investigations, the upstream digital twin can be 
integrated into flow sheet modeling, sensitivity analysis, 
design space identification, and process optimization, 
with an overarching goal of improving patient outcomes. 

Figure 1. Upstream bioreactor cell culture performance is 
modeled in a digital twin representation through 
computational fluid dynamics, metabolic modeling, and 
glycosylation modelling.  

Bioreactor scale-up 
A well-designed digital twin can simplify the expan-

sion of initial processes and improve the chances of suc-
cessful production runs in large-scale bioreactors from 
the first attempt. The inherent challenges associated 
with the prohibitively expensive and often impractical na-
ture of experimental testing at large scales underscore 



 

Raudenbush et al. / LAPSE:2024.1510 Syst Control Trans 3:67-74 (2024) 69 

the critical role played by small-scale experiments and 
scale-up tools. These tools aid in establishing scale spe-
cific operational parameters and provide baseline expec-
tations for yield and quality in large-scale bioreactors.  

Digital twins enhance our ability to anticipate the im-
pacts of scaling up, especially those that go beyond the 
capabilities of experimental measurements, such as local 
kLa distributions. They also provide a means to test and 
correct for unexpected variations observed upon pro-
cess scale up. 

A major concern during bioreactor scale up is the 
formation of heterogeneities: nutrient concentration gra-
dients and gradients in important physical parameters, 
such as dissolved oxygen and carbon dioxide, tempera-
ture, pressure, and pH. Control of these parameters is 
key for consistent production and product quality [11]. In-
corporating CFD modeling into a digital twin of the up-
stream process allows us to examine the behavior of 
throughout bioreactors at small and large scales. CFD 
can predict gradients across the volume of the bioreactor 
by capturing fluid flow, bubble dynamics, and heat and 
mass transfer. The prediction of gradients ahead of scale 
up proves invaluable for the assessment of the severity 
of scale up formed gradients [29]. Moreover, the pre-
dicted dynamics of cells flowing in and out of the gradi-
ents can inform scale up simulator experiments which 
mimic oscillations and measure impacts [30].  

Creating effective digital twins for upstream bio-
pharmaceutical manufacturing relies heavily on accurate 
models of metabolism and critical product quality attrib-
utes like glycosylation. There are several methods to 
couple CFD with metabolic modeling, though this remains 
a non-trivial task due to the wide range of time scales 
involved [31-34]. These models can be used to explore 
scenarios and ‘what if’ analyses, identify optimal operat-
ing conditions, and develop response plans to unex-
pected variations in bioreactor performance at the large 
scale [14]. Integration into flow sheet modeling of entire 
production systems can enable predictions of scale up 
effects on downstream processes and final product qual-
ity [35, 36]. Finally, comprehensive upstream digital 
twins provide a tool to better understand biological sys-
tems, an invaluable asset to biopharmaceutical research 
and process development. 

Product quality 
N-linked glycosylation is an important Critical Qual-

ity Attribute (CQA) in the manufacturing of biotherapeu-
tics. Changes to upstream process conditions can result 
in changes to the glycan fractions of the glycoprotein. 
This subsequently affects important properties of the 
product such as half-life, efficacy, immunogenicity, and 
aggregation [37]. Hence, it is especially important to 
study the upstream design space and monitor the N-
linked glycosylation of the products. Measurement of this 

CQA requires expensive and laborious analytics. Imple-
menting industry 4.0 will involve development of a digital 
twin capable of predicting the N-linked glycosylation pro-
files of biologics as a function of the state (temperature, 
pH, media, etc.) of the bioreactor. Mechanistic models for 
N-linked glycosylation can be used to incorporate the ef-
fects of process parameters on N-linked glycosylation to 
develop a framework that improves process understand-
ing and can simulate different operating conditions [11]. 
Models of N-linked glycosylation approximate the Golgi 
of CHO cells as continuously stirred tank reactors 
(CSTRs) [38] or plug flow reactors (PFRs) [39] have been 
developed which can provide mechanistic insights into 
glycosylation changes upon changes in critical process 
parameters (CPPs) such as bioreactor pH, temperature, 
and galactose addition on the N-linked glycosylation of 
monoclonal antibodies (mAbs). Site specific N-linked gly-
cosylation is another layer of complexity in quality mod-
eling. Our research has indicated that changes to biore-
actor pH leads to changes in the fucosylation, galacto-
sylation and sialylation on the mAb. Upon assessing site 
specific analysis, it was determined that fucosylation was 
only affected in the Fab region and not the Fc region. Pre-
viously developed glycosylation models are being used 
to explain the observed differences [38, 40]. Integrating  
mechanistic models of N-linked glycosylation into digital 
twins will expand the capabilities of digital twin predic-
tions and enhance process simulation and decision-mak-
ing capabilities.  

Cell Metabolism and Continuous Upstream 
Manufacturing 

As the biopharmaceutical industry increases its rate 
of transition to continuous manufacturing, the resulting 
efforts to develop comprehensive digital twins will in-
crease in parallel to the increased complexity and opera-
tional demands of continuous systems. Regarding up-
stream production of biologics, perfusion bioreactors and 
the associated cell retention modules constitute the most 
important unit operations, for which the required compo-
nents of a digital twin as defined by Grieves and Vickers 
[12], are being individually developed in the literature. 

Dynamic mechanistic models of host cell platform 
metabolism pose as strong candidates for the virtual 
component of a digital twin. Dynamic Metabolic Flux 
Analysis (DMFA) and Dynamic Flux Balance Analysis 
(DFBA) models are two such frameworks, which combine 
kinetic and stoichiometric constituents to predict intra-
cellular metabolism as a function of bioreactor conditions 
with a minimal set of inputs [41-43]. These frameworks 
can explicitly link several of the key CPPs of perfusion re-
lated to bulk mass transfer, such as the perfusion rate, 
bleed rate, and media composition, to cell performance. 
Their mechanistic basis ensures physiologic constraints 
guaranteeing meaningful and interpretable predictions. 
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However, their curation takes time, sufficient process un-
derstanding, and requires high-quality process data. 
Their success is dependent on the availability of the re-
quired data, such as cell density, titer, and nutrient avail-
ability, which in turn are dependent on the existence of 
robust PAT for those measurements [14]. 

Extensive modelling work of the associated cell re-
tention module, as either Alternating Tangential Flow Fil-
tration (ATF) or Tangential Flow Filtration (TFF), has also 
been done [44-46]. The complexity of these models 
spans from straightforward mass-balanced based ap-
proaches, which assess product retention as a function 
of filter performance, to computationally expensive mod-
els leveraging CFD to interrogate mechanisms of filter 
fouling and the effect of flow patterns on cell viability. A 
critical step towards the development of robust digital 
twins for perfusion operation will require integration of bi-
oreactor and cell retention modelling frameworks with 
tolerable computational costs. 

FLOWSHEET MODELING  
By integrating unit operation models with relevant 

information transfer, it becomes possible to construct 
flowsheet models for early-stage design, assessment, 
and decision-making processes. 

In solid-based pharmaceutical manufacturing pro-
cesses, flowsheet models have been developed for dif-
ferent production routes, including direct compaction 
route, dry granulation route, and wet granulation route 
[15] enabling systematic process analysis, including sen-
sitivity analysis, design space identification, and optimi-
zation [47]. 

Flowsheet modelling has also been applied in the 
field of biomanufacturing. For example, Yang et al. [48] 
and Ding et al. [36] have developed process flowsheet to 
represent monoclonal antibody (mAb) production and 
conducted thorough analyses to compare batch and con-
tinuous operations. The primary objective was to assess 
the feasibility of transitioning from batch to continuous 
manufacturing from the economic and environmental 
perspective. Yang et al. [49] extended the application of 
flowsheet modeling to gene therapy, demonstrating the 
economic advantages of continuous operation in the pro-
duction of recombinant adeno-associated virus (rAAV). 
Additionally, within the realm of plasma separation, the 
implementation of flowsheet modeling has enabled pro-
cess scheduling and debottlenecking strategies to ad-
dress potential bottlenecks, which could help enhance 
batch throughput and overall efficiency, and thus im-
prove the overall process performance. 

SENSITIVITY ANALYSIS AND 
OPTIMIZATION 

Sensitivity analysis enables the investigation of pro-
cess risk based on the variability in outputs that may be 
caused by particular CPPs. Popular methods include 
Morris method and variance-based method, which have 
been investigated and applied to various solid based 
pharmaceutical manufacturing processes; CPPs that in-
fluence tablet properties have been identified such as 
dryer air temperature, drying time, and liquid to solid ratio 
[50, 51]. 

Utilizing a mechanistic model directly for optimizing 
pharmaceutical and biopharmaceutical manufacturing 
processes could be inefficient due to the inherent com-
plexity, nonlinearity, and nonconvex nature of the optimi-
zation problem created by the model.  A machine-learn-
ing enhanced optimization framework, specifically a sur-
rogate-based feasibility-driven optimization algorithm, 
has been developed and explored to improve modelling 
efficiency without sacrificing model fidelity. This investi-
gation considered various options for surrogate models, 
adaptive sampling acquisition functions, and strategies 
for distributing the sampling budget among feasibility 
characterization, objective function optimization, and 
global exploration [52-54]. This framework can be used 
for general deterministic or stochastic simulation-based 
optimization problems with black-box constraints, and it 
is exemplified in applications in both solid based and bi-
opharmaceutical manufacturing [52-55]. Machine learn-
ing based optimization and surrogate modelling have the 
advantage of reduced computational time but also hold 
the potential to yield superior solutions compared to tra-
ditional optimization approaches. 

DESIGN SPACE EVALUATION 
A design space is essential for defining a process's 

operational ranges to guarantee production rates and 
sufficient product quality and aid in understanding the 
impacts of process variables on these attributes as well. 
It can be interpreted as the region of the input domain 
where the corresponding predicted model response sat-
isfies all the required constraints [56]. Surrogate-based 
feasibility analysis approaches have been proposed to 
solve problems with computationally expensive process 
models. Different surrogate models with corresponding 
infill criteria haven been developed and tested on differ-
ent example problems, including Gaussian process model 
[16, 57, 58], radial basis functions [59], artificial neural 
networks [60], support vector machines [54], and sto-
chastic kriging [61]. The framework was applied and 
demonstrated to characterize the design space of direct 
compaction [47], roller compaction [57-59, 61], and wet 
granulation [60] processes in solid-based pharmaceuti-
cal manufacturing. 

Models for N-linked glycosylation can be very com-
putationally intensive as they involve solving NLPs or 
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PDEs [11] making it challenging to run these models for 
operations that require a large number of function evalu-
ations. Surrogate-based feasibility analyses have been 
developed to determine design space boundaries for ef-
ficient bioreactor operations. Dynamic kriging was used 
to develop a surrogate model of N-linked glycosylation. 
This surrogate model was used to evaluate the design 
space of pH and temperature in an upstream bioreactor 
process to achieve a certain range of N-linked glycan 
quality attributes [62]. In the context of biopharma down-
stream processes, the design space was identified for a 
twin-column continuous Protein A chromatography col-
umn, and the impact of process variations on this design 
space was examined. Rather than relying on a detailed 
mechanistic model, this work utilized a framework of sur-
rogate-based feasibility with adaptive sampling, aiming 
at striking a balance between accuracy and computa-
tional complexity [63]. 

FUTURE DIRECTIONS - CHALLENGES 
While the application of digital twins in the burgeon-

ing pharmaceutical and biopharmaceutical industry has 
shown clear promise, there remain notable challenges. In 
pharmaceutical industry, one of the current challenges is 
enabling high accuracy of prediction (using tools such as 
discrete element modeling) with continuous data-trans-
fer and model updates between predictive and physical 
plant. DEM being time-intensive necessitates the devel-
opment of reduced order modeling tools that can retain 
the accuracy of the DEM models with reduced simulation 
times. Another challenge is integrating the impact of ma-
terial properties in the digital twin. To this end, an accu-
rate methodology for representation of material proper-
ties within the process models is imperative. This is quite 
challenging with the bulk material calibration efforts to 
obtain a unique representation of the powder material. 
Development of more detailed models are also needed, 
for example better describing the effects of electrostat-
ics on powder processes and the subsequent impact on 
product quality. 

Within the biopharmaceutical industry, as more so-
phisticated process unit operation models are developed 
in isolation, their integration into comprehensive flow-
sheet structures to enable a holistic understanding of bi-
oprocesses presents a critical advancement. Balancing 
higher fidelity flowsheet models with tolerable computa-
tional costs and time will require continued innovative ap-
proaches. Successful refinement, validation, and applica-
tion of flowsheet models towards sensitivity analyses 
and optimization will rely on the availability of the re-
quired PAT, such as recent spectroscopic-based meth-
ods, for in-line measurements of process parameters and 
CQAs to provide real-time analysis and corrective action.  
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ABSTRACT 
The (bio-)pharmaceutical industry is facing crossroads in an effort to ramp up its global capacity, 
while working to meet net-zero targets and to ensure continuous drug supply. Beyond geopolitical 
challenges faced worldwide, (bio-)pharmaceutical processes have been historically very complex 
to design, optimise and integrate in a global distribution network that is resilient and adaptable to 
changes. In this paper we offer a perspective of how Process Systems Engineering (PSE) tools can 
support and advance (bio-)pharma practices with an outlook towards 3-fold sustainability. The 
latter is considering three main pillars, namely social (drug supply), economical and environmental 
sustainability.  We discuss PSE contributions that have revolutionised process design in this space, 
as well as the optimisation of distributions networks in pharmaceuticals. We do this by means of 
example cases: one on model-based unit operation design and a second one on sustainable supply 
chain networks in the space of advanced therapeutics. As such, this contribution offers a perspec-
tive on how PSE methodologies can offer a systematic way to integrate social, environmental, and 
economical sustainability throughout process design and product distribution. 

Keywords: Process Design, Biosystems, Supply Chain, Machine Learning, Dynamic Modelling, Industry 4.0, 
Sustainability 

INTRODUCTION 
As the world moves towards truly sustainable devel-

opment, the process industries are re-evaluating their 
operations and consider the wider environmental impacts 
of their products. While the biopharmaceutical and life 
sciences sector is at the forefront of the economy (UK 
turnover of £81B and USA turnover of US$285B) [1], its 
growth is linked to an increase in biohazardous waste, in-
cluding disposable plasticware, media waste, and high 
volumes of purification buffers and resins. To establish 
profitable and resilient operations, (bio-) pharmaceutical 
manufacturers will need to revolutionise the current 
state-of-the-art. Radical changes are necessary to tackle 
challenges related to material-intensive research and de-
velopment (R&D) and wasteful manufacturing operations. 
This goal has been embraced by (bio-) pharmaceutical 
companies, many of which have committed to ambitious 
net-zero targets that require a step-change to their 

current modus operandi [2–6]. 

(bio-) pharmaceutical challenges and future 
directions  

Achieving resource-efficient R&D and manufactur-
ing requires in-depth understanding of this industry that 
is governed by stringent regulatory constraints. Product 
quality and production rate are typically conflicting Key 
Performance Indicators (KPIs) with the former prioritized 
over the latter. The current, often purely experimental, 
approach to the identification of suitable operating con-
ditions that satisfy quality KPIs is resource- and time-in-
tensive and typically leads to suboptimal, inflexible pro-
cesses. Within the biopharmaceutical sector, the adop-
tion of platform processes means that upstream process 
operation follows fixed protocols that often overestimate 
nutrient requirements. The lack of end-to-end process 
design further exacerbates the above challenges. As the 
industry tends to work in silos, upstream and downstream 
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operations for the same manufacturing process are de-
veloped by different teams. Successes in increasing up-
stream product titres achieved over the past 3 decades 
have generally shifted the majority of operating costs 
downstream [7, 8]. Despite the Quality by Design initia-
tive, development of quantitative process understanding 
often relies on statistical approaches, which are not gen-
eralizable and transferable across production processes. 
At the same time, the sparsity of available datasets or 
even unavailability of measurements, particularly in the 
case of cell-based biopharmaceuticals production, points 
to the need for mechanistic mathematical representa-
tions or hybrid approaches. 

Against this background, the (bio-)pharmaceutical 
industry is currently transitioning to personalised thera-
peutics, which are manufactured for individuals or small 
cohorts of patients. An example of these are viral vectors 
for gene therapies [9]. Personalised therapeutics pose 
new challenges because they require on-demand manu-
facture and delivery to the clinic within constrained 
timeframes [10–12]. To meet patient needs, the industry 
needs to now consider drug product delivery to the pa-
tient within its operations envelope. In other words, man-
ufacturing and supply chain design must be considered in 
tandem, with both economic and, primarily, patient-cen-
tric KPIs in mind.  

The concept of 3-fold sustainability in (bio-) 
pharma and the role of Process Systems 
Engineering (PSE) 

The positive health impact of Life Sciences on the 
society has been, so far, outweighing the environmental 
footprint of the sector. This has been leading decisions 
around process and product development, ensuring that 
therapeutics meet the purity constraints and manufactur-
ers demonstrate control over their process operation. 
Nonetheless, and despite scientific advances in this 
space, regulators report drug shortages due to batch fail-
ures as one of the most pressing challenges. At the same 
time, COVID-19 demonstrated that the resilience of the 
global (bio-)pharma network is susceptible to unforeseen 
events, raw material shortages, as well as rapid increase 
in the demand for advanced therapeutics. This is now 
jeopardising the overarching goal of the industry to al-
ways meet drug demand. 

Drawing all objectives into the picture, one could 
summarise those as: (a) meeting the demand (social ob-
jective), (b) being economically efficient (economic ob-
jective) and (c) reducing the environmental footprint (en-
vironmental objective). The identification of the sweet 
spot that meets these three objectives requires holistic 
approaches that orchestrate R&D, manufacturing, and 
distribution decisions. In this new context, knowledge-
transfer and wet-lab experimentation are no longer suffi-
cient to advance the sector alone. The systematic use of 

computational approaches to guide R&D and end-to-end 
process design all the way to the clinic has the potential 
to yield a step increase in efficiency addressing both eco-
nomic and environmental sustainability targets. Specifi-
cally, the use of generalizable, first-principles mathemat-
ical models of cell metabolism [13], cell culture operation 
[14] and chromatographic separation [15] can comple-
ment experimental investigations to accelerate process 
development for the purpose of flexibility analysis, and 
[16] process optimisation [17]. Similarly, model-based 
tools that can integrate manufacturing uncertainties in 
the supply chain network can revolutionise the decision-
making process when it comes to investment and capac-
ity planning across the product lifecycle. 

PSE in (bio-)pharmaceutical process design 
and product distribution 

The PSE community has a long-standing track rec-
ord in developing cutting-edge methods and tools that 
can advance the way process and distribution networks 
are designed, optimised and operated. Specifically, in 
(bio-)pharmaceuticals, there have been contributions 
that investigate and propose methodologies for unit op-
eration design, as well as end-to-end process flowsheet 
and optimisation, the fundamentals for many of which lie 
in seminal contributions in PSE [18, 19]. Indicatively, 
groups have proposed surrogate modelling [20–24], 
(adaptive) sampling [16, 22, 25, 26] and probabilistic ap-
proaches [27, 28] to map and identify a process design 
space. Other approaches consider variance-based meth-
odologies to investigate the impact of design variables on 
the process performance and thereafter constrain the 
feasible space [29–31]. 

Similarly in operations, computer-aided tools can 
help assess trade-offs between KPIs during scale-up and 
supply chain development. Capacity planning under clin-
ical trial and demand uncertainty pressures decision-
makers to quantify cost benefits of early-stage scale up 
approaches, which are tied to higher initial capital invest-
ments and risk. In this space, stochastic programming 
and rolling horizon approaches are well-established tools 
in investment optimisation under uncertainty [32–35]. 
Network optimisation with respect to cost and environ-
mental metrics has been explored by several contribu-
tions focusing of process industries and the pharmaceu-
tical sectors [36–38]. These works integrate life cycle as-
sessment (LCA) in the optimisation problem formulation, 
thereby quantifying environmental impacts of candidate 
solutions and constructing Pareto frontiers to explore 
cost-environmental trade-offs. In the specific context of 
biopharmaceuticals, pioneering work has studied the im-
pact of single-use equipment in manufacturing of mAbs 
via LCA [39, 40]. There remain open questions regarding 
the identification of main sources of impact for emerging 
biopharmaceuticals and manufacturing platforms. 
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Optimisation-based PSE tools have an inherent potential 
to help assess trade-offs between cost and footprints 
and ensure therapy availability. 

EXAMPLE CASES  

Case study 1: Computer-aided design of 
chromatography 

The system 
Monoclonal antibodies have been the major growth 

driving force of the biopharmaceutical industry [41]. Their 
purification relies on a series of chromatographic separa-
tion steps and results in large requirements for buffers 
and chromatographic resins. When developing the down-
stream process for a new product, several commercially 
available resins are usually screened experimentally. 
Here, we demonstrate how computer-aided design space 
analysis can support resource-efficient resin screening 
as well as identifying suitable operating conditions that 
meet productivity and quality KPIs. Specifically, we con-
sider the protein A affinity chromatography step (Fig. 1). 
The feed contains the product (mAb), as well as impuri-
ties that result from the upstream bioreactor that act as 
disturbances. The model describing this system is a Par-
tial Differential and Algebraic Equation (PDAE) model and 
uses a general rate mass balance to describe the mass 
transport across the column length and radial axes [42]. 
The experimental validation of the model has been car-
ried out for five different commercially available resins.  

 
Figure 1.  Illustrative schematic of the protein A column. 

The performance of chromatographic units in bio-
processing is typically assessed via two KPIs; namely 
yield (𝐾𝐾𝑌𝑌𝑌𝑌 in %) (Eq.1) and productivity (𝐾𝐾𝑃𝑃𝑌𝑌 in mg/ml/min) 
(Eq.2). Although the yield is constrained, productivity is 
usually monitored and aimed to be maximised. In this ex-
ample, we introduce resin utilisation (𝐾𝐾𝑅𝑅𝑅𝑅 in %) (Eq.3) as 
a third KPI. This is in an effort to design innovative sepa-
ration processes that not only meet the product specifi-
cations, but also make better use of the materials towards 
more sustainable operation.  

𝐾𝐾𝑌𝑌𝑌𝑌 = 100 𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓−𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓
    (1) 

𝐾𝐾𝑃𝑃𝑌𝑌 = 𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓−𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

60𝑉𝑉(1−𝜀𝜀𝑐𝑐)𝑡𝑡
    (2) 

𝐾𝐾𝑅𝑅𝑅𝑅 = 100 𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓−𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

1000𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉(1−𝜀𝜀𝑐𝑐)�1−𝜀𝜀𝑝𝑝�𝑀𝑀
  (3) 

where 𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓 is the amount of mAb fed into the col-
umn, 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 is the amount of mAb that leaves in the break-
through, 𝑉𝑉 volume of the column, 𝜀𝜀𝑐𝑐 and 𝜀𝜀𝑏𝑏 porosity of the 
column and the bed, respectively, 𝑡𝑡 time, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 maximum 
binding capacity, and 𝑀𝑀 molar mass of the mAb. The 
productivity calculated is per volume of resin packed in-
side of the column, which enables comparison among the 
resins. For the purposes of this paper, the methodology 
and results are presented and discussed on the industri-
ally relevant resin, MabSelect SuRe™. 

Design Space Identification 
To identify a feasible design space for this opera-

tion, we follow the framework in Fig. 2 presented by Sa-
chio et al. [16].  

 
Figure 2. Framework for model-based design space 
identification via machine learning. 

Problem formulation 
For any given process, the design space is identified 

as a set of points that satisfy user-defined constraints of 
the KPIs. For this, first, a design problem is formulated 
(Eq.4-6). 

𝑦𝑦 = 𝑓𝑓(𝜃𝜃)    (4) 

𝜃𝜃𝐿𝐿 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑅𝑅    (5) 

𝑔𝑔(𝑦𝑦) ≤ 0    (6) 

where 𝒚𝒚 is the vector of monitored KPIs, 𝑓𝑓 is the process 
model, 𝜽𝜽 vector of the design decisions, 𝜽𝜽𝐿𝐿 and 𝜽𝜽𝑅𝑅 are the 
vector of lower and upper bound of the design decisions, 
respectively. While 𝒈𝒈 represents the target KPI con-
straints that need to be satisfied. These can be upper 
and/or lower bound constraints on the monitored KPIs.  

Data generation 
Next, the design decisions are identified, and the 

high-fidelity model is sampled for the generation of a 
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point cloud that captures the process performance. Var-
ying the design decisions within the bounds in Table 1, 
4096 computational experiments are generated via Sobol 
sampling. Each combination of those decisions results 
into a different set of the process KPIs. Real-world pro-
cesses are often highly nonlinear, therefore challenging 
computationally quasi-random sampling methods. For 
this, we integrate in the workflow, the development of an 
Artificial Neural Network (ANN) surrogate to be used as 
data interpolator. The objective of this is to increase the 
resolution of the search space, bypassing the computa-
tional complexity of sampling the high-fidelity model. This 
facilitates the identification of smooth boundaries and 
decreases the risk of void areas to be included in the de-
sign space. 

Table 1: Design decisions considered and their respective 
bounds. 

Design Decision Lower bound Upper bound 
𝑐𝑐𝑖𝑖𝑖𝑖 (mg/ml)   
𝑄𝑄𝑖𝑖𝑖𝑖 (ml/min)   
𝑇𝑇𝑙𝑙𝑙𝑙𝑚𝑚𝑓𝑓 (min)   

Condition screening against the KPI constraints 
and design space identification 

In this step, the point cloud is screened via the ap-
plication of constraint combinations of the KPIs. For this 
problem case, process yield is strictly constrained (𝐾𝐾𝑌𝑌𝑌𝑌 ≥
99%), while productivity and resin utilisation can vary be-
tween a lower and an upper bound (0.3 ≤ 𝐾𝐾𝑃𝑃𝑌𝑌 ≤
4.2, 3 ≤ 𝐾𝐾𝑅𝑅𝑅𝑅 ≤ 82). We generate 1024 combinations of 
constraints which are used to classify the original 4096 
points for their feasibility to meet the constraints. Based 
on the density of the cloud in each case, the ANN may 
need to be employed for the generation of additional 
points such that the design space boundaries can be 
smoothly identified. For the design spaces generated in 
this case, an ANN has been used in most of the cases, 
generating 1-927 additional points, based on the density 
of each given space. The boundaries of the design 
spaces are then defined using alpha shapes [16]. 

Resin performance and experimental validation 
The 1024 identified design spaces are mapped 

against the two flexible constraints: productivity and 
resin utilisation (Fig. 3i). All the identified design spaces 
satisfy 𝐾𝐾𝑌𝑌𝑌𝑌 ≥ 99% yield constraint. The presented ap-
proach further allows quantification of the generated de-
sign space, whereby 0 𝑚𝑚𝑔𝑔 is translated into absence of a 
feasible operating space under the given constraints. To 
display the density of each identified space, a colour-
code is applied (Fig. 3i). On this occasion, black dots cor-
respond to the absence of points that satisfy the given 
combination of constraints (0 𝑚𝑚𝑔𝑔 space), while dark or-
ange dots correspond to large design spaces (> 160 𝑚𝑚𝑔𝑔). 

The size of the design space can be correlated to the op-
erational flexibility of the process under the chosen con-
straints. The larger the design space (in 𝑚𝑚𝑔𝑔), the greater 
the ability of the process to satisfy KPI constraints within 
the given bounds.  

The presented approach enables manufacturers to 
gain insights on the process and material performance 
during the process development stages. For example, a 
trade-off between productivity and resin utilisation is ob-
served (Fig. 3i), with the best achievable performance ly-
ing at 𝐾𝐾𝑃𝑃𝑌𝑌 ≈ 2.8𝑚𝑚𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐾𝐾𝑅𝑅𝑅𝑅 ≈ 58%. It is observed 
that the flexibility of the unit operation is inversely corre-
lated to both productivity and resin utilisation (Fig. 3ii and 
3iii). Amongst the two constraints, productivity results 
the most stringent one for the size of the design space. 

 
Figure 3. (i) 1024 design spaces generated as a function 
of the productivity and resin utilisation, (ii) design space-
productivity constratint trade-off and (iii) design space-
resin utilisation trade-off. 

The generated design spaces have been validated 
using experimental data [42]. For the purposes of this pa-
per, only the worst-performing scenario is displayed (Fig. 
4). For this, the inlet product concentration (𝑐𝑐𝑖𝑖𝑖𝑖) is fixed 
at 3.33 𝑚𝑚𝑔𝑔/𝑚𝑚𝑚𝑚 and the validation plot is presented in 2-D, 
where the design space is a function of the remaining two 
design decisions (𝑄𝑄𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑙𝑙𝑙𝑙𝑚𝑚𝑓𝑓). It is observed that the 
identified design space is in good agreement with the ex-
perimental runs. RT6 is of particular interest and critical-
ity, as the high-fidelity model and all the model-based 
analysis thereafter were blind to this experiment. Even in 
this case, the identified design space captures accurately 
the process performance and does not include any false 
positive points. This is of high importance as any consid-
eration of false positive points within the design space 
boundaries can jeopardise the process performance and 
therefore the product specifications. 
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Figure 4. Experimental validation of the design space 
identified for the MabSelect SuRe™ resin.  

  
Figure 5. Superstructure of supply chain optimisation 
framework. 

  
Figure 6. Techno-economic modelling and optimisation 
framework. 

Remarks 
The presented methodology harnesses the computa-
tional efficiency of model-based approaches to screen 
operating conditions and materials for their performance 
in an economically efficient manner. This also translates 
in overall better use of resources and more sustainable 
manufacturing platforms. The methodology can be used 
as an accompanying tool to accelerate process develop-
ment in (bio-) pharmaceutical manufacturing and beyond. 
Importantly, the presented framework is adaptable and 
can be tailored to incorporate design decisions and KPIs 
of interest to the manufacturer. Critically, computational 
results of the example case compare favourably with 
wet-lab experimental data. This validation provides an 

additional level of certainty that the design spaces gen-
erated with this approach can be trusted and do not run 
the risk of false positive operating points to be included 
in the design. Case study 1 is a demonstration of a PSE 
tool for flexible process design. This effectively assists 
manufacturers in the development of continuous and ro-
bust manufacturing platforms operating in a more re-
source efficient fashion. 

Case study 2: A sustainability assessment of 
advanced therapeutic supply chains 

The system 
The second case study focuses on the integration of 

sustainability considerations in biopharmaceutical supply 
chains. We consider a multi-site capacity and distribution 
optimisation for viral vector supply chains, where nodes 
include upstream (USP), downstream (DSP) and fill-and-
finish (F&F) (Fig.5). 

Data collection 
The model [43] considers a generalized viral vector 

process that has been previously modeled in SuperPro 
Designer (Intelligen) for the calculation of batch sizes for 
each scale 𝑎𝑎, process times for USP, DSP, F&F, process 
bottleneck times and scale-dependent capital and oper-
ating costs. The techno-economic model also computes 
the resources (𝑤𝑤) consumed and emissions per batch. In 
this case we focus on consumption of water and electric-
ity and CO2 emissions for each process section and scale 
𝑎𝑎. The analysis is conducted on different scales of pri-
mary and secondary manufacturing (50, 200, 1,000L and 
2,000L bioreactor working volumes). Storage costs, ca-
pacity and electricity usage for 2 fridge types was rec-
orded, namely MATOS PLUS Cloud 300 UF (Cloud) and 
MATOS PLUS Eco 300 UF (Eco) freezers. Data on dis-
tances between supply chain nodes, logistics costs, and 
CO2 emissions per km traveled was also collected. 

The optimisation framework 
The optimisation is formulated as a mixed-integer linear 
problem (MILP). Given the above set of scale-dependent 
manufacturing and logistics and a target demand, the op-
timisation determines network structures, selects manu-
facturing scale, production targets and computes associ-
ated costs and environmental footprint. The environmen-
tal footprint for each candidate design and scale as-
sessed via the optimisation are calculated via formal LCA 
metrics, incorporating midpoint and endpoint categories. 
The environmental footprint is computed as the sum of 
the normalised mid-point impacts from water usage, en-
ergy usage and CO2 emissions, leveraging on the normal-
isation factors presented in the Environmental Footprint 
(EF) 3.0 framework [44] (Table 2).  
The problem can be solved as a single-objective optimi-
sation with respect to each of these indicators. In this 
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case, we illustrate an optimisation for cost minimisation 
and monitor environmental footprint and production tar-
gets as output variables of the supply chain model. We 
generate candidate supply chain structures by consider-
ing a set of scenarios. Specifically, we illustrate how risk-
averse decision-making leads to an optimisation for a 
lower demand target (Scenario A), where risk-taking ap-
proaches consider a larger demand target (Scenario B). 
The former staged-approach minimises capital invest-
ment in early stages of development under clinical trials 
uncertainty, whereas the latter case represents an early-
scale up strategy. 

Table 2: Impact categories and normalisation factors 
(NF). 

Impact category  Units NF 
Climate change kgCOeq  ×  

Water use m water 
eq  ×  

Resource use fos-
sil-based MJ  ×  

 

Scalability analysis & investment planning 
The performance of candidate network structures 

for Scenario A and B respectively can be assessed by 
constrained optimisation. Specifically, the network con-
figuration and scales obtained via the solution of the sin-
gle-objective cost minimisation can be fixed and tested 
for a range of demand realisations. This approach ena-
bles the assessment of the worst-case cost and emis-
sions in the case of a demand decrease (i.e. clinical trial 
fails.), as a first attempt to integrate environmental sus-
tainability in the pharmaceutical workflow.  This infor-
mation can also be used to identify the scalability of the 
candidate investment plan. The total environmental foot-
print and mid-point impacts of the supply chain opera-
tions are recorded. 

Cost-optimisation 
The adoption of a risk-taking approach results in a 

centralised network consisting of 2 USP production lines, 
1 DSP line and 1 F&F line. The scale selected is 2,000L, 
which is the largest available thereby maximising benefits 
from economies of scale given the target demand. At this 
cost-optimal point, total supply chain operating costs are 
computed as ~70M$/y, with variable costs of manufac-
turing (~30%) and equipment expenses (~60%) being the 
main contributors.  

Notably, storage costs from installing cheaper stor-
age (Cloud) are minimal.  This is the case for the range of 
demand realisations (Fig. 7a, ii). The total environmental 
footprint is mainly due to CO2 (58-66%) emissions and 
water utilised during manufacturing (41-33%), whereas 
electricity usage in manufacturing and storage is 

negligible (Fig. 7a, iii). A risk-averse approach results in a 
200L scale being installed in USP, DSP and F&F, in a cen-
tralised manufacturing facility. The cost-optimisation re-
sults and scalability analysis highlight lower total costs 
and total footprint overall, with main cost drivers and en-
vironmental impacts remaining variable and facility-de-
pendent expenses and water and CO2 emissions for the 
range of demand realisations (Fig. 7b, iii).  

 
Figure 7. Performance of candidate networks. Risk-
taking (a): (i) nominal network structure, (ii) total costs, 
(iii) total emissions computed through scalability analysis. 
Risk-averse (b): (i) nominal network structure, (ii) total 
costs, (iii) total emissions computed through scalability 
analysis. 𝜀𝜀 iterations correspond to the range of demand 
realisations from worst-case to best-case demand. 

Trade-off analysis 
The social sustainability of the biopharmaceutical 

supply chain can be understood as the amount of therapy 
delivered. Quantifying the supply chain performance un-
der demand uncertainty helps quantify the scalability of 
each investment decision. In this fashion, candidate in-
vestments can be compared with respect to cost and 
emissions per dose delivered and their respective scala-
bility. The risk-averse investment results in larger emis-
sions per dose compared to the risk-taking investment. 
Resource used in manufacturing are better used at larger 
scales in a similar fashion to economies of scale. In addi-
tion, risk-taking strategies and investing in a larger scale 
allows covering for up to 60,000 doses (Fig. 8). This is 10-
fold larger than the risk-averse case which uses 200L 
manufacturing platforms.  
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Figure 8. Trade-off between financial risk and 3-fold 
sustainability. 

The presented what-if analysis offers a first insight 
into a key trade-off between financial risk of investment 
and the 3-fold sustainability of the supply chain. As the 
therapy availability is maximised, the cost and environ-
mental sustainability of supply chain operations is im-
proved. This is seen by comparing Scenario A to B which 
result in 2 different operating scales, as well as maximis-
ing throughput of the facility once the asset is fixed. 
These trends highlight that a risk-taking approach in early 
stages of scale up can minimise emissions throughout 
clinical trials, although entail larger initial capital invest-
ments and risk if the clinical trial fails. 

Remarks 
The proposed case study highlights that cost and 

environmental footprints for stainless steel facilities are 
not conflicting objectives. This may not be the case for 
other therapeutics and/or alternative equipment choices 
in manufacturing. We foresee more complex trade-offs 
by introducing in the framework the selection of equip-
ment type for USP, DSP and F&F steps, comparing candi-
date manufacturing platforms relying on single-use 
and/or stainless-steel equipment. Each design decision 
would result in a range of environmental impacts from 
plastics disposal to water depletion and use of solvents 
for cleaning. In addition, the presented analysis focuses 
on 3 midpoint impacts within the LCA framework. The en-
vironmental footprint quantification can be augmented 
for a larger midpoint impact set as well as end-point ag-
gregation. In this context, case study 2 illustrates a meth-
odology to generate datasets for different candidate 
equipment technology and assess the sustainability of al-
ternative manufacturing and network setups and its cor-
relation to cost and service levels. 

CONCLUSIONS 
As the (bio)pharmaceutical industry commits to net-

zero targets, ramping up the global capacity in an eco-
nomically and environmentally sustainable fashion amid a 
background of regulatory concerns related to drug short-
ages will push manufacturers to take bold decisions on 

revolutionising their day-to-day operation. Adding the 
complex process dynamics of production systems results 
in a multifactorial, non-trivial problem that the sector is 
asked to solve in a timely manner. 

In this setting, the legacy of the Process Systems 
Engineering (PSE) community in the development of cut-
ting-edge methodologies, algorithms and tools becomes 
a vital enabler. PSE approaches are an excellent vehicle 
for the integration of social, economic, and environmental 
objectives when designing and optimising the next gen-
eration of (bio-) pharmaceutical processes and supply 
chains. Model-based approaches enable manufacturers 
to tackle challenges related to data unavailability, scale-
up bottlenecks, raw material scarcity and uncertain de-
mand profiles. Embedding such approaches in industrial 
workflows can shed light to novel process designs 
through better utilisation of the present assets or even by 
considering novel materials that offer improved perfor-
mance. Another key advantage of PSE decision tools is 
the guidance towards better use of resources to reduce 
cost and impact per therapy/drug delivered. 

To fully respond to today’s needs, however, one 
needs to consider pathways whereby all available tools 
of the broad PSE portfolio are combined and used in a 
customised fashion. In that respect, high-fidelity process 
models remain a great resource that offers process in-
sights and can help tackle challenges related to limited or 
complete lack of measurements. At the same time such 
models are highly transferrable across different products 
and modalities, following a suitable degree of re-param-
eterisation. On the other hand, Artificial Intelligence (AI) 
offers opportunities towards the reduction of the compu-
tational complexity of large-scale, nonlinear models, of-
ten encountered in this setting towards online deploy-
ment. Lastly, modelling manufacturing nodes dynamically 
and accounting for underlying uncertainties can enable 
the design of agile and responsive supply chain networks 
that meet regulatory, economic and patient related KPIs. 
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ABSTRACT 
Artificial intelligence (AI) and particularly generative AI led to recent breakthroughs, e.g., in gener-
ating text and images. There is also a potential of these technologies in chemical engineering, but 
the lack of structured big domain-relevant data hinders advancements. I envision an open Chem-
ical Engineering Knowledge Graph (ChemEngKG) that provides big open and linked chemical pro-
cess information. In this article, I present the concept of “flowsheet mining” as the first step to-
wards the ChemEngKG. Flowsheet mining extracts process information from flowsheets and pro-
cess descriptions found in scientific literature and patents. The proposed technology requires the 
integration of data mining, computer vision, natural language processing, and semantic web tech-
nologies. I present the concept of flowsheet mining, discuss previous literature, and show future 
potentials. I believe the availability of big data will enable breakthroughs in process design through 
artificial intelligence.  

Keywords: Artificial Intelligence,  knowledge graph, data mining, computer vision, natural language processing

INTRODUCTION 
The transformation of the chemical process industry 

to renewable energy and feedstock supply requires the 
design of highly integrated, flexible, and efficient plants 
[1]. In the current setting, the development of chemical 
processes is a challenging task, which is mostly per-
formed by manual simulation or optimization approaches 
that rely on hierarchical decomposition proposed in the 
1980s [2]. There is a need for a paradigm shift that ac-
celerates the development of chemical processes. 

Machine learning (ML) and, more generally, artificial 
intelligence (AI) have great potential for chemical process 
design but usually require big data [3, 4]. Recent break-
throughs in ML led to success in games, computer vision, 
healthcare, finance, etc., even surpassing human perfor-
mance in numerous tasks [5]. This great surge of AI ap-
plications often stems from the accessibility of big data, 
i.e., big in volume, variety, and velocity (cf., discussion on
definitions of big data [6]) [7].

While engineers use a variety of data and 
knowledge to design chemical processes, most ML ap-
proaches that are used in the context of chemical pro-
cess design currently do not rely on big data [8]. Instead, 

most ML approaches used for process synthesis rely on 
regression models that are trained on manually collected 
datasets for specific applications [4]. For example, there 
exist numerous works that train surrogate models on pro-
cess simulations and subsequently optimize the process 
design using superstructure formulations (e.g., [9–14]). 
Although these works frequently deal with a large num-
ber of data points (i.e., big in volume), there is a lack of 
variability in the data. In particular, most previous ap-
proaches do not consider a variety of process topology 
data from different processes but rather keep the con-
sidered topology fixed. Since ML models cannot extrap-
olate, these isolated approaches are limited to their spe-
cific process applications and validity domains [15].  

 ML methods have the potential to learn from 
process typologies and assist the process design in the 
future. Interestingly, a few pioneering works presented 
methods that have the potential to learn from multiple 
processes. Gani and coworkers extended a group contri-
bution method to flowsheet graphs to estimate the pro-
cess performance and guide decision-making [16, 17]. 
Also, Sahinidis and co-workers identified common pat-
terns in flowsheet graphs [18, 19]. Recently, we also pro-
posed new generative AI algorithms for the 
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autocompletion of flowsheets [20], autocorrection of 
flowsheets [21], and automatic prediction of control 
structures [22]. However, these methods have not yet 
unfolded their full potential because they have only been 
applied to datasets with few instances of flowsheet 
graphs and lack physical knowledge. In this article, I will 
focus on the methods to make more information acces-
sible to the ML algorithms through data mining.  

 Scientific literature and patents provide much in-
formation about chemical engineering processes (cf. big 
scholarly data [23]). Flowsheets are the most important 
building blocks to define and communicate the structure 
of chemical processes [24]. As shown in Figure 1, they 
are schematic drawings describing overall process de-
sign, i.e., interconnection and type of unit operations. De-
pending on the development phase of a process, there 
exist different flowsheets with varying levels of detail 
(i.e., ranging from block flow diagrams (BFDs) to process 
flow diagrams (PFDs) and piping and instrumentation di-
agrams (P&IDs)) [24]. There is at least one flowsheet for 
every chemical process ever developed or built. These 
flowsheets are commonly available in PDF format in sci-
entific publications, simulation files, patents, and com-
pany reports. Most information about industrial pro-
cesses is confidential and unavailable for public research. 
However, in this article, I focus on flowsheet information 
extraction from publicly available patents and scientific 
publications. In the future, the proposed methods can 
also be used on industry data. In addition to flowsheet 
images, process descriptions and stream tables usually 
provide additional information about flow compositions, 
operating conditions, and sizing of the unit operations 
(see Figure 1). 

 
Figure 1. Illustration of the potential for information 
extraction from flowsheets, process descriptions, and 
stream tables. Note that NLP is the abbreviation for 
natural language processing. 

 The document-centric workflow in chemical pro-
cess development is inadequate.  Since the existing data 
is unstructured, necessitating the need for chemical en-
gineers to manually review the literature to learn about 
existing process designs for their specific application. 
Manually reviewing, verifying, and utilizing this vast 
amount of unstructured data is not only cumbersome but 
also can be inaccurate. Given the sheer number of 

existing flowsheets, no human can comprehend all infor-
mation that has been incorporated into flowsheets. Un-
derstanding how to store, structure, and link this vast 
amount of chemical flowsheet data and knowledge is key 
to further progress. 

 Semantic Web (SW) technologies offer function-
ality to connect previously isolated pieces of data and 
knowledge, associate meaning to them, and represent 
knowledge extracted from them. In particular, SW ad-
dresses data variety, by proposing graphs as a unifying 
data model, to which a data source can be mapped [25]. 
Such graphs not only contain data, but also metadata and 
domain knowledge (ontologies containing axioms or 
rules), all in the same uniform structure, and are then 
called knowledge graphs (KGs) (i.e., ontology + data = 
knowledge graph) [26, 27]. 

I envision that document-centric process infor-
mation will be transformed into a findable, publicly acces-
sible, interoperable, and reusable (FAIR) [28] knowledge 
base by representing information through a KG (cf. ef-
forts to structure scholarly information [29]). The first 
step towards my vision involves the automatic extraction 
of information from flowsheets and process descriptions 
in scientific literature and patents. As illustrated in Figure 
1, the automated extraction of information necessitates a 
combination of natural language processing (NLP) and 
computer vision techniques. In this contribution, I pro-
pose and concept of “flowsheet mining”. Moreover, I re-
view relevant interdisciplinary literature and outline per-
spectives for future research. 

FLOWSHEET MINING 
As illustrated in Figure 2, I propose a four-step ap-

proach for flowsheet mining. In Step 1, publications are 
automatically downloaded, relevant publications are 
identified, and flowsheet figures are extracted. In Step 2, 
flowsheet figures are digitized and saved in a graph for-
mat. In Step 3, information is extracted from process de-
scriptions and stream tables. In Step 4, the extracted in-
formation is semantically enriched and saved in a 
knowledge graph. 

 
Figure 2. Proposed four-step approach for flowsheet 
mining. 

Publication mining 
The goal of the publication mining step is to identify 

relevant publications that describe a chemical process 
and extract flowsheet images (see Figure 3).  
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Figure 3. Illustration of Step 1 of the overall flowsheet 
mining approach: The publication mining. 

The automated download of scientific publications 
and patents is possible through application programming 
interfaces (APIs). For example, CrossRef provides 
metadata of scientific publications through a Represen-
tational State Transfer (REST) API given a digital object 
identifier (DOI) [30]. This metadata includes titles, au-
thors, license information, and links to the documents 
(e.g., publications in PDF or XML format), which are 
hosted by the corresponding publishers.  

 Given the large number of scientific publications, 
the automated identification of relevant publications is 
crucial.  For example, crossref currently stores metadata 
for over 120 million records (January 2021). To identify 
chemical engineering publications, I propose to generate 
a list of all chemical engineering journals.  

 Only a small fraction of chemical engineering 
publications describe processes. Thus, the goal is to fur-
ther identify chemical engineering publications that most 
likely contain a process flowsheet. I propose to train a 
topic model on the abstracts, title, and keywords of 
chemical engineering publications. Topic models are un-
supervised ML models that can predict the topics of pub-
lications. The common latent Dirichlet allocation (LDA) for 
instance is a probabilistic topic model that relies on a 
bag-of-words approach, which means that the model 
considers the (tokenized) words of the passed docu-
ments disregarding their initial order [31]. To predict if an 
unseen publication contains a flowsheet, a classification 
model can be trained on the predicted topic distribution 
(cf. [32]). 

 After identifying and downloading relevant pub-
lications, the flowsheet images need to be identified. This 
step necessitates the extraction of all images from a PDF 
document (e.g., using Python package PyMuPDF or PDF-
Figures 2.0 [33]). Afterward, I propose to train a classifi-
cation algorithm that recognizes flowsheet images. The 
flowsheet image recognition is a fairly simple classifica-
tion problem as flowsheets are usually black-white tech-
nical drawings that follow conventions (e.g., ISO 10628). 
Given the success of deep convolutional neural networks 
(CNNs) and transfer learning in computer vision [34–36], 
I propose to use pre-trained state-of-the-art CNN archi-
tectures (e.g.,VGG16 [37]). The results of the whole 

publication mining step are the extracted images of flow-
sheets from scientific publications. 

 In our recent work, we demonstrate that flow-
sheet images can be recognized from literature [38]. We 
trained a CNN on a training set including about 1,000 
PFDs and about 13,000 other images. The model showed 
a good overall performance with a precision of 80.7% and 
a recall of 94.4%. In a preliminary study, we identified 
about 2,500 PFDs in the journal Computers & Chemical 
Engineering which corresponds to approximately 4.5% of 
all images in the journal. Moreover, we identified about 
2,300 PFDs in the journal Chemical Engineering Science 
and about 560 PFDs in the book Ullmann's Encyclopedia 
of Industrial Chemistry. 

Flowsheet digitization 
The goal of the flowsheet digitization step is to ex-

tract the flowsheet topologies from the flowsheet images 
and save them in a graph format (see Figure 4). The dig-
itization of chemical process flowsheets involves an ob-
ject detection step [39] and a pathway exploration step. 
In the object detection step, a model identifies the posi-
tion and type of unit operation on the flowsheet. In the 
pathway exploration step, the connectivity of the unit op-
erations is explored. 

 
Figure 4. Illustration of Step 2 of the overall flowsheet 
mining approach: The flowsheet digitization.  

Digitization of various types of engineering dia-
grams has been a focus of research in the computer vi-
sion domain since the 1980s, but most developed meth-
ods relied on classic computer vision methods (e.g., [40–
46]). For example, Okazaki et al. [42] combined template 
matching and feature extraction in a hybrid model for 
symbol identification in circuit drawings. However, tem-
plate matching can only be utilized when all drawings are 
identical in shape. With the emergence of deep CNNs, the 
field of computer vision has seen great advancements 
[47].  

Recent literature distinguishes one stage from two-
stage object detection algorithms [39]. One stage CNNs 
solve the tasks of (1) localizing and (2) classifying objects 
within a single network. Common frameworks of this net-
work type are YOLO [48], its successors [49–51] as well 
as RetinaNet [52]. Single-stage networks have been 
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employed in the context of P&ID digitization [53–55]. 
However, single-stage networks do not perform as well 
as two-stage networks on common benchmark datasets 
and they often lack accuracy for the detection of small 
objects [50, 56]. 

 
Figure 5. Illustration of our preliminary object detection 
algorithm for the digitization of PFDs. 

Two-stage detectors extract a feature map from the 
original image using a backbone network in the first 
stage, which is then used to find regions of interest and 
classify them. The most common two-stage detector is 
Faster R-CNN [57]. Recently, the potential of two-stage 
object detection for process symbols and piping detec-
tion has been demonstrated [58–60].  While there exist 
established algorithms for object detection, the auto-
mated exploration of the connectivity is still limited and 
relies on rule-based approaches [61]. The final result of 
the flowsheet digitization should be saved in a standard-
ized data exchange format to enable interoperability (cf. 
DEXPI initiative for data exchange in the process industry 
[62, 63]). 

 In our recent work, we demonstrate that convo-
lutional neural networks can digitize P&IDs and PFDs to a 
high accuracy. Figure 5 shows the prediction of our ob-
ject detection algorithm for the digitization of PFDs [60]. 
The figure shows the identified bounding boxes and as-
sociated object class abbreviations (e.g., hex for heat ex-
changer).  

Process description extraction 
 The goal of the process description extraction 

step is to extract relevant process information from pro-
cess descriptions in text format. 

 In the NLP community, the process of automati-
cally extracting structured information from unstructured 
and/or semi-structured machine-readable documents is 
called Information extraction (IE) [64, 65]. As illustrated 
in Figure 6, this includes several sub-steps that are de-
scribed in the following. 

 

 
Figure 6. Illustration of Step 3 of the overall flowsheet 
mining approach: The process description extraction.  

 The process description is usually only a small 
part of scientific publications. Thus, the relevant para-
graphs including the process description need to be 
identified. This task is closely related to the identification 
of relevant publications (see Section Publication mining). 
Consequently, I propose to use topic models to identify 
relevant paragraphs.  

 Tokenization splits text into smaller tokens for 
further processing [66]. The simplest (rule-based) to-
kenizers split sentences into tokens based on white 
spaces, punctuations, or grammatical and syntactical 
rules. Tokenization is well-established in NLP and there 
exists a broad variety of implementations and compari-
sons (e.g., [67]). 

 In the word-embedding step of the document 
processing pipeline, each token is represented by a real-
valued vector that can be processed by subsequent ML 
models. The goal is to design a mapping that represents 
the token's meaning as a vector. For example, the word 
vectors of the words “king'' and “queen'' should be close 
to each other because they have a similar meaning. Thus, 
this step is also referred to as representation learning. 

 Named entity recognition performs classification 
on tokens. This is necessary to identify the type of infor-
mation that is provided. For example, Figure 7 shows an 
illustrative example where a named entity algorithm iden-
tifies the token “heat exchanger'' as a type [UNIT]. In the 
relation extraction step, possible relationships between 
entities are identified (i.e., green arrows in Figure 7). 

Figure 7. Illustration of tokenization, named entity 
recognition and relation extraction. 

Relation extraction can also involve relation classifi-
cation, which is typically formulated as a classification 
problem to classify the relationship between the entities 
identified in the text [68].  A classifier takes the contex-
tualized representation of two or more entities (e.g., 
words) as inputs and predicts possible relations between 
the entities as output. Feature- or kernel-based methods 
such as the conditional random field are earlier 
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approaches used for named entity recognition and rela-
tion extraction in a pipeline setting [68].  However, the 
performance of traditional approaches heavily depends 
on manual feature engineering, which requires domain-
specific knowledge and a deep understanding of linguis-
tics [68]. Also, several deep learning architectures have 
been proposed for entity recognition and relation extrac-
tion, which are mostly recurrent types of neural networks 
based on Bidirectional Long Short Term Memory 
(BiLSTM) or Gated Recurrent Unit cells [69, 70]. These 
models are often available in NLP tools (e.g., spaCy, 
Stanford CoreNLP, AllenNLP, and IBM Watson Natural 
Language Understanding). 

Recently, transformer language models [71] have 
become the de-facto standard for representation learn-
ing in NLP allowing for domain-specific transfer learning. 
Compared to transformer models that benefit from abun-
dant knowledge from pre-training and strong feature ex-
traction capability, approaches based on BiLSTM have 
shown a lower generalization performance [68] and are 
less efficient in capturing long-distance context (due to 
vanishing gradients in the training process) [65]. Specif-
ically, Bidirectional Encoder Representations from Trans-
formers (BERT) [72] is a common language model that 
utilizes bidirectional attention mechanism and large-
scale unsupervised corpora to obtain effective context-
sensitive representations of each word in a sentence 
[68]. Moreover, various improved variants of BERT have 
been proposed for various downstream NLP tasks. For 
example, BERT-based approaches have been applied to 
scientific texts (e.g, SciBERT [73]) and have even been 
adapted for molecular property prediction (e.g., Chem-
BERTa [74]). Recently, large language models (LLMs) 
such as ChatGPT have also solved various IE tasks 
through prompting.  

The majority of traditional IE approaches are fo-
cused on informal text (e.g., social media texts), or bio-
medical text (e.g., PubMedInfo Crawler [75]), while only 
a little literature on chemical engineering-related text ex-
ists (e.g., chemical patents [76]). In particular, very little 
attention is paid to IE for chemical process design. Xu et 
al. [77] showed that bio-entity extraction based on Bi-
oBERT [78] can significantly outperform other methods. 
Thus, a great potential for transformer-based language 
models on chemical engineering entity extraction tasks 
can be expected. However, relation extraction is highly 
domain-specific, due to the variety of underlying ontolo-
gies and relation types. To overcome this issue, ap-
proaches that combine LLMs, information retrieval, and 
SW technologies are promising (cf. [79]). 

Semantic database synthesis 
 The goal of the semantic database synthesis step is 
to build a knowledge graph by integration of the ex-
tracted information (see Figure 8).  

 

 
Figure 8. Illustration of Step 4 of the overall flowsheet 
mining approach: The semantic database synthesis. 

A KG is an effective means for capturing and struc-
turing a large amount of multi-relational data from various 
disciplines [26]. KGs are typically represented in the 
standardized Resource Description Framework (RDF) 
data model and queried using the SPARQL Protocol and 
RDF Query Language.  It can be formally defined as 𝐺𝐺 =
{𝐸𝐸,𝑅𝑅,𝑇𝑇}, where 𝐺𝐺 is a labeled and directed multi-graph, 
and 𝐸𝐸,𝑅𝑅,𝑇𝑇 are the sets of entities, relations, and triples, 
respectively. Each triple is formalized as (𝑢𝑢, 𝑒𝑒, 𝑣𝑣)  ∈  𝑇𝑇, 
where 𝑢𝑢 ∈  𝐸𝐸 is the head node, 𝑣𝑣 ∈  𝐸𝐸 is the tail node, and 
𝑒𝑒 ∈  𝑅𝑅 is the edge connecting 𝑢𝑢 and 𝑣𝑣 [27]. KGs are usu-
ally stored in a graph database system (e.g., Neo4j or vir-
tuoso). 

Ontologies are semantic data models that define the 
types of things that exist in a domain and the properties 
that can be used to describe them, including the relation-
ships between them [27]. The main components of an 
ontology are individuals (instances or objects) of classes 
(distinct types of concepts that exist in the data), rela-
tionships (ways to relate classes and individuals), and at-
tributes (aspects, properties, features, characteristics 
that objects and classes can have). RDF Schema (RDFS) 
and OWL (Web Ontology Language) are two different lan-
guage models that enable the construction of quantified 
statements in the form of RDF graphs. Currently, a few 
ontologies have been developed for process systems 
[80, 81], process safety [82, 83], process operation [84–
86], and kinetic reactions [87, 88]. However, these ontol-
ogies are mostly generalized data models that have not 
yet been used in conjunction with big data to form a KG. 
Currently, there exists only one publicly available chemi-
cal engineering KG, which creates a digital twin of the 
eco-industrial park on Jurong Island, Singapore [89]. To 
build the process flowsheet KG, I recommend extending 
the ONTOCAPE ontology [80, 81]. Furthermore, I recom-
mend linking or integrating flowsheet information into ex-
isting open scholarly KGs, e.g., the open research 
knowledge graph (ORKG) [90]. 

CONCLUSIONS 
In the current setting, information about chemical 
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processes is often not easily findable, accessible, in-
teroperable, and reusable (FAIR). In particular, process 
design information is depicted in flowsheets and de-
scribed in text format (e.g., in scientific literature, pa-
tents, or company reports). This lack of structured data 
is a major hurdle for the development of processes. Also, 
the lack of structured data is a bottleneck for process de-
sign through AI algorithms.  

This article describes the steps of a larger ongoing 
research agenda that aims to build an open Chemical En-
gineering Knowledge Graph (ChemEngKG). I envision 
that all (publicly available) chemical processes will be ac-
cessible in the ChemEngKG. To achieve this goal, I pro-
posed the concept of “flowsheet mining” that will enable 
the autonomous extraction of chemical process infor-
mation from scientific literature. The proposed concept 
mines scientific literature and patents, identifies and dig-
itizes flowsheet images, extracts information from pro-
cess descriptions, and saves all information in a semantic 
database. Thus, flowsheet mining requires the integra-
tion and further development of algorithms from several 
domains. I review relevant interdisciplinary literature in 
data mining, computer vision, natural language pro-
cessing, and semantic web technologies. Moreover, I 
highlighted the potentials for the development of algo-
rithms that are relevant for flowsheet mining. 

Finally, I envision that the ChemEngKG will be an en-
abler technology for innovative generative AI algorithms 
facilitating chemical process design. There exist a multi-
tude of powerful ML algorithms that have already demon-
strated breakthrough results in other domains such as 
molecular design. I believe that these methods have also 
a great potential for AI-assisted process design. First 
methods already show the potential of AI for the auto-
completion, autocorrection, and auto-generation of flow-
sheets. In the future, further development is needed to 
integrate engineering knowledge, big data, and AI for 
process design. 
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ABSTRACT 
Chemical engineers are natural “systems-thinkers”; this is a skill that allows us to analyze highly 
complex processes that involve heterogeneous components, phenomena, and scales. Systems-
thinking skills are fostered in the chemical engineering curriculum via integrative and project-
based courses, such as process/product design and laboratories. However, existing curricula 
tends to focus scope to product/process boundaries, offering limited opportunities to capture 
connections to behavior occurring at small scales (e.g., atomistic and molecular) and at large 
scales (e.g., supply chains, policy, markets, and infrastructures). This limit in scope can hinder our 
ability to appreciate how products/processes that we develop impact society, markets, and the 
environment (e.g., the opioid addiction crisis, environmental impacts of forever chemicals and 
chemical fertilizers, and electricity markets). This limit in scope can also hinder our ability to ap-
preciate how emerging tools from the molecular sciences can help us design better products/pro-
cesses.  Expanding the boundaries of our thinking is essential in overcoming these limitations. In 
this perspective, I discuss how emerging concepts and technologies from machine learning, data 
science, environmental sciences, molecular simulations, and mathematics provide powerful tools 
to help foster systems-thinking over a broad set of scales and to help establish connections with 
non-traditional disciplines (e.g., social sciences).  In addition, I discuss the need to create new 
conceptual frameworks, case studies, and software that can help foster systems-thinking. 

Keywords: Education, Chemical Engineering, Design, Systems Engineering 

INTRODUCTION 
A “system” is defined as a collection of intercon-

nected components; these components can be hetero-
geneous (have different functionalities) and can interact 
in a hierarchical manner (over multiple spatial and tem-
poral scales).    A chemical process is a complex system; 
chemical processes involve unit operations that carry out 
distinct functionalities (e.g., mixing, reaction, separation) 
and that are tightly interconnected. A unit operation (e.g., 
a reactor) is also a complex system that integrates com-
ponents (e.g., reactants, inerts, catalyst, cooling/heating 
system) to form diverse products/byproducts. A catalyst 
is also a complex system that integrates components 
(e.g., promoter, support, and active materials) at a mo-
lecular level to facilitate reactions. A chemical process 
can be seen as a component of a larger system (e.g., a 
refinery), which is in turn a component of an even larger 

system (e.g., a supply chain). This supply chain interacts 
with other complex systems (e.g., the environment, the 
power grid, and energy markets).  This highlights how 
systems exhibit hierarchical structure that links behavior 
over multiple scales, see Figure 1. For instance, the dis-
ruption of a chemical process (e.g., due to weather) can 
collapse an entire supply chain; similarly, the design of a 
catalyst can impact the performance of a chemical pro-
cess (e.g., energy use due to more difficult separation of 
products/byproducts).  

The definition of a system is powerful in that it is ab-
stract and thus general: everything is technically a sys-
tem (e.g., the cell, the human body, human society).  Hav-
ing an abstract way of thinking is critical, as this facili-
tates transferring of knowledge across disciplines. For in-
stance, chemical engineers leverage systems-thinking 
skills when applying principles of thermodynamics for an-
alyzing systems that are outside our “traditional” domain 
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of expertise. This is one of the reasons why chemical en-
gineers have been impactful in a broad range of domains 
(e.g., biomedical, electrochemical, materials, environ-
mental, pharmaceutical).  

 
Figure 1. Hierarchical graph representation of a complex 
system involving multiple scales. 

I would argue that “systems-thinking” has been at 
the core of chemical engineering since our profession 
was created (it is in our DNA). Let’s recall that chemical 
engineering was created as a branch of mechanical en-
gineering (an already established profession), with the 
goal of designing manufacturing processes for chemi-
cals. This required, from the get-go, a type of engineer 
that could fuse concepts from diverse disciplines. Mod-
ern chemical engineers combine concepts of transport, 
thermodynamics, conservation, chemistry, chemical ki-
netics, mathematics, and so on for analyzing and design-
ing products and processes for manufacturing such 
products. Modern chemical engineers actively collabo-
rate with scientists and engineers from a broad range of 
disciplines; this collaborative nature is also the result of 
systems-thinking, which helps establish connec-
tions/bridges with other domains.  

The need to navigate the complexity of chemical 
processes has required chemical engineers to develop 
conceptual abstractions. I would argue that the first of 
such abstractions was the notion of a “unit operation,” 
which is an abstraction that compartmentalizes chemical 
processes to understand functionality and connectiv-
ity/interactions of different components. The unit opera-
tion is a powerful unifying abstraction because it can be 
applied to a broad range of systems beyond chemical 
processes (e.g., the kidneys and the lungs can be seen 
as unit operations of the human body). The concept of 
the unit operation is so ingrained in our chemical engi-
neering psyche that it is difficult for us to think in other 
ways (we naturally compartmentalize systems); this way 
of thinking has been challenged by our need to intensify 

processes via tight integration of phenomena (e.g., reac-
tive separations).  

Chemical engineers have developed powerful con-
ceptual abstractions by leveraging mathematical model-
ing techniques (e.g., transport models, thermodynamic 
models, optimization models, dynamics/control models). 
The use of mathematical modeling marked the origin of 
our research field of process systems engineering and 
marked the origin of other related fields such as compu-
tational fluid dynamics, computational chemistry, multi-
scale modeling, and molecular simulations. 

Society is becoming increasingly complex, linking 
humans, technology, policy, economy, and the environ-
ment in a complex manner. This coupling is giving rise to 
a broad range of problems that need to be addressed 
(e.g., air/water pollution, addiction, mental health, re-
source scarcity, climate change). It is important to recog-
nize and acknowledge the role that chemical engineers 
have played in creating such problems (e.g., design of 
highly addictive drugs and foods, design of fuels and 
chemicals that rely on fossil sources, design of plastics 
that are difficult to recycle, socio-political conflicts due 
to oil exploitation). I would argue that many of the prob-
lems that we have created are, in part, the result of a lack 
of “holistic” thinking. For instance, in some cases, we 
have failed to anticipate connections of the prod-
ucts/processes that we create with other systems (we 
have taken a myopic view of problems).  This failure has 
not always been intentional; in some cases, connections 
remained hidden from us due to limits in technology and 
scientific understanding; for instance, heroin was found 
to be addictive years after commercial manufacturing 
and PFAS contaminants are present in the environment 
at concentrations of parts-per-trillion (there are limited 
technologies that can detect this).    

Chemical engineers have played and will play a crit-
ical role in providing solutions that benefit society; but, in 
doing so, we need to think holistically. This will require us 
to expand the domain of our thinking and to anticipate 
the impact of our products/processes with the environ-
ment and with society at large scales (e.g., economics 
and policy) and at molecular scales (e.g., toxicology). Ex-
panding our domain of thinking can also help us identify 
innovative solutions to pressing problems. For instance, 
fostering molecular-level understanding can help us de-
velop more effective drugs and can help us design better 
catalysts, but it is important to understand the impact of 
such drugs and catalysts on overarching systems (e.g., 
healthcare costs, materials availability, and carbon emis-
sions). Moreover, fostering infrastructure-level under-
standing can help us develop more effective energy and 
manufacturing systems (e.g., electrochemical processes 
that interact with the power grid and technologies that 
valorize plastic waste). To enable more holistic thinking, 
it is necessary to adapt chemical engineering education 
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by expanding the current focus on product/process de-
sign to discover non-obvious interconnections with other 
systems and across diverse scales. This is not a straight-
forward task, as it requires thinking deeply about how to 
contextualize and link topics covered in the curriculum 
and outside of the curriculum. 

In this short perspective, I argue that emerging tech-
nologies from machine learning, environmental sciences, 
molecular simulations, and mathematics can help us de-
velop new and powerful conceptual abstractions that can 
help chemical engineers reinforce systems-thinking skills 
and solve problems of increasing complexity. Specifi-
cally, I discuss how graph theory provides a powerful uni-
fying abstraction to represent complex systems and their 
connectivity across scales. Moreover, I discuss how ma-
chine learning tools can help develop models that link be-
havior across scales and how lifecycle assessment tools 
can help define and navigate domain boundaries that 
span multiple scales. My discussion will be inspired by 
problems that I have encountered in my own research 
and based on recent experiences in teaching topics of 
supply chains, machine learning, markets, and life-cycle 
assessment in my courses. I will also emphasize why I 
think that we need a new generation of modeling and 
simulation tools that help students visualize and navigate 
hierarchical arrangement and multi-scale interactions.  

UNIFYING ABSTRACTIONS 
The notion of a unit operation provides a unifying 

abstraction that helps navigate complexity of diverse 
systems (e.g., by separating functionalities). The notion, 
importance, and use of the unit operation can be under-
stood from the perspective of graph theory; specifically, 
we can think of a chemical process as a graph/network in 
which unit operations represent nodes and their connec-
tivity is expressed as edges.  The graph-theoretic view 
of a chemical process provides a powerful unifying ab-
straction that allows us to capture multi-scale interac-
tions, see Figure 1 [1]. For instance, going in the “up” di-
rection, one can think of a chemical process as a node 
that forms part of a bigger graph/network that represents 
an entire chemical complex (a chemical complex involves 
processes that generate different types of products and 
that are exchanged with other processes). A chemical 
complex can also be seen as a node that forms part of a 
bigger graph that represents a local supply chain, the lo-
cal supply chain is a node of a regional supply chain, and 
the regional supply chain is a node of a global supply 
chain (all these supply chains are linked and form a 
chemical supply chain). A chemical supply chain can also 
be seen as a node that forms part of a bigger graph that 
represents an infrastructure network (e.g., power grid 
and natural gas network); this reveals how a supply chain 
is connected to energy markets and can be affected by 

disruptions of infrastructure. A supply chain can also be 
seen as a node that forms part of a bigger graph that rep-
resents society or the environment; this reveals how a 
supply chain is connected to consumer demands, re-
source availability, and weather disruptions. This also re-
veals that a supply chain can impact the environment and 
human health; for instance, a pandemic can suddenly in-
crease demands for chemical products from the supply 
chain (sounds familiar?). Now, going in the “down” direc-
tion, one can think about molecules as graphs in which 
nodes represent atoms and edges represent bonds. One 
can represent environments that molecules form as 
graphs in which nodes represent an entire molecule and 
edges represent intermolecular forces (e.g., hydrogen 
bonds). One can also represent a molecular environment 
as a node that affects mesoscale behavior observed in a 
unit operation (e.g., a chemical reactor).  

The previous discussion highlights how a graph is a 
conceptual abstraction that helps us think about how 
systems and phenomena are linked across scales. Com-
putational and algorithmic tools from graph theory can be 
used to visualize/analyze such links and gain interesting 
insights. For instance, one can aim to identify nodes that 
are more tightly connected to others (and are thus more 
critical). Graph representations for molecules can also be 
used by machine learning (ML) models to predict emer-
gent properties such as thermodynamic and toxicity 
properties. These machine learning models thus estab-
lish a link between molecular-scale behavior (non-ob-
servable) to meso-scale behavior (observable); in other 
words, ML models can be used to create bridges/edges 
across scales. ML can also be used to create graph rep-
resentations of different resolution; for instance, one can 
create an ML model for a unit operation or an ML model 
an entire chemical process. ML thus allows us to aggre-
gate nodes of a graph and thus to construct system rep-
resentations of different levels of resolution (which can 
be critical in navigating and handling complexity). For ex-
ample, when aiming to understand the behavior a supply 
chain, it might be sufficient to have a simple “input-out-
put” model of a chemical process (there is no need to 
capture all the internal complexity of the process). Simi-
larly, when aiming to understand the interdependencies 
of the power grid with the manufacturing sector, one can 
capture the sector using a simple input-output model.  
 Graph abstractions can also be used to capture con-
nectivity of chemical processes with other systems (e.g., 
environment and policy). Capturing this connectivity is 
important, as this can help understand the impact that 
these externalities can have on the economic viability of 
the process or can help us understand how the process 
impacts markets and the environment. For instance, we 
can capture how a carbon tax impacts the selling price of 
a chemical, how carbon emissions impact the environ-
ment, and how the environment inherently restricts the 
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functionality/viability of a process (e.g., availability of re-
sources such as water). Graph abstractions can also help 
engineers to imagine or anticipate what types of impacts 
their products and processes can have on humans and 
the environment (e.g., anticipate cascading effects).  Un-
covering non-obvious connections between systems can 
also be used to identify new markets and needs for prod-
ucts (e.g., one can make chemicals from cow manure via 
pyrolysis).  

ILLUSTRATIVE EXAMPLES 
 I now proceed to draw examples on how systems-
thinking is necessary to tackle emerging societal chal-
lenges. In doing so, I will draw examples from my own re-
search and teaching experiences.  

 
 
Figure 2. Interconnections of the dairy sector with other 
industrial sectors. 

Example I. Fertilizer Pollution 
The U.S. dairy industry is a multibillion-dollar indus-

try that provides essential food products (e.g., milk, 
cheese, yogurt) [2]. This industry operates a massive 
manufacturing and supply chain infrastructure that man-
ages millions of cows that produce milk; cows are fed 
corn stover and grass, thus demanding substantial 
amounts of agricultural land and crops. Supplying feed 
for cows demands large amounts of nutrients, which are 
provided in the form of chemical fertilizer and cow ma-
nure. Cow manure is a natural fertilizer, and its use ena-
bles a certain degree of circularity for nutrients; however, 
loss of nutrients (e.g., fertilizer run-off) requires the use 
of synthetic chemical fertilizers such as ammonia and di-
ammonium phosphate. Overapplication of fertilizer cre-
ates nutrient accumulation in soil, and uncontrolled run-
off pollutes waterbodies (e.g., triggers algae blooms). 
Nutrients in waterbodies can be transported over long 
distances by following hydrological networks. For in-
stance, nutrient pollution in Pennsylvania can propagate 

all the way to the Mississippi river; this indicates that 
communities can be affected by pollution that is gener-
ated outside their jurisdiction (this is known as environ-
mental injustice). In addition to water pollution, applica-
tion of manure and synthetic fertilizer leads to significant 
emissions/leaks of methane and ammonia to the environ-
ment; for instance, organic matter in manure is degraded 
by bacteria to generate methane and ammonia injected 
in the soil (a gas) cannot be fully absorbed by the soil.  
The dairy industry is a sector that is tightly connected to 
other sectors (chemical industry and agricultural indus-
try) and with the environment in complex ways, see Fig-
ure 2. The chemical industry can help address environ-
mental impacts of the dairy sector by designing new fer-
tilizer products that minimize run-off/emissions or by de-
signing new crops that require less fertilizer. Nutrient 
run-off can also be mitigated by identifying technologies 
that can separate nutrients from manure streams in a 
scalable and economic manner.  
 

 

Figure 3. Interdependence between the power grid and 
the chemical sector.  

Example II. Exploiting Electricity Markets  
Decarbonization of the chemical industry requires 

electrification, as this pathway can help leverage the use 
of renewable power [3]. At the same time, decarboniza-
tion of the power grid via adoption of renewable power 
requires that power demands/loads are more flexible, as 
such flexibility is key for mitigating intermittency of re-
newable power. Electrochemical technologies such as 
electrolysis will play a crucial role in decarbonizing both 
the chemical and power sectors, as these technologies 
help bridge/connect these sectors, see Figure 3.  For in-
stance, one can produce clean (carbon-free) hydrogen 
via water splitting systems to be used as feedstock for 
other chemical processes such as methanol synthesis, 
which currently uses large amounts of (carbon-intensive) 
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hydrogen generated via steam reforming and natural gas. 
Electrolyzers can exploit dynamics of electricity markets, 
which currently exhibit high fluctuations and, in some re-
gions, high frequency of negative prices (consumers get 
paid to use power). It has recently been shown that hy-
drogen produced via electrolysis (and via exploitation of 
electricity market dynamics) can be cheaper than hydro-
gen produced via steam reforming. Moreover, because 
electrolysis is modular, one can envision creating hybrid 
systems that produce hydrogen on-demand and in loca-
tions where building natural gas delivery infrastructure is 
difficult.  Identifying these types of opportunities requires 
that chemical engineers think about how their processes 
connect with infrastructure (power grid and natural gas 
networks) and associated markets. At the same time, 
chemical engineers should work with electrical engineers 
to identify how to leverage electrolysis flexibility in power 
grid operations. Electrochemical technologies also offer 
an opportunity to shift power demands over multiple 
temporal scales (e.g., from hours to days to seasons); 
visualizing how to schedule these shifts is challenging.  

 
 
Figure 4. Design of a multi-layer plastic film for food 
packaging. 

Example III. Food Packaging Design  
Food packaging is one of the main uses of plastic 

materials around the world. These packaging systems 
consist of multi-layer plastic films, which comprise differ-
ent types of plastics that conduct different functionalities 
(e.g., oxygen barrier, moisture barrier, heat isolation, and 
mechanical strength), see Figure 4 [4]. The engineering 
of these packaging materials helps minimize food spoil-
age and helps maximize access to food supply (better 
packaging leads to more flexible transportation and in-
ventory management). Unfortunately, multi-layer plastic 
films cannot be recycled using mechanical recycling 
technologies. Solvent-based separation technologies of-
fer a promising pathway to enable recovery of plastic ma-
terials from multi-layer films;  in such processes, solvents 
are carefully selected to separate specific plastic films in 
a selective manner. The selection of the solvent plays a 
critical role in the efficiency of the separation process, in 
resource use (e.g., energy), and ultimately in recycling 
cost. Moreover, the selection of the solvent separation 
sequence is dictated by the nature of the multi-layer film 

to be separated (and waste streams tend to have high 
variability). As such, when designing this recycling pro-
cesses, it is important to think about how to design the 
food packaging materials, the solvent, and the process 
simultaneously. The selection of the solvent can be ac-
celerated by leveraging molecular simulations tools such 
as COSMO-RS. Chemical engineers can leverage these 
types of tools to inform product/process design. Moreo-
ver, chemical engineers should use lifecycle analysis 
tools to quantify the environmental impact of recycling 
processes and to compare this with virgin plastic produc-
tion; for instance, designing an ineffective recycling pro-
cess can do more harm than good to the environment 
(e.g., can lead to a high carbon footprint or to higher eco-
toxicity).  Lifecycle analysis is a technique that fosters 
multi-scale, systems-thinking, as this requires the careful 
selection of domain boundaries, careful definition of 
pathways and steps followed to obtain products, and 
careful identification of interdependencies of these path-
ways and external systems (e.g., sources of energy and 
associated carbon footprints). Notions of graph theory 
can be valuable here, as they can help visualize interde-
pendencies between products, technologies, and im-
pacts. For instance, graphs can be used to identify all 
steps needed to arrive to plastic materials from oil and to 
identify all environmental impacts generated along the 
way.  

FUTURE OUTLOOK AND NEEDS 
As society becomes more complex and it becomes 

increasingly difficult to assess how chemical products 
and processes interact with other systems, it will be nec-
essary to identify better conceptual frameworks to cap-
ture connectivity of complex systems across multiple 
spatial and temporal scales. Graphs can be used to rep-
resent shifts of power in space and time, a principle that 
is being used to manage the power loads of power-inten-
sive data centers. In addition to new conceptual frame-
works, it is also necessary to develop modeling and sim-
ulation tools that can help engineers visualize multi-scale 
interdependencies arising in complex systems. This is 
critical in navigating complexity and in fostering under-
standing of impacts of products and processes at a large 
scale. It is also necessary to develop modeling tools that 
can link process simulators to molecular scale phenom-
ena (e.g., microkinetic models and molecular simula-
tions), to understand inherent physical limitations that 
processes might have. In enabling this couple, it is 
needed to develop tools that can seamlessly replace 
complex simulation models with machine learning mod-
els, which can be much easier to manage and manipulate.  
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ABSTRACT 
This paper presents an algorithm for developing sparse surrogate models that satisfy mass/energy 
conservation even when the training data are noisy and violate the conservation laws. In the first 
step, we employ the Bayesian Identification of Dynamic Sparse Algebraic Model (BIDSAM) algo-
rithm proposed in our previous work to obtain a set of hierarchically ranked sparse models which 
approximate system behaviors with linear combinations of a set of well-defined basis functions. 
Although the model building algorithm was shown to be robust to noisy data, conservation laws 
may not be satisfied by the surrogate models. In this work we propose an algorithm that augments 
a data reconciliation step with the BIDSAM model for satisfaction of conservation laws. This 
method relies only on known boundary conditions and hence is generic for any chemical system. 
Two case studies are considered-one focused on mass conservation and another on energy con-
servation. Results show that models with minimum bias are built by using the developed algorithm 
while exactly satisfying the conservation laws for all data. 

Keywords: System Identification, Machine Learning, Algorithms, Design Under Uncertainty, Optimization 

1.0 INTRODUCTION 
Surrogate models are of great use for many process 

systems when developing the first-principles model is 
complex and/or time-consuming or the repeated simula-
tion of the first-principles model for optimization/control 
is computationally expensive and/or difficult to converge 
reliably [1-3].  In recent years, greater access to numer-
ous sensors, ease of collection and storage of large 
amount of data for many process systems and increased 
computational power with the emergence of supercom-
puters incentivized the development of data-driven mod-
els. 

In the area of data-driven models, there are signifi-
cant works on artificial neural network (ANN) models, 
with many powerful tools being readily available in the 
public domain. However, due to the black box nature, 
ANN models suffer from the lack of model interpretability 
which is a desired property of surrogate modeling. In ad-
dition, ANN models often require large amount of data for 
training while the developed models are often character-
ised with limited extrapolation capabilities. One approach 
to address these limitations is to develop data-driven 

interpretable models by using well-defined basis func-
tions such as those employed in Sparse Identification of 
Nonlinear Dynamics (SINDy) [4], Automatic Learning of 
Algebraic Models (ALAMO) [5] and Algebraic learning via 
elastic net (ALVEN)[6]. However, these existing ap-
proaches can perform poorly when trained with the noisy 
data especially for the case of correlated noise which is 
common for the industrial data. For the SINDy algorithm 
in particular, several methods including ensemble model-
ing [7] and implicit SINDy [8] have been proposed to en-
hance the robustness of the algorithm to the noisy data. 
Still, the level of noise that is acceptable for satisfactory 
model building can be highly limited. In addition, these 
approaches often result in more complicated models 
leading to some loss of desired model interpretability and 
sparsity. In our previous work [9], we proposed the 
Bayesian identification of Dynamic Sparse Algebraic 
Models (BIDSAM) algorithm that addresses the chal-
lenges of sparsity, model interpretability and robustness 
to noisy data. The developed algorithm employs Bayes-
ian inferencing implemented in the expectation maximi-
zation (EM) framework for simultaneous model parame-
ter estimation and uncertainty quantification that 

mailto:Debangsu.Bhattacharyya@mail.wvu.edu
https://doi.org/10.69997/sct.101946
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explicitly accounts for correlation in the measurement 
noise, if exists. In that algorithm, system nonlinearities 
are approximated by linear combinations of linear and 
nonlinear basis functions that are transformations of in-
put variables and their interactive effects among them-
selves and the output variables. The optimal sparsest 
subset of the resulting large family of basis functions is 
selected using the branch and bound algorithm which re-
turns a set of hierarchically ranked sparse models by min-
imizing an information criterion that not only incentivizes 
model fitness but also accounts for parameter estimabil-
ity. 

It is desired that models of chemical systems satisfy 
mass/energy constraints. Else the predicted results by a 
surrogate model can be meaningless. To this end, there 
exists several works in which physics-informed machine 
learning algorithms are developed for satisfying some 
physics constraints [10-12]. Most of these are not for sat-
isfying mass or energy constraints, but for satisfying 
other physical constraints such as thermodynamic con-
straints. In addition, these approaches are highly specific 
requiring detailed knowledge of the system, which may 
not be available for a system where data-driven models 
are being developed. 

In this work, we propose an approach that extends 
the capabilities of the BIDSAM algorithm for identification 
of robust sparse models that satisfy mass/energy con-
servation laws exactly both for the forward and inverse 
problems without loss of sparsity and model interpreta-
bility. The proposed approach guarantees the satisfac-
tion of the conservation laws for all predictions while re-
lying only on the knowledge of boundary conditions.    

2.0 THEORY 

2.1 Sparse Model Selection and Parameter 
Estimation 

Consider a general nonlinear system with states 𝑥𝑥, 
inputs 𝑢𝑢, measured outputs 𝑦𝑦, and model parameters 𝜃𝜃 
represented by the following set of differential and alge-
braic equations: 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢,𝜃𝜃)     (1) 

𝑦𝑦 = 𝑔𝑔(𝑥𝑥)      (2) 

The BIDSAM algorithm proposed in our previous work [9] 
approximates the system nonlinearities with a linear 
combination of linear and nonlinear transformations of in-
put variables and their interactive effects among them-
selves and the measurements. The resulting model takes 
the following form:  

𝑦𝑦𝑘𝑘 = 𝑨𝑨𝑦𝑦𝑘𝑘−1 + 𝑪𝑪𝑈𝑈𝑘𝑘−1∗ + 𝜔𝜔𝑘𝑘    (3) 

where 𝑈𝑈𝑘𝑘−1∗  represents the set of basis functions, 𝜔𝜔𝑘𝑘 
stands for additive noise and 𝑨𝑨,𝑪𝑪 are the model 

parameters. Using Bayesian inferencing implemented in 
the Expectation-Maximization (EM) framework, uncer-
tainty quantification is undertaken while estimating 
model parameters. A branch and bound algorithm is de-
veloped to search for the sparsest subset of basis func-
tions that best approximates the system behavior given 
the available data. The BIDSAM algorithm returns desired 
numbers of hierarchically ranked models based on a 
modified Akaike information criteria that is used as the 
model fitness criterion. 

2.1 Model Update for Satisfaction of 
Conservation Laws 

The models resulting from the BIDSAM algorithm 
show superior performance compared to existing algo-
rithms especially when training data is corrupted with 
correlated noise. But the BIDSAM models are not guaran-
teed to satisfy conservation laws. This becomes very im-
portant especially when the training data are significantly 
noisy and violate the conservation laws. In this work, the 
BIDSAM model is augmented with a dynamic data recon-
ciliation (DDR) step and an algorithm for updating model 
parameters so that final model results satisfy the 
mass/energy conservation laws. The overall model struc-
ture is given in Figure 1. The approach includes a linear 
transformation of the output from the BIDSAM model, 𝑥𝑥, 
by introducing a transformation that brings in more de-
grees of freedom for the optimization.  

 

 

Figure 1: Mass/energy constrained model 

2.2.1 Inverse problem 
The inverse problem involves updating the BIDSAM 

model parameters in an iterative manner while solving the 
following optimization problem. 

 

min
𝛺𝛺,𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑

�(𝛺𝛺𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑)𝑇𝑇𝑊𝑊1
−1(𝛺𝛺𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑)

𝑖𝑖

+ �(𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑)𝑇𝑇𝑊𝑊2
−1(𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑)

𝑖𝑖

 

𝑠𝑠. 𝑡𝑡 Mass/Energy balances 

(4) 

In Equation 4, 𝑊𝑊𝑖𝑖 ’s represent the weighting matrices, 
𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 denote the measured data and 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑 denote the final 
model output that are desired to satisfy mass/energy bal-
ances. For the case of mass conservation, atom balance 
can take the following general form: 
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�𝑛𝑛𝑗𝑗,𝑝𝑝𝑖𝑖
(𝑢𝑢𝑝𝑝(𝑘𝑘)) = �𝑛𝑛𝑗𝑗,𝑞𝑞𝑜𝑜

(𝑦𝑦𝑞𝑞,𝑑𝑑𝑑𝑑𝑑𝑑(𝑘𝑘)) (5) 

where 𝑛𝑛𝑗𝑗,𝑝𝑝𝑖𝑖
 is the number of atoms of element 𝑗𝑗 with re-

spect to input variable 𝑝𝑝, and 𝑛𝑛𝑗𝑗,𝑞𝑞𝑜𝑜
are the number of at-

oms of element 𝑗𝑗 with respect to output variable 𝑞𝑞. For 
energy conservation, a similar approach is followed by 
considering enthalpy in and out for the system as dis-
cussed later in section 3.2 for the second case study. Alt-
hough equation 5 has been written for a general case of 
multiple component situation, the same conditions apply 
to scenarios in which only total mass flow is known at the 
inlet or outlet of the system. The situation in which only 
total flows in and out of the system are known is consid-
ered trivial and mass is assumed to be generally con-
served conditioned on the known mass flow rate into the 
system as shown in the second case study. 
 The overall algorithm for solving the inverse problem 
is shown in Figure 2.  
 

 

Figure 2. Sequential algorithm for inverse problem. 

In the first iteration, initial values are assumed for the hy-
perparameters 𝛺𝛺, then we solve the optimization problem 
in Equation 4 using the Interior point (IPOPT) algorithm 
[13]. In subsequent iterations, model parameters are up-
dated based on the optimal values obtained for 𝛺𝛺  in the 
previous iteration. This is done by undertaking a maxi-
mum a posteriori (MAP) estimates of these parameters 
using Bayesian inferencing and the EM algorithm as de-
tailed in our previous work [9]. The iteration continues till 

convergence. 

2.2.2 Forward problem 
The overall structure in Figure 1 remains the same 

for the forward problem. However, in this case, the pa-
rameters 𝛺𝛺 and 𝜃𝜃 assume the optimal values obtained 
from the inverse problem and remain unchanged while 
DDR is undertaken just one time for each set of desired 
prediction. The following objective function replaces that 
in Equation 4 for the forward problem: 

min
𝛺𝛺,𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑

∑ (𝛺𝛺𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑)𝑇𝑇𝑊𝑊1
−1(𝛺𝛺𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑)𝑖𝑖   (6) 

The constraints for this optimization remain the same as 
for the inverse problem. 

3.0 CASE STUDIES 
The efficiency of the developed algorithm is tested 

on two case studies: an isothermal CSTR and a lumped 
parameter superheater system. 

3.1 Isothermal CSTR 
For this case study, the performance of the devel-

oped algorithm is examined for the satisfaction of mass 
conservation. A schematic of the CSTR is shown in Figure 
3. Chemical reactions for this system are as follows: 

  𝐴𝐴
𝑘𝑘1→ 𝐵𝐵

𝜅𝜅2→𝐶𝐶 

   2𝐴𝐴
𝜅𝜅3→ 𝐷𝐷    (7) 

 

 

Figure 3. Schematic diagram of isothermal CSTR. 

For this modeling purpose, the input variables con-
sidered are the reactor feed rate (𝐹𝐹) and species concen-
trations at the inlet (𝐶𝐶𝐴𝐴𝐴𝐴, 𝐶𝐶𝐵𝐵𝐴𝐴, 𝐶𝐶𝐶𝐶𝐴𝐴 and 𝐶𝐶𝐷𝐷𝐴𝐴). We seek to 
predict the concentration of each species (𝐶𝐶𝐴𝐴, 𝐶𝐶𝐵𝐵, 𝐶𝐶𝐶𝐶 and 
𝐶𝐶𝐷𝐷) at the reactor outlet based on changes in the input 
variables. Training data are simulated by solving the dif-
ferential equations used to model the system from first-
principles. Simulated correlated noise and constant bias 
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are added to this data which is then used for model train-
ing. Validation plots for a model obtained when training is 
done by using noisy data with bias are shown in Figure 4. 

Figures 4(a-b) show that while the results from the 
BIDSAM model without constraints match the training 
data quite well but there is bias with respect to the truth. 
Figures 4(c-d) show that the results from the model built 
by using the algorithm with mass constraint exhibit bias 
with respect to the biased noisy data, but are closer to 
the truth. Figure 4(e) shows that while the model built 
without considering mass conservation constraints vio-
lates the mass balance, the algorithm with mass con-
straint included results in exact satisfaction of the con-
servation law. For training with noisy data with bias, the 
maximum %RMSE for the unconstrained algorithm is 
4.45% while for the constrained algorithm we have 

2.05%. 

3.2 Adiabatic superheater system 
This case study evaluates the performance of the BID-
SAM model with energy constraints included. A super-
heater from a power plant, shown in Figure 5, where 
steam is superheated by using the hot flue gas is consid-
ered. The system has a cross-flow configuration. The in-
put variables considered are the steam and flue gas mass 
flowrates (�̇�𝑚𝑠𝑠𝑑𝑑 , �̇�𝑚𝐴𝐴𝑓𝑓), temperatures (𝑇𝑇𝑠𝑠𝑑𝑑,𝑖𝑖𝑖𝑖,𝑇𝑇𝐴𝐴𝑓𝑓,𝑖𝑖𝑖𝑖) and pres-
sures (𝑃𝑃𝑠𝑠𝑑𝑑,𝑖𝑖𝑖𝑖,𝑃𝑃𝐴𝐴𝑓𝑓,𝑖𝑖𝑖𝑖). The output variables are the steam 
and flue gas outlet temperatures (𝑇𝑇𝑠𝑠𝑑𝑑,𝑜𝑜𝑜𝑜𝑑𝑑 ,𝑇𝑇𝐴𝐴𝑓𝑓,𝑜𝑜𝑜𝑜𝑑𝑑). 

The energy balance constraints to be included as 
equality constraints in the optimization problem given by 
Equation 4 are as follows: 

(a) (b)  

  

 

(c) (d) 

  

Figure 4. Validation plots for isothermal CSTR model: (a)-(b) BIDSAM, (c)-(d) BIDSAM with mass constraint. 

Table 1. Performance measures of the models of the isothermal CSTR. 

Mass con-
strained? 

No of pa-
rameters 

% RMSE 
𝑪𝑪𝑨𝑨 𝑪𝑪𝑩𝑩 𝑪𝑪𝑪𝑪 𝑪𝑪𝑫𝑫 

Trained using True Data  
No      
Yes     
Trained using Noisy Data with Bias 
No      
Yes     
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Figure 5. Schematic of lumped superheater system. 

�̇�𝑚𝐴𝐴𝑓𝑓(𝑘𝑘) 𝐶𝐶𝑝𝑝𝑓𝑓𝑓𝑓(𝑘𝑘) �𝑇𝑇𝐴𝐴𝑓𝑓,𝑖𝑖𝑖𝑖(𝑘𝑘)  −  𝑇𝑇𝐴𝐴𝑓𝑓,𝑜𝑜𝑜𝑜𝑑𝑑(𝑘𝑘)� 

= �̇�𝑚𝑠𝑠𝑑𝑑(𝑘𝑘) �ℎ𝑠𝑠𝑑𝑑,𝑜𝑜𝑜𝑜𝑑𝑑�𝑃𝑃𝑠𝑠𝑑𝑑 ,𝑇𝑇𝑠𝑠𝑑𝑑,𝑜𝑜𝑜𝑜𝑑𝑑 , 𝑘𝑘�  − ℎ𝑠𝑠𝑑𝑑,𝑖𝑖𝑖𝑖� 𝑃𝑃𝑠𝑠𝑑𝑑 ,𝑇𝑇𝑠𝑠𝑑𝑑,𝑖𝑖𝑖𝑖, 𝑘𝑘��     (8) 

Here, it is assumed that the flue gas is treated as an 
ideal gas with constant specific heat capacity while spe-
cific enthalpies for steam are computed by using the 
IAPWS R7-97 correlations. Similar to the first case study, 
model training is done by using the noisy data with con-
stant bias. Plots comparing results from the models built 
with and without energy constraints are shown in Figure 
6. 

Figures 6(a-b) show the results from the model built 
by using the algorithm without energy constraints while 

Figures 6(c-d) compare the results from the model built 
by using the algorithm with energy constraints. Figure 
6(c-e) show that although the algorithm with energy con-
straints included leads to biased estimate with respect to 
the data, it has practically negligible bias with respect to 
the truth and also satisfies the energy conservation con-
straints. This is reverse for the model built by using the 
algorithm without energy constraints. 

The key performance measures are shown in Table 
2. It is observed that while the RMSE for both output var-
iables have increased when trained using the data with 
bias for both the models built with or without considering 
energy constraints, the relative increase is higher for the 
model built without considering energy constraints. Par-
ticularly for the flue gas temperature (Tfg,out)                                    
there is considerable difference in the results obtained 
by using the algorithm with energy constraints.  

Table 2. Performance measures of the models for the ad-
iabatic superheater system. 

Mass con-
strained? 

No of pa-
rameters 

% RMSE 
𝑻𝑻𝒔𝒔𝒔𝒔,𝒐𝒐𝒐𝒐𝒔𝒔 𝑻𝑻𝒇𝒇𝒇𝒇,𝒐𝒐𝒐𝒐𝒔𝒔 

Trained Using True Data  
No    
Yes   
Trained Using Noisy Data with Bias 
No    
Yes   

(a) (b)  

  

 

(c) (d) 

  

Figure 6. Validation plots for adiabatic superheater model: (a)-(b) BIDSAM, (c)-(d) BIDSAM with energy constraint. 
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CONCLUSIONS 
An algorithm has been developed that guarantees 

the satisfaction of conservation laws by sparse models 
obtained by using the enhanced BIDSAM algorithm. The 
results for the case studies show that the sparse models 
built by using the algorithm guarantee the satisfaction of 
mass/energy balance even when trained by using data 
that are noisy with constant bias with respect to the truth.  
For the isothermal CSTR case study, %RMSE of the mod-
els built with and without mass constraints remains simi-
lar when the training is done by using the true data but 
there was considerable difference in results from the 
models when training is done by using the noisy data with 
bias. Similar observations are made for the adiabatic su-
perheater case study as well, there was reduction in the 
model error with the constraints where energy con-
straints are satisfied by the enhanced BIDSAM algorithm. 
One limitation of the proposed algorithm is in the rela-
tively larger training time for the selection of appropriate 
basis function using the BIDSAM approach. Detailed anal-
ysis of this can be found in our previous work [9]. In the 
future, the algorithm will be extended to application for 
dynamic model building and for simultaneous conserva-
tion of mass and energy while also improving on the com-
putational efficiency for model selection. 
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ABSTRACT 
Process simulation problems often involve systems of nonlinear and nonconvex equations and 
may run into convergence issues due to the existence of recycle loops within such models. To that 
end, surrogate models have gained significant attention as an alternative to high-fidelity models 
as they significantly reduce the computational burden. However, these models do not always pro-
vide a guarantee on the prediction accuracy over the domain of interest. To address this issue, we 
strike a balance between computational complexity by developing a data-driven branch and 
prune-based framework that progressively leads to a guaranteed solution to the original system 
of equations. Specifically, we utilize interval arithmetic techniques to exploit Hessian information 
about the model of interest. Along with checking whether a solution can exist in the domain under 
consideration, we generate error-bounded convex hull surrogates using the sampled data and 
Hessian information. When integrated in a branch and prune framework, the branching leads to 
the domain under consideration becoming smaller, thereby reducing the quantified prediction er-
ror of the surrogate, ultimately yielding a solution to the system of equations. In this manner, we 
overcome the convergence issues that are faced by many simulation packages. We demonstrate 
the applicability of our framework through several case studies. We first utilize a set of test prob-
lems from literature. For each of these test systems, we can find a valid solution. We then demon-
strate the efficacy of our framework on real-world process simulation problems. 

Keywords: Surrogate Model, Modelling and Simulations, Algorithms, Data-Driven 

INTRODUCTION 
Systems of equations arise in many fields of practi-

cal interest such as engineering, economics, physics, and 
chemistry. A system of equations in 𝑁𝑁 -dimensions is rep-
resented as: 

𝑭𝑭(𝒙𝒙) = (𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), … . . 𝑓𝑓𝑁𝑁(𝑥𝑥))𝑇𝑇 

Simulation of chemical processes involve numeri-
cally solving such systems of equations. Solving such a 
system means finding a vector 𝒙𝒙 such that 𝑭𝑭(𝒙𝒙) = 0 
where 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … . . , 𝑥𝑥𝑛𝑛),which is not trivial, but there 
are many existing methods that have been developed to 
solve such systems traditionally. These methods can be 
categorized under three general classes: i) Homotopy 
continuation methods; ii) Interval-Newton methods; iii) 
Newton-type methods. 

Homotopy continuation methods involve starting 
with a system of equations 𝑮𝑮(𝒙𝒙), whose solution is 
known, embedded in a homotopy function 𝑯𝑯(𝒙𝒙, 𝒕𝒕) along 
with the original system of equations 𝑭𝑭(𝒙𝒙) where t is the 
homotopy parameter. The idea here is to solve a series 
of problems as t increases from 0 to 1 to obtain the solu-
tions of 𝑭𝑭(𝒙𝒙) by following the solution paths starting from 
𝑮𝑮(𝒙𝒙) [1,2]. Interval-Newton methods involve finding inter-
vals of the solution space where solutions can exist with 
mathematical guarantee [2,3].

Newton's methods [4] or Newton-type methods are 
iterative techniques that generate increasingly improved 
approximations of the root with each iteration. These 
methods have a faster rate of convergence but there are 
a few issues associated with Newton-type methods [5], 
e.g., i) Newton-type methods require computation of the
Jacobian while some require the inverse of the Jacobian
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as well which may be computationally expensive to ob-
tain for large systems of equations at every iteration; ii) 
This may also lead to numerical instabilities with conver-
gence if the Jacobian is very close to zero; iii) The con-
vergence of such methods also depends upon the initial-
ization. It is difficult to know apriori if a particular initiali-
zation converges to a root within a desired neighbor-
hood. If initialized at a point which is far away from a root, 
convergence to that desired root may not be obtained. 

Several other algorithms have been developed 
which do not exactly fall under any one of these catego-
ries but are nevertheless intelligent algorithms to find so-
lutions to systems of equations. Grosan and Abraham [6] 
developed an evolutionary algorithm where they convert 
the system of equations into a multi-objective optimiza-
tion problem and use pareto dominance relationships to 
find solutions. Ramos and Vigo-Aguiar [5] developed an 
approach which involves replacing a non-linear equation 
with 2 associated equations with the idea being that the 
system of associated equations is easier to solve than the 
original equation using Newton’s methods. Ramos and 
Monteiro [7] further developed this approach to solve 
systems to non-linear equations.  

This work aims to propose and study the GEMS 
framework which we have developed to solve systems of 
equations. GEMS stands for Guaranteed Error-bounded 
Modeling of Surrogates which involves replacing each of 
the original 𝐶𝐶2-continuous equations by surrogates. The 
maximum error between these equations and their re-
spective surrogates is bounded by an error metric, 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥, 
which can be derived through the theory of guaranteed 
estimators and using interval arithmetic methods [8]. One 
of the key features of the GEMS framework is that it does 
not depend on the Jacobian of the system of equations 
but does require a bound on the diagonal elements of the 
Hessian. Another key feature is that is allows the user to 
define domain bounds to selectively search the space for 
solutions. Lastly, it defines a convergence criterion which 
ensures that a solution is found. 

The contents of this work are organized as follows: 
the methodology section introduces the overall flow of 
the framework along with the theoretical requisites. In the 
next section, we present case studies to demonstrate the 
applicability of the framework. The computational results 
are reported in the next section, finally followed by the 
conclusions. 

METHODOLOGY 
We propose the GEMS framework to solve systems 

of equations with one of its key ideas being that it can 
check whether a solution exists in a search space using 
sampled data, the error metric 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥, and interval arith-
metic. From the point of view of the user, GEMS takes in 
input data in the form of the systems of equations 𝑭𝑭(𝒙𝒙) 

and the global domain bounds and returns a solution to 
𝑭𝑭(𝒙𝒙). When provided with a system of equations and the 
global domain bounds, the framework first checks for the 
existence of a solution in the global search space. If a so-
lution can exist, the search space (domain) is then di-
vided into two subproblems which are explored. Explora-
tion of a subproblem involves checking for the existence 
of a solution which, if exists, necessitates the evaluation 
of the fitness for the subproblem. The domain of the sub-
problem with the best fitness is then set as the domain to 
be explored next. This is done iteratively until a solution 
is found. A high-level flow of the GEMS framework is 
shown in Figure 1.  

 
Figure 1: Overall flow of the GEMS framework. 
 
The subsequent subsections explain the thoeries and 
subroutines that are utilized in the GEMS framework. 

Data Sampling and Generation of Convex Hull 
Surrogates 

GEMS replaces the original system of equations with 
convex hull surrogates. Given a search space i.e., a 
bounded domain, the functions are evaluated (sampled) 
at the domain bounds so that the set of points used to 
generate the convex hull can cover even the extremities 
of the search space. An 𝑁𝑁-dimensional space has 2𝑁𝑁 ver-
tices. The number of vertices increases drastically as 𝑁𝑁 
increases thereby making it impractical to have a function 
evaluation at every vertex for higher dimensional prob-
lems. Caratheodory’s theorem states that given an 𝑁𝑁-di-
mensional space, if any point 𝑥𝑥 lies within a convex hull 
defined by a set of points, then it is possible to express 𝑥𝑥 
as a convex combination of at most 𝑁𝑁 + 1 points in that 
set of points [9]. In other words, 𝑁𝑁 + 1 points are suffi-
cient to generate a convex hull surrogate in any domain. 
When obtaining 𝑭𝑭(𝒙𝒙) is expensive, this theorem can be 
used to reduce the number of required function evalua-
tions. We consider both cases where 2𝑁𝑁 and 𝑁𝑁 + 1 points 
are used to generate the convex hull surrogates. To illus-
trate, the 2-D functions 𝑓𝑓1(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 𝑦𝑦2 − 25  and 
𝑓𝑓2(𝑥𝑥,𝑦𝑦) = (𝑥𝑥 − 6)2 + 𝑦𝑦2 − 9 with their convex hull 



 

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 107 

surrogates 𝑐𝑐1(𝑥𝑥,𝑦𝑦) and 𝑐𝑐2(𝑥𝑥,𝑦𝑦) which are constructed us-
ing the vertex evaluations are shown in Figure 2.  

 

Figure 2: 𝑓𝑓1(𝑥𝑥,𝑦𝑦) (blue) and 𝑓𝑓2(𝑥𝑥,𝑦𝑦) (orange) shown in a 
given domain (left). Their respective convex hulls 𝑐𝑐1(𝑥𝑥,𝑦𝑦) 
(blue) and 𝑐𝑐2(𝑥𝑥,𝑦𝑦) (orange) shown over the same domain 
(right). The red and green curves represent the zeros of 
𝑓𝑓1(𝑥𝑥,𝑦𝑦) and 𝑓𝑓2(𝑥𝑥,𝑦𝑦) respectively. 

Interval Arithmetic 
We use our in-house subroutine to compute Hessian 

bounds for a 𝐶𝐶2-continuous function in a closed form in-
volving the standard arithmetic, trigonometric, logarith-
mic, and exponential operators. We first generate the 
computational graph for a given function, and then imple-
ment interval arithmetic rules in all nodes of the graph to 
efficiently compute bounds on the output. An automatic 
differentiation type scheme is then used to compute 
bounds on the gradients. The computational graph that 
corresponds to the gradient is dynamically created to 
store all dependencies. Using these graphs, we then au-
tomatically compute bounds on the Hessian. A key ad-
vantage of this approach is the guaranteed estimation of 
Hessian bounds that can not be achieved using point-
wise evaluation techniques. In some cases, we also use 
interval arithmetic on the computational graph to com-
pute a lower bound, 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and upper bound, 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 for 
each function in the case where enough samples aren’t 
available. 

Guaranteed Estimators 
Now that Hessian bounds can be obtained, the con-

cept of guaranteed estimators is utilized which is used to 
compute the error metric 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥. Namely, we use the guar-
anteed edge-concave underestimator [10], 𝐿𝐿(𝑥𝑥) defined 
as: 

𝐿𝐿(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) −�𝜃𝜃𝑖𝑖𝐿𝐿�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐺𝐺�
2

𝑁𝑁

𝑖𝑖=1

                               (1) 

where 𝜃𝜃𝑖𝑖𝐿𝐿 = 𝜖𝜖𝜖𝜖𝑥𝑥 �0, �𝑑𝑑
2𝑓𝑓

𝑑𝑑𝑥𝑥2
�
𝑈𝑈
� 

The edge-concave definition for a function 𝑓𝑓 is 
equivalent to: 

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2 ≤ 0             ∀𝑙𝑙 = 1, … .𝑁𝑁                                       (2) 

For an edge concave function, 𝜃𝜃𝑖𝑖𝐿𝐿 = 0 ∀ 𝑙𝑙 = 1, … .𝑁𝑁  
 
Similarly, we use the edge-convex overestima-

tor, 𝑈𝑈(𝑥𝑥) defined as [11]: 

𝑈𝑈(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + �𝜃𝜃𝑖𝑖𝑈𝑈�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐺𝐺�
2

𝑁𝑁

𝑖𝑖=1

                             (3) 

where 𝜃𝜃𝑖𝑖𝑈𝑈 = 𝜖𝜖𝑙𝑙𝑙𝑙 �0,− �𝑑𝑑
2𝑓𝑓

𝑑𝑑𝑥𝑥2
�
𝐿𝐿
� 

The edge-convex definition for a function 𝑓𝑓 is equiv-
alent to: 

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

≥ 0               ∀𝑙𝑙 = 1, … .𝑁𝑁                                     (4) 

For an edge convex function, 𝜃𝜃𝑖𝑖𝑈𝑈 = 0 ∀ 𝑙𝑙 = 1, … .𝑁𝑁  
 

𝑥𝑥𝑖𝑖𝐺𝐺 is the point from which the estimator is generated. The 
estimators are illustrated in Figure 3. 

 
Figure 3: The function 𝑓𝑓(𝑥𝑥) shown along with its 
guaranteed underesimator 𝐿𝐿(𝑥𝑥) (shown in orange) and its 
guaranteed overestimator 𝑈𝑈(𝑥𝑥) (shown in green) 
generated from the sample point (shown in red). 

Error-boundedness 
𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 is the maximum possible error between the 

equations and their respective surrogates and therefore 
it is desired to have the smallest 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 as possible. If the 
closed form of the equations is convoluted in the sense 
that it contains nested terms, interval arithmetic may re-
sult in extremely large (loose) values of 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥.  

Based on the nature of the function i.e., based on its 
𝜃𝜃𝑖𝑖𝐿𝐿 and 𝜃𝜃𝑖𝑖𝑈𝑈 values, each of the functions in the original sys-
tem can be classified into one of three categories: 

i) Category 1 - The function is neither edge-con-
vex nor edge-concave in all dimensions, 

ii) Category 2 - The function is both edge-concave 
and edge-convex in all dimensions, 

iii) Category 3 - The function is edge-convex or 
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edge-concave in some but not all dimensions. 
The value for 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 for each of these categories 

when we consider the set of all 2𝑁𝑁 vertices and then a 
subset of 𝑁𝑁 + 1 of those 2𝑁𝑁 are shown in Tables 1 and 2 
respectively. 

Table 1: 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 values when all 2𝑁𝑁 vertices are evaluated. 

Category  
𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 = ��𝜃𝜃𝑖𝑖𝐿𝐿 + 𝜃𝜃𝑖𝑖𝑈𝑈�

𝑁𝑁

𝑖𝑖=1

�𝑥𝑥𝑈𝑈𝑖𝑖 + 𝑥𝑥𝑀𝑀𝑖𝑖 � 

Category  𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 = max{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} − min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} 
Category  𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑥𝑥 − 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛 

Table 2: 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 values when 𝑁𝑁 + 1 vertices are evaluated. 

Category  
𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 = ��𝜃𝜃𝑖𝑖𝐿𝐿 + 𝜃𝜃𝑖𝑖𝑈𝑈�

𝑁𝑁

𝑖𝑖=1

�𝑥𝑥𝑈𝑈𝑖𝑖 + 𝑥𝑥𝑀𝑀𝑖𝑖 � 

Category  𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑥𝑥 − 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛 
Category  𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑥𝑥 − 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛 

Here, max{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} is the maximum of the vertex func-
tion evaluations, min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} is the minimum of the vertex 
function evaluations, 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑥𝑥 is the upper bound on the 
function obtained through interval arithmetic and 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛 is 
the lower bound on the function obtained through inter-
val arithmetic.  

Solving the system of surrogates 
Now that we have our system of error-bounded 

convex hull surrogates, we wish to find a point 𝑥𝑥∗ in the 
search space such that the distance 𝜏𝜏 between furthest 
the convex hull surrogate and the zero “plane” is mini-
mized. The following linear programming (LP) model CH 
enables us to do that: 

min 𝜏𝜏 

𝑠𝑠. 𝑡𝑡.           𝑥𝑥𝑛𝑛 = � 𝜆𝜆𝑗𝑗,𝑒𝑒𝑥𝑥�𝑒𝑒,𝑛𝑛
𝑒𝑒∈𝑐𝑐𝑒𝑒

    ∀ 𝑙𝑙 ∈ 𝑁𝑁, 𝑗𝑗 ∈ 𝐽𝐽        (5) 

𝐶𝐶𝐶𝐶𝑗𝑗 = � 𝜆𝜆𝑗𝑗,𝑒𝑒𝑓𝑓𝑗𝑗(𝑥𝑥�𝑒𝑒,𝑛𝑛)
𝑒𝑒∈𝑐𝑐𝑒𝑒

     ∀ 𝑗𝑗 ∈ 𝐽𝐽                              (6) 

� 𝜆𝜆𝑗𝑗,𝑒𝑒
𝑒𝑒∈𝑐𝑐𝑒𝑒

= 1    ∀ 𝑗𝑗 ∈ 𝐽𝐽                                                  (7) 

𝐶𝐶𝐶𝐶𝑗𝑗 ≤  𝜏𝜏    ∀ 𝑗𝑗 ∈ 𝐽𝐽                                                         (8) 

−𝐶𝐶𝐶𝐶𝑗𝑗 ≤  𝜏𝜏    ∀ 𝑗𝑗 ∈ 𝐽𝐽                                                      (9) 

0 ≤ 𝜆𝜆𝑗𝑗,𝑒𝑒 ≤ 1   ∀ 𝑗𝑗 ∈ 𝐽𝐽, 𝑣𝑣 ∈ 𝑉𝑉                                    (10) 

In this formulation, Equations 5, 6 and 7 are referred to as 
the convex combination constraints. Equations 7 and 10 
ensure that the point lies inside the domain under con-
sideration. Here, 𝐽𝐽 is the set of functions and 𝑉𝑉 is the set 
of vertices. 
Note that, 𝑥𝑥�𝑒𝑒,𝑛𝑛 is the known co-ordinates of vertex 𝑣𝑣 in 
dimension 𝑙𝑙 and 𝑓𝑓𝑗𝑗(𝑥𝑥�𝑒𝑒,𝑛𝑛) is the value of the function 

evaluation for a function 𝑗𝑗 at the point 𝑥𝑥�𝑒𝑒,𝑛𝑛. 𝜆𝜆𝑗𝑗,𝑒𝑒 is the 
weight assigned to vertex 𝑣𝑣 for the function 𝑗𝑗. 

Solving this formulation, we obtain a point (𝒙𝒙∗) at 
which we evaluate fitness defined as follows: 

𝐹𝐹𝑙𝑙𝑡𝑡𝑙𝑙𝐹𝐹𝑠𝑠𝑠𝑠 =  �𝑓𝑓𝑗𝑗2(𝒙𝒙∗)
𝑁𝑁

𝑗𝑗=1

 

This fitness allows us to define a metric for quanti-
fying the “closeness to zero” or quality of the obtained 
solution. It is desirable to have a fitness function value 
close to zero. 

Branch and Prune 
With the theoretical requisites established, GEMS 

involves a branch and prune subroutine (which is inspired 
by the classical branch and bound) where, given an initial 
search space, the idea is to repeat the following steps 
iteratively: 

1) Prune regions of the search space based of the 
existence of a solution in that space. 

2) Branching to generate two subproblems if a so-
lution could exist. 

3) Choose subproblem with the best (smallest) fit-
ness value to be explored next. 

Each subproblem in the branch and prune tree is also 
called a node. The current node is branched at the 
midpoint of the domain of the variable having the longest 
edge. For systems of equations where the domain bound 
ranges are unequal, we scale the domain bounds relative 
to the global domain bounds and branch at the midpoint 
of the domain of the variable having the scaled longest 
edge. To check whether a solution exists in each search 
space (each node), the GEMS framework does the 
following: for each function, we perform a loose pruning 
check which involves computing a lower bound, 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 
and an upper bound, 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 based solely using interval 
arithmetic. For any function, if its lower and upper bounds 
have the same sign, it is not possible for that function to 
have a solution in that space. Each function has a distinct 
lower and upper bound. If any of the functions have 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 
and 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 of the same sign, it is impossible for the entire 
system of equations to have a solution in that space, 
thereby allowing us to discard that node from further 
consideration. Note that, we are using the 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and 
𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 based solely on IA which are loose. However, this 
check helps eliminate unnecessary computation. We 
move to the next step of node exploration if a solution 
can exist in the node i.e., if it cannot be pruned based on 
the loose pruning condition. We then perform function 
evaluations and Hessian bound estimations to obtain 
tighter 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 values for another tighter 
pruning check. Figure 4 shows the node exploration 
subroutine. The 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 for each of the 
categories when we consider the set of all 2𝑁𝑁 vertices are 
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shown in table 3. Similarly, the values of 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 
when we consider a subset of 𝑁𝑁 + 1 vertices are shown 
in table 4. Note that for functions which are both edge-
concave and edge-convex in all dimensions (Category 2), 
when we have function evaluations at all 2𝑁𝑁 vertices, 
Tardella’s theorem [12,13] enables us to obtain tightest 
𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥. 

Table 3: 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 values when all 2𝑁𝑁 vertices are 
considered. 

Category  𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 = min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} − 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 
𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 = max{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} + 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 

Category  𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 = min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} 
𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 = max {𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} 

Category  𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛 
𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑥𝑥 

Table 4: 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 values when all  𝑁𝑁 + 1 vertices 
are considered. 

Category  𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 = min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} − 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 
𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 = max{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} + 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 

Category  𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛 
𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑥𝑥 

Category  𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛 
𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 =  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑥𝑥 

If 𝑙𝑙𝑙𝑙𝜖𝜖𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑙𝑙𝜖𝜖𝜖𝜖𝑥𝑥 have different signs, a solution 
may possibly exist, and we move to the next step of node 
fitness evaluation. The node fitness evaluation involves 
generation of the convex hull surrogates and using the LP 
formulation to find the point at which we evaluate fitness. 
If the fitness of a node falls below a certain threshold 
(<1e-4) we have found a point for which the value of each 
function in 𝑭𝑭(𝒙𝒙) is extremely close to zero which basically 
means we have found a solution to the original system of 
equations.  

 
Figure 4: The node exploration subroutine. 
 

Convergence 

As 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 reduces, the error between the function 
and its convex hull surrogate reduces. The error metric 
𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 is dependent on the Hessian bounds and domain 
sizes which means the 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 of a child node can never be 
greater than the 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 of its parent. In other words, the 
error-bound for any subproblem is less than or equal to 
its parent problem. The sum of all 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥𝑠𝑠 for the child 
node will always be greater than the sum of 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥𝑠𝑠 of the 
parent node. It can be considered an equivalent to the 
gap in the classical branch and bound technique used in 
optimization. Also, having a small enough value of 𝜖𝜖𝜖𝜖𝜖𝜖𝑥𝑥 
can lead to efficient pruning of sub-regions. 

This concludes the overall flow of the GEMS frame-
work. 

CASE STUDIES 
We consider some test problems having a single so-

lution as well as a few benchmark problems from litera-
ture along with examples of systems of equations arising 
from test problems in chemical engineering literature. 

Test problems 
1) Hypersphere systems – The following system of 

equations can be scaled to N-dimensions while 
still maintaining the characteristic of having a 
single solution. We consider the 10, 50 and 100-
dimensional systems for our studies. Here, R is 
the radius of the hyperspheres. 

𝑭𝑭𝑯𝑯𝑯𝑯𝑯𝑯(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �𝑥𝑥𝑖𝑖2

𝑁𝑁

𝑖𝑖=1

− R = 0

(𝑥𝑥12 − 2R)2 + �𝑥𝑥𝑖𝑖2
𝑁𝑁

𝑖𝑖=2

− R = 0

� 𝑥𝑥𝑖𝑖2
𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗−1

+ �𝑥𝑥𝑗𝑗 − R�2 − R = 0,∀ 𝑗𝑗 = (3, … . ,𝑁𝑁) 

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Benchmark systems in literature 
1) Interval Arithmetic [14] – The following system 

has been considered as one of the benchmark 
problems from interval arithmetic: 

𝑭𝑭𝑰𝑰𝑰𝑰(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1 − 0.25428722 − 0.18324757𝑥𝑥4𝑥𝑥3𝑥𝑥9 = 0
𝑥𝑥2 − 0.37842197 − 0.16275449𝑥𝑥1𝑥𝑥10𝑥𝑥6 = 0
𝑥𝑥3 − 0.27162577 − 0.16955071𝑥𝑥1𝑥𝑥2𝑥𝑥10 = 0
𝑥𝑥4 − 0.19807914 − 0.15585316𝑥𝑥7𝑥𝑥1𝑥𝑥6 = 0
𝑥𝑥5 − 0.44166728 − 0.19950920𝑥𝑥7𝑥𝑥6𝑥𝑥3 = 0
𝑥𝑥6 − 0.14654113 − 0.18922793𝑥𝑥8𝑥𝑥5𝑥𝑥10 = 0
𝑥𝑥7 − 0.42937161 − 0.21180486𝑥𝑥2𝑥𝑥5𝑥𝑥8 = 0
𝑥𝑥8 − 0.07056438 − 0.17081208𝑥𝑥1𝑥𝑥7𝑥𝑥6 = 0
𝑥𝑥9 − 0.34504906 − 0.19612740𝑥𝑥10𝑥𝑥6𝑥𝑥8 = 0
𝑥𝑥10 − 0.42651102 − 0.21466544𝑥𝑥4𝑥𝑥8𝑥𝑥1 = 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
2) Neurophysiology Application [15] – The 
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following system arises from an application in 
neurophysiology: 

𝑭𝑭𝑯𝑯(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥12 +  𝑥𝑥32 = 1

𝑥𝑥22 +  𝑥𝑥42 = 1
𝑥𝑥5𝑥𝑥32 + 𝑥𝑥6𝑥𝑥43 = 𝑐𝑐1
𝑥𝑥5𝑥𝑥13 + 𝑥𝑥6𝑥𝑥23 = 𝑐𝑐2

𝑥𝑥5𝑥𝑥1𝑥𝑥32 + 𝑥𝑥6𝑥𝑥2𝑥𝑥42 = 𝑐𝑐3
𝑥𝑥5𝑥𝑥3𝑥𝑥12 + 𝑥𝑥6𝑥𝑥4𝑥𝑥22 = 𝑐𝑐4⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

where the constants 𝑐𝑐𝑖𝑖 can be arbitrarily cho-
sen. We consider all 𝑐𝑐𝑖𝑖 = 0. 

Systems arising form process engineering 
models 

1) Combustion Application [16] – The following 
system arises from the combustion of propane 
in air. The stoichiometric equation is:  

𝐶𝐶3𝐶𝐶8 +
𝑅𝑅
2

(𝑂𝑂2 + 4𝑁𝑁2) → 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑢𝑢𝑐𝑐𝑡𝑡𝑠𝑠 

where R is the relative amounts of air to fuel. 
Combustion Application – The following system 
arises from the combustion of propane in air. 
The variables 𝑥𝑥𝑖𝑖  for 𝑙𝑙 = 1 to 10 are the number 
of moles of product 𝑙𝑙 formed per every mole of 
propane combusted. 

𝑭𝑭𝑪𝑪𝑰𝑰(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1 + 𝑥𝑥4 = 3
2𝑥𝑥2 + 2𝑥𝑥5𝑥𝑥6𝑥𝑥7 = 8

2𝑥𝑥3 + 𝑥𝑥9 = 40
2𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥4 + 𝑥𝑥7 + 𝑥𝑥8 + 𝑥𝑥9 + 2𝑥𝑥10 = 10

𝑥𝑥1𝑥𝑥5 = 𝐾𝐾5𝑥𝑥2𝑥𝑥4
√40𝑥𝑥6𝑥𝑥10.5 = 𝐾𝐾6�𝑥𝑥2𝑥𝑥4𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇
√40𝑥𝑥7𝑥𝑥40.5 = 𝐾𝐾7�𝑥𝑥1𝑥𝑥2𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇

40𝑥𝑥8𝑥𝑥4 = 𝐾𝐾8𝑥𝑥1𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇
√40𝑥𝑥9𝑥𝑥4 = 𝐾𝐾9𝑥𝑥1�𝑥𝑥3𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇

40𝑙𝑙10𝑙𝑙42 = 𝐾𝐾10𝑙𝑙12𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

       where, 

 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑥𝑥𝑖𝑖

10

𝑖𝑖=1

 

The first for equations in the system arise form 
the mole balances while the rest arise from the 
equilibrium relations. 𝐾𝐾i for i = 5 to 10 are the 
equilibrium constants. 
 

2) Chemical Equilibrium [17] – The mathematical 
structure of the combustion application system 
is analysed and reformulated by using the no-
tion of ‘element variables’ (surrogates for atomic 
combinations). The first four equations arise 
from the reformulation of the mole balances in 
the combustion application system whereas the 
equilibrium relations reduce to a single equation 
because of the element variable substitutions 

which leads to the following system: 

𝑭𝑭𝑪𝑪𝑪𝑪𝑪𝑪(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1 − 3𝑥𝑥5 = 0
2𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1 + 𝑥𝑥2𝑥𝑥32 + 𝑅𝑅8𝑥𝑥2 − 𝑅𝑅𝑥𝑥5
+2𝑅𝑅10𝑥𝑥22 + 𝑅𝑅7𝑥𝑥2𝑥𝑥3 + 𝑅𝑅9𝑥𝑥2𝑥𝑥4 = 0

2𝑥𝑥2𝑥𝑥32 + 2𝑅𝑅5𝑥𝑥32 − 8𝑥𝑥5
+𝑅𝑅6𝑥𝑥3𝑥𝑥4 + 𝑅𝑅7𝑥𝑥2𝑥𝑥3 = 0

2𝑥𝑥42 − 4𝑅𝑅𝑥𝑥5 + 𝑅𝑅9𝑥𝑥2𝑥𝑥4 = 0
𝑥𝑥1(𝑥𝑥2 + 1) + 𝑅𝑅10𝑥𝑥22 + 𝑥𝑥2𝑥𝑥32 + 𝑅𝑅8𝑥𝑥2
+𝑅𝑅5𝑥𝑥32 + 𝑥𝑥42 − 1 + 𝑅𝑅6𝑥𝑥3 + 𝑅𝑅7𝑥𝑥2𝑥𝑥3

+𝑅𝑅9𝑥𝑥2𝑥𝑥4 = 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Note that the variables 𝑥𝑥𝑖𝑖  for 𝑙𝑙 = 1 to 5 have 
been redefined along with the constant 𝑅𝑅 for 𝑙𝑙 =
5 to 10 to account for the element variable sub-
stitutions.  

 
3) Recycle and Purge in the Synthesis of Ammonia 

–The ammonia synthesis process involving a re-
cycle and a purge stream in considered. Given 
the feed stream specifications and the reactor 
conversion, it is desired to calculate the overall 
conversion of nitrogen and the ratio of moles of 
gas purged to the moles of gas leaving the con-
denser. 

 
Figure 4: Flowsheet for the ammonia synthesis process. 

The following system of equations arises from 
the overall mole balances, stoichiometric rela-
tions, and material balances at the mixing and 
split points. 
 

𝑭𝑭𝑰𝑰𝑯𝑯(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 − 0.125𝑙𝑙6 = 0
148.5 − 3𝑙𝑙5 − 1.75𝑙𝑙6 + 2𝑙𝑙6𝑥𝑥 = 0

49.5 − 2𝑙𝑙6𝑥𝑥 − 𝑙𝑙5 = 0
𝑙𝑙6 − 0.75𝑙𝑙1 = 0
0.5𝑙𝑙1 − 𝑙𝑙5 = 0

𝑙𝑙6 − 𝑥𝑥𝑙𝑙7 − 𝑙𝑙4𝑥𝑥 = 0
74.25 + 0.875𝑙𝑙7 − 𝑥𝑥𝑙𝑙7 − 𝑙𝑙2 = 0

1 + 0.125𝑙𝑙7 − 𝑙𝑙3 = 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The domain ranges considered for each of these 
problems are shown in Table 5. 

Table 5: Domain bounds for the test problems 

Problem Instance Domain Ranges 
D-hyperspheres 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑙𝑙 = 1, … 10 
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D-hyperspheres 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑙𝑙 = 1, … 50 
D-hyperspheres 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑙𝑙 = 1, … 100 
Interval Arithmetic 𝑥𝑥𝑖𝑖 ∈ [−4,4] ∀ 𝑙𝑙 = 1, … .10 
Neurophysiology Application 𝑥𝑥1 ∈ [−10,5] 

𝑥𝑥2 ∈ [−10,6] 
𝑥𝑥3 ∈ [−10,7] 
𝑥𝑥4 ∈ [−10,8] 
𝑥𝑥5 ∈ [−10,9] 
𝑥𝑥6 ∈ [−10,9]  

Combustion Application 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑙𝑙 = 1, … 10 
Chemical Equilibrium 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑙𝑙 = 1, … 5 
Ammonia Synthesis 𝑙𝑙𝑖𝑖 ∈ [0,500] ∀ 𝑙𝑙 = 1, … .7 

𝑥𝑥 ∈ [0,1] 

COMPUTATIONAL EXPERIMENTS AND 
RESULTS 

All runs were performed on an Intel Xeon Gold 
6248R 3GHz processor running on Linux (CentOS 7). The 
algorithm was developed in Python v3.6.8 and used 
CPLEXv20.1.0.1 in GAMSv35.1 to solve the LP model CH 
for the system of surrogates. 

Table 6: Fitness of solution obtained, number of nodes 
explored and number of function evaluations for the test 
problems. 

Instance Fitness of 
Solution 

Nodes  
Explored 

Function 
Evaluations 

-D  
hyperspheres 

e-   

-D  
hyperspheres 

e-   

-D  
hyperspheres 

e-   

Interval  
Arithmetic 

e-   

Neurophysiol-
ogy 
Application 

e-   

Combustion 
Application 

e-   

Chemical  
Equilibrium 

e-   

Ammonia  
Synthesis 

e-   

 
We have reported the solutions for each of the test 

problems using a sampled data set of 𝑁𝑁 + 1 vertices ex-
cept for the system of equations arising from the ammo-
nia synthesis model where we have used 2𝑁𝑁 vertices. The 
solution of the LP (to minimize the distance to the fur-
thest convex hull surrogate) highly depends on choice of 
the 𝑁𝑁 + 1 sampled vertices. In other words, the choice of 
the set of the sampled data affects the path of the branch 

and prune search. 

CONCLUSIONS 
In this work, we report a data-driven branch and 

prune approach that has the potential to unlock new av-
enues for finding solutions to systems of equations with-
out the requirement of an initial guess. Furthermore, the 
user can specify the domain bounds if solutions within a 
desired search space are required. Multiple potential 
sampling strategies need to be investigated which may 
aid in faster convergence. Further work is needed to re-
duce the number of required function evaluations. 
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ABSTRACT 
Alternative formulations for the optimization of chemical process flowsheets are presented that 
leverage surrogate models and implicit functions to replace and remove, respectively, the alge-
braic equations that describe a difficult-to-converge Gibbs reactor unit operation. Convergence 
reliability, solve time, and solution quality of an optimization problem are compared among full-
space, ALAMO surrogate, neural network surrogate, and implicit function formulations. Both sur-
rogate and implicit formulations lead to better convergence reliability, with low sensitivity to pro-
cess parameters. The surrogate formulations are faster at the cost of minor solution error, while 
the implicit formulation provides exact solutions with similar solve time. In a parameter sweep on 
the autothermal reformer flowsheet optimization problem, the full-space formulation solves 33 out 
of 64 instances, while the implicit function formulation solves 52 out of 64 instances, the ALAMO 
polynomial formulation solves 64 out of 64 instances, and the neural network formulation solves 
48 out of 64 instances. This work demonstrates the trade-off between accuracy and solve time 
that exists in current methods for improving convergence reliability of chemical process flowsheet 
optimization problems. 

Keywords: Surrogate modeling, Machine learning, Chemical process design, Chemical process optimization, 
Nonlinear optimization.  

INTRODUCTION 
The selection of optimal operating conditions is a 

fundamental task in chemical process design. This re-
quires the minimization or maximization of an objective 
function subject to nonlinear and nonconvex constraints. 
While local solvers such as CONOPT [1] and IPOPT [2] 
can handle these problems, their convergence can be 
very sensitive to model formulation, initial guess, and 
scaling factors. In addition, flowsheet design equations 
usually contain complex nonlinear expressions, including 
logarithms, high-degree polynomials and bilinear terms. 
At certain variable values, these equations can be unde-
fined, and their Jacobian can become singular, hindering 
convergence. 

 Some methods to improve convergence of a full 
space flowsheet optimization problem and address sen-
sitivity to initial parameters include using (1) sophisti-
cated initialization routines and (2) model reformulation 

strategies, such as surrogate models and implicit func-
tions. 

In the case of (1), it is well known that an effective 
initialization strategy determines how easily the optimi-
zation algorithm converges to a solution [3]. However, 
finding a good initialization is a cumbersome task be-
cause some unit operations do not easily converge for a 
set of specifications, and there is no systematic way to 
determine good initial values [4]. In addition, there is a 
significant computational cost associated with trying 
multiple initialization methods for each problem instance 
one attempts to solve. 

Regarding (2), surrogate models aim to be simple 
models that approximate the input and output behaviour 
of complex systems (in our case study, a Gibbs reactor) 
over a specific input domain. A surrogate model typically 
relaxes accuracy in exchange for lower dimensionality 
and more reliable convergence [5]. Even if the develop-
ment of these models requires computationally 
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expensive simulations over a range of input values, they 
are computationally cheaper to evaluate once they are 
embedded into a larger interconnected system of equa-
tions, such as a chemical process flowsheet. Two surro-
gates that have been recently used in chemical engineer-
ing are neural networks and ALAMO polynomials [6]. 
Neural networks have been widely used in process con-
trol, modeling, and optimization. For instance, Henao and 
Maravelias use neural networks to model the production 
of maleic anhydride in a superstructure optimization 
problem [7]. The ALAMO framework [8] is a recently de-
veloped tool used to build simple and accurate polyno-
mial surrogates from a minimal set of training data. It 
makes use of an integer programming technique to 
choose basis functions of the input variables and com-
pute the output variables as a linear combination thereof 
[6,9]. Surrogate optimization using the ALAMO frame-
work has been used in superstructure optimizations for 
carbon capture systems [10], in global optimization of 
poly-generation systems [11], and distillation sequences 
[9]. 

Reformulating a model with the implicit function the-
orem, as proposed by [12], aims to exploit the fact that 
the difficulty of converging a large-scale nonlinear pro-
gram (NLP) may be due to the effort required to converge 
the system of nonlinear equality constraints correspond-
ing to specific unit operations in the flowsheet. Solving 
these units separately from the original formulation can 
significantly improve convergence reliability. In this work, 
we take advantage of non-singularity of the Gibbs reac-
tor equations. Given that the Jacobian of these equations 
with respect to the Gibbs reactor's output variables is 
non-singular, solving the Gibbs reactor equations yields 
a unique solution for these output variables. This implies 
that there exists a function mapping state and input var-
iables to the outputs of the Gibbs reactor. The utility of 
this property is that complicated algebraic equations 
from a unit operation can be removed from the NLP using 
implicit functions. This leaves a smaller set of equations 
to be seen by the solver and fewer variables to initialize 
and scale [12]. 

The surrogate and implicit reformulation strategies 
are similar in that they both remove complicating equa-
tions that describe a difficult-to-converge unit model. In 
this work, we design an autothermal reformer flowsheet 
(ATR) in the IDAES process modeling framework [13] and 
we formulate a full space optimization problem, as shown 
in Section 3. We then compare convergence reliability, 
solution quality, and solve time among full-space, implicit 
function, and surrogate formulations of this problem, and 
study the trade-offs among these formulations. 

BACKGROUND 

Full Space Formulation 

Vector x is a vector of state variables corresponding 
to each unit model in the flowsheet, while u is a vector of 
manipulated inputs. Function G describes operational 
constraints, function H describes the equality constraints 
corresponding to each unit model in the flowsheet not in-
cluding the unit model we intend to replace, and function 
R describes the equality constraints only for this unit 
model. Vector y is a vector containing the outlet variables 
corresponding to this unit and any additional intermedi-
ate variables used only by this unit. Eq. (1d) will be re-
placed by either a surrogate model or an implicit function. 

max    f(x, u)     (1a) 

  s. t.  G(x, u)  ≤  0    (1b) 

         H(x, y, u)  =  0    (1c) 

         R(x, y, u)  =  0    (1d) 

Surrogate Formulation 
This formulation is identical to the one shown in Eq. 

(1) except for Eq. (2d), which instead of representing 
first-principles design equations for the unit model of in-
terest, contains a surrogate model R�(x, y, u) that approxi-
mates this unit’s behavior. While this surrogate can be 
obtained using a variety of methods, as described in [6], 
in this paper we use neural network and polynomial sur-
rogates. 

max    f(x, u)     (2a) 

  s. t.  G(x, u)  ≤  0    (2b) 

         H(x, y, u)  =  0    (2c) 

         R�(x, y, u)  =  0    (2d) 

Implicit Formulation 
The implicit function theorem states that Eq. (1d) 

can be reformulated as 𝑦𝑦 = R𝑦𝑦(x, u) if ∇𝑦𝑦𝑅𝑅 is non-singular 
for all values of state and input variables. Under this con-
dition, Eq. (3) is an exact reformulation of Eq. (1). We 
solve for y externally as a square system of equations in 
a separate interface and the resulting values and deriva-
tives are communicated back to the optimization solver, 
specifically to Eq. (3c), which links the outlet variable y 
calculated by the implicit function to the inner optimiza-
tion problem. Since this formulation keeps Eq. (1d) feasi-
ble and the unit model equations are not seen by the NLP 
solver, we expect it to lead to better convergence relia-
bility. 

max    f(x, u)     (3a) 

  s. t.   G(x, u)  ≤  0    (3b) 

           H(x, R𝑦𝑦(x, u), u)  =  0   (3c) 

To solve this formulation with a second-order opti-
mization method (e.g., IPOPT), the routines implemented 
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in [12] are used to calculate the constraint Jacobian, ob-
jective gradient, and Hessian of the Lagrangian. As an ex-
ample, Eq. (4) shows the Jacobian of y as a function of x 
and u, which is used to calculate the former derivative 
matrices.  

∇𝑥𝑥,𝑢𝑢𝑦𝑦 =  −∇𝑦𝑦𝑅𝑅−1∇𝑥𝑥,𝑢𝑢𝑅𝑅    (4) 

PROBLEM STATEMENT 
An autothermal reforming flowsheet is used as an 

example in the Optimization & Machine Learning Toolkit 
(OMLT) [14]. The main objective of the autothermal re-
former (ATR) is to produce syngas, mainly composed of 
H2, CO, CH4 and CO2. The process is shown in Figure 1. 
First, a mixture of natural gas, steam, and air is fed into 
the ATR (modeled as a Gibbs reactor). The hot syngas is 
then circulated through a shell and tube heat exchanger, 
also called the reformer recuperator, to heat the natural 
gas feed. This natural gas feed is then expanded to gen-
erate electrical power and is finally fed into the reactor, 
closing the loop. 

 
Figure 1. Process Flow Diagram of the ATR process. 

In this study, the objective of all optimization prob-
lems is to maximize the hydrogen concentration in the 
syngas stream, as shown in Eq. (5), 

max    x𝐻𝐻2     (5) 

The operational constraints are specified in Eq. (6). 

T𝑅𝑅 ≤  1200 [𝐾𝐾]    (6a) 

T𝑝𝑝 ≤  650 [𝐾𝐾]    (6b) 

F𝑝𝑝 ≥  3500 [𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠

]    (6c) 

x𝑁𝑁2 ≤  0.3     (6d) 

1120 ≤ F𝐺𝐺 ≤  1250 [𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠

]   (6e) 

0 ≤  α ≤  1     (6f) 

200 ≤ F𝑠𝑠 ≤  350 [𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠

]    (6g) 

Where T𝑅𝑅 is the autothermal reformer outlet temper-
ature and T𝑝𝑝, F𝑝𝑝 and x𝑁𝑁2 correspond to product’s temper-
ature, molar flow rate and nitrogen concentration respec-
tively. The manipulated variables are F𝐺𝐺, F𝑠𝑠 and α, corre-
sponding to inlet molar flow rate of natural gas, inlet mo-
lar flow rate of steam, and bypass fraction respectively. 
The full space optimization problem is composed of 898 
variables and 895 equality constraints describing mate-
rial, energy, and momentum balances for each unit 
model, where 55 of these correspond to algebraic equa-
tions describing the Gibbs reactor, such as Gibbs energy 
minimization, and enthalpy, element, pressure, total flow, 
and component flow balances. As an example, the Gibbs 
minimization equation is shown in Eq. (7a). 

g𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚,𝑗𝑗 +  ∑ (𝐿𝐿𝑒𝑒 × 𝛽𝛽𝑗𝑗,𝑒𝑒)𝑒𝑒 =  0,   ∀ 𝑗𝑗 ∈  𝐽𝐽  (7a) 

J =  {H2, CO, H2O, CO2, CH4, C2H6, C3H8, C4H10, O2} (7b) 

J𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝𝑝𝑝  =  {N2, Ar}     (7c) 

Here, g𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚,𝑗𝑗 is the partial molar Gibbs energy of 
component j, 𝐿𝐿𝑒𝑒 is the Lagrange multiplier of element 𝑒𝑒 
and 𝛽𝛽𝑗𝑗,𝑒𝑒 is the number of moles of element e in one mole 
of component j [13].  

In this work, we implement full-space, surrogate, 
and implicit function formulations for solving this optimi-
zation problem. The Gibbs reactor, Eq. (1d), will be re-
placed by a surrogate and an implicit function. 

IMPLEMENTATION 
We used Pyomo 6.7.1 [15], an open-source optimi-

zation modeling language, and IDAES 2.4.0 [13], a pro-
cess modeling framework, to design the ATR flowsheets 
in Python 3.9.6. The optimization problems were solved 
with IPOPT 3.14.11 [2] using linear solver MA27, called via 
the CyIpopt interface. The surrogates were obtained us-
ing the ALAMO machine learning framework [8] and Ten-
sorFlow 2.15. The neural network was embedded into the 
optimization problem using OMLT 1.1 [14]. Derivative 
computations are performed via the AMPL solver library 
(ASL) [16] via the PyNumero interface [17]. Results were 
produced on a machine with an Apple M1 Max processor 
and 32 GB of RAM running macOS Ventura 13.6.6. 

Dataset Generation 
A dataset describing the Gibbs reactor was gener-

ated to train the ALAMO polynomials and the neural net-
work. This data was generated from 625 samples of the 
four-dimensional input space: five samples in each input 
arranged in a regular grid. The ranges of sampled inputs 
are shown in Table 1. The outputs (13 in total) correspond 
to reactor’s outlet temperature (Tout), outlet molar flow 
rate (Fout), and outlet compositions for the eleven 
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components. Time to acquire this data was 400 seconds. 

Table 1: Inputs and ranges of the ALAMO and neural net-
work surrogates. 

Input Variable Unit Range 
Steam molar flow rate (Fs) [mol/s]  –  
Natural gas temperature (Tref) [K]  –  
Natural gas flow rate (Fref) [mol/s]  –  
CH Conversion in ATR (X) [%]  –  

 
This data set was partitioned into 80% training and 

20% validation data to train the ALAMO and neural net-
work surrogates and then gauge their accuracy. We con-
sider that a surrogate is accurate if the coefficient of de-
termination (R2) is greater than 0.8 for each of the 13 par-
ity plots obtained from the validation dataset. 

ALAMO surrogate 
The Gibbs reactor was replaced by a surrogate 

block containing simple algebraic equations determined 
by the ALAMO machine learning framework. To balance 
the bias-variance trade-off and calculate a model with 
low nonlinear complexity, the four basis models we con-
sider are a quadratic, a cubic, a linear variable and a con-
stant. We have the option to include bilinear terms and 
higher degree polynomials to achieve a higher surrogate 
accuracy. However, for the purpose of this research, 
convergence could be hindered with the inclusion of 
those terms, particularly if we observe that a linear com-
bination of simple basis functions can effectively approx-
imate the reformer’s behavior. The surrogate model is 
composed of 13 equations and 3 variables, in contrast to 
the 55 equations and variables that model this first-prin-
ciples Gibbs reactor. A subset of these 13 equations is 
displayed in Eq. (8). Training time to acquire this surro-
gate model was 1.6 s. 

T𝑚𝑚𝑢𝑢𝑝𝑝 =  8.2 × 10−4 𝐹𝐹𝑠𝑠 + 0.41 𝐹𝐹𝑝𝑝𝑒𝑒𝑟𝑟3 + 897.4 𝑋𝑋   (8a) 

F𝑚𝑚𝑢𝑢𝑝𝑝 =  3.9 𝐹𝐹𝑝𝑝𝑒𝑒𝑟𝑟 + 1.1 𝐹𝐹𝑠𝑠 − 7.9 × 10−7 𝐹𝐹𝑝𝑝𝑒𝑒𝑟𝑟2 + 685.0 𝑋𝑋2  (8b) 

x𝐻𝐻2 =  5.3 × 10−4𝐹𝐹𝑝𝑝𝑒𝑒𝑟𝑟 − 1.5 × 10−10𝐹𝐹𝑝𝑝𝑒𝑒𝑟𝑟3 +  0.14 𝑋𝑋3 (8c) 

x𝐶𝐶𝐶𝐶 =  −6.2 × 10−10𝐹𝐹𝑠𝑠3 + 8.1 × 10−4𝐹𝐹𝑝𝑝𝑒𝑒𝑟𝑟 − 4.1 × 10−7𝐹𝐹𝑝𝑝𝑒𝑒𝑟𝑟2 +
0.2 𝑋𝑋 − 0.35      (8d) 

x𝐶𝐶𝐻𝐻4 =  1.5 × 10−5 𝐹𝐹𝑝𝑝𝑒𝑒𝑟𝑟 − 6.0 × 10−6 𝐹𝐹𝑠𝑠 − 0.33 𝑋𝑋2 + 0.16 𝑋𝑋3 +
0.16       (8e) 

Neural network surrogate 
The autothermal reformer was also replaced by a 

surrogate block containing a neural network. Hyperpa-
rameter tuning was performed to obtain the neural net-
work with the lowest validation loss, quantified with the 
mean squared error. Hyperparameter ranges are shown 
in Table 2. The sigmoid and tanh activations were chosen 
because they are smooth functions, matching our setting 

of nonlinear continuous optimization. The Adam opti-
mizer was used for training. 

Table 2: Hyperparameter ranges used to train the neural 
network. 

Hyperparameter Range/value 
Activation function Sigmoid & tanh 
Number of layers  –   
Number of neurons  –   
Epochs  

 
The training time to run every hyperparameter com-

bination in Table 2 was 550 s. Ultimately, the neural net-
work that best approximates the Gibbs reactor uses the 
tanh activation function and has 4 hidden layers with 32 
neurons each. The time to train this neural network in iso-
lation was 9.5 s. The optimization formulation uses the 
full space option provided by OMLT, as it was found to 
converge more reliably than the reduced space formula-
tion. In the full-space formulation, variables and con-
straints corresponding to interior nodes in the neural net-
work are explicitly included in the optimization problem. 
While only a single neural network surrogate is consid-
ered in this work, a comparison of optimization problems 
with many different architectures (and equation-based 
formulations) of embedded neural networks would be an 
interesting future study. 

Implicit function  
The theoretical formulation given in Eq. (3) can be 

implemented as shown in Eq. (9). 

max    f(x, u)     (9a) 

  s. t.   G(x, u)  ≤  0    (9b) 

           H𝑝𝑝𝑖𝑖𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑚𝑚(x, u)  =  0   (9c) 

           H𝑚𝑚𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝𝑖𝑖𝑙𝑙(x, y, u)  =  0   (9d) 

           𝑅𝑅(x, y, u)  =  0    (9e) 

Here, Eq. (9e) solves for y externally as an implicit 
function 𝑦𝑦 = R𝑦𝑦(x, u)  using the PyNumero interface and 
the resulting values are communicated back to Eq. (9d), 
which is exposed to the NLP solver. In this case, Eq. (9d) 
is referred to as a set of linking equality constraints that 
link the externally obtained outlet variables 𝑦𝑦 to the inlet 
variables of the reformer recuperator, which is down-
stream of the Gibbs reactor (See Figure 1). The dimension 
of 𝑦𝑦 equals the dimension of 𝑅𝑅 and ∇𝑦𝑦𝑅𝑅 is non-singular. 

The Gibbs reactor is replaced by an implicit function 
𝑦𝑦 = R𝑦𝑦(x, u) that solves the reactor equations as a pa-
rameterized system of equations. The PyNumero inter-
face solves this system at every iteration of the nonlinear 
optimization solver with a decomposition that partitions 
variables and equations into block-lower triangular form 
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before solving the resulting blocks independently. The 
block triangular partition is computed by the approach of 
Duff and Reid [18] using the Incidence Analysis Pyomo 
extension [19]. The PyNumero interface also computes 
the derivatives required by IPOPT. 

The system of equations for R𝑦𝑦(x, u) decomposes 
into 55 diagonal blocks, where 18 have dimension 1×1 
and one has dimension 37×37. The block triangular form 
of this system’s incidence matrix is shown in Figure 2.

Figure 2. Incidence matrix of the square system corre-
sponding to the Gibbs reactor. 

 
Each independent system of equations is solved 

with SciPy’s fsolve, a wrapper around MINPACK’s im-
plementation of Powell’s hybrid trust region method [20]. 

RESULTS 
To compare convergence reliability, solve time and 

solution quality between the full space, implicit function, 
and surrogate-based formulations, we perform a param-
eter sweep varying the inlet natural gas absolute pres-
sure and its conversion in the Gibbs reactor. We attempt 
to solve the optimization problem using IPOPT [2] for 
every combination of these two parameters for a total of 
64 problem instances. These have identical initialization 
methods and solver options, where the maximum number 
of iterations are 300 and each must converge to a toler-
ance of 10−7. The code used to implement these formu-
lations and reproduce the results can be found at 
https://github.com/Robbybp/surrogate-vs-implicit. 

The convergence status for each formulation is 
shown in Figure 3. An unsuccessful run is due to the op-
timization solver reaching the iteration limit, converging 
to an infeasible point, or a failure due to repeated func-
tion evaluation errors. Here, a function evaluation error 
may be an error in a scalar-valued function, such as at-
tempting to evaluate the logarithm of a negative number, 
or a more complicated error such as a failure to solve the 
square system that defines the implicit function R𝑦𝑦(x, u). 

A successful run indicates not only that the optimization 
problem converged, but also that the calculated input 
variables yield no constraint violations when used to sim-
ulate the full-space model. 

In this experiment, the full space formulation was 
able to successfully converge 33 out of 64 instances, the 
implicit function formulation solved 52, the surrogate-
based formulation using ALAMO converged 64 instances, 
and the surrogate-based formulation using a neural net-
work converged 48. Regarding the full space formulation, 
many of these failed instances are due to large residuals 
in calculating energy balances in the autothermal re-
former and the reformer recuperator. 

The implicit function formulation obtains the same 
objective and values for the manipulated inputs as the full 
space formulation but converged 58% more instances.  
The unsuccessful instances at higher conversion are due 
to function evaluation errors. 

In the failing instances, the implicit function formu-
lation experiences evaluation errors in the Gibbs minimi-
zation equations. Given the high conversion, the optimi-
zation algorithm calculates a value near zero for the out-
let molar composition of propane in the reactor, which is 
used to calculate the entropy of the ideal gas. Here, one 
of the terms attempts to calculate the natural logarithm 
of this composition, causing numerical stability issues, as 
shown in Eq. (10). In consequence, the Newton solver 
fails to calculate g𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚,𝐶𝐶3𝐻𝐻8, see Eq. (7), and the outer 
optimization does not converge. The entropy of the ideal 
gas is used to calculate the ideal partial Gibbs energy of 
propane, which is then corrected with a departure func-
tion. 

𝑠𝑠𝐶𝐶3𝐻𝐻8
0 = ∫ 𝐴𝐴+𝐵𝐵𝐵𝐵+𝐶𝐶𝐵𝐵2+𝐷𝐷𝐵𝐵3

𝐵𝐵
𝑑𝑑𝑑𝑑𝐵𝐵

298.15 + ∆𝑠𝑠𝑟𝑟𝑚𝑚𝑝𝑝𝑚𝑚298.15 − 𝑅𝑅 ln 𝑃𝑃
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

−

𝑅𝑅 ln 𝑥𝑥𝐶𝐶3𝐻𝐻8     (10) 

The ALAMO and neural network formulations intro-
duce only a minor increase in solution error. To evaluate 
solution quality, we solved a square system for the origi-
nal flowsheet, where the fixed inlet natural gas, steam 
molar flow rate, and bypass fraction correspond to the 
values calculated by the ALAMO and the neural network 
formulations, separately. Then, we compared the objec-
tive value given by these simulations with the objective 
value calculated by the full space optimization problem. 
This comparison was done for the 25 instances for which 
full space, ALAMO, neural network, and implicit formula-
tions all converged successfully. The average relative 
objective function difference for the ALAMO formulation 
was 1.9%, with a maximum difference of 2.1%. For the 
neural network formulation, the average relative objec-
tive function difference was 0.96%, with a maximum dif-
ference of 2.4%. 

It is important to note that even though the ALAMO 
models were trained in the range of conversion of 80 to 

https://github.com/Robbybp/surrogate-vs-implicit
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95%, they were able to find accurate solutions with con-
versions of up to at least 97%. We note that there is no 
increase in error when conversions above 95% are 
tested.  However, this situation may not be replicated 
when modeling another process. The neural network sur-
rogate formulation provides virtually the same solution 
quality as the embedded ALAMO polynomials. Nonethe-
less, in contrast to those surrogates, it fails to converge 
when the conversion is 96% or higher, that is, outside 
training bounds. One interpretation of these convergence 
failures is that the neural network surrogate has been 
over-trained to accurately represent the reactor model in 
the training region, while the comparatively simple and 
sparse surrogate generated by ALAMO has resisted this 
over-training. Additionally, hyperparameter tuning is re-
quired to obtain an accurate neural network, which is a 
computationally costly task. 

A breakdown of problem statistics is shown in Table 
3, where “N. Iterations” refers to the average number of 
iterations it takes for the optimization solver to converge 
and “Std. dev (s)” refers to the standard deviation of the 
average solve time from the successful instances. As be-
fore, these statistics were computed for the intersection 
of successful instances among the four formulations. 

Despite relatively expensive function evaluations 

that solve a square system at every iteration, the implicit 
function formulation converges slightly faster than the 
full-space formulation. This is because the implicit func-
tion formulation requires fewer IPOPT iterations to con-
verge the optimization problem. 

The standard deviation of solve time for the full 
space formulation shows that different flowsheet param-
eters have a significant impact on the optimization 
solver’s ability to converge. Conversely, the implicit and 
especially surrogate formulations exhibit more uniform 
solve times and converge for a higher percentage of in-
stances, supporting the idea that they are robust and less 
sensitive to process parameter values. 

Finally, a summary of qualitative results for the four 
formulations is shown in Table 4. Our qualitative assess-
ment of training time includes time required for data gen-
eration and hyperparameter tuning. We note that surro-
gate training time could be further reduced by using more 
efficient sampling techniques, such as Latin Hypercube 
Sampling [21], which would potentially generate a smaller 
and more representative dataset of the entire experi-
mental region, which might also lead to higher solution 
accuracies.  

CONCLUSIONS 

 
Figure 3: Convergence status for each formulation. “Untrained region” indicates conversions above 0.95, the upper 
bound used for surrogate training data. The results indicate that while all three alternative formulations are more 
reliable than the full-space formulation, the ALAMO surrogate is the most reliable. 

Table 3: Problem statistics for each formulation. 

Formulation N Iterations Avg solve time (s) Max solve time (s) Std dev (s) 
Full Space     
Implicit     
ALAMO     
Neural Network     

Table 4: Qualitative results for each formulation applied to the autothermal reformer optimization problem. 

Formulation Solution accuracy Solve time  Training time Reliability 
Full Space High Moderate N/A Low 
Implicit High Moderate N/A Moderate 
ALAMO Moderate Low Moderate High 
Neural Network Moderate Low High Moderate 
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We have presented four different formulations for 
optimization of a chemical process flowsheet using the 
IDAES modeling framework. The implicit function ap-
proach demonstrates an improved convergence reliabil-
ity in contrast to the full space approach. The ALAMO 
surrogate formulation is the fastest and most reliable op-
timization alternative in this study that results in low so-
lution errors for the objective value and the manipulated 
inputs. Nonetheless, the implicit function formulation may 
be preferred in cases where the design specifications of 
a process are not able to tolerate the introduction of er-
rors into the calculations, or where producing enough 
simulation data to train an accurate surrogate model is 
computationally prohibitive. For instance, large chemical 
process flowsheets involving wastewater treatment units 
or gas scrubber systems, where environmental regula-
tions specify a strict threshold for pollutant compositions 
in water or gas being released into the atmosphere, may 
not be appropriate for a surrogate formulation. 

In this case study, the ALAMO surrogates were able 
to effectively approximate the behavior of a Gibbs Reac-
tor. Nevertheless, more complex unit models with polar 
components, such as multi-component distillation col-
umns, or stripping and absorbing columns, might require 
neural networks to provide a good approximation of the 
associated differential-algebraic systems. Finally, the im-
plicit function and surrogate formulations presented in 
this paper constitute important approaches to optimize a 
chemical process flowsheet when the classical method 
fails, and their advantages would be more prominent in 
the design phase of complex, large scale chemical pro-
cesses where superstructure optimization (MINLP) might 
be involved. 
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ABSTRACT 
Phthalates are the most widely used plasticizers in the polymers industry; however, their toxicity 
and environmental impacts have led to their ban in various applications. This has driven the search 
for more sustainable alternatives, including biobased citrate esters, especially tributyl citrate 
(TBC) and its acetylated form. TBC is typically produced by refined citric acid (CA) esterification 
with 1-butanol (BuOH). However, the high energy and materials-intensive downstream purification 
of fermentation-derived CA involves high production costs, thus limiting the widespread adoption 
of TBC as a plasticizer. This work presents an innovative approach for TBC production using cal-
cium citrate as feedstock instead of pure CA. The process involves a simultaneous acidification-
esterification stage and further hydration of calcium sulfate, thus reducing costs by avoiding mul-
tiple CA refining steps. The approach proceeds via a solid-solid-liquid reaction of calcium citrate 
with sulfuric acid in butanol, releasing CA, which is simultaneously esterified to form TBC. The 
resultant calcium sulfate aids in water removal to enhance esterification conversion. Based upon 
experimentally validated models and rigorous simulations, the proposed approach was evaluated, 
and it exhibited significant reductions in processing times and operating costs, with savings of at 
least 46% in utilities compared to traditional TBC production. The novel approach was found suit-
able and promising for industrial deployment. 

Keywords: Process integration, Process Intensification, Modelling and Simulations, Calcium citrate, Tributyl 
Citrate   

INTRODUCTION 
Polymeric materials and plastic products have sig-

nificantly contributed to the advancement of modern so-
ciety. Because of their malleability and flexibility, these 
materials have been used in many applications. These 
characteristics are mainly possible by incorporating plas-
ticizers, which decrease molecular interactions among 
polymer chains, increase elasticity, and reduce the glass 
transition temperature (Tg)(1). Plasticizers can constitute 
a significant fraction of some polymers (up to 80% wt.), 
being the phthalates, the most widely used general-pur-
pose plasticizers. In particular, phthalates are mainly em-
ployed in polyvinyl chloride (PVC) products, including 
flexible films and sheets, hoses, pipes, windows, cable 
jacketing, flooring, rainwear, shoes, etc. Considering their 
significant use and that they are not chemical-bonded to 
the polymers, they can migrate from the material. This 

has increased concerns regarding environmental pollu-
tion and public health due to the potential toxicity of plas-
ticizers (2). In particular, the negative health impacts 
caused by phthalates has led to restrictions on their use 
in sensitive applications, prompting the search for alter-
native molecules that are non-toxic, renewable, and bio-
degradable. Among these, bio-based plasticizers like cit-
ric acid esters have gained attention. 

Citric acid esters, particularly tributyl citrate (TBC) 
and its acetylated form have performed similarly to 
phthalates in different applications (3). However, citrates 
have the advantage of being biocompatible, biodegrada-
ble, and renewable. TBC is produced via esterification of 
citric acid (CA) with a large excess of 1-butanol (BuOH) 
using acid catalysts [4,5]. The process involves long pro-
cessing times in a semi-batch operation and high-purity 
anhydrous CA (6). This last requirement is a major chal-
lenge because purification of fermentation-derived CA 
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requires highly materials- and energy-intensive pro-
cesses. As a result, the cost of TBC is highly dependent 
on that of CA, and it is usually higher than that of 
phthalates; this limits an extended industrial use of TBC.  

Production of bioderived anhydrous CA requires a 
complex train of physicochemical separation operations. 
The fermentation broth is filtered to remove biomass and 
then treated with lime to precipitate CA as a calcium salt. 
The salt is then separated by filtration, resuspended in 
water, and finally acidified with sulfuric acid. At this point 
gypsum is produced and precipitated, releasing CA in the 
aqueous solution. This aqueous solution is then taken to 
ion exchange to remove minerals, followed by concen-
tration via multistage evaporation, crystallization, filtra-
tion, and drying processes (7). This complex downstream 
separation train removes nearly 10 kg of water per kg of 
CA, thus being highly energy intensive. Finally, refined CA 
is subjected to esterification with BuOH. Anhydrous CA is 
required as raw material in the esterification process as it 
produces water, and the reaction conversion is limited by 
chemical equilibrium. The complete process is depicted 
in Figure 1.  

 
Figure 1: Conventional TBC production process 

As an alternative approach, this work proposed and as-
sessed an innovative scheme to overcome most of the 
steps required to purify CA to produce TBC, by using cal-
cium citrate as raw material. This process is similar to 
previous reports on the recovery of succinic acid (8) and 
involves a solid-solid-liquid reaction in which insoluble 
calcium citrate is suspended in an alcoholic medium (i.e., 
BuOH), where acidification with sulfuric acid is carried 
out. As a result, CA is released into the alcoholic medium, 
where it undergoes simultaneous esterification to TBC 
catalyzed by the remaining H2SO4. The proposed pro-
cess, described in Figure 2, denoted as simultaneous 
acidification–esterification (SAE), avoids the conven-
tional purification of CA. Additionally, a reduction in the 
dissolution times required in the traditional esterification 
reaction is expected. Furthermore, calcium sulfate is pro-
duced as a by-product in an alcoholic phase, reducing 
salts' solubility and helping to remove water by forming 
hydrated salts, thus facilitating the separation of esters. 
 

 
Figure 2: Proposed SAE TBC production process 

To assess the proposed SAE process against the 
conventional one using anhydrous CA, rigorous simula-
tion of both processes was carried out in Aspen Plus® 
using validated kinetic and thermodynamic models 
[5,10]. The operating conditions and the configuration of 
the conventional process were based on data from an ex-
isting industrial facility for TBC production. 

MODELING AND SIMULATION 

Reaction Kinetics: Conventional Process 
In the conventional industrial process (Figure 1), the 

multistep esterification reaction of CA with BuOH (Figure 
3b) is catalyzed using methanesulfonic acid (MSA). A val-
idated kinetic model for the multiple sets of parallel-se-
quential reactions was previously reported (4) and used 
for simulations here.  

 
Figure 3: Scheme of reactions during the proposed sim-
ultaneous acidification-esterification of calcium citrate in 
1-butanol using sulfuric acid. a) (top) acidification. b) 
(bottom) esterification.  

Reaction Kinetics: SAE Process 
As previously mentioned, the acidification occurs 

between solid calcium citrate and liquid H2SO4 in an alco-
holic media. Then, released CA undergoes esterification 
with BuOH (Figure 3). The remaining or excess sulfuric 

 

- - 
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acid acts as a catalyst in this reaction. As a result, a cer-
tain degree of conversion to intermediate citrates is 
achieved (i.e., monobutyl citrate - MBC and dibutyl cit-
rate - DBC). This would facilitate the recovery of CA and 
reduce the time required for complete esterification [4, 
10]. 

The corresponding kinetic model of the simultane-
ous acidification-esterification process was previously 
reported and was used to simulate the process (10). As 
the esterification to TBC is incomplete, this is finished in 
a subsequent reactor using MSA as catalyst (4). The ki-
netics of the acidification-esterification reaction and the 
corresponding kinetic parameters are presented in the 
supplementary material. 

TBC Production Conventional Process 
The simulation of the conventional process was car-

ried out considering the two main sections involved in the 
production of TBC. First, there is CA production from pre-
cipitated calcium citrate. This section relies upon highly 
energetic demanding separation stages (e.g., evapora-
tion, crystallization, and drying). Then, the esterification 
stage, where CA is transformed into the desired plasti-
cizer via a fed-batch operation. Here, reactants loading 
and operating temperature change follow a pre-pro-
grammed protocol as performed in the industry (11).  

Citric Acid Production 
The details of the CA process and the production 

capacity (30,000 tons/year) corresponded to those of an 
existing industrial plant (11). For simplicity, it is assumed 
that all the commercialized CA corresponds to the anhy-
drous form. Approximately 95% of produced CA is sold 
directly; the remaining fraction is used to produce citrate 
esters. This small portion corresponds to the remnant CA 
that doesn't meet specifications regarding particle size or 
that is recovered from equipment walls like hoppers, fil-
ters, centrifuges, or dryers. CA is produced from sub-
merged aerobic fermentation of sugarcane molasses us-
ing Aspergillus niger. The produced acid is released into 
the aqueous medium, so precipitation is carried out using 
CaOH2 to generate insoluble calcium citrate. This process 
separates the citric acid in salt form and allows its extrac-
tion from the culture medium via filtration. For compara-
tive purposes, both the modeling of the conventional pro-
cess and the proposed process considered the resulting 
stream of precipitated and filtered calcium citrate as the 
raw material in the TBC production process. As the pre-
cipitated calcium citrate corresponds to an intermediate 
stream in the CA process, its commercial price is un-
known. This price was estimated at $0.43/kg, based on 
the cost of the raw materials necessary to generate the 
calcium citrate. Although all high energy-intensive steps 
in the synthesis of CA were included in the model, polish-
ing the acid and TBC using activated carbon absorption 
to remove colors and other impurities is not considered. 

 Acidification reaction: The CA recovery from calcium 
citrate in an aqueous medium occurs by ion exchange 
with a stoichiometric amount of H2SO4. This solid-
liquid reaction is carried out in a stirred reactor at 30 
°C with a residence time of 3 hours. As a result, the 
stoichiometric amount of solid gypsum is produced, 
and the obtained liquid effluent corresponds to a 30% 
wt. CA aqueous solution.  

 Filtration: Conveyor belts or rotary filters are 
commonly employed to separate the solid gypsum 
(i.e., calcium sulfate) from the effluent CA solution 
generated in the acidification process. The filters are 
connected to vacuum pumps to facilitate filtration and 
enhance liquid phase recovery. In the simulation a 
separator filter module is used to describe CaSO4 
removal. 

 Evaporation: the aqueous solution is processed in an 
evaporation train to concentrate up to the 
crystallization point of the organic acid. Since the 
process is energetically demanding, multiple 
interconnected stages are typically employed (1 to 4 
steps, depending on the production capacity) to 
reduce steam consumption. Here, a triple-effect co-
current configuration is considered for a capacity of 
30,000 tons/year of CA (Figure 4). Multi-effect 
evaporators were simulated via Heater modules that 
serve as calandrias for the condensation of the steam, 
releasing latent heat. This heat is provided to flash 
vessel modules, where concentration of CA is 
performed. A vacuum profile in the effects is assumed 
(0.89, 0.67, and 0.40 bara). The final concentration of 
the solution depends on the desired hydrated form of 
CA in the crystallization stage.  

 
Figure 4: Triple-effect evaporation configuration 

 Crystallization: CA can precipitate as anhydrous or 
monohydrate depending on the concentration and 
temperature. An operating temperature of 45°C is set 
to obtain anhydrous CA crystals. In this case, a 
concentration of ≥70% wt. of CA is required to ensure 
the saturation of the mixture at the operating 
temperature. Aspen Plus®  Crystallizer model and CA 
solubility data in water (12) were used for the 
calculation of the saturation conditions in the 
crystallization modeling. 
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 Centrifugation: The use of two-stage centrifuges is 
common for the separation of crystallized solids. 
CFuge model that simulates centrifuge filters (rotating 
baskets), with no residual solids in the outlet filtrate, 
is used to separate crystallized CA from the liquor. A 
residual moisture of 10% by weight on a wet basis was 
assumed.  

 Drying: Continuous fluidized bed dryers enable a low 
moisture content in the final product (< 5% wt.). Steam 
was used as heating utility to provide the required 
heat duty for the drying air that is in direct contact 
with the fluidized crystals. A conveyor belt coupled to 
a vibratory system allows better air-solid contact and 
prevents agglomerated solids. In this case, a 
convective dryer type in the dryer module is used, 
with a crossflow (through-the-bed) air-solid 
arrangement. 

Vacuum was provided using a steam-jet ejector 
system. The steam required for the vacuum system 
can be calculated considering the air leakage in the 
vessels. This can be determined by knowing the 
operation pressure and the volume of the vessel (13).  

Citric Acid Dissolution-Esterification 
Once anhydrous CA is obtained, it is sieve-classi-

fied, and the fines fraction is rejected according to mar-
ket specifications. Additionally, it is common to find solid 
CA fines adhered to equipment or clumps in some units. 
First, this material is fed to a 23.7 m³ dissolution tank 
alongside with BuOH, to enhance a total homogeneous 
reaction mix. Afterwards, the mix, together with the cat-
alyst is fed to SS316 jacketed reactor with a capacity of 
26 m³ to perform the esterification reaction. During es-
terification, removal of produced water is desired to shift 
the chemical equilibrium. For this reason, the reactor is 
coupled to a distillation column that operates at the bub-
ble temperature of the BuOH-H2O mixture. As the reac-
tion proceeds, a vapor stream of BuOH-H2O is generated, 
and it is separated in the rectifying column up to the aze-
otropic condition. Since this azeotrope is heterogeneous, 
two immiscible phases are generated and separated in a 
decanter after condensing the column's top vapor. The 
BuOH-rich organic phase is returned to the column as re-
flux, whereas the aqueous phase is removed from the 
system to overcome chemical equilibrium limitations. The 
process of transforming CA into TBC can be divided into 
three stages: 

 Dissolution: Due to the low solubility of CA, 
dissolution must be carried out by dosing the fed 
solids under heating and constant agitation. In this 
case, an excess of BuOH and the catalyst (MSA) are 
added to promote the reaction and to facilitate the 
dissolution of CA in the alcohol. 

 Esterification: Once the necessary CA has been 
dissolved, the temperature of the reactive mixture is 
increased up to its bubble point to promote reaction. 
At this point, the vapor outlet line of the reactor is 
opened to connect with the distillation column, 
seeking to encourage water removal. The progress of 
the reaction is monitored through the measurement of 
the acid value of the mixture over time. 

 Purification: Once the desired acid value is reached, 
separating the excess BuOH in the final mixture is 
necessary. For this, the system's pressure is reduced 
in the same reactor, and evaporation of all the 
remaining alcohol and water is carried out. Finally, the 
catalyst is neutralized using a sodium hydroxide 
solution. 

 

 

Figure 5: Batch and BatchSep module for esterification 
and acidification-esterification stage modeling. 

Based on the above-described stages, the simula-
tion of the citric acid dissolution-esterification stage was 
performed using both RBatch and BatchSep modules 
(Figure 5), enabling the dissolution of CA in BuOH, cata-
lyst adding, temperature profile programming, and purifi-
cation stages as reported in a previous study (11). The CA 
production is estimated considering a maximum pro-
cessing capacity of 8t CA per batch. It is also assumed 
that 180 batches could be processed in a year. According 
to this, it is estimated that ~ 1440 t/yr of CA fines are 
generated in the production plant which are used for fur-
ther esterification.  

Proposed SAE Process 
Unlike the conventional process, the proposed pro-

cess involves directly using calcium citrate from the pre-
cipitation stage with CaOH2 and its subsequent acidifica-
tion in BuOH, as seen in Figure 2. A pre-treatment stage 
is considered in which the calcium citrate is washed to 
remove impurities and ions from the culture medium. 
Subsequently, it is filtered and dried to avoid the pres-
ence of water in the reactive medium. For these pre-
treatment stages, the acquisition of new equipment is not 
considered since these processes can be carried out 
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within existing equipment in the CA plant (stirred tank, 
filters, and fluidized bed dryers). 

 Washing: Contact with water (1 kg water / 1 kg 
calcium citrate) is done to remove impurities from the 
precipitated calcium citrate. A contact time of 1 hour 
is considered. The batch module is considered to 
perform the mixing. 

 Filtration: Conveyor belt filters separate calcium 
citrate from the washing water. 

 Drying: The remaining moisture from the calcium 
citrate is removed through the fluidized bed dryers. 
This ensures that no water enters the acidification-
esterification stage. 

 Similar to the filtration and drying steps in 
conventional CA production, solid separator and 
crossflow convective dryer modules are used to simulate 
these operations in calcium citrate pretreatment. When 
the clean calcium citrate is obtained, it is fed into the 
simultaneous acidification-esterification process. This 
process is assumed to be carried out in the same 
dissolution vessel and esterification reactor used in the 
conventional process. Considering that, as 
experimentally verified in the solid-liquid reactive 
system, the solubility of the evolved citric species in 

alcohol is rapid (10), the dissolution stage of CA in BuOH 
is not required. Therefore, the time of addition of the 
citric species will depend on the feeding capacity of the 
reactor. Then, a feeding rate of calcium citrate of 4126 
kg/h is considered. This feeding rate can be achieved 
through hoppers coupled to screw conveyors. The mass 
of calcium citrate fed to the reactor (9583.33 kg) is 
equivalent to the same citrate moles considered in the 
previous section. 

Once the calcium citrate is introduced into the 
BuOH, sulfuric acid is added to the reactor to promote the 
release of CA. A slight excess of H2SO4 ensures complete 
acidification and facilitates the esterification reaction. 
The process is halted when  
the amount of MBC (Monobutyl Citrate) produced is 
equal to that generated in the dissolution stage of the 
conventional process. Once this point is reached, a stoi-
chiometric amount of calcium citrate is added to neutral-
ize the slight excess of sulfuric acid. This addition en-
sures that no residual H2SO4 remains in the subsequent 
stages of the process. 

 
 Subsequently, the acidified and partially esterified 
mixture is filtrated to remove the calcium sulfate that is 
produced. It is assumed that the remaining solid fraction, 
discarded as waste, constitutes 4% by weight of the 

 

Figure 6: Mass fraction profiles a) conventional process, b) SAE process. (▬) BuOH, (▬)CA, (▬) MBC, (▬) DBC, 
(▬) TBC, (▬) H2O, (▬) H2SO4  

Table 1:  Utility costs per batch in the production of TBC for the conventional and novel processes 

Utility Conventional process  Novel Process 
 Citric Acid Production Dissolution - Esterifi-

cation 
 Acidification - Esterification 

Steam $266.58 $66.88  $106.914 
Electricity $107.09 $244.27  $209.41 

Process Water $43.04 $4.81  $18.46 
Cooling Water $2.28 $0  $6.15 

Solid Waste Disposal $310.53 $0  $270 
TOTAL $1045.514  $610.94 

 

Time (h)  
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reactive mixture. This assumption is made because sep-
aration in a filtration process is not 100% efficient. There-
fore, two additional batches must be processed to 
achieve the same amount of TBC production. After filter-
ing the reactive mixture, it is returned to the esterification 
reactor, and MSA is added. Once the esterification pro-
cess is completed, the pressure within the system is re-
duced to remove the remaining BuOH and water. Oper-
ating conditions are presented in the supplementary In-
formation. 

Similar to the simulation of the CA dissolution and 
esterification in the conventional process, the novel pro-
cess is performed using the RBatch and the BatchSep 
modules. These modules enabled the implementation of 
the simulation for the novel process and its specific op-
erating policies (e.g., single feeds or scheduled feed con-
figuration) using the same equipment. RBatch module en-
ables modeling mixed, batch, and fed-batch operation 
conditions employed in the industrial production of TBC. 
On the other hand, the BatchSep module allows the mod-
eling and scheduling of batch distillation columns when 
connected to the batch reactor. 

Continuous water removal is possible because the 
more volatile compounds (H2O-BuOH) are distilled off 
from the reactive media during the esterification when 
operating at the bubble point of the mixture. Neverthe-
less, BuOH removal is not desired since the reaction driv-
ing force would be diminished, striking esterification per-
formance. Thus, assessment of the impact of simultane-
ous reaction and water removal is paramount to identify-
ing the best operating policies to improve TBC yield. 

With all previous considerations, we present a TBC 
production cost analysis focused on the utility costs of 
the conventional process concerning those of the SAE 
process. Capital costs were not considered because it is 
assumed that the same equipment is used in both pro-
cesses and they are already available in the studied in-
dustrial facility. A composition profile of the two scenar-
ios was merged, allowing the comparison with previous 
reports on the behavior of the conventional process. 
Also, a novel fed-batch operating policy developed dur-
ing the experimental evaluation of simultaneous acidifi-
cation-esterification (10) was tested and analyzed for the 
SAE process. 

RESULTS 

TBC Production Conventional Process 
The mass concentration profiles over time during 

the production of TBC using the conventional industrial 
process are illustrated in Figure 6a. These profiles match 
those reported in a previous study (11) where a dilution 
stage (t < 18h) enabled MBC production as the main cit-
rate ester and accumulation of water is observed. Due to 
the low solubility of CA in the medium, alternating feeding 

is required to ensure all the acid dissolves. A high tem-
perature (~60°C) is also necessary to accelerate the dis-
solution process. 

Once the CA dissolution is completed, the tempera-
ture of the reactive medium is increased to the bubble 
point of the mixture (~130 °C). From this point, the pro-
duction of DBC and TBC is increased and a vapor stream 
is generated, allowing for the removal of water from the 
top of the distillation column. However, there are differ-
ences compared to the previous report (11), as a higher 
concentration of DBC was observed in the reactor. This 
difference is caused by the remaining water in the reac-
tive liquid, limiting the conversion towards TBC. There-
fore, the final product will have a higher acidity content 
than required (acidity > 0.5 %p). The results coincide with 
what is reported for the industrial process, as the reactor 
effluent usually requires a subsequent neutralization 
stage to remove the remaining citric acidity and the cat-
alyst. As observed, the process includes CA loading, dis-
solution, and esterification and the process lasts around 
45 hours. 

Regarding the costs derived from the utilities re-
quired in the production of TBC, it can be seen that the 
stage of obtaining anhydrous citric acid constitutes ~72% 
of the overall operating costs. This result was expected 
considering the significant dilution of CA in the fermenta-
tion broth and the large amount of water to be evapo-
rated from the CA crystals. Another substantial cost is 
the handling of solid waste generated in the acidification 
of the calcium citrate. Notably, a large amount of low-
added value gypsum is produced during acidification in 
the existing industrial process. Although the obtained 
gypsum could be a salable by-product, purification to 
meet commercial specifications involves significant 
costs. So, in this case, this stream was assumed to be a 
waste and the disposal costs were estimated and inter-
nalized. 

TBC Production Proposed Process 
As observed in Figure 6b, the direct feeding of cal-

cium citrate reduces dissolution times to carry out the es-
terification reaction. Additionally, the recovery of the cit-
ric species can occur at lower temperatures (e.g., 40 °C). 
Using an excess H2SO4 ensures that the esterification 
process concurs as CA is released. As a result, the pro-
cess with calcium citrate achieves a concentration of 18% 
wt. MBC in the liquid phase in 6 hours of reaction. In con-
trast, during the dissolution in the conventional process, 
15 hours are required to achieve the same MBC content.  

After the acidification-esterification stage, conven-
tional esterification is carried out with MSA as a catalyst, 
and vacuum purification enables excess BuOH and re-
maining water removal (Figure 6b). As in the conventional 
process, achieving the purity required to commercialize 
the TBC would be difficult, and a neutralizing stage is 
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needed to remove the remaining acidity. While the pro-
cess would be completed in 36 hours, the system seems 
to reach equilibrium in about 18 hours, considerably 
shorter than the 25 hours required for reaction in the con-
ventional process, counting for a reduction by about 25% 
in reaction time to reach equilibrium condition. 

Finally, as presented in Table 1, it is observed that 
the cost related to steam consumption for CA purification 
presented a higher difference. It can be seen that the 
steam-related costs are the lowest for the novel process 
compared to the conventional configuration related to 
the 68% reduction in steam usage per unit of citrate es-
terified in the SAE process. This is mainly attributed to 
the direct use of calcium citrate as the CA backbone car-
rier for TBC synthesis, avoiding all concentration stages 
commonly used in the purification of CA. The concentra-
tion stages in pure CA production (e.g., evaporation, 
crystallization, and drying) need a great amount of en-
ergy to evaporate close to 10 kg of water per kg of CA, to 
achieve the purity conditions necessary to perform es-
terification.  As seen in Table 1, the cost associated with 
pure citric acid production accounts for ~70% of the util-
ity costs in the conventional process.  The other utility 
costs in the conventional process summarized in Table 1 
do not show a massive reduction compared with the SAE 
process (mixing, vacuum, solid disposals, etc.)  since 
these operations remain almost unaltered.   

Despite both processes generating calcium sulfate, 
the one obtained from the novel process is in the form of 
a semi-hydrated form. This form may have potential as a 
valuable industrial by-product. Moreover, by crystallizing 
in an organic medium, the particle size distribution and 
the purity of the obtained crystal may generate commer-
cial interest (14). The cost associated with the utilities 
used in the SAE process reflects cost savings of 41% 
compared to those of the conventional process. Such re-
duction allowed a 1.8% decrease in the TBC operating 
costs.  

The SAE process could also be helpful in a possible 
continuous configuration for TBC production. As reported 
previously, continuous reactive distillation (RD) has 
arisen as a promising alternative for TBC produc-
tion(5)(10). Since RD allows for the simultaneous esterifi-
cation reaction and water removal, inherent equilibrium 
limitations are overcome. In these works, it has been 
identified that using a pre-reactor stage is beneficial to 
reduce RD column size or increase TBC production ca-
pacity (5). This pre-reaction stage could be performed 
via SAE processes. As described, this process has a fed-
batch configuration. Also, some stages like calcium cit-
rate feed and calcium sulfate removal would make it dif-
ficult to couple the SAE process with RD. Some strategies 
like equipment redundancy or using tanks for pre-re-
acted mixture storage, could help to overcome these is-
sues. This configuration will be evaluated in future work. 

CONCLUSIONS 
This work presented a comparative assessment of a con-
ventional and innovative process for the industrial pro-
duction of TBC. The novel SAE process employs calcium 
citrate as raw material instead of CA to produce citric 
acid esters. Based on experimentally established reac-
tion kinetics and validated thermodynamic models, it was 
possible to simulate the solid-solid-liquid reaction occur-
ring during the simultaneous esterification-acidification 
stage in the SAE process. Reduction in the utility costs 
and in the time to perform the esterification reaction 
could lead to a significant increase in TBC's production 
and capacity, alongside an increase in the economic via-
bility of TBC (1.8% cost decrease due to operating costs) 
using the existing industrial infrastructure. Moreover, alt-
hough not quantified in this work, the reduction in pro-
cess units also leads to potential capital cost reduction. 
As a follow-up to this work, an optimization-based cost 
analysis will be carried out to minimize the total (fixed and 
operational) process costs for a new industrial facility us-
ing the novel SAE process. This analysis can also be done 
to retrofit an existing TBC production plant using the con-
ventional process. 
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ABSTRACT 
Rapid and robust convergence of a process flowsheet is critical to enable large-scale simulations 
that address core scientific questions related to process design, optimization, and sustainability. 
However, due to the highly coupled and nonlinear nature of chemical processes, efficiently solving 
a flowsheet remains a challenge. In this work, we show that graph representations of the underly-
ing physical phenomena in unit operations may help identify potential avenues to systematically 
reformulate the network of equations and enable more robust topology-based convergence of 
flowsheets. To this end, we developed graph abstractions of the governing equations of vapor-
liquid and liquid-liquid equilibrium separation equipment. These graph abstractions consist of a 
mesh of interconnected variable nodes and equation nodes that are systematically generated 
through PhenomeNode, a new open-source library in Python developed in this study. We show 
that partitioning the graph into separate mass, energy, and equilibrium subgraphs can help decou-
ple nonlinearities and guide decomposition algorithms. By employing the graph abstraction on an 
industrial separation process for separating glacial acetic acid from water, we implemented a new 
block decomposition scheme in BioSTEAM and demonstrated that this can accelerate conver-
gence over a traditional sequential modular approach.  

Keywords: Process simulation, Graph-Theory, Flowsheet Convergence, Distillation, Liquid Extraction 

INTRODUCTION 
The evaluation of thousands of potential scenarios 

in a chemical process enables researchers to navigate 
uncertainties in market conditions and technological per-
formance to create optimized designs, form conclusions 
on sustainability, and chart development pathways for 
new processing technologies. Automating the evaluation 
of such a large number of simulations is limited by com-
putational challenges in rapid and robust flowsheet con-
vergence. While many algorithmic paradigms exist (e.g., 
classical sequential modular simulation [1], parallel mod-
ular simulation [2], equation-based simulation [3], dy-
namic numerical methods [4], and the design of surro-
gate models [5,6]) only a limited set of approaches exist 
that are able to leverage the mathematical topology of 
the underlying phenomenological equations across the 
flowsheet [7,8].  

In classical sequential-modular simulation, each unit 
operation is treated as a separate model with only 

material streams as inputs and outputs. All mass, energy, 
and thermodynamic equations are formulated and solved 
independently within each unit operation. While special-
ized convergence strategies are employed to converge 
individual units, the convergence of recycle systems can 
be challenging due to nonlinear coupling between unit 
operations. Equation-based modeling leverages the 
sparsity of the full set of equations and employs algebraic 
differentiation to guide convergence of the entire sys-
tem. Equation-based modeling may be faster than the 
sequential modular approach particularly when the initial 
guess is close to the steady state solution. However, 
highly coupled and complex networks of equations intro-
duce instabilities and can lead to convergence failure [3]. 

If a process flowsheet could become aware of the 
connectivity of the governing phenomenological equa-
tions, robust solution strategies could be formulated that 
aggregate linear relationships and decouple nonlineari-
ties. With the wealth of decomposition algorithms and 
computing architectures that enable the solution of 

https://doi.org/10.69997/sct.184650
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complex and large-scale problems, it may be feasible to 
screen for alternative problem formulations of a produc-
tion process that result in more rapid and robust conver-
gence. The problem formulation and the selection of a 
suitable solution method, however, is not a simple task. 
To address this challenge, we propose the use of graph-
theoretic representations of the process equations and 
variables to better understand the topology of a chemical 
process at the phenomenological level. Leveraging graph 
abstractions in this manner can provide an avenue to sys-
tematically reformulate the equations and enable ad-
vanced, topology-aware decomposition schemes of 
flowsheets.  
 In classical representations of a chemical process, 
units are represented as nodes and streams as edges. 
Fundamentally, each unit encapsulates a set of equations 
with internal variables and each stream carries a set of 
variables with a unique connection. At the phenomeno-
logical level, however, each variable may describe multi-
ple equations and may not have a unique connection. For 
example, temperature may play multiple roles in thermo-
dynamic phase equilibrium, energy balances, and reac-
tion rates. Graph abstractions of process phenomena 
may unfold the sets of equations and variables present in 
unit operations to capture how mass, energy, equilibrium, 
reaction, and transport equations are related through 
common variables.  
 A potential use of graph abstractions is the identifi-
cation and development of robust decomposition algo-
rithms whereby a subset of variables is decoupled to 
solve for sets of equations iteratively. Distillation column 
models are a classical chemical engineering example 
where decomposition algorithms are commonly em-
ployed. For example, the Wang-Henke bubble point 
method converges all stages by iteratively solving mass, 
equilibrium, summation and enthalpy (MESH) equations 
[9]. In fact, MESH partitioning within an equation-ori-
ented approach has already been integrated to solve dis-
tillation trains within an equation-oriented approach [7]. 
At the flowsheet level, however, no unified approach for 
decomposition exists yet.  
 In this study, we developed a graph abstraction 
framework for process phenomena that can be used to 
systematically represent, analyze, and visualize the 
structure of a chemical process. To automate the gener-
ation of phenomenological graphs of complex chemical 
processes, we developed PhenomeNode, an open-
source library in Python. We leverage PhenomeNode to 
form graph representations of an industrial separation 
process for separating glacial acetic acid from water and 
develop a preliminary convergence algorithm that lever-
ages the mathematical topology. We benchmark this new 
algorithm against classical sequential modular simulation 
to understand its benefits and limitations. 

 

MATERIALS & METHODS 

Benchmark Acetic Acid Purification Process 

       
Figure 1. Process flowsheet for the industrial separation 
of acetic acid from water. 

The industrial separation of acetic acid from water 
(Figure 1A) was chosen as a representative case to  
benchmark the new convergence algorithm against se-
quential modular simulation. The system includes highly 
coupled vapor-liquid equilibrium (VLE) and liquid-liquid 
equilibrium (LLE) stages and recycle loops that connect 
the end of the process with the start. In this process, 
ethyl acetate (EtOH) is used to extract acetic acid from a 
dilute aqueous mixture [10]. The extract is distilled to re-
cycle the solvent and recover glacial acetic acid. The raf-
finate is also distilled to recover EtOH from the 
wastewater. Both distillates are sent to a decanter to 
separate the aqueous phase that forms after condensa-
tion. Additionally, a smaller system composed of a liquid 
extraction column and a distillation column for solvent re-
covery (Figure 1B) is used as a benchmark for small, 
highly coupled systems. 

The phenomena graph includes only the equations 
pertinent to flowsheet convergence, including duties and 
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material flows across unit operations and stages. Equa-
tions for sizing and costing of unit operations are not in-
cluded as they can be directly calculated based on the 
steady state results. Process simulations were performed 
10 times for each configuration to accurately measure 
convergence errors and material and energy balance er-
rors as a function of computation time. The convergence 
error for a given variable at iteration k is defined as the 
absolute difference between the current value and the 
last value (i.e., Xerror = |Xk − X𝑘𝑘−1|). The material balance 
error is defined as the difference between outlet flow 
rates and inlet flow rates (i.e., Ferror = ∑ �∑ Fc,oo − ∑ F𝑐𝑐,𝑖𝑖i �c ). 
The energy balance error is defined as the difference be-
tween outlet enthalpy and inlet enthalpy divided by the 
outlet heat capacity flow (i.e., Terror = |∑ Hoo − ∑ H𝑖𝑖i | ∙
(∑ 𝐶𝐶𝑜𝑜o )−1). 

Phenomenological Graph Architecture 
 The graph abstractions in this study represent both 
variables and equations as nodes. Edges between varia-
bles and equations provide information on the variables 
present in each equation. Variables in the nodes are la-
beled by a shorthand name and their context. The con-
text differentiates variables by information such as the 
phase and the parent unit operation. For example, the va-
por mol fraction within a vapor-liquid equilibrium (VLE) 
stage may be labeled as zgas, s=0, where “z” denotes the 
mol fraction, “gas” denotes the phase, and “s” denotes 
the stage number.  Table 1 lists the subscript contexts 
and Table 2 lists the variable definitions used in this 
study. The “inlet source” refers to a neighboring stage 
that feeds the reference stage. Similarly, the “outlet sink” 
refers to a neighboring stage that is fed by the reference 
stage.It is possible to obtain different graph representa-
tions by reformulating the equations. For example, varia-
ble nodes can be eliminated via substitution of equations 
and new edges may be formed to reflect these changes. 
Aggregating equations in this manner may be helpful to 
represent a particular convergence algorithm. The graph 
representations in this study employ as many variables 
as possible to provide a starting point for future studies 
to strategically collapse nodes and/or partition the graph. 

Table 1. Contexts of variable subscripts. 

Subscript Context Subscript Context 
c Chemical gas Gas 
p Phase liq Liquid 
i Inlet source ext Extract 
o Outlet sink raf Raffinate  

 
 Drawing, positioning, and labeling nodes for a large 
network of unit operations is a time-consuming task. To 
automate the systematic generation of graphical ab-
stractions for complex chemical processes, we devel-
oped a new open-source Python library called 

PhenomeNode [11] that leverages the Graphviz software 
[12] to generate graphical abstractions from the phenom-
enological equations within unit operations. In the spirit 
of expanding the use of graph representations at the 
phenomena level —not just at level of unit operations or 
superstructures of units— the PhenomeNode software 
developed in this study is made open-source and readily 
available for others to leverage. The roadmap for Phe-
nomeNode includes expanding the built-in equation li-
brary, refining core features for aggregation and decou-
pling of equations, and creating educational tools for stu-
dent learning of the underlying phenomena behind pro-
duction processes. 

Table 2. Variable definitions. 

Variable Definition 
F Molar flow rate 
H Enthalpy flow rate 
Q Duty 
V Molar fraction of vapor phase 
Φ Ratio of top and bottom phase flow rates 
L Molar fraction of extract or liquid phase 
T Temperature 
P Pressure 
Z Molar composition 
K Partition coefficient 
C Heat capacity rate 
t Top phase split fraction 
b Bottom phase split fraction 
h Specific molar enthalpy 
f Fugacity 

Mathematical Relationships within Graphs 
 The equations describing the physical phenomena 
within the graph abstractions are agnostic to the thermo-
dynamic property package. Equations for pure compo-
nent and mixture properties are abstracted by black-box 
function calls. For example, the VLE criteria is repre-
sented by equation 1, where 𝑓𝑓𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑓𝑓𝑐𝑐,𝑙𝑙𝑖𝑖𝑙𝑙 are function 
calls to calculate the gas and liquid fugacities, respec-
tively, for an arbitrary chemical. Other key equations in-
clude the Rachford-Rice, material balance, energy bal-
ance, and pressure drop (eqs 2–5, respectively). 

𝑓𝑓𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔�𝑧𝑧𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑇𝑇,𝑃𝑃� = 𝑓𝑓𝑐𝑐,𝑙𝑙𝑖𝑖𝑙𝑙�𝑧𝑧𝑐𝑐,𝑙𝑙𝑖𝑖𝑙𝑙 ,𝑇𝑇,𝑃𝑃�  (1) 

∑ 𝑧𝑧𝑐𝑐(𝐾𝐾𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔−1)
1 + 𝑉𝑉 ∗ �𝐾𝐾𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑉𝑉 − 1�𝑐𝑐 = 0   (2) 

𝐹𝐹 𝑐𝑐,𝑙𝑙𝑖𝑖𝑙𝑙 �1 +  𝑉𝑉
1−𝑉𝑉

𝐾𝐾𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔� − 𝐹𝐹 𝑐𝑐 = 0   (3) 

𝐹𝐹𝑙𝑙𝑖𝑖𝑙𝑙 �
𝑉𝑉

1−𝑉𝑉
ℎ𝑔𝑔𝑔𝑔𝑔𝑔 + ℎ𝑙𝑙𝑖𝑖𝑙𝑙�  −  𝐻𝐻 =  0   (4) 

𝑃𝑃𝑜𝑜=0 = 𝑃𝑃𝑜𝑜=1 − Δ𝑃𝑃    (5) 

A liquid-liquid equilibrium (LLE) stage has two liquid 
phases, “𝑒𝑒𝑒𝑒𝑒𝑒” and “𝑟𝑟𝑟𝑟𝑓𝑓”, which correspond to the extract 
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and the raffinate phases, respectively. The material and 
energy balance equations for an LLE stage are analogous 
to a VLE stage. The pressure drop across LLE stages is 
neglected assuming that liquid fugacities are a weak 
function of pressure. LLE criteria (eq 6) requires that the 
total Gibb’s free energy of all phases is minimized.  

min
zc,raf

𝐺𝐺 �𝐹𝐹𝑐𝑐 , zc,raf, , zc,ext,𝑇𝑇,𝑃𝑃� = zc,raf  (6) 

These are the fundamental equations for distillation and 
liquid-liquid extraction algorithms. However, they can be 
reformulated to fit a specific solution scheme. For exam-
ple, in the case of LLE, the enthalpy is a stronger function 
of temperature than the phase fraction and the energy 
balance is formulated in terms of temperature (assuming 
an average heat capacity flow for each phase and a ref-
erence temperature and enthalpy):  

�𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒
𝑟𝑟𝑒𝑒𝑟𝑟 + 𝐻𝐻𝑟𝑟𝑔𝑔𝑟𝑟

𝑟𝑟𝑒𝑒𝑟𝑟� + �T − Tref���̅�𝐶𝑒𝑒𝑒𝑒𝑒𝑒 + �̅�𝐶𝑟𝑟𝑔𝑔𝑟𝑟�  −  𝐻𝐻 = 0 (7) 

Phenomena-Oriented Simulation Algorithm 
 We developed a new flowsheet convergence algo-
rithm that expands and integrates MESH-based multi-
stage equilibrium algorithms together with the sequential 
modular approach. Additional details on the algorithm ar-
chitecture and performance are discussed in the RE-
SULTS & DISCUSSION section. The material and energy 
balance equations are used to tie in all the phenomeno-
logical equations together. A stage includes all mixing 
and splitting of inlet and outlet streams, respectively, 
without limitation on the number of connected stages. 
For a given stage, Fc for all streams can be computed 
through the material balance equations (8–11): 

𝛴𝛴𝑜𝑜𝐹𝐹 𝑐𝑐,𝑜𝑜 − 𝛴𝛴𝑖𝑖𝐹𝐹𝑐𝑐,𝑖𝑖 = 0   (8) 

Φ𝐾𝐾𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝛴𝛴𝑜𝑜𝐹𝐹 𝑐𝑐,𝑙𝑙𝑖𝑖𝑙𝑙,𝑜𝑜 − 𝛴𝛴𝑜𝑜𝐹𝐹𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔,𝑜𝑜 = 0 (9) 

𝐹𝐹 𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔,𝑜𝑜 − 𝑒𝑒𝑜𝑜𝛴𝛴𝑜𝑜𝐹𝐹 𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔,𝑜𝑜 = 0  (10) 

𝐹𝐹 𝑐𝑐,𝑙𝑙𝑖𝑖𝑙𝑙,𝑜𝑜 − 𝑏𝑏𝑜𝑜𝛴𝛴𝑜𝑜𝐹𝐹 𝑐𝑐,𝑙𝑙𝑖𝑖𝑙𝑙,𝑜𝑜 = 0  (11) 

The mass balance equations apply to both LLE and VLE 
stages, with either extract and raffinate or gas and liquid 
phases. Note that subscripts 𝑖𝑖 and 𝑜𝑜 refer to upstream 
and downstream stages, respectively, which are directly 
connected to the reference stage. For computational ef-
ficiency, the energy balance equation solves for the 
change in linearized variables (i.e., T for a LLE stage and 
Φ for a VLE stage) in each iteration (e.g., we solve for ∆T 
where Ti+1 = Ti + ∆T). Combining equations 4 and 7 (and 
taking ∆T and ∆Φ as the linearized variables) the energy 
balance for an adiabatic VLE stage becomes: 

ΔΦℎ𝑔𝑔𝑔𝑔𝑔𝑔𝛴𝛴𝑜𝑜𝐹𝐹𝑙𝑙𝑖𝑖𝑙𝑙,𝑜𝑜 − 𝛴𝛴𝑖𝑖𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙,𝑖𝑖ΔTi  − 𝛴𝛴𝑖𝑖ΔΦiℎ𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖𝐹𝐹𝑙𝑙𝑖𝑖𝑙𝑙,𝑖𝑖 = 𝛴𝛴𝑜𝑜Ho − 𝛴𝛴𝑖𝑖Hi (12) 

Similarly, the energy balance for an adiabatic LLE stage 
becomes: 

ΔT𝛴𝛴𝑜𝑜𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙,𝑜𝑜 − 𝛴𝛴𝑖𝑖𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙,𝑖𝑖ΔTi  − 𝛴𝛴𝑖𝑖ΔΦiℎ𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖𝐹𝐹𝑙𝑙𝑖𝑖𝑙𝑙,𝑖𝑖 = 𝛴𝛴𝑜𝑜Ho − 𝛴𝛴𝑖𝑖Hi (13) 

Given the coupling between the material and energy bal-
ances through Fc and Φ, solving for T at each stage may 
help close the energy balance for large systems with 
strong compositional dependencies on specific en-
thalpies: 

ΔT𝛴𝛴𝑜𝑜𝐶𝐶𝑜𝑜 − 𝛴𝛴𝑖𝑖𝐶𝐶𝑖𝑖ΔTi  = 𝛴𝛴𝑜𝑜Ho − 𝛴𝛴𝑖𝑖Hi   (14) 

 The VLE criteria (equation 1) is used to solve for K 
and T. The equilibrium temperature of an LLE stage, how-
ever, is not unique for a bulk composition. Instead, the 
LLE criteria (equation 6) is used to solve for K and Φ. In 
the special case of multistage LLE, where equilibrium is 
highly sensitive to bulk compositions, the pseudo-equi-
librium concept is employed for more rapid and robust 
convergence of the equilibrium criteria across all stages 
[13]. Given the equilibrium criteria variables and initial 
guesses for Φ and T, component flow rates across all 
stages can be linearly solved by the material balance 
equations (8–11), and Φ of VLE stages and T of LLE stages 
can be linearly solved by the energy balance equations 
(12–13). However, an algorithm employing solely equilib-
rium, material, and energy equations may fail due to poor 
conditioning of the initial guess. For this reason, we inte-
grate sequential modular simulation —a robust approach 
used by leading process simulators— within the simula-
tion algorithm for more robust convergence. All together, 
we propose the following algorithm as a preliminary ar-
chitecture: 
 
Phenomena-oriented simulation algorithm 

1. In the absence of an initial guess for Fc, K, T, and 
Φ for each stage, run each unit operation se-
quentially to find initial guesses. 

2. For each unit operation: 
2.1 Solve the unit operation and update varia-

bles K, T, and Φ. 
2.2 Solve for Fc across all unit operations as a 

system of linear equations (eqs 8–11) and 
update. 

2.3 Solve ∆Φ for each VLE stage and ∆T for each 
LLE stage as a system of linear equations 
(eqs 12–13) and update Φ and T. 

3. Solve for the equilibrium criteria variables at 
each stage. For multistage LLE, solve for all 
stages simultaneously using the pseudo equilib-
rium approach. 

4. Run steps 2.1, 2.2, then 2.1 again to close the 
material balance. 

5. Solve for ∆T as a system of linear equations (eq 
14) and update T to close the energy balance. 

6. If partition coefficients, phase ratios, tempera-
tures, and flow rates have not converged under 
a specified tolerance, repeat steps 2–6. 
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 This algorithm was implemented in BioSTEAM —an 
open-source process simulation software [14]—and 
benchmarked against sequential modular simulation us-
ing a flowsheet for the industrial separation of acetic acid 
(also modeled in BioSTEAM). The thermodynamic prop-
erty package estimates phase equilibrium using modified 
Raoult’s law with activity coefficients estimated through 
Dortmund UNIFAC interaction parameters [15,16]. Pure 
component properties (e.g., heat capacity) of fluids are 
estimated using higher order polynomial fits to the fun-
damental Helmholtz equation of state (a state-of-the-art 
property prediction model)[17,18] and recommended 
correlations from a critical review on thermodynamic 
properties [19]. Mixture properties are estimated using a 
molar weighted average of the pure chemical properties. 

RESULTS & DISCUSSION 

Single and Multistage Equilibrium Graph 
Material, energy, equilibrium, and summation equa-

tions are tightly coupled for both a VLE stage and a LLE 
stage (Figures 3 A and B, respectively). Note that the 
designation of what constitutes an equilibrium, material 
balance, or energy balance equation is based on the unit 
dimensionality of the equation as well as the decomposi-
tion scheme requirements. For example, the Rashford-
Rice equation may be regarded as a material balance 
equation, but it is denoted here as an equilibrium relation-
ship to maintain linear relationships within the material 
balance (assuming partition coefficients and phase frac-
tions are decoupled). 

A classical chemical engineering method to solve an 
adiabatic flash vessel consists of a 3-step fixed-point it-
eration: (1) compute partition coefficients and tempera-
ture assuming the vapor and liquid compositions (e.g., by 
computing the bubble point), (2) estimate the vapor and 

liquid compositions through material balances, and (3) 
solve for the vapor fraction using an energy balance [20]. 
In this iterative method, the equilibrium, energy, and ma-
terial balances are decoupled. Given that non-linearities 
stem from the equilibrium criteria and the enthalpy of 
streams, this decomposition algorithm may offer greater 
stability than derivative-based numerical methods when 
employed for larger systems.  

Partitioning the equations by equilibrium, energy, 
and material phenomena results in a more manageable 
problem formulation that is often used by published al-
gorithms for multistage VLE and LLE. Assuming the tem-
perature, pressure, and phase fraction (i.e., vapor or ex-
tract fraction) are held constant, the material balance for 
an arbitrary component becomes a linear combination of 
liquid (or vapor) flow rates and can be represented as a 
tridiagonal matrix that is convenient to solve. Similarly, if 
bulk liquid flow rates, compositions, and temperature are 
held constant, the energy balance becomes a linear com-
bination of the boil-up ratio. The new phenomena-ori-
ented simulation algorithm proposed in this study lever-
ages this partitioning scheme towards the complete 
flowsheet to accelerate convergence.  

Block convergence methods for distillation (e.g., 
Wang-Henke’s bubble point method) and liquid-liquid ex-
traction —which iteratively solve equilibrium, material, 
and energy equations— are still subject to instabilities 
and may not converge. Russell’s inside-out method lev-
erages approximate models for stage temperature and 
specific enthalpy to converge an inner loop of stage tem-
peratures and phase flow rates [21]. Employing approxi-
mate models for highly coupled non-linear variables (i.e., 
partition coefficients, enthalpy, and temperature) allows 
for more robust convergence if the approximate form is 
better behaved than the strict form. Future work may 

 
Figure 3. A phenomena graph representation of (A) a VLE stage and (B) a LLE stage. Equations related to material, 
energy, equilibrium, and pressure are colored black, red, purple, and green, respectively. Each grey ring node and 
its label represents a variable. Edges denote the variables present equations.  
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seek to reformulate the system of equations with approx-
imate models that can describe the complete system and 
propose more advanced numerical methods to acceler-
ate flowsheet convergence.  

Acetic Acid Separation Graph 
A graph of an industrial separation process for sep-

arating glacial acetic acid from water suggests that it may 
be feasible to extend MESH equations as a decoupling 
strategy for integrated convergence of the complete 
flowsheet (Figure 5). While the graphical representation 
may seem more coupled due to the recycle loops, the re-
sulting problem is essentially the same as in multistage 
equilibrium. In the proposed phenomena-oriented algo-
rithm, equilibrium variables of each stage are calculated 
in parallel while energy and material balances result in 
sparse matrices that are linearly solved (steps 3–5). It is 
possible recycle loops between distillation columns and 
the liquid-liquid extraction destabilizes stage-wise mate-
rial and energy balances and lead to ill-conditioned ma-
trices and infeasible results (e.g., negative flows) which 
would break the model. To resolve such issues, we inte-
grate sequential modular simulation as a robust method 
to rigorously estimate equilibrium criteria variables (step 
2.1). The system-wide mass and energy balances (steps 

2.2 and 2.3) helps propagate the information of how an 
individual unit simulation impacts the flowsheet, enforce 
mass and energy balances, and accelerate simulations. 

Phenomena-Oriented Simulation Speed  
 In both the benchmark cases, the preliminary phe-
nomena-oriented simulation algorithm converged faster 
than the sequential modular approach (Figures 6 A, B, C, 
and D). The error in the mass and energy balance per 
stage was quickly minimized in the phenomena-oriented 
algorithm (Figures 6 E, F, G, and H) due to how mass and 
energy balances of the complete flowsheet are consoli-
dated at the end of each iteration (steps 4 and 5). In com-
parison, sequential modular simulation has difficulties in 
closing the mass balance for the complex system even  
after 60 seconds of simulations (Figure 6H). By speeding 
up flowsheet convergence, phenomena-oriented simula-
tion may enable large-scale simulations necessary for ro-
bust optimization and rigorous uncertainty and sensitivity 
analyses. It may be possible, however, that the proposed 
phenomena-oriented algorithm may not be as robust as 
sequential modular in other systems and more cases 
should be evaluated for more generalizable insight. Ad-
ditionally, only one initial condition (starting with empty 

Figure 5. A phenomena graph representation of an industrial process for the separation of acetic acid from a dilute 
aqueous mixture to produce glacial acetic acid depicts how decoupling material (black), energy (red), and 
equilibrium (purple) equations may result in a more maganeable formulation even for complex recycle systems. 
Equation nodes for repeated adiabatic stages in the partitioned phenomena are aggregated for clarity. Variable 
nodes are shaped as silver and gold rings to denote intermediate variables and stream variables. 
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streams) was tested yet simulations used in optimization 
and uncertainty analyses may leverage more informed 
guesses. Future studies may seek to analyze the robust-
ness of this new convergence algorithm more rigorously 
through Monte Carlo methods. It is possible certain algo-
rithms scale better with large, sparse systems than with 
small, highly coupled systems. 
 It is important to note that this separation process is 
limited to only phase-based separations and does not 
encapsulate reactions and mass and energy transfer-
based unit operations that are common in a production 
process. Still, the equations and decoupling strategies 
leveraged here can be extended to include other physical 
phenomena. For example, equilibrium approaches to re-
active distillation extend Russell’s inside-out method to 
include reaction terms and decouples the kinetic terms 

from the equilibrium criteria [22]. We envision a family of 
phenomena-oriented simulation architectures that are 
optimized for different problems based on the relevant 
phenomena of the system, level of connectivity between 
unit operations, and chemical interactions that drive cou-
pling between phenomenological equations. Ultimately, 
the phenomena graph representations introduced in this 
study may aid in the development of unified decoupling 
and linearization strategies that can allow for more rapid 
and robust flowsheet convergence. 

CONCLUSIONS 
 Efficiently solving a flowsheet remains a challenge 
due to the tightly coupled, non-linear nature of chemical 
processes. While a variety of methods exist for 

 
Figure 6. The convergence error of the flow rate (A, B), temperature (C, D), as well as the error in the material 
balance (E, F), and the energy balance (G, H) was evaluated across computation time for a simple configuration 
with liquid-liquid extraction and distillation and a more complex system for acetic acid purification (left and right 
columns, respectively). The blue curve represents values using the sequential modular approach and the orange 
curve represents values using the new phenomena-oriented approach. 
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converging a flowsheet, there is no clear winner in terms 
of speed, flexibility, and robustness. The phenomena 
graph representations developed in this study helped 
identify how decoupling equations into material, energy, 
and equilibrium blocks (and potentially other phenomena 
such as reactions) can be used to formulate a strategy to 
converge the complete flowsheet. While the proposed al-
gorithm showed promising advantages in convergence 
speed composed to sequential modular, further analysis 
is needed to fully characterize the speed, robustness, 
and applicability to a broader set of chemical processes. 
The PhenomeNode library in Python can be used as an 
educational tool to help students visualize a chemical 
process not just as a flowsheet of unit operations, but 
also as a coupled network of physical phenomena. 
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ABSTRACT 
Maintaining product integrity in multi-product oil pipelines is crucial for efficiency and 
profit. This study presents a strategy combining design and process improvement to 
enhance flushing protocols, addressing the challenge of residual batch contamination. A 
pilot plant, mirroring industrial operations through dimensionless residence time distri-
bution, was developed to identify and rectify bottlenecks during product transition. The 
pilot plant’s success in replicating industrial operations paves the way for targeted ex-
periments and modelling to enhance optimized flushing, ensuring product quality and 
operational excellence. 

Keywords: Process Design, Optimization, Modeling, Flushing

1. INTRODUCTION
Multi-product pipelines are large-diameter lines

used to transport different grades of the same product or 
different petroleum products. Such transport is per-
formed by batching the products in a continuous succes-
sion [1]. Owing to this mode of transport, ensuring the 
quality and purity of each product processed in this net-
work of pipelines is crucial for operational success [2]. 
Multi-product pipelines, tailored for various applications, 
are comprised of an array of components. These inter-
connected pipeline networks typically include straight 
segments, flow meters, valves, assorted fittings, bends, 
tees, and various other supplementary equipment. 

Transporting different grades of products in multi-
product pipelines often leads to residue accumulation, 
impacting the quality of subsequent products. Residues 
from previous batches adhere to the pipeline walls, com-
promising product yield, and integrity, and causing finan-
cial losses. Therefore, regular cleaning is essential during 
product changeovers in the multi-product pipeline indus-
try. This study aims to develop an enhanced and com-
prehensive flushing process specifically for the generic 
lube oil industry. 

Figure 1: Multi-Product Pipeline Configuration of the 
Generic Lube Oil Industry (The illustrated network details 
the sections of variable diameters and A, B, C, D, E 
represents sample different grades of products 
processed within this industry). 

In this industry, various product grades are pro-
cessed using multi-pipeline systems, as shown in Fig 1. 
These systems consist of straight and varying diameter 
sections, flow control mechanisms, U-bends, tees, fit-
tings, and filters. To remove residues from previous prod-
ucts, pipelines are flushed between each product transi-
tion. This cleaning process involves two alternatives: us-
ing a pipeline inspection gauge (PIG) for straight sections 
and using the next product in line to flush the variable 
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diameter sections. The PIG, a squeegee-like device, is 
97% effective in cleaning the straight pipelines but less 
efficient for variable-diameter sections due to its size, 
shape limitations, and potential damage risks. Therefore, 
sections that cannot be cleaned by the PIG, known as 
"un-piggable sections," are flushed with the finished 
product (the next new oil to be packaged in the line). 

This creates an optimization challenge to determine 
the volume of new oil needed for residual displacement. 
Therefore, we have designed and constructed a 1/5th 
scale pilot plant to replicate industrial processes, focus-
ing on optimizing the flushing operation in the unpiggable 
sections of the multi-product pipeline system. 

1.1 Flushing  
 Flushing in multiproduct pipelines is a crucial 

process involving the removal of residual products from 
the pipelines to prevent contamination when transitioning 
between several grades of products. This operation is 
particularly important considering systems where differ-
ent grades of products are processed, as it ensures prod-
uct quality and integrity [3]. Considering a changeover 
operation where a new product is to be processed 
through the pipeline, residues of the previous products 
need to be displaced. Referencing the generic lubricating 
oil industry with the pipeline configuration shown in Fig-
ure 1, entrapped residual oil within the unpiggable sec-
tions is flushed with the next product.  

 This process results in the creation of mixed or 
commingled oil systems, which are lower in value and 
considered downgraded. Consequently, large quantities 
of the subsequent product must be used to flush out the 
residuals and the commingled oil. As depicted in Figure 
2, during the flushing operation, the tail ends of the pipe-
line contain the residuals, and the middle section is a 
blend of both oils, which are gradually and completely 
displaced over time. In sections of pipelines where pig-
ging is not feasible, significant residue accumulation is 
often observed in U-bends, filter areas, and along the en-
tire inner walls of the pipelines.  

 
Figure 2: Illustration of Flushing Process During Product 
Changeover Operations 

1.1.1 Review and Improvement of Industrial 
Flushing Operations  

 To enhance the flushing process in pipeline op-
erations, it is crucial to analyze existing systems, identify 
inefficiencies, and devise improvements. This approach 
includes reviewing current practices, suggesting en-
hancements, and incorporating these into scaled pilot 

plant designs to create effective flushing models. Before 
switching products in the pipeline, it's standard to re-
move the residue of the previous product. This is typically 
done by air blowing through filters and gravity draining 
the manifold line, effectively removing a significant por-
tion of the residual oil. However, this method doesn't fully 
clear oil remnants in other parts of the pipeline, resulting 
in the use of excessive volumes of the next product to 
flush out these residuals. This leads to the formation of 
large quantities of mixed oil, highlighting a key area for 
process improvement. 

 To overcome this limitation, an enhanced pro-
cess has been developed, combining experimental anal-
ysis with optimization techniques. This new approach 
aims to significantly lower the volume of residual materi-
als, ensuring that only minimal amounts of finished prod-
ucts are employed in the flushing process. This reduction 
minimizes the creation of mixed oils. The improved meth-
odology is depicted in Figure 3 contrasting it with the cur-
rent operational mode, highlighting the key differences. 
This advanced process, tested, and refined through pilot 
plant studies, is designed to mirror and optimize indus-
trial-scale operations. 

 
Figure 3: Schematic Diagram of Flushing Operation. The 
existing operation is #1 and improved procedure is shown 
in #2 

2. PILOT PLANT DESIGN AND 
ARCHITECTURE 

 The pilot plant aims to replicate the industrial 
scale operation to study the product changeover opera-
tions and optimize the flushing operation. Also, with this 
pilot plant the effects of changes in the process parame-
ters like flowrate, viscosity of products, and temperature 
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is studied. The pilot plant is designed to mirror the ge-
neric lube oil industry on a smaller scale. The pilot plant 
features a detailed pipeline system where lube oil passes 
through the various components, including a filter, U-
bends, manifold, and flow control devices, before being 
packaged. The process flow diagram of the designed pi-
lot plant is illustrated in Figure 8 (the bottom figure).  

2.1 Scale-Down Factors 
 An appropriate scale down factor must be used 

when designing and fabricating a pilot plant to replicate 
the characteristics of a much larger operational system.  

2.1.2 Reynolds Number 
The study concentrates on the mixing characteris-

tics of viscous fluids in pipeline systems, using Reynolds 
Number as the scaling criterion for both systems. Match-
ing the Reynolds Number ensures that the pilot plant ac-
curately replicates the mixing behavior of an incompress-
ible fluid. Considering an incompressible fluid,  

𝑁𝑁𝑅𝑅𝑅𝑅 =  
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

 

The Reynolds number, 𝑁𝑁𝑅𝑅𝑅𝑅 influenced by density, 
velocity, and viscosity, is a crucial factor. The pipeline at 
the lubricating industry is divided into two segments 
based on internal diameter (ID). The first segment, run-
ning from external tanks to the manifold, uses 3-inch 
schedule 40 carbon steel pipes with an ID of 3.068 
inches. The shorter second segment comprises 2-inch 
schedule 40 carbon steel pipes with an ID of 2.067 
inches. In contrast, the pilot plant's pipeline has been 
scaled down to a 1/2-inch schedule 40, with an ID of 
0.602 inches. The product's viscosity plays a significant 
role in determining the dynamics during product change-
over, affecting both the Reynolds number and the resid-
ual product amount in the system. Since the pilot plant 
operates at room temperature, it is necessary to adjust 
product viscosities to match the higher temperatures 
seen in full-scale operations. Additionally, the system's 
volumetric flow rate is crucial. Choosing a pump with the 
right flow properties is essential for accurately replicating 
the pilot plant's design at scale.  

2.1.3 Volumetric ratio 
 The second metric used in the scale down pro-

cess is the system volume ratio. This ratio is defined as 
the volume of the filter by the volume of the remaining 
system. Replicating this ratio for the pilot plant system 
was a crucial aspect for the design. The pilot plant sys-
tem was modelled by theorizing the configuration as a 
combination of tanks (CSTR) and tubular (PFR) sections. 
The filter acts as the tanks and the pipe sections the tub-
ular sections. The system volume at the industrial scale 
was determined to be approximately 32 gallons, with the 
filter containing 13 gallons of product. Thus, given the 

expression for this ratio as follows; 

𝑉𝑉𝑅𝑅 =
𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑅𝑅𝑓𝑓
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑅𝑅𝑠𝑠

 

the ratio is calculated to be 0.4. 

2.2 Designed Pilot Plant 
The pilot plant features three product tanks, each 

with a 30-gallon capacity, serving distinct functions: a 
tank for residual oil, another for flush oil (the next product 
in line for processing), and a third for collecting the mix 
of these two oils. The tanks, made from high-density pol-
yethylene for compatibility with petroleum lubricants and 
water, are set on a steel stand with rounded bottoms and 
bulkhead fittings for efficient drainage. They are linked to 
the main pipeline via flexible buna-nitrile hydraulic hoses. 
The plant also includes a suite of equipment: measuring 
balances placed under each tank for precise product 
tracking, spear gear pumps, a pressure relief valve, a 
compressed air system, a filter, various fittings and 
valves, an inline viscometer, and a sophisticated data ac-
quisition system. This design ensures effective monitor-
ing and management of the processing activities. 

 

 
Figure 4: Pilot Plant CAD Design (Top) and Fabricated 
Pilot Plant Design at the Laboratory (Bottom) 

When selecting an electronic balance for our sys-
tem, key factors included its maximum weight capacity, 
size, response speed, and cost. Considering the density 
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of water and weight of tank stand, a balance capable of 
measuring up to 300 pounds was required for accurate 
safety testing. This was vital for monitoring the subtle, 
rapid weight changes during pump operation. Ultimately, 
we chose a balance with a 600-pound capacity and a 
width of 19.75 inches, ensuring it not only met our imme-
diate needs but also accommodated larger loads for fu-
ture experiments.  

Due to the high viscosity of the fluid, a peristaltic 
(spear gear) pump is used for fluid flow in the pipeline, 
with a maximum capacity of 7 GPM. This pump features 
a cast iron interior and ¾” NPT ports reduced to ½” outer 
diameter tubing. To ensure safety and prevent overpres-
sure, a pressure relief valve (PRV) is installed, set at 70 
PSI - above the normal operating pressure but below the 
filter's 100 PSI maximum. This PRV setting accommo-
dates the system's needs, particularly considering the 
performance of lubricant oils up to 108 cSt, where the 
maximum pressure drop through the valve is 25 PSI, 
within the filter's safety threshold.  

Viscosity is a critical factor in lubricating oil, essen-
tial for optimal machinery performance. Choosing an oil 
with appropriate viscosity for specific operating condi-
tions is vital. Viscosity tests are key to ensuring product 
quality and the success of flushing operations. Tradi-
tional viscosity measurement involves labor-intensive 
sampling and lab analysis using glass capillary viscome-
ters. However, this method can be time-consuming and 
error-prone. Automating the viscosity testing process 
can reduce manual labor and costs, while real-time vis-
cosity measurement in product batches offers environ-
mental and logistical advantages by minimizing repeated 
flushing operations. An inline viscometer, integrated into 
the pilot plant system, demonstrates the advantages of 
real-time measurement over traditional methods. This 
viscometer features a seamless bore, no moving parts, 
and requires minimal maintenance. 

Integrating a data acquisition system into the pilot 
plant was essential for accurate, real-time recording of 
experimental data, crucial for understanding the process 
being studied. This system facilitates efficient collection, 
processing, and analysis of data from various equipment, 
including scales, inline viscometers, and thermocouples. 
It plays a key role in monitoring and controlling experi-
mental variables, greatly aiding in system modeling and 
enabling swift decision-making. The selected data acqui-
sition system features an eight-slot chassis, accommo-
dating multiple input modules, chosen based on compat-
ibility with the pilot plant's equipment, signal measure-
ment types, maximum sampling rates, and the supported 
number of channels. The signal measurement type, the 
interacting equipment and the individual acquired mod-
ules are illustrated in Table 2. 

 

Table  Pilot Plant Process Equipment Specifications 
Equipment Description Capacity 
Spear Gear 
Pump 

Cast Iron ¾” NPT  GPM 

Inline  
Viscometer 

Flow-through vis-
cometer no inter-
nals and compacti-
ble with pigging 
systems 

 to  cP 
accuracy +/- 
 cP  bar 
- oC – oC 

Pressure 
Relief Valve 

Buna-nitrile seal 
with stainless steel 
material 

 GPM  
- PSIG  

 
Table  Components of the Data Acquisition System 
Measurement Signal Type and Interacting Process 
Equipment 

Components Measurement 
Signal 

Interacting 
Equipment 

 Current 
(4-20 mA) 

Thermocouple 

 Voltage 
( V DC) 

Balance 

 Current  
(- mA) 

Inline Viscometer 

3. PILOT PLANT VALIDATION 
In comparing two systems, which are of different 

scales, it is useful to assess the dimensionless residence 
time distribution between both systems. If the scaled 
down version (pilot plant) exhibits similar behavior and 
characteristics to the larger system (industrial plant), it 
indicates that the smaller system effectively replicates 
the larger system [4]. This comparison is crucial for vali-
dating and ensuring the pilot plant can reliably mimic the 
industrial system, providing a basis for scaling up pro-
cesses with confidence. 
3.1 Residence Time Distribution 

 The prediction and modeling of residence time 
distributions (RTDs) are essential for understanding ma-
terial flow in a process. Each component, such as filters 
and pipes, has its own RTD. By linking these RTDs using 
convolution integrals, the overall process RTD is calcu-
lated. This helps in estimating the average time materials 
spend in the process, understanding the system's re-
sponse to material stream fluctuations, and devising pro-
cess control strategies [5].  

Residence time distribution modeling serves not 
only to characterize entire manufacturing lines but also 
to explain the intricate behaviors of individual units in a 
network. In reactor networks, the continuous stirred tank 
reactor (CSTR) and plug flow reactor (PFR) are the most 
prevalent types. While these reactors are overly idealized 
to accurately represent real reactors, combining these 
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basic models in a network allows for an effective depic-
tion of actual unit operations, accounting for phenomena 
like dead zones and areas of insufficient mixing [6].  

The residence time distribution (RTD) experiments 
in the pilot plant involved using diluted salt water and 
fresh water. These experiments are crucial as they bridge 
theoretical concepts with the pipeline system's practical 
application. The step change method was employed for 
these RTD experiments, reflecting the complexities of the 
flushing process. This approach effectively demon-
strates the fluid dynamics and various mixing mecha-
nisms operational within the pilot plant. 

By comprehending the complex fluid flow dynamics 
in the pilot plant, we can fine-tune the system for a more 
precise emulation of industrial processes.  

3.2 Methodology  
 The RTD experiment involved using diluted salt 

water as the flushing fluid and pure water as the residual 
fluid. The experiment began with a sudden switch from 
one fluid to the other at t = 0, and the outlet concentra-
tion was monitored. To simulate oil flushing operations 
where oils are miscible and compactible, water-soluble 
salts were used. NaCl was selected as the preferred salt, 
as indicated in Table 3. The conductivity of these diluted 
salt solutions was measured using a Vernier Conductivity 
ProbeTM, substituting the inline viscometer in the pilot 
plant. The recorded conductivities (S) were then con-
verted to concentrations (C) using relations shown be-
low. 

𝐶𝐶 = 𝑎𝑎𝑆𝑆2 + 𝑏𝑏𝑆𝑆 + 𝑐𝑐 

Table 3: Candidate salts and parameter values for con-
ductance to concentration conversion 

Salt mS/cm a b c 
NaCl 0-55 1.95 609 0 
KCl 0 – 19 

19 - 143 
0 
0.2816 

631.32 
708.07 

0 
-913.51 

KI 0 – 11 
11 - 113 

0 
0.7556 

1340.4 
1449 

0 
-233.9 

NaBr 0 – 16 
16 - 100 

5.6327 
2.4823 

967.2 
1067.2 

0 
44.46 

3.3 Governing Equations 
 The first step in RTD modelling is obtaining the 

residence time distribution. The experimental setup in-
troduces a conductive solution as a tracer and its con-
centration measured at the outlet. The concentration 
profile of the tracer is C(t).  The cumulative RTD, F(t) is 
obtained as below. 

𝐹𝐹(𝑓𝑓) =  
𝐶𝐶(𝑓𝑓)
𝐶𝐶𝑖𝑖𝑖𝑖

 

𝐹𝐹(𝑓𝑓) =  � 𝐸𝐸(𝑓𝑓)
𝑡𝑡

0
 

 The E(t) curve describes the distribution of exit 
times. Its peak indicates the time where most of the 
tracer material is discharged. E(t) is known as the RTD 
function. Statistical indicators (mean residence time 𝜏𝜏, 
standard deviation 𝜎𝜎) can be evaluated directly from the 
E(t) curve. 

𝐸𝐸(𝑓𝑓) =  
𝑑𝑑(𝐹𝐹(𝑓𝑓))
𝑑𝑑𝑓𝑓 =  

𝑑𝑑
𝑑𝑑𝑓𝑓 �

𝐶𝐶(𝑓𝑓)
𝐶𝐶𝑖𝑖𝑖𝑖

� 

The mean residence time, 𝜏𝜏 is computed as below. 

𝜏𝜏 =  
∫ 𝑓𝑓𝐸𝐸(𝑓𝑓)𝑑𝑑𝑓𝑓∞
0
𝐸𝐸(𝑓𝑓)𝑑𝑑𝑓𝑓 ≅ 1 

𝜏𝜏 = � 𝑓𝑓𝐸𝐸(𝑓𝑓)𝑑𝑑𝑓𝑓
∞

0
  

Normalised RTD function, 𝐸𝐸(𝜃𝜃) is the metric used in the 
comparison of the pilot plant system with the industrial 
plant.  

𝐸𝐸(𝜃𝜃) =  𝜏𝜏𝐸𝐸(𝑓𝑓) 

3.4 Cubic Splines 
 Cubic Spline is piecewise defined curve that pro-

vides a balance between flexibility and smoothness. 
Splines utilizes interpolation and smoothing to fit a curve 
through data points [7]. Cubic splines are designed to 
have continuous first and second order derivatives, en-
suring a smooth transition between each polynomial seg-
ment. The smoothness is particularly useful in requiring a 
smooth curve without abrupt changes in slope.  

 From the python SciPy Library, spline is defined 
as below. 

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑅𝑅 = 𝑈𝑈𝑠𝑠𝑓𝑓𝜌𝜌𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑅𝑅𝑆𝑆𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑅𝑅(𝑥𝑥,𝑠𝑠, 𝑠𝑠,𝑘𝑘) 

Where x, y are the data points, s and k the smooth-
ing factor and degree of fit respectively. The spline func-
tion was used in curve fitting and the finding the deriva-
tive of the data points for the RTD studies.  E(t) can be 
calculated using the derivative of the spline where n rep-
resents the order of the derivative. 

𝐸𝐸(𝑓𝑓) = 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑅𝑅(𝑥𝑥,𝑠𝑠) 

4. RESULTS 
 The RTD studies for the pilot plant was evaluated 

looking at two extreme flowrates of 2.34 GPM, 1.15 GPM 
and also varying filter configurations of 0.5 L and 1L. The 
variation of filter configuration was necessary in satisfy-
ing the volumetric ratio scale down criterion. The indus-
trial RTD studies were performed based on industrial data 
with oils as the simulant fluids as against the preliminary 
pilot plant studies involving conductive solutions. The 
step change tracer profile of F(t) for both the industrial 
and pilot plant system is shown in Figure 5.  
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Figure 5: Cummulative RTD F(t): Pilot Plant (top) and 
Industrial Plant (bottom) 

 
Figure 6: Sample RTD function E(t) of Pilot Plant Studies 

The RTD function, E(t) of the pilot plant studies is 
illustrated in Figure 6. The peak of the profile indicates 
the most probable exit time for the conductive solution 
from the pipeline system.  

Hence, providing insights into the point at which the 
highest concentration of the conductive solution(tracer) 

exists the pipeline system. The mean residence time, 
representing the time average the tracer spends in the 
system is evaluated by inferring at the balance point of 
the area under the E(t) curve.  

The Normalized RTD functions, 𝐸𝐸(𝜃𝜃) is plotted 
against the dimensionless time, 𝜃𝜃 shown in Figure 7. This 
plot is used as the metric for validating the pilot plant and 
the industrial plant. Inferring from the profile, we observe 
a sharp rise which suggests a rapid initial exit of the ma-
terial, followed by a steadily decline after the peak, indi-
cating a slower exit of the remaining material. Consider-
ing the pilot plant studies, at the highest flowrate, the 
peak is rapid and higher compared to the observed peak 
at the lower flowrate indicating high tracer concentra-
tions exiting the system. Considering the two filter con-
figurations, the distribution in both systems is symmet-
rical since the peak is closer to the mean of the distribu-
tion.  

 

 
Figure 7: Dimensionless RTD of Industrial Plant 
Comparison with Pilot plant at 2.34 GPM and 1.15 GPM 
Considering 0.5 L Filter (top) and  1 L Filter(bottom) 

 The width of the peak reflects the spread in exit 



 

Gao et al. / LAPSE:2024.1519 Syst Control Trans 3:137-144 (2024) 143 

times, which is related to the standard deviation. A nar-
row peak suggests that most of the tracer (residuals) ex-
its at around the same time, indicating a small spread. In-
ferring from the pilot plant and the industrial plant, we 
observe a sharp and narrow peak, indicating approxi-
mately that a significant portion of the tracer exits the 
system. Hence, it can be said that low dispersion is ob-
served and that both systems have a relatively uniform 
residence time. A measure of the spread of the distribu-
tion in both the pilot plant and industrial plant systems, 
can be inferred to be relatively small due to the sharpness 
of the peak, but not minimal to the noticeable tail. This 
indicates some variance in the residence time, however 
not a significant one. 

 The skewness of the curve is observed to be 
asymmetrical, with a longer tail to the right of the peak. 
This is an indication that, some of the tracer materials 
takes longer to exit the system than average, which could 
be due to areas of slower flow within the system. 

4.1 Model Uncertainty 
Model uncertainty in our RTD study primarily arises 

from the substitution of oil with salt water as a tracer, in-
troducing discrepancies in flow behavior due to differing 
physical properties. Measurement precision of the 

conductivity probe presents additional variability to the 
tracer concentration data obtained. Furthermore, the pi-
lot plant’s scale down from the industrial scale presents 
additional complexities; even with careful scale down 
factors to match industrial ratios, scale-dependent phe-
nomena like flow regimes can behave unpredictably, im-
pacting the RTD results. Thus, although our method of-
fers a robust approximation in drawing similarities be-
tween the industrial plant and the pilot scale plant, ac-
knowledging these uncertainties are crucial for the ro-
bust application and translation of our findings to the in-
dustrial scale operations.  

5. CONCLUSION 
 This study encapsulates the comprehensive 

process of enhancing operations through the design and 
construction of pilot plant, meticulously scaled down 
from an industrial scale. The analysis employs residence 
time distributions to draw parallels between the two sys-
tems. Aligning with the scaled dimensions, a 0.5 L filter 
was judiciously selected to maintain the requisite volu-
metric ratio of 0.4, mirroring the industrial setup. The RTD 
studies affirm that the pilot plant not only exhibits analo-
gous dynamism but also effectively emulates the 

 
Figure 8: Process Flow Diagram of Scaled-Down Pilot Plant (bottom)  Replicating a Generic Lube Oil Industry (top)  



 

Gao et al. / LAPSE:2024.1519 Syst Control Trans 3:137-144 (2024) 144 

industrial plant at a reduced geometry ratio of 1/5. This 
underscores the pilot plant’s fidelity as a robust model for 
the industrial scale.  
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ABSTRACT 
We present new modifications to superstructure optimization paradigms to i) enable their robust 
solution and ii) extend their applicability. Superstructure optimization of chemical process flow-
sheets on the basis of rigorous and detailed models of the various unit operations, such as in the 
state operator network (SON) paradigm, is prone to non-convergence. A key challenge in this op-
timization-based approach is that when process units are deselected from a superstructure flow-
sheet, the constraints that represent the deselected process unit can be numerically singular (e.g., 
divide by zero, logarithm of zero and rank-deficient Jacobian). In this paper, we build upon the 
recently-proposed modified state operator network (MSON) that systematically eliminates singu-
larities due to unit deselection and is equally applicable to the context of both simulation-based 
and equation-oriented optimization. A key drawback of the MSON is that it is only applicable to 
the design of isobaric flowsheets at a pressure fixed a priori. In this paper, as a first step towards 
the synthesis of general flowsheets with variable pressures, we extend the MSON to the synthesis 
of a gas-liquid absorption column at variable pressure (i.e., the pressure is a degree of freedom 
that may be optimized). We illustrate the use of the extended MSON on a carbon-capture process. 
The extended MSON is robust and enables the design of the column on the basis of detailed ther-
modynamic models and simulation-based optimization. 

Keywords: Absorption, Algorithms, Carbon Dioxide Capture, Optimization, Process Synthesis

INTRODUCTION 
Process synthesis is central to the conceptualiza-

tion of new chemical processes that can meet the mani-
fold constraints of a circular economy. Process synthesis 
is the activity of identifying an optimal flowsheet which 
entails choosing a) process units (e.g., unit operations) 
from a set of alternatives, b) the connectivity of selected 
process units, and c) the degrees of freedom of selected 
units such that a design objective is optimized and all 
process constraints are satisfied.  

Superstructure optimization is a mathematical pro-
gramming approach to process synthesis. While there are 
several representations of a process superstructure [1], 
here, we focus our attention on the State Operator Net-
work (SON) representation [2] of the process superstruc-
ture. A key feature of the SON is that each allowed pro-
cess unit is described by its rigorous model which in-
cludes MESH equations and equipment sizing and cost-
ing correlations. The SON relies on a network of 

conceptual mixers and splitters that enable up to full con-
nectivity between the set of selected process units. A 
mixer and a splitter are located at each inlet and outlet, 
respectively, of each process unit.  

The optimization of the SON is a challenging mixed-
integer nonlinear programming problem (MINLP). A par-
ticular issue in the optimization of the SON, which is the 
subject of this paper, is the fate of a process unit that is 
deselected, that is, excluded from the flowsheet. Natu-
rally, when a process unit is deselected, mass flowrates 
at each inlet of the unit must be set to zero. However, the 
models of many process units are well defined only at 
strictly positive mass flows. At zero-valued inlet flows, 
several numerical singularities (including undefined be-
haviour) in the constraint functions that describe the unit 
and/or in their derivatives can occur. For example, con-
sider an isobaric-isenthalpic flash unit. At zero-valued 
flows, a two-phase solution to the phase-equilibrium 
problem does not exist. Further, the Jacobian of the 
mass-balance constraints of the unit is rank-deficient [3] 

https://doi.org/10.69997/sct.169290
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and costing and sizing correlations that depend on the 
flowrates may become numerically singular. As a result, 
the optimization of the SON may fail to converge. 

To overcome this challenge, one may reformulate 
the SON MINLP using Generalized Disjunctive Program-
ming (GDP) [4]. However, the application of GDP to sim-
ulation-based superstructure optimization is limited and 
computationally expensive [5]. Specifically, the initializa-
tion of the master problem in Logic-based Outer Approx-
imation is computationally expensive when applied to 
simulation-based superstructure optimization [6]. Other 
reformulations include the Big-M reformulation of all the 
constraints that describe each unit, or multiplication of 
the constraints of each unit by the corresponding binary 
variable [7]. Not only do these modifications not fully 
eliminate singularities due to zero flows [6], but these 
also require modifications to the high-dimensional num-
ber of constraints that describe each process unit.  

In this paper, we build upon the recently developed 
Modified State Operator Network (MSON) [6]. The MSON 
modifies mixers by introducing fictitious inlet streams 
that become active when a unit is deselected and take on 
strictly positive flowrates as well as intensive property 
values chosen to guarantee successful evaluation of the 
model of the corresponding process unit. The MSON 
modifies splitters to reject any flows at the outlets of the 
deselected process unit that arise due to these fictitious 
inlet flows. Further any quantities computed in the dese-
lected unit that result in non-zero contributions to the 
flowsheet objective, design constraints and so on are 
also modified to take a zero value when the unit is dese-
lected, thus resulting in an exact reformulation. 

The SON and MSON are only applicable to the syn-
thesis of isobaric flowsheets. The MSON is further limited 
as the pressure needs to be fixed a priori. In this paper, 
we present advances to the MSON towards the synthesis 
of general flowsheets in which: i) the pressure of any unit 
operation does not have to be fixed a priori and ii) unit 
operations can operate at different pressures. We ad-
dress the first stipulation in the context of the synthesis 
of a counter-current separation column. We note that 
Smith (1996) [8] briefly outlined the use of pressure-
driven flows between process units via a network of 
compressors and expanders to address the second stip-
ulation. 

A particular arena of superstructure optimization 
that has received much attention in the literature [9-10], 
including the pioneering work of Sargent and Gaminiban-
dara (1976) [11], is the synthesis of separation columns 
(that is, the optimal design of number of stages and col-
umn degrees of freedom), especially distillation columns. 
The problem is of renewed importance today as separa-
tions are highly energy and capital intensive and im-
proved designs are crucial to the success of emerging 
areas such as carbon capture and biomanufacturing [12]. 

The consideration of varying pressures is particularly im-
portant in this context, e.g., it can facilitate the design of 
separation solvents for carbon capture as the optimal 
choices of solvent, pressure and column configuration 
are intrinsically linked [13]. While we do not model any 
pressure drop in the column, the column pressure is a de-
gree of freedom that we optimize, unlike our previous 
work [6]. The proposed extensions of the MSON are gen-
eral and can be applied to any process unit in which the 
pressure is a degree of freedom. Additionally, the formu-
lations presented here are amenable to both simulation-
based optimization and equation-oriented optimization. 

In the next section we present three different coun-
ter-current column synthesis formulations: (i) a counter-
current column SON based on the R-graph decomposi-
tion of columns previously given by Farkas et al. (2008) 
[14] where we show how the standard formulation of the 
SON can suffer from numerical singularities, (ii) an exact 
MSON formulation of the same column that relies on a 
simple modification to the mixers and splitters to elimi-
nate singularities due to deselection of stages, (iii) an ex-
tended MSON formulation so that the column pressure 
may be treated as a degree of freedom. We then present 
details of the implementation of the extended MSON and 
the application of the extended MSON to the design of 
carbon capture column. Lastly, we present results and 
conclusions.  

COLUMN SYNTHESIS FORMULATIONS 
Consider a counter-current separation column such 

as a gas-liquid absorption column, liquid-liquid extraction 
column or the rectifying section of a distillation column. 
The column separation is driven by the contacting of two 
phases, labelled vapour and liquid here for convenience. 

The column synthesis problem may be formulated 
as follows: Given a multi-component vapour feed to be 
separated, a solvent that is the mass separation agent 
and a maximum of 𝑁𝑁𝑈𝑈 theoretical (equilibrium) stages, 
find the optimal number of stages and values of the col-
umn degrees of freedom such that the design objective 
is minimized and constraints on product purity and recov-
ery are satisfied. The MSON formulation for column syn-
thesis has previously been derived formally in full detail 
[5]. Here, we present the details of the SON and MSON 
in the context of column synthesis for completeness. 

SON 
We decompose a column of  𝑁𝑁𝑈𝑈 stages into equiva-

lent conditional subsections [14]. Each subsection 𝑖𝑖 has 
2𝑖𝑖−1 identical equilibrium stages and an associated binary 
variable 𝑧𝑧𝑖𝑖 that takes the value 1 when the subsection is 
selected, where 𝑖𝑖 ∈ ℛ, where ℛ is the set of conditional 
subsections. For example, a column with a maximum of 
15 stages is decomposed into four subsections of 1, 2, 4 
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and 8 stages, respectively as shown in Figure 1.  As an 
alternative example, a column of 31 stages is decom-
posed into five subsections of 1, 2, 4, 8 and 15 stages, 
respectively. The number of subsections |ℛ| is equal to 
the minimum number of bits required to express integer 
𝑁𝑁𝑈𝑈 in binary notation. Each subsection has a vapour out-
let, a vapour inlet, a liquid outlet and a liquid inlet as 
shown in Figure 1. We further include the following per-
manent units in the column superstructure: a vapour 
source, a liquid source, a vapour sink and liquid sink as 
shown in Figure 1. Each sink and source have one inlet 
and outlet each. The vapour feed to be separated and the 
fresh solvent enter the column via the vapour and liquid 
sources, respectively. The product and the spent solvent 
leave the column via the vapour and liquid sinks, respec-
tively. We assume that all unit operations operate at pres-
sure 𝑃𝑃. 

Mixer-splitter network 
For each phase (vapour or liquid), we use a network 

of mixers and splitters to enable flows between the col-
umn subsections, and the corresponding source and 
sink. A mixer is placed at each of the inlets of the column 
subsections and at the inlet of the sink. A splitter is 
placed at each of the outlets of the column subsections 
and at the outlet of the corresponding source. The va-
pour mixer at inlet 𝑖𝑖 ∈ ℐV, where ℐV is the set of vapour 
inlets, allows the mixing of vapour streams that leave 
from splitters at the outlets of the subsections 𝑖𝑖 + 1, … ,ℛ 
and the vapour source. Similarly, the liquid mixer at inlet 
𝑖𝑖 ∈ ℐL, where ℐL is the set of liquid inlets, allows the mixing 
of liquid streams that leave splitters at the outlets of sub-
sections 1, … , 𝑖𝑖 − 1 and the liquid source. An example col-
umn subsection with its mixers and splitters and their 
connections in detail is shown in Figure 2. Splitters and 
mixers are assumed to be isenthalpic and ideal. We con-
sider a multi-component mixture with 𝐾𝐾 components. 
𝑓𝑓𝑖𝑖

in,V, 𝒒𝒒𝑖𝑖
in,Vand 𝑇𝑇𝑖𝑖

in,V represent the flowrate, composition 
and temperature of the vapour stream at inlet 𝑖𝑖. 𝑓𝑓𝑜𝑜

out,V, 
𝒒𝒒𝑜𝑜

out,V and 𝑇𝑇𝑜𝑜
out,V represent the flowrate, composition and 

temperature of the vapour stream at outlet 𝑜𝑜. 𝑓𝑓𝑜𝑜,𝑖𝑖
V , 𝒒𝒒𝑜𝑜,𝑖𝑖

V  and 
𝑇𝑇𝑜𝑜,𝑖𝑖

V  represent the mass flowrate, composition and tem-
perature, respectively of the vapour stream that flows 
from splitter 𝑜𝑜 to mixer 𝑖𝑖. All streams are assumed to be 
at constant pressure 𝑃𝑃. The following balances hold for 
vapour mixers:      

 𝑓𝑓𝑖𝑖
in,V = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖

V
𝑜𝑜∈ℳ𝑖𝑖

V      (1) 

𝑓𝑓𝑖𝑖
in,V𝑞𝑞𝑖𝑖,𝑐𝑐

in,V = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖
V

𝑜𝑜∈ℳ𝑖𝑖
V 𝑞𝑞𝑜𝑜,𝑖𝑖,𝑐𝑐

V  ∀𝑐𝑐 ∈ {1, … ,𝐾𝐾}   (2) 

𝑓𝑓𝑖𝑖
in,Vℎ𝑒𝑒𝑒𝑒V �𝑇𝑇𝑖𝑖

in,V, P,𝒒𝒒𝑖𝑖
in,V� = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖

V
𝑜𝑜∈ℳ𝑖𝑖

V ℎ𝑒𝑒𝑒𝑒V �𝑇𝑇𝑜𝑜,𝑖𝑖
V , P,𝒒𝒒𝑜𝑜,𝑖𝑖

V � (3) 

where ℳ𝑖𝑖
V denotes all the vapour splitters that a vapour 

mixer 𝑖𝑖 may be connected to, and for vapour splitters: 

𝑓𝑓𝑜𝑜
out,V = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖𝑖𝑖∈𝒮𝒮𝑜𝑜V     (4) 

𝑇𝑇𝑜𝑜
out,V = 𝑇𝑇𝑜𝑜,𝑖𝑖

V  ∀𝑖𝑖 ∈ 𝒮𝒮𝑜𝑜V    (5) 

𝒒𝒒𝑜𝑜
out,V = 𝒒𝒒𝑜𝑜,𝑖𝑖

V  ∀𝑖𝑖 ∈ 𝒮𝒮𝑜𝑜V    (6) 

where 𝒮𝒮𝑜𝑜V denotes all the mixers that splitter 𝑜𝑜 may be 
connected to. Analogous relationships may be written 
for the liquid mixers and splitters. 

Note that the mixers and splitter alone cannot guar-
antee flow in the desired direction between two units at 
different pressures, and thus, limit the SON to the syn-
thesis of isobaric flowsheets. 

 
Figure 1: Schematic of the vapour source, liquid source, 
vapour sink, liquid sink, and the 4 columns subsections 
with 1, 2, 4 and 8 stages in a column superstructure with 
at most 15 stages. The vapour and liquid sources and 
sinks have one inlet and outlet each. Each column 
subsection has one vapour inlet, one liquid inlet, one 
vapour outlet and one liquid outlet. Process units in the 
superstructure are labelled by numbers.   
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Figure 2: Detailed schematic of subsection 3 with 4 
stages from Figure 1. The vapour mixer 𝑚𝑚3

V allows the 
mixing of vapour streams that flow from subsection 4 and 
the vapour source. The liquid mixer 𝑚𝑚3

L allows the mixing 
of vapour streams that flow from the liquid source, 
subsection 1 and subsection 2. The vapour splitter 𝑠𝑠3V  
allows the vapour that leaves subsection 3 to go to 
mixers at the inlets of subsections 1 and 2 and the vapour 
sink. The liquid splitter 𝑠𝑠3L allows the liquid that leaves 
subsection 3 to go to mixers at the inlets of subsection 4 
and the liquid sink.  

Flow-validity constraints 
Flow validity constraints ensure that the flows to a 

column subsection that is deselected, 𝑧𝑧𝑖𝑖 = 0, are zero. 
Further constraints, given in [6], ensure that the flows do 
not bypass selected subsection. 

Process unit-level constraints 
Each process unit (the sources, the sinks and the 

conditional subsections) is represented in the column su-
perstructure via its rigorous model, which is referred to 
as process unit-level constraints here. Each source and 
sink may be represented by simple constraints that 
equate the state at the inlet to that at the outlet. Each 
column subsection is represented by a rigorous model for 
each of the equilibrium stages in the subsection. This in-
cludes the MESH equations. As the pressure drop is as-
sumed to be zero, the pressure at the vapour and liquid 
outlets of each stage (and subsection 𝑖𝑖 where 𝑖𝑖 ∈ ℛ) is 
set equal to the pressure at the inlet. Thus, 

𝑃𝑃𝑖𝑖
out,V = 𝑃𝑃𝑖𝑖

out,L   (7) 

𝑃𝑃𝑖𝑖
out,V = 𝑃𝑃𝑖𝑖

in,V   (8) 

𝑃𝑃𝑖𝑖
in,V = P    (9) 

For each subsection, we compute variables 𝜌𝜌𝚤𝚤L�, 𝜌𝜌𝚤𝚤V� and 𝑣𝑣𝚤𝚤V� :  

𝜌𝜌𝚤𝚤L� = ∑ 𝜌𝜌𝑗𝑗L𝑗𝑗∈2𝑖𝑖−1    (10) 

𝜌𝜌𝚤𝚤V� = ∑ 𝜌𝜌𝑗𝑗V𝑗𝑗∈2𝑖𝑖−1    (11) 

𝑣𝑣𝚤𝚤V� = ∑ 𝑣𝑣𝑗𝑗V𝑗𝑗∈2𝑖𝑖−1    (12) 

Where 𝜌𝜌𝑗𝑗L,  𝜌𝜌𝑗𝑗V and  𝑣𝑣𝑗𝑗V are the mass density of the liquid 
stream that exits stage 𝑗𝑗, the mass density of the vapour 
stream that exits stage 𝑗𝑗 and volumetric flowrate of the 
vapour stream that exits stage 𝑗𝑗, respectively. 

Column-level constraints 
 We use column-level equations (also known as 

flowsheet-level equations in [6]) to compute the total di-
mensions and cost of the column. Some of these flow-
sheet-level constraints may depend on a few “output 
variables” whose values are obtained by solving the pro-
cess unit-level constraints. 𝐷𝐷, the diameter of the column 
and 𝐻𝐻, its height, are computed using [15]:  

 

𝑁𝑁 = ∑ 2𝑖𝑖−1𝑖𝑖∈ℛ 𝑧𝑧𝑖𝑖    (13) 

𝜌𝜌L��� = ∑ 𝜌𝜌𝚤𝚤L
�

𝑖𝑖∈ℛ

𝑁𝑁
     (14) 

𝜌𝜌V���� = ∑ 𝜌𝜌𝚤𝚤V
�

𝑖𝑖∈ℛ

𝑁𝑁
     (15) 

𝑣𝑣V���� = ∑ 𝑣𝑣𝚤𝚤V
�

𝑖𝑖∈ℛ

𝑁𝑁
     (16) 

𝑢𝑢flood = (−0.171𝑙𝑙𝑡𝑡2 + 0.27𝑙𝑙𝑡𝑡 − 0.047)�𝜌𝜌L����−𝜌𝜌V����

𝜌𝜌V����  (17) 

𝐷𝐷 = � 4𝑣𝑣V����

π𝑢𝑢flood     (18) 

𝐻𝐻 = 1.15 𝑙𝑙𝑙𝑙
𝐸𝐸
𝑁𝑁     (19) 

where 𝑙𝑙𝑡𝑡 and 𝐸𝐸 are the tray spacing and stage efficiency, 
respectively. We also introduce flowsheet-level con-
straints to compute the total capital investment (𝑇𝑇𝑇𝑇𝑇𝑇), the 
annual operating expenses (𝑂𝑂𝑃𝑃𝐸𝐸𝑂𝑂) and the total annual-
ized cost (𝑇𝑇𝑇𝑇𝑇𝑇) using costing correlations [6,16]. We also 
impose constraints on the minimum purity and flowrate 
of the vapour stream that exits the flowsheet. 

Numerical singularities 
When a column subsection is deselected, all flows 

into the unit are driven to zero by the flow-validity con-
straints. Due to this, within each column subsection, a so-
lution to the phase equilibrium equations at each stage 
does not exist. The mass-balance equations are also 
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rank-deficient. Sizing, costing or even mass transfer cor-
relation that depends on the flowrates associated with a 
deselected stage can become singular (that is, the func-
tion or derivative may be numerically undefined).  

MSON 
To overcome numerical singularities for any dese-

lected process unit, we have developed the MSON for-
mulation [6], which relies on the modification of mixers 
and splitters associated with the conditional subsections. 
The mixers and splitters associated with the sources and 
sinks remain unchanged and the pressure of all column 
subsections is a constant and fixed a priori. 

Modified mixer 
We introduce a fictitious stream into each modified 

vapour mixer 𝑖𝑖 (associated with column subsection 𝑖𝑖 ∈ ℛ) 
with mass flowrate 𝑓𝑓𝑖𝑖

M,V, composition 𝒒𝒒𝑖𝑖
A,V and tempera-

ture 𝑇𝑇𝑖𝑖
A,V, as shown in Figure 3. Due to Equations (20) –

(22), the flowrate, composition and temperature at the 
inlet of subsection 𝑖𝑖 are 𝑓𝑓𝑖𝑖

M,V, 𝒒𝒒𝑖𝑖
A,V and 𝑇𝑇𝑖𝑖

A,V, respectively, 
when subsection 𝑖𝑖 is deselected and all other flows into 
the mixer are zero. Further, due to Equation (23), 𝑓𝑓𝑖𝑖

M,V 
takes the constant value 𝑓𝑓𝑖𝑖

A,V when the conditional sub-
section is deselected and takes the value zero otherwise. 
Due to this, when the subsection is selected, the modified 
mixer equations are fully equivalent to a standard mixer. 
Analogous relationships are written for the modified liq-
uid mixers. 

𝑓𝑓𝑖𝑖
in,V = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖

V
𝑜𝑜∈ℳ𝑖𝑖

V + 𝑓𝑓𝑖𝑖
M,V   (20) 

𝑓𝑓𝑖𝑖
in,V𝑞𝑞𝑖𝑖,𝑐𝑐

in,V = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖
V

𝑜𝑜∈ℳ𝑖𝑖
V 𝑞𝑞𝑜𝑜,𝑖𝑖,𝑐𝑐

V + 𝑓𝑓𝑖𝑖
M,V𝑞𝑞𝑖𝑖,𝑐𝑐A ∀𝑐𝑐 ∈ {1, … ,𝐾𝐾}

       (21) 

𝑓𝑓𝑖𝑖
in,Vℎ𝑒𝑒𝑒𝑒V �𝑇𝑇𝑖𝑖

in,V, P,𝒒𝒒𝑖𝑖
in,V� = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖

V
𝑜𝑜∈ℳ𝑖𝑖

V ℎ𝑒𝑒𝑒𝑒V �𝑇𝑇𝑜𝑜,𝑖𝑖
V , P,𝒒𝒒𝑜𝑜,𝑖𝑖

V � +

                𝑓𝑓𝑖𝑖
M,Vℎ𝑒𝑒𝑒𝑒V �𝑇𝑇𝑖𝑖

A,V, P,𝒒𝒒𝑖𝑖
A,V�   (22) 

 𝑓𝑓𝑖𝑖
M,V = 𝑓𝑓𝑖𝑖

A,V(1 − 𝑧𝑧𝑖𝑖)    (23) 

𝑓𝑓𝑖𝑖
A,V, 𝒒𝒒𝑖𝑖

A,V and 𝑇𝑇𝑖𝑖
A,V and the corresponding constants for 

the modified liquid mixer are chosen such that the two 
fictitious streams are in vapour-liquid equilibrium at 
pressure P. When a column subsection is not selected, 
thanks to the fictitious streams that enter via the 
modified vapour and liquid mixers, a two-phase solution 
exists in each stage. Thus, no singularities are 
encountered in the MESH equations and sizing 
correlations that describe the subsection. 

Modified splitter 
We modify the splitters associated with the condi-

tional column subsections as shown in Figure 4. With the 
modified splitters we can correct for the fictitious non-

zero flows at the outlets of deselected process units 
caused due to fictitious mixer streams. We describe each 
modified vapour splitter 𝑜𝑜, (associated with column sub-
section 𝑜𝑜 ∈ ℛ) using Equations (5) and (6) and, 

𝑓𝑓𝑜𝑜
out,V = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖𝑖𝑖∈𝒮𝒮𝑜𝑜V + 𝑓𝑓𝑜𝑜

S,V   (24) 

0 ≤ 𝑓𝑓𝑜𝑜
out,V − 𝑓𝑓𝑜𝑜

S,V ≤ 𝑓𝑓𝑈𝑈𝑧𝑧𝑜𝑜             (25) 

0 ≤ 𝑓𝑓𝑜𝑜
S,V ≤ 𝑓𝑓𝑈𝑈(1 − 𝑧𝑧𝑜𝑜)   (26) 

where 𝑓𝑓𝑈𝑈 is an upper bound on the flowrates. 
Equations (24)-(26), ensure that when the subsec-

tion is deselected, any vapour that leaves the subsection 
(due to the fictitious flows in the modified mixers) leaves 
the splitter 𝑜𝑜 via a fictitious stream with flowrate 𝑓𝑓𝑜𝑜

S,V, 
composition 𝒒𝒒𝑜𝑜

out,V and temperature 𝑇𝑇𝑜𝑜
out,Vand is not prop-

agated to the rest of the flowsheet. On the other hand, 
when the subsection is selected, the fictitious stream is 
constrained to have a zero flowrate, and hence has no 
effect on the rest of the flowsheet. As before, the com-
position and temperature of the streams that leave the 
splitters are set equal to that at the inlet of the splitter. A 
vapour splitter and a modified vapour splitter are shown 
in Figure 4. The modified liquid splitter is analogous. 

 
Figure 3: A vapour mixer (denoted by an open circle) at 
inlet 𝑖𝑖 and a modified vapour mixer (denoted by a shaded 
circle) at inlet 𝑖𝑖.   

Modified output variables 
As a result of the fictitious flows into a deselected 

unit, several of the variables associated with the unit may 
take a spurious non-zero value. However, only a small 
subset of these variables, the output variables, is used in 
column-level computations. We introduce a “corrected 
output variable” 𝑥𝑥𝑗𝑗S for any output variable 𝑥𝑥𝑗𝑗 and enforce 
the following Big-M constraints: 

−𝑀𝑀(1 − 𝑧𝑧𝑖𝑖) ≤ 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗S ≤ 𝑀𝑀(1 − 𝑧𝑧𝑖𝑖)  (27) 

−𝑀𝑀𝑧𝑧𝑖𝑖 ≤ 𝑥𝑥𝑗𝑗S ≤ 𝑀𝑀𝑧𝑧𝑖𝑖.    (28) 

We further modify the column-level constraints that 
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depend on an output variable 𝑥𝑥𝑗𝑗 to depend on the cor-
rected output variable 𝑥𝑥𝑗𝑗S. In the case of column synthe-
sis, we reformulate constraints (10)-(12) in terms of these 
corrected output variables to obtain: 

𝜌𝜌L��� = ∑ 𝜌𝜌𝚤𝚤L
S�

𝑖𝑖∈ℛ

𝑁𝑁
     (29) 

𝜌𝜌V���� = ∑ 𝜌𝜌𝚤𝚤V
S�

𝑖𝑖∈ℛ

𝑁𝑁
     (30) 

𝑣𝑣V���� = ∑ 𝑣𝑣𝚤𝚤V
S�

𝑖𝑖∈ℛ

𝑁𝑁
     (31) 

Process unit-level constraints 
The process unit-level constraints and all column-

level constraints that do not depend on any of the output 
variables are unchanged. Numerical singularities by the 
use of the MSON are entirely averted as shown in [6]. 

 
Figure 4: A vapour splitter (denoted by an open square) 
at outlet 𝑜𝑜 and a modified vapour splitter (denoted by a 
shaded square) at outlet 𝑜𝑜. A ficititious stream (denoted 
by the dashed arrow) with flowrate 𝑓𝑓𝑜𝑜

S,V leaves the 
modified splitter. 

EXTENDED MSON (E-MSON) 
 In the derivation of the SON and MSON we assume 
that the pressure at the inlet of any unit (that is, the outlet 
of any mixer) is fixed at P. The operating pressure of any 
column subsection is also fixed at P, thanks to Equations 
(7)-(9). Further, we introduce fictitious streams in the 
modified mixers with states such so that when the unit is 
deselected, a two-phase solution is guaranteed for a col-
umn subsection at pressure P. However, if the deselected 
subsection is at any other pressure, the states of the fic-
titious stream may not necessarily result in a two-phase 
solution. Indeed, for any general process unit, the state 
of the fictitious stream in the mixer may not lead to the 
successful solution of the unit constraints when the op-
erating pressure varies.  

To overcome this limitation we first add the follow-
ing constraint to each vapour splitter as well as each 

modified vapour splitter 𝑜𝑜 in the superstructure: 

𝑃𝑃𝑜𝑜,𝑖𝑖
V = 𝑃𝑃𝑜𝑜

out,V ∀𝑖𝑖 ∈ 𝒮𝒮𝑜𝑜V    (32) 

 where 𝑃𝑃𝑜𝑜,𝑖𝑖
V  is the pressure of a vapour stream that flows 

from splitter 𝑜𝑜 to mixer 𝑖𝑖. Analogous constraints are 
added to the liquid splitters.  

We also modify the mixers in the flowsheet. The 
“mixing” of two streams that arise from two process units 
at unequal pressures may physically result in unintended 
flows, e.g., mass flows from the high-pressure unit into 
the low-pressure unit. Thus, in the extended MSON, only 
the mixing of streams that are at equal pressures is al-
lowed. We note that this mixing rule is trivially satisfied 
for the column synthesis problem studied here (as all 
streams are at 𝑃𝑃). The following pressure-mixing equa-
tion is introduced into the model of each vapour mixer 𝑖𝑖 
to describe the pressure at each vapour inlet: 

𝑓𝑓𝑖𝑖
in,V𝑃𝑃𝑖𝑖

in,V = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖
V

𝑜𝑜∈ℳ𝑖𝑖
V 𝑃𝑃𝑜𝑜,𝑖𝑖

V    (33) 

 Due to the pressure-mixing constraint, the pressure 
at the inlet 𝑖𝑖 is equal to that of stream(s) with strictly pos-
itive mass flowrates into unit 𝑖𝑖. The enthalpy balance for 
each mixer is modified to incorporate the pressure of 
each stream, yielding: 

𝑓𝑓𝑖𝑖
in,Vℎ𝑒𝑒𝑒𝑒V �𝑇𝑇𝑖𝑖

in,V,𝑃𝑃𝑖𝑖
in,V,𝒒𝒒𝑖𝑖

in,V� = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖
V

𝑜𝑜∈ℳ𝑖𝑖
V ℎ𝑒𝑒𝑒𝑒V �𝑇𝑇𝑜𝑜,𝑖𝑖

V ,𝑃𝑃𝑜𝑜,𝑖𝑖
V ,𝒒𝒒𝑜𝑜,𝑖𝑖

V �
       (34) 

A similar pressure-mixing equation is introduced into the 
modified vapour and liquid mixers. The pressure of the 
fictitious vapour and liquid streams in the modified mixer 
𝑖𝑖 is denoted by 𝑃𝑃𝑖𝑖A.  

𝑓𝑓𝑖𝑖
in,V𝑃𝑃𝑖𝑖

in,V = ∑ 𝑓𝑓𝑜𝑜,𝑖𝑖
V

𝑜𝑜∈ℳ𝑖𝑖
V 𝑃𝑃𝑜𝑜,𝑖𝑖

V + 𝑓𝑓𝑖𝑖
M,V𝑃𝑃𝑖𝑖A  (35) 

Due to Equation (35), the pressure at the inlet 𝑖𝑖 is equal 
to that of stream(s) with strictly positive mass flows into 
unit 𝑖𝑖. When the unit 𝑖𝑖 is deselected, the pressure at the 
inlet takes the value 𝑃𝑃𝑖𝑖A that leads to successful evalua-
tion of the process unit-level constraints that describe 𝑖𝑖. 
The enthalpy balance in modified mixers is also adapted, 
in an analogous matter to Equation (34).  
 The E-MSON only requires the modification to mix-
ers and splitters. All process unit-level constraints and 
column-level constraints are the same as the MSON. The 
E-MSON can be used to model a process unit with varia-
ble pressure and ensures successful solution when the 
unit is deselected, irrespective of its operating pressure. 
Further, the extended mixers and splitters are also nec-
essary to allow the E-MSON to be applied to the synthe-
sis of flowsheets in which the unit operations are at dif-
ferent pressures. However, to fully address the latter 
case for a general flowsheet, additional logical con-
straints as well as compressors and expanders are 
needed and we leave this for future work. 
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IMPLEMENTATION 
The E-MSON problem formulation is a mixed-integer 

nonlinear programming problem (MINLP) that is solved 
using the outer approximation equality relaxation aug-
mented penalty (OA-ER-AP) algorithm [17] that we have 
implemented in C++ [6]. All constraints of the primal 
problem are implemented and solved in gPROMS Model-
Builder 7.0.7 [18]. Each stage in the column is modelled 
as an equilibrium stage and all thermodynamic properties 
are computed using the SAFT-𝛾𝛾 Mie equation of state 
[19,20]. The master problem is solved using Gurobi 10.0.2 
[21] via its C++ application programming interface (API).  

CASE STUDY DESCRIPTION 
We consider the synthesis of a gas-liquid absorption 

column with at most 15 theoretical stages. The column 
must recover methane from a carbon dioxide and me-
thane stream, by physical absorption at high pressure. 
Given a feed of carbon dioxide and methane at flowrate 
1 kmol s-1, 298 K and pressure 𝑃𝑃 with 20% CO2 and 
tetra(oxymethylene)dimethylether (CH3O(CH2O)4CH3) as 
a solvent at 298 K and pressure 𝑃𝑃, find the optimal theo-
retical number of stages 𝑁𝑁, flowrate of fresh solvent 𝐹𝐹 as 
well as column pressure 𝑃𝑃 such that the treated gas has 
a flowrate of at least 0.66 kmol s-1 and is at least 97% 
methane and the total annualized cost 𝑇𝑇𝑇𝑇𝑇𝑇 is minimized. 
The 𝑇𝑇𝑇𝑇𝑇𝑇 depends on the total capital investment 𝑇𝑇𝑇𝑇𝑇𝑇 and 
the annual operating expenses 𝑂𝑂𝑃𝑃𝐸𝐸𝑂𝑂. We assume 𝐸𝐸 is 
0.8, 𝑙𝑙𝑡𝑡 is 0.6m, the cost of capital is 15%, the column life-
time is 10 years and that 2 MPa ≤ 𝑃𝑃 ≤ 7.5 MPa. Details of 
the model can be found in [6, 16].  

RESULTS 
 The superstructure for the column to be designed 
has  conditional subsections with    and  equilib-
rium stages respectively The results of the case study 
are summarised in Table  The optimal column has  
theoretical stages obtained by selecting only subsec-
tion  The OA-ER-AP algorithm converges to a solution 
in  major iterations  of which are found to be feasible 
With the E-MSON the primal problems are solved ro-
bustly no singularities are detected and a solution is 
obtained for the equations of the deselected subsec-
tions despite the variation of the column pressure in the 
course of optimization The primal problem in the E-
MSON has  equality constraints (excluding the 
equations corresponding to SAFT-𝛾𝛾 Mie)  inequality 
constraints and  degrees of freedom to be optimized 
(including fictitious flowrates in the modified mixers and 
splitters) The runtime (wall clock time) of the primal 
problem solution is  s on average with the standard 
deviation of  s Across the five feasible iterations the 

primal problems take  s to converge to a solution 
with the standard deviation of  s 

Table 1: Results of the E-MSON for the synthesis of a 
counter-current carbon-capture column. The first row 
shows the results for the variable-pressure case with the 
use of the E-MSON. The second row shows the results of 
the same case study in the fixed-pressure case with the 
use of the MSON where all streams and the column are 
at an a priori fixed pressure of 7.5 MPa.  𝐹𝐹 is in kmol/s, 𝑃𝑃 
is in MPa and 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑂𝑂𝑃𝑃𝐸𝐸𝑂𝑂 are in Million USD. 

Case 𝑃𝑃 𝐹𝐹 𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑃𝑃𝐸𝐸𝑂𝑂 
E-MSON       
MSON       

 
 We compare the results of the E-MSON with that of 
the MSON in which the column pressure and that of the 
feed and pure solvent are arbitrarily fixed at 7.5 MPa. The 
a priori fixed-pressure column has a minimum 𝑇𝑇𝑇𝑇𝑇𝑇 that is 
59% higher than the column in which pressure has been 
optimized, a 𝑇𝑇𝑇𝑇𝑇𝑇 that is 136% higher and 2 more equilib-
rium stages. In the fixed pressure case, a column with 4 
stages was found to be infeasible. The 6-stage column at 
7.5 MPa has a 34% higher 𝑇𝑇𝑇𝑇𝑇𝑇 than a 6-stage column at 
the optimal pressure of 2.6 MPa. The pressure heavily im-
pacts the relative solubilities of CO2 and CH4, product re-
covery, product quality and the capital cost of the ab-
sorber. The comparison across the two cases highlights 
the importance of making the pressure an additional de-
gree of freedom in separation column synthesis both for 
the study of specific separation solvents as well as for 
solvent design.  As we only use local optimization algo-
rithms, the inferior performance of the fixed-pressure 
column could also be due to convergence of the MSON 
to low-quality local minima. However, to assuage dis-
crepancies across formulations, we used the same initial 
guesses, solvers and solver parameters in both cases. 
 In our future work we shall extend the design enve-
lope to also consider i) the compression/expansion of the 
feed, ii) the solvent regeneration and recycle and iii) the 
cost of make-up solvent. 

CONCLUSION 
In this paper, we extended the state operator net-

work paradigm of superstructure optimization that was 
previously implicitly limited to the synthesis of isobaric 
flowsheets. We built upon the recently-developed MSON 
that guarantees convergence of deselected units, thus, 
making the MSON robust and amenable to high-fidelity 
simulation-based optimization. We developed E-MSON, 
the extended MSON which retains the robustness of the 
MSON while making it applicable to the synthesis of col-
umns as well as isobaric flowsheets in which the operat-
ing pressure is a variable.  
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By introducing pressure as an additional degree of 
freedom in absorption column synthesis, we found in our 
case study that overall costs decreased by 37%. The ex-
tended-MSON is a first step towards fully general super-
structure optimization within the SON paradigm in which 
all unit operations are at variable pressures. The results 
of the paper indicate that modelling the effects of pres-
sure rigorously can lead to superior designs. Furthermore 
this work expands the applicability of the state operator 
network to superstructure optimization problems with 
rigorous process models. 
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ABSTRACT 
Optimization-based process design is a central task of process systems engineering. However, 
solely relying on steady-state models may potentially lead to dynamic constraint violations, hinder 
robust performance, or simply reduce the controllability of a process. This has led to the consid-
eration of process dynamics in the design phase, which is commonly termed integration of design 
and operation / control. Recently, we proposed a framework to carry out this integrative task by 
formulating a large-scale nonlinear programming problem that is solved simultaneously. To this 
end, the dynamic process model was discretized, and dynamic variability and parametric uncer-
tainty were included. However, the proposed framework only operates on constant lengths of the 
finite elements. The discretization error was not assessed. Within this contribution, a method for 
quantifying this discretization error and adapting the number of finite elements accordingly is in-
corporated into the recently proposed framework and applied on the case study of a continuous 
tank reactor. The obtained results with and without discretization error control are compared and, 
based thereon, a more suitable way to apply the control variables on the process is proposed. 

Keywords: Integration of design and operation, Process design, Grid refinement, Nonlinear programming

INTRODUCTION 
Process design is a central task of process systems 

engineering. This is conventionally achieved by using 
flowsheet simulators or other software to determine a 
suitable flowsheet. Based on this flowsheet, the process 
is designed using methods such as sensitivity analysis. A 
possible alternative is optimization-based process de-
sign in which the whole flowsheet is optimized for a given 
objective function. Both approaches typically rely on as-
sumptions of stationarity. However, simply relying on 
steady-state models may potentially lead to dynamic 
constraint violations, hinder robust performance, or 
simply reduce the controllability of a process [1]. This has 
led to the consideration of process dynamics in the de-
sign, which is commonly termed integration of design and 
operation / control (IDO). Among the approaches to solv-
ing IDO problems is the dynamic optimization approach, 
which assesses the problem using rigorous dynamic 
models, and the robust approach, which ensures that no 
constraint violations occur at any point in time. For more 
information on the possible approaches to solving IDO 

problems, the reader is referred to the literature [1,2]. In 
recent years, we have proposed a framework for the so-
lution of IDO problems, which can be seen as a hybrid of 
the dynamic optimization approach and the robust ap-
proach. The concept is based on a full discretization of 
the dynamic problem via orthogonal collocation, which 
yields a large-scale nonlinear programming problem [3]. 
The framework was then extended to account for para-
metric uncertainty [4] and to a larger case study [5]. Note 
that we limit ourselves to deterministic solutions in this 
contribution. The extension to optimization under uncer-
tainty is, however, straightforward. 

So far, the proposed framework has considered a 
constant number and length for the finite elements in the 
discretized dynamic model, which may potentially intro-
duce notable discretization errors. Therefore, this contri-
bution addresses this drawback by adding a method for 
quantifying and controlling the integration error. The ex-
tended framework is applied on a case study containing 
a continuously stirred tank reactor (CSTR) for which pre-
vious results are available so that the former and the new 
approach can be compared fairly.  

mailto:c.hoffmann@tu-berlin.de
https://doi.org/10.69997/sct.141459
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STATUS QUO OF THE IDO FRAMEWORK 
The current formulation of the IDO problem reads as 

follows [6]: 

min
𝑑𝑑,𝑢𝑢𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓,𝑠𝑠𝑐𝑐

𝔼𝔼 �𝑓𝑓�𝑑𝑑,𝑢𝑢𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓,𝑠𝑠𝑐𝑐, 𝑥𝑥𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓,𝑠𝑠𝑐𝑐, 𝜉𝜉𝑠𝑠𝑐𝑐, 𝜈𝜈𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓�� (1) 

s.t. 

0 = 𝑔𝑔�𝑑𝑑,𝑢𝑢𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓,𝑠𝑠𝑐𝑐, 𝑥𝑥𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓,𝑠𝑠𝑐𝑐, 𝜉𝜉𝑠𝑠𝑐𝑐, 𝜈𝜈𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓�  (2) 

0 ≤  h (d, u𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓,𝑠𝑠𝑐𝑐, xcp,fe,sp, ξsp, υcp,fe)   (3) 

0 =  h0 (d, u0,𝑠𝑠𝑐𝑐, x0,𝑠𝑠𝑐𝑐, ξsp, ν0, t0  =  0)   (4) 

0 =  ht (d, u𝑡𝑡,𝑠𝑠𝑐𝑐, xt,sp, ξsp, νt, t𝑡𝑡)    (5) 

d ∈  𝒟𝒟      (6) 

u𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓,𝑠𝑠𝑐𝑐 ∈  𝒰𝒰     (7) 

x𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓,𝑠𝑠𝑐𝑐 ∈  𝒳𝒳     (8) 

ν𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓 ∈  APRBS    (9) 

 ν𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓~ 𝒩𝒩(𝜇𝜇,𝛴𝛴)      (10) 
 
Therein, the expected value of the objective func-

tion is minimized by varying the design d and the control 
variables u at all collocation roots cp, every finite element 
fe, and for all sigma points of the uncertainty space sp. 
The constraints include the dynamic process model g, 
path constraints, initial and terminal constraints h0 and ht. 
The variability of dynamic inputs is represented by an 
amplitude-modulated pseudo-random binary sequence 
(APRBS) [7] with normally distributed amplitude whereas 
the uncertain parameters ξ and the resulting probability 
density function of the uncertain inequality constraints, 
i.e., chance constraints, are represented by a point esti-
mation method, e.g., a cubature rule. All design, state, 
and control variables are defined on their respective do-
main. The problem is solved simultaneously as large-
scale nonlinear problem in Python, which is interfaced 
with the model formulation in AMPL [8] and the optimiza-
tion algorithm IPOPT [9] via AmplPy. 

METHODOLOGY 
We now describe the theoretical basis of the error 

calculation. Afterwards, the solution of the optimization 
problem is sketched, including the initialization of the 
new variables that appear due to the increasing number 
of finite elements. Afterwards, the case study in this con-
tribution is outlined. 

Error calculation 
There are several options to assess the discretiza-

tion error. In many situations, one can compare the error 
between a highly resolved solution and the solution ob-
tained with the current mesh grid to find an appropriate 

number of finite elements [10,11]. While this might be 
suitable for the solution of a standard boundary value 
problem, the additional challenge of this work are the rel-
atively long time horizons and the additional degrees of 
freedom in terms of the design variables of the process. 
As a results, the highly resolved solution might require 
significant computational effort and careful initialization. 
To avoid that, we chose an error estimation that does not 
compare the difference between two solutions, but the 
residual between the left-hand and the right-hand side of 
the differential equations. This estimation of the discreti-
zation error is based on the work by Chen et al. [12,13]. 
In their first publication, they formulated the search for 
an appropriate number and length of the finite elements 
as a bilevel optimization problem. As they pointed out, 
this entails significant computational demand [12]. 
Hence, they proposed in their subsequent publication to 
estimate the discretization error by evaluating the resid-
ual of the orthogonal collocation Tfe [13]: 

𝑇𝑇𝑖𝑖,𝑓𝑓𝑓𝑓 = d𝑥𝑥𝑖𝑖
d𝑡𝑡 �𝑡𝑡𝑓𝑓𝑓𝑓,𝑛𝑛𝑐𝑐� − Δ𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓�𝑥𝑥,𝑢𝑢,𝑑𝑑, 𝑡𝑡𝑓𝑓𝑓𝑓,𝑛𝑛𝑐𝑐�.  (11) 

Therein, the residual for the i-th state variable is evalu-
ated at one (or several) non-collocation points (subscript 
nc), i.e., points different from the used Radau roots. In 
their approach, Chen et al. also included the residuals of 
the algebraic equations. Here, we limit ourselves to the 
differential equations of the model although the exten-
sion to algebraic equations is straightforward. Based on 
the residual, the discretization error is estimated as: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖,𝑓𝑓𝑓𝑓 = C�𝑇𝑇𝑖𝑖,𝑓𝑓𝑓𝑓�.    (12) 

The constant C is given by the following integral: 

   C = 1
𝐴𝐴 ∫ ∏ �𝑠𝑠 − 𝜏𝜏𝑗𝑗�d𝑠𝑠𝐾𝐾

𝑗𝑗=1
𝜏𝜏𝑓𝑓𝑓𝑓,𝑛𝑛𝑐𝑐
0 ,    𝐴𝐴 = ∏ �𝜏𝜏𝑓𝑓𝑓𝑓,𝑛𝑛𝑐𝑐 − 𝜏𝜏𝑗𝑗�𝐾𝐾

𝑗𝑗=1  (13) 

This constant only depends on the choice of the non-col-
location point(s) and the type of collocation points (in this 
case Radau) and can thus be calculated once at the be-
ginning. The discretization error must be smaller than a 
user-defined tolerance: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖,𝑓𝑓𝑓𝑓 ≤ tol𝑖𝑖     (14) 

A similar scheme was recently proposed in [14]. 

Solution 
The algorithmic approach of this contribution is as 

follows: First, the optimization problem above is initial-
ized, e.g., via a steady-state optimization. Afterwards, 
the dynamic system is added, and dynamic variability of 
the inputs is introduced. Then, the optimization problem 
is solved by minimizing the objective using a nonlinear 
optimization algorithm, in this case IPOPT [9]. Based on 
the obtained results, the discretization error is calculated 
as described in Equations (12) and (13). If the error within 
one finite element is larger than the tolerance, the 
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respective finite element is split into two. These two finite 
elements are now initialized based on the current solu-
tion. This could be done via simple linear interpolation, 
but as we use collocation, the new initial guesses are cal-
culated by evaluating the Lagrange interpolation polyno-
mial, i.e., the sum of the Lagrangian basis polynomials of 
the collocation, at the new collocation points. This is re-
peated for all finite elements. Both approaches to initial-
ize the finite elements have their advantages and disad-
vantages. For the simple case study below, both would 
probably work equally well. Finally, the optimization prob-
lem is solved again and the error calculation is repeated. 
This step continues until all errors of the finite elements 
are smaller than the set tolerance. 

Case study 
The case study is a CSTR as shown in Figure 1. Com-

ponent A enters the reactor via the volume flow qF and 
reacts to B. The volume flow q then leaves the system 
with concentration cA and temperature T. The feed flow 
and the feed temperature are assumed as variable, dy-
namic inputs. The cooling duty QC can be manipulated 
with cooling water whose stream is change via the valve 
position VP1. The outlet flow can be manipulated using 
valve position VP2. 

 
Figure 1. Flowsheet of the CSTR in this case study [6]. 

For the process model, the following three assump-
tions are made [6]: 

1. Density and heat capacity of the flows are con-
stant and thus independent of temperature, 
pressure, or composition. 

2. The liquid phase in the reactor is ideally mixed. 
3. The pressure remains constant during operation. 
This results in the following mass, component, and 

energy balances: 

dVCSTR
𝐿𝐿

d𝑡𝑡
= 𝑞𝑞F − 𝑞𝑞    (15) 

d𝑐𝑐𝐴𝐴
d𝑡𝑡

= 𝑞𝑞𝐹𝐹
VCSTR
𝐿𝐿 �𝑐𝑐𝐴𝐴,F − 𝑐𝑐𝐴𝐴� − 𝑘𝑘0 exp �− 𝐸𝐸

𝑅𝑅𝑅𝑅
� 𝑐𝑐𝐴𝐴  (16) 

d𝑇𝑇
d𝑡𝑡 =

𝑞𝑞𝐹𝐹
VCSTR𝐿𝐿 (𝑇𝑇F − 𝑇𝑇) + 𝑘𝑘0 exp �−

𝐸𝐸
𝑅𝑅𝑇𝑇� 𝑐𝑐𝐴𝐴

(−Δ𝑅𝑅ℎ) − 

�̇�𝑄𝐶𝐶
𝜌𝜌𝑐𝑐𝑃𝑃VCSTR

𝐿𝐿      (17) 

Therein, k0 and E are the pre-exponential factor and the 
activation energy of the reaction, respectively, ∆Rh is the 
enthalpy of reaction, ρ is the density, and cp is the heat 
capacity. Moreover, the cooling duty is a function of VP1, 
whereas the liquid outlet depends on the liquid volume 
within the reactor and VP2. The operating costs depend 
on the outgoing mole flow of component A, the invest-
ments costs depend on the diameter and the height of 
the CSTR. The objective function is the sum of both 
costs. The control variables can be changed from one 
collocation point to another. However, this change is 
bounded: 

‖𝑢𝑢(𝑡𝑡𝑖𝑖) − 𝑢𝑢(𝑡𝑡𝑖𝑖+1)‖ ≤ Δ𝑢𝑢max   (15) 

The maximum change of u is specified by the user. We 
call this control formulation 1. For the temperature, an up-
per bound of 480 K is specified. Not violating this upper 
bound must be ensured by the process design in combi-
nation with the allowable range of the control variables. 
More details on the equations and the specifications for 
mean and standard deviation of the dynamic variability of 
feed flow and feed temperature can be found in [6].  
 For the results shown below, 0.5 was chosen as 
non-collocation point based on the work by Chen et al. 
[13], and a tolerance of 0.1 was specified for the discreti-
zation error. This value will be critically discussed at the 
end of the following section. 

RESULTS AND DISCUSSION 
The proposed optimization problem in combination 

with the method for quantifying the discretization error 
was solved for the presented case study. The obtained 
dynamic profiles are shown in Figure 2 (top). It can be 
observed that the temperature (black continuous line) is 
very close to but below the upper bound, meaning the 
IDO problem was solved successfully. In blue, the varia-
tion of the feed temperature is shown as a result of the 
APRBS. Lastly, the gray curve visualizes the change of 
the control variable VP1. For comparison, the obtained 
temperature profile with fixed number and length of finite 
elements is shown [6]. We frequently observe situations 
in which the temperature lies below the upper bound 
(where conversion is the largest) to ensure that the pro-
cess can be sufficiently cooled. 

Figure 2 (bottom) shows, however, the negative im-
pact of the refined discretization scheme. As more and 
more very small finite elements appear, these elements 
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allow the same control changes as longer elements. This 
results in very undesirable bang-bang solutions for the 
volume flow from the reactor, which would be deemed 
unrealistic (at best) or would render the process inoper-
able in practice. As a result of these observations, an al-
ternative formulation had to be found that allowed a var-
ying length of finite elements but also a generically appli-
cable bound on the control changes. For this reason, con-
trol formulation 2 is proposed: 

d𝑢𝑢𝑖𝑖,𝑓𝑓𝑓𝑓
d𝑡𝑡

= 𝑢𝑢ramp,𝑖𝑖,𝑓𝑓𝑓𝑓 with �𝑢𝑢ramp,𝑖𝑖,𝑓𝑓𝑓𝑓� ≤ 𝑢𝑢ramp,max,i (18) 

This means that the control variables are linear functions 
in each finite element. In addition, the control profiles 
must be continuous, i.e., the endpoint of control i in finite 
element fe is equal to the starting point of control i in fi-
nite element fe+1. For this control formulation, the IDO 

 
 

 
Figure 2: Dynamic profiles for temperature and opening of valve 1 (top), volume flow and opening of valve 2 
(bottom) for control formulation 1, i.e., control variables change between collocation points and can change by a 
certain range. Also included in the top figure is the dynamic feed temperature, the upper bound of the temperature 
during operation, and the temperature profile obtained for constant number and length of the finite elements [6]. 
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problem was solved again. The results are shown in Fig-
ure 3. The temperature profile is now much closer to the 
original solution with fixed number and length of the finite 
elements. The difference is, of course, that the number 
of finite elements is now much higher (here: 451 instead 
of 50) and that the profiles of the control variables are 
linear function in every finite element. In consequence, 
the IDO problem is successfully solved as well, but does 

not show the bang-bang solutions of control formulation 
1 (Figure 3, bottom). We conclude that the approach of 
linearizing the control profiles is suitable in the context of 
this contribution in which the process design can change 
to make the process resilient with respect to sudden 
changes in inputs, such as feed flows. We would neces-
sarily recommend this approach for other applications, 
such as parameter estimation. 

 
 

 
Figure 3: Dynamic profiles for temperature and opening of valve 1 (top), volume flow and opening of valve 2 
(bottom) for control formulation 2, i.e., control variables change linearly within one finite element and their change 
rate is constrained. Also included in the top figure is the dynamic feed temperature, the upper bound of the 
temperature during operation, and the temperature profile obtained for constant number and length of the finite 
elements (constant fe) [5]. 
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 It should be noted here that the approach might 
benefit from techniques to combine finite elements again 
where the discretization error is significantly below the 
set tolerance as, for example, described by Liu et al. [11], 
to keep the computational effort as low as possible. How-
ever, repeatedly adding and removing finite elements 
could potentially slow down convergence of the overall 
design problem, which is why this has not yet been im-
plemented. 
 Table 1 compares the design results of our previous 
study [6] and the results of this work. The smallest reac-
tor volume is still found for the steady-state case as this 
solution does not have to account for dynamic variability. 
The solution obtained for control formulation 1 results in 
a smaller reactor volume (and a smaller objective func-
tion) as the short-finite elements provide much more 
flexibility of the control variables at the cost of bang-
band solutions. Control formulation 2 results in a larger 
reactor volume. This might be due to the combination of 
the linear profiles for the control variables, but also be-
cause constraint violations hidden in the previous solu-
tion are now removed because of the controlled discreti-
zation error. Lastly, the role of the non-collocation point 
used for quantifying the discretization error shall be dis-
cussed. 
 

Table 2: Necessary number of finite elements under var-
iation of the non-collocation point for control formulation 
2. The case at 0.9 automatically satisfies the condition 
because C is negative and thus the error is automatically 
smaller than zero. 

Non-collocation 
point 

Constant C Number of finite 
elements 

      
      
      
     
 -  

The very pronounced increase of the necessary finite el-
ements by a factor of about 10 was very surprising, given 
that the system is not very complex. Hence, the specific 
location of the non-collocation point was varied to deter-
mine how the number of finite elements changes (Table 
2). It is observed that the location of the non-collocation 
point has a notable effect on the necessary number of 
finite elements. Specifically, the constant C has roots in 
the interval from zero to one (so the discretization error 
estimate is automatically zero as well), and it can become 
negative for non-collocation points closer to one. Hence, 
better criteria for its selection must be found. Until now, 
this remains and open research question and has, to the 
author’s knowledge, not been discussed so far in other 
contributions.  
 The impact of the continuously refined mesh is vis-
ualized in Figure 4. The design starts off with a reactor 
volume of 0.84 m³ and declines to approximately 0.81 m³ 
(see also Table 1). Although this impact is (in this case 
small) relatively small, it shows that it should still be in-
vestigated, especially for larger flowsheets with varying 
time constants. For the objective function, however, 
there is no clear trend observable (Figure 5). 
 

 

Figure 4. Reactor volume with increasing number of finite 
elements for a non-collocation point of 0.5. 

 

Table 1: Design specifications and cost functions for steady-state solution, dynamic solution with fixed number 
and length of finite elements (“previous solution”, taken from [6]), and dynamic solutions with control formulation 
1 and 2. The investment costs are given as annuity. 

 Variable Unit Steady-state  
solution [] 

Previous  
solution [] 

Control  
formulation  

Control 
formulation  

VCSTR m   · -   · -   · -   · - 
dCSTR m   · -   · -   · -   · - 
LCSTR m   ·    ·    ·    ·  
Cinv $ y-   · +   · +   · +   · + 
Cop $ y-   · +   · +   · +   · + 
f $ y-   · +   · +   · +   · + 
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Figure 5. Objective function with increasing number of 
finite elements for a non-collocation point of 0.5. 

CONCLUSION AND OUTLOOK 
This contribution extended our recently proposed 

framework for solving IDO problems by incorporating a 
measure of the discretization error to avoid incorrect pro-
files and, in consequence, possibly hidden constraint vi-
olations in these badly resolved regions. The extended 
framework was applied on a CSTR case study for which 
its geometry, i.e., volume, height, and diameter, was de-
termined while satisfying operational constraints, such as 
an upper bound of the temperature, for all timepoints in 
the horizon. Based on the presented findings, a reformu-
lation for control variables is recommended, i.e., the line-
arization of the profiles within one finite element, which 
prohibits strongly oscillating control profiles in highly re-
solved regions of the time horizon. 

In the future, this error-controlled approach shall be 
extended to parametric uncertainty. This is of particular 
interest as the probability distribution of the uncertain 
parameters will influence the time constants of the indi-
vidual scenarios, which will potentially result in com-
pletely different numbers and lengths of the finite ele-
ments for each uncertainty scenario. 
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ABSTRACT 
Although global efforts for CO2 capture are underway, large-scale CO2 capture projects still face 
economic risks and technical challenges. The Rotating Packed Bed (RPB) provides an alternative 
solution by mitigating location constraints and enabling a gradual increase in the scale of CO2 
capture through compact modular sizes. However, the main challenge in RPB-based CO2 capture 
processes lies in the limited experience with implementing industrial-scale RPB processes. The 
intricate relationship between RPB unit design, operating conditions, and process performance 
further complicates the process-level analysis for scale-up. To address these challenges, we pro-
pose an optimization-based process design for RPB-based CO2 capture. Leveraging rigorous pro-
cess modeling and simulation, we aim to make simultaneous decisions on RPB unit design and 
operating conditions. Ultimately, our goal is to develop a cost-effective and optimal RPB-based 
CO2 capture process, supported by comprehensive cost evaluations. This modularized and cost-
effective approach is expected to facilitate rapid implementation and gradual scale-up, thereby 
reducing entry barriers to CO2 capture technology for industries. 

Keywords: Carbon Dioxide Capture, Process Intensification, Modelling and Simulations, Process Design, Tech-
noeconomic Analysis 

INTRODUCTION 
In the ongoing efforts to combat climate change, 

CO2 capture is expected to play a pivotal role for the fore-
seeable future. Among the available capture techniques, 
amine-based absorption stands out as a mature technol-
ogy, with several industrial-scale CO2 capture facilities in 
operation worldwide [1]. However, experiences such as 
the Petra Nova project, one of the largest industrial-scale 
CO2 capture projects, have revealed the economic risks 
and technical complexities associated with building and 
operating such large-scale CO2 capture processes. While 
economies of scale can benefit large-scale processes, 
the substantial initial cost and space requirement for vast 
CO2 capture facilities make them less favorable invest-
ments [2]. Process intensification, particularly through 
technologies like the Rotating Packed Bed (RPB), offers a 
potential solution to address this hurdle. 

RPB, as a form of process intensification, enhances 
mass transfer and unit throughput with the rotation of a 
packed bed. The increased centrifugal force widens the 

selection window for packing materials and facilitates the 
use of highly viscous solvents. This improved throughput 
can significantly reduce the required volume for column 
units, which typically account for approximately 50% of 
the capital expenditures (CAPEX), by up to 65% [3].  

Driven by the potential benefits of RPB in shrinking 
mass transfer units, there have been numerous lab-scale 
experiments [4-6].  On the other hand, its application to 
industrial-scale CO2 capture has been limited. Recent 
studies have explored RPB-based CO2 capture on a scale 
of approximately 2200 tons per day (TPD)[7]. However, 
these studies have overlooked certain important factors, 
such as the pressure drop, in the RPB design, hindering 
the provision of realistic insights. Moreover, the overall 
lack of large-scale RPB-based process implementations 
poses challenges in extrapolating findings to larger and 
more practical scales. Notwithstanding the potential 
economies of scale, the practical viability of large-scale 
RPB units raises questions, especially considering that 
their characteristics are more aligned with small-to-me-
dium scale applications.  

mailto:jlee4140@usc.edu
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The central question addressed in this research re-
volves around establishing a cost-effective design and 
optimal operating conditions for the RPB-based CO2 cap-
ture process. The efficacy of applying RPB for CO2 cap-
ture at an industrial scale remains uncertain, primarily due 
to a lack of experience in establishing such processes. 
Furthermore, limited insights exist regarding unit design 
guidelines and operating conditions for an industrial-
scale RPB-based CO2 capture process. While Agarwal et 
al. [8] presented a systematic RPB column design proce-
dure, it is heuristics-based and can only address minimal 
design requirements to prevent flooding of the liquid or 
jet ejection of the vapor. Furthermore, the RPB column’s 
design is contingent upon the initial assumptions about 
some process operating variables, e.g., the rotation 
speed of packing. The design of the RPB column influ-
ences mass transfer and hydraulic phenomena, impact-
ing optimal conditions and overall performance. The in-
herent characteristics of the RPB demand iterative de-
sign and operating condition decisions, pointing to the 
limited effectiveness of the conventional sequential pro-
cess design approach. 

To address these limitations, we adopt a simultane-
ous optimization-based approach for both RPB design 
and operating conditions. Utilizing a comprehensive 
model for an RPB-based CO2 capture process with a ref-
erence MEA solvent, we seek cost-effective RPB design 
and operating conditions for the compact CO2 capture 
process. The envisioned modularized RPB-based CO2 
capture process aims to expedite implementation, ena-
bling a phased scale-up of the CO2 capture process and 
thus reducing entry barriers for the industry. 

SYSTEM DESCRIPTION 

RPB Column and Process Model 
A process model for the RPB-based CO2 capture 

process is constructed using the gPROMS custom 
modeling environment, building upon the foundation 
established in our prior publication [9]. The enhancement 
factor and effective surface area models have been 
updated for improved accruacty, incorporating a wider 
range of pilot plant operation data in this study. To ensure 
consistent insights into design and energy consumption, 
we seelcted the widely used MEA amine as the reference 
solvent. The increased centrifugal force in RPB units 
facilitates the application of high-viscosity solvents, 
prompting exploration into concentrated amine solvents, 
often enhanced with anti-degradation additives. MEA 
concentrations ranging from 30 to 75wt% MEA solvents 
are typical for RPB-based CO2 capture, and we employed 
the eNRTL (electrolyte Non-Radom Two-Liquid) model 
with updated parameters for this broad range of MEA 
concentrations [10] as our thermodynamic model. The 
RPB column model adopts the two-film theory for the 

calculation of mass and heat transfer rates, 
complemented by an enhancement factor model.  

 

Figure 1. Conceptual scheme of RPB column model. 

Figure 1 illustrates the conceptual scheme of the 
developed RPB column model, where vapor and liquid 
phases flow counter-currently along the radial axis, re-
sulting in the formulation of the partial differential equa-
tion (PDE) with radial distribution: 

𝜀𝜀𝐿𝐿 𝜕𝜕𝐶𝐶𝑖𝑖
𝐿𝐿

𝜕𝜕𝜕𝜕
= − 1

2𝜋𝜋𝜋𝜋𝜋𝜋
𝜕𝜕�𝐹𝐹𝐿𝐿𝑥𝑥𝑖𝑖�
𝜕𝜕𝜋𝜋

+ 𝑎𝑎𝐼𝐼𝑁𝑁𝑖𝑖   (1) 

𝜀𝜀𝑉𝑉 𝜕𝜕𝐶𝐶𝑖𝑖
𝑉𝑉

𝜕𝜕𝜕𝜕
= 1

2𝜋𝜋𝜋𝜋𝜋𝜋
𝜕𝜕�𝐹𝐹𝑉𝑉𝑦𝑦𝑖𝑖�

𝜕𝜕𝜋𝜋
− 𝑎𝑎𝐼𝐼𝑁𝑁𝑖𝑖   (2) 

𝜀𝜀𝐿𝐿𝐶𝐶𝜕𝜕𝑡𝑡𝜕𝜕𝐿𝐿 𝐶𝐶𝑝𝑝𝐿𝐿
𝜕𝜕𝑇𝑇𝐿𝐿

𝜕𝜕𝜕𝜕
= −𝐹𝐹𝐿𝐿𝐶𝐶𝑝𝑝𝐿𝐿

2𝜋𝜋𝜋𝜋𝜋𝜋
𝜕𝜕𝑇𝑇𝐿𝐿

𝜕𝜕𝜋𝜋
+ 𝑎𝑎𝐼𝐼(ℎ𝐼𝐼(𝑇𝑇𝑉𝑉 − 𝑇𝑇𝐿𝐿) 

              +𝑁𝑁𝐻𝐻2𝑂𝑂𝛥𝛥𝐻𝐻𝐻𝐻2𝑂𝑂
𝑣𝑣𝑣𝑣𝑝𝑝 + 𝑁𝑁𝐶𝐶𝑂𝑂2𝛥𝛥𝐻𝐻𝐶𝐶𝑂𝑂2

𝑣𝑣𝑎𝑎𝑎𝑎)  (3) 

𝜀𝜀𝑉𝑉𝐶𝐶𝜕𝜕𝑡𝑡𝜕𝜕𝑉𝑉 𝐶𝐶𝑝𝑝𝑉𝑉
𝜕𝜕𝑇𝑇𝑉𝑉

𝜕𝜕𝜕𝜕
= 𝐹𝐹𝑉𝑉𝐶𝐶𝑝𝑝𝑉𝑉

2𝜋𝜋𝜋𝜋𝜋𝜋
𝜕𝜕𝑇𝑇𝑉𝑉

𝜕𝜕𝜋𝜋
− 𝑎𝑎𝐼𝐼ℎ𝐼𝐼(𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑉𝑉)  (4) 

Here, 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜋𝜋, 𝑟𝑟𝑡𝑡𝑜𝑜𝜕𝜕𝑖𝑖𝜋𝜋 and 𝑧𝑧 represent the inner radius, outer 
radius, and height of the RPB unit, respectively. 𝐶𝐶 and 𝐹𝐹 
denote concentration and molar flowrate, respectively. 
As the control volume changes along the radial axis, the 
continuity equations 𝐹𝐹 = 2𝜋𝜋𝑟𝑟𝑧𝑧𝐶𝐶𝜕𝜕𝑡𝑡𝜕𝜕𝑢𝑢  hold for both vapor 
and liquid phases. The mass transfer rate of CO2, 𝑁𝑁𝐶𝐶𝑂𝑂2, is 
calculated using the two-film theory with an enhance-
ment factor as follows: 

𝑁𝑁𝐶𝐶𝑂𝑂2 = 𝐾𝐾𝐶𝐶𝑂𝑂2
𝑡𝑡𝑣𝑣𝑖𝑖𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜�𝑃𝑃𝐶𝐶𝑂𝑂2 − 𝑃𝑃𝐶𝐶𝑂𝑂2

∗ �   (5) 

𝐾𝐾𝐶𝐶𝑂𝑂2
𝑡𝑡𝑣𝑣𝑖𝑖𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜 = 1

𝑅𝑅𝑇𝑇𝑉𝑉

𝑘𝑘𝐶𝐶𝑂𝑂2
𝑉𝑉 + 𝐻𝐻𝑒𝑒𝑖𝑖

𝐸𝐸𝐶𝐶𝑂𝑂2𝑘𝑘𝐶𝐶𝑂𝑂2
𝐿𝐿

   (6) 

Here, 𝐾𝐾𝑡𝑡𝑣𝑣𝑖𝑖𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜 , 𝑃𝑃𝐶𝐶𝑂𝑂2  and 𝑃𝑃𝐶𝐶𝑂𝑂2
∗   represent the overall mass 

transfer coefficient, CO2 partial pressure, and equilibrium 
CO2 partial pressure, respectively. Table 2 provides the 
transfer correlation and reaction models used for the col-
umn model. Figure 2 illustrates the overall flowsheet of 
the RPB-based CO2 capture process, encompassing the 
developed RPB model and additional process units within 
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the gPROMS simulation environment. 

Table 2: Transfer correlation and reaction models 

Variables Model 
Effective surface area (𝑎𝑎𝐼𝐼) Xie et al [] 
Liquid transfer coefficient (𝑘𝑘𝐿𝐿) Tung et al [] 
Vapor transfer coefficient (𝑘𝑘𝑉𝑉) Onda et al [] 
Heat transfer coefficient (ℎ𝐼𝐼) Chilton-Colburn 

analogy 
Enhancement factor (𝐸𝐸𝐶𝐶𝑂𝑂2) Wellek et al [] 
Reaction kinetics (𝑘𝑘𝑣𝑣𝑝𝑝𝑝𝑝) Luo et al [] 

Process Model Validation 
Given the lack of comprehensive operational data 

for the overall RPB-based CO2 capture process in existing 
literature, we subjected our developed process model to 
a validation process using operation data from separate 
absorber and striper pilot plants. We utilized pilot plant 
operation data from Jassim’s (Run 1 to 16) [4] and 
Kolawole’s study (Run 1 to 36) [16] for absorber column 
validation and Cheng’s study (Run 1 to 12) for stripper 
column validation. 

As shown in Figure 3 and Figure 4, our validation 
results affirm the satisfactory fidelity of the developed 
RPB column model. The RPB model demonstrates robust 
predictive capabilities, with an error range of about 
±10%p for CO2 capture rate and ±20% for energy 
consumption. Even under a range of MEA concentration 
and various operating conditions, the  RPB model  
maintains a mean absolute relative error (MARE) of 11.4 % 
and 9.2% for CO2 capture rate and energy consumption, 
respectively. 

 
Figure 3. Comparison of pilot plant and process model 
(CO2 capture rate). 

 
Figure 4. Comparison of pilot plant and process model 
(Energy consumption). 

 
Figure 2: Overall flowsheet of RPB-based CO2 capture process model (gPROMS). 
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ANALYSIS OF LARGE-SCALE PROCESS 

Target Scale and System 
The implementation of an excessively large-scale 

RPB-based CO2 capture process faces inherent chal-
lenges, given the quadratic increases in both rotational 
energy and pressure drop. The rotational nature of the 
RPB introduces escalating demands for momentum and 
centrifugal energy as the process unit size expands. In 
addition, the heightened angular acceleration and torque 
as the plant scale increase can require additional mainte-
nance and safety concerns due to the intricate system 
control, increased mechanical strain on components, im-
pact on the lifespan of process units, elevated risk of fail-
ures, and potential discomfort for operators [17, 18]. Con-
sequently, the preference leans towards favoring an in-
dustrial-scale RPB-based process in the small-to-me-
dium range, deviating from the conventional CO2 capture 
process with fixed packed beds. 

In this study, we explore a medium-scale process at 
100 TPD CO2 capture, specifically targeting flue gas from 
a coal-fired power plant. This choice aligns with a 
pragmatic compromise, as the flue gas flow rate for the 
100 TPD scale equates to the flue gas from an 
approximately 6 MW scale power plant. Table 3 shows 
the considered inlet flue gas stream condition in this 
study. 

Table 3: Inlet flue gas stream condition 

Variables Value 
Scale (TPD CO capture)  
Flow rate (kg/s)  
Temperature (℃)  
Pressure (bar)  
Mole fraction CO (%)  
Mole fraction HO (%)  
Mole fraction N (%)  
Mole fraction O (%)  

Simultaneous Optimization of RPB Design and 
Operating Condition  

The highly coupled nature of RPB design and oper-
ating conditions often leads to local optima when a heu-
ristic-based and sequential process design approach is 
applied. Consequently, the simultaneous determination 
of process unit design and operating conditions can offer 
a more cost-effective solution. 

In our simultaneous design approach, an optimiza-
tion problem is formulated to minimize the total annual 
cost (TAC) per the amount of captured CO2, utilizing both 
RPB design parameters (𝑑𝑑) and operating variables of the 
overall process (𝑥𝑥) as decision variables. The formulation 
is as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 
𝑑𝑑,𝑥𝑥

𝑇𝑇𝑇𝑇𝐶𝐶
�̇�𝑚𝐶𝐶𝑂𝑂2,𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶

= 𝑇𝑇𝐶𝐶𝐶𝐶+𝑇𝑇𝑂𝑂𝐶𝐶
�̇�𝑚𝐶𝐶𝑂𝑂2,𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶

   (7) 

𝑑𝑑 ∈ �𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜋𝜋,𝑗𝑗 , 𝑟𝑟𝑡𝑡𝑜𝑜𝜕𝜕𝑖𝑖𝜋𝜋,𝑗𝑗 ,𝐻𝐻𝑗𝑗�   (8) 
𝑥𝑥 ∈ �𝐹𝐹𝑆𝑆𝑡𝑡𝑜𝑜𝑣𝑣,𝑇𝑇𝑅𝑅𝑖𝑖𝑎𝑎 ,𝑃𝑃𝑆𝑆𝜕𝜕𝜋𝜋 ,𝜔𝜔𝑗𝑗�   (9) 
s.t.   𝜂𝜂𝐶𝐶𝑣𝑣𝑝𝑝 ≥ 90%    (10) 
   𝑇𝑇𝑅𝑅𝑖𝑖𝑎𝑎 ≤ 120℃    (11) 
   0% ≤ 𝜙𝜙𝑓𝑓𝑜𝑜𝑡𝑡𝑡𝑡𝑑𝑑,𝑗𝑗 ≤ 80%   (12) 
   𝑟𝑟𝑚𝑚𝑖𝑖𝑖𝑖,𝑗𝑗 ≤ 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜋𝜋,𝑗𝑗 ≤ 𝑟𝑟𝑡𝑡𝑜𝑜𝜕𝜕𝑖𝑖𝜋𝜋,𝑗𝑗   (13) 
   𝐻𝐻𝑗𝑗/𝑟𝑟𝑡𝑡𝑜𝑜𝜕𝜕𝑖𝑖𝜋𝜋,𝑗𝑗 ≤ 1    (14) 

In the above formulation, 𝐴𝐴𝐶𝐶𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶 represent the an-
nualized capital and operating cost, respectively. The in-
dex  𝑗𝑗 represents the RPB units, encompassing absorber 
(𝐴𝐴𝐴𝐴𝐴𝐴 ) and stripper (𝑆𝑆𝑆𝑆𝑟𝑟 ) columns. We employ the Lang 
factor method, based on the free-on-board (FOB) cost 
with a value of 5.93 for continuous process [19], to esti-
mate the capital cost. Meanwhile the operating cost is 
calculated from the energy consumption using rigorous 
process simulation. The details on decision variables as 
summarized in Table 4. 

Table 4: Considered decision variables 

Process variables Symbols 
RPB inner radius (m) 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜋𝜋,𝑗𝑗 
RPB outer radius (m) 𝑟𝑟𝑡𝑡𝑜𝑜𝜕𝜕𝑖𝑖𝜋𝜋,𝑗𝑗 
RPB height (m) 𝐻𝐻𝑗𝑗 
Solvent flowrate (kg/s) 𝐹𝐹𝑆𝑆𝑡𝑡𝑜𝑜𝑣𝑣 
Reboiler temp (℃) 𝑇𝑇𝑅𝑅𝑖𝑖𝑎𝑎 
Stripping pressure (bar) 𝑃𝑃𝑆𝑆𝜕𝜕𝜋𝜋 
RPB rotation speed (RPM) 𝜔𝜔𝑗𝑗 

 Constraints include a lower bound on 90% capture 
rate, an upper bound of 120℃ on reboiler temperature to 
prevent thermal degradation of solvent, and a constraint 
on the 80% flooding condition to govern the RPB design 
parameters. Additionally, constraints on the minimum 
RPB inner radii [8] and mechanical recommendations for 
RPB design [20] are incorporated to ensure the reliability 
of RPB design. 

Due to the absence of a specialized capital cost es-
timation model for industrial-scale RPB units in existing 
literature, we adopt a cost estimation model designed for 
centrifuges. The FOB purchase cost for the RPB unit is 
assumed to be the aggregate of costs associated with 
the rotation components (motor and rotor) and the pack-
ing bed. Leveraging cost models developed for centri-
fuges, the cost model unfolds as follows: 

𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑂𝑂𝑅𝑅 = 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝜕𝜕𝜋𝜋𝑖𝑖𝑓𝑓𝑜𝑜𝐶𝐶𝑖𝑖𝐹𝐹𝑂𝑂𝑅𝑅 + 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑣𝑣𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑣𝑣𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝐶𝐶  (15) 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝜕𝜕𝜋𝜋𝑖𝑖𝑓𝑓𝑜𝑜𝐶𝐶𝑖𝑖𝐹𝐹𝑂𝑂𝑅𝑅 = $6180 ∙ (𝐷𝐷𝑡𝑡𝑜𝑜𝜕𝜕𝑖𝑖𝜋𝜋)0.94  (16) 

In the above equations, 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑣𝑣𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝐶𝐶  and 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑣𝑣𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝐶𝐶  represent 
the volume and cost of packing, respectively, with a 
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packing price of $285/ft3. 𝐷𝐷𝑡𝑡𝑜𝑜𝜕𝜕𝑖𝑖𝜋𝜋denotes the diameter of 
centrifuges (RPB in this study) in inches. For utility cost 
calculations, $8/GJ, $19.2/GJ, and $0.015/GJ are applied 
for steam, electricity, and cooling water, respectively. 

RESULT AND DISCUSSION 
The cost model developed for the simultaneous de-

sign approach enables a comparative analysis of CO2 
capture costs against the sequential heuristics-based 
design. In the heuristics-based method, RPB units were 
designed using Agarwal’s RPB design procedure [8], and 
operating conditions were determined through an optimi-
zation problem aimed at minimizing energy consumption 
per captured CO2 as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 
𝑥𝑥
𝐸𝐸𝐶𝐶𝑣𝑣𝑝𝑝 = 𝐸𝐸𝑆𝑆𝜕𝜕𝑖𝑖𝑣𝑣𝑚𝑚 + 𝐶𝐶𝑃𝑃𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝜋𝜋𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝐸𝐸𝐸𝐸𝑜𝑜𝑖𝑖𝑃𝑃  (17) 

The decision variables in eq (9) were employed, and a 
conversion factor of 1/0.4 was applied to align energy 
types. 

 
Figure 5. Comparison of CO2 capture cost with heuristic 
and simultaneous design approach according to varying 
MEA concentrations. 

Figure 5 illustrates the total CO2 capture cost at var-
ying concentrations of MEA solvent for both heuristics-
based and simultaneous design approaches. The esti-
mated total capture costs with RPB units range from 
$60.0 to 88.1/tCO2, with the primary contributors being 
utility cost from steam, RPB column CAPEX, and fixed op-
eration costs. Notably, the energy consumption by pack-
ing rotation does not constitute a significant portion of 
the overall cost. Given that the RPB CAPEX constitutes a 
large portion of the CO2 capture cost, obtaining empirical 
data and developing appropriate cost estimation models 
will be a crucial for future scale-up studies of RPB-based 
processes.  

The results reveal that employing the simultaneous 

decision results in an 9.4-12.7% reduction in CO2 capture 
cost. This reduction is predominantly attributed to a de-
crease in column CAPEX, highlighting the effectiveness 
of incorporating RPB design parameters into the optimi-
zation problem as decision variables. The limitations of 
the sequential and heuristic design approach become 
more evident through the optimal design parameters and 
process variables shown in Table 5 and Table 6. The op-
timized RPB design parameters and rotational speed ex-
hibit significant differences in both approaches. The op-
timization results align with our understanding that main-
taining the inner radius at a minimum is advantageous. 
However, the RPB design from the simultaneous solution 
shows the increased RPB height and reduced outer ra-
dius. Such a tall and stout RPB design is expected to con-
tribute not only to reducing RPB CAPEX but also rotation 
energy and pressure drop, while maintaining the same 
unit throughput. 

Table 5: RPB design and optimized process variables 
(Heuristics-based approach) 

Variables wt% wt% wt% 
ABS-Inner radius (m)    
ABS-Outer radius (m)    
ABS-Height (m)    
STR-Inner radius (m)    
STR-Outer radius (m)    
STR-Height (m)    
Solvent flowrate (kg/s)    
Reboiler temp (℃) * * * 
Stripping pressure (bar)    
ABS-RPM (rpm)    
STR-RPM (rpm)    

*Constraint active 

Table 6: Optimized RPB design and process variables 
(Simultaneous optimization approach) 

Variables wt% wt% wt% 
ABS-Inner radius (m) * * * 
ABS-Outer radius (m)    
ABS-Height (m)    
STR-Inner radius (m) * * * 
STR-Outer radius (m)    
STR-Height (m)    
Solvent flowrate (kg/s)    
Reboiler temp (℃) * * * 
Stripping pressure (bar)    
ABS-RPM (rpm)    
STR-RPM (rpm)    

*Constraint active 
Variations in MEA concentration also exert a signifi-

cant influence on process performance and total capture 
costs. Increasing the MEA concentration from 30wt% to 
70wt% results in notable savings in energy consumption 
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and capture cost, ranging from 28.6 to 31.3% and 22.1 to 
25.0%, respectively. This observed improvement is 
mainly attributed to the reduction in the amount of water 
evaporation heat in the reboiler. Furthermore, there is a 
notable reduction in the size of the RPB units, which can 
be attributed to the accelerated CO2 absorption reaction 
rate associated with the increased amine concentration. 
While the widespread adoption of highly concentrated 
MEA solvent on an industrial scale is constrained by con-
cerns about solvent degradation, the expanded solvent 
selection window offered by the RPB unit proves advan-
tageous in saving energy consumption and reducing the 
total CO2 capture cost. 

The interdependence of rotational speed and RPB 
design is evident, as alterations in the RPB unit design 
necessitate adjustments in the rotation speed. Particu-
larly in larger-scale processes, lowering the rotation 
speed becomes advantageous to counteract the quad-
ratic rise in energy consumption with packing rotation. 

CONCLUSION 

The RPB-based CO2 capture process is anticipated 
to find application across diverse industries owing to its 
enhanced processing capacity and reduced space re-
quirements. To address the lack of process-level cost 
evaluation and a systematic design procedure for scaling 
up on this system, we undertook an exploration of a cost-
effective capture process through modeling, simulation, 
and optimization. Initially, a first principle-based process 
model was developed and validated. By simultaneously 
optimizing RPB design and process operating conditions, 
we realized cost savings of 9.4-12.7% compared to se-
quential and heuristics-based design approaches. The 
estimated total CO2 capture cost with RPB units ranged 
from $60.0 to 88.1 per ton of CO2, varying with MEA con-
centration. The optimal RPB design found in this study, 
characterized by a taller height and shorter diameter, de-
viates from the heuristics-based approach. Given the 
strong correlation among RPB design, operating condi-
tions, and process performance, our simultaneous design 
approach for RPB-based process holds promise for in-
sightful process analysis across various scales in the fu-
ture. 
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ABSTRACT 
Early stage exploration of reaction systems, including catalyst selection, operating conditions’ 
specifications, reactor design, and optimization, is critical in the engineering field. It is general 
practice in the reaction engineering field to explore systems against certain performance metrics, 
of which yield is one of the most commonly utilized objectives. While the yield provides a quanti-
tative measure of how efficiently reactants are converted into target product(s), its definition is 
ambiguous, particularly in the presence of side/ incomplete reactions, and multiple products. Most 
of the yield definitions focus on a specific target product; however, conditions within the reactor 
search space that provide a maximum yield for one product may not be the same as those for 
another. Moreover, the presence of other undesired products that are not considered may reduce 
the overall efficiency of the system. This necessitates the utilization of a more holistic metric that 
encompasses the value of all the generated products. Attempts to address this consider lumping 
components into a total yield metric. However, this assumes equal weights on all components 
without adequately capturing their individual significance on the actual performance. This study 
proposes the utilization of an “economic-value yield” objective that captures all the products’ value 
by using the market price as a weight factor. The traditional yield metric for the various products 
is contrasted against the economic one to highlight its ability of providing insight into regions 
within the reactor search space that are associated with high-value products that are otherwise 
not observed in the conventional definition. This is illustrated with a case study utilizing propane 
as a feedstock in the novel piston reactor technology.  

Keywords: Reaction, Technoeconomic Analysis, Reaction Engineering, Propane 

INTRODUCTION 
The development of optimized and novel reactors is 

key for sustainable technology design and development 
[1] . Early-stage exploration and design of reaction sys-
tems is of paramount importance in reaction and chemi-
cal engineering for a plethora of reasons including the
identification and screening of promising reactions, se-
lection of raw materials and catalysts, understanding re-
action mechanisms, optimization of reaction conditions,
and assessing the overall feasibility of a reaction system.
It is general practice in the catalysis and reaction engi-
neering field to study reaction systems against certain
performance metrics that assist in evaluating the effi-
ciency of reactors and chemical reactions. Various objec-
tives are utilized to evaluate reactors, depending on the

characteristics of the reaction and nature of the process. 
Some of the most commonly used metrics include con-
version, selectivity, and yield.  

While the yield is a fundamental and widely used 
metric in chemical engineering and reaction optimization, 
there is no universally agreed upon definition for such a 
term.  it remains associated with limitations including the 
ambiguity of its definition, as it can refer to conversion 
yield, selectivity yield, total yield, or other variations that 
may result in misinterpretations. Moreover, most of the 
yield definitions focus primarily on the desired product 
without accounting for the formation of by-products or 
undesired side reactions that can be crucial for assessing 
the system’s overall performance. For instance, a reac-
tion with high yield may be deemed undesirable if it re-
sults in the production of substantial amounts of 
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unwanted by-products. Maximizing the yield for one 
product may not result in the conditions that reflect opti-
mum performance. A more holistic approach is required 
to account for the contribution of multiple products in a 
reaction system. Attempts to address this issue consider 
lumping the components into a total yield term [2]. How-
ever, this assumes equal weights on all the generated 
products. A proper weighted yield term is required to ac-
count for the contribution of multiple products in a reac-
tion system based on their significance.  

The concept of economics can serve as a powerful 
tool to practically evaluate chemical reactions. This study 
proposes the utilization of an “economic-value yield” 
(EVY) metric, by assigning weights to the various compo-
nents based on their market price, and contrasts it 
against traditional yield metric definitions to highlight its 
ability of providing insight into regions within the reactor 
search space that are associated with high-value prod-
ucts. To the authors’ knowledge, there are no peer-re-
viewed publications utilizing metrics that capture the 
economics of the reaction products when assessing re-
action chemistries.  Such a metric is particularly helpful in 
the assessment of novel reactor technologies.  

One of the emerging novel reactor concepts is the 
piston reactor technology, which is essentially a repur-
posed internal combustion engine that focuses primarily 
on the production of chemicals, in addition to the power 
and heat associated with the conventional combustion 
engine. Its advantages include high temperature and 
pressure conditions at short residence times, thereby en-
hancing the performance of numerous chemical reac-
tions. The cyclic nature of the reaction system offers a 
novel mode of carrying out chemical reactions, where the 
fast temperature quench enables a target non-equilib-
rium state where the desired product could be generated 
at optimal yield and efficiency [3].  

In this study, the EVY objective is utilized to assess 
the performance of the piston reactor technology to 
screen chemistries using propane as a feedstock to de-
termine economically attractive regions within the reac-
tor search space. Results are contrasted against the tra-
ditional yield metric, highlighting the importance of utiliz-
ing economics when assessing the performance of reac-
tor systems.  

 
CONVENTIONAL YIELD METRICS 

There is no universally agreed upon definition for 
the “yield” concept [4] as it is applied in numerous 
contexts, and its definition varies depending on the 
application, or process. Table 1 depicts a summary of the 
most common definitions of yield used in the literature. 
The presence of multiple descriptions for the yield metric 
introduces uncertainty, particularly when studies fail to 
explicitly define the parameter utilized in their 

evaluations. This lack of terminology hinders the 
comparability of research results and findings within the 
reaction and engineering fields. Most of the published 
studies use the “overall reactor yield” term, on a molar 
basis, to define the reactor’s yield [5]. In this case, the 
yield is defined as the ratio of the target product formed 
to the reactant fed. This is observed in numerous studies 
including methanol formation from syngas [6], 
naphthalene oxidation to phthalic anhydride [7], and 
hydrogen production from methane reforming [8], to 
name a few.  

The issue with such a definition, and its variations in 
Table 1, is highlighted when there are multiple products 
formed, as these common definitions neglect the impact 
of formation of by-products and undesired products. 
Conditions representing a high yield of one product are 
not the same as those for another product, leading to a 
misrepresentation of the actual conditions that pertain to 
the reactor’s optimal performance. Moreover, a high yield 
of a certain component does not necessarily guarantee a 
high overall performance efficiency particularly if 
substantial amounts of undesired components are 
formed.  

To alleviate this issue, some studies lump certain 
components together to formulate a total yield term, as 
in the case of oxidative coupling of methane (OCM). In 
OCM, methane, co-fed with oxygen, react to produce 
primarily ethane and ethylene [2]. Since both ethane and 
ethylene are the main products, a “C2 Yield” term is 
utilized to account for the formation of the two products 
by summing up the yield of each component. In other 
studies, a C2+ yield term is utilized, corresponding to the 
total yield of ethane and ethylene, in addition to propane 
and propylene [9]. While this takes into consideration the 
formulation of other products, it automatically assigns 
equal weights to them, potentially overlooking the 
variations in their significance, thereby also leading to a 
misrepresentation of the overall results.  

Moreover, such definitions cannot be applied in 
situations where the target product is not known from the 
offset. This is particularly highlighted in the technology 
assessment and chemistry screening cases phases of 
early-stage reaction exploration, such as the case of the 
piston reactor.  

ILLUSTRATION: PISTON REACTOR  
As an illustration, the concept of yield is applied on 

screening chemistries within the piston reactor. The pis-
ton reactor is essentially a repurposed internal combus-
tion engine (ICE) that is utilized primarily as a reactor to 
produce chemicals, in addition to the electricity and heat 
associated with the conventional ICE [10]. The piston re-
actor operates in a cyclical manner by  
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compressing the feed gas and expanding within short 
time-frames in the order of milli-seconds [11]. The 
compression phase results in elevated temperatures and 
pressures that enhance the efficiency of certain 
reactions, whereas the expansion results in a rapid 
quenching of the mixtures enabling the formation of 
products at optimal conditions [12].  

We illustrate the metrics for the case of exploring 
propane conversion in the piston reactor, based on the 
piston reactor results of Abousrafa et al. [13]. There are 
multiple variables that can be explored for a piston reac-
tor applied to propane conversion such as the impact of 
co-feeding the propane with both O2 and CO2 as per-
formed by Abousrafa et al. [13]. Adding O2 to the reaction 
promotes the autoignition of propane, resulting in heat 
generation that can be utilized to co-generate power 
from the piston reactor. As for CO2, in addition to the en-
vironmental benefit of utilizing it as a feedstock, CO2 ad-
dition facilitates the occurrence of several reactions such 
as dry reforming and oxidative dehydrogenation. This an-
alyzes data for an intake temperature and pressure of 
773K, 1 bar, and an RPM of 3000 [13]. Products from the 
reaction include H2, CO, C2H4, CH4, C3H6, C2H2, C6H6, and 
C4H6. At complete propane conversion, the impact of co-

feeding O2 and CO2 on the overall reactor yield of the ma-
jor generated species is shown in Figure 1 (a-d). For the 
four main components formed in the piston reactor, H2, 
CO, C2H4, and CH4, maximum yields are obtained at 
CO2/C3H8 and O2/C3H8 ratios of 0 and 1.5, 2 and 1.5, 2 and 
0.5, 0 and 0.5, respectively. To account for all the com-
ponents, a total yield metric, similar to the one utilized in 
the OCM studies [9], is calculated, and the results are il-
lustrated in Figure 1e. The figures show that the yield 
maxima for all four species and also the total yield are 
different, highlighting the difficulty in using yield as a per-
formance metric for the optimal search of reactions sys-
tems with multiple potentially desired species formed as 
products. The total yield metric considers all formed spe-
cies; however, the metric assumes each product with 
equal weight.   
 

Table 1: Common Definitions for the Yield Metric   

  Definition Formula Ref    

Overall reactor 
yield  

Overall reactor efficiency in convert-
ing the reactants to target products  

 

𝑌𝑌 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 𝑓𝑓𝑝𝑝𝑇𝑇𝑓𝑓𝑇𝑇𝑝𝑝 (𝑓𝑓𝑝𝑝𝑚𝑚)

𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇 𝑓𝑓𝑇𝑇𝑝𝑝 (𝑓𝑓𝑝𝑝𝑚𝑚)  []  

Reaction Yield  

Ratio of actual amount of product 
formed to the maximum amount that 
could be generated (theoretical yield) 

 

𝑌𝑌𝑡𝑡ℎ =
𝐴𝐴𝑝𝑝𝑇𝑇𝑝𝑝𝑇𝑇𝑚𝑚 𝑇𝑇𝑓𝑓𝑝𝑝𝑝𝑝𝑅𝑅𝑇𝑇 𝑝𝑝𝑓𝑓 𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 𝑓𝑓𝑇𝑇𝑝𝑝𝑇𝑇 (𝑓𝑓𝑝𝑝𝑚𝑚)

𝑇𝑇ℎ𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑝𝑝𝑇𝑇𝑚𝑚 𝑦𝑦𝑒𝑒𝑇𝑇𝑚𝑚𝑝𝑝 (𝑓𝑓𝑝𝑝𝑚𝑚)  [] 
 

 

Yield 

Amount of desired product gener-
ated to the amount formed if there 
were no by-products and main reac-
tion reached completion 

 

𝑌𝑌

=
𝐷𝐷𝑇𝑇𝐷𝐷𝑒𝑒𝑇𝑇𝑇𝑇𝑝𝑝 𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝 (𝑓𝑓𝑝𝑝𝑚𝑚)

𝑃𝑃𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝐷𝐷 𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝 (𝑅𝑅𝑝𝑝 𝑏𝑏𝑦𝑦𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝐷𝐷) (𝑓𝑓𝑝𝑝𝑚𝑚) 

[]  

Overall fractional 
Yield 

Ratio of all the products formed to 
the reactants that have reacted 

 

Φ =
𝐴𝐴𝑚𝑚𝑚𝑚 𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 𝑓𝑓𝑝𝑝𝑇𝑇𝑓𝑓𝑇𝑇𝑝𝑝 (𝑓𝑓𝑝𝑝𝑚𝑚)
𝐴𝐴𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇  (𝑓𝑓𝑝𝑝𝑚𝑚) []  

Instantaneous 
Fractional Yield 

Rate of generation of a desired prod-
uct relative to rate of consumption of 
a key reactant 

 

𝜑𝜑 =
𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑓𝑓 𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑝𝑝𝑅𝑅

𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑓𝑓 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇 𝑝𝑝𝑝𝑝𝑅𝑅𝐷𝐷𝑝𝑝𝑓𝑓𝑝𝑝𝑇𝑇𝑒𝑒𝑝𝑝𝑅𝑅  
[]  

Weight Yield 
Mass of target product as percent-
age of total reactant mass 
 

𝑊𝑊𝑇𝑇𝑒𝑒𝑇𝑇ℎ𝑇𝑇 𝑌𝑌𝑒𝑒𝑇𝑇𝑚𝑚𝑝𝑝 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 (𝑓𝑓𝑇𝑇𝐷𝐷𝐷𝐷)
𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑚𝑚 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇 (𝑓𝑓𝑇𝑇𝐷𝐷𝐷𝐷)  []  

Total Yield 
Ratio of total products formed to the 
reactor fed  

 

𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑚𝑚 𝑌𝑌𝑒𝑒𝑇𝑇𝑚𝑚𝑝𝑝 =
𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑚𝑚 𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝐷𝐷 𝑓𝑓𝑝𝑝𝑇𝑇𝑓𝑓𝑇𝑇𝑝𝑝

𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇  𝑓𝑓𝑇𝑇𝑝𝑝  []  
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Table 2: Price assumptions for the EVY calculation 

Component Formula Price($/t) Ref  
Hydrogen H  [] 
Carbon Monoxide CO  [] 
Methane CH  [] 
Ethylene CH  [] 
Acetylene  CH  [] 
Benzene CH  [] 
Propene CH  [] 
Butadiene CH  [] 

 

Economic-Value Yield  
Rather than assuming equal weighted total yield or 

individual component yields as objectives, a differently 
weighted yield metric that considers the formation of 
multiple valuable reaction products would be preferred. 
Considering that the implementation of most production 
systems is to a large extent based on the value of prod-
ucts formed from raw materials, this work proposes the 
utilization of an economic-value yield metric for the reac-
tor performance that uses the product prices as a weight 

Figure 1: Effect of Co-feeding O2 and CO2 on H2, CO, C2H4, and CH4 yields   
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factor to obtain an overall reactor-yield metric:  

𝐸𝐸𝐸𝐸𝑌𝑌 = ∑ 𝑃𝑃𝑗𝑗  ×  𝑊𝑊𝑌𝑌𝑗𝑗  𝑗𝑗    (1) 

Where: 

 EVY is the economic-value yield ($/t feed) 

 Pj is the market value, or price, for product j  
($/t product)  

 WYj is the weight yield of the product j as 
percentage of the total reactant weight 
(t product/ t reactant)  

Table 2 contains the prices of the chemicals pro-
duced in the piston reactor. Figure 1f shows the results 
for EVY at various O2/C3H8 and CO2/C3H8 ratios.  Results 
show that the EVY profile does not match any of the in-
dividual yield components. It also shows opposite trends 
to those observed in the total yield metric (Figure 1e). The 
maximum total yield is observed at CO2/C3H8 and O2/C3H8 
ratios of 0.5 and 1.5, whereas maximum EVY is at 
CO2/C3H8 and O2/C3H8 ratios of 2 and 0.5. However, these 
results assume equal weights for all those four main com-
ponents. Although the maximum EVY is in line with maxi-
mum C2H4 yield, there are regions within the C2H4 figure 
that show zero yield, yet are associated with substantial 
value, highlighting the importance of utilizing a properly 
weighted total yield metric to obtain more representative 
conclusions. Another important observation is the pres-
ence of trace components including C3H6, C2H2, C6H6, 
and C4H6 that have a substantial contribution to the EVY. 
Although they are present in concentrations <2 mol%, 
and are associated with overall reaction yields <0.1, there 
are cases where they result in double the EVY. These re-
sults further emphasize the importance of adding appro-
priate weight, in terms of product value, to the conven-
tionally utilized yield terms.  

CONCLUSIONS 
It is general practice in the reaction engineering field to 
evaluate reactions based on certain performance met-
rics, of which reaction yield is one of the most utilized 
objectives. There is no universal definition for the yield 
metric, resulting in challenges including lack of con-
sistency, and results comparability. Moreover, most of 
the definitions focus on a single desired product without 
taking into consideration the formation of other unde-
sired or by-products. This leads to difficulty in pinpoint-
ing regions of optimal reactor performance, as the yields 
of one component are associated with different condi-
tions than another. Moreover, the presence of undesired 
products that are not considered could lead to an ineffi-
cient overall performance. A more comprehensive metric 
is required to account for the contribution of all the gen-
erated products in a reaction system. Some studies 

attempt to alleviate these issues by lumping the compo-
nents into a total yield term. However, the assumption of 
equal weights of components may not be representative 
of actual performance. This necessitates the utilization of 
a proper weighted yield term to account for the contribu-
tion of all the generated products in a reaction system. 
This study proposes an “economic-value yield, EVY” met-
ric, where the prices are utilized as weight factors. In ad-
dition to its simplicity, using chemical prices reflects ac-
tual market value, thereby indicating the relative contri-
bution, or importance, of each generated component. 
The piston reactor technology is used as an illustration to 
contrast the EVY results against the traditional yield met-
ric. Results showed that regions within the reactor search 
space that are associated with high-values do not match 
the individual yield results, nor the conventional total 
yield metric. Moreover, the contribution of elements that 
are associated with low-yield, yet high value, are not 
shown in the traditional calculations. This highlights the 
importance of utilizing economics when assessing the 
performance of reactor systems.  
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ABSTRACT 
Adsorption-based Atmospheric Water Extraction (AWE) is an energy-efficient distributed fresh-
water supply method. This research focuses on AWE's kinetic analysis and stochastic optimization, 
investigating the impact of ambient conditions, kinetics, and weather variability. A one-dimen-
sional fixed-bed system was numerically analyzed using the validated isotherm of MIL-100 (Fe), 
assuming different kinetic parameters within the linear driving force model. Stochastic optimiza-
tion, based on annual weather data from Georgia (GA), illustrates the influence of weather condi-
tions on AWE process performance, operation, and cost. Our study offers valuable insights for 
future research, including site selection, adsorbent material development, and process design. We 
outline three critical areas for further exploration: experimental verification, material screening, 
and meteorological site selection. 

Keywords: Atmospheric Water Extraction (AWE), Metal-Organic Framework (MOF), Kinetic Analysis, Meteor-
ological Analysis, Two-stage Stochastic Programming (TSSP)

1. INTRODUCTION
Global warming significantly threatens our climate,

rendering it increasingly unpredictable. In particular, it 
changes the natural water cycle, leading to a growing re-
gional freshwater scarcity problem. 

The Atmospheric Water Extraction (AWE) process 
offers a promising solution for sustainable freshwater 
production(Wang et al., 2022). Among the various AWE 
techniques, adsorption-based AWE stands out due to its 
scalability, energy efficiency, and environmental resili-
ence advantages (Xu & Yaghi, 2020). 

This study aims to establish a connection between 
the characteristics of adsorbent materials, kinetic perfor-
mance, and the variability of weather conditions, contrib-
uting to the development of the AWE process from a pro-
cess systems engineering perspective. In this brief 6-
page paper, the AWE process description is very brief; 
the analysis methods in Sections 2.1 on the S-Shaped 
Isotherm and Section 2.2 on the Kinetics Analysis are ab-
breviated, as are many aspects of the process analyses 
for their temperature and vacuum-swing, adsorption-de-
sorption processes. 

2. METHOD

2.1  S-shaped isotherm
MIL-100 (Fe) was selected as the reference MOF 

material because of its high capacity for moisture uptake 
(~ 0.75 gH2O gads-1), and the isotherm model was mathe-
matically formulated in Eqn (1)-(2) by using four isotherm 
parameters that were previously validated (Kim et al., 
2024). q0, max is the theoretical maximum that the MOF can 
take moisture inside of the structure, K is the distribu-
tional factor, which is the function of temperature, and m 
is the shape factor determining the steepness of the S-
shaped isotherm (Sun & Chakraborty, 2014), and hevap is 
the evaporation heat of moisture. 

𝑞𝑞𝑒𝑒𝑒𝑒 = 𝑞𝑞0,𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾𝐻𝐻m

{1+(𝐾𝐾−1)𝐾𝐾𝐻𝐻m}
     (1) 

𝐾𝐾 = αexp (m(Qsat,0−hevap)
𝐾𝐾𝑅𝑅

)  (2) 

2.2  Kinetic analysis 
 A one-dimensional model of the AWE contactor is 

proposed in Eqn (3), and a linear-driving force (LDF) 
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model for the kinetic analysis is defined in Eqn (4). The 
simulation conditions, including KLDF parameter uncer-
tainty, are shown in Table 1. 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑢𝑢𝐶𝐶𝑖𝑖)
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑚𝑚𝑎𝑎𝑎𝑎(1 − 𝜖𝜖) 𝑆𝑆 = 0                (3) 

𝑆𝑆 ≡ 𝑎𝑎𝑒𝑒
𝑎𝑎𝜕𝜕

= 𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿(𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞)    (4) 

Table 1: Simulation conditions for the numerical analysis. 

Physical dimension Value 
Length (L)  mm 
Area (A)  m 
Charged mass  kgMOF/mBed 

Ambient conditions  
Air velocity (u)  m/s 
Temperature (T)     ℃ 
Humidity (RH)     % 

Kinetic parameter  
kLDF     /s 

2.3  Key Performance Indicators 
For the intrinsic performance measures of the AWE 

process, the average bed utilization was analyzed in Eqn 
(5). From an economic perspective, we introduced the 
cost of moisture capture (CoMC) as an objective function 
for stochastic programming. The detailed formulation of 
cost and energy was taken from the previous work (Kim 
et al., 2024). 

𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢𝜕𝜕𝑢𝑢𝑢𝑢(%) = 𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒

× 100                        (5) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �¢ kgH2O
−1 � =  Annualized capital+operating

The total captured moisture
         (6) 

2.4  Two-stage stochastic programming 
Two-stage stochastic programming (TSSP) was de-

veloped to address the variability of ambient weather 
conditions and ensure the operability of the process. 

To solve the 1st stage, a grid search was performed 
over a sufficiently wide range of capital costs. A con-
servative weather condition was selected to decide the 
upper bound on capital cost. Capital cost was evenly 
gridded out in the range of +/-20% of base cost as shown 
in Eqn (7). After defining the grid, the minimization prob-
lem in the 2nd stage was iteratively solved in Eqn (8). The 
binary decision variables represented whether or not to 
operate at a given weather condition. The ith objective 
function was the sum of the ith annualized capital cost and 
the expectation of the operating cost divided by the ex-
pectation of the harvesting performance. Here, the oper-
ating cost and the swing capacity were the functions of 
capital cost, Ci. 

The more capital invested the better the perfor-
mance in specific weather scenarios but with reduced ef-
fectiveness as the capital investment increases further. 

The performance decreases at lower capital and eventu-
ally this reduced performance increases the overall aver-
age cost. The minimum of the overall cost was located 
within the grid search for all examples we have studied.  
Should it appear at the extreme of a range a further ex-
pansion of the grid should be performed. 

By separating the decision-making process from 
weather uncertainties within the two-stage framework, 
we achieved scalable solutions for screening potential 
MOF candidates and identifying a favorable site. 

𝐶𝐶𝑢𝑢 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵 𝐶𝐶𝑜𝑜 [0.8 min(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎) , 1.2 max(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎) , 8]         (7) 

𝑚𝑚𝐺𝐺𝑚𝑚𝐺𝐺𝑚𝑚𝐺𝐺𝑚𝑚𝐵𝐵 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢 = 𝐶𝐶𝐺𝐺×𝑜𝑜𝑎𝑎𝑚𝑚+E[𝐵𝐵T𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝐶𝐶𝐺𝐺)]

E[𝐵𝐵Tqswing(𝐶𝐶𝐺𝐺)]
                          (8) 

3. RESULTS AND DISCUSSION 

3.1 Numerical code verification 
The original PDE was semi-discretized and then nu-

merically analyzed in MATLAB using an ode15s solver. 
The simulation results are consistent with those simu-
lated by the commercial software (Oh et al., 2020), 
gPROMS, and the relative numerical error of the mass 
balance in Eqn (9)-(11) was under 0.05%. 

𝑚𝑚1 = Au∫ (𝐶𝐶𝑢𝑢𝑐𝑐𝑢𝑢𝜕𝜕 − 𝐶𝐶𝑒𝑒𝑚𝑚𝑢𝑢𝜕𝜕)
𝜕𝜕
0 𝐵𝐵𝑑𝑑                                         (9) 

𝑚𝑚2 = (1 − 𝜀𝜀𝑏𝑏𝑒𝑒𝑎𝑎)(1 − 𝜀𝜀𝑎𝑎)𝜌𝜌𝑎𝑎AL 103

18 ∫ 𝑞𝑞𝑍𝑍0 𝐵𝐵𝑚𝑚                      (10) 

𝑂𝑂𝐺𝐺𝐺𝐺𝑟𝑟𝑒𝑒𝑢𝑢 = 100 × |𝑚𝑚1−𝑚𝑚2|
𝑚𝑚1

                                                      (11) 

The following section illustrates the impacts of am-
bient conditions and hypothetical kinetic parameters. Fi-
nally, we provide TSSP results for the example of the 
state of Georgia, USA, using weather data. 

3.2 Saturation time 
Saturation time gives direct information for the pro-

cess design and operation variables such as the dimen-
sion of the bed, adsorption time, and required amount of 
MOF, etc. We showed how the saturation time changes 
alongside the value of absolute humidity, as shown in Fig. 
1, by simplifying that the value is relatively unchanged 
during the diurnal cycle. 

This fluctuation implied that the operating variable, 
adsorption time should be adaptively designed consider-
ing the ambient condition. Each variable was parametri-
cally studied, focusing on the breakthrough behavior and 
bed saturation as follows. 
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Figure 1: Saturation time variation according to the level 
of absolute humidity. 

3.3  Effects of ambient temperature 
The ambient temperature directly affects the bed 

utilization ratio, and the high-temperature conditions en-
able the bed to reach a faster saturation state, as shown 
in Fig. 2a. This was determined by the concentration dif-
ference given the fixed kinetic parameter in every condi-
tion. In Fig. 2b, the normalized exit concentration profiles 
showed that breakthrough occurred slower in the low-
temperature condition, consistent with Fig. 2a. The ex-
periments on temperature sensitivity should be sup-
ported to support the simulation results, which should be 
the future work. 

3.4  Effects of ambient humidity 
The effects of relative humidity are shown in Fig. 3 

by fixing the ambient temperature. The RH and the bed 
utilization were not directly related, as shown in Fig. 3a. 
Firstly, qeq increased as RH increased following the S-
shape. Secondly, the moisture concentration increased 
as RH increased linearly. These two compensated each 
other, causing a minimal impact on performance. Alt-
hough the bed saturation behavior showed similar re-
sults, the absolute amount of moisture and the regener-
ability directly affect the performance, which should be 
discussed further. As seen in Fig. 3b, RH had apparent 
effects on breakthrough behavior. Because of the low 
concentration and the low qeq, the driving force of mois-
ture capture was low in low-temperature conditions. 

 
Figure 2: The effects of ambient temperature on (a) 

bed utilization ratio and (b) breakthrough curve on nor-
malized moisture concentration at RH 50% condition (kLDF 
assumed as 0.005 s-1). 

3.5  Effects of kinetic parameter 
Finally, the sensitivity of the hypothetical kinetic pa-

rameters was analyzed in Fig. 4. By taking the ranges of 
LDF parameters reported in the literature, the expected 
profiles on the bed utilization and the breakthrough were 
predicted. Regarding bed utilization, the impact of the ki-
netic parameters was asymmetric in Fig. 4a. As the ki-
netic parameters became smaller, utilization decreased 
monotonically. However, the utilization curve converged 
when the kinetic parameters became more prominent. It 
failed to observe the breakthrough curve in the slowest 
case, and the breakthrough behavior in the fastest case 
was observed in Fig. 4b. 

For the stochastic optimization, we fixed the kLDF as 
0.005 s-1, taken from the moisture uptake systems over 
Silica gel (El-Sharkawy, 2011). 
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Figure 3: The effects of ambient relative humidity on 
(a) bed utilization ratio and (b) breakthrough curve on 
normalized moisture concentration at temperature 25℃ 
condition (kLDF assumed as 0.005 s-1). 

3.6  Optimization results 
The original weather data was plotted as a function 

of temperature and RH. The data source originated from 
the Automated Surface Observing Systems (ASOS) of 
daily measurements during 2022. In Fig. 5, probability 
distribution was plotted, and the 100 random samples 
were marked in 'x,' representing the original distribution 
well. The source and sampling algorithm was provided in 
previous work (Kim et al., 2024). Stochastic optimization 
was conducted utilizing the random samples. 

Fig. 6a shows stochastic optimization results by di-
viding the economically feasible and infeasible regions 
from the programming algorithm. It was observed that 
the feasible region was clustered in the mild RH range 
(>40 %) and mild temperature range (2~25℃). Fig. 6b 
shows how the capital cost was selected in the design 
grid. The programming results were repeated three 

times, and the average and standard deviation were plot-
ted to consider the randomness of the sampling. The 5th 

grid point was selected for the first-stage decision be-
cause it balanced capital against performance and hence 
achieved the minimum cost without sacrificing the swing 
capacity. These results showed the tailored optimal so-
lution based on selecting the optimal capital investment, 
operating degrees of freedom and conditions in which to 
operate simultaneously. 

 

Figure 4: The effects of kinetic parameter on (a) bed 
utilization ratio and (b) breakthrough curve on normalized 
moisture concentration at temperature 25℃ and RH 50% 
condition. 

 Fig. 7 demonstrates the relationship between per-
formance and cost. The color shows the economic feasi-
bility, red or blue, for infeasible and feasible respectively. 
Blue has an average performance of 0.67 kgH2O kgAds-1 
with 4.04 ¢ kgH2O-1. Red has a performance of 0.36 kgH2O 
kgAds-1 with 5.38 ¢ kgH2O-1. 
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Figure 5: Weather variability as a joint probability 
function for Georgia, USA, and random sampling (n= 100) 
for the stochastic optimization. 

3.7  Future work 
Three areas should be expanded on to better under-

stand the adsorption-based AWE process. First, experi-
ments are required to refine the kinetic parameter value 
from the hypothetical range given here. Different temper-
ature and RH conditions should be experimentally meas-
ured together for rigorous validation. Second, different 
types of material should be compared to derive the main 
factors that influence design and operation, including 
isotherm shape and moisture uptake. Molecular simula-
tion will be appropriate for the massive screening (Zhang 
et al., 2023). Lastly, various meteorological sites could be 
investigated further, including varying the operation 
based on the time of day. 

4. CONCLUSION 
Based on the critical issues summarized herein, the 

AWE process is promising for producing fresh water. Pro-
cess design and weather uncertainties are discussed to-
gether, starting from the isotherm features at the material 
level. This work aims to bridge the gap between material 
and process development to realize robust design and 
operation. It directs the future research of adsorption-
based AWE systems in perspectives on process systems 
engineering. From this initial work, a generalized frame-
work for simultaneous material-process selection in dif-
ferent climates accounting for weather variability can be 
developed in the future. 

Through this work, we contribute to two areas (i) un-
derstanding the system's dynamics and (ii) quantifying 
the meteorological characteristics, thereby giving in-
sights into process systems engineering (PSE) aspects of 
the AWE process. 

 

Figure 6: Two-stage stochastic programming results for 
(a) the identification of the feasible weather conditions 
and (b) the decision of conservative capital cost from 
average swing capacity. 
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Figure 7: The relationship between water extraction 
performance and cost of moisture capture according to 
the weather feasibility in terms of economics. 
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ABSTRACT 
Superstructure optimization for process synthesis is a challenging endeavour typically leading to 
large scale MINLP formulations. By the combination of phenomena-based building blocks, accu-
rate thermodynamics, and structural screening we obtain a new framework for optimal process 
synthesis, which overcomes prior limitations regarding solution by deterministic MINLP solvers in 
combination with accurate thermodynamics. This is facilitated by MOSAICmodeling’s generic for-
mulation of models in MathML / XML and subsequent decomposition and code export to GAMS 
and C++. A branch & bound algorithm is implemented to solve the overall MINLP problem, wherein 
the structural screening penalizes instances, which are deemed nonsensical and should not be 
further pursued. The general capabilities of this approach are shown for the distillation-based 
separation of a ternary system. 

Keywords: Process Synthesis, Optimization, Distillation, Phase Equilibria, Phenomena Building Block 

MOTIVATION & INTRODUCTION 

Optimal Process Synthesis 
Thermal separation processes make up a large part 

of energy consumption in the US and worldwide [1]. 
Given the drive to reduce greenhouse gas emissions, it is 
imperative to explore more energy efficient solutions, 
e.g., through heat integration, novel separation process
concepts, or novel equipment, etc. Exploring these op-
tions is complex and a continuing challenge. Mathemati-
cal methods with mechanistic models for process syn-
thesis help overcome this hurdle. However, process syn-
thesis is quite a challenging field, for which Chen et al. [2]
emphasize the delicate trade-off between generality, fi-
delity, and tractability in process synthesis methods. So
far, methods for process synthesis try to reduce the
search space either by focusing on individual synthe-sis
tasks (lower generality) or by simplifying models (lower
fideli-ty).

Synthesis methods based on rigorous superstruc-
ture opti-mization promise to overcome these shortcom-
ings. Formulating and solving these process synthesis 
problems as large-scale mixed-integer nonlinear pro-
gramming (MINLP) or generalized disjunctive 

programming (GDP) problems is tough. While, it is well 
understood how these should be formulated, tractability 
is the main challenge here. 

Three approaches for superstructure optimization 
build on phenomena-based formulations. The group of 
Pistikopoulos developed the generalized modular frame-
work (GMF), which builds on a multipurpose mass / heat 
transfer module. GMF has, e.g., been applied for synthe-
sis of distillation processes [3, 4] and even reactive dis-
tillation [5]. 

Similarly, the group of Hasan has derived abstract 
building blocks (ABB), which are arranged in a chess-
board-like two-dimensional block superstructure. The 
boundaries to adjacent blocks and physical attributes of 
the blocks can be modified during optimization [6, 7]. The 
ABB formulation is highly versatile. However, application 
to synthesis of more complex processes so far requires 
simplification of the ABB model [8] or specialized iterative 
solution sequences [9]. 

Finally, Kuhlmann and Skiborowski [10] developed a 
Phe-nomena-based Building Blocks (PBB) approach. 
These building blocks consist of thermodynamically ac-
curate equilibrium stage models and kinetics to form a 
general state-space superstructure.  The capabilities of 
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this approach have been demonstrated for the synthesis 
of a membrane reactor [11] and membrane-assisted re-
active distillation [12]. So far, solving the formulated 
MINLPs relied on an evolutionary strategy for the mixed-
integer side and local solution of the nonlinear sub-prob-
lems in Aspen Custom Modeler. This heavily limits the ca-
pabilities of the solvers and poses challenges for the for-
mulation, initialization, and solution of larger examples.  

Challenges & Approach 
In the current work, the limitations of the approach 

by Kuhlmann and Skiborowski [10] will be addressed by 
suggesting a new framework for formulation and solution 
of the MINLP problems. In this contribution, we advance 
the prior work in two directions: (1) formulating and gen-
erating large-scale superstructures and (2) facilitating 
the solution through structural screening. Towards (1) the 
modeling environment MOSAICmodeling [13, 14] is here 
extended for the formulation of superstructures of phe-
nomena-based building blocks and their decomposition 
and code generation for a target language, i.e., the mod-
eling language for the actual solution, e.g., GAMS, AMPL, 
Python, etc. The implementation in MOSAICmodeling in-
volves formulation of the superstructure problem as a 
meta model in MathML / XML. With this formulation, exe-
cutable code for different program components can be 
obtained automatically, including a mathematical pro-
gramming platform, an external CAPE-OPEN thermody-
namic engine, and a platform for structural screening. 
This is achieved through the utilization of separate User-
defined Language Specificators (UDLS) [15] within the 

web-based modeling and optimization tool MOSAICmod-
eling, developed at TU Berlin [16]. All thermodynamic 
property calculations are outsourced to a CAPE-OPEN-
compliant property package, while the MINLP is exported 
to GAMS (version 40.4.0). 

Towards the structural screening (2), a number of 
pruning and screening techniques have been previously 
suggested, e.g., in [10, 17]. These typically operate at a 
local level, i.e., the connections surrounding a module or 
PBB. In our contribution, we deviate from this approach 
and add towards screening / pruning techniques, which 
also analyse the entire superstructure instance. The 
wider perspective aligns with the axioms for generating 
feasible superstructures within the P-graph framework 
[18]. 

Here, a branch and bound-type algorithm is imple-
mented in GAMS and augmented with a middle layer, 
which pre-screens based on binary decision variables of 
the superstructure. The middle layer performs a set of 
graph- and rule-based analyses of a structural instance, 
which are further detailed in section “Structural Screen-
ing”. In case of violations of these rules, i.e., an instance 
will not lead to a physically sensible solution, this struc-
ture is penalized without solution of the underlying 
MINLP. While a similar concept is also present in the ap-
proach by Kuhlmann and Skiborowski [10], the MINLP 
framework extends the screening process with additional 
rules and algorithms from graph analysis. 

 
 
 

 
Figure 1. Generic superstructure with vapour-liquid equilibria blocks (VL-U). The left-hand side shows the 
distribution network with the connected VL-U PBB and the right-hand side a close-up of the connection of splitter 
nodes to mixer nodes. Red dashed lines signals vapor phase, blue solide lines liquid phase. 
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METHODOLOGY & IMPLEMENTATION 

Generic Superstructure Model 
The superstructure formulated here is based on the 

work of Kuhlmann and Skiborowski [10], which combines 
a distribution network connecting feed and product 
streams (blue box in Fig. 1) with a fixed number of PBBs 
(light grey boxes in Fig. 1). The following extensions are 
made compared to prior work: 

In the distribution network, separate energy flows 
for pressure manipulation and heat exchange are pre-
sent. This should allow for deactivation of equipment 
based on (in-)existence of preceding or subsequent 
blocks. For the current contribution, we focus on PBBs 
featuring vapor-liquid equilibrium units (VL-U). In the dis-
tribution network, splitter nodes connect the recycles 
and inlets to mixer nodes and product nodes. Restrictions 
are implemented on the mixer nodes based on each con-
nected VL-U PBB: By default, the outlet must either be in 
boiling liquid state or saturated vapor. Binary variables 
govern the distribution of splitter outlets to mixer nodes.  
A stream is (for now) split into at most two streams to 
limit computational complexity. This shall be relaxed later 
but is deemed for now of low importance. The distribu-
tion network changes temperatures before streams enter 
a PBB.  

Here, the formulation for the distribution network is 
implemented as given on the right-hand side of Fig. 1 
(dashed box). Each mixed stream flows through a heat 
exchanger. The temperature is adjusted according to the 
input requirements of the connected VL-U, i.e., heated or 
cooled to the respective boiling or dewpoint temperature 
of the mixture. Compression and expansion are imple-
mented as isentropic state changes with fixed efficien-
cies. Each VL-U block is a countercurrent multi-stage 
contactor in accordance with Kuhlmann and Skiborowski 
[10]. On each stage, mixing of liquid and vapor and sep-
aration take place. 

As stated before, phase constraints are enforced on 
both inlets of a VL-U PBB. This implies that the preceding 
heat exchangers must be active to ensure that the inlet 
is either in vapor or liquid state. Nevertheless, as a results 
of the superstructure optimization, combinations of the 
VL-U should be able to form conventional equipment, 
e.g., distillation towers. For these, the heat exchangers at 
the connecting point of two VL-U sitting “on top of” one 
another, should be deactivated (see, e.g., VL-U I and VL-
U II in Fig. 2). 

For this purpose, additional binary variables are in-
cluded in the model, which (de-)active these heat ex-
changers and hence also the phase constraints at the re-
spective inlet of the VL-U PBB. This allows for increased 
flexibility of the overall superstructure. An inactive heat 
exchanger is bypassed, and the fluid is supplied to the 
VL-U in whatever state it might currently be in. 

 
(a) 

 
(b) 

Figure 2. Optimization results for the separation of a feed 
stream of n-pentane, n-hexane, and n-heptane by 4 VL-
U: (a) resulting connections in the superstructure, (b) 
interpretation as a sequence of two columns. 

Further details regarding the model formulation, 
e.g., activation / deactivation of heat exchangers, can be 
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found in [19].  
As a result of deactivated heat exchangers, the su-

perstructure also allows, e.g., a vapor stream to enter a 
VL-U by its dedicated liquid inlet. In addition to this, fur-
ther uncommon situations within each VL-U may arise 
during superstructure optimization. Therefore, the VLE 
formulation on each stage of the VL-U is augmented by 
relaxation through complementarity constraints [20, 21] 
as shown in Krone et al. [13] to account for liquid-only or 
vapor-only scenarios on each stage. 

For a given synthesis task, we implement an objec-
tive function, which minimizes the total annualized costs 
consisting of investment costs for heat exchangers, and 
operation costs for heating utilities. A penalty term is 
added to the objective for regularization of the comple-
mentarity constraints. The penalty converges to zero at 
a feasible solution. 

Thermodynamic Properties 
Within the MathML / XML model in MOSAICmodel-

ing, all thermodynamic properties are denoted as exter-
nal function calls, i.e., enthalpies, entropies, equilibrium 
coefficients, temperatures of boiling or dew point. For 
these, only the appropriate input variables are assigned 
to compute the desired output, e.g., enthalpy as a func-
tion of temperature, pressure, and composition. These 
are linked in accordance with the CAPE-OPEN standard 
for thermodynamic engines using COBIA (version 1.2.0.8) 
as architecture. TEA (version 3.5) provided by Amster-
Chem is used as thermodynamic engine. 

Code Generation and MINLP Framework 
The novel MINLP framework is illustrated in Fig. 3. 

Starting from MOSAICmodeling, code is automatically 

generated for GAMS and C++ (see Krone et al. [13]). The 
GAMS code then contains the entire MINLP including the 
state-space superstructure. The thermodynamic proper-
ties are marked as external equations and further de-
tailed in the linked C++ code. Therein, the prerequisites 
for CAPE-OPEN function calls and the COBIA architecture 
are implemented, function values and derivatives are ob-
tained and returned to GAMS. The overall system is a 
mixed integer nonlinear programming (MINLP) problem. 
There are two types of binary variables for the super-
structure and for activation or deactivation of phase con-
straints of the mixers in the network. The superstructure 
variables by themselves cause a very high computational 
complexity. 

Tractability of the problem is achieved through an 
augmented solution strategy: The MINLP is solved by a 
branch and bound algorithm combined with a middle 
layer that analyzes individual structures. For details on 
the branch and bound implementation see [19] and [22]. 
This is implemented in GAMS. The middle layer with the 
structural screening, however, is formulated within 
MATLAB (version R2023b).  

In each iteration of the branch and bound solver, the 
current structural instance is passed on to MATLAB, 
where the screening is carried out regarding the rules 
specified in the section on “Structural Screening” below. 
These subproblems are still MINLP as there are further 
binaries, which are not elemental to the superstructure 
but form further options within the model formulations, 
e.g., phase constraints (see above). 

Structural Screening 
As a novelty of our contribution, we employ graph- 

or network-based constraints in addition to algebraic 

Figure 3. Structure of the developed MINLP-framework with its core features: (1) code export from the generic 
MINLP-model in MathML/XML, (2) the adapted branch and bound (B&B) algorithm as the outer layer of the MINLP 
optimization, as well as (3) an inserted middle layer performing structural screening of the MINLP subproblems. 
(Figure published in [19].) 
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constraints. At the moment, we assume that the graph-
based constraints can only be resolved (efficiently) algo-
rithmically and not implemented as algebraic constraints 
in a straightforward fashion. This remains to be analyzed 
in future work. 

For graph-based analysis, the current superstruc-
ture is exported as a directed graph. The following seven 
rules are implemented to screen structures at intermedi-
ate iterations of the branch and bound algorithm; three of 
the rules implemented for structural screening are formu-
lated similarly to [10]: 

Rule 1: An active VL-U PBB without a connected 
stream to the inlet mixers needs to be avoided. This PBB 
will be considered degenerate and the according struc-
ture is discarded. 

Rule 2 (cf. [10]): During superstructure optimization, 
it could occur that a subsection of a structural instance is 
not connected to any feed or product streams – not even 
indirectly, i.e., a structure which is fully closed to the out-
side. Such a substructure might cause a host of numerical 
issues, definitely does not contain any added value, and 
will hence be discarded.  

Rule 3: Within the superstructure several equivalent 
formulations exist. One example is the interchange of two 
split streams. To limit the number of equivalencies, rule 3 
is implemented to ensure that a connected product node 
is always served by the first split stream coming from a 
connected splitter node. 

Rule 4: Connections to the product outlets, which 
appear nonsensical, should be ruled out. For example, 
this includes connection of two splitter nodes in the dis-
tribution network to a product node. This is deemed to be 
unnecessary entropy generation. 

Rule 5 (cf. [10]): A stream that leaves a VL-U PBB 
should not be fed back to an inlet of the same VLU- PBB. 
This is considered a “direct recycle”, which also does not 
appear to be logical from a thermodynamic point of view. 

Rule 6: The two inlets of a VL-U PBB should not orig-
inate from the same splitter node. Yet again, this rule 
should be well-founded in thermodynamic considera-
tions and always apply to PBBs of type VL-U. 

Rule 7 (cf. [10]): Two outlet streams of a VL-U PBB 
should not be fed back to the same mixer node. This 
would counteract any previously achieved separation 
and hence also amounts to entropy generation. 

CASE STUDY  
The formulation described above is applied on a 

process synthesis task to separate a mixture of n-pen-
tane, n-hexane, and n-heptane by a network of up to six 
building blocks each representing a counter-current cas-
cade of five vapor-liquid equilibrium stages (VL-U). 

 
Figure 4. Liquid composition profiles inside of the optimal 
design determined for the separation of an n-pentane, n-
hexane, and n-heptane mixture by 4 VL-U: (a) liquid 
molar ratios on the stages of VL-U I & II, (b) liquid molar 
ratios on the stages of VL-U  III & IV. 

This leads to an optimization problem with 1303 (in-
)equalities, 62 binary, and 1123 continuous variables. The 
problem is implemented in MOSAICmodeling and solved 
in GAMS combining the branch and bound solver with DI-
COPT [23] for MINLP subproblems, CONOPT3 (version 
3.17) [24] for relaxed MINLPs, and IPOPT (version 3.14) 
[25] for NLP subproblems. The structural screening in 
Matlab is performed in each iteration of the branch and 
bound solver. 

For now, the system pressure is fixed at 100 kPa and 
the desired product qualities are specified at purities of 
80 mol/mol % each for n-pentane, n-hexane, and n-hep-
tane. The feed stream is specified at 3.6 kmol/h as satu-
rated vapor and features equal amounts of all three com-
ponents. 

Results 
Fig. 2 shows the results for four VL-U PBB in the net-

work (a) and an interpretation as a sequence of two col-
umns (b) and Fig. 4 shows the respective liquid mole 
fractions of all three components. The results appear to 
be consistent and are cost-optimal compared to alterna-
tive configurations. 

This result is obtained after 94 iterations of the 
Branch & Bound algorithm with roughly 172 h of CPU time. 
Computation is done on an Intel® Core™ i7-2600 
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processor (3.8 GHz and 4 cores) with 16 GB of RAM. This 
is still quite computationally expensive but shows the 
general feasibility of the overall approach. It should be 
noted at this point that no particular initialization strategy 
is applied for the continuous nonlinear variables during 
the superstructure optimization. Each MINLP and NLP 
subproblem is solved with the currently available prior 
values. We assume that a considerable speedup could be 
achieved by implementing some kind of rigorous initiali-
zation strategy or homotopy to guide the NLP solver to 
the solution. 

We would like to stress at this point that all these 
results are obtained using no specific / manual initializa-
tion of the state variables. At the moment, all variables 
are initialized at the mid-points of their intervals. This me-
diocre initialization will cause a large part of the CPU time. 
Furthermore, the VLE formulation including the interfac-
ing via CAPE-OPEN is not yet very efficient. In future 
work, we shall evaluate different formulations for the ex-
ternal computation to achieve a speedup. Prior work by 
[11, 5] promise a sizable speedup using different formu-
lations. 

The inclusion of the structural screening procedure 
proved to be vital for the overall set-up. Without the mid-
dle layer, the optimizer failed to solve the system at all. In 
our case studies, we observed behavior which we inter-
pret in two different ways: First of all, some of the other-
wise penalized nodes in the branch & bound algorithm 
consume a lot of time and typically the solution is aborted 
based on our maximum of around 1000 h. Second, solu-
tion to local infeasibility of some of the otherwise penal-
ized subsystems leads to a degradation of the initial val-
ues of all continuous variables, which causes infeasibility 
in a subsequent node, which might otherwise have been 
successfully solved.  

Of the 94 iterations, 23 iterations involved penaliza-
tion of the current structure based on the screening rules. 
In these cases, the lower-level solvers would otherwise 
have probably failed to solve to any reasonable solution, 
so this also implies a great save in computational ex-
penditure. Overall, we can observe a great contribution 
of the structural screening and pruning towards ensuring 
feasibility of these type of MINLP problems. Given that 
without screening, the optimization did not converge to a 
feasible solution within the given time frame, we cannot 
further quantify how great the speed-up due to the struc-
tural screening is. 

CONCLUSIONS & OUTLOOK 
The presented, novel approach for formulation and 

solution of process synthesis problems through super-
structure optimization can reliably solve the challenging 
MINLP determining the optimal structure of a separation 
train and find its energetic optimum. The implemented 

structural screening is vital to ensure solvability depend-
ing on the problem formulation at hand. 

The main advantage in using the MathML / XML-
based model formulation lies in flexibility regarding set-
ting up even larger superstructure problems and in flexi-
bility regarding the solution environment. A switch from 
the GAMS / MATLAB / C++ combination to, e.g., a Py-
thon-based setting should be straight forward. 

In future work, we shall attempt to further decrease 
the computational complexity by employing GDP-type 
formulations for the superstructure and export the model 
to other platforms, e.g., PYOMO, to speed up the solution 
and make use of state-of-the-art GDP solvers. Also, we 
will investigate reduced order models to implement the 
initialization of the structural instances during the optimi-
zation. 
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ABSTRACT 
Within an Industry 4.0 framework, a variety of new considerations are of increasing importance, 
such as securing processes against cyberattacks on the control systems or utilizing advances in 
image processing for image-based control.  These new technologies impact relationships between 
process design and control.  In this work, we discuss some of these potential relationships, begin-
ning with a discussion of side channel attacks and what they suggest about ways of evaluating 
plant design and instrumentation selection, along with controller and security schemes, particu-
larly as more data is collected and there is a move toward an industrial Internet of Things.  Next, 
we highlight how the 3D computer graphics software tool set Blender can be utilized to analyze a 
variety of considerations related to ensuring safety of plant operation and facilitating the design 
of assemblies with image-based sensing. 

Keywords: Industry 4.0, Dynamic Modelling, Nonlinear Model Predictive Control, Simulation, Cybersecurity, 
Instrumentation, Image-Based Control 

INTRODUCTION 
Industry 4.0 is introducing new considerations in 

production environments, including considerations with 
respect to cybersecurity, imaging, and control. While 
these concepts are important considerations for process 
operation, they also have implications for next-genera-
tion design selections (and their interactions with con-
trollers). This work considers the implications of cyber-
security concerns and the application of image-based 
control on the specifications and design of modern-day 
processes, as well as their coupling to controllers. 

CYBERSECURITY 
        In this section, we use a discussion of cryptog-

raphy and side channel attacks to present possible future 
research directions related to the intersection of process 
design, control, and cybersecurity.  Traditionally, cyber-
security has been considered to be a problem most rele-
vant to computer scientists and information technology 
(IT) professionals.  The details of how attacks occur can 

require an understanding of details of computer hard-
ware and software that typically go beyond traditional 
chemical engineering fundamentals (e.g., understanding 
operating system fundamentals related to bootloaders, 
kernels, and assembly language).  However, there has 
been a growing interest in investigating the relevance of 
cybersecurity to chemical engineering decisions (e.g., 
process control [1,2]).  Cybersecurity has also begun to 
be discussed from a process design perspective.  For ex-
ample, in [3], we discussed how different designs lead to 
different worst-case operating conditions under an at-
tack (similar to an inherent safety perspective).   [4] re-
fers to using a Computer Systems/Controls Hazard and 
Operability Analysis, highlighting interactions between 
the design of the computer systems and controls safe-
guards and the process design.  This section seeks to 
make additional connections between process design 
and control system cybersecurity, with the intent to 
showcase potential directions in which the process de-
sign community might be able to contribute to securing 
systems in a manner that seeks to promote efficiency.  
We focus on two areas: design concepts inspired by ac-
tive detection strategies, and design concepts inspired 
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by side channel attacks. 

Design Lessons from Active Detection 
 In the first of the two cybersecurity design per-

spectives, we discuss learnings from our recent work in 
cybersecurity of control systems.  Our prior work has in-
vestigated how to use control signals to disturb the pro-
cess operation in a manner that would be (ideally) diffi-
cult for an attacker to predict, such that they are unlikely 
to evade detection because they will create process 
state trajectories that are not in accordance with operat-
ing expectations [5,6].  Active detection strategies such 
as these that attempt to probe for attacks have an ad-
vantage over passive detection strategies that they can 
attempt to use clever operating policies to make it diffi-
cult for an attacker to remain undetected.  However, they 
also disrupt operation and thus may be challenging to use 
in practice.  However, this raises the question of whether 
equipment could be designed that could facilitate locally 
disruptive behavior but global meeting of process speci-
fications (e.g., through designs that might promote mix-
ing in some areas and laminar flow in others to attempt to 
allow for active probing with certain cleverly placed ac-
tuators and sensors within the design but in a manner 
that would overall have a minimal impact on actual pro-
cess output/performance).  This analysis indicates that 
one potential future direction in process design (and par-
ticularly in simultaneous design and control) is to analyze 
whether process and equipment designs that promote an 
ability to probe for cyberattacks using controllers could 
be developed. 

Cryptography and Encryption  
The second potential design direction related to cy-

bersecurity that we discuss is inspired by side channel 
attacks that attempt to locate decryption keys by moni-
toring the power supplied to a computing system.  To fa-
cilitate the discussion, we begin with a high-level discus-
sion of encryption and then of side channel attacks, and 
then discuss a conceptual example indicating the poten-
tial direction in process design for cybersecurity. 

An Overview of Cryptography 
Cryptography has received attention in a control 

context, including with respect to strategies referred to 
as homomorphic encryption which is a method that al-
lows for certain mathematical operations to be performed 
on ciphertext such that the decrypted result of an oper-
ation on two ciphertexts is equal to the result of operating 
on the corresponding plaintexts.  This has been consid-
ered of interest for investigating the implementation of 
control laws on encrypted data on the Cloud to attempt 
to improve the privacy of information which might be sent 
to the Cloud for processing (e.g., [7,8]).  A fundamental 
aspect of cryptography entails the encoding of publicly-
readable ‘plaintext’ into ‘ciphertext’ (i.e., encrypted data) 

such that meaningful information can only be retrieved by 
intended parties. A popular kind of encryption is public 
key cryptography, which utilizes two separate keys to 
encode and decode information. This is done so that any 
party may encrypt a message using a widely available 
public key, but only the intended recipient has access to 
the secret key needed to decrypt. Public key cryptosys-
tems have four main components: the public key, the se-
cret key, and the encryption and decryption algorithms. 

One way to promote privacy of information trans-
ferred throughout a control loop is to encrypt state meas-
urements to be sent to a controller, where they must then 
be decrypted before computations can be performed. 
The resulting control action is then re-encrypted and re-
turned to the actuators to be decrypted and actuated. 
This setup protects against so-called man-in-the-middle 
attacks, in which private information is intercepted in 
transmission.  However, in general, side channel attacks 
can lead to information being obtained from a computing 
device that might reveal encryption keys.  Thus, we dis-
cuss side channel attacks in the following section.  

Side Channel Attacks 
Side channel attacks take information from the pro-

cesses that generate them [9]. This information is known 
as a trace. Operations in circuits follow cryptographic al-
gorithms, and the implementation of these cryptosys-
tems can leak data about these operations.  For example, 
timing of the messages may reveal information.  Power 
usage is a form of information leakage as a computer 
would use different amounts of power based on what it 
is computing. There are different types of power analysis 
(e.g., differential power analysis (DPA) and simple power 
analysis (SPA)). As a side channel attack, the focus is on 
data leakage from an encryption-decryption process. 
The cryptographic operation will require power as the de-
vice computes and this is where the data leakage occurs.  

[10] details how power consumption is directly re-
lated to data transmission. Data busses, metal wires 
within the circuitry, function as mini capacitors by charg-
ing and discharging as they transfer data between device 
components. This charging and discharging consumes 
power. In a data bus, there is a power line, or rail, that 
represents the states 1 or 0, and there is a ground line. 
Data is transmitted as states of on, 1, or off, 0. The size 
of the bus determines how many bits of data can be 
transmitted. As data is processed and transferred, elec-
tronic switches known as FETs, or field-effect transis-
tors, open and close depending on the state.  

The state can change depending on what the bit 
needs to be set to in the data. To change the state, 
charge is applied or discharged and this requires some 
work to be done and power consumed. On a data bus 
line, the transmission follows a counter and every time a 
bit is set to either 0 or 1. The electronic switches control 
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the state; if the bit is first set to 0 and then set to 1 in the 
next iteration, the power rail switch will close and the 
ground rail switch will open. When the power rail switch 
closes, 5 volts is now being supplied and the bit is set to 
1, or “on”. The 5 volts supplied increases the power con-
sumption, which when graphed visually could be repre-
sented by a spike in power consumption.  This is im-
portant to a side channel attack because data sent 
through the chip will travel through these data busses, 
having an effect on the power consumption of the device. 
As there is a change in state and power is consumed, we 
can consider that power consumption is equivalent to the 
number of bits set to 1. Then, when trying to attack a sys-
tem using power analysis, one can look for similarities in 
power consumption. 

In [11], an example in which plaintext interacts with 
a secret key through the exclusive or (XOR) operation is 
performed (XOR yields a true output if only one of two 
conditions is true); this output is then sent to a look up 
table of values, which are further processed.  Information 
is obtained after some of these operations from the cir-
cuit toward guessing keys for the encryption.  

The purpose of a power analysis attack is to find 
patterns in the power consumption. We would expect 
that the number of bits set to 1 relates to power con-
sumption, so the power consumption should be similar 
for outputs that share the same number of 1’s. When at-
tacking, multiple attacks will be done to test different hy-
pothetical keys and then an attempt will be made to de-
termine which key is best supported by the power con-
sumption data. Using the model of encryption and de-
cryption with the hypothetical keys, one can obtain a hy-
pothetical output, with its number of ones. If one of the 
keys chosen was right, the number of ones should relate 
to the power consumption, and correlations should be 
present in the data when evaluated for multiple rounds of 
the hypothetical key.  

A power attack is considered a physical attack be-
cause, for example, a digital oscilloscope managed by a 
computer would be connected to the device under at-
tack. While the device performs its rounds of crypto-
graphic operations, traces of the power consumption are 
recorded and stored on a computer with the correspond-
ing cryptographic data.  Then, an informed guess is made 
for what selection function to use when partitioning the 
sets of traces into subsets for the averaging step used 
for determining if correlations exist between the parti-
tioning strategy and the power consumption data (an ex-
ample of a selection function is the predicted value of a 
certain bit). A piece of the hypothetical key is related to 
selection functions that will be used to define the subsets 
of traces. The averages of the subsets defined by the se-
lection function outputs are computed for each selection 
function used in the previous stage. The final stage of 

analysis is to analyze the test results with either data vis-
ualization or data automation, like scripts, to determine 
which of the hypothetical keys is best supported by the 
data to be the unknown key. With the key, one can work 
backwards to the original plaintext.  

Concepts for Process Design 
Power analysis targets the consumption of power in 

a device to glean information from the possible opera-
tions underway; this raises the question of whether an in-
dustrial process leaks information that is intended to be 
encrypted or otherwise protected from attackers.  To 
demonstrate one concept, consider an extreme case in 
which a process is designed where the process dynamics 
are fully known, and it is desired to keep track of the en-
ergy consumption of the process as a whole since that 
might be reflective of a sustainability objective.  If the 
power requested of the actuators is exactly what is ap-
plied, and the only other sources of power usage are in 
executing known computations (except the encryption 
schemes), there may be a possibility that the data on the 
power usage could contain some information of value in 
a type of side channel attack based on the discussion 
above.  This indicates that another potential direction for 
process design (and its intersection with control) with re-
spect to cybersecurity is attempting to identify how pro-
cess designs, combined with the measurements being 
taken in an era of Big Data and the industrial Internet of 
Things, may or may not cause hidden details of algo-
rithms intended to promote security and privacy to be 
compromised. 

IMAGE-BASED CONTROL 
 In this section, we move away from the discus-

sion of cybersecurity in process design toward a discus-
sion of the role of an 3D graphics tool set called Blender 
in design principles, both related to how to design/re-
search safety monitoring strategies (with the aid of sim-
ulations that allow testing of visualization components) 
and in the design of advanced assemblies with image-
based actuation. 

Blender 
 Blender is a 3D graphics tool set with capabilities 

for modeling, animation, and image rendering.  It contains 
a Python interface that can be used to interface codes 
with the animations, providing a framework for testing 
ideas for design and control that require an image com-
ponent.  Our group has recently begun to investigate the 
potential of the 3D graphics software Blender toward im-
age-based control design, with an example of a render of 
a rod moving stochastically and under a control policy se-
lected based on value iteration [12].  The image-based 
control simulation performed using the rod utilizes the 
coloring of the rod at both ends to help differentiate the 
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rod from the background for the image processing algo-
rithm.  If the rod does not have these types of features, 
procedures such as edge detection may be required to 
help identify the boundaries of the rod, and the different 
sides of the rod may not be visually distinguishable.  This 
example indicates that the selection of the process de-
sign (e.g., how the visuals will appear in a camera) can 
directly affect the available image-based control tech-
niques and methodologies, again highlighting an inter-
section between design and control for next-generation 
manufacturing systems.  The remaining examples of this 
section that utilize Blender (focused on object detection 
for safety purposes and materials design) highlight other 
potential uses of Blender in ensuring safe plant operation 
and in setting specifications of advanced assemblies as 
a step toward designing them. 

Object Detection and Safe Processes  
One of the key features of Blender that suggests its 

utility for researching the testing and designing of safety 
features at a plant based on images is that it has both 
visualization capabilities as well as an ability to import im-
age processing Python packages that can then be used 
to analyze images generated from the software.  To 
showcase this, Blender was used to represent hose and 
nut assembly shown in Fig. 1, where an object detection 
algorithm was created utilizing the Python API. The first 
objective of the code is to create an animation of the nut 
being loosened, recording a series of key frames. A sec-
ond Python code was then created that performs an im-
age detection algorithm. The position of the nut is deter-
mined by calculating the changes in red channel values 
in pixels between adjacent pixel rows and columns and 
subsequently using these to determine a central point as 
the location of the nut. 

 
Figure 1. A render of the hose and nut assemply 
represented in Blender. 

 Another key opportunity for using Blender to aid 
with the design of safety enhancements at a plant is that 
it can be used to represent non-process components as 
well, such as human interactions with a process.  To see 
this, consider the human walking in a hose room at a plant 
as modeled in Fig. 2.  One idea for a safety algorithm 
would be to use images to capture the position of a hu-
man in this room and then to map those to whether the 
human is in a safe or an unsafe area.  Without a visuali-

zation software such as Blender for testing such an algo-
rithm, it may be harder for a process systems engineering 
researcher to contribute to the development of algo-
rithms which can be used for image-based safety en-
hancements unless they had a physical system.  Blender 
opens the option of being able to generate images for 
which tests of whether a proposed safety-enhancing al-
gorithm is applicable can then be tested in simulation for 
research purposes and for better safety algorithm de-
sign.  For example, using the Python programming inter-
face in Blender, the coordinates of the human can be ex-
tracted in the image in Fig. 2 to serve as a ground truth 
and then compared with any coordinates obtained from 
an image processing algorithm to analyze how accurate 
the proposed image processing algorithm is.  Blender 
thus presents a possible strategy for testing non-tradi-
tional safety monitoring components. 

 
Figure 2. An image of a human walking in a hose room. 

Image-Based Control in Assemblies: Blender 
to Aid with Specification Determination 

In this section, we describe another potential use of 
Blender toward design, in this case focused on how it 
might be used in first steps toward designing complex 
assemblies where images are a component.  In this ex-
ample that showcases its potential, we focus on a stimuli-
responsive material, and how to set high-level specifica-
tions for how it should respond to visual stimuli that could 
then be passed downstream in the design pipeline to 
those who design the molecular structure to see if the 
material can be designed to meet those specifications 
that were elucidated through the Blender simulations.  
Stimuli-responsive material assemblies which react to 
external signals, including optical, audio, chemical, tem-
perature, and physical signals by means of changing con-
figuration, from the macroscopic assembly to molecular, 
may have many interesting applications in the future. In 
this section, we explore the process of creating an initial 
design of an optical stimuli responsive material assembly. 
An important aspect of any design phase which we ex-
pect to be incorporated in the design of stimuli respon-
sive materials is simulation, in order to understand the 
dynamics of the material assembly's behavior as well as 
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controller performance under certain situations; as a mo-
tivating example, we develop a simulation within the 3D 
graphics software Blender to provide insights on what 
considerations should be made in the design of an optical 
stimuli responsive material assembly. 

Material Assembly with Image-based Control 
In this example, we explore a potential use case for 

a stimuli-responsive material assembly which is useful 
when handled properly, however potentially destructive 
or harmful when misused or exposed to undesired situa-
tions. The concept is that we would like to design a strat-
egy for causing this material to “sense” that it is going to 
be used in the harmful way, and then to break apart when 
it thinks it will be used in this harmful way to prevent 
harm.  This is a complex design concept that raises many 
questions, both in terms of how the material should be 
physically designed (e.g., which molecules may even 
achieve such a goal), as well as a from a control and 
sensing point of view.  However, we argue that a first 
step toward attempting to develop such an assembly is 
to attempt to design the specifications that we want it to 
follow, which are not obvious.  For example, one could 
consider many ideas for how the assembly should be set 
up.  The material might be intended to break apart imme-
diately when it sees some type of negative signal in im-
age data, or might be intended to do so gradually.  The 
type of negative signals in the images should also be de-
fined to enable testing of whether the proposed material 
design would work as intended or whether there would 
be unexpected corner/edge cases for which it breaks in 
an undesired manner.  We suggest that the flexibility of 
Blender for simulating objects and their interactions 
physically and through image processing makes it an in-
teresting candidate for developing potential scenarios, 
evaluating different “breaking” concepts in these scenar-
ios, and then ultimately providing a test framework to 
evaluate whether the developed algorithms perform as 
intended in new scenarios (i.e., in the presence of new 
image-based sensor signals).  In the remainder of this 
section, we show with a simple case study how Blender 
could be used toward such pathfinding studies for setting 
specifications for advanced assembly designs involving 
image sensing, which serves to suggest Blender’s utility 
for further use and investigation in this direction.  This 
also is meant to motivate discussion on how new para-
digms in material design and control are thought of and 
how they may be used to improve physical safety and 
provide a line of defense against physical attacks on a 
system.  

We use Blender to create a simple macroscopic 
model of a non-specific material assembly composed of 
four blocks connected in a row down the x-axis. Attached 
to the first block on the long side is a camera pointed 
away from the assembly down the y-axis, providing opti-
cal sensing of the environment. In the camera's field of 

view is a block which rotates around the z-axis, where 
each face is a different color, representing different stim-
uli. These stimuli will be used to indicate whether the 
block should “break apart” or not.  Views of the environ-
ment with the assembly and rotating block are shown in 
Figures 3 and 4 where a camera can be seen attached to 
the assembly and facing the rotating block. The camera's 
initial view of the rotating cube is shown in Figure 5. We 
assume the assembly is equipped with a controller and 
actuation capable of separating the end block from the 
rest of the assembly. The simulation begins with the cam-
era looking at the black face of the rotating cube; when 
the block rotates to reveal the blue face, the controller 
"breaks" the cube farthest from the camera off of the as-
sembly. As the cube rotates, each time the center pixel 
changes colors, another block is broken off of the assem-
bly until only the block with the camera remains. 

 
Figure 3. Initial view of assembly and rotating cube. 

 
Figure 4. Alternate initial view of assembly and rotating 
cube. 

 
Figure 5. Initial view of rotating cube from the camera. 

More specifically, Blender's Python API is used to in-
itialize the scene described above, where four identical, 
non-interacting 2x2x2 unit cubes are placed in a row 
down the x-axis. The first block is centered at (0,0,0), the 
second block at (2,0,0), and so on, so that the blocks are 
placed to give the appearance of an assembly. Each 
block is placed with a rotation of (0,0,0). The camera is 
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placed on the block centered at (0,0,0), with a position of 
(0,1,0) and rotation (𝜋𝜋/2,0,0) The rotating block is placed 
down the positive y-axis at (0,8,0) with a rotation of 
(0,0,0). Each of the faces on this block has a different 
base color, four of which will be seen as the block rotates 
(the "bottom" and top" faces are both colored black for 
simplicity). The colors are set using RGBA values (red, 
green, blue, alpha), where blue is (0,0,1,0), green is 
(0,1,0,0), red is (1,0,0,0), and black is (0,0,0,0). The block 
rotates around the z-axis according to the dynamic equa-
tion 𝑑𝑑𝜃𝜃𝑧𝑧

𝑑𝑑𝑑𝑑
= 𝜋𝜋

2
, numerically integrated using Euler's method 

with a time step of 0.001 h. At every sampling period Δ = 
0.1 h, a 1920x1080 pixel image of the rotating cube is ren-
dered to a portable network graphics (PNG) file, reflect-
ing the taking of an image by a camera sensor as a meas-
urement of the system. This image is processed by first 
opening it using the Python package Pillow and loading 
the image's pixel map to a matrix and checking the RGB 
value of the center pixel (960,540) to determine which of 
the four colors it corresponds to. The controller has four 
modes of action, one associated with each of the possi-
ble colors the center pixel can hold in this simulation. 
Specifically, when the center pixel is black, no action is 
taken. When it is blue, the first cube is moved away from 
the assembly. When it is green, the first and second cube 
are moved away from the assembly, and when it is red, 
all three cubes are moved away from the last cube hold-
ing the camera. When signaled, each cube moves down 
the x-axis according to the dynamic equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2, 

again numerically integrated using Euler's method and 
the same time step as before. The simulation is run for 2 
h (equating to one full rotation of the rotating cube so that 
each control action is performed).  

In this simulation, control actions are applied at the 
beginning of each sampling period based on a signal re-
ceived from the image. Figure 6 demonstrates the control 
action applied to the first block. Specifically, at time t = 
0.2 h, no control action has been applied as the black 
face still occupies the center pixel. Between t = 0.2 h and 
t = 0.3 h, the blue face crosses over the center pixel, 
however the control action is not applied until t = 0.3 h 
when the first block begins to break off from the assem-
bly. 

 
Figure 6.  View the assembly and camera view of the first 

control action taken at t = 0.3 h (bottom left; the effect of 
the action at 0.3 h is shown at 0.4 h on the bottom right) 
compared to the system at t = 0.2 h (top left; the effect 
of the action at 0.2 h is shown at 0.3 h on the top right).  

Remark 1 
    One important step in verifying the performance of the 
controller was determining how to use pixel data to set 
the behavior of the controller. In this simple case, this 
was "calibrated" by determining the RGB value returned 
by the loaded image for each color in the set of colors the 
controller is to see, where black corresponded to a value 
of (9,9,9), blue to (9,9,73), green to (9,73,9), and red to 
(73,9,9). When the image processing algorithm returned 
one of these values, a control action associated with the 
value is applied. This however is highly idealized; many 
aspects which require consideration in real processes 
could be analyzed using this testbed, including the ef-
fects of material properties, lighting properties, and sen-
sor measurement noise. For example, one could imagine 
that instead of one discrete pixel value being used to rep-
resent a color, a range of similar values may be needed 
to account for variations caused by lighting, or perhaps 
similarly a number of pixels may need to be analyzed so 
that pixels affected by intense lighting variations such as 
glare do not negatively impact the controller. 

Remark 2 
 Colors were set using filter intensities between 0 
and 1, however .PNG files store the values between 0 and 
255. It is noted that the value of the pixels read back may 
not correspond to what is expected analytically; for ex-
ample, setting the color blue as (0,0,1,0), one may expect 
a read back of a blue pixel to be (0,0,255) (where the al-
pha filter is not considered), however, a value of (9,9,73) 
was found. This sheds light on how the complexities of 
using a simulated environment for setting colors as well 
as capturing and processing images need to be carefully 
considered in the design of a controller which utilizes im-
age data.  

Remark 3 
 The assumptions that the assembly is equipped with 
a controller and actuation is non-trivial. With regard to a 
controller, depending on the size of the assembly, it may 
be difficult to integrate the proper hardware with the as-
sembly. Similar problems arise with actuation, however 
this is further complicated by considerations of the dy-
namics of the assembly which are desired under a stim-
ulus. For example, the controlled material assembly in 
this simulation can be thought of to be progressively 
"breaking" as it is exposed to certain optical stimuli; de-
pending on the design and material of the device, it may 
be difficult to not only actually provide actuation which 
breaks the device, but is also able to perform the action 
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to receive a deterministic result.   

Remark 4 
 The idea of progressively breaking the material as-
sembly reflects the desire to make material changes in a 
reversible or continuous manner. The reason for this is 
that, especially when dealing with intention, uncertainty 
may arise where it may be desirable from a safety per-
spective to begin to take actions to disable the device 
pre-emptively before any harm can be done, but the 
function of the assembly may also be lost when actions 
are taken to disable the device in the case harm is pre-
sent (i.e. the device breaks before harm can be done). 
This motivates the use of a simulation test bed to fully 
characterize the control behavior under a wide variety of 
possible conditions.  

Remark 5 
 The choice of having the controller only move one 
block at some times and one or more at other times was 
arbitrary and made so that the blocks do not collide after 
"breaking" off of the assembly. Many different assembly 
and actuation models of varying complexity could have 
been considered here depending on the intended func-
tion of the material assembly. Instead, this simulation is 
intended to demonstrate the potential for Blender to be 
used as part of a testbed framework for developing opti-
cal stimuli responsive materials, including those equipped 
with intent recognition. 

Material Assembly with Image Prediction-Based Control 
Utilizing the same simulation, we now demonstrate 

the integration of image predictions in the control law. 
Specifically, at each sampling time, the controller re-
ceives an image of the current system (i.e. an image of 
the rotating cube from the camera attached to the mate-
rial assembly). By integrating the dynamics of the rotat-
ing cube forward in time, predictions of future images 
captured by the assembly camera can be generated by 
Blender and used to preemptively signal control actions 
to be applied. In this simulation, the dynamics of the sys-
tem are integrated forward in time to produce image pre-
dictions at 0.1, 0.2, and 0.3 h into the future at every sam-
pling time. Using the same algorithm to determine control 
actions (i.e. analyzing the color of the center pixel of each 
image), each predicted image is processed. In the current 
algorithm, the control action signaled by the prediction 
from 0.3 h in the future is applied at the beginning of the 
sampling period (this is demonstrated in Figure 7 where 
the image prediction for t = 0.3 h signals the first block to 
begin to break off at the beginning of the first sampling 
period at t = 0 h, where the effect is shown at time t = 0.1 
h in Figure 8). 

 
Figure 7. At the beginning of the first sampling period at 
t = 0 h, the controller receives the top left image. The 
controller integrates the dynamics of the rotating cube 
forward in time to produce predictions of the image it will 
see at t = 0.1 h, t = 0.2 h, and t = 0.3 h in the future. 

The ability of the controller in this simulation to pre-emp-
tively act based on predicted images demonstrates how 
the behavior of image responsive systems (in this case, 
an image responsive material assembly) can be com-
pared with and without image predictions to design a de-
sired response. Further testing may be conducted to tune 
the desired controller response; for example, consider 
that the response of the predictive controller in the ex-
ample above is considered too aggressive in the sense 
that control actions are being applied based on predic-
tions of images which are too far in the future (i.e. irre-
versible control actions are being applied based on pre-
dictions which we are less confident in). It may be desired 
to change how the control signals are used, for example 
using the prediction from 0.1 h in the future (instead of 
0.3 h) to signal the controller, or changing how the con-
troller responds to signals (such as breaking each cube 
off of the assembly at a slower rate) to achieve a desired 
response. This indicates that Blender may be used as a 
simulation testbed to design controlled material assem-
blies and tune aspects of their behavior, including control 
design and the integration of image predictions, as well 
as image processing algorithms. These simulations more 
broadly showcase the ability of Blender to be used to de-
velop simulations which facilitate the testing of inte-
grated image-based and image prediction-based control 
strategies and image processing algorithms. 

 

 
Figure 8. View of the assembly at t = 0.1 h after the 
predictive controller signaled a control action at t = 0 h to 
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break the first cube off the assembly. 

Conclusions 
        This work provided a perspective on two areas 

in which process design (and its integration with control) 
could be impacted, and new avenues opened, by Indus-
try 4.0 considerations related to control system cyberse-
curity and the use of image-based control and safety 
systems.  We began with a discussion of two ideas of po-
tential avenues for cybersecurity in process design, one 
which was inspired by the impacts of active attack de-
tection mechanisms on process objectives (i.e., that de-
signs be developed which can facilitate probing for at-
tacks during operation but without impacting overall 
profits) and one which was inspired by the ability of 
power supply attacks to use physical measurements on a 
computing device to backtrack encryption information 
(i.e., that designs and instrumentation/information avail-
ability strategies be analyzed for whether they have any 
ability to leak information that could reduce security/pri-
vacy).  We then discussed the potential utility of Blender 
for testing various considerations related to images in 
next-generation manufacturing systems design, includ-
ing in the design of safety monitoring schemes, as well 
as for advanced assemblies (e.g., stimuli-responsive ma-
terials that should respond to certain image data).  
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ABSTRACT 
The determination of the design space (DS) in a pharmaceutical process is a crucial aspect of the 
quality-by-design (QbD) initiative which promotes quality built into the desired product. This is 
achieved through a deep understanding of how the critical quality attributes (CQAs) and process 
parameters (CPPs) interact that have been demonstrated to provide quality assurance. For com-
putational inexpensive models, the original process model can be directly deployed to identify the 
design space. One such crucial process is the Tablet Press (TP), which directly compresses the 
powder blend into individual units of the final product or adds dry or wet granulation to meet spe-
cific formulation needs. In this work, we identify the design space of input variables in a TP such 
that there is a (probabilistic) guarantee that the tablets meet the quality constraints under a set of 
operating conditions. A reduced-order model of TP is assigned for this purpose where the effects 
of lubricants and glidants are used to characterize the design space to achieve the desired tablet 
CQAs. The probabilistic design space, which takes into account interactions between crucial pro-
cess parameters and important quality characteristics including model uncertainty, is also approx-
imated because of the high cost associated with the comprehensive experiments. 

Keywords: design space, tablet press, direct compression, pharmaceutical process, optimization

INTRODUCTION 
The “quality-by-design” (QbD) paradigm put for-

ward by the ICH Q8 guideline on pharmaceutical devel-
opment states that quality should be built into the prod-
ucts instead of tested into them [1]. The QbD concept al-
lows the practitioner to embrace a thorough and compre-
hensive approach towards pharmaceutical processes 
and product development. This leads to a more system-
atic understanding of the intricate relationships between 
material attributes, process parameters (CPPs), and 
product quality (CQAs) for the manufacture of new drugs. 
The manufacturer may get an advantage from this under-
standing and receive regulatory clearance to manufac-
ture at any condition and within a broad operating regime 
if there is sufficient scientific proof that the process will 
produce a product of acceptable quality. Such an opera-
tional regime is called the design space and is also intro-
duced in the ICH guideline. The regulatory approval pro-
vides the boundaries within which the material attributes 
and process parameters can be changed without further 
approval. However, changes beyond the design space 

values mandate a regulatory post-approval change pro-
cess. 

The most widely available literature for design 
space identification uses an empirical approach and gen-
erally follows the steps of: identifying the knowledge 
space; design-of-experiments (DoE) measuring the rela-
tion between the CPPs and CQAs within the knowledge 
space; using empirical regression methods to define 
boundaries of the design space; and validation experi-
ments to confirm the design space [3]. The empirical ap-
proach is highly favorable when the model is complicated 
(e.g., multiple unit operations, integrated flowsheet 
model), and the design space analysis can be challenging 
due to the computational cost associated with the simu-
lation of the process model. 

However, in the presence of a relatively inexpensive 
computational model, the original model based on the 
mechanistic equations of the process can be directly 
used to characterize the design space. Instead of using 
experimental data to generate empirical relationships, 
the equations in these models are constructed from a se-
ries of presumptions about the physical system and 
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conservation principles of physics and chemistry. The 
degree to which these assumptions are true determines 
whether these models hold up when applied to novel sit-
uations. There are instances of mechanistic models being 
applied to the identification of design spaces; however, 
fewer examples exist for pharmaceutical processes [4-
5]. 

The design space concept has been based on em-
pirical relationships since its beginning; however, the cur-
rent practice is to evolve by using models that are more 
mechanistic. The discussion remains about how much 
experimental evidence is necessary to establish the de-
sign space, which changes across regions and applica-
tion scenarios. There are three broad approaches to 
identifying design spaces that result in desirable quality 
attributes: optimization methods, Bayesian inference, 
and knowledge space sampling. Optimization techniques 
help identify operational parameters, which ensures that 
the process acquiesces to a constraint set by performing 
the flexibility analysis [6]. Bayesian approaches use lim-
ited process data and variability and can also incorporate 
prior knowledge about the process to define a design 
space that includes uncertainty [7]. Another alternative 
approach to identifying the design space is to generate a 
mesh of sample points in the process parameter space 
and perform simulations at each of those points to deter-
mine if the predicted product quality disobeys any con-
straint [8]. 

The current work contributes to this fast-evolving 
domain, where we investigate a steady-state mechanis-
tic tablet press (TP) model [2]. For the purpose of using 
QbD methods in a direct compression tableting pro-
cess—where the dry blended component materials are 
compressed into tablets—the TP model may be used to 
predict the CPPs and CQAs of tablets. The reduced-or-
der TP model has been used previously to describe the 
effects of glidants and lubricants on tablet CQAs [2] and 
implement moving horizon estimation-based non-linear 
model predictive control (MHE-NMPC) for the tablet 
press at Purdue’s pharmaceutical continuous manufac-
turing pilot plant [9]. In the current study, the mechanistic 
model is deployed for identifying the design space using 
explicit knowledge space sampling, and the importance 
of various process parameters is discussed based on the 
optimal areas of operation that follow a set of constraints. 
The study investigates the effects of glidants and lubri-
cants and other process parameters on making desired 
quality tablets via two separate experimental campaigns 
and their probabilistic design spaces are characterized. 

The paper is organized as follows: the next section 
explains the reduced-order model for the TP, where the 
role of glidants and lubricants on tablet quality is ex-
plained. Subsequently, the design of experiments and the 
parameter estimation of the mechanistic model are de-
scribed. We then present the design space results and 

recommend the optimal areas of process operation to 
manufacture tablets of the desired quality. The robust 
design space is also determined when the process model 
includes uncertainty by performing Monte Carlo simula-
tions for different probability values as acceptable mini-
mum. 

Figure 1. Steps in a rotary tablet press process (taken 
from [10]) 

TABLET PRESS MODEL 
The tablet press is a multi-stage process that in-

volves the following primary actions at each station: die 
filling, metering, pre-compression, main-compression, 
tablet ejection and take-off from lower punch. The me-
tering stage adjusts the dosing position to change the 
amount of powder within the die after die filling the feed 
frame. The die is then locked between the upper and 
lower punches throughout the pre-compression and 
main-compression stage until tablet ejection and take-off 
takes place. While the main compression works to com-
pact and solidify the powder into tablets, the pre-com-
pression helps to release trapped air in the die and reor-
ganize the particle packing.  

In order to lower frictional losses and improve pow-
der flow during die filling and the mechanical compres-
sion-formed solid tablet formation process, lubricants 
and glidants are essential components. Consequently, 
the porosity and tensile strength of tablets will be moni-
tored and controlled using models for lubricant/glidant 
effects in die filling and compression operations. The ef-
fects of glidant and lubricant concentrations and mixing 
conditions are specifically captured by these mechanistic 
models. 

The tablet weight, W, formed using NATOLI D-type 
tooling is affected by the process parameters such as 
dosing position (ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), turret speed (𝑛𝑛𝑇𝑇), and diameter of 
the tablet (D) and is computed as 

𝑊𝑊 = 𝜌𝜌𝑏𝑏𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �−𝜑𝜑1
𝑛𝑛𝐹𝐹
𝑛𝑛𝑇𝑇

+ 𝜑𝜑2
ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐷𝐷

+ 𝜑𝜑3 �
ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐷𝐷
�
2
� (1) 

Where 𝜑𝜑1,  𝜑𝜑2, 𝜑𝜑3 refer to the model parameters (to 
be estimated using the experimental data) and 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝜌𝜌𝑏𝑏, 
and 𝑛𝑛𝑛𝑛 is the die cavity volume, powder bulk density, and 
feed frame speed, respectively. The powder bulk density 
𝜌𝜌𝑏𝑏 is dependent on the glidant/lubricant concentration (cl) 
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and mixing time (or shear imparted during mixing) (γ) 
which follows the asymptotic relationship as 

𝜌𝜌𝑏𝑏 =  𝜌𝜌𝑏𝑏,∞ −  𝜌𝜌𝑏𝑏,∞− 𝜌𝜌𝑏𝑏,0

1+ 𝐶𝐶𝑝𝑝
 with 𝐶𝐶𝑝𝑝 =  𝑐𝑐𝑓𝑓

𝑟𝑟1(𝛾𝛾+ 𝛾𝛾0)𝑟𝑟2

𝑟𝑟3
 (2) 

where ρb,∞, and ρb,0 represent the bulk densities 
when the shear imparted during mixing is infinite and zero 
respectively, γ0 is the initial shear imparted during pre-
mixing, and r1, r2, r3 are model parameters estimated from 
the experimental data. The bulk density in (2) increases 
with increase in concentration or mixing time of 
glidant/lubricant and reaches an asymptotic value. The 
die cavity volume is calculated as follows 

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  = π𝐷𝐷2ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
4

+
𝜋𝜋ℎ(3𝐷𝐷

2

4  +ℎ2)

6
    (3) 

where h is the cup depth. The main compression 
force (𝑛𝑛𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛) which is an important process variable can 
be estimated using the Kawakita equation [11] for the ef-
fect of silica (independent of the glidant conditions) by 

𝑛𝑛𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛 =  𝜋𝜋𝐷𝐷2(𝜌𝜌𝑓𝑓𝑖𝑖−𝑑𝑑𝑓𝑓𝑑𝑑 − 𝜌𝜌𝑐𝑐)
4𝑏𝑏(𝜌𝜌𝑓𝑓𝑖𝑖−𝑑𝑑𝑓𝑓𝑑𝑑(𝑚𝑚−1) + 𝜌𝜌𝑐𝑐)

   (4) 

where a and b are the Kawakita parameters, 𝜌𝜌𝑐𝑐 is the 
critical density of the powder and the in-die relative den-
sity, 𝜌𝜌𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑 is given by 

𝜌𝜌𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑 =  𝑊𝑊
𝜌𝜌𝑡𝑡𝑉𝑉𝑓𝑓𝑖𝑖−𝑑𝑑𝑓𝑓𝑑𝑑

    (5) 

where 𝜌𝜌𝑡𝑡 is the true density of the powder and 𝑉𝑉𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑 
is the die-cavity volume with main compression thickness 
ℎ𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑 given by 

𝑉𝑉𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑  = π𝐷𝐷2ℎ𝑓𝑓𝑖𝑖−𝑑𝑑𝑓𝑓𝑑𝑑
4

+
𝜋𝜋ℎ(3𝐷𝐷

2

4  +ℎ2)

3
   (6) 

The lubrication conditions are found to affect the 
compression force for the MgSt blends and this is incor-
porated by modifying a as 

a =  𝑎𝑎∞ −  𝑚𝑚0− 𝑚𝑚∞
1+ 𝐶𝐶𝑐𝑐

with 𝐶𝐶𝑐𝑐 =  𝑐𝑐𝑓𝑓
𝑝𝑝1(𝛾𝛾+ 𝛾𝛾0)𝑝𝑝2

𝑝𝑝3
  (7) 

where a0, a∞, p1, p2, and p3 are model parameters. 
Here, the compaction force increases with increasing lu-
brication. The elastic recovery (𝜀𝜀𝑝𝑝) model which is part of 
the tablet ejection stage is insensitive to the glidant mix-
ing conditions and can be calculated by 

𝜀𝜀𝑝𝑝  =  𝜀𝜀0  𝜌𝜌𝑓𝑓𝑖𝑖−𝑑𝑑𝑓𝑓𝑑𝑑− 𝜌𝜌𝑐𝑐,𝜀𝜀

1− 𝜌𝜌𝑐𝑐,𝜀𝜀
    (8) 

However, the lubricant conditions affect the elastic 
recovery and an increase in the former increases the lat-
ter. This behavior is captured by modeling 𝜀𝜀0 as 

𝜀𝜀0 =  𝜀𝜀∞ −  𝜀𝜀𝜑𝜑− 𝜀𝜀∞
1+ 𝐶𝐶𝜀𝜀

 with 𝐶𝐶𝜀𝜀 =  𝑐𝑐𝑓𝑓
𝑞𝑞1(𝛾𝛾+ 𝛾𝛾0)𝑞𝑞2

𝑞𝑞3
  (9) 

where 𝜀𝜀𝜑𝜑, 𝜀𝜀∞, q1, q2, and q3 are model parameters. 
The tablet density 𝜌𝜌𝑡𝑡𝑚𝑚𝑏𝑏 can then be calculated using 

𝜌𝜌𝑡𝑡𝑚𝑚𝑏𝑏 =  𝜌𝜌𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑 (1 −  𝜀𝜀𝑝𝑝)   (10) 

 The tensile strength (𝜎𝜎𝑡𝑡) of a tablet is a crucial CQA 
which affects the tablet dissolution along with the tablet 
weight W. Both lubricant/glidant concentration and mix-
ing time affect the tensile strength and the relationship is 
governed by Kuentz and Luenberger, 2000 [12] 

𝜎𝜎𝑡𝑡 =  𝜎𝜎0 �1 −  𝑒𝑒�𝜌𝜌𝑡𝑡𝑡𝑡𝑏𝑏− 𝜌𝜌𝑐𝑐,𝜎𝜎� �
1 −  𝜌𝜌𝑡𝑡𝑚𝑚𝑏𝑏
1 −  𝜌𝜌𝑐𝑐,𝜎𝜎

��𝑤𝑤𝑓𝑓𝑤𝑤ℎ 𝜎𝜎0 =  
𝜎𝜎0,𝜑𝜑

1 + 𝐶𝐶𝜎𝜎  

 𝜌𝜌𝑐𝑐,𝜎𝜎 =  𝜌𝜌𝑐𝑐,σ,∞ −  𝜌𝜌𝑐𝑐,σ,∞− 𝜌𝜌𝑐𝑐,σ,φ

1+ 𝐶𝐶𝜎𝜎
 𝑎𝑎𝑛𝑛𝑎𝑎 𝐶𝐶𝜎𝜎 =  𝑐𝑐𝑓𝑓

𝑏𝑏1(𝛾𝛾+ 𝛾𝛾0)𝑏𝑏2

𝑏𝑏3
 (11) 

Where 𝜌𝜌𝑐𝑐,σ,φ , 𝜌𝜌𝑐𝑐,σ,∞, b1, b2, b3 are the model parame-
ters [13] and 𝜎𝜎0,𝜑𝜑 and 𝜌𝜌𝑐𝑐,σ,φ represents the tensile 
strength and critical relative density when there is no lu-
brication, 𝐶𝐶𝜎𝜎 = 0. As a result of the tensile strength model, 
soft tablets with lower tensile strength are formed as the 
concentration or mixing time of glidant or lubricant in the 
formulation increases. However, the decrease in tablet 
tensile strength manufactured using silica blends is solely 
because of the variations in the blended material proper-
ties, but the lower tensile strength of tablets formed us-
ing Magnesium Stearate (MgSt) blends would in addition 
be due to the increased elastic recovery of lubricated 
tablets. 

METHODOLOGY 
Tablets are the most common oral solid dosage form 

that can be produced by direct compression or enhanced 
by either wet or dry granulation to meet specific formu-
lation needs. The direct compression line in the pharma-
ceutical continuous manufacturing pilot plant at Purdue 
University was used for the studies in this work. The ma-
terials used in the current study include 10% w/w aceta-
minophen (APAP) as the API, microcrystalline cellulose 
Avicel PH200 (MCC) as the excipient, and glidant colloi-
dal silica and lubricant Magnesium Stearate (MgSt) at dif-
ferent concentrations. Colloidal silica is an excipient 
which is useful for improving powder flowability and 
MgSt helps reduce internal friction during compaction 
and tablet-tooling friction during ejection. These excipi-
ents have a substantial impact on the powder's surface 
characteristics, such as the strength of the solid bridges 
created during compaction, as well as bulk properties, in-
cluding bulk density, even when added in very small 
amounts [14]. This shift in the blend's characteristics nat-
urally affects the tableting procedure and the final tab-
let's CQAs, including its dissolving profile [13, 15], which 
in turn affects the active pharmaceutical product's (API) 
bioavailability. 

For the experimental campaigns, APAP and MCC 
were mixed in a tote blender with 0-0.2% w/w silica in the 
first experimental campaign and with 0-2% w/w MgSt in 
the second campaign for 10–30 minutes. The dosing 
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position and the in-die (main compression) thickness val-
ues were maintained between 7–11 mm (9-13 for lubri-
cant MgSt) and at 3.1 mm, respectively, to manufacture 
tablets that have a wide range of relative densities. The 
design-of-experiments DoE was conducted separately 
for the two experimental campaigns to study the effects 
of silica and MgSt on tablet quality. The MATLAB function 
lhsdesign was used to build a Latin hypercube sampling 
(Viana, 2013) of turret speed, dosing position, concentra-
tion, and mixing time to generate 30 experiments for the 
silica blends and 20 experiments for the MgSt blends. 
Next, the powder blends were compressed into tablets 
using a NATOLI-NP400 tablet press using D-type tooling 
with shallow cup of depth 0.33 mm, which features a total 
of 22 punch-die stations with die-size 8 mm. A SOTAX 
AT4 tablet tester was utilized to measure the weight, 
hardness, diameter, and thickness of 50 tablets under 
steady-state manufacturing conditions for each run in 
the DoE. At the beginning of each experimental run, 0.5 
kg of the mix was added to the tablet press hopper.  

The TP model parameters are estimated by minimiz-
ing the least squares which is typically solved as an opti-
mization problem where the objective is to minimize the 
sum of squared errors (𝑆𝑆𝑆𝑆𝑆𝑆) between the model pre-
dicted and observed values. 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ (𝑦𝑦𝑚𝑚𝑚𝑚𝑑𝑑,𝑓𝑓 −  𝑦𝑦𝑚𝑚𝑏𝑏𝑜𝑜,𝑓𝑓)2𝑛𝑛
𝑓𝑓=1    (12) 

where 𝑦𝑦𝑚𝑚𝑚𝑚𝑑𝑑,𝑓𝑓 and 𝑦𝑦𝑚𝑚𝑏𝑏𝑜𝑜,𝑓𝑓 are the ith estimated value 
using the TP model and ith experimental data of the tab-
let CQAs (tablet weight, main compression force, and 
tablet tensile strength), respectively, and n is the number 
of experimental samples. The sum of squared errors is 
minimized, and the corresponding optimal values of 
model parameters and their uncertainty are stored for 
design space characterization. 

There are 4 CPPs in the DoE namely turret speed, 
dosing position, concentration, and mixing time. In the 
tablet press, the feed frame speed gets automatically ad-
justed to be ~15 rpm greater than the turret speed. While 
high feeder to turret speed ratios can lead to uneven die-
filling and tablet weight variability, the current DoE main-
tains low turret and feeder speeds, minimizing their im-
pact on tablet weight. The dosing position (ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) deter-
mines the tablet weight, while the main compression 
thickness (ℎ𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑) affects the tablet density and hence 
the tensile strength of the tablet. Therefore, the crucial 
CPPs for the design space are the dosing position, main 
compression thickness, concentration, and mixing time 
and their realizable bounds are shown in Table 1. The 
main compression thickness is flexible enough to vary 
within operable limits and can be used to widen the useful 
design space regions. The tablet CQAs considered in this 
study include main compression force, tablet weight, and 
tensile strength, and the desired specifications are men-
tioned in Table 2.  The compression force is essentially 

not included in the tablet CQAs but it helps in regulating 
the lower bounds of dosing position and main compres-
sion thickness that results in useful design space regions. 
Therefore, it is included as a quality constraint. The ob-
jective of this study is to identify the design space of in-
put variables (ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, ℎ𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑, cL, γ) such that the tablets are 
guaranteed to meet the quality constraints (W, 𝑛𝑛𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛, 𝜎𝜎𝑡𝑡) 
under the operating limits of the tablet press. 

Table 1: The critical process parameters (CPPs) and their 
bounds 

CPP Low limit High limit 
Dosing position (ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  mm  mm 

Comp thickness (ℎ𝑓𝑓𝑛𝑛−𝑑𝑑𝑓𝑓𝑑𝑑)  mm  mm 
Silica conc (cl)  %  % 
MgSt conc (cl)  %  % 
Mixing time (γ)  mins  mins 

 

Table 2: The critical quality attributes (CQAs) and their 
specifications 

CPP Low High 
Tablet weight (W)  mg  mg 

Compression Force (𝑛𝑛𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛)  kN  kN 
Tensile strength (𝜎𝜎𝑡𝑡)  MPa  MPa 
 
As previously stated, an explicit sampling of the 

knowledge space is used to identify the design space. 
For the deterministic design space, the process parame-
ters are discretized by creating a fine mesh of sample 
points within their predefined bounds. To determine if the 
projected CQAs jointly observe the constraints for each 
discretized sample, simulations are performed for each 
of these discretized CPPs. A deterministic design space 
is the outcome of this mapping. 

For the probabilistic design space, additionally, at 
each of the discretized CPPs, Monte Carlo simulations 
are executed on the full model N times using the model 
parameter values in the space of their uncertainty 
bounds. The uncertainty information is incorporated in 
the design space using the computed standard deviation 
values of model parameters from the least squares ap-
proach. The fitted model predictions against experi-
mental data for different CQAs can be seen in Figure 2. 
Then, for each of the discretized process parameter 
samples, the probability of meeting the constraints jointly 
is estimated. The probability is computed based on the 
fraction of times the Monte Carlo simulations resulted in 
CQA values that complied with all the constraints. For 
each discretized sample, the probability is set equal to 
this fraction. This allows for the propagation of model un-
certainty to the predicted CQAs, and the Monte Carlo 
simulation serves well in showing the possible values of 
the model prediction as explicit probability maps which 
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accounts for model variability and common cause varia-
bility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Fitted TP model predictions versus 
experimental data for (a) tablet weight, (b) tensile 
strength, (c) compaction force. 

The explicit sampling method is effective in identi-
fying the probabilistic design space, and the process pa-
rameter grid can be made finer through discretization, 
and there is no restriction on the sampling size of the un-
certain parameters. It is worth mentioning that a major 
limitation of this approach lies in the large number of sim-
ulations that need to be performed, and the design of ef-
fective strategies for knowledge space sampling is an ac-
tive research area but that is beyond the scope of this 
work. Despite the computational challenges, the explicit 
sampling method is the most straightforward approach to 
estimate even complex design spaces. However, the goal 
here is to recommend optimal areas of operation for the 
tablet press within the process parameter space that re-
sults in quality tablets utilizing the straightforward and 

effective explicit sampling approach. 

Figure 3. Design space plots for silica blends following 
CQA constraints mentioned in Table 2. Blue region is the 
deterministic design space (without accounting for model 
uncertainty) and green region is the probabilistic design 
space with 85% confidence. 

RESULTS AND DISCUSSIONS 
From the tablet press model described in the sec-

ond section, it can be seen that the CPPs dosing position 
ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, lubricant or glidant concentration cL, and mixing time 
γ, affect the CQA tablet weight W (from equations 1, 2, 
and 3). The main compression force 𝑛𝑛𝑚𝑚𝑚𝑚𝑓𝑓𝑛𝑛, which is an-
other CQA, is additionally influenced by the main com-
pression thickness (equations 4, 5, 6, and 7). The tensile 
strength 𝜎𝜎𝑡𝑡 is also dependent on all the CPPs (equations 
8, 9, 10, and 11). Therefore, the tablet press model can be 
lumped into three equations: one for tablet weight, a sec-
ond for main compression force, and a third for tensile 
strength. The equations have not been mentioned here 
due to their comprehensiveness. However, the equations 
can be used to solve for the design space variables within 
the bounds shown in Table 1, and the equations them-
selves would be constrained due to the limits specified in 
Table 2. 

Figure (2) depict the multidimensional design space 
in simplified graphical form for the silica blends. Several 
simulations were performed for various combinations of 
process parameters and sampling model parameters 
within their uncertainty bounds in order to identify the 
multidimensional design space. For demonstration, 1000 
Monte Carlo simulation realizations were used in this 
case, with an acceptable minimum probability of 85%. 
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The blue region is where the three quality constraints are 
met without accounting for the model uncertainty and the 
green region is where the probability of meeting all the 
quality constraints is acceptable. It is important to em-
phasize here that the lower feasible bounds of the dosing 
position and the compression thickness is regulated by 
the main compression force and their upper feasible 
bounds is controlled by the tensile strength constraint. 
From the design space plots of silica blends, it is ob-
served that the closer you operate near the nominal value 
of compression thickness (~ 2.1 mm) and dosing position 
(~6.9 mm), wider would be the probabilistic design 
space. Although the comprehensive probability maps 
have not been shown here, but the variation in design 
space can be explained as follows: for lower dosing po-
sitions values (closer to lower bound in Table 1), lower 
thickness values are favorable and for high dosing posi-
tions values (closer to upper bound), higher thickness 
values are required for tablet quality to obey the con-
straints. This is only valid within the feasible limit of pro-
cess parameters. The design space plots for the lubri-
cated blends were found to very narrow and small even 

for the deterministic case and are therefore not reported. 

Figure 4. Design space plots for different tablet weight 
CQA limits. Blue region is the deterministic design space 
(without accounting for model uncertainty) and green 
region is the probabilistic design space with 85% 
confidence. 

We also demonstrate the effectiveness of the TP 
model in capturing the design space boundaries by 
showing the design space plots with varying tablet 
weight limits. The other two CQA constraints remain un-
changed as mentioned in Table 2. To illustrate the case, 
we have considered a new limit for tablet weight W = 
[100, 150] mg and compare it with the original case but 
the operating conditions on dosing position and com-
pression thickness is kept fixed at (6.3 mm, 1.5 mm) and 
other constraints also remain unchanged. The silica 
blends are used for this case study. The change in feasi-
ble region boundary for the probabilistic design space is 
shown in Figure 4. Here the green region shrinks towards 
bottom left for smaller tablet weight CQA. 

CONCLUSIONS 
The study investigated the determination of design 

space for the tablet press operation to achieve desired 
tablet quality. The design space plots showed the effects 
of glidant or lubricant on the tablet quality. Tablets made 
from silica blends showed much promise where a design 
space point in a sufficient broad feasible region can be 
used to perform validation experiments. The efficacy of 
the TP model is also depicted in the case where the var-
iation in probabilistic design space boundary is captured 
when the required tablet weight changes. An immediate 
future work includes performing the validation experi-
ments based on the identified design space plots. 

The future work includes various improvisation to 
the current study. First, the TP model needs to be tested 
against variations in measured tablet CQAs. Second, to 
develop design space plots for much smaller or larger 
tablets and to study the effect of die size on such tablets 
and how the TP model performs with such variations. Fi-
nally, an empirical approach such as Bayesian modeling 
based on the DoE can be used to explore the design 
space of the TP and compare its efficacy against the 
model-based methodology. 
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ABSTRACT 
In this work, we present recent algorithmic and implementation advances of the nonconvex two-
stage robust optimization solver PyROS. Our advances include extensions of the scope of PyROS 
to models with uncertain variable bounds, improvements to the formulations and/or initializations 
of the various subproblems used by the underlying cutting set algorithm, and extensions to the 
pre-implemented uncertainty set interfaces. The effectiveness of PyROS is demonstrated through 
the results of an original benchmarking study on a library of over 8,500 small-scale instances, with 
variations in the nonlinearities, degree-of-freedom partitioning, uncertainty sets, and polynomial 
decision rule approximations. To demonstrate the utility of PyROS for large-scale process models, 
we present the results of a carbon capture case study. Overall, our results highlight the effective-
ness of PyROS for obtaining robust solutions to optimization problems with uncertain equality con-
straints. 

Keywords: Design Under Uncertainty, Pyomo, Algorithms, Optimization, Process Design

INTRODUCTION 
Two-stage robust optimization (RO) is a useful 

framework for obtaining robust designs of process and 
energy systems. Optimization models for process and 
energy systems are often subject to parametric uncer-
tainty, arising from the use of empirical correlations for 
property models, temporal variations in feedstock qual-
ity, or economic stochasticity [1]. Since any changes in 
the prevailing values of these uncertain parameters may 
significantly affect the model outputs, deterministic opti-
mization may yield system designs which are suboptimal 
or infeasible under off-nominal scenarios. Moreover, the 
design of a plant should account for any built-in control-
lability that will allow the operator to adjust plant re-
sponse during operation. 

The recently developed two-stage RO solver PyROS 
[2, 3] is designed to obtain robust solutions to process 
models. A typical process design model features noncon-
vexities, design and recourse degrees of freedom, and a 
prevalence of equality constraints constituting the 

“simulation part” of the model. The equality constraints 
are often highly complex, to the extent that they cannot, 
in general, be reformulated out of the model. Until re-
cently, there were no existing RO tools capable of solving 
nonconvex two-stage RO problems with general nonlin-
ear inequality constraints. Based on a generalization [1] 
of the robust cutting set algorithm of [4], PyROS is the 
first two-stage RO solver that systematically handles the 
equality constraints without reformulation requirements 
[3]. 

In this work, we present an overview of the cutting 
set methodology upon which the PyROS solver is based, 
recent algorithmic and implementation advances of the 
PyROS solver, a high-throughput benchmarking study to 
demonstrate the effectiveness of PyROS for a wide range 
of small-scale nonconvex two-stage RO instances, and a 
post combustion carbon capture case study to show the 
utility of PyROS for obtaining risk-averse designs for crit-
ical systems with large-scale nonconvex optimization 
models. 

mailto:gounaris@cmu.edu
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METHODOLOGY OVERVIEW 

Formulations 
Let 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥 , 𝑧𝑧 ∈ 𝑅𝑅𝑛𝑛𝑧𝑧 ,𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛𝑦𝑦 , 𝑞𝑞 ∈ 𝑅𝑅𝑛𝑛𝑞𝑞 denote the first-

stage variables, second-stage variables, state variables, 
and uncertain parameters, respectively, for a model of in-
terest. The first-stage variables may be assigned a value 
from a known domain 𝒳𝒳 ⊆ 𝑅𝑅𝑛𝑛𝑥𝑥, described by nonlinear 
constraints involving 𝑥𝑥 only. We assume the uncertain pa-
rameters 𝑞𝑞 are restricted to an a priori known, compact, 
exogenous uncertainty set 𝒬𝒬 ⊂ 𝑅𝑅𝑛𝑛𝑞𝑞, containing a nominal 
value 𝑞𝑞nom. For fixed 𝑥𝑥 and 𝑞𝑞, the second-stage variables 
𝑧𝑧 can be adjusted freely, and the state variables 𝑦𝑦 are 
then implicitly determined from the model constraints. 

In a deterministic optimization setting, the model of 
interest is a nonlinear program (NLP) of the form 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝒳𝒳
𝑧𝑧∈𝑅𝑅𝑛𝑛𝑧𝑧
𝑦𝑦∈𝑅𝑅𝑛𝑛𝑦𝑦

𝑓𝑓1(𝑥𝑥) + 𝑓𝑓2(𝑥𝑥, 𝑧𝑧,𝑦𝑦; 𝑞𝑞nom)

s.t. 𝑔𝑔𝑖𝑖(𝑥𝑥, 𝑧𝑧,𝑦𝑦; 𝑞𝑞nom) ≤ 0 ∀ 𝑚𝑚 ∈ ℐ
ℎ𝑗𝑗(𝑥𝑥, 𝑧𝑧,𝑦𝑦; 𝑞𝑞nom) = 0 ∀ 𝑗𝑗 ∈ 𝒥𝒥

       (1) 

in which 𝑓𝑓1:𝒳𝒳 → 𝑅𝑅 denotes the first-stage objective func-
tion, 𝑓𝑓2:𝒳𝒳 × 𝑅𝑅𝑛𝑛𝑧𝑧 × 𝑅𝑅𝑛𝑛𝑦𝑦 × 𝒬𝒬 denotes the second-stage ob-
jective function, 𝑔𝑔𝑖𝑖:𝒳𝒳 × 𝑅𝑅𝑛𝑛𝑧𝑧 × 𝑅𝑅𝑛𝑛𝑦𝑦 × 𝒬𝒬, 𝑚𝑚 ∈ ℐ denotes the 
inequality constraint functions, and ℎ𝑗𝑗:𝒳𝒳 × 𝑅𝑅𝑛𝑛𝑧𝑧 × 𝑅𝑅𝑛𝑛𝑦𝑦 ×
𝒬𝒬, 𝑗𝑗 ∈ 𝒥𝒥 denotes the equality constraint functions. The 
two-stage RO counterpart of the model (1) is 

  𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝒳𝒳

  max
q∈𝒬𝒬

  min
z∈Rnz
y∈Rny

𝑓𝑓1(𝑥𝑥) + 𝑓𝑓2(𝑥𝑥, 𝑧𝑧,𝑦𝑦, 𝑞𝑞)

s.t. 𝑔𝑔𝑖𝑖(𝑥𝑥, 𝑧𝑧,𝑦𝑦, 𝑞𝑞) ≤ 0 ∀ 𝑚𝑚 ∈ ℐ
ℎ𝑗𝑗(𝑥𝑥, 𝑧𝑧,𝑦𝑦, 𝑞𝑞) = 0 ∀ 𝑗𝑗 ∈ 𝒥𝒥

  (2) 

Solution Approach: Generalized Robust 
Cutting Set Algorithm 

The two-stage RO problem (2) can be solved using 
the generalized robust cutting set algorithm presented in 
[1, 3]. We now present a brief overview. First, the adjust-
ability of the second-stage variables with respect to the 
uncertain parameters is approximated with decision 
rules. For each 𝑙𝑙 = 1,2, … ,𝑚𝑚𝑧𝑧, let 𝑑𝑑𝑙𝑙 ∈ 𝑅𝑅𝑛𝑛𝑑𝑑,𝑙𝑙 be a vector of 
decision rule coefficients, each of which is considered an 
additional first-stage variable. We model the second-
stage variable 𝑧𝑧𝑙𝑙 as a scalar function 𝑣𝑣𝑙𝑙:𝑅𝑅𝑛𝑛𝑑𝑑,𝑙𝑙 × 𝒬𝒬 → 𝑅𝑅 of 
the coefficients 𝑑𝑑𝑙𝑙 and the uncertain parameters 𝑞𝑞. In this 
case, the RO problem (2) becomes 
𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝒳𝒳
𝑑𝑑∈𝑅𝑅𝑛𝑛𝑑𝑑

 𝑚𝑚𝑚𝑚𝑥𝑥
𝑞𝑞∈𝒬𝒬
𝑧𝑧∈𝑅𝑅𝑛𝑛𝑧𝑧
𝑦𝑦∈𝑅𝑅𝑛𝑛𝑦𝑦

 𝑚𝑚𝑚𝑚𝑚𝑚
ζ∈𝑅𝑅

 ζ  

  s.t. ζ ≥ 𝑓𝑓1(𝑥𝑥) + 𝑓𝑓2(𝑥𝑥, 𝑧𝑧, 𝑦𝑦,𝑞𝑞)  
   𝑔𝑔𝑖𝑖(𝑥𝑥, 𝑧𝑧, 𝑦𝑦, 𝑞𝑞) ≤ 0 ∀ 𝑚𝑚 ∈ ℐ 
 s.t. ℎ𝑗𝑗(𝑥𝑥, 𝑧𝑧, 𝑦𝑦, 𝑞𝑞) = 0 ∀𝑗𝑗 ∈ 𝒥𝒥 
  𝑧𝑧𝑙𝑙 = 𝑣𝑣𝑙𝑙(𝑑𝑑𝑙𝑙 , 𝑞𝑞) ∀𝑙𝑙 ∈ ℒ 

(3) 

in which 𝑑𝑑 = �𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛𝑧𝑧� and ℒ = {1,2, … ,𝑚𝑚𝑧𝑧}. We 

assume that for fixed 𝑥𝑥 ∈ 𝒳𝒳, 𝑧𝑧 ∈ 𝑅𝑅𝑛𝑛𝑧𝑧 , 𝑞𝑞 ∈ 𝑄𝑄, the state vari-
ables 𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛𝑦𝑦 are uniquely determined by the equality 
constraints ℎ𝑗𝑗(𝑥𝑥, 𝑧𝑧,𝑦𝑦, 𝑞𝑞) = 0 ∀ 𝑗𝑗 ∈ 𝒥𝒥.  
 Observe that (3) constitutes a restriction of (2) 
through the addition of the decision rule equations. Given 
(3), we may then obtain a feasible first-stage solution 
(𝑥𝑥,𝑑𝑑) with the following iterative approach. For each iter-
ation 𝑘𝑘 =  0, 1, …: 

 A sampled relaxation of (3), termed the master 
problem, is solved to obtain a candidate solution 
(𝑥𝑥∗,𝑑𝑑∗). 

 For each 𝑚𝑚 ∈ ℐ, a separation problem is solved to 
determine, if it exists, a parameter realization 𝑞𝑞 ∈ 𝒬𝒬 
for which there is no feasible adjustment of 𝑧𝑧,𝑦𝑦 
satisfying the inequality constraint 𝑔𝑔𝑖𝑖(𝑥𝑥∗, 𝑧𝑧,𝑦𝑦, 𝑞𝑞) ≤ 0, 
subject to the model’s equality constraints and 
decision rule policy (with 𝑑𝑑𝑙𝑙 = 𝑑𝑑𝑙𝑙∗ fixed for every 𝑙𝑙 ∈
ℒ). A similar separation problem is solved for the 
epigraph constraint. 

 If a realization for which infeasibility is detected is 
found in the previous step, then the constraints 
subject to this realization are added to the master 
problem, and we proceed with iteration 𝑘𝑘 +  1. 
Otherwise, 𝑥𝑥∗ is said to be robust feasible, and the 
algorithm terminates. If 𝑥𝑥∗ is robust feasible, and 
the master problem has been solved to global 
optimality, then 𝑥𝑥∗ is said to be robust optimal. 

To reduce the risk of numerical issues, we are careful to 
initialize the variables of the master problem of each iter-
ation 𝑘𝑘 = 1, 2, … to an optimal solution of a closely related 
slack variable-based feasibility problem. 

In [1], a procedure for empirically evaluating the 
quality of the robust feasible or robust optimal solution 
returned by the cutting-set algorithm is provided. 

PYROS SOLVER INTERFACE 

Implementation 
The Pyomo Robust Optimization Solver (PyROS) is a 

Python-based implementation of the cutting set algo-
rithm presented in the previous section; the official doc-
umentation is contained in [2]. Built on top of the open-
source algebraic modeling language Pyomo, PyROS has 
been designed for ease of use, such that a user can 
quickly extend a deterministic optimization workflow to a 
two-stage RO workflow. Successful invocation of the Py-
ROS two-stage RO solver requires only the following ar-
guments: 

 The deterministic model 

 The first-stage degree-of-freedom variables 

 The second-stage degree-of-freedom variables 
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 The uncertain model parameters 

 The uncertainty set 

 Subordinate NLP optimizers. At least one optimizer 
must be capable of solving nonconvex NLPs to 
global optimality. 

For a Pyomo user with a modest level of experience, 
the uncertainty set is the only argument for which instan-
tiation may immediately pose a challenge. Therefore, to 
facilitate the construction of uncertainty set objects, Py-
ROS provides an abstract uncertainty set class, and a 
suite of pre-implemented concrete subclasses, based on 
uncertainty quantifications often used in the RO litera-
ture. The pre-implemented classes include hyperrectan-
gular, polyhedral, ellipsoidal, and discrete uncertainty set 
types; full descriptions of all available set types are pro-
vided in [2, 3]. If none of the pre-implemented classes 
meet the user’s modeling needs, then the user may im-
plement a custom-written subclass of the abstract un-
certainty set class. 

Recent Updates 
Below, we synopsize a number of implementation 

features that were contributed to the PyROS codebase in 
recent months. 

Improved Subproblem Initializations 
Given that the master and separation subproblems of the 
underlying cutting set algorithm may, in general, be non-
convex NLPs, the success of solving these subproblems 
may be heavily contingent on the initial point provided to 
the subordinate NLP optimizers. To this end, we have 
opted to initialize the master problems with the solution 
to a slack-based feasibility problem formulation, such as 
to obtain a feasible, or near-feasible, initial point. To re-
duce the level of infeasibility of the initial point for the 
feasibility problem, the variables of the feasibility prob-
lem of iteration 𝑘𝑘 are initialized based on the solution to 
the master and separation problems of the previous iter-
ation 𝑘𝑘 −  1. Similarly, each of the separation subprob-
lems of iteration 𝑘𝑘 is initialized based on the solution to 
the master problem of iteration 𝑘𝑘. 

Acceleration of the Separation Step 
The separation problem subroutines have been refac-
tored to enhance the performance of those subroutines, 
and by extension, the PyROS solver, and facilitate im-
provements to the initializations of subproblems in sub-
sequent iterations. Moreover, based on the assumption 
that the equality constraints of (3) uniquely determine the 
state variables 𝑦𝑦 for fixed 𝑥𝑥 ∈ 𝒳𝒳, 𝑧𝑧 ∈ 𝑅𝑅𝑛𝑛𝑧𝑧 , 𝑞𝑞 ∈ 𝒬𝒬, we have 
implemented an efficiency to significantly reduce the 
computational expense of the separation step for prob-
lems with discrete uncertainty sets. 

Extensions to the Uncertainty Set Interfaces 

The budget and factor model set classes of the original 
PyROS release have been generalized. 

Updated Solver Log Output 
PyROS now features a solver output logging system 
which provides a breakdown of the model component 
statistics, a summary of the progress of the underlying 
cutting set algorithm at the end of each iteration, and a 
summary of the solver termination statistics. 

BENCHMARKING STUDY 

Test Set and Computational Environment 
To evaluate the performance of the PyROS solver, 

we sought to establish a comprehensive library of small-
scale benchmark instances upon which a high-through-
put computational study could be performed. Ten deter-
ministic NLP models of varying size and nonlinearity were 
collected from the open deterministic NLP modeling li-
braries [5, 6]. From this collection of deterministic NLPs, 
a library of 8,591 two-stage RO problem instances was 
assembled by varying the degree-of-freedom partition-
ing, subset of model parameters considered uncertain, 
uncertainty set type and parameterization, and decision 
rule order specification. 

All two-stage model instances were instantiated 
and solved in a Python 3.9 virtual environment with 
Pyomo 6.6.1dev0/PyROS 1.2.7. Instances were solved on 
a single core of an Intel® Xeon® CPU E5-2687W v3 @ 
3.10 GHz, running Ubuntu Linux 20.04 with 64 GB RAM. 
For the subordinate local and global NLP optimizers, we 
used IPOPT 3.14.6/MA27 [7] and BARON 
v23.6.23/CPLEX 22.1.0 [8], respectively. Instances were 
solved to a robust feasibility tolerance of 1 × 10−3 and wall 
time limit of 400 s. For the hydrothermal and optmass 
benchmark instances, the master problems were solved 
to local optimality; otherwise, all subproblems were 
solved to global optimality. Additional details about the 
instances and computational environment used in this 
study are presented in [3]. 

Results 
Table 1 summarizes the results of our computational 
study. Of the 8,591 instances, 88.9% were solved to the 
desired robust optimality or feasibility target. The aver-
age wall time and iteration requirements for successfully 
solved instances were found to be low. The relatively 
high wall time and iteration requirements for himmelp6, 
haverly, hydro, and hydrothermal instances were 
found to be attributable to the size and/or nonlinearities 
present in the original deterministic models, which ren-
dered the master and/or separation subproblems more 
difficult to solve. For instances in the model library that 
were not successfully solved, the outcome was most of-
ten found to be attributable to a pathological separation 
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subproblem which could not be solved successfully by 
the subordinate global optimizer due to the wall time re-
quirements exceeding the specified limit of 400s. Re-
gardless, the success rate of 88.9% and low iteration and 
wall time requirements suggest that PyROS is able to ob-
tain robust feasible or robust optimal solutions to non-
convex two-stage robust NLPs with a high level of relia-
bility. 

Table 1: Computational performance statistics for high-
throughput computational study of the PyROS solver. Av-
erages are reported for the successfully solved instances 
only. 

Base 
Model 

No of Instances Average 
Total Successful Wall t (s) Iterations 

haverly     
himmelp6     
hydro     
hydro-
thermal 

    

lewispol     
optcntrl     
optmass     
s353     
s381     
s382     

CASE STUDY: AMINE-BASED POST 
COMBUSTION CARBON CAPTURE 

Introduction 
Carbon capture and storage technologies are con-

sidered vital to minimal cost pathways for reducing the 
carbon footprints of process systems to meet global cli-
mate targets [9, 10]. Along with other organizations 
worldwide, the United States Department of Energy has 
spearheaded initiatives for developing computational 
tools to accelerate the design and deployment of carbon 
capture and storage systems [11, 12]. One issue with 
computational model-based tools is the susceptibility of 
the underlying mathematical optimization models to par-
ametric uncertainty. Towards developing a computa-
tional framework for risk-averse carbon capture process 
designs, models for amine-based CO2 absorption pro-
cesses have been identified as benchmarks, given the 
relative maturity of amine-based absorption technologies 
[11, 12]. In this section, we present a case-study based 
on a model of a CO2 absorption column using monoeth-
anolamine (MEA) solvent. 

Modeling Framework 
Our case study involves a high-fidelity, one-dimen-

sional, steady state, rate-based model for an MEA-based 
CO2 absorption column. Figure 1 shows a schematic 

diagram. The column length and diameter are denoted by 
𝐿𝐿 and 𝐷𝐷, respectively, and we assume the column heads 
are hemispherical. Flue gas, rich in CO2, enters the base 
of the column from an upstream process. A stream of 
CO2-lean MEA solvent enters the top of the column at a 
molar flow rate 𝐹𝐹 to remove CO2 from the gaseous mix-
ture prior to emission.  

 
Figure 1: Schematic for the MEA-based CO2 absorption 
column model. The column length and diameter are 
denoted by 𝐿𝐿 and 𝐷𝐷, respectively. The lean solvent flow 
rate is denoted by 𝐹𝐹. 
 
 The axial dimension of the column is discretized into 
a grid of 𝑁𝑁 = 40 finite elements. For each 𝑚𝑚 = 1,2, … ,𝑁𝑁, we 
denote the flooding fraction in the 𝑚𝑚th finite element by 
𝑢𝑢𝑖𝑖. We are free to adjust the column dimensions 𝐿𝐿,𝐷𝐷 
during design of the system (i.e. as first-stage variables) 
and the solvent flow rate 𝐹𝐹 during operation (i.e. as a 
second-stage variable). The length-to-diameter ratio of 
the column must fall between 1.2 and 30. We require that 
the CO2 capture rate of the column meet a pre-specified 
target, and that the flooding fractions 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑁𝑁 fall 
within pre-specified bounds.  

 Using the notation of the previous paragraphs, 
the deterministic optimization model can be written as 

     

min
𝐿𝐿,𝐷𝐷,𝐹𝐹,𝑢𝑢,𝑦𝑦

1
4
𝜋𝜋𝐷𝐷2𝐿𝐿 + 1

3
𝜋𝜋𝐷𝐷3 + 𝐹𝐹

2

s.t. ℎ(𝐿𝐿,  𝐷𝐷,  𝐹𝐹,𝑢𝑢,𝑦𝑦; 𝑞𝑞) = 0
1.2𝐷𝐷 ≤ 𝐿𝐿 ≤ 30𝐷𝐷

𝑟𝑟L − 𝑓𝑓CO2(𝐹𝐹,𝑦𝑦) ≤ 0
0.5𝑒𝑒 ≤ 𝑢𝑢 ≤ 0.8𝑒𝑒

       (4) 

in which 𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑁𝑁) is a vector whose components 
are the finite element flooding fractions; 𝑦𝑦 is a vector of 
approximately 5,000 state variables; ℎ denotes a nonlin-
ear vector of approximately 5000 +  𝑁𝑁 equality constraint 
functions, governed by material and energy balances and 
transport and thermodynamic property models; 𝑞𝑞 is a 
vector of six uncertain model parameters, discussed later 
in the text; 𝑟𝑟L is a constant denoting the CO2 capture 
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target, and 𝑓𝑓CO2 is a scalar function which evaluates the 
CO2 capture rate. The nonlinearity of the component 
functions of ℎ renders the deterministic model (4) non-
convex. 
 We reiterate that 𝐿𝐿,𝐷𝐷,𝐹𝐹 are degree-of-freedom var-
iables, such that the flooding fractions 𝑢𝑢 and other state 
variables 𝑦𝑦 are implicitly determined by the equality con-
straints of (4). The objective of (4) is a proxy for the total 
capital and operating cost of the column. In particular, the 
capital cost is represented by the column volume 
(1/4)π𝐷𝐷2𝐿𝐿 + (1/3)π𝐷𝐷3, while the operating cost is repre-
sented by the solvent flow rate, scaled by a factor of ½, 
so that both costs share the same order of magnitude. 
 The uncertain parameters 𝑞𝑞 consist of two liquid 
phase chemical reaction equilibrium constants and four 
vapor-liquid equilibrium constants, downselected ac-
cording to the results of an uncertainty propagation study 

of the deterministic optimization model and associated 
thermodynamic and physical property submodels. The 
resulting six-dimensional uncertainty set takes the form 
of a confidence ellipsoid centered on the nominal uncer-
tain parameter realization, with a pre-specified confi-
dence level and covariance matrix. 

Deterministic Optimization Results 
Subject to the nominal realization of the uncertain 

parameters 𝑞𝑞, the deterministic absorption column model 
was solved to local optimality with GAMS 45.0/CONOPT3 
[13] for capture targets 𝑟𝑟L ranging from 85.0% to 97.5%. 
Table 2 shows the results. In all cases, the capture target 
constraint of (4) was found to be active, and the 𝐿𝐿/𝐷𝐷 ratio 
was found to achieve the lower bound of 1.2. Observe 
that the optimal column volume, flow rate, and objective 
were all found to increase as the capture target was 

Table 2: Deterministic optimization results for MEA-based CO2 absorption column model.  

Capture 
Target (%) 

Capture 
Rate (%) L (m) D (m) Volume 

( m) 
L/D 

Ratio 
Flow rate F 

(kmol/s) 
Optimal 

Cost 

        
        
        
        
        
        
        
        
        

 

Table 3: PyROS-based robust optimization results for MEA-based CO2 absorption column model. 

Minimum 
Capture 
Rate (%) 

Robust Column Proxy Cost and DOF (L D F) Values [m m kmol/s] 
(Expected ± Standard Deviation) 

% confidence 
(deterministic) 

% confidence % confidence % confidence 

  ±  
(   ± ) 

 ±  
(   ± ) 

 ±  
(   ± ) 

 ±  
(   ± ) 

  ±  
(   ± ) 

 ±  
(   ± ) 

 ±  
(   ± ) 

 ±  
(   ± ) 

  ±  
(   ± ) 

 ±  
(   ± ) 

 ±  
(   ± ) 

robust infeasible 
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increased. We also note that, based on the model ther-
modynamics, a theoretical upper bound for the CO2 cap-
ture rate is 98.2%, and we were unable to obtain nomi-
nally feasible designs for capture targets above 98.1%. 

Robust Optimization Results 
Through rigorous sensitivity analysis studies, we 

were able to establish that the nominally optimal column 
designs are robust infeasible subject to quantifications of 
uncertainty in the VLE and reaction equilibrium parame-
ters. To this end, the two-stage robust counterpart of the 
deterministic model (4) was solved with PyROS, subject 
to the degree of freedom partitioning and confidence el-
lipsoidal uncertainty quantification discussed previously, 
and a static decision rule approximation. We have elected 
to optimize for each of three different CO2 capture tar-
gets and three levels of ellipsoidal confidence. 

Table 3 summarizes the RO results for the MEA-
based absorption column model. For all capture targets, 
the robust feasible column designs were found to be sig-
nificantly more expensive than their deterministic coun-
terparts. Nevertheless, the robust optimal designs for a 
given capture target were found to be comparable in cost 
to nominally feasible designs for higher capture targets. 
Observe, for example, that the robust feasible cost of 
14.31 ± 0.12 for 90% capture under a 99% confidence el-
lipsoidal uncertainty, is significantly lower than the cost 
14.53 ± 0.09 of the deterministic design for a 95% cap-
ture target. For the case of a 95% capture target and 99% 
confidence level, the robustness requirements were too 
stringent for the resulting problem to admit a risk-averse 
design. We expect that incorporating additional recourse, 
through the usage of a full CO2 capture flowsheet model 
in lieu of the standalone absorption column model used 
in the present study, will afford robust designs for cap-
ture targets and confidence level requirements as high as 
95% and 99%, respectively. It is worth noting that the dif-
ference between the robust feasible cost and the deter-
ministically optimal cost provides an upper bound for the 
value worth investing in uncertainty reduction through 
additional data acquisition. Overall, our results highlight 
the ability of the PyROS solver to obtain economical, risk-
averse designs of an amine-based post combustion car-
bon capture system with a high-fidelity NLP model. 

CONCLUSIONS 
We have presented recent advances in the non-

convex two-stage RO solver PyROS. The interface is de-
signed to facilitate extensions of deterministic optimiza-
tion models to two-stage RO workflows. Our computa-
tional benchmarking study demonstrates the effective-
ness of PyROS for identifying robust feasible or robust 
optimal solutions to general nonlinear two-stage RO 
problems for a broad range of uncertainty 

quantifications. Finally, our post combustion carbon cap-
ture case study shows the applicability of PyROS to the 
robust design of process systems. In future work, we in-
tend to perform additional improvements to the initializa-
tions of the various subproblems, perform RO studies of 
the MEA-based absorption column model subject to non-
static decision rule approximations, and extend the post 
combustion carbon capture case study to a full flowsheet 
optimization model. 
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ABSTRACT 
Developing methods for rapid, large-scale deployment of carbon capture systems is critical for 
meeting climate change goals. Optimization-based decisions can be employed at the design and 
manufacturing phases to minimize the costs of deployment and operation. Manufacturing stand-
ardization results in significant cost savings due to economies of numbers. Building on previous 
work, we present a process family design approach to design a set of carbon capture systems 
while explicitly including economies of numbers savings within the formulation. Our formulation 
optimizes both the number and characteristics of the common components in the platform and 
simultaneously designs the resulting set of carbon capture systems. Savings from economies of 
numbers are explicitly included in the formulation to determine the number of components in the 
platform. We show and discuss the savings we gain from economies of numbers. 

Keywords: Optimization, Process Design, Energy Systems, Carbon Capture 

INTRODUCTION 
Effectively combatting climate change relies on 

large-scale deployment of critical chemical process sys-
tems, such as carbon capture or water desalination. In 
traditional process system design approaches, engineers 
uniquely design each installation focused on economies 
of scale. However, this approach is expensive and leads 
to long deployment timelines. Modular design ap-
proaches derive savings from economies of numbers by 
offering a catalog of small, stackable designs. However, 
a pure modular approach neglects the benefits of econ-
omies of scale.  

In this paper, we develop a rigorous, optimization-
based design method, inspired by product family design 
literature [1], that designs a family of process variants 
while simultaneously optimizing a platform of unit module 
designs that can be shared across this set of processes. 
This approach seeks to exploit both economies of scale 
and economies of numbers to minimize costs while 
achieving manufacturing standardization and reduced 
deployment timelines. While well-developed 

technologies can benefit from this approach, we apply it 
to novel process systems like carbon capture due to the 
importance of making this technology widely available 
within a short time period. 

This work builds on our optimization formulation for 
process family design [2] and extends it to explicitly in-
clude the benefits of economies of numbers. Economies 
of numbers (sometimes referred to as economies of 
learning) is a well-documented cost-saving phenomenon 
[3,4]. It characterizes the manufacturing cost savings 
due to standardization; in particular, it captures the cor-
relation between cost reduction and the number of times 
a particular product has been manufactured. Following an 
approach like that described by Gazzaneo et al. (2022), 
we develop a costing expression that captures total man-
ufacturing costs as a function of the number of unit mod-
ules produced.  

If the platform has a small number of unit module 
designs, there are fewer options to share across all the 
process variants. Therefore, we will be manufacturing 
more of each design and gaining increased benefits from 
economies of numbers. However, increasing the number 
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of unit module designs in the platform gives each process 
variant more options leading to a more “optimized” de-
sign (at the cost of reducing savings due to economies of 
numbers). With the optimization formulation in Stinchfield 
et al. (2023), the number of unit module designs included 
in the platform must be pre-specified. In this work, by in-
cluding the economies of numbers explicitly, we allow the 
mathematical programming formulation to determine the 
optimal number of unit module designs to include in the 
platform. We demonstrate this approach on multiple case 
studies, including an MEA-based carbon capture system 
and a water desalination process. 

LITERATURE REVIEW 
Modular and product family design approaches 

have been studied in many different industrial applica-
tions. Gonzales-Zugasti (2000) describes how a product 
family approach can be applied to NASA’s exploratory 
space missions beginning with a two-stage optimization 
approach [7]. Simpson et. al. (2004) used a genetic algo-
rithm for product family design optimization for the se-
lection of parts of aircraft [14]. Pirmoradi et al. (2015) de-
vised a two-phase platform configuration approach uti-
lizing sensitivity analysis, metamodeling, and a black-box 
optimization strategy to craft a variety of universal elec-
tric motor designs [9]. In general, research focused on 
product family design focuses on heuristic and stochastic 
optimization techniques, rather than employing rigorous 
deterministic mathematical programming algorithms.  
 Product family design derives significant savings 
from the standardization of elements within a product. 
Manufacturing cost savings associated with standardiza-
tion are due to economies of numbers (sometimes re-
ferred to as economies of learning). Increasing the num-
ber of products to be produced results in lower per unit 
costs, as documented by Wright et al. (1936). Specifi-
cally, the authors reported how the per unit cost of man-
ufacturing an airplane decreased with respect to the 
number of airplanes manufactured [10]. This correlation 
has since been documented across many industries with 
different levels of cost reduction. 

The effect of economies of numbers can be cap-
tured mathematically as a function of the number of units 
manufactured, 𝑛𝑛, and their resulting discount factor, 𝐹𝐹𝑛𝑛. 
The learning rate 𝛼𝛼 captures the impact of production 
levels on cost, as shown in (1). 

  𝐹𝐹𝑛𝑛 = 𝑛𝑛−𝛼𝛼  (1)  

Equation (1) is also referred to as the learning curve and 
is shown graphically in Figure 1, with an 𝛼𝛼 = 0.2.  
 

 

Figure 1. Example Learning Curve[13]  
(𝛼𝛼 = 0.2) 

Learning curves are product specific. They ex-
hibit the general behavior shown in Figure 1 but vary sig-
nificantly depending on the specific industry and unit 
manufactured. In practice, 𝛼𝛼 is selected based on expe-
rience or data. Argot and Epple (1990) explored factors 
affecting this parameter, including organizational forget-
ting, turnover, and transfer of productivity gains, and how 
they can potentially reduce costs [11].  
 Economies of numbers has been mentioned oc-
casionally, but favorably, in literature related to chemical 
and process systems engineering. Liebermann (1984) in-
vestigated this concept and used a many-shot approach 
to try and determine which factors affected the learning 
rates in a plant or chemical manufacturing context [3]. 
Weber et al. (2019) described how economies of num-
bers apply to the chemical process industries [12]. Gaz-
zaneo et al. (2022) proposed a novel techno-economic 
framework for costing intensified modular systems in the 
process engineering industry [4].  

This cost benefit from manufacturing standardiza-
tion applies only to part of the overall process cost (e.g., 
labor but not materials). Therefore, we expect these 
learning curves to decay toward an asymptote. Gazzaneo 
et al. (2022) define a piecewise function that includes a 
lower limit on the discount factor, as shown in (2).  

𝐹𝐹𝑛𝑛 = �  𝑛𝑛
−𝛼𝛼  ,                   𝑖𝑖𝑖𝑖 𝑛𝑛−𝛼𝛼 ≥ 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏  ,              𝑖𝑖𝑖𝑖 𝑛𝑛−𝛼𝛼 < 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏
 (2) 

This modified relationship is shown in Figure 2 with 𝛼𝛼 =
0.2 and 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 = 0.7.  
 

 

Figure 2. Example Learning Curve  with Maximum 
Discount[4] 

(𝛼𝛼 = 0.2 and 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 = 0.70) 
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In this work, we use a similar economies of numbers cor-
relation that also includes a maximum discount, 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏, 
with a smooth transition. Our work then incorporates this 
correlation into a mixed-integer linear programming for-
mulation for the simultaneous design of process families. 

PROBLEM APPROACH 
In previous work, we have presented a discretiza-

tion-based Mixed Integer Linear Program (MILP) to solve 
the process family design problem [2]. In this section, we 
present modifications to this formulation that include cos 
trade-offs associated with economies of numbers and 
avoid explicitly specifying the size of the platform. To find 
a comprehensive description of the problem, please see 
Stinchfield et al. (2023). 

Problem Description 
Given a process architecture, we wish to specify the 

designs for a set of process variants. A process variant 𝑣𝑣 
requires customization of the process architecture to 
meet a set of specific requirements; the specifications 
are parameterized in the vector 𝐫𝐫𝐯𝐯. For example, take an 
industrial refrigeration system that a grocery store chain 
wishes to deploy at 10 different stores. While the general 
refrigeration system architecture will be the same at each 
location (i.e., the units required to build the system), the 
design details for each store (e.g., the size and maximum 
cooling capacity) can be different.  

The process system architecture refers to the flow-
sheet of the process system; this defines all the unit 
module types necessary to build an instance of the pro-
cess. In the case of the refrigeration system example, unit 
module types could include the compressor, condenser, 
valve, and evaporator. We store this set of unit module 
types in the set 𝑀𝑀. Each variant 𝑣𝑣 will have exactly one of 
each unit module type 𝑚𝑚 ∈ 𝑀𝑀. The variable vector 𝐝𝐝𝒗𝒗,𝒎𝒎 is 
the unit module type design for each unit module type 𝑚𝑚 
and each variant 𝑣𝑣.  

Our goal is to design and deploy multiple variants 
𝑣𝑣 ∈ 𝑉𝑉 in a cost-optimal manner by determining the unit 
module type designs 𝐝𝐝𝒗𝒗,𝒎𝒎 and operating variables 𝐨𝐨𝒗𝒗. We 
wish to save on engineering and manufacturing costs by 
optimizing a platform of common unit module designs to 
share across the process variants. This means there are 
fewer unique units to design and reduced manufacturing 
costs for the shared designs due to economies of num-
bers. We separate the unit module types 𝑀𝑀 into those 
that are designed commonly (stored in the set 𝐶𝐶 and in-
cluded in the platform) and the remaining ones that are 
designed uniquely for each variant (stored in the set 𝑈𝑈). 
The sets 𝐶𝐶 and 𝑈𝑈 are disjoint (𝐶𝐶 ∩ 𝑈𝑈 = ∅) while their union 
recovers the set 𝑀𝑀 (𝐶𝐶 ∪ 𝑈𝑈 = 𝑀𝑀). The design specifications 
for the shared platform unit module types are captured 
by the corresponding variable vectors �̂�𝐝𝑐𝑐,𝑙𝑙. We index the 

common designs by a label 𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐 to differentiate be-
tween options (e.g., different sizes of a compressor). The 
collection of common designs �̂�𝐝𝑐𝑐,𝑙𝑙 for all common unit 
module types 𝑐𝑐 ∈ 𝐶𝐶 determines the platform 𝒫𝒫. All unique 
unit module types 𝑢𝑢 ∈ 𝑈𝑈 are designed specifically for 
each variant; they do not require any standardized ele-
ments. 

Problem Formulation 
To determine an optimal process system design for 

a single variant with a set of design requirements, a tra-
ditional approach would start by building the set of equa-
tions that defines the system (i.e., physics, costing, etc.). 
An optimization could then be performed, parameterized 
with the requirements, where the designs for all unit 
module types 𝑚𝑚 ∈ 𝑀𝑀 and operational decisions are deci-
sion variables. In most applications, this system of equa-
tions will be a nonlinear program (NLP). In our approach, 
we must design multiple systems, one for each variant 
𝑣𝑣 ∈ 𝑉𝑉. Additionally, the unit module designs included in 
the platform are optimized simultaneously. And, for each 
variant, the common unit module design must be se-
lected from those in the platform. This introduces dis-
crete decisions and leads to a Mixed-Integer Nonlinear 
Program (MINLP).  

Successful optimization of MINLPs in process sys-
tems engineering can be a challenge; oftentimes, it is an 
active area of research. In the process family design set-
ting, it can quickly become impractical to directly solve 
the MINLP with the entire set of design, costing, and per-
formance equations in the overall formulation. Our ap-
proach to this challenge was to develop a Mixed-Integer 
Linear Programming (MILP) formulation that relies on a 
discretized set of candidate designs for the common unit 
module types 𝑐𝑐 ∈ 𝐶𝐶. For each possible combination of 
candidate common unit module designs and each pro-
cess variant 𝑣𝑣 ∈ 𝑉𝑉, we optimize the process system for 
the unique unit module designs, operating variables, and 
cost. We call this a design alternative for variant 𝑣𝑣. From 
here, we build a set of feasible and infeasible design 
combinations and their associated costs. These form the 
input data for the MILP formulation. 

We select a combination of common unit module de-
signs to assign to a particular variant using the binary de-
cision variable 𝑥𝑥𝑣𝑣,𝑎𝑎. Here, 𝑎𝑎 refers to a particular design 
alternative, and all feasible alternatives for a variant 𝑣𝑣 are 
stored in the set 𝐴𝐴𝑣𝑣. The binary decision variables 𝑦𝑦𝑐𝑐,𝑙𝑙,𝑛𝑛 
determine the designs of common unit module types to 
include in the platform and the number that are manufac-
tured. The parameter 𝑀𝑀𝑐𝑐 sets the upper limit on the num-
ber of designs of unit module type 𝑐𝑐 to include in the plat-
form. Of course, the problem is constrained to ensure we 
do not select alternative 𝑎𝑎 for a variant 𝑣𝑣 unless we have 
also selected the corresponding unit module designs in 
the platform. 
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As described in the previous section, we aim to cap-
ture cost savings associated with economies of numbers 
within our formulation. Like Gazzaneo et al. (2022), we 
use a function that approaches 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 as 𝑁𝑁 → ∞, and the 
smooth formulation is shown in (3). 

  𝐹𝐹𝑛𝑛 = 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 + (1 − 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏) × 𝑛𝑛−𝛽𝛽  (3) 

This function captures the cost reduction due to econo-
mies of numbers while accounting for fixed costs (e.g., 
materials) that do not decrease with increasing 𝑛𝑛. The pa-
rameter 𝛽𝛽 also represents a learning rate. However, since 
this is only applied to a portion of the overall manufactur-
ing costs, we use different values from 𝛼𝛼 to capture sim-
ilar behavior to that in Gazzaneo et al. (2022), as shown 
in Figure 3.  

 
 

Figure 3. Learning Curve with Asymptotic Approach 
towards Max. Discount (𝛼𝛼 = 0.2, 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 = 0.70,𝛽𝛽 = 0.8) 

We pre-compute each possible discounted unit 
module cost based on the number of times the unit mod-
ule type could be manufactured. The base cost of each 
unit module type 𝑐𝑐 design 𝑙𝑙 is stored in  𝑝𝑝𝑐𝑐,𝑙𝑙 . We store the 
discounted costs in 𝑝𝑝𝑐𝑐,𝑙𝑙�

𝑛𝑛, where each entry represents 
the cost of unit module type 𝑐𝑐 for common design 𝑙𝑙 if it is 
manufactured 𝑛𝑛 times. We introduce the binary variable 
𝑦𝑦𝑐𝑐,𝑙𝑙,𝑛𝑛 ∈ {0,1} to indicate the number of manufactured units 
of unit module type 𝑐𝑐 and common design 𝑙𝑙.  

Formulation (4) describes the MILP we used to de-
sign a process family from a set of candidate common 
designs with discounts from economies of numbers. 

    min
𝑥𝑥,𝑦𝑦,𝜌𝜌

�𝑤𝑤𝑣𝑣 � 𝑥𝑥𝑣𝑣,𝑎𝑎𝑐𝑐𝑣𝑣,𝑎𝑎 − 𝜌𝜌
𝑎𝑎∈𝐴𝐴𝑣𝑣𝑣𝑣∈𝑉𝑉

 

    s. t.  � 𝑥𝑥𝑣𝑣,𝑎𝑎
𝑎𝑎∈𝐴𝐴𝑣𝑣

= 1 

            �(1 − 𝑦𝑦𝑐𝑐,𝑙𝑙,0)
𝑙𝑙∈𝐿𝐿𝑐𝑐

≤ 𝑀𝑀𝑐𝑐 

             𝑥𝑥𝑣𝑣,𝑎𝑎 ≤ 1 − 𝑦𝑦𝑐𝑐,𝑙𝑙,0 

             �𝑦𝑦𝑐𝑐,𝑙𝑙,𝑛𝑛 = 1
𝑁𝑁

𝑛𝑛=0

 

             �𝑛𝑛 × 𝑦𝑦𝑐𝑐,𝑙𝑙,𝑛𝑛 = � � 𝑤𝑤𝑣𝑣𝑥𝑥𝑣𝑣,𝑎𝑎
𝑎𝑎∈𝐴𝐴𝑣𝑣,𝑐𝑐,𝑙𝑙𝑣𝑣∈𝑉𝑉

𝑁𝑁

𝑛𝑛=0

 

             𝜌𝜌 = ���𝑛𝑛 × 𝑦𝑦𝑐𝑐,𝑙𝑙,𝑛𝑛 × �𝑝𝑝𝑐𝑐,𝑙𝑙 − 𝑝𝑝𝑐𝑐,𝑙𝑙�
𝑛𝑛�

𝑁𝑁

𝑛𝑛=0𝑙𝑙∈𝐿𝐿𝑐𝑐𝑐𝑐∈𝐶𝐶

 

            0 ≤ 𝑥𝑥𝑣𝑣,𝑎𝑎 ≤ 1 

            𝑦𝑦𝑐𝑐,𝑙𝑙,𝑛𝑛 ∈ {0,1} 

            𝜌𝜌 ∈ ℝ1 

This formulation generally performs two main functions, 
(1) selecting which candidate design should be included 
within the process platform and (2) which common de-
signs should be used at each variant, all while consider-
ing the effects of economies of numbers.  The objective 
(4a) minimizes the total weighted cost of all variants, in-
cluding the total savings from economies of numbers, 
contained in the variable 𝜌𝜌. Constraint (4b) ensures only 
one alternative (i.e., combination of common unit module 
designs) is selected for each variant. Constraint (4c) sets 
an upper limit of 𝑀𝑀𝑐𝑐 on the number of common designs 
selected to be in the platform. Constraint (4d) ensures an 
alternative can only be selected if we also choose to se-
lect the required unit module designs for the platform. 
(4e) and (4f) constrain the binary indicator 𝑦𝑦𝑐𝑐,𝑙𝑙,𝑛𝑛 to be 1 if 
design 𝑙𝑙 for unit module type 𝑐𝑐 has been selected to be 
manufactured 𝑛𝑛-times and 0 otherwise. (4g) calculates 
the total cost savings attributed to unit module manufac-
turing standardization for the given process family and 
stores the entire discount in the variable 𝜌𝜌. (4h) – (4j) de-
fines the domain for the three optimization variables. No-
tably, (4g) defines 𝑥𝑥𝑣𝑣,𝑎𝑎 to be a continuous variable be-
tween the bounds of 0 and 1. For all case studies, 𝑥𝑥𝑣𝑣,𝑎𝑎 
converges to binary decision, most likely due to similari-
ties in the formulation to the 𝑃𝑃-Median optimization prob-
lem [13].  

CASE STUDY 
In this section, we describe the case study used to 

demonstrate our optimization approach. We chose a mo-
noethanolamine solvent-based carbon capture system 
simulated in Aspen Plus© as a part of the CCSI2 initiative 
[6]. The CCSI2 initiative focused on developing compu-
tational tools and models for accelerating the commer-
cialization of carbon capture technologies. The flowsheet 
described by Morgan et al. (2022) is shown in Figure 4. 

Solvent-based processes, particularly amines, are a 
mature class of technology for CO2 capture from point 
sources of power generation and industrial processes. 
The solvent-based CO2 capture process is shown sche-
matically in Figure 4. 
 

∀𝑣𝑣 ∈ 𝑉𝑉 

∀𝑐𝑐 ∈ 𝐶𝐶 

∀𝑐𝑐 ∈ 𝐶𝐶, 𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐 , (𝑐𝑐, 𝑙𝑙) ∈ 𝑄𝑄𝑎𝑎   

∀𝑐𝑐 ∈ 𝐶𝐶, 𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐  

(4a) 

(4b) 

(4c) 

( f) 



 

Stinchfield et al. / LAPSE:2024.1529 Syst Control Trans 3:208-214 (2024) 212 

 

Figure 4. MEA Carbon Capture Flowsheet 
 

 As shown in Figure 4, the point source flue gas 
containing CO2 enters the bottom of the absorber and is 
contacted countercurrently with solvent flowing down 
the column. The CO2-lean solvent stream enters at the 
top of the column. The transfer of CO2 from the gas to 
the liquid occurs through reactive absorption, and the 
mass transfer area is generally provided by structured 
packing. Since the reaction of CO2 with amine is 
exothermic, solvent intercooling is often included in the 
process design to expel the heat of absorption 
associated with the reaction. At one or more locations in 
the column, a portion of the solvent is extracted and 
cooled by cooling water before being returned to the 
column. This generally results in lowering the 
temperature profile in the absorber and thus increasing 
the driving force for CO2 uptake in the liquid. The flue gas 
with reduced CO2 content exits the top of the absorber, 
and the CO2-rich solvent exits the bottom. The rich 
solvent is pressurized to avoid flashing at higher 
temperatures required for solvent regeneration and is 
heated in the lean/rich heat exchanger by the lean 
solvent exiting the bottom of the stripper. In the stripper 
the CO2 is separated from the solvent with the energy 
requirement for the endothermic reaction provided by 
the steam input to the reboiler. The stream exiting the top 
of the stripper primarily contains CO2 and H2O, the latter 
of which is condensed and returned to the stripper as 
reflux. This results in a high purity stream of CO2, which 
is compressed and sent for sequestration or utilization. 
The lean solvent exits the bottom of the stripper and is 
cooled by the rich solvent in the lean/rich heat 
exchanger. The trim cooler, which uses cooling water, 
provides the residual duty required to cool the solvent 
prior to its return to the top of the absorber column. 
 This model has been adapted in this work for a 
process family design problem that accommodates a 
variety of flue gas feed conditions including a range of 
flowrates and CO2 concentrations representing different 
industrial flue gas sources. We define the set of variants 
𝑣𝑣 ∈ 𝑉𝑉 to be different combinations of flue gas flow rates 
and flue gas CO2 concentrations. This was motivated by 
the fact that these quantities vary significantly by carbon 
capture application, and the design decisions depend 
heavily on these two quantities but differ significantly at 
each potential carbon capture location, depending on the 

capacities of the plants and the source of CO2. For this 
case study, we consider seven flue gas flow rates and 
nine CO2 concentrations.  
 The set of unit module types for this system 
contains all of those types defined in the flowsheet, 
which is to say 𝑀𝑀 =[absorber, pump, heat exchanger, 
regenerator, condenser, flash drum, cooler, mixer]. For 
the commonly designed absorber and regenerator 
(identified by the blue units shown graphically in Figure 
4), we design for a specific volume of each column. To 
run simulations in Aspen Plus®, absorber and regenerator 
designs were specified using reported parameters from 
NCCC [6] as a baseline. We tested six absorber 
diameters (0.5𝑚𝑚, 0.6𝑚𝑚, . . . , 1.0𝑚𝑚) and eight regenerator 
diameters (0.3𝑚𝑚, 0.4𝑚𝑚, . . . , 1.0𝑚𝑚). Furthermore, to optimize 
the lean loading, we considered five different CO2 lean 
loading concentrations (0.16, 0.17, 0.18, 0.19, 0.20) and 
selected the best lean loading for each combination of 
design for the absorber, regenerator, and process variant 
based on lowest total annualized cost. Given the 63 
different process variants we wish to design, six 
absorber designs, eight regenerator designs, and five 
CO2 lean loadings considered in this case study required 
15,120 simulations. After running each simulation, the 
results were used to calculate the total annualized cost 
for each design alternative. 

RESULTS & DISCUSSIONS 
In this section, we present the results from the case 

study described in the previous section by employing the 
methodology described in the Problem Approach section. 
We discuss key findings from the results. 

We designed the process family using the optimiza-
tion formulation described in (4). We do not include (4c), 
instead allowing the formulation to select however many 
of the candidate unit module designs to include in the 
platform. We built this optimization formulation in Python 
using the open-source algebraic modeling language, 
Pyomo [5]. The optimization resulted in the selection of 
four common designs for the absorber (out of six possi-
ble) and four common designs for the regenerator (out of 
eight possible), as shown in Figure 5. 

 

 

Figure 5. Carbon Capture Platform, 𝒫𝒫 

(4d) 

(4e) 

  

𝐿𝐿𝑐𝑐  
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The common designs selected for the platform are iden-
tified by the blue shaded boxes. To differentiate between 
the designs, 𝑙𝑙 corresponds to the diameter (in 𝑚𝑚.) of the 
design.  

The design of the platform 𝒫𝒫 is determined simulta-
neously with the design of the process family ℱ in the op-
timization formulation. From the process platform con-
structed and shown in Figure 5, the corresponding opti-
mal design of the process family is shown in Figure 6.  

 

Figure 6. Carbon Capture Process Family, ℱ  
 
Figure 6 describes which combinations of absorber and 
regenerator designs offered in the platform 𝒫𝒫 (shown in 
Figure 5) are assigned to each variant 𝑣𝑣 ∈ 𝑉𝑉. The x-axis 
corresponds to the flue gas flow rate that descibes a 
particular variant 𝑣𝑣; the y-axis corresponds to the 
percentage of CO2 in the flue gas at variant 𝑣𝑣.  
 Using Gurobi, it took under a second to solve this 
problem. The formulation presented in (4) for this case 
study resulted in 1,376 constraints, 646 continuous 
variables, and 896 binary variables. The objective of this 
optimization resulted in a total annualized cost, 
discounted by savings due to economies of numbers, of 
$72.5𝑀𝑀. We used a learning rate of 𝛽𝛽 = 0.8 and a maximum 
discount factor of 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 = 0.7. Savings associated with 
economies of numbers, captured in the value for the 
variable 𝜌𝜌, came to approximately $2.38𝑀𝑀 annually. The 
percentage of savings associated with the overall cost is 
approximately 3.3%. If we only consider the capital costs 
for this system, the percent savings is 26.8%.  
 To compare this approach to a more traditional 
method, we optimized each carbon capture variant 
independently. To do this for the case study presented, 
we selected the combination of candidate absorber and 
regenerator designs that minimized the cost of the 
variant, with no discounts due to economies of numbers 
or limitations on the number of common designs that 
could be used. In this way, we design each variant 
individually rather than as a family.  The overall objective 
cost of this individual optimization came to $74.86𝑀𝑀, 
which is more than $2𝑀𝑀 more expensive than taking the 

process family design approach. This demonstrates the 
importance of considering economies of numbers in the 
design of chemical process systems due to the benefits 
it can provide. 

CONCLUSIONS & FUTURE WORK 
Process family design lends insight into how stand-

ardization within the process systems engineering man-
ufacturing industry can potentially save money. In partic-
ular, the optimization approach described in this paper 
aims to capture and fully exploit cost savings by quanti-
fying the impact of economies of numbers on the design 
of a process family. We demonstrated this approach in a 
carbon capture case study motivated by the need to de-
ploy these systems rapidly and cost-effectively to com-
bat the effects of climate change. The results of this case 
study showed a decrease in total annualized cost com-
pared to taking the discretized approach described in 
Stinchfield et al. (2023) and a traditional engineering ap-
proach. The optimization formulation presented in this 
work selected the size of the platform, rather than having 
to pre-define the size, which further allowed the formu-
lation to determine the optimal trade-off between stand-
ardization and customization of the system. We are in-
vestigating decomposition strategies for the MINLP for-
mulations from Stinchfield et al. (2023).  
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ABSTRACT 
Cyclic adsorption processes attain a cyclic-steady state (CSS) condition by undergoing repeated 
cycles in time, owing to their transient and modular nature. Mathematically, solving a set of under-
lying nonlinear partial differential equations iteratively for different steps in a cycle until the CSS 
condition is attained presents a computational challenge, making the simulation and optimization 
of cyclic adsorption processes time-consuming. This paper focuses on expediting the CSS con-
vergence in adsorption process simulations by implementing two vector-based acceleration meth-
ods that offer quadratic convergence akin to Newton’s methods. These methods are straightfor-
ward to implement, requiring no prior knowledge of the first derivatives (or Jacobian). The study 
demonstrates the efficacy of accelerated convergence by considering two adsorption processes 
that exhibit complex dynamics, namely, a four-step vacuum swing adsorption and a six-step tem-
perature swing adsorption cycles for post-combustion CO2 capture. The case studies showcase 
the potential for improved computational efficiency in adsorption process simulations. 

Keywords: cyclic adsorption processes, modeling, optimization, process design, acceleration methods 

INTRODUCTION 
Cyclic adsorption processes are widely employed 

for industrial gas separations [1, 2]. The underlying sep-
aration mechanism involves the solid adsorbent to selec-
tively adsorb one or more gases from a gaseous mixture. 
Depending on the choice of regeneration, i.e., by either 
varying temperature or pressure or both, the adsorbed 
gases are recovered or removed. Accordingly, different 
process operational modes such as pressure swing ad-
sorption (PSA), vacuum swing adsorption (VSA), temper-
ature swing adsorption (TSA), etc. are implemented [3].  

Unlike distillation and absorption, which typically 
operate at steady-state conditions, cyclic adsorption 
processes are transient in nature and are operated cycli-
cally in a sequence of constituent steps, thus attaining a 
cyclic steady-state condition (CSS), instead of a true 
steady state [2]. From a process design perspective, 
these processes are dictated by the set of nonlinear par-
tial differential equations (PDEs) resulting from mass, 
momentum, and energy balances. Further, the modular 
nature allows these processes to undergo several 

constituent steps in each cycle. The choice and the se-
quence of steps, as well as the direction of flows, can 
give rise to several process configurations [4], which 
need to be optimized [5]. Another critical design param-
eter is the choice of the solid adsorbent and the contac-
tor structure. Therefore, designing cyclic adsorption pro-
cesses for a given adsorbent requires solving the nonlin-
ear PDEs for each step repeatedly until CSS and then cal-
culating the key process performance indicators based 
on the transient profiles of state variables obtained at the 
CSS. The CSS ensures that these profiles no longer vary 
as the numerical iterations are continued.  

Despite such flexibility in adsorption process de-
sign, the main bottleneck for designing optimal process 
configurations lies in very high computational costs as-
sociated with repeated solving of nonlinear PDEs in pro-
cess simulations to attain the CSS condition from an ar-
bitrary initial condition. Although simulating one process 
configuration for a given adsorbent takes a few minutes 
of computational time [5], process models are often cou-
pled with optimizers where thousands of operating con-
ditions are probed, which makes the process design and 

mailto:sai.gokul.subraveti@sintef.no.
https://doi.org/10.69997/sct.137508
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optimization computationally demanding. Given the flex-
ibility of synthesizing different process configurations 
and the recent advent of a multitude of adsorbents for 
gas separations [6], the problem of finding the optimal 
design for a given separation further exacerbates as 
evaluating different process configurations and adsor-
bents will be a computationally daunting task.  

To speed up adsorption process simulations, there 
have been some previous efforts to accelerate the deter-
mination of CSS [7-13]. For instance, Croft and LeVan in 
their first paper [7] incorporated Newton’s method to 
speed up the iterations to attain CSS. Newton’s method 
provided quadratic convergence near the CSS solution 
and converged faster than the cycle iterative procedure. 
However, the extra computation time for the calculation 
of the Jacobian matrix in each Newton iteration impaired 
the convergence acceleration [7, 8]. In the third paper of 
the series [9], Ding and LeVan developed several accel-
eration algorithms for the convergence of adsorption 
process simulations, which include a hybrid Newton-
Broyden method, an iterative secant method, a sensitivity 
interpolation method, and a dynamic error tolerance 
method. These methods achieved better accelerations 

compared to the Newton’s method [9]. Despite this, 
some of the methods rely on the prior knowledge of the 
Jacobian matrix. On the other hand, Nilchan and Pan-
telides [11] completely discretized the PDEs into alge-
braic equations and imposed the CSS condition as a con-
straint. Perturbation techniques have also been explored 
for accelerated convergence of CSS [12]. Moreover, Pai 
et al. [13] recently developed machine learning models to 
predict approximate CSS condition which is then fed as 
an initial condition to the PDE-based process model for 
rapid determination of CSS condition. The machine learn-
ing model for initial condition prediction was developed 
for a four-step VSA cycle based on the CSS profiles from 
hundreds of different operating conditions. In the context 
of other related separations, methods such as the single 
shooting method were considered for the convergence 
of semicontinuous distillation process simulations [14].  

This study focuses on implementing two accelera-
tion methods for the convergence of the CSS condition 
in adsorption process simulations, with an overall goal of 
significantly reducing the computational times of current 
adsorption process design and optimization tools. These 
acceleration methods require no prior knowledge of the 

Table 1: Governing partial differential equations of the adsorption process model. 
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Jacobian matrix and are easier to implement for any cy-
clic process. Simulation of two different adsorption pro-
cesses is chosen to test the two acceleration methods. 
As a first case, a four-step VSA cycle designed for post-
combustion CO2 capture [5] was used for the process 
simulation.  The second case explores the simulation of a 
six-step TSA cycle designed again for post-combustion 
CO2 capture [15]. Despite both processes exhibiting 
complex dynamics and taking several cycles to achieve 
CSS, they differ in their process dynamics and how they 
converge to CSS. This makes them an ideal case study 
for testing the vector-based acceleration methods.  

METHODOLOGY 

Adsorption Process Model 
The mathematical model for simulating adsorption 

column dynamics consists of a system of nonlinear PDEs 
obtained by solving mass, momentum, and energy bal-
ances [5]. The model assumptions include (1) ideal gas, 
(2) axially dispersed plug flow representing the bulk flow, 
(3) linear driving force model describes the bulk-to-sur-
face mass transfer, (4) there exist no radial gradients for 
state variables, i.e., composition, pressure, and tempera-
ture, (5) Darcy law used for pressure drop calculations, 
(6) thermal equilibrium between the gas and the solid 
phases, and (7) uniform column properties. The resulting 
governing equations based on these assumptions are 
provided in Table 1.  

The model is numerically solved by discretizing the 
spatial terms in PDEs into 30 finite volumes with a total 
variation diminishing (TVD) scheme involving the van-
Leer flux limiter [5]. The resulting ordinary differential 
equations (ODEs) are then integrated based on standard 
ODE solvers in Python [16]. The process simulations are 
carried out using a uni-bed approach where a single col-
umn undergoes all constituent steps sequentially. The 
column is initialized with feed composition at low pres-
sure and the cycle is simulated until the CSS condition. At 
CSS, state variables such as composition, pressure, and 
temperature profiles are obtained.  

Cyclic-steady state (CSS) condition 
Several mathematical criteria can be employed for 

the attainment of CSS from a pre-defined initial condition 
in adsorption process simulations [5, 17-19]. For instance, 
few studies assumed that the process reaches CSS after 
a very large number of cycle iterations [16]. Most of the 
other studies, however, assume that the CSS criterion is 
met when absolute integral differences in axial profiles of 
state variables [5] or absolute overall mass balance er-
rors [5, 18] fall below a tolerance limit. Effendy et al. re-
cently proposed a rigorous CSS criterion, reducing the 
differences between the current and CSS states of axial 
profiles to a set tolerance limit without needing prior 

knowledge of the CSS [19].  
This study uses the same definition for the CSS con-

dition as that of the case study [5], which assumes that 
the CSS criterion is met when the overall mass balance 
error for the process is less than 0.5%. 

Methods for Accelerated Convergence of 
CSS condition in process simulations 

An important basis for implementing the accelera-
tion methods in the present study is that the process sim-
ulation of cyclic adsorption processes is a fixed point (or 
Picart) iteration problem [19]. Schematically shown in 
Figure 1, a number of cycles are simulated (cycle itera-
tions) from an arbitrary initial condition to a fixed-point 
CSS condition. If 𝑓𝑓 is a function representing the adsorp-
tion process simulator, then the fixed-point iteration 
problem can be written as  

∆𝑖𝑖+1 = 𝑓𝑓(∆𝑖𝑖)    (1) 

In the above equation, the adsorption process simulator, 
𝑓𝑓, takes the previous state of the adsorption column (∆n) 
as an input and returns the subsequent state of the 
adsorption column (∆n+1). Note that ∆ represents a vector 
of state variables such as gas-phase composition, solid-
phase concentrations, pressure, and column and wall 
temperatures across the adsorption columns. After  
 

 
Figure 1. Schematic of a cyclic adsorption process 
simulator. Adapted from [19].  
 
several iterations, the CSS condition is achieved. 
Although fixed point iterations are the simplest way to 
obtain nonlinear solutions without any prior knowledge of 
𝑓𝑓 and its derivative [20], linear convergence to CSS 
makes it computationally slow [19].     

Alternatively, Eq. 1 can be reformulated as a root-
finding problem:  

𝜑𝜑(∆): =  𝑓𝑓(∆)  −  ∆ =  0   (2) 

A common approach for solving Eq. 2 is Newton’s 
method, 

∆𝑖𝑖+1 = ∆𝑖𝑖 −  𝜑𝜑(∆𝑛𝑛)
𝜑𝜑′(∆𝑛𝑛)

                   (3) 

which provides a quadratic and faster convergence to 
solutions, compared to fixed-point iterations. The main 
drawback of Newton’s method as a convergence 



 

Subraveti et al. / LAPSE:2024.1530 Syst Control Trans 3:215-221 (2024) 218 

accelerator is the prior knowledge of first derivatives or 
Jacobian, i.e., 𝜑𝜑′(∆), which is not straightforward to cal-
culate for many realistic systems.   

Without affecting the order of convergence, New-
ton’s method can be modified into “derivative-free” algo-
rithms such as Steffensen’s methods or its equivalents 
[19, 20].  Steffensen’s convergence acceleration for a 
scalar nonlinear fixed-point equation, 𝑥𝑥 = 𝑔𝑔(𝑥𝑥), can be 
represented as: 

𝑥𝑥𝑖𝑖+3 = 𝑥𝑥𝑖𝑖 −  (𝑥𝑥𝑛𝑛+1−𝑥𝑥𝑛𝑛)2

(𝑥𝑥𝑛𝑛+2−2𝑥𝑥𝑛𝑛+1+𝑥𝑥𝑛𝑛)    (4) 

Practical problems such as adsorption process simula-
tions often deal with many unknown variables and sys-
tems of nonlinear PDEs. Obtaining the solutions typically 
requires the spatial discretization of PDEs which intro-
duces a vector of state variables (∆) across the column. 
Several vector-based acceleration methods are available 
in the literature to deal with vector nonlinear fixed-point 
problems [20].  

In this study, two vector-based acceleration meth-
ods proposed in the literature are considered for the ac-
celerated convergence of the CSS condition in adsorp-
tion process simulations. Particularly, the acceleration al-
gorithms proposed by Irons and Tuck [22] and Graves-
Morris [23] are evaluated for CSS convergence acceler-
ation. It is worth noting that both methods are the vector 
extensions of Steffensen’s scalar method (Eq. 4).  

Irons and Tuck Acceleration Method  
The vector acceleration method proposed by Iron 

and Tuck [22] can be expressed as: 

∆𝑖𝑖+3 = ∆𝑖𝑖+2 −
(∆𝑛𝑛+2− ∆𝑛𝑛+1)⋅(∆𝑛𝑛+2−2∆𝑛𝑛+1+∆𝑛𝑛)

‖∆𝑛𝑛+2−2∆𝑛𝑛+1+∆𝑛𝑛‖2
 (∆𝑖𝑖+2 −  ∆𝑖𝑖+1)    (5) 

Note that this acceleration method is invoked alternately 
with a basic fixed-point cycle iteration.  

Graves-Morris Acceleration Method 
The approach of Graves-Morris [23] is given by:  

∆𝑖𝑖+3 = ∆𝑖𝑖+1 −
‖∆𝑛𝑛+2−2∆𝑛𝑛+1+∆𝑛𝑛‖2

(∆𝑛𝑛+1− ∆𝑛𝑛)⋅(∆𝑛𝑛+2−2∆𝑛𝑛+1+∆𝑛𝑛)
 (∆𝑖𝑖+2 −  ∆𝑖𝑖+1)      (6) 

This accelerator is also applied alternately with a basic 
fixed-point iteration in adsorption process simulations. 

RESULTS AND DISCUSSION 

        Two case studies involving different adsorption 
processes are considered to test the convergence 
accelerator methods. The first examines a VSA cycle, 
where the process dynamics are heavily influenced by 
the pressure swing between the adsorption and 
desorption steps. The second explores a TSA cycle, 
where the dynamics are driven by the temperature swing 
during the process. Thus, the two cases differ in terms of 
their process dynamics and their convergence to CSS. 

Case 1: Four-step VSA cycle 
Here, the vector acceleration methods are incorpo-

rated into the process simulation of a four-step VSA cycle 
separating the binary mixture of CO2/N2 for postcombus-
tion CO2 capture [5]. The VSA process was designed to 
recover CO2 from a binary mixture of 15% CO2 and 85% 
N2 at ambient pressure, which represents dry flue gas 
from coal-fired power plants. 

 
Figure 2. Four-step vacuum swing adsorption cycle 
designed for post-combustion CO2 capture [5]. 
 
         Figure 2 illustrates the schematic of the four-step 
VSA cycle. The cycle consists of feed pressurization (FP), 
adsorption (ADS), co-current blowdown (BLO), and 
counter-current evacuation (EVAC) steps. Each step can 
be implemented using appropriate boundary conditions 
and isotherm parameters provided by Haghpanah et al. 
[5]. Commercial zeolite 13X was used as the adsorbent. 
The example considered represents the complex 
dynamics of adsorption processes, and several cycles 
are needed to reach CSS. Similar to reference work, CO2 
and N2 isotherms on zeolite 13X were described using the 
competitive dual-site Langmuir isotherm model. Finally, 
the cycle operating conditions used for the simulation are 
as follows: PH = 1 bar, PI = 0.2 bar, PL = 0.1 bar, v0 = 1.0 m 
s-1, tFP= 15 s, tADS = 15 s, tBLO = 30 s, tEVAC = 40 s. Note that 
PH, PI, and PL are the feed, intermediate, and low 
pressures in adsorption, blowdown, and evacuation 
steps, respectively. The feed is introduced into the 
column in the adsorption step with an interstitial velocity 
v0. tFP, tADS, tBLO, and tEVAC are the step durations of feed 
pressurization, adsorption, blowdown, and evacuation 
steps, respectively. The column was first initialized with 
feed composition, and the simulation was conducted until 
CSS.  
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Figure 3. Convergence of overall mass balance error for 
the four-step VSA process simulation using the fixed-
point iteration, Irons and Tuck [22] algorithm, and 
Graves-Morris method [23]. 

Figure 3 shows the convergence of the overall mass 
balance error for the simulation. Without any accelerator, 
the fixed-point iteration took 291 cycles to reach the 
CSS. The four-step VSA process simulations are re-
peated for the same operating conditions with the two 
acceleration methods. The convergence of the overall 
mass balance for the simulation with the accelerators can 
also be seen in Figure 3. Using the acceleration algorithm 
by Irons and Tuck, the CSS convergence was achieved 
after 199 cycles. The computations were reduced by ap-
proximately one-third. On the other hand, Graves-Morri’s 
acceleration method almost reduced the number of iter-
ations to CSS by less than half, i.e., 130 cycles, outper-
forming the Irons and Tuck algorithm. The CO2 purity and 
recovery obtained at CSS using all the three methods are 
reported in Table 2. The acceleration methods offered 
faster convergence to CSS while achieving the same per-
formance as that of the conventional fixed-point iteration 
with rather straightforward implementation.  

Table 2: Performance of the VSA process using three dif-
ferent approaches for the convergence of CSS. 

Method CO purity 
(%) 

CO recovery 
(%) 

Fixed-point iteration   
Irons & Tuck []   
Graves-Moris []   

 

Case 2: Six-step TSA cycle 
In this case study, the vector acceleration methods 

are employed in the process simulation of a six-step TSA 
cycle proposed by Joss et al. [15] to separate the binary 

feed mixture of 12% CO2 and 88% N2 using commercial 
zeolite 13X. Figure 4 shows the six-step TSA cycle con-
sisting of the adsorption (ADS), recovery (REC), two 
heating (HEAT), purge (PUR), and cooling (COOL) steps. 
For simulating this process, the cycle operating condi-
tions and the simulation parameters have been retrieved 
from Joss et al. [15]. The adsorption step occurs under a 
constant pressure of 1.3 bar and at an ambient tempera-
ture of 300 K. In the heating steps, the column is exter-
nally heated to 420 K to desorb CO2. The cycle is simu-
lated for the following operating conditions: TCOOL = 300 
K, THEAT = 420 K, v0 = 1.4 m s-1, tADS = 150 s, tREC = tPUR = 25 
s, tHEAT1 = 150 s, tHEAT2 = 600 s, tCOOL = 600 s. It is worth 
noting that the durations of TSA cycles are much longer 
compared to VSA cycles due to heat transfer limitations. 
Here, a column that is completely saturated with N2 is 
used as an initial condition to simulate the cycle until CSS.  

 
 
Figure 4. Six-step temperature swing adsorption cycle 
proposed by Joss et al. [15] for post-combustion CO2 
capture.  

 
 
Figure 5. Convergence of overall mass balance error for 
the six-step TSA process simulation using the fixed-point 
iteration, Irons and Tuck [22] algorithm, and Graves-
Morris method [23]. 

Figure 5 and Table 3 present the comparative per-
formances of the vector acceleration methods for this 
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simulation. As can be seen from Figure 5, the fixed-point 
iteration needed 23 cycles to reach CSS, where the over-
all mass balance convergence is less than 0.5%. When 
the accelerators are incorporated into the process simu-
lations, the cycle converges to CSS in 18 and 14 cycles 
using Irons and Tuck and Graves-Morri’s methods, re-
spectively. While the TSA cycle reached CSS in fewer cy-
cles compared to the VSA cycle, each TSA cycle requires 
a significantly longer computational time. Hence, utilizing 
accelerator methods facilitated almost 1.25 – 1.67 times 
faster CSS convergence compared to the fixed-point it-
eration. The true impact of accelerators on computational 
speeds up will further be realized in process optimiza-
tions. It is worth reiterating that the implementation of the 
considered acceleration methods is straightforward. Ta-
ble 3 reports the comparable CO2 purity and recovery ob-
tained at CSS using all the methods.  

Table 3: Performance of the TSA process using three dif-
ferent approaches for the convergence of CSS. 

Method CO purity 
(%) 

CO recovery 
(%) 

Fixed-point iteration   
Irons & Tuck []   
Graves-Moris []   

CONCLUSIONS 
The computational complexity in cyclic adsorption 

process simulations mainly arises from solving a set of 
nonlinear partial differential equations iteratively for 
every cycle until the cyclic-steady state (CSS) is 
achieved making the simulation and optimization routines 
of these processes exceedingly time-consuming. Despite 
prior efforts to expedite CSS convergence, the computa-
tional burden of CSS still persists in adsorption process 
simulations.  

This study contributes to overcoming the computa-
tional challenges of CSS determination in adsorption pro-
cess simulations by implementing two vector-based ac-
celeration methods proposed previously in the literature. 
The acceleration methods of Irons and Tuck and Gravis-
Morris can offer quadratic convergence near the CSS so-
lutions, like Newton’s method without requiring the prior 
information of the first derivatives or Jacobian.  These 
methods are straightforward to implement in adsorption 
process simulations. The acceleration capabilities of 
these methods are demonstrated by considering two dif-
ferent adsorption processes, namely, a four-step VSA 
cycle and a six-step TSA cycle, which undergo complex 
dynamics and take multiple cycles to reach CSS. The re-
sults showed that the Graves-Morris accelerator pro-
vided expedited convergence by speeding the conver-
gence of VSA simulations more than double. For the same 
case, Irons and Tuck's method reduced the cycle 

iterations to CSS by one-third. When the accelerator 
methods are incorporated into the process simulations of 
a six-step TSA cycle, the Graves-Morris accelerator mar-
ginally provides better convergence than Irons and 
Tuck’s method by reducing the number of iterations to 14 
from the original 23 fixed-point cycle iterations. In the 
context of process optimization, where thousands of op-
erating conditions must be probed, these acceleration 
methods can significantly reduce the overall computa-
tional times with no extra effort. This work is a first step 
in addressing the computational challenges associated 
with adsorption process simulations. In the future, these 
methods will be extended to different adsorption pro-
cesses and efforts will be directed to further improve the 
convergence of CSS. For instance, incorporating machine 
learning principles into the acceleration framework can 
further boost CSS convergence speeds.  
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ABSTRACT 
Solvent-based carbon capture processes typically suffer from the temperature rise of the solvent 
due to the heat of absorption of CO2. This increased temperature is not thermodynamically favor-
able and results in a significant reduction in performance in the absorber column. As opposed to 
interstage coolers, which only remove, cool, and return the solvent at discrete locations in the 
column, internal coolers that are integrated with the packing can cool the process inline, which 
can result in improved efficiency. This work presents the modeling of these internal coolers within 
an existing generic, equation-oriented absorber column model that can cool the process while 
allowing for simultaneous mass transfer. Optimization of this model is also performed, which is 
capable of optimally choosing the best locations to place these devices, such that heat removal 
and mass transfer area are balanced. Results of the optimization have shown that optimally placed 
cooling elements result in a significant increase in the capture efficiency of the process, compared 
to a similar column with no internal cooling, with a common trend being the cooling of the column 
in the temperature bulge region. It is observed that by optimally placing an internal cooler, the 
solvent flow rate can be decreased, and the CO2 lean loading can be increased while still main-
taining the same efficiency. These process changes can lead to a substantial reduction in costs 
due to lower reboiler duty. 

Keywords: CO2 capture, optimization, monoethanolamine, process intensification 

INTRODUCTION 
Post-combustion CO2 capture is a critical approach 

for achieving net-zero emissions. Among many potential 
technologies for post-combustion CO2 capture, solvent-
based capture technologies are at the forefront due to 
their maturity, ease of operation, availability of efficient 
contactors for solvent-based capture systems, and many 
other advantages.  

A common family of aqueous solvents utilized in this 
process is one that contains amine functional groups. The 
solvent absorption process excels compared to other 
capture methods, such as solid sorbents, due to its ability 
to react with carbon dioxide even at low partial pressure, 
as well as having a high capacity of absorption [1]. There 
are, however, two key disadvantages associated with 

this process. The first disadvantage is that the high con-
centration of water in these solvents requires a signifi-
cant amount of steam for the use of the reboiler in the 
regeneration process [2]. This steam utilization results in 
the energy intensity of the process being up to 4 MJ per 
ton of CO2 captured, which accounts for the majority of 
the operating cost. The second disadvantage is the high 
exothermic heat of absorption for CO2. In the case of a 
30 wt% MEA solvent, the heat of absorption can range 
from 84 to 100 kJ/mol CO2 [3, 4]. This heat can cause 
temperatures within the absorber tower to rise substan-
tially, thus increasing the equilibrium pressure of CO2 by 
several orders of magnitude, resulting in a reduced mass 
transfer rate [3]. 

To keep the solvent capture process operating as 
efficiently as possible, heat needs to be removed from 

https://doi.org/10.69997/sct.123118
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the absorber column to operate the tower under more fa-
vorable conditions. Therefore, it is common to use inter-
stage coolers [5, 6], which withdraw a portion of the sol-
vent or the entire solvent from discrete locations within 
the column, and cool and return it in the next stage below. 
Karimi et al. showed that optimal placement of an inter-
cooler within the absorber column can result in energy 
savings as high as 7.27% by reducing the amount of sol-
vent flow required for operation [7]. However, while cool-
ing is achieved at discrete locations, intercoolers fail to 
achieve continuous heat removal along the height of the 
tower to reach an optimal temperature profile to maxim-
ize performance and/or economics. Therefore, the use of 
a cooling method that is integrated with the packing of 
the tower is needed. 

Additive manufacturing has become a rapidly grow-
ing method of developing innovative technologies, with 
advancements in 3D printing leading to products that 
would be impossible to create using traditional manufac-
turing methods. A recent novel application of 3D printing 
is structured metal packing that can be utilized for a 
packed column. The intensified packing device created 
at Oak Ridge National Laboratory is a 3D printed struc-
tured packing element  with a double-walled design, 
which creates two disjoint flow channels in which the 
process fluid can be kept in a flow channel separate from 
the cooling fluid in the other [8]. Tests utilizing this device 
have shown that carbon capture can be increased  be-
tween 3 to 15% compared to columns with no cooling [9, 
10]. 

A disadvantage of such a device is that the cooling 
water channels reduce the total amount of available pro-
cess volume, which reduces the mass transfer area. In 
addition, there are several other aspects that need to be 
evaluated for the optimal configuration of absorbers in 
the presence of such intensified towers. This work seeks 
to answer the following questions. Where are the optimal 
locations at which to implement internal cooling such that 
performance is maximized? What is the best configura-
tion of cooling water flow within the devices? How does 
variance in operating set points affect the optimal design 
and performance of the internal coolers? 

MODELING 

Column Model 
The absorber column model employed in this work 

was developed by Akula et al. [11]. This model is a rate-
based solvent absorber model that can be applied to 
many processes by using the built-in physical and chem-
ical property models. For convenience, this work uses 30 
wt% MEA as the solvent. 

For the reactive absorption process, rate-based 
models are significantly more accurate than equilibrium-
based models, but are more computationally expensive 

due to the consideration of transport through the films, 
especially the liquid film. To reduce this computation ex-
pense through removing the need to model film interac-
tions, an enhancement factor method is used that ac-
counts for the increase in mass transfer due to chemical 
reactions by using a set of algebraic equations [12]. 
Equations 1 and 2 are used to describe the enhancement 
factor, 𝐸𝐸, in terms of dimensionless concentration of 
MEA, Υ𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 . 

𝐸𝐸 = 1 + (𝐸𝐸∞∗ − 1) �1−Υ𝑀𝑀𝑀𝑀𝑀𝑀
i �

�1−Υ𝐶𝐶𝑂𝑂2
𝑏𝑏 �

   (1) 

𝐸𝐸 = 𝐻𝐻𝐻𝐻�Υ𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 �1−Υ𝐶𝐶𝑂𝑂2
∗ �

�1−Υ𝐶𝐶𝑂𝑂2
𝑏𝑏 �

   (2) 

The phase energy balance of the model considers 
three heat transfer mechanisms/sources/sinks: convec-
tive heat transfer between phases, heat of absorption of 
CO2, and heat of vaporization of water. The interphase 
heat transfer is calculated by using a corrected heat 
transfer coefficient, which is required for high mass 
fluxes (Equation 3). Both heat of absorption and vapori-
zation are accounted for in the liquid phase energy bal-
ance (Equation 4). The heat of absorption is fixed at -85 
kJ/mol CO2 for simplicity [13], while the heat of vaporiza-
tion being used was derived from [14]. 

𝑄𝑄𝑉𝑉 = ℎ𝑉𝑉′ 𝐻𝐻𝑒𝑒(𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑉𝑉)    (3) 

𝑄𝑄𝐿𝐿 = 𝑄𝑄𝑉𝑉 + 𝑁𝑁𝐶𝐶𝑂𝑂2,𝑉𝑉Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑁𝑁𝐻𝐻2𝑂𝑂,𝑉𝑉Δ𝐻𝐻𝑣𝑣𝑎𝑎𝑣𝑣  (4) 

Internal Heat Exchanger Model 
The modeling for the internal heat exchanger pack-

ing was modified from Moore et al., which considered a 
single bed absorber column. This model was modified to 
account for individual discretized elements of the column 
in which an internal heat exchanger can be independently 
placed from other elements. In this model, it is assumed 
that all heat removal from the process to the cooling wa-
ter occurs through the liquid phase due to the higher wet-
ted area and conductivity in the liquid phase leading to a 
negligible amount of heat being directly transferred to 
the gaseous phase. It was also assumed to be smooth 
transition between standard and intensified packing, if 
flooding velocity is not surpassed. The two decision var-
iables are a binary variable, 𝑦𝑦, for each column element 
to indicate placement of an internal heat exchanger and 
a voidage term, 𝜀𝜀𝑐𝑐𝑐𝑐, that accounts for the volume occu-
pied by the intensified cooler. Equation 5 calculates this 
heat transfer in each column element where the overall 
heat transfer coefficient, assumed to be constant, is from 
[9], which is a conservative estimate using the packing 
area, rather than wetted area, and is based on experi-
mental data. In this equation, 𝑖𝑖 is length index of the col-
umn, 𝑈𝑈 is the overall heat transfer coefficient, 𝐻𝐻 is the 
specific geometric area of the packing, 𝑇𝑇𝑐𝑐𝑐𝑐 and 𝑇𝑇𝐿𝐿 are the 
temperatures of the cooling water and solvent phase, 
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respectively, and 𝑄𝑄𝑐𝑐𝑐𝑐 is the heat transfer rate through the 
boundary. Equation 6 calculates the updated voidage by 
accounting for the volume occupied by the intensified 
coolers where 𝜀𝜀° is the standard voidage of the packing 
being used, and 𝜀𝜀 is the resulting voidage of the process. 

𝑄𝑄𝑖𝑖𝑐𝑐𝑐𝑐 = 𝑦𝑦𝑖𝑖𝑈𝑈𝐻𝐻𝑖𝑖�𝑇𝑇𝑖𝑖𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑖𝑖𝐿𝐿�   (5) 

𝜀𝜀𝑖𝑖 = 𝜀𝜀°𝑖𝑖 − 𝜀𝜀𝑖𝑖𝑐𝑐𝑐𝑐    (6) 

 
Figure 1. Configuration of cooling water flow through 
absorber tower 

Modeling the different possible flow configurations 
of the cooling water through the intensified packing is 
necessary since different flow configurations can result 
in a significant difference in heat removal efficiency. 
Three different flow directions were included in this 
model: co- and counter-current flow, relative to liquid 
phase flow, and single pass flow. In this case, the single 
pass flow is a limiting case for the model since the cooling 
water enters and exits the column in the same finite ele-
ment of the model resulting in the best case for heat re-
moval rate. Figure 1 shows how each of these configura-
tions moves cooling water through the column. These 
flow directions are selected through an integer variable, 
𝑑𝑑𝑐𝑐𝑐𝑐, which can take the values of -1, 0, or 1 corresponding 
to co-current, single pass, and counter-current configu-
rations, respectively. The energy balance of the cooling 
water is performed by creating lower bound inequality 

constraints, which will be active depending on the value 
of 𝑑𝑑𝑐𝑐𝑐𝑐. 

To determine the best placement locations for the 
internal heat exchanger, an objective function is required. 
Three objective functions are utilized in this work, the 
first of these is minimization of CO2 emissions, 𝐹𝐹𝐶𝐶𝑂𝑂2

𝑉𝑉,𝑜𝑜𝑜𝑜𝑜𝑜 
(Equation 7). The next two are minimization of column 
height, 𝐻𝐻 (Equation 8) and minimization of liquid to gas 
ratio (Equation 9) in which 𝐹𝐹𝐿𝐿,𝑖𝑖𝑖𝑖 and 𝐹𝐹𝑉𝑉,𝑖𝑖𝑖𝑖 is the molar inlet 
flow rate of the solvent and gaseous phases, respec-
tively. An additional performance constraint is included 
with the last two objectives, which sets a lower bound on 
the allowed capture efficiency. These last two objectives 
were chosen as each can be used to estimate potential 
reductions in costs of the system since the absorber col-
umn is a large factor in the total capital cost and solvent 
flow rate is directly proportional to reboiler duty, which is 
greatest factor in operational costs. 

𝑚𝑚𝑖𝑖𝑚𝑚
𝜀𝜀𝑐𝑐𝑐𝑐,𝑦𝑦,,𝑑𝑑

𝐹𝐹𝐶𝐶𝑂𝑂2
𝑉𝑉,𝑜𝑜𝑜𝑜𝑜𝑜     (7) 

𝑚𝑚𝑖𝑖𝑚𝑚
𝜀𝜀𝑐𝑐𝑐𝑐,𝑦𝑦,,𝑑𝑑

𝐻𝐻     (8) 

𝑚𝑚𝑖𝑖𝑚𝑚
𝜀𝜀𝑐𝑐𝑐𝑐,𝑦𝑦,,𝑑𝑑

𝐹𝐹𝐿𝐿,𝑖𝑖𝑖𝑖

𝐹𝐹𝑉𝑉,𝑖𝑖𝑖𝑖      (9) 

The absorber and internal cooler models were im-
plemented using the IDAES platform, which is built on top 
of the Pyomo optimization suite [15]. 

RESULTS 

 
Figure 2. Optimal and suboptimal internal heat exchanger 
placement for minimizing CO2 emissions. 

The base configurations for the column design and 
process specifications are shown in Table 1. This first set 
of results utilizes the pilot scale configuration. Using this 
configuration, the placement of the internal heat ex-
changers was optimized by minimizing CO2 emissions. 
Figure 2 shows the placement and area of the heat ex-
changers in the optimal solution, which were in the top 
and bottom 15% of the column. A separate case was also 
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simulated in which the internal heat exchangers were 
placed in the center of the column with a similar amount 
of total available heat transfer area. 

The liquid phase temperature profile for the base 
case without cooling, base case with suboptimal cooling, 
and optimized cooling are shown in Figure 3, with the 
capture efficiencies for each case shown in Table 2. The 
profile base case with out cooling exhibits a much higher 
average temperature across the length of the column. 
This higher temperature results in larger thermodynamic 
limitations to the mass transfer of CO2, especially in the 
upper end of the column where a significant portion of 
mass transfer is occurring (indicated by the peak in tem-
perature).The base case with suboptimal cooling appears 
to have a greater extent of heat removal when compared 
to the optimal case but results in lower capture effi-
ciency. This is due to the given operating conditions. As 
previously mentioned, the majority of CO2 mass occurs at 
the top 10–20% of the column, which is where the peak 
of the temperature bulge caused by the absorption en-
ergy is located in the base case. This causes this section 
of the column to be heavily thermodynamically limited, as 
opposed to physical limitations, such as mass transfer 
area, which explain the optimality of placing an internal 
cooling element in this region. The temperature profile in 
the bottom 15% of the column is comparatively level indi-
cating very little mass transfer of CO2. In this region, mass 
transfer is being solely limited by the reduced driving 
force due to higher loading in the solvent, which results 
in placement of the intensified packing as a means to 

further increase the total amount of heat removed from 
the system. 

Table 2. Comparison of capture efficiency for cases with 
and without internal cooling 

Case Capture Efficiency 
Base Case 72.46% 
Base Case w/ Cooling 75.63% 
Optimized Case 76.94% 

 
As opposed to the top region of the column, the 

middle region is mass-transfer limited; therefore, maxim-
izing mass transfer area to obtain high performance is 
desired. Finally, the bottom section of the column be-
comes thermodynamically limited; therefore, the optimal 
configuration is to include the cooling section there. 

Using these optimized placements, a study was 
then conducted that investigated the variance of capture 
performance in different cooling water flow directions 
and flow rates. Both counter-current and co-current con-
figurations were simulated using cooling water flow rates 
between 1.5 and 50 mol/s. The capture efficiencies for 
each of these configurations are shown in Figure 4. Be-
low 20 mol/s of cooling water, the co-current configura-
tion shows a slight advantage, which is due to how the 
solvent temperature changes in the upper internal cooler 
section. Analyzing these temperature profiles shows that 
the solvent enters the upper heat exchanger at the inlet 
temperature of 320 K and exits it at 338 K at a column 
height of 0.85. So, if cooling water is flowing in the 

Table 1. Column and process configurations for pilot-scale and process-scale models. 

  Height (m) Diameter (m) Gas Inlet 
(mol/s) 

CO2 Gas 
Conc. 

Liquid-Gas 
Ratio 

CO2 Lean 
Loading 

Case 1 (Pilot Scale)  15 0.65 22 0.12 1.77 0.15 
Case 2 (Process Scale)  20 12 12,000 0.042 1.83 0.22 

 
Figure 3. Solvent temperature profile for base case, base case with suboptimal cooling, and optimized case. 
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counter-current direction, there is a pinch at the top of 
the column limiting the heat removal rate. However, once 
flow rates increase above 20 mol/s, the difference in per-
formance between the two configurations is nearly the 
same. 

 
Figure 4. Capture efficiency at varying cooling water flow 
rates and flow direction. 

The next results shown are from using the objective 
functions for minimizing the height and liquid-gas ratios 
(Equations 8 and 9). These objective functions are useful 
since each of these values correlates with major costs 
within the process, in which the column height accounts 
for an investment cost and the solvent flow correlates 
with the steam requirement in the reboiler. For these 
studies, the process scale model configuration was uti-
lized, and each aspect was optimized at different CO2 
lean loadings and at different minimum capture efficien-
cies. The minimization of the column height in Figure 5 
shows a maximum reduction of 6 meters when operating 
at a lean loading of 0.25 with a capture efficiency of 94%. 
The minimization of the liquid gas ratio in Figure 6 shows 
that the solvent rate can be reduced by upwards of 20% 
at the same lean loading of 0.25 operating at a capture 
efficiency of 91%. 

 Results for the column height minimization are 
shown in Figure 5. This data can be interpreted in two 
ways. When picking any point along the dotted line rep-
resenting a column without internal cooling, moving down 
from this point to the corresponding solid line shows how 
much the column height can be reduced at a fixed cap-
ture efficiency. Alternatively, the horizontal shift shows 
how the capture efficiency can be increased with opti-
mally placed internal coolers at a fixed column height. 
The improvement of reduced column height when using 
internal cooling units increases at higher capture rates 
and higher lean loading of the solvent. This same trend 
can be seen in the results for minimizing the liquid-gas 
ratio (Figure 6).  

 
Figure 5. Variation is column height subject to capture 
efficiency, and lean loading without internal cooling 
(dashed line) and with internal cooling (solid line). 

 
Figure 6. Variation is column height subject to capture 
efficiency, and lean loading without internal cooling 
(dashed line) and with internal cooling (solid line). 

The reduction in both column height and solvent 
flow rate with the use of intensified packing has substan-
tial implications on the cost saving for the process. The 
ability to reduce the height absorber bed, by up to 6 me-
ters, while still retaining equal capture performance sug-
gests that capital costs can be significantly reduced. 
Similarly, being able to reduce solvent flow rate by up to 
20% corresponds with a similar reduction in the operating 
costs of the steam reboiler in the solvent capture pro-
cess, which is a major factor in the determination of the 
levelized cost of capture of CO2. Due to the infancy of 
this technology, an accurate cost model for the intensi-
fied packing is still required to allow for a robust eco-
nomic optimization of the process to determine the trade 
off of these potential cost savings for the cost of the 
packing. 

There are still other factors of this technology yet 
that need to be further investigated. The first of which is 
overall heat transfer coefficient of the packing. In a 
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dynamic process, this coefficient is likely to vary based 
on the variance of the loading of flue gas to the column 
which can influence the heat removal rate. In terms of 
performance rating, due to the significant reductions 
found in process conditions through placement optimiza-
tion and the use of a conservative value for heat transfer 
coefficient, the intensified packing is likely to retain an 
advantage over conventional structured packing even 
with a wide margin of uncertainty in heat transfer perfor-
mance. Another factor to further consider is the compar-
ison in performance to and absorbent system utilizing in-
tercoolers, which again raises the need for an accurate 
cost for the intensified packing to determine if the cost 
of the complexity of the design outweighs the benefit of 
providing in-line, continuous cooling to the process. 

CONCLUSION 
An existing model for solvent-based carbon capture 

is modified to implement a model for an internal cooling 
element that is integrated within the structured packing 
of the column. The internal cooling model was designed 
so that the placement of these elements can be used as 
a decision variable in an MINLP problem. The flow direc-
tion of the cooling water is also taken into consideration 
with the possibility of co- and counter-current flows, 
along with a single pass option. 

The results of this work have shown the feasibility 
of utilizing internal heat exchangers to boost the capture 
performance of a solvent capture system. Depending on 
the configuration, the capture efficiency is shown to in-
crease as much as 5%, which can account for a signifi-
cant reduction in CO2 emissions being released into the 
atmosphere. As shown, the optimization for the place-
ment of internal heat exchangers is necessary since a de-
viation from optimum placement leads to a reduction in 
capture efficiency. The results also show that when com-
paring co- and counter-current flows of cooling water 
through these elements, it is optimal to use the co-cur-
rent configuration. In the counter-current configuration, 
a pinch point is created that significantly affects the ef-
fectiveness of cooling. 

The case studies on optimizing the height and sol-
vent flow rates have shown that significant reductions of 
up to 20% in each can be made. This reduction is even 
greater when operating at higher capture efficiencies, 
which can make this technology ideal for that area of im-
plementation. Although a reduction in the absorber col-
umn height can result in significant cost reduction, the 
real benefit of implementing internal coolers is the reduc-
tion in steam costs from reboiler operation. This cost is 
heavily affected by the solvent flow rate and CO2 loading 
of the lean solvent. Thus, the placement of an intensified 
absorber not only improves the performance of the ab-
sorber but the economics of the overall process due to 

the resulting effect on the stripper operation.  
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ABSTRACT 
Chemical recycling of plastics is a promising technology to reduce carbon footprint and ease the 
pressure of waste treatment. Specifically, highly efficient conversion technologies for polyolefins 
will be the most effective solution to address the plastic waste crisis, given that polyolefins are 
the primary contributors to global plastic production. Significant challenges encountered by plastic 
waste valorization facilities include the uncertainty in the composition of the waste feedstock, 
process yield, and product price. These variabilities can lead to compromised performance or even 
render operations infeasible. To address these challenges, this work applied the robust optimiza-
tion-based framework to design an integrated polyolefin chemical recycling plant. Data-driven 
surrogate model was built to capture the separation units’ behavior and reduce the computational 
complexity of the optimization problem. It was found that when process yield and price uncertain-
ties were considered, wax products became more favorable, and pyrolysis became the preferred 
reaction technology.   

Keywords: Process Design, Design Under Uncertainty, Optimization, Polymers, Technoeconomic Analysis, 
Plastic Waste 

INTRODUCTION 
Global plastic waste has been on the rise, making 

efficient plastic recycling process design imperative [1]. 
Chemical recycling and upcycling strategies not only re-
duces the mismanaged plastic waste, but also has the 
potential to reduce the carbon footprint to meet sustain-
able goals [2]. 

One challenge in plastic recycling process design 
arises from uncertain feedstock compositions. The type 
and proportion of plastic waste can exhibit variations in-
fluenced by factors like geographic location, resulting in 
substantial differences in both economic and energy val-
ues [3]. In addition, feedstock compositions affect the 
strategies for plastic recycling. For instance, one ad-
vantage of the pyrolysis process is that it can easily han-
dle a mixed plastic waste feedstock with different ratio, 
especially noncatalytic pyrolysis unit. However, most of 
other chemical recycling technologies, including hydro-
genolysis, typically requires relatively pure feedstock af-
ter careful sorting or impurity removal to ensure good 
catalyst performance [4,5].  

Polyolefins (PO), including polypropylene (PP) and 
polyethylene (PE), are main source of plastic waste. Their 
inert carbon-carbon backbones make it challenging to 
breakdown the long chains and produce valuable prod-
ucts [6]. Many reaction pathways have been developed 
recently to effectively deconstruct PO, among which py-
rolysis and hydroconversion (i.e., hydrocracking and hy-
drogenolysis) have shown promising potentials.  Thermal 
pyrolysis reactions operate at elevated temperature and 
shorter residence time, which generates products a 
wider distribution and more gas that are most useful as 
fuels [7]. Hydroconversion, on the other hand, operates 
at milder conditions and produces liquid hydrocarbon 
within the fuel or lubricant ranges [6,8].   

Depending on the feedstock composition, different 
technologies operate at different conditions to produce 
different products [3,9]. As the product selectivity and 
the use of catalyst depend on the plastic waste type [3], 
feedstock variability could affect not only the process 
performance but also its feasibility. 

Existing studies in process design of plastic recy-
cling typically focus on a particular recycling strategy and 
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its operating conditions [9]. For instance, Hernandez et 
al. compared the costs and emissions for four waste 
LDPE treatment processes – gasification, pyrolysis, hy-
drogenolysis [4]. Bora et al. performed life cycle assess-
ment and technoeconomic analysis on waste PP treat-
ment processes and demonstrated that chemical recy-
cling had low emissions but only profitable at large scales 
[10]. Zhao and You utilized the superstructure framework 
to optimize the net present value and greenhouse gas 
emissions of monomers, aromatic mixtures, and fuels 
production from waste HDPE [11].  

An integrated plastic waste recycling technology 
selection and product separation provide opportunities 
for performance improvement. Moreover, it is important 
to consider the feedstock variability when designing such 
integrated chemical recycling facilities to ensure feasible 
operations among each connecting subunit. Robust opti-
mization has been established as a computationally effi-
cient framework to incorporates uncertainties and im-
proves process performance [12]. Li et al. applied robust 
optimization to refinery production planning problem 
considering yield, cost, and price uncertainties [13].  

This study proposes a methodology for the devel-
opment of a chemical recycling facility for plastic waste. 
The design involves the selection of reaction technology 
and product separation guided by an optimization model. 
Since feedstock composition variability and product yield 
distribution are unavoidable in waste plastic treatment 
and affects the separation efficiencies, it is vital to guar-
antee feasible operation and good performance under 
these uncertainties. Rigorous process flowsheet simula-
tions in Aspen Plus (Aspen Technology) [14] were carried 
out to obtain surrogate models of separation processes. 
Design decisions include chemical treatment technolo-
gies, distillation column design and unit connectivity. A 
robust optimization model is formulated to maximize 
profit under the worst case and ensure process feasibility 
(e.g., normal process operation) for all scenarios [6]. This 
robust optimization model will improve the chemical re-
cycling process feasibility and performance under the 
worst uncertain case than the traditional deterministic 
optimization model [2,13]. Applying robust optimization 
instead of stochastic programming will also largely re-
duce the computational complexity, especially in the pro-
cess design problem with high dimensionality arising 
from feedstock variability feedstock variability, yield un-
certainty, and price fluctuation [15,16]. 

MODEL FORMULATION 

Deterministic Superstructure Optimization   
 The superstructure elements for the chemical recy-
cling facility includes plastic waste, other feedstocks, 
products, reaction technologies, and separation alterna-
tives (Figure 1). In this study, decisions are made on three 

levels. First, the combination of reaction or separation 
technologies is selected. Second, we determine the con-
nectivity among feed, technologies, and products. Third, 
we decide the exact realization of a technology (e.g., dis-
tillation column operation conditions) by choosing an op-
tion. On this third level, incompatible connections, such 
as a liquid/solid stream entering a gas separator or an in-
appropriate reactant used by a particular reactor, could 
occur. Consequently, the connectivity of the superstruc-
ture elements is sorted a priori to eliminate those unpro-
ductive links. This step reduces the overall model size 
without cutting off potential candidate solutions [17]. 
 As illustrated in Figure 2, the superstructure is con-
nected with the inlet mixer and outlet splitters. The su-
perstructure mass balance is established with the equa-
tions (1-4) for flow rate of each process stream going 
from 𝑖𝑖′to 𝑖𝑖 for species 𝑘𝑘 (𝐹𝐹𝑖𝑖′,𝑖𝑖,𝑘𝑘). Equation (1) specifies the 
mixer balance for 𝐹𝐹𝑖𝑖,𝑘𝑘𝐼𝐼  , the flow rate of an inlet stream into 
a superstructure element 𝑖𝑖 for species 𝑘𝑘. The splitter bal-
ance is enforced in equation (2) for the outlet stream of a 
superstructure element 𝐹𝐹𝑖𝑖,𝑘𝑘𝑂𝑂 . While a splitter with split ra-
tio to multiple outlet stream is possible, we choose to 
maintain the linearity of the problem by allowing exactly 
one destination 𝑖𝑖′ for each superstructure element  𝑖𝑖 with 
the binary variable η𝑖𝑖,𝑖𝑖′. To ensure the feasibility of each 
unit, a capacity limit is imposed as shown in (5-7). The 
total flow rate 𝐹𝐹𝑖𝑖𝑇𝑇is decide from (5), and the technology 
capacity 𝐹𝐹𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 is enforced with (6). A big M constraint (7) 
is used to ensure if a technology is not selected (𝑦𝑦𝑖𝑖 = 0 ), 
the capacity is 0.  

𝐹𝐹𝑖𝑖,𝑘𝑘𝐼𝐼 = ∑ 𝐹𝐹𝑖𝑖′,𝑖𝑖,𝑘𝑘𝑖𝑖′∈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)  ∀𝑖𝑖 ∈ 𝐼𝐼𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇∀𝑘𝑘             (1) 

𝐹𝐹𝑖𝑖,𝑘𝑘𝑂𝑂 = ∑ 𝐹𝐹𝑖𝑖,𝑖𝑖′,𝑘𝑘𝑖𝑖′∈𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)   ∀𝑖𝑖 ∈ 𝐼𝐼𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇  ∀𝑘𝑘                  (2)
        ∑ 𝐹𝐹𝑖𝑖,𝑖𝑖′,𝑘𝑘𝑘𝑘 ≤ 𝑀𝑀 ⋅ η𝑖𝑖,𝑖𝑖′   ∀𝑖𝑖 ∈ 𝐼𝐼𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇  ∀𝑖𝑖′ ∈ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖)         (3) 

 ∑ η𝑖𝑖,𝑖𝑖′𝑖𝑖′∈𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) = 1  ∀𝑖𝑖 ∈ 𝐼𝐼𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇      (4) 

𝐹𝐹𝑖𝑖𝑇𝑇 = ∑ 𝐹𝐹𝑖𝑖,𝑘𝑘𝐼𝐼𝑘𝑘∈𝐾𝐾  ∀𝑖𝑖 ∈ 𝐼𝐼𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇       (5) 
𝐹𝐹𝑖𝑖𝑇𝑇 ≤ 𝐹𝐹𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶  ∀𝑖𝑖 ∈ 𝐼𝐼𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇        (6) 

 𝐹𝐹𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 𝑀𝑀 ⋅ 𝑦𝑦𝑖𝑖    ∀𝑖𝑖 ∈ 𝐼𝐼𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇          (7) 

 

 
Figure 1. Elements of the chemical recycling plant su-

perstructure. 
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Figure 2. Possible connectivity of chemical recycling 
plant’s separation units 

The reaction conversion and selectivity of the 
chemical recycling technologies are taken from the liter-
ature to model stoichiometric reactor units in the super-
structure. A basis in the reaction feed stream 𝐹𝐹𝑖𝑖

𝑅𝑅𝑖𝑖𝑅𝑅and a 
conversion coefficient ϵ𝑖𝑖,𝑘𝑘 is used to determine the com-
position of the product streams as shown in (8). For some 
reactions, especially the hyroconversions [6,8], some un-
desired solid (e.g., coke) and gas formation are not well-
characterized, leading to inaccurate estimation product 
yields thus violations of mass balance. To close the mass 
balance gap, we make a conservative assumption by in-
cluding a waste stream that is not usable in the down-
stream operations (9). Admittedly, this assumption may 
not reflect the actual reaction. Thus, the effects of wax 
yield uncertainty are addressed in the robust optimiza-
tion. 

𝐹𝐹𝑖𝑖,𝑘𝑘𝐼𝐼 + ϵ𝑖𝑖,𝑘𝑘 ⋅ 𝐹𝐹𝑖𝑖
𝑅𝑅𝑖𝑖𝑅𝑅 = 𝐹𝐹𝑖𝑖,𝑘𝑘𝐶𝐶   ∀𝑖𝑖 ∈ 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 ∀𝑘𝑘 ∈ 𝑃𝑃𝑃𝑃𝑜𝑜𝑃𝑃𝑜𝑜𝑃𝑃𝑜𝑜𝑜𝑜(𝑖𝑖)    (8) 

∑ 𝐹𝐹𝑖𝑖,𝑘𝑘𝐼𝐼𝑘𝑘 − ∑ 𝐹𝐹𝑖𝑖,𝑘𝑘𝐶𝐶𝑘𝑘≠𝑊𝑊𝐶𝐶𝑊𝑊𝑇𝑇𝑇𝑇 = 𝐹𝐹𝑖𝑖,𝑊𝑊𝐶𝐶𝑊𝑊𝑇𝑇𝑇𝑇
𝐶𝐶 , ∀𝑖𝑖 ∈ 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅      (9) 

 
All separation units in this study are designed to 

achieve sharp separation (i.e., separators always isolate 
nearly all the light species to the light outlet stream 𝐹𝐹𝑖𝑖,𝑘𝑘𝑂𝑂𝑂𝑂 
and the heavy species to the heavy outlet stream 𝐹𝐹𝑖𝑖,𝑘𝑘𝑂𝑂𝑇𝑇). 
The gas and fuel range products are separated in distil-
lation columns with a sequence based on the target boil-
ing points. To ensure that sharp separation is attainable 
with our design, surrogate models (12) are built to esti-
mate the reflux ratio needed for 99% purity and the as-
sociated utilities from rigorous Aspen Plus process simu-
lation. In practice, the distillation columns cannot deviate 
too much from the nominal reflux ratio once designed and 
installed. To ensure the operating feasibility, different de-
sign options are provided for the same distillation tech-
nology but at most one will be active as shown in (13). A 
30% flexibility around the reflux ratio at nominal condi-
tions is allowed for each design option 𝑝𝑝 as presented in 
(13)-(15). When an option is selected (𝑤𝑤𝑖𝑖,𝑝𝑝 = 1), two big M 
constraints are used for to ensure the reflux ratio does 

not deviate from the design value for more than 30% 
(14,15).  

 
𝐹𝐹𝑖𝑖,𝑘𝑘𝐼𝐼 = 𝐹𝐹𝑖𝑖,𝑘𝑘𝑂𝑂𝑂𝑂 ∀𝑖𝑖 ∈ 𝐼𝐼𝑊𝑊𝑇𝑇𝐶𝐶 ∀𝑘𝑘 ∈ 𝑜𝑜𝑖𝑖𝑙𝑙ℎ𝑜𝑜(𝑖𝑖)     (10) 
𝐹𝐹𝑖𝑖,𝑘𝑘𝐼𝐼 = 𝐹𝐹𝑖𝑖,𝑘𝑘𝑂𝑂𝑇𝑇 ∀𝑖𝑖 ∈ 𝐼𝐼𝑊𝑊𝑇𝑇𝐶𝐶 ∀𝑘𝑘 ∈ ℎ𝑜𝑜𝑒𝑒𝑒𝑒𝑦𝑦(𝑖𝑖)     (11) 
𝑓𝑓𝑖𝑖(𝐿𝐿𝑖𝑖𝑙𝑙ℎ𝑜𝑜,𝐻𝐻𝑜𝑜𝑒𝑒𝑒𝑒𝑦𝑦) = �𝑅𝑅𝑅𝑅𝑖𝑖 ,𝑄𝑄𝑖𝑖𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖 ,𝑄𝑄𝑖𝑖ℎ𝑖𝑖𝑒𝑒𝑖𝑖�∀𝑖𝑖 ∈ 𝐼𝐼𝑊𝑊𝑇𝑇𝐶𝐶    (12) 
𝑦𝑦𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖,𝑝𝑝𝑝𝑝  ∀𝑖𝑖 ∈ 𝐼𝐼𝑊𝑊𝑇𝑇𝐶𝐶      (13) 
−𝑀𝑀�1 − 𝑤𝑤𝑖𝑖,𝑝𝑝� + 0.7𝑅𝑅𝑅𝑅𝑝𝑝𝑖𝑖𝑜𝑜𝑛𝑛 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖  ∀𝑖𝑖 ∈ 𝐼𝐼𝑊𝑊𝑇𝑇𝐶𝐶     (14) 
𝑅𝑅𝑅𝑅𝑖𝑖 ≤ 𝑀𝑀�1 −𝑤𝑤𝑖𝑖,𝑝𝑝� + 1.3𝑅𝑅𝑅𝑅𝑝𝑝𝑖𝑖𝑜𝑜𝑛𝑛 ∀𝑖𝑖 ∈ 𝐼𝐼𝑊𝑊𝑇𝑇𝐶𝐶                (15) 

 
 A supply constraint is imposed to the plastic waste   
feedstock in (16). 

∑ 𝐹𝐹𝑖𝑖,𝑖𝑖′,𝑘𝑘𝑖𝑖′∈𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) ≤ 𝐹𝐹𝑗𝑗,𝑘𝑘
𝑊𝑊𝑆𝑆𝐶𝐶 ∀𝑖𝑖 ∈ 𝐼𝐼𝐶𝐶𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐∀𝑘𝑘 ∈ plastic(16) 

 For fuel range products, we impose a maximum for 
the olefin content [17] as a product requirement (17). In 
addition, we specify the limit of product quantities below 
or above the typical boiling point ranges for fuel product 
such as gasoline and diesel (18,19). Equations (18,19) 
represent a linear simplification of the blending rule by 
only considering boiling point and olefin content, alt-
hough more rigorous blending rule can be incorporated.  
 
 ∑ 𝐹𝐹𝑖𝑖,𝑘𝑘

𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝
𝑘𝑘∈𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ ϕ𝑜𝑜𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖 ∑ 𝐹𝐹𝑖𝑖,𝑘𝑘′

𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝
𝑘𝑘′∈𝐾𝐾  ∀𝑖𝑖 ∈ 𝐼𝐼𝐹𝐹𝑜𝑜𝑖𝑖𝑖𝑖   (17) 
 

∑ 𝐹𝐹𝑖𝑖,𝑘𝑘
𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝

𝑘𝑘∈𝐾𝐾𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿 ≤ ϕ𝑘𝑘𝑘𝑘𝑖𝑖𝑜𝑜 𝑖𝑖 ∈ 𝐼𝐼𝐹𝐹𝑜𝑜𝑖𝑖𝑖𝑖    (18) 
∑ 𝐹𝐹𝑖𝑖,𝑘𝑘

𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝
𝑘𝑘∈𝐾𝐾𝐵𝐵𝑃𝑃𝑈𝑈𝑃𝑃 ≥ ϕ𝑘𝑘

𝑘𝑘𝑜𝑜𝑝𝑝 𝑖𝑖 ∈ 𝐼𝐼𝐹𝐹𝑜𝑜𝑖𝑖𝑖𝑖                 (19) 
 
The general deterministic formulation of this chem-

ical recycling process design is presented as a mixed-in-
teger linear programming (MILP) problem in equation (20):  
  
 𝐦𝐦𝐦𝐦𝐦𝐦    (𝑅𝑅𝐶𝐶𝑅𝑅𝑂𝑂𝑃𝑃 + 𝑅𝑅𝑇𝑇𝑂𝑂𝑇𝑇𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑅𝑅 − 𝐶𝐶𝑂𝑂𝐶𝐶𝑇𝑇𝑅𝑅)       
(20) 

 s. t.         Superstructure Mass Balance                 
   Technology Constraints 
   Product Rules 
   Plastic Waste Feed Constraints 

Process Economics                           
 

Surrogate Model for Distillation Columns 
 The distillation column surrogate model is an essen-
tial part of the superstructure optimization to create a 
mapping between the inlet flow rates for both the light 
and heavy components and the actual reflux ratio, con-
denser duty, and reboiler duty. Artificial neural network 
(ANN) is selected as surrogate models given its excellent 
fitting performance and its ability to maintain the linearity 
of the problem. We refer to our previous work and use 
Rectified Linear Unit (ReLU) as the activation function 
with a feed-forward ANN [18]. The predicted value 𝑒𝑒𝑛𝑛𝑘𝑘  of 
layer k and node m is calculated using a linear combina-
tion of the values from the previous layer as shown in 



 

Yuliu et al. / LAPSE:2024.1532 Syst Control Trans 3:229-235 (2024) 232 

(21). The activation function ReLU, 𝑧𝑧𝑖𝑖𝑘𝑘  =  𝑚𝑚𝑒𝑒𝑚𝑚(0, 𝑒𝑒𝑖𝑖𝑘𝑘) , is 
modelled using the big M constraints as shown in (22a-
22d)    

𝑒𝑒𝑛𝑛𝑘𝑘 = 𝑊𝑊𝑖𝑖,𝑛𝑛
𝑘𝑘−1𝑧𝑧𝑖𝑖𝑘𝑘−1 + 𝑏𝑏𝑛𝑛𝑘𝑘−1      (21) 

−𝑀𝑀 ⋅ (1 − δ𝑛𝑛𝑘𝑘 ) ≤ 𝑒𝑒𝑛𝑛𝑘𝑘      (22a) 

𝑒𝑒𝑛𝑛𝑘𝑘 ≤ 𝑀𝑀 ⋅ δ𝑛𝑛𝑘𝑘      (22b) 
0 ≤ 𝑧𝑧𝑛𝑛𝑘𝑘 ≤ 𝑀𝑀 ⋅ δ𝑛𝑛𝑘𝑘     (22c) 

𝑒𝑒𝑛𝑛𝑘𝑘 −⋅ (1 − δ𝑛𝑛𝑘𝑘 ) ≤ 𝑧𝑧𝑛𝑛𝑘𝑘 ≤ 𝑒𝑒𝑛𝑛𝑘𝑘 + 𝑀𝑀 ⋅ (1 − δ𝑛𝑛𝑘𝑘 )            (22d) 

Robust Optimization 
The uncertainty in this study arises from three 

sources. The first source is the dynamic supply of sorted 
bale plastic waste, which leads to uncertain feedstock 
flowrates. The second source arises from the product 
yield. For instance, not all solid products of hydroconver-
sion of recycled plastic could be treated as waxes [6]. 
Instead, depending on the reaction condition, some solid 
plastic waste could remain unreacted or form coke. To 
reflect this, we incorporate a process yield uncertainty 
for waxes in hydrocracking and hydrogenolysis. Further-
more, the product selling price uncertainty is also in-
cluded to reflect the price volatility of the petroleum re-
finery products. The fuel range product tends to be more 
volatile than waxes [19]. Therefore, a larger deviation 
should be considered.  

To formulate the robust counterpart of the problem, 
we refer to the work of Li. et al. [13], in which the robust 
counterpart formulations have been derived for linear 
and mixed-integer linear programming with different un-
certainty set. In this study, we consider box uncertainty 
set for all uncertain parameters. The robust counterpart 
for an inequality constraint (23) when considering left-
hand-side (L.H.S.) uncertainty is presented in (24), and 
right-hand-side (R.H.S.) uncertainty in (25).   

∑ 𝑒𝑒𝑖𝑖,𝑗𝑗𝑗𝑗 𝑚𝑚𝑗𝑗  ≤ 𝑏𝑏𝑖𝑖          (23) 

∑ 𝑒𝑒𝑖𝑖,𝑗𝑗𝑗𝑗 𝑚𝑚𝑗𝑗 + ∑ 𝑒𝑒𝚤𝚤,𝚥𝚥�𝑗𝑗 |𝑚𝑚𝑗𝑗|  ≤ 𝑏𝑏𝑖𝑖         (24) 

∑ 𝑒𝑒𝑖𝑖,𝑗𝑗𝑗𝑗 𝑚𝑚𝑗𝑗 + 𝑏𝑏𝚤𝚤� ≤ 𝑏𝑏𝑖𝑖          (25) 

In this study, uncertainty parameters for process 
yield and product sale price occurs in equations instead 
of inequalities, which drastically restricts the feasible 
space of mathematical model and often causes infeasi-
bility [16]. Therefore, we use the inequality constraints in-
stead for process yield and sale price as presented in 
previous work in petroleum refinery by Leiras et al. [15] 
as shown in (26,27). Using this upper bound on wax pro-
duced and product sales, we now have L.H.S. uncertainty 
instead. While we acknowledge this reformulation cre-
ates a relaxation of the original problem mathematically, 
the profit objective typically encourages producing more 
products when possible. Therefore, these reformulated 
inequalities (26,27) are likely to be active at optimal 

solution. The robust formulation is obtained by applying 
the properties of box uncertainty set as presented in 
(24,25). 

 

𝐹𝐹𝑖𝑖,𝑊𝑊𝐶𝐶𝑅𝑅
𝐹𝐹𝑇𝑇𝑇𝑇𝑃𝑃 + 𝜖𝜖𝑖𝑖,𝑊𝑊𝐶𝐶𝑅𝑅 ⋅ 𝐹𝐹𝑖𝑖

𝑅𝑅𝑖𝑖𝑅𝑅 ≥ 𝐹𝐹𝑖𝑖,𝑊𝑊𝐶𝐶𝑅𝑅
𝐶𝐶𝑅𝑅𝑂𝑂𝑃𝑃 ∀𝑖𝑖 ∈ 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅    (26) 

𝑅𝑅𝑜𝑜𝑒𝑒𝑜𝑜𝑅𝑅𝑜𝑜𝑜𝑜𝐶𝐶𝑅𝑅𝑂𝑂𝑃𝑃 ≤ 𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑜𝑜 ⋅ 𝐹𝐹𝐶𝐶𝑅𝑅𝑂𝑂𝑃𝑃       (27) 

ILLUSTRATIVE EXAMPLE 
In this example, we considered three categories of 

reaction technologies (i.e., hydrocracking [6], hydrogen-
olysis [8], and pyrolysis [7]), three types of plastic waste 
streams (i.e., PP, LDPE, and HDPE), one solid separation, 
two distillation (each with five options), and a pressure-
swing absorption unit for hydrogen recovery. The details 
for the technologies are summarized in Table 1-3. For re-
action technologies that allow mixture plastic waste, we 
enforced the feed composition to be the same as re-
ported from experiments in the literature.  Gasoline, die-
sel, and waxes are selected as the product. Additionally, 
another stream for electricity generation is available for 
mixture outlet streams that do not meet the product re-
quirement for fuels.    

Table1: Reactions considered 

Code Reaction Type Feed 
RA hydrocracking LDPE 
RA hydrocracking HDPE 
RA hydrocracking PP 
RB hydrogenolysis PP 
RB hydrogenolysis PP/PE() 
RC pyrolysis PE 
RC pyrolysis PE/PP() 
RC pyrolysis PE/PP() 
RC pyrolysis PP 

Table 2: Separations considered 

Code Separator Type Separation Task 
FLA solid/fluid fluid/wax 
DTA distillation C/C 
DTA distillation C/C 

PSAA pressure swing 
absorption 

hydrogen/alkanes 

Table 3: Reflux ratios at nominal operating conditions for 
different options   

Option 1 2 3 4 5 
Reflux Ratio(molar) 1 1.83 3.43 6.37 11.83 

 
 The data for the surrogate model training for distil-
lation columns were obtained by running sampled simu-
lations in Aspen Plus [14] with Python interface. The 
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model was trained in PyTorch [20]. The ANN models for 
both distillation columns had 4 layers with 15, 18, 12 neu-
rons in the hidden layers and 3 neurons at the output 
layer. The R2 of the ANN for DT1A was 0.9586 and for 
DT2A, 0.9675. 
 The operational basis of this example was based on 
the previous techno-economic analysis [4,11] with a sup-
ply of 12 tonne/hr PP, 10 tonne/hr HDPE, and 2.5 tonne/hr 
LDPE. The cost for the plastic collection and sorting de-
pends on the population density and geographic variation 
[9]. The plastic waste collection and sorting cost was es-
timated in the work of Hernandez et al. [4] to be in the 
range of 250 to 700 $/tonne. In this example, we as-
sumed an overall cost for the sorted plastic to be 
$500/tonne. The price for waxes was estimated to be 
$1000/tonne [21]. Moreover, the fuel price at nominal 
condition was estimated to be $960/tonne for gasoline 
[19] and $920/tonne for diesel [19]. A wax yield of 0.5 
was assumed for hydroconversions. The associated un-
certainty type and deviations from the nominal value con-
sidered in this example is shown in Table 4. 

Table 4: Uncertain parameters for illustrative example 

Uncertain Parame-
ter 

Type Deviation (%) 

Plastic supply RHS  
Wax yield LHS  
Fuel price LHS  
Wax price LHS  

 
All optimization models were implemented in Pyomo 

[22] and solved with Cplex 22.1 solver [23] on a computer 
with Intel Xeon E-2274G CPU @ 4.00GHz 32 GB RAM. 
The deterministic model was solved under nominal con-
dition, and the robust formulation was applied to include 
the uncertainty set in Table 4. 

 
 

Figure 3. Cost breakdown of the plastic chemical 
recycling system. 

 
 As shown in Figure 3, under nominal condition,  the 
optimal integrated chemical recycling process has a 

revenue of 139.58 million  dollars/year and a total cost of 
96.40 million dollars/year. The feedstock cost comprises 
of 89% of the total cost, which accounts for all upstream 
cost for plastic waste collection and sorting. The profit of 
the process is 43.18 million dollars/year. However, when 
the uncertainties are considered in the robust 
formulation, the total revenue of the best design dropped 
to 117.45 million dollars/year with a total cost of 92.5 
million dollars/year. This leads to a profit of 25.95 million 
dollars/year. 
 Under the nominal condition, the distillation column 
DT1A operates at a 6.64 molar reflux ratio, and operating 
condition option 4 is selected. For distillation column 
DT2A, the actual molar reflux ratio is 2.24, and option 2 
is selected. When robust optimization is performed, the 
actual reflux ratio for DT1A becomes 0.07, and option 1 is 
selected. The technology DT2A is not selected at all as 
no gasoline product is pursued as shown in Figure 5. 

Figure 4. Superstructure under the nominal condition  
 

 
Figure 5. Superstructure under the robust formulation 
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Figure 6. Reactor loads for process designs from both 
deterministic and robust optimization 

 
 Figure 7. Product quantities for process designs from 
both deterministic and robust optimization. 
 

As illustrated in Figure 4, the reaction of a combina-
tion of hydrocracking (R1A, R2A, R3A) and mixed olefin 
pyrolysis(R3C) is selected in the nominal case, and the 
reactor load is presented in Figure 6. When uncertainties 
are considered, only mixed olefin pyrolysis is chosen 
(R2C, R3C). The product produced changes from a com-
bination of gasoline and wax to only wax. This change 
occurs primarily as a result of the price volatility of fuel 
products, which makes the wax product relatively more 
profitable than the nominal condition. In addition, the hy-
drocracking reactions are less economically favorable af-
ter the uncertainty in the wax yield of hydroconversions 
is included.  

CONCLUSIONS 
In this work, we have proposed the robust optimiza-

tion framework for designing plastic waste valorization 
system. We used an illustrative example to demonstrate 
the how the feedstock supply availability, process yield, 
and product price uncertainties affect the optimal pro-
cess design and operation. In the future, this model could 
be extended to include more considerations including 
more types of products, upgrading technologies, up-
stream sorting process, reaction technologies, and more 
kinds of plastic waste. 
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ABSTRACT 
Design problems for process systems engineering applications often require multi-scale modeling 
integrating detailed process models.  Consequently, black-box optimization and surrogate mod-
eling have continued to play a fundamental role in mission-critical design applications.  Inherent in 
surrogate modeling applications, particularly those constrained by “expensive” function evalua-
tions, are the questions of how to properly balance “exploration” and “exploitation” and how to do 
so while harnessing parallel computing in techniques. We devise and investigate a one-step look-
ahead GRASP heuristic for balancing exploration and exploitation in a parallel environment. Com-
putational results reveal that our approach can yield equivalent or superior surrogate quality with 
near linear scaling in the number of parallel samples.  

Keywords: Optimization, Parallelization, Surrogate Model, Derivative Free Optimization, Machine Learning 

INTRODUCTION 
In recent years, there has been an increased utiliza-

tion of high-fidelity digital twins (HFDTs) in the design, 
development, and/or operation of complex systems and 
enterprise-wide supply chains. These digital twins typi-
cally originate from data-driven models, physics-based 
models, or some combination thereof. Depending on their 
physical location, which can lead to data latency issues, 
scale, underlying structure, evaluating them can be com-
putationally expensive given a set of static and/or dy-
namic input parameters and they tend to come with only 
zeroth order information. This can be problematic for 
practitioners who would like to utilize them directly or 
within larger workflows to optimize and/or conduct sen-
sitivity analyses on the system or supply chain in which 
they were originally intended to simulate [1].  

These challenges have led practitioners to utilize 
black-box optimization (also known as derivative-free 
optimization) methods and/or surrogate modeling tech-
niques to achieve their desired goals. Excellent over-
views and reviews of derivative free optimization meth-
ods and surrogate modeling techniques are presented in 
[2], [3], [4], and references therein. Even with the recent 

advances in the literature, there are still many open ques-
tions, such as how to properly balance “exploration” and 
“exploitation” and how to harness parallel computing in 
techniques, such as Bayesian optimization (BO), that 
were originally designed to be executed serially [5].  

To this end, we present a BO procedure to allow the 
practitioner to be judiciously sample the design space in 
parallel. At the heart of the procedure lies a non-convex 
acquisition function that generates a batch of 𝐵𝐵 different 
points that are intended to be evaluated by the HFDT 
parallel. Due to the difficulty in solving the non-convex 
acquisition function, we have created a greedy random-
ized adaptive search procedure (GRASP) that is quickly 
able to generate quality solutions via a construction heu-
ristic and then subsequently improve on these initial so-
lutions via a local search procedure – for a detailed trea-
tise on GRASPs, specifically for problems with a continu-
ous design space, please see [6] and references therein. 

The remainder of this work is organized as follows: 
i) first, we present a brief literature review on BO; ii) next,
we present the problem statement; iii) we then present
our workflow; iv) next, we conduct computational exper-
iments on 6 standard benchmark test functions to illus-
trate the effectiveness of our workflow; and v) finally we
offer conclusions and future research directions.

mailto:richard.c.allen@exxonmobil.com
https://doi.org/10.69997/sct.173606
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LITERATURE REVIEW 
Several research groups have attempted to accel-

erate Bayesian optimization for the setting known as 
“batch Bayesian optimization,” i.e., when a “batch” of 
costly-to-evaluate function calls can be performed in 
parallel. As noted in one of the earliest works on batch 
BO [7], sequential BO (i.e., the traditional approach in 
which a single function evaluation is made per iteration) 
has a fundamental advantage over batch BO because, 
when applying the former, each function evaluation is im-
mediately used to obtain a more accurate posterior.  This 
improved posterior should, in theory, lead to a better, or 
more information-rich, sequence of function evaluations 
that accelerate convergence to a global optimum. Thus, 
researchers have attempted to design batch BO methods 
to compete with one-sample-per-iteration approaches in 
terms of information gain per sample. 

One key computational challenge in batch BO is to 
find a jointly optimized batch of inputs. This challenge is 
mainly because of the lack of analytical formula and dif-
ferentiability of the underlying selection criteria, i.e., ex-
pected improvement, for a batch of size greater than 2. 
To resolve this issue, Daxberger and Low [8] noted that 
there are two extremes to designing batch BO methods. 
On one end of the spectrum, greedy batch BO algorithms, 
e.g., [7], rely on the current (and therefore a single) pos-
terior distribution to select the batch of points to sample.  
This single-step lookahead approach eases scalability, 
but each prospective sample in the batch does not ac-
count for the potential impact of the other prospective 
samples. On the other end of the spectrum, one can at-
tempt a multi-step lookahead batch selection by consid-
ering the joint impact of all prospective samples, as is 
done in parallel predictive entropy search [9], and the 
parallel knowledge gradient method [10]. The downside 
is that these approaches tend to scale poorly in the batch 
size. To mitigate the scalability issue, [11] developed a 
stochastic gradient method for multipoints expected im-
provement (q-EI) computation, however, it requires many 
Monte Carlo samples for estimating a stochastic gradient 
and q-EI. These could be much more expensive than 
evaluating a single point EI (with q=1) using its closed 
form solution. 

De Ath et al. [12] introduced an epsilon-shotgun 
method that “leverages the model's prediction, uncer-
tainty, and the approximated rate of change of the land-
scape to determine the spread of batch solutions to be 
distributed around a putative location”. The initial target 
location is selected either in an exploitative fashion on 
the mean prediction, or - with probability ϵ - from else-
where in the design space. This results in locations that 
are more densely sampled in regions where the function 
is changing rapidly and in locations predicted to be good, 

i.e., close to predicted optima, with more scattered sam-
ples in regions where the function is flatter and/or of 
poorer quality.” Kandasamy et al. [13] analyzed a ran-
domized selection procedure known as Thompson sam-
pling, which selects a point to evaluate by maximizing 
over a random sample from the posterior distribution and 
find that “making n evaluations distributed among M 
workers is essentially equivalent to performing n evalua-
tions in sequence” [13].  Thompson sampling, however, is 
less common/popular than popular algorithms that 
choose evaluation points based on expected improve-
ment (EI) or upper confidence bounds (UCB). Wang et al. 
survey recent advances in BO [14]. 

As the algorithm’s name suggests, Bayesian optimi-
zation is primarily, if not entirely, dedicated to the task of 
optimizing an unknown function.  It is also of interest to 
generate a high-fidelity surrogate, which is locally or 
globally valid, for design applications. One can control the 
degree of exploration in BO by modifying the acquisition 
function.  Chen et al. [15] after choosing multiple acquisi-
tion functions, identify Pareto-optimal solutions (based 
on a so-called minimum-diverse-exploitative strategy) of 
a multi-objective optimization problem to select candi-
date sample points. 

PROBLEM STATEMENT 

Consider a decision maker (DM) who would like to 
utilize a HFDT to design, develop, and/or operate a com-
plex system and/or enterprise-wide supply chain. The re-
lationship between the inputs and the scalar output of the 
HFDT is given by 𝑓𝑓:𝒳𝒳 ⟼ ℝ1, where 𝒳𝒳 is a compact sub-
set of ℝ𝑁𝑁. The scalar output, 𝑦𝑦, of the computationally in-
tensive function can be noisy, consequently it is assumed 
that 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝜖𝜖, where 𝑥𝑥 ⊂ 𝒳𝒳 and 𝜖𝜖 ~ 𝑁𝑁(0,𝜎𝜎2) i.i.d.  

The DM would like to utilize BO, with a batch size of 
𝐵𝐵, to optimize and/or create a surrogate model of the 
HFDT. It is assumed that the DM has access to 𝐵𝐵 different 
machines, such that each sample point, 𝑏𝑏 ∈ ℬ, in the 
batch, �̅�𝑥𝑘𝑘,𝑏𝑏 ⊂ 𝒳𝒳, can be evaluated by the HFDT in parallel 
at each major iteration,  𝑘𝑘 ∈ 𝒦𝒦, of the BO procedure, 
where ℬ ≔ {1 …𝐵𝐵} and 𝒦𝒦 ≔ {1 …𝐾𝐾}. Therefore, the goal 
of the DM is to ensure that the points generated by the 
acquisition function are judiciously selected, such that 
whether “exploration” or “exploitation” is preferred, the 
points will provide valuable “learnings”. 

METHODOLGY 

In this section, we present the BO procedure, which 
allows the practitioner to judiciously sample the design 
space in parallel. We also present a novel GRASP, that 
generates locally optimal solutions to the acquisition 
function, given by Eq. 1, quickly, by first randomly gener-
ating quality solutions via a construction procedure and 
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then subsequently improving them via a local search pro-
cedure.  

  

max
{�̅�𝑥𝑏𝑏∈𝒳𝒳}𝑏𝑏∈ℬ

� 𝛼𝛼(𝑔𝑔(�̅�𝑥𝑏𝑏), 𝜅𝜅
𝑏𝑏∈ℬ

) + 𝛾𝛾 ⋅� ‖�̅�𝑥𝑏𝑏 − �̅�𝑥𝑏𝑏�‖
(𝑏𝑏,𝑏𝑏�)∈ℬ×ℬ

 (1) 
  

The first summation in the objective function of the 
optimization problem given in Eq. 1 sums the weighted 
outputs of the Gaussian process model for each of the 
selected points, {�̅�𝑥𝑏𝑏∗ ∈ 𝒳𝒳}𝑏𝑏∈ℬ – 𝛼𝛼(𝑦𝑦�, 𝜅𝜅) is equivalent to 
𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦(𝑦𝑦�) + 𝜅𝜅 ⋅ 𝐯𝐯𝐦𝐦𝐯𝐯(𝑦𝑦�), where 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦(⋅) is a function that re-
turns mean value of the Gaussian process model evalu-
ated at �̅�𝑥̃ ∈ 𝒳𝒳 and 𝐯𝐯𝐦𝐦𝐯𝐯(⋅) is a function that returns variance 
of the Gaussian process model evaluated at �̅�𝑥 ̃ ∈ 𝒳𝒳. The 
second summation sums the weighted Euclidian dis-
tances between the selected points, {�̅�𝑥𝑏𝑏∗ ∈ 𝒳𝒳}𝑏𝑏∈ℬ, where 
𝛾𝛾 is a regularization term – this indirectly ensures that the 
selected points are sufficiently separated in the design 
space from each other. 

The pseudo-code for the BO procedure is explicitly 
given in Algorithm 1. The procedure is a function of: i) 𝑓𝑓(⋅
), the HFDT; ii) 𝑆𝑆, the number of random samples gener-
ated in the construction procedure of the GRASP; iii) 𝒦𝒦, 
the set of major iterations for batch BO procedure; iv) ℬ, 
the set of batches; v) 𝒟𝒟, initial set of inputs and outputs 
of the HFDT; vi) 𝒳𝒳, continuous set of feasible inputs for 
the HFDT; vii) 𝛼𝛼(⋅,⋅), function that returns a weighted sca-
lar output of the Gaussian process model parameterized 
by 𝜅𝜅; viii) 𝜅𝜅, weighting parameter that balances “explora-
tion” and “exploitation”; ix) 𝛿𝛿, minimal scaled distance be-
tween any two points in a batch; x) 𝜎𝜎, variance for the 
noise utilized in generating the sorted restricted candi-
date list of selectable points in the construction proce-
dure; and xi) 𝜖𝜖, incremental decrease in the minimal 
scaled distance between points in successive iterations 
of the construction procedure.  

Algorithm 1: BO procedure. 

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁(𝑓𝑓, 𝑆𝑆,ℬ,𝒦𝒦,𝒟𝒟,𝒳𝒳,𝛼𝛼, 𝜅𝜅,𝛿𝛿,𝜎𝜎, 𝜖𝜖) 
1 # initialization phase 
2 𝑔𝑔 ← 𝐂𝐂𝐂𝐂𝐦𝐦𝐂𝐂𝐂𝐂𝐯𝐯𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐦𝐦𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐦𝐦𝐦𝐦𝐂𝐂𝐯𝐯𝐂𝐂𝐂𝐂𝐦𝐦𝐂𝐂𝐂𝐂(𝒟𝒟) 
3 # iteration phase 
4 𝐟𝐟𝐂𝐂𝐯𝐯 𝑘𝑘 ∈ 𝒦𝒦 𝐝𝐝𝐂𝐂 
5 {�̅�𝑥𝑏𝑏}𝑏𝑏∈ℬ ← 𝐂𝐂𝐆𝐆𝐆𝐆𝐁𝐁𝐂𝐂(𝑔𝑔, 𝑆𝑆,ℬ,𝒳𝒳,𝛼𝛼, 𝜅𝜅,𝛿𝛿,𝜎𝜎, 𝜖𝜖) 
6 𝐩𝐩𝐦𝐦𝐯𝐯𝐦𝐦𝐩𝐩𝐩𝐩𝐦𝐦𝐩𝐩 𝐟𝐟𝐂𝐂𝐯𝐯 𝑏𝑏 ∈ ℬ 𝐝𝐝𝐂𝐂;𝑦𝑦𝑏𝑏∗ ← 𝑓𝑓(�̅�𝑥𝑏𝑏∗);𝐦𝐦𝐦𝐦𝐝𝐝; 
7 𝒟𝒟 ← 𝒟𝒟 ∪ {(�̅�𝑥𝑏𝑏∗ , 𝑦𝑦𝑏𝑏∗)}𝑏𝑏∈ℬ 
8 𝑔𝑔 ← 𝐂𝐂𝐂𝐂𝐦𝐦𝐂𝐂𝐂𝐂𝐯𝐯𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐦𝐦𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐦𝐦𝐦𝐦𝐂𝐂𝐯𝐯𝐂𝐂𝐂𝐂𝐦𝐦𝐂𝐂𝐂𝐂(𝒟𝒟) 
9 𝐦𝐦𝐦𝐦𝐝𝐝 
10 𝐯𝐯𝐦𝐦𝐂𝐂𝐂𝐂𝐯𝐯𝐦𝐦 𝑔𝑔 

  

In the initialization phase of the procedure, a Gauss-
ian process model, 𝑔𝑔(⋅), is created using the initial set of 
inputs and outputs, 𝒟𝒟. In the iteration phase of the pro-
cedure, a set of |𝒦𝒦| ⋅ |ℬ| points are judiciously selected to 
be evaluated. In each iteration, |ℬ|  points are generated 
by the GRASP, and subsequently passed to the HFDT – 
the pseudo-code for the GRASP is given in Algorithm 2. 

Once the points are evaluated, they are appended to the 
data set 𝒟𝒟. Then the new updated data set, 𝒟𝒟, is then 
utilized to create a new Gaussian process model and then 
the iterative procedure is continued for another |𝒦𝒦| − 1 
iterations. 

Algorithm 2: GRASP to produce a high quality local opti-
mal solution for the non-convex acquisition function. 

𝐂𝐂𝐆𝐆𝐆𝐆𝐁𝐁𝐂𝐂(𝑔𝑔,𝑆𝑆,ℬ,𝒳𝒳,𝛼𝛼, 𝜅𝜅, 𝛿𝛿,𝜎𝜎, 𝜖𝜖) 
1 # construction phase 
2 {�̅�𝑥𝑏𝑏}𝑏𝑏∈ℬ ← 𝐂𝐂𝐂𝐂𝐦𝐦𝐂𝐂𝐂𝐂𝐯𝐯𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐦𝐦(𝑔𝑔, 𝑆𝑆,ℬ,𝒳𝒳,𝛼𝛼, 𝜅𝜅, 𝛿𝛿,𝜎𝜎, 𝜖𝜖) 
3 # local search phase 
4 {�̅�𝑥𝑏𝑏}𝑏𝑏∈ℬ ← 𝐋𝐋𝐂𝐂𝐂𝐂𝐦𝐦𝐩𝐩𝐁𝐁𝐦𝐦𝐦𝐦𝐯𝐯𝐂𝐂𝐋𝐋(𝑔𝑔, 𝑆𝑆,ℬ,𝒳𝒳,𝛼𝛼, 𝜅𝜅, ) 
5 𝐯𝐯𝐦𝐦𝐂𝐂𝐂𝐂𝐯𝐯𝐦𝐦  

  

In the first phase of the GRASP, an initial quality so-
lution is generated by a construction procedure which 
randomly selects discrete points in the input space. In the 
second phase, the initial solution produced by the con-
struction procedure is passed to a local search procedure 
to be improved, it should be noted that the solution is im-
proved on in the continuous design space. The pseudo-
codes for the construction procedure and the local 
search procedure can be seen in Algorithm 3 and Algo-
rithm 4 respectively. 

At the beginning of the construction procedure, two 
sets are created: i) the first set, 𝒮𝒮, stores all the indices 
of all the selectable points; and ii) the second set, 𝒮𝒮̅, 
stores the indices of the selected points, since no indices 
have been selected the set is empty. Then |𝑆𝑆| random 
points are uniformly sampled from 𝒳𝒳 and subsequently 
evaluated by 𝛼𝛼(⋅,⋅).   After the initialization phase, an iter-
ation phase commences that selects |ℬ| candidate 
points. At the beginning of the iteration phase, in line 7 of 
Algorithm 3, a sorted list of unselected indices is gener-
ated by the function 𝐂𝐂𝐂𝐂𝐯𝐯𝐂𝐂(⋅,⋅), which sorts the indices, 𝒮𝒮\�̅�𝒮,  
in descending order based upon the value 𝑧𝑧𝑠𝑠 + N(0,𝜎𝜎 ⋅
𝐯𝐯𝐦𝐦𝐦𝐦𝐫𝐫𝐦𝐦(𝑧𝑧̅)), where 𝐯𝐯𝐦𝐦𝐦𝐦𝐫𝐫𝐦𝐦(⋅) is a function that returns the 
maximum value of its input minus the minimum value of 
its input. Once the list of sorted indices is generated, a 
for loop is initiated and the Euclidian distance of the sam-
ple point corresponding to the index, 𝑠𝑠 ∈ 𝒮𝒮\�̅�𝒮, is com-
pared to all the currently selected indices, �̅�𝒮, and if the 
distance is greater than 𝛿𝛿 away from all the currently se-
lected points, the index is appended to the set 𝒮𝒮̅. This 
continues until |�̅�𝒮| = |ℬ|. If by chance, |�̅�𝒮| ≠ |ℬ| then 𝛿𝛿 is 
increased by 𝜖𝜖 and the iteration phase continues until 
|�̅�𝒮| = |ℬ|. We note that since we control the variability of 
samples in line 8 of Algorithm 3, we would prefer random 
uniform sampling over other sampling methods such as 
Latin hypercube sampling so that we can balance be-
tween exploration and exploitation. 

Algorithm 3: Construction procedure to generate an ini-
tial set of candidate points. 
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𝐂𝐂𝐂𝐂𝐦𝐦𝐂𝐂𝐂𝐂𝐯𝐯𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐦𝐦(𝑔𝑔, 𝑆𝑆,ℬ,𝒳𝒳,𝛼𝛼, 𝜅𝜅, 𝛿𝛿,𝜎𝜎, 𝜖𝜖) 
1 # initialization phase 
2 𝒮𝒮, �̅�𝒮 ← {1 … S},∅ 
3 {�̅�𝑥𝑠𝑠}𝑠𝑠∈𝒮𝒮 ← |𝑆𝑆| random uniformly sampled points in 𝒳𝒳  
4 𝐟𝐟𝐂𝐂𝐯𝐯 𝑠𝑠 ∈ 𝒮𝒮 𝐝𝐝𝐂𝐂; 𝑧𝑧𝑠𝑠 ← 𝛼𝛼(𝑔𝑔(�̅�𝑥𝑠𝑠), 𝜅𝜅);𝐦𝐦𝐦𝐦𝐝𝐝; 
5 # iteration phase 
6 𝐰𝐰𝐋𝐋𝐂𝐂𝐩𝐩𝐦𝐦 |�̅�𝒮| < |ℬ| 𝐝𝐝𝐂𝐂 
7 𝐟𝐟𝐂𝐂𝐯𝐯 𝑠𝑠 ∈ 𝐂𝐂𝐂𝐂𝐯𝐯𝐂𝐂�𝒮𝒮\�̅�𝒮, s: 𝑧𝑧𝑠𝑠 + N(0,𝜎𝜎 ⋅ 𝐯𝐯𝐦𝐦𝐦𝐦𝐫𝐫𝐦𝐦(𝑧𝑧̅))� 𝐝𝐝𝐂𝐂 
8 𝐂𝐂𝐟𝐟 𝐦𝐦𝐩𝐩𝐩𝐩({‖�̅�𝑥𝑠𝑠 − �̅�𝑥𝑠𝑠̅‖ ≥ 1/(𝛿𝛿 ⋅ |ℬ|)}𝑠𝑠̅∈𝒮𝒮̅) 𝐝𝐝𝐂𝐂 
9 �̅�𝒮 ← �̅�𝒮 ∪ {𝑠𝑠} 
10 𝐦𝐦𝐦𝐦𝐝𝐝 𝐂𝐂𝐟𝐟 
11 𝐂𝐂𝐟𝐟 |�̅�𝒮| = |ℬ| 𝐝𝐝𝐂𝐂;𝐛𝐛𝐯𝐯𝐦𝐦𝐦𝐦𝐛𝐛;𝐦𝐦𝐦𝐦𝐝𝐝; 
12 𝐦𝐦𝐦𝐦𝐝𝐝 
13 𝛿𝛿 ← 𝛿𝛿 + 𝜖𝜖 
14 𝐦𝐦𝐦𝐦𝐝𝐝 
15 𝐯𝐯𝐦𝐦𝐂𝐂𝐂𝐂𝐯𝐯𝐦𝐦 {�̅�𝑥𝑠𝑠}𝑠𝑠∈𝒮𝒮̅  

  

Once the initial of points are generated in the con-
struction procedure, they are passed to a local search 
procedure. In the local search procedure, each of the 
points are refined by solving the optimization problem 
given in line 2 of Algorithm 4, where 𝒩𝒩(⋅,⋅,⋅,⋅) ⊆ 𝒳𝒳 is a con-
vex neighborhood in the output space of 𝛼𝛼(⋅,⋅) evaluated 
at the point �̅�𝑥 ∈ 𝒳𝒳.  

Algorithm 4: Local search procedure to refine the initial 
set of candidate points. 

𝐋𝐋𝐂𝐂𝐂𝐂𝐦𝐦𝐩𝐩𝐁𝐁𝐦𝐦𝐦𝐦𝐯𝐯𝐂𝐂𝐋𝐋(𝑔𝑔,ℬ,𝒳𝒳,𝛼𝛼, 𝜅𝜅, {�̅�𝑥𝑏𝑏}𝑏𝑏∈ℬ) 
1 𝐟𝐟𝐂𝐂𝐯𝐯 𝑏𝑏 ∈ ℬ 𝐝𝐝𝐂𝐂 
2 �̅�𝑥𝑏𝑏 ← max�̅�𝑥∈𝒩𝒩(�̅�𝑥𝑏𝑏,𝛼𝛼,𝑔𝑔,𝜅𝜅)𝛼𝛼(𝑔𝑔(�̅�𝑥), 𝜅𝜅) 
3 𝐦𝐦𝐦𝐦𝐝𝐝 
4 𝐯𝐯𝐦𝐦𝐂𝐂𝐂𝐂𝐯𝐯𝐦𝐦 {�̅�𝑥𝑏𝑏}𝑏𝑏∈ℬ 

COMPUTATIONAL EXPERIMENTS 

This section presents the results of our computa-
tional experiments and highlights the ability of our parallel 
BO procedure to generate quality batches of sample 
points. The effectiveness of our BO procedure is com-
pared against standard BO utilizing a batch size of one. 
In the first subsection, we present the benchmark test in-
stances utilized in the computational experiments and 
the parameters utilized in our BO procedure. In the sec-
ond subsection, we illustrate how our BO procedure gen-
erates a batch of points over sequential iterations for one 
of the benchmark test functions in two dimensions. In the 
final subsection, we illustrate the effectiveness of our 
parallel BO procedure, which produces a batch of sam-
ples to be evaluated in parallel per iteration, against 
standard BO, which evaluates a single point per iteration. 

Experimental set up 

Benchmark test functions 

 
Figure 1. Gallery of 6 test functions plotted in two input 
domains, ℝ1 (1D) and ℝ2 (2D). 

We illustrate the effectiveness of our methodology 
on 6 standard benchmark test functions (StyblinskiTang, 
Griewank, Levy, Michalewicz, Ackley, and DixonPrice) 
across 4 input domains — ℝ1, ℝ2,  ℝ4 and ℝ6. The analyt-
ical form of the test instances were taken from the 
BoTorch library [16]. DixonPrice is the only strictly convex 
function and is, in general, thought to be “easy” to solve. 
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The remaining functions are non-convex and are thought 
to be “hard” to solve. 

Figure 1 depicts each of the test functions in two in-
put domains, ℝ1 and ℝ2. For sake of illustration, the input 
domains and the output domains have been scaled on the 
unit cube, i.e. linearly spaced between 0 and 1. Subfig-
ures a, c, e, g, i, and k are line plots and have an input 
domain of ℝ1, while subfigures b, d, f, h, j, and l are con-
tour plots and have an input domain of ℝ2. For the figures 
with an input domain of ℝ1, the input, 𝑥𝑥1 ∈ 𝒳𝒳 ⊂ ℝ1, is on 
the x-axis and the output, 𝑓𝑓(�̅�𝑥), is on the y-axis of the fig-
ure; the line color also corresponds to 𝑓𝑓(�̅�𝑥). For the fig-
ures with an input domain of ℝ2, the inputs, (𝑥𝑥1, 𝑥𝑥2) ∈ 𝒳𝒳 ⊂
ℝ2, are on the x- and y-axis respectively and the color at 
two corresponding points represents the output, 𝑓𝑓(�̅�𝑥). 

Setting up the computational experiments 
Here we briefly present the parameters passed to 

our BO procedure for conducting our computational ex-
periments. We also describe our scaling procedure to en-
sure that exploration and exploitation are properly 
weighted. Table 1 presents the parameters passed to our 
BO procedure for each of the test instances.  

Table 1: Parameters passed to our BO procedure for each 
of the test instances. 

Parameter Value 
𝑆𝑆 300 
𝜅𝜅 3 
𝛿𝛿 1 
𝜎𝜎 0.1 
𝜖𝜖 0.1 

 
To ensure that “exploration” and “exploitation” is 

properly scaled within 𝛼𝛼(⋅,⋅), we ensure that when a vec-
tor of design points are passed to the function their cor-
responding mean and variance are scaled to the unit 
cube i.e. all mean values are spaced linearly between 0 
and 1 and all variance values are scaled between 0 and 1. 

Illustrative example 
In this subsection, we use the StyblinskiTang test 

function with an input domain of ℝ2 to illustrate how the 
GRASP within our BO procedure generates new points in 
the design space to be evaluated by the HFDT in sequen-
tial iterations. For this illustrative example, 10 points in the 
design space were randomly sampled to build the initial 
set of ground truth data, subsequently these points were 
evaluated by the HFDT, and finally utilized to construct 
the initial Gaussian process model, in conjunction with 
the outputs from the HFDT. The batch size was set to 3 
and the number of major iterations was limited to 8, giv-
ing rise to a total of 24 (plus the original 10) HFDT func-
tion evaluations. 
 

 

Figure 2. Illustrative example showing how the GRASP in 
our BO procedure generates points to be sampled in the 
design space. Gray dots indicate points in the design 
space that have already been sampled. Red dots indicate 
points that the GRASP generated, which will be evaluated 
before the subsequent iteration commences. 

Figure 2 depicts the results to the illustrative exam-
ple. There are 8 subfigures, each representing a major it-
eration in our BO procedure. Each subfigure contains a 
surface plot and a scatter plot. The x- and y-axis in each 
subfigure represents the first input and second input var-
iable to the HFDT respectively. The surface plot color 
represents the output of 𝛼𝛼(⋅,⋅)  scaled to the unit cube. 
The mean absolute error (MAE) of the Gaussian process 
model compared to the actual HFDT for 2000 randomly 
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selected points is stated in the bottom left corner of each 
subfigure.From inspection of each of the subfigures it is 
clear the GRASP within our BO procedure produces 
points to be evaluated by the HFDT with high values 
computed by the function, 𝛼𝛼(⋅,⋅), while simultaneously en-
suring that these points are significantly far apart from 
each other, such that the “information gain” per iteration 
of the BO procedure is maximized. For instance, in the 
final iteration of the BO procedure, as illustrated in Fig 
2.h, the 3 points generated to be sampled are conven-
iently located at what appears to the naked eye, as the 
three global maximums of the function 𝛼𝛼(⋅,⋅). 

Results from the computational experiments 
To illustrate the benefits of our parallel computation 

framework, we present the computational results over 
our 6 test functions in various dimensions. In Figure 3, we 
show the aggregated mean absolute scaled error (MASE) 
and efficiency on the left and right, respectively. For each 
instance and batch size, we first compute its MASE de-
fined in Equation (1),where the numerator is the MAE of 
the prediction of a Gaussian process (GP) model denoted 
by 𝑦𝑦𝑖𝑖𝐺𝐺𝐺𝐺 measured over 𝑁𝑁, 2000, ground truth values de-
noted by 𝑦𝑦𝑖𝑖𝐺𝐺𝐺𝐺, and the denominator represents the MAE 
of the prediction of a reference GP model denoted by 
𝑦𝑦𝑖𝑖
𝐺𝐺𝐺𝐺,𝑟𝑟𝑟𝑟𝑟𝑟. The MASE represents the relative performance of 

a surrogate model compared a reference model. We note 
that 𝑦𝑦𝑖𝑖

𝐺𝐺𝐺𝐺,𝑟𝑟𝑟𝑟𝑟𝑟 is obtained from the BO after 100 function 
evaluations with a batch size of 1. Therefore, the denom-
inator value does not change over iterations, whereas 𝑦𝑦𝑖𝑖𝐺𝐺𝐺𝐺 
can change as we improve a GP model through iterations 
so can the numerator value. For fair comparison, the 
number of function evaluations is set to 500 across dif-
ferent batch sizes. Once MASE’s are computed for all in-
stances, we aggregate them by taking their average to 
display the results of all instances in a single figure.    

MASE ≔
1
𝑁𝑁∑ |𝑦𝑦𝑖𝑖𝐺𝐺𝐺𝐺 − 𝑦𝑦𝑖𝑖𝐺𝐺𝐺𝐺|𝑛𝑛∈{1…𝑁𝑁}

1
𝑁𝑁∑ |𝑦𝑦𝑖𝑖 

𝐺𝐺𝐺𝐺,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦𝑖𝑖𝐺𝐺𝐺𝐺|𝑛𝑛∈{1…𝑁𝑁}

 
(1) 

  

From the figure we see that the larger the batch size 
the quicker it reaches a MASE of 1 with a fewer number 
of iterations. For example, it took about 10 iterations for 
batch size 10 to reach a MASE of 1, while 100 iterations 
were needed for a batch size of 1 to arrive at that value. 
This result implies that we can gain a significant speed-
up in computing a solution at high quality from parallel 
function evaluations.  

As we increase dimensions, we observe that the 
MASE value tends to be smaller in early iterations. We 
think this is because the problem becomes harder as its 
dimension increases, leading to a smaller performance 
difference between the reference model and a model 
with less than 100 function evaluations.                         

 

Figure 3. Mean absolute scaled error (MASE) and 
efficiency of the aggregated test functions that were 
grouped by major iteration, dimension and batch size in 
subfigures a, c, e, and g; as well as the scaled efficency 
of the aggregated test functions grouped by major 
iteration and batch size in subfigures b, d, f, h. 

 Whereas Figure 3 illustrates surrogate quality 
aggregated over all test functions, Figure 4 depicts the 
mean absolute scaled error for each test function in each 
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dimension of interest. Consistent with our intuition, for 
each batch size shown on the x axis, the MASE decreases 
as the number of function evaluations increases. As be-
fore, MASE is scaled relative to default BO with 100 func-
tion evaluations and a batch size of 1, which is shown in 
the first column of each subplot. In each column, a black 
horizontal line shows the number of function evaluations 
required for each batch size to attain an MASE of 1. Thus, 
the black horizontal line in the first column of each sub-
plot is positioned at 100 function evaluations since this 

column corresponds to default BO. As the batch size in-
creases, however, the number of function evaluations re-
quired to attain the same MASE as default BO may differ. 
For example, in 1, 2, and 4 dimensions, the DixonPrice 
function indicates that, for all batch sizes, 100 function 
evaluations are needed. However, in 6 dimensions, fewer 
than 100 function evaluations are needed, suggesting 
that our approach is superior to default BO.  In summary, 
from inspection of Figure 4, it is evident that in general 
the batch size does not affect the efficiency of our ap-
proach, i.e., the efficiency is roughly the same for a batch 

 
Figure 4. Mean absolute scaled error (MASE) as a function of the batch size and number of function evaluations 
for each function in 1, 2, 4, and 6 dimensions. 
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of 1, which corresponds to sequential, to a batch size of 
10. Consequently, our approach allows for increased par-
allelization, with minimal loss of efficiency.  

CONCLUSIONS AND FUTURE RESEARCH 
DIRECTIONS 

Expensive-to-evaluate black-box functions often 
appear in challenging design problems involving multi-
scale model integration. We devised and analyzed a 
GRASP heuristic embedded within a parallel Bayesian op-
timization framework to accelerate surrogate construc-
tion without sacrificing surrogate quality. Computational 
results revealed that our approach can yield equivalent 
or superior surrogate quality with near linear scaling in 
the number of samples evaluated in parallel.  

As for future research directions, it would be inter-
esting to investigate multi-fidelity BO, which makes use 
of lower fidelity observations available with a lower sam-
pling cost. Specifically, it may be possible to query a 
lower-fidelity model when constructing a surrogate, 
which then introduces the additionally complexity re-
garding how to sample: Take high- or low-fidelity sam-
ples in parallel. 
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ABSTRACT 
This paper proposes an AI-assisted approach aimed at accelerating chemical process design 
through causal incremental reinforcement learning (CIRL) where an intelligent agent is interacting 
iteratively with a process simulation environment (e.g., Aspen HYSYS, DWSIM, etc.). The proposed 
approach is based on an incremental learnable optimizer capable of guiding multi-objective opti-
mization towards optimal design variable configurations, depending on several factors including 
the problem complexity, selected RL algorithm and hyperparameters tuning. One advantage of 
this approach is that the agent-simulator interaction significantly reduces the vast search space 
of design variables, leading to an accelerated and optimized design process. This is a generic 
causal approach that enables the exploration of new process configurations and provides action-
able insights to designers to improve not only the process design but also the design process 
across various applications. The approach was validated on industrial processes including an ab-
sorption-based carbon capture, considering the economic and technological uncertainties of dif-
ferent capture processes, such as energy price, production cost, and storage capacity. It achieved 
a cost reduction of up to 5.5% for the designed capture process, after a few iterations, while also 
providing the designer with actionable insights. From a broader perspective, the proposed ap-
proach paves the way for accelerating the adoption of decarbonization technologies (CCUS value 
chains, clean fuel production, etc.) at a larger scale, thus catalyzing climate change mitigation. 

Keywords: Carbon Capture, Process Design, Optimization, Artificial Intelligence, Reinforcement Learning, Ma-
chine Learning, Simulation-based Optimization 

INTRODUCTION 
Climate change has become a crucial problem, 

where massive efforts are underway to mitigate its dis-
astrous outcomes [Ref. Paris Agreement]. In this regard, 
there is a major trend to develop efficient carbon capture 
technologies, recognized as one of the promising solu-
tions to the challenges posed by climate change. Further-
more, the research is accelerating in this hot field due to 
the clear and prioritized need for developing cost-effi-
cient and environmentally friendly carbon capture pro-
cesses. Various methods based on mechanistic models 
and combined with traditional operation research meth-
ods, including linear and non-linear programming, are 

used to optimize existing carbon capture processes. 
Nevertheless, despite their robustness, most existing 
methods for optimizing process design suffer from cer-
tain limitations that hinder the development and optimi-
zation of carbon capture systems. These limitations in-
clude time consumption, high computational costs, and a 
lack of adaptability and transferability.  

Therefore, there is a pressing need for the develop-
ment of new methodologies to help overcome the above-
mentioned limitations. Artificial intelligence (AI) and its 
related machine learning (ML) technologies holds signifi-
cant promise to address this critical gap. Specifically, re-
inforcement learning (RL), as a prescriptive machine 
learning technique, offers an effective approach due to 

mailto:ahmed.ragab@nrcan-rncan.gc.ca
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being a learnable optimizer. In addition, its application 
has been successful in various fields, including process 
control [1], [2] which underscores its potential for accel-
erating chemical process design. RL encompasses vari-
ous types, ranging from model-free to model-based al-
gorithms, as well as policy-based and value-based 
agents. Examples of policy-based RL agents include 
deep Q-network (DQN) [3] and proximal policy optimiza-
tion (PPO) [4]. Besides, there are agents that combine 
both policy-based and value-based calculations, such as 
deep deterministic policy gradient (DDPG) [5]. These di-
verse types offer versatile tools for enhancing chemical 
process design acceleration. 

Recently, several research studies have employed 
RL within the realm of chemical engineering to optimize 
process sequences and to suggest new process flow di-
agrams for simple processes [6]-[12]. For instance, in 
[10], the authors used a hierarchical deep RL (DRL) agent 
to automate the synthesis of flowsheets for the ethyl 
tert-butyl ether (ETBE) production process. The study 
adopted the SynGameZero approach outlined in [13]. The 
Soft Actor Critic (SAC) algorithm was used in [9] to 

design a distillation train to separate a mixture of ben-
zene, toluene, and P-xylene. The SAC agent interacts 
with a Distillation Gym environment that interfaces with 
COCO open-source simulator. The paper [14] conducted 
a survey on the RL-assisted flow sheet synthesis, high-
lighting the interaction with other simulators, i.e. DWSIM, 
and the concept of transfer learning for process design 
[8]. Nonetheless, some of these attempts are still at early 
stages as the agents developed suggest technically in-
feasible flowsheets in some cases due to the lack of rea-
soning for the trained agent. Besides, one major limitation 
of these studies is the absence of causality. Analyzing 
the historical data gathered during the optimization pro-
cess can offer new insights to the designers, enabling 
them to identify the causal variables that impact selected 
key performance indicators (KPIs), e.g. costs. Extracting 
knowledge from causality analysis part will lead to more 
generalizable results and provide actionable insights into 
hidden information and relationships that can be trans-
ferred to enhance other processes. 

The novelty of the current work lies in the introduc-
tion of causal DRL to accelerate the design of chemical 
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processes. Two systems were considered for illustration: 
1) ammonia-water system (hypothetical physical absorp-
tion-desorption process as a simplified example) and 2) 
mono-ethanolamine (MEA)-based carbon capture pro-
cess. Introducing the concept of causal reinforcement 
learning to process design, specifically in applications re-
lated to solvent-based capture processes, can enhance 
the agent’s reasoning capabilities, and enrich the 
knowledge of design experts with new insights. This ap-
proach can be generalized to other systems, under the 
full supervision of human experts, to streamline and ac-
celerate the design process. The specific research objec-
tives of this study are outlined as follows: 1) Develop an 
incremental DRL (IDRL) simulation-based optimization 
methodology to accelerate the design of steady state 
processes; 2) Integrate a newly developed causality 
analysis methodology, employing various algorithms with 
the IRDL to capture the underlying cause-effect relation-
ships among different process variables and the speci-
fied KPI(s); 3) Deploy the developed IDRL coupled with 
causality analysis methodology to optimize different pro-
cesses, including absorption-based carbon capture pro-
cess utilizing amine solvents.  

METHODOLOGY 

General DRL Simulation-based Optimization 
Approach 

The general simulation-based optimization ap-
proach and its underlying methodology achieving its ob-
jectives is depicted in Figure 1. A DRL agent is linked with 
a simulation environment in an interactive and learnable 
manner that minimizes the search space. Within this ap-
proach, the term "rewards" is used to denote the key per-
formance indicators, whereas the term "states" is used to 
represent the observations defining the current condition 
of the process. The agent provides ”actions” (represent-
ing design variables including equipment sizing and op-
erating conditions) to the simulation environment based 
on the current state and the observed reward. The agent 
tries to find the optimal point without sticking in local min-
ima where it may follow the shortest path, depending on 
factors such as problem complexity, reward formulation, 
the RL algorithm selected, and available computational 
resources. Unlike most of the traditional optimizers, DRL-
based optimization is driven by the concept of reward 
and penalty. The agent receives a reward when following 
the right path of optimizing the objective function, i.e. 
minimizing the process costs, or minimizing its environ-
mental impact. Conversely, a penalty is incurred if the 
agent followed the wrong direction, where the actions re-
sult in cost or environmental impacts exceeding specified 
values. To avoid settling in local minima, the agent pos-
ses the ability to explore new scenarios, aiming to iden-
tify paths leading to the global minimum point. Balancing 

between exploitation and exploration is crucial to speed 
up achieving the optimal solution. Additionally, achieving 
an accelerated optimization requires proper formulation 
of reward function and optimization of the agent’s hy-
perparameters. 

DRL and problem formulation as Markov Decision 
Process. From a mathematical standpoint, when employ-
ing RL, the problem is typically formulated as a Markov 
Decision Process (MDP). This formulation involves a set 
of observations that characterize the state of the envi-
ronment, along with a distribution of initial states. Addi-
tionally, it entails a set of actions, whether continuous or 
discrete, that can modify the state of the environment 
based on rewards received by the agent. An MDP com-
prises transition dynamics or probabilities, which de-
scribe the relation between states and actions. Two other 
important components are the immediate rewards and 
the discount factor (which ranges from 0 to 1), a lower 
discount factor places greater emphasis on the immedi-
ate reward. For a more detailed explanation of the math-
ematical formulation of RL and MDP, refer to this study 
[3]. It is worth noting that one of the primary differences 
between dynamic and steady-state problems lies in the 
definition of discount factor during MDP formulation. The 
discount factor is an optional element in defining an MDP 
and can be disregarded (assigned a zero value) when 
considering the optimization of steady-state processes, 
where immediate rewards take precedence over long-
term ones. Disregarding the discount factor in case of 
steady-state processes facilitates the design optimiza-
tion problem definition/formulation. Nevertheless, finding 
the optimal policy based on the cumulative reward for the 
RL agent remains relevant. This design problem adheres 
to the Markov Property, resulting in a memoryless agent, 
where the current state depends only on the previous 
state and influences the selection of the subsequent ac-
tions that modify the successive states. Consequently, 
the transition dynamics or probabilities over time and the 
whole states history will not be taken into consideration. 
The transition probabilities between two successive 
states based on the proposed or taken actions are pri-
marily deterministic. In chemical process design, these 
transitions may involve thermodynamic/equilibrium rela-
tions, kinetic/rate equations, or heuristic rules. 

RL Algorithm selection & development of the sim-
ulation environment. Various RL algorithms can be de-
veloped, optimized, and then utilized for process design 
optimization. As previously mentioned, the PPO and SAC 
algorithms were employed process flowsheet synthesis. 
In this work, we consider the DDPG algorithm [5], which 
is one of the promising algorithms. It combines the value-
based and policy-based optimization principles. 

Upon developing the simulation environment, the 
potential actions (design variables) under consideration 
include equipment sizing and process operating 
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conditions. Additionally, parameters such as recycle rate, 
purge percentage and flowrates of inlet streams are 
deemed significant actions to be prescribed or optimized. 
Equipment sizing varies according to the equipment type. 
For instance, the number of stages is a crucial variable 
for separation columns, defining their heights and costs. 
Continuous stirred reactors (CSTRs) are sized by volume, 
which is also related to the percentage conversion of lim-
iting reactants. Heat exchange equipment sizing is deter-
mined by the heat exchange area, which is also related 
to other process operating conditions. Process operating 
conditions encompass different streams/equipment tem-
peratures and pressures. Key observations describing 
the simulation environment’s state include the purities of 
specified product streams/components, recovery rates 
of components of interest, and utilities consumption. 
These states and actions vary from a problem to another 
depending on the specific requirements of the problem 
and the specifications set by the process expert. 

Reward definition (formulation). The reward func-
tion can take various forms, depending on the specified 
objective defined by the process expert. For instance, it 
can be formulated as the relative production cost, i.e. 
production cost per kg of product or material. Alterna-
tively, it could represent the total capital investment 
(TCI), net present value (NPV) or any other form of eco-
nomic KPIs. Furthermore, it might be a combined value of 
both techno-economic KPIs such as relative production 
cost per material/product recovery or purity. One objec-
tive function that can serve as a highly relevant reward 
function is the total environmental impact or the relative 
emissions per kg of the product. This function holds sig-
nificant importance in current and future research studies 
for process design optimization, enabling the assess-
ment of processes’ environmental footprints and promot-
ing the development of eco-friendly processes. 

Incremental learning. It is worth noting that our ap-
proach for the DRL-based optimization is built upon the 
concept of incremental learning. Specified costs, envi-
ronmental impacts and actions ranges change from one 
case to another until the maximum allowable perfor-
mance is achieved, i.e. lowest possible relative produc-
tion cost and minimum acceptable environmental impact. 
More specifically, the actions ranges are narrowed or re-
defined after analyzing the historical data collected from 
previous RL-assisted optimization cases. In addition, re-
ward function and its value are redefined based on this 
analysis. For example, the specified cost value may be 
reduced to explore the agent’s ability to surpass it and 
reach the minimum allowable cost. 

Towards causality analysis for causal and 
rational DRL 

Following the incremental learning-based optimiza-
tion, historical data representing the simulation runs 

resulting from the agent-simulation interactions are 
stored in spreadsheets for the causal analysis, where 
each run represents a data point (observation). This is to 
gain more actionable insights into the root causes and 
the importance of design variables impacting the KPIs. 
Three methods were employed to perform a preliminary 
causality analysis based on observations. These meth-
ods include combined interpretable ML (IML)-Explainable 
AI (XAI), Granger causality (GC), and Bayesian causal dis-
covery & inference.  

Combined IML-XAI. Initially, the decision tree clas-
sification algorithm (i.e. IML) is combined with XGBoost 
and SHAP explanation algorithm (i.e. XAI) to extract the 
patterns, assess variables importance and analyze the 
relationships governing the dependence of the specified 
KPI (reward) and observations (state) on the design var-
iables (actions). The IML extracts the patterns (ranges of 
design variables) that lead to processes with reasonable 
feasibility. Additionally, it assesses the variables im-
portance, determining the most significant ones. The XAI 
gives relative magnitudes and directions of the effect of 
each input variable on the final KPI (process overall pro-
duction cost). This will help afterwards in the incremental 
learning procedure, helping to select/redefine the rele-
vant input variables ranges for guided optimization. 

Granger causality (GC). This method is used pre-
liminary to validate the relations between the actions (es-
pecially the most significant ones identified by the com-
bined IML-XAI method) and the KPI. Since actions are 
provided continuously by agent and they depend on the 
previous set of actions and states, consequently actions, 
states, and rewards/KPIs are treated as a form of time 
series data, leading to the application of GC. As men-
tioned earlier, in case of optimizing steady-state pro-
cesses, the current state (representing the current pro-
cess configuration) is solely influenced by the preceding 
one, rendering longer-term relationships negligible. The 
dependence between each successive pair of states (St 
& St+1) and their associated set of actions based on the 
reward provided to the agent, justifies the utilization of 
approximated time series assumption to apply GC.  

Bayesian causal discovery & inference. This 
method is used to generate causal graphs to discover the 
root causes that significantly affect changes of the KPI. It 
also reveals the interdependence among actions, discov-
ering the root cause design variable that affects both 
other design variables and KPI. Figure 2 summarizes the 
proposed causality analysis methodology. Further details 
regarding the combined IML-XAI method can be found in 
our recent study [15]. The insights gained from this cau-
sality analysis will upgrade/enrich the experts’ 
knowledge, where they can redefine the baselines/re-
wards and the range of actions to retrain the agent, 
thereby fostering further improvement in design optimi-
zation. 
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This methodology can be applied in flowsheet syn-
thesis to enhance the DRL agent’s reasoning capability 
by providing it with the extracted knowledge and causal 
graphs. This empowers the agent to operate as a rational 
causal DRL agent that avoids the synthesis of technically 
infeasible flowsheets/processes, thus accelerating the 
synthesis and design process. In addition to the other de-
sign variables, equipment and their sequencing will be 
added to the list of actions. Consequently, the causal 
graphs will account for these two crucial categorical var-
iables and quantify their impact on the defined KPI/re-
ward. Furthermore, integrating domain knowledge from 
process designers and operators as constraints into the 
causal DRL agent’s structure will enhance its rationality. 
These domain knowledge-informed constraints ensure 
the avoidance of invalid streams/equipment selection, 
placement, and sequencing, e.g. separation train se-
quencing [16] and chemical reactors sequencing [17]. 
This will further shorten the time needed for the agents 
to converge on the optimal new process, thus ensuring 
the desired ML-assisted design acceleration. 

SIMULATION CASE STUDIES 
Aspen HYSYS was selected as the simulation soft-

ware for constructing the process flow diagrams and 
conducting the process design. Two simulation case 
studies were developed to validate the proposed CIRL 
approach. The simplified process flow diagrams of the 
two case studies are presented in the supplementary ma-
terials and their details are summarized in the following 
subsections.  

Case study 1: Ammonia water system 
An ammonia-water absorption-desorption system 

was developed with a stream of air contaminated with 
ammonia is introduced to the absorption column, where 
pure water is utilized as a physical solvent to separate 
ammonia from air. The captured ammonia is then re-
moved from the water solvent using steam in a re-boiled 
stripping column. Heat exchange between the stream en-
tering the stripping column and its bottoms product 
stream enables heat integration, minimizing the reboiler 
heat load. A condensation and a flash separation are ap-
plied for the top product stream of stripping column to 
remove any water associated with the separated ammo-
nia, thus enhancing its purity and recovering any escaped 
solvent. Recycle was not considered in this simplified 
case study. The NRTL simulation fluid package was used 
[18]. The actions considered include number of stages in 
both absorption and stripping columns, temperatures of 
fresh solvent and inlet contaminated gaseous stream, 
and the pressure of the inlet contaminated gaseous 
stream.  

Case study 2: Mono-ethanolamine (MEA)-
based carbon capture system 

This case considers chemical absorption (CO2-MEA 
system), where flue gas enters the absorption column af-
ter solids removal, pressurization, and cooling to the de-
sired operating temperature. The absorption-desorption 
setup is like the case of ammonia (case study 1). How-
ever, in this case, lean MEA is recirculated, after carbon 
dioxide stripping, to the absorption column and mixed 
with a makeup stream to enhance the process feasibility. 
A purge stream is used to avoid excessive accumulation 
of carbon dioxide in the system and the recycled lean 
MEA stream. Effect of temperature and pressure of inlet 
flue gas stream and temperature of makeup solvent were 
considered as actions. Effect of recycle percentage and 
temperature of stream entering the stripping column 
were also considered for optimization. The Acid Gas - 
Chemical Solvents Aspen built-in fluid package was used 
to perform the simulation calculations. The stream of flue 
gases comes from a power plant, where all conditions de-
fined according to that study [19]. A baseline/reference 
for the carbon dioxide recovery cost of 1.12 USD/kg was 
adopted from a published study [20] that ultimately 
achieved the lowest cost after several iterations. 

Reward definition 
 Important observations that describe the state of 

simulation are purity of purified gas stream, recovery of 
contaminants (for ammonia and carbon dioxide), purity of 
the product stream, and utilities consumption. The re-
ward function is defined as the relative removal cost, i.e. 
removal cost per kg of captured material. The procedure 
for calculating the removal cost and other related costs 
follows the guidelines outlined in this textbook [21] and 
these two studies [22], [23]. Utilities and MEA prices 
were sourced from a study published in [24]. The reward 
was determined as follows: if the agent progresses in the 
specified direction (new cost <= specified cost), it re-
ceives a value equivalent to the total production cost 
(unity factor); otherwise, it receives a zero value. Further-
more, if the new cost in current step is lower than the cost 
of previous step, the agent receives the full total produc-
tion cost value; otherwise, it receives zero. 

RESULTS AND DISCUSSION 

Optimized DRL agent 
The agent developed and adopted in this study is 

based on DDPG, a policy-based model-free reinforce-
ment learning algorithm. It comprises two neural net-
works, one for the actor and one for the critic. For a 
deeper understanding of the mathematical underpin-
nings of the DDPG, interested readers can refer to [1], 
[25], [26]. The structure and crucial hyperparameters of 
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the optimized DDPG agent are summarized in Table 1. 

Table 1: DDPG optimized hyperparameters. 

Hyperparameter Value 
Action noise standard deviation  
Actor learning rate  
Critic learning rate  
Discount factor (gamma)  
Tau parameter used to update target 
networks 

 

Total number of episodes -
 

Activation function for the critic neural 
network dense layers 

ReLU 

Activation function for the actor neural 
network inputs dense layers 

ReLU 

Activation function for the actor neural 
network outputs dense layer 

Tanh 

The Tanh activation function was selected to stand-
ardize the range of actions between -1 to 1, which are 
then converted back to their real values before being 
used in the simulation. 

Process design optimization 

Ammonia-water system 
For the ammonia-water absorption system, the ini-

tial range for both inlet solvent and flue gas streams tem-
peratures was set between 20 to 100 oC, with pressure 
ranging from 600 to 950 kPa. It is important to mention 
that the absorption column pressure was set equal to the 
inlet pressure of flue gas. This simplification facilitates 
the manipulation of the absorber pressure in the simula-
tion environment by the RL agent. It is important to note 
that the inlet flue gas pressure must be higher than that 
of the absorber to ensure propre flow inside the column. 
Hence, a pressure drop value will be added to specify the 
pressure of inlet flue gas to the designer to incorporate it 
in real life operations. Additionally, the range of number 
of stages for both absorption and desorption columns 
was from 3 to 15. The initial desired cost (baseline) had 
the value of 2 USD/kg of ammonia based on a simulation 
of base case. As a result, after 220 episodes, a cost of 
almost 0.880 USD/kg of ammonia was obtained initially, 
which is significantly lower than the specified baseline. 
Accordingly, following the proposed incremental learning 
method, this value was given as a new baseline to the 
agent for further improvement of the process economic 
optimization, where the ranges of variables were the 
same. Surprisingly, the agent could reach another lower 
production/recovery cost of 0.775 USD/kg of ammonia. 
The preliminary causality analysis methodology was ap-
plied to extract some other knowledge about the most 
effective variables and the patterns to achieve lower pro-
cess costs. Thus, the historical data from these two first 

optimization iterations was collected, preprocessed, and 
analyzed. The preprocessing was done through dividing 
the observations to high cost (above 0.9 USD/kg of am-
monia) observations and labeled as Class (0). The other 
portion was labeled as Class (1), which represented the 
low cost (below 0.9 USD/kg of ammonia) observations. 
Figure 3 represents the results of employing IML+XAI to 
get the dependency graphs. 

As shown, the most effective two variables are T2 
(temperature of flue gases entering the absorption col-
umn) and the pressure of the solvent stream. These re-
sults were validated through performing the GC analysis 
to test the dependency of the continuous cost change 
corresponding to the continuous actions given by the 
agent, in which the new actions depend on the previous 
actions, state and reward. p-value of the dependence 
between T2 and cost was < 0.001 which indicates high 
GC. Besides, according the XAI dependency graphs, 
higher values of T2 lead to lower costs (Class (1)). The 
variable P1 possesses clearly lower significance, where, 
after data preprocessing/analysis, the lower values in the 
range of 830-900 kPa (around 850 kPa) lead to lower 
costs (Class (1)). These results of the current case mean 
that the operating costs dominate the removal cost. In 
addition, upon analyzing the available data, to achieve 
higher purities and recoveries of ammonia, it is preferred 
to utilize absorption columns with low number of stages 
and stripping column with a higher number of stages. The 
causal incremental learning methodology aims at mini-
mizing the search space to accelerate the process design 
optimization. Hence, after obtaining the dependency 
graphs, the ranges of the variables were redefined and 
narrowed to see if further improvement can be obtained. 
The new ranges are (85-99 oC) for T2, (25-41 oC) for T1, 
(800-900 kPa) for P1, (3-5) for absorption number of 
stages and (10-15) for stripping column number of 
stages. In addition, a new baseline was set to 0.75 
USD/kg of ammonia. As a result, a new lower production 
cost of 0.719 USD/kg of ammonia was obtained at the 
new conditions of T1 = 40.5 oC, T2 = 99 oC, P1 = 900 kPa, 
absorption number of stages = 4.8 (almost 5) and strip-
ping column number of stages = 15. At these conditions, 
the purity of outlet air and ammonia recovery were 97.2% 
and 96.3%, respectively. Figure 4 summarises the results 
of the proposed causal incremental learning methodol-
ogy for process design optimization. The Bayesian causal 
graph showed that the temperature of the flue gas 
stream is one of the root causes of changing the KPI (re-
moval cost) and can even affect other design variables 
(absorption column stages (n_abs) & stripping column 
stages (n_des)) and state. This graph supports the re-
sults of the first two methods and is provided in the sup-
plementary materials. 

MEA-based Carbon Capture system 
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In the case of MEA-based carbon capture system, 
the first ranges, according to literature [19], were inlet 
solvent and flue gas temperatures (T1 and T2) of 30-90 
oC and inlet flue gas pressure (P1) of 150-500 kPa. Be-
sides, recycle percentage ranged initially between 90% 
and 98%, while the range of temperatures of rich MEA 
stream entering the stripping column was 77-85 oC. As in 
the case of ammonia-water system, the same assump-
tion of considering the absorption column pressure as the 
inlet flue gas pressure is still applicable.  After using the 
first baseline of 1.12 USD/kg CO2, this initial optimization 
led to a lower production cost of almost 0.190 USD/kg 
CO2. The collected data was then preprocessed and la-
beled to the IML-XAI based low level causality analysis of 
the historical simulation data collected from this iteration 
show that the most significant variables are flue gas inlet 
temperature and its pressure. The GC analysis confirmed 
this where the p-value in the case of cost dependence on 
T2 did not exceed 0.0001. It is worth mentioning that 
when the test was done in the reverse direction the p-
value exceeded 0.9; this means that T2 causes the 
change in the cost but not the vice versa. In addition, the 
p-values in the case of the other variables T1, Rec%, T 
before stripping column and the fresh solvent flowrate 
exceeded 0.1, which indicates low to no significance of 
these variables compared to T2 in the current study 
within the specified range. Figure 5 shows the results of 
the combined IML+XAI approach in the current case of 
MEA-based carbon capture system. According to these 
results the ranges of the variables were narrowed/rede-
fined for the sake of exploration for further optimization 
through retraining the agent considering the extracted 
causal knowledge, which gives it more reasoning. This 
reasoning/causality accelerates the retraining step and 
the subsequent design optimization. In this regard, the 
ranges of the actions were narrowed/redefined to be-
come inlet solvent and flue gas temperatures (T1 & T2) of 
23-35 oC and inlet gas pressure (P1) of 250-400 kPa in 
the second iteration. In addition, the new range of the re-
cycle percentage was 85%-95% and accordingly the 
range of temperatures of rich amine stream entering the 
stripping column changed to 71-81 oC. Furthermore, the 
baseline was decreased to 0.185 USD/kg CO2. A third 
baseline, based on the expertise of carbon capture and 
process engineering experts, was put at 0.155 USD/kg 
CO2 for comparison and more improvement in future re-
search.  Figure 6 summarizes the results of the two train-
ing iterations with their corresponding baselines. as 
shown, the minimum relative removal cost obtained was 
about 0.175 USD/kg CO2. This cost was obtained after 25 
episodes during the second iteration (agent retraining 
step). The conditions that achieved this value were T1 of 
24 oC, T2 of 25 oC, P2 of 270 kPa, recycle percentage of 
85 % and temperature of the rich amine entering the de-
sorption column of 71 oC, respectively. Additionally, the 

carbon capture percentage at these conditions was 
92.5% with a carbon dioxide purity of 98%. The causal 
graph based on Bayesian framework showed that one of 
clear the root causes of changing the KPI and can even 
affect other design variables and state is the temperature 
of the flue gas stream in agreement with what was ob-
tained by the first two methods. This graph is put as sup-
plementary material. 

RECOMMENDATIONS FOR FUTURE 
WORK 

In forthcoming research, we aim to incorporate 
emissions and other environmental impacts as crucial op-
timization objectives. In particular, the net emissions 
should be considered as a reward, where the emissions 
of the capture process itself should be minimized as pos-
sible. We advocate for exploring the application of trans-
formers-based RL for flowsheet synthesis and process 
design acceleration. This will allow adding more reason-
ing to the causal incremental learning-based RL agent to 
help in generating/suggesting new technically feasible 
process flow diagram. This will be done also through de-
fining constraints based on process design experts’ do-
main knowledge and rules as a practical application of the 
interesting concept of RL with human preferences. This 
will guarantee the acceleration of process design under 
the full supervision of human experts to always insure 
simultaneous technical and economic feasibility of the 
generated flowsheets. Uncertainty of inlet streams com-
position and energy/fuel prices will be considered in our 
future research as well which is one of the advantages of 
RL to deal with uncertainties. 

CONCLUSION 
This study introduced and employed a causal Incre-

mental Reinforcement Learning (CIRL) agent as a learna-
ble optimizer with reasoning capabilities to accelerate ef-
ficient process design. Two case studies were consid-
ered to validate the approach, physical absorption (am-
monia-water system) and chemical absorption (CO2-MEA 
system). In the case of chemical absorption, the causal 
DRL agent reached an optimal cost after only 25 epi-
sodes. The causality analysis revealed that key variables, 
such as inlet flue gas temperature and absorption pres-
sure, significantly influence the CO2-MEA system’s pro-
duction cost. For instance, it showed that the relative 
production cost of the process is inversely proportional 
to the flue gas temperature fed to the absorber. Feeding 
the agent with the extracted knowledge and causal infor-
mation obtained from the causality analysis helped it to 
achieve more improved process design. These findings 
hold relevance beyond the studied systems and offer ac-
tionable insights for future absorption system designs. 
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ABSTRACT 
Explicitly incorporating the effects of chemical phenomena such as chemical pretreatment and 
mineral scaling during the design of treatment systems is critical; however, the complexity of these 
phenomena and limitations on data have historically hindered the incorporation of detailed water 
chemistry into the modeling and optimization of water desalination systems. Thus, while qualita-
tive assessments and experimental studies on chemical pretreatment and scaling are abundant in 
the literature, very little has been done to assess the technoeconomic implications of different 
chemical pretreatment alternatives within the context of end-to-end water treatment train optimi-
zation. In this work, we begin to address this challenge by exploring the impact of pH control during 
pretreatment on the cost and operation of a high-recovery desalination train. We compare three 
pH control methods used in water treatment (H2SO4, HCl, and CO2) and assess their impact on the 
operation of a desalination plant for brackish water and seawater. Our results show that the impact 
of the acid choice on the cost can vary widely depending on the water source, with CO2 found to 
be up to 11% and 49% more expensive than HCl in the seawater and brackish cases, respectively. 
We also find that the acid chemistry can significantly influence upstream processes, with use of 
H2SO4 requiring more calcium removal in the softening step to prevent gypsum scaling in HPRO 
system. Our work highlights why incorporating water chemistry information is critical when evalu-
ating the key cost and operational drivers for high-recovery desalination treatment trains. 

Keywords: Technoeconomic Analysis, Optimization, Surrogate Model, Water, Pretreatment, Reverse Osmosis 

INTRODUCTION 
There is growing interest in transforming the linear 

water economy to a circular water economy, where 
wastewater is treated for reuse while contaminants are 
recovered as valuable products [1]. This paradigm shift 
would significantly reduce freshwater withdrawals and 
wastewater discharges to the environment and could en-
able distributed treatment, minimizing transportation 
costs and externalities. However, technological ad-
vances are needed to reduce the energy use and cost of 
high-recovery treatment trains, which are essential for 
circular water treatment and minimizing brine generation 
in inland water reuse applications.  

Modeling high-recovery treatment trains is chal-
lenging due to complex water chemistry phenomena. As 
more water is recovered, the concentration of dissolved 
solids will eventually reach saturation, and the solids will 
precipitate out of solution. This precipitation can result in 
mineral scaling on the surfaces of equipment and dam-
age them [2, 3]. While mineral scaling can be prevented 
or delayed through pretreatment, traditionally with 
chemical precipitation or the addition of antiscalants, it is 
critical to explicitly incorporate precipitation and mineral 
scaling predictions in technoeconomic assessments in 
order to relate the extent of pretreatment with the water 
recovery of the system. However, the complexity of 
these phenomena and limitations on data have 

mailto:ooamusat@lbl.gov
https://doi.org/10.69997/sct.143335
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historically hindered the incorporation of detailed chem-
istry into process-scale water treatment models, partic-
ularly for novel, high-recovery systems. 

We previously developed a framework for integrat-
ing detailed water chemistry into the design of water 
treatment systems using data-driven surrogates [4]. We 
demonstrated that scaling mitigation using chemical ad-
dition is a substantial component of process cost and a 
requirement for achieving high recoveries in desalination 
treatment trains, and that chemical pretreatment must be 
explicitly accounted for in process design. However, de-
spite a significant body of work on scaling and chemical 
pretreatment [5, 6], little has been done on assessing the 
technoeconomic implications of different chemical pre-
treatment alternatives within the context of end-to-end 
water treatment train optimization. This gap in the litera-
ture hinders the development of comprehensive optimi-
zation strategies that can effectively integrate chemical 
pretreatment with other treatment processes to achieve 
cost-effective desalination. 

In this work, we begin to address this knowledge 
gap by exploring the technoeconomic implications of one 
important chemical pretreatment decision in high-recov-
ery desalination: pH control. The pH of water entering a 
reverse osmosis (RO) treatment train impacts both min-
eral-scale formation and membrane longevity, making pH 
control critical. Using WaterTAP [7], an open-source tool 
for modeling desalination and water treatment systems, 
we conduct an in-depth operational and economic as-
sessment of post-softening pH control using acidification 
in water treatment. We compare three commonly used 
acids, H2SO4, HCl, and CO2, for pH control based on sys-
tem cost, system operation, and safety for an emerging 
high-recovery desalination technology. Our results show 
that the choice of pH control acid can significantly impact 
costs and should account for the feedwater and acid 
chemistries, highlighting why water chemistry incorpora-
tion at the design stage of water treatment systems is 
critical. Through our analysis, we provide qualitative in-
sights to guide decision-making on achieving high-re-
covery desalination. 

METHODOLOGY 
This section describes the desalination train, our 

modeling approach, and our optimization problem formu-
lation for cost-optimal system design.  

System Description 
We investigate the impact of pH control choice on 

high-recovery treatment trains for brackish and seawater 
sources. We consider a medium-sized plant (5000 
m3/day); feedwater compositions are provided in Table 1. 

Fig. 1 shows the schematic for our desalination train. 
Our proposed high-recovery treatment train uses high-

pressure reverse osmosis (HPRO) technology, an emerg-
ing process for water desalination that allows RO sys-
tems to operate at significantly higher pressures than the 
85-bar limit of traditional seawater RO, thus enabling 
higher recoveries [8, 9]. Recent work has shown that 
HPRO can be more energy efficient and cheaper than 
other high-recovery alternatives [8, 10]. For our case 
study, we explore the viability of HPRO technology with 
chemical pretreatment. 

Current seawater RO systems are limited to 50% re-
covery [11]; pretreatment allows the desalination system 
to increase water recovery before mineral scaling occurs. 
Our chemical pretreatment is done in two steps: soften-
ing followed by acidification [5]. First, soda ash (Na2CO3) 
addition softens the water by removing calcium ions as 
CaCO3. Next, acid addition lowers the pH. To assess the 
impact of pH control on HPRO performance, we consider 
three acidification alternatives: CO2, H2SO4, and HCl. 

The pretreated water goes through RO/HPRO, 
where clean water is produced. Energy is recovered from 
the high-pressure waste via an energy recovery device 
(ERD), improving the energy efficiency of the process. 

Table 1: Plant feedwater conditions 

 Brackish Seawater 
Capacity (m/d)     
Temperature (oC)      
Pressure (bar)   
Na+ (mg/L)    
K+ (mg/L)     
Ca+ (mg/L)     
Mg+ (mg/L)   
Cl- (mg/L)   
𝑆𝑆𝑆𝑆42− (mg/L)   
𝐻𝐻𝐻𝐻𝑆𝑆3− (mg/L)   
pH   

HPRO Modeling 
The HPRO system model was developed using Wa-

terTAP, an open-source Python framework for the simu-
lation and optimization of water treatment trains, built 
upon the Pyomo-based IDAES Integrated Platform [12]. 
We develop the HPRO system as a greybox model, com-
bining mechanistic models for desalination components 
with surrogate models for water chemistry. The surro-
gates compute functions for the desired chemical phe-
nomena that are added to the EO model formulation. 

Physics-based models of the desalination compo-
nents (RO, pumps, and ERD) are implemented using Wa-
terTAP’s model library which includes unit and costing 
models for the components. Detailed equations for each 
of the components may be found in Atia et. al. [13]. 

Detailed water chemistry and thermodynamic infor-
mation are necessary to predict the impact of chemical 
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pretreatment in membrane systems. We incorporated the  
required water chemistry information into our WaterTAP 
model using surrogate models. As shown in Fig. 1, surro-
gates are used to represent three types of chemical phe-
nomena in our process: 
1. Softening – softening precipitates CaCO3 from solu-

tion, changing the feedwater pH. The surrogate pre-
dicts the CaCO3 concentration and pH as functions 
of the Na2CO3 concentration added to the feedwater. 
Distinct surrogates were developed for brackish wa-
ter and seawater. 

2. Acidification – the acidification process regulates the 
pH for desalination. For each acid (CO2, H2SO4, HCl), 
we develop surrogates that predict post-acidifica-
tion pH based on Na2CO3 and acid dose.  

3. Mineral scaling – mineral scale formation limits the 
water recovery attainable in membrane systems. We 
develop surrogates to represent the scaling ten-
dency (ST), which is the thermodynamic driving 
force for precipitation [2] and predicts whether scale 
formation will occur under specific conditions. A 

value of ST>1 indicates that scaling will occur. We 
monitor scaling at the RO outlet, with the scaling ten-
dency dependent on the pretreatment conditions 
(Na2CO3 and acid doses) and RO operation (recov-
ery, RO pressure). The scalants of interest are calcite 
(CaCO3), gypsum (CaSO4.2H2O) and CaSO4.  
 
Water chemistry data is obtained from OLI [14], a 

water chemistry software that provides first-principles-
based equilibrium calculations and chemistry models for 
electrolyte and non-electrolyte streams. To generate 
surrogate training data, we sweep across the decision 
variables for each acid; ranges for the decision variables 
for each acid and water source are shown in Table 2.  

We used the PySMO software [15], part of the 
IDAES-IP, to generate surrogates for the chemical phe-
nomena of interest. PySMO provides several surrogate 
methods, including radial basis functions (RBFs), Gauss-
ian process models, and polynomial regression. For this 
application, we used RBFs because they had the best 
performance and are, in our experience, robust.  

 
Figure 1: Schematic of the high-recovery treatment train showing surrogate insertion points. For softening and 
acidification, the surrogates predict the effluent pH and solids concentration directly from the decision variables 
(pretreatment chemical doses).  For scaling, the surrogates predict scaling tendencies at the outlets of the RO 
units, with the inputs based on the upstream conditions and the RO operating conditions (pressure, recovery). 

Table 3: Cost parameters for softening and acidification. 

Chemical Capital cost Operating costs Source(s) 

NaCO  12985𝑥𝑥0.5901;  𝑥𝑥 = 𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑⁄  Chemical cost: $0.19 𝑘𝑘𝑘𝑘⁄  [ ] 

HSO  – 0.0029𝑥𝑥2 + 48.434𝑥𝑥 + 22,648;  𝑥𝑥 = 𝑘𝑘𝑔𝑔𝑑𝑑 Chemical cost: $0.12 𝑘𝑘𝑘𝑘⁄  [-] 

HCl – 0.0029𝑥𝑥2 + 48.434𝑥𝑥 + 22,648; 𝑥𝑥 = 𝑘𝑘𝑔𝑔𝑑𝑑  Chemical cost: $0.17 𝑘𝑘𝑘𝑘⁄  [ ] 

CO 

CO2 liq. feed system: 9 × 10−8𝑥𝑥3 – 0.001𝑥𝑥2 +
42.578𝑥𝑥 + 130,812; 𝑥𝑥 = 𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑⁄  Chemical cost: $0.24 𝑘𝑘𝑘𝑘⁄  

[- 
] CO2 Basin: 4 × 10−9𝑥𝑥3 − 2 × 10−4𝑥𝑥2 +

10.027𝑥𝑥 + 19,287, x = ft3 
Electricity: 0.11 𝑘𝑘𝑘𝑘ℎ

𝑘𝑘𝑘𝑘 𝐻𝐻𝑆𝑆2�  
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Optimization Problem 
For each water source and acid choice, the objec-

tive is to minimize the levelized cost of water (LCOW) of 
the system:  

min
𝑑𝑑

𝐿𝐿𝐻𝐻𝑆𝑆𝑘𝑘 = 𝐶𝐶𝐶𝐶𝐶𝐶∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+ 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [$/𝑦𝑦𝑜𝑜]
𝑇𝑇𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑑𝑑 𝑤𝑤𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 𝑣𝑣𝑐𝑐𝑐𝑐𝑎𝑎𝑣𝑣𝑜𝑜 [𝑣𝑣3/𝑦𝑦𝑜𝑜] 

 (1) 

where 𝑑𝑑 is the vector of decision variables (Na2CO3 dose, 
acid dose, water recovery, and RO pressure), and CRF is 
the capital recovery factor (set at 0.1).  

Constraints on the optimization problem include:  

 equality constraints representing the mechanistic 
models of the HPRO train components (pumps, 
RO, ERD). 

 inequality constraints representing operational 
limitations of RO systems. The inlet crossflow 
velocity is limited to a maximum of 25 cm/s, the 
minimum allowable salt rejection in the RO is 
constrained to 98%, and maximum operating 
pressure of RO1 is limited to 85 bar. 

 inequality constraints that ensure that no scale 
formation occurs based on the scaling tendency 
surrogates 𝑆𝑆𝑆𝑆�𝑐𝑐: 

𝑆𝑆𝑆𝑆�𝑐𝑐(𝑑𝑑) ≤ 1 ∀s ∈ [CaSO4,𝐻𝐻𝑑𝑑𝐻𝐻𝑆𝑆3,𝐻𝐻𝑑𝑑𝑆𝑆𝑆𝑆4. 2𝐻𝐻2𝑆𝑆] (2) 

The optimization problems are solved with IPOPT 
[26] using the MA27 linear solver in WaterTAP.  

Table 2: Decision variable ranges and surrogate metrics. 
For the softening and acidification surrogates, we pre-
sent the R2 and maximum absolute errors. 

 Range 
Variable Brackish Seawater 
NaCO mg/L -  -  
Pressure bar  -  -  
Recovery -% -% 
CO mg/L -  - 
HSO mg/L -  -  
HCl mg/L -  -  
Surrogates Metrics (R MaxAE) 
Softening pH     
Softening CaCO 
mg/L 

      

Acidification pH (CO)      
Acidification pH 
(HSO) 

    

Acidification pH (HCl)     
Min ST classification 
accuracy (%)  

> > 

Cost parameters for the different pretreatment op-
tions are shown in Table 3. The capital cost of CO2 is 
made up of two components: the cost of the feed equip-
ment and the cost of the recarbonation basin. All costs 

were converted to 2018 dollars using the CEPCI cost in-
dex. Acid purities of 99.5%, 93%, and 30% are considered 
for CO2, H2SO4 and, HCl respectively [6, 16, 23], while 
the liquid CO2 is assumed to be at −l8ºC and 20.4 atm [5]. 
It should be noted that the capacities in our optimization 
problem are treated in a continuous manner, with the in-
stalled capacities for pretreatment assumed to be equal 
to the minimum capacities required for daily operation. 

RESULTS 

Surrogate Performance 
Table 2 summarizes our surrogate performance. For 

the softening process, RBF models with 13 terms were 
found to sufficiently capture the curvilinear relationship 
between the input (Na2CO3 dose) and outputs (CaCO3 
precipitation and pH), with R2≈1 and the mean absolute 
errors below 1 mg/L and 0.004 for both water sources. 
The maximum prediction error is 7.59 mg/L for precipita-
tion and 0.03 for pH. 

For post-acidification pH, the final RBF surrogates 
are trained on 100 training points, with the models pre-
dicting within ±0.05 (less than 1%) of the true pH values 
observed from OLI. This level of accuracy makes the sur-
rogates useful for comparing directly between the pH 
values of the different acids considered.  

For mineral scaling, the most important factor is ac-
curately determining whether or not scaling will occur. 
Thus, the critical performance metric for the scaling ten-
dency surrogates is the accuracy in classifying potential 
operating scenarios into scaling or non-scaling. As shown 
in Table 2, our scaling tendency surrogates have >99% 
accuracy in discriminating between scaling/non-scaling 
cases. This means that our surrogates are accurate 
enough to provide the optimization model with accurate 
information about the operational feasibility. 

Impact of Acid Choice on Cost 
Figure 2 shows the optimal cost profiles for the dif-

ferent acids across a range of water recoveries for the 
two water sources. Our model results show that (a) there 
is a marked increase in cost beyond 66% and 74% recov-
ery for brackish water and seawater, respectively; (b) the 
choice of acid for pH control has a greater impact on 
brackish water than seawater. 

The cost profiles follow the same pattern: a regime 
where the cost profile is essentially flat, followed by a re-
gime where the costs increase with recovery in a curvi-
linear manner. The flat regime corresponds to a region in 
which only pH control is required to prevent mineral scal-
ing, and no softening is required (Na2CO3 dose=0). As re-
covery increases, however, pH control becomes insuffi-
cient to prevent mineral scaling, and Ca removal using 
softening becomes necessary. At this point, the LCOW 
increases rapidly, with softening costs dominating the 



 

Amusat et al. / LAPSE:2024.1535 Syst Control Trans 3:253-260 (2024) 257 

cost profile. Softening begins at about 64-66% and 74% 
for brackish and seawater, respectively. 

CO2 is the most expensive acid choice for both wa-
ter cases. For brackish water, the cost difference be-
tween CO2 and H2SO4 is as high as 49% in the no-soften-
ing region. For seawater, the difference between the 
costs of the three acids is much lower, particularly at the 
higher recoveries. CO2 is still the most expensive, being 
almost 11.5% higher than H2SO4 in the no-softening re-
gime and up to 5% higher in the high recovery, softening 
regime. The difference between the magnitudes of the 
effect of pH control on costs in our two water sources 
emphasizes the fact that feed water chemistry plays an 
important role in the acid choice for pH control. 

Comparing the cost profiles for HCl and H2SO4 for 
the Brackish water case yields interesting results. We find 
that H2SO4 is cheaper than HCl at low recoveries (when 
softening is not needed) and high recoveries (> 76%). 
This finding agrees with the literature [6]. However, our 
results also show that in the mid-recovery regime of 66-
76% (at low soda ash dosing requirements), pH control 
with HCl is cheaper. This results from sulfate-based scale 
formation that is promoted by the addition of H2SO4 and 
is discussed in detail in the section below.  

It should be noted that while our results consistently 
show CO2 as the most expensive of the three acidification 
options, we do not consider the cost of handling, moni-
toring, and extra maintenance costs necessary when us-
ing H2SO4 and HCl, which may be significant due to their 
corrosiveness. These additional costs, when combined 
with the uncertain nature of CO2 costs [4], suggest that 
CO2 may be cost-competitive with HCl and H2SO4 under 
best-case cost scenarios and thus should remain under 
consideration as an acidification option.  

Impact on HPRO Operation 

Softening 
Fig. 3 shows the optimal Na2CO3 doses for the 

brackish water case. The softening profiles mirror the 
two-regime nature of the cost profiles – a flat regime with 
no softening, followed by a regime where more Na2CO3 
is increasingly required to reach higher recoveries. 
CO2 and HCl require the same extent of water softening 
(same soda ash dose, resulting in the same amount of 
calcium removal), while use of H2SO4 requires a higher 
degree of softening. This is because H2SO4 increases the 
sulfate concentration of the stream, which favors sulfate-
based scaling. Thus, additional calcium ion removal is re-
quired to counteract the sulfate ion increase and prevent 
gypsum scaling in the RO membrane. The additional cal-
cium removal required when using H2SO4 depends on the 
recovery, varying from 2-41% across the recovery range. 
The challenge with gypsum scaling when using H2SO4 
also means that Na2CO3 dosing for gypsum scaling con-
trol starts earlier than with the other acids. This finding 
agrees with the literature which suggests that using HCl 
may be preferred when calcium sulfate or barium sulfate 
scaling is a concern [6]. 
 The increased soda ash consumption to prevent 
gypsum scaling when using H2SO4 for acid control is re-
sponsible for the high LCOW values (compared to HCl) 
observed with H2SO4 between 66-76% for the brackish 
water case. At low Na2CO3 doses, the additional soften-
ing costs incurred when using H2SO4 have a significant 
impact on the LCOW. However, past 76%, the cost impact 
of the additional softening required with H2SO4 is over-
shadowed by the overall cost of pH control pretreatment 
required to satisfy recovery targets, and H2SO4 becomes 
the cheapest option due to its higher purity and lower op-
erating costs relative to HCl.  

Our results show that softening is primarily required 
to control gypsum scaling: the recovery at which Na2CO3 

dosing starts corresponds to when the gypsum scaling 
tendency constraint becomes active in the optimization 
problem (𝑆𝑆𝑆𝑆�𝑜𝑜𝑦𝑦𝑐𝑐𝑐𝑐𝑎𝑎𝑣𝑣 = 1.0). Our results also show that the 
softening step cannot be designed independently of the 

 
Figure 2: Cost profiles for (a) brackish (b) seawater with different pH control acid choices. 
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downstream chemical operations (e.g. acidification). For 
the seawater case, softening begins at 74%, with Na2CO3 
consumption levels the same for all acids. 

 
Figure 3. Na2CO3 concentration profile (left axis) and 
additional Ca removal required when using sulfuric acid 
(purple, right axis) for Brackish case. 

pH control 
Fig. 4 shows acid dose profiles for the two water 

sources. Seawater requires significantly less acid addi-
tion for pH control than brackish water despite its lower 
starting pH. The high acid requirement in the brackish 
case is due to its high bicarbonate concentration com-
pared to the seawater source (see Table 1), which pro-
duces a buffering effect [24]. The cost-optimal acid 
doses required for the brackish water cases are between 
4-6 times greater than that for seawater when using 
HCl/H2SO4, and 7-10 times greater with CO2. The low acid 
consumption in the seawater case contributes to why the 
choice of acid has a smaller effect on the cost profiles. 
For both water sources, control with CO2 requires the 
highest acid dosing, requiring more than three times the 
HCl dosing at the highest recovery in the brackish case. 
The dosage requirements reflect the strengths of the ac-
ids: HCl and H2SO4 are strong acids (Ka>1) and thus re-
quire lower acid dosing, while the carbonic acid formed 
by CO2 is a weak acid (Ka<1), meaning that higher con-
centrations are required. Our analysis of the scaling be-
havior indicates that pH adjustment is the preferred 
mechanism for controlling calcite scaling, with the calcite 
scaling tendency constraint active (𝑆𝑆𝑆𝑆�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜 = 1.0) in the 
optimization problem over the entire recovery range.  
Fig 5. shows the pH exiting the pretreatment stage after 
acid addition for the Brackish case. Again, we find one 
acid behaving differently from the other two. HCl and 
H2SO4 drop the pH to similar values across the range. 
However, using CO2 necessitates dropping the pH lower. 
We observed the same pattern in the seawater case (not 
shown). The reason for this is that CO2 addition increases 
the carbonate ion concentration of the stream, favoring 

more calcite scaling. Since pH control is the mechanism 
for controlling calcite scaling in the system, the pH must 
be lowered more than in the HCl and H2SO4 cases to 
combat the effect of the higher carbonate concentration. 

The results of our analysis of the pretreatment pro-
cess show that while choosing H2SO4 for pH control im-
pacts gypsum scaling and the operation of the softening 
step, choosing CO2 impacts calcite scaling and the pH of 
the feedwater to the desalination train. These findings on 
CO2 and H2SO4 underscore why water chemistry incor-
poration at the design stage in water treatment is critical. 

 
Figure 4. Optimal acid doses for brackish and seawater. 

 
Figure 5. pH post-acidification for Brackish case. 

Safety considerations 

Safety is a critical factor to consider when dealing with 
acids in water treatment due to the requirements for 
onsite storage. Fig. 6 shows onsite acid storage 
requirements for ten days of plant operation (ten-day 
storage assumption adopted from [18]). Despite requiring 
the lowest acid dosing requirements (Fig. 4), HCl requires 
the highest storage capacity in the seawater case and 
the joint highest in the brackish case.  This is due to its 
low purity compared to the other two alternatives. H2SO4 
requires the lowest volume for onsite storage due to its 
high density and typical purity at 93%. H2SO4 also causes 
less fuming to the atmosphere than HCl, which results in 
less corrosion to surrounding metal components [6]. 
Thus, while the LCOW results are comparable, H2SO4 is 
safer than HCl due to its significantly lower storage 
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requirements and lower corrosiveness. However, of the 
alternatives considered, CO2 is the safest choice for pH 
control. Unlike H2SO4 and HCl, it is non-corrosive, 
reduces pipe clogging, and requires much lower handling 
and monitoring costs (not modeled in this work) [25].  

 
 Figure 6.  Onsite acid storage for 10 days of operation. 

CONCLUSION  
We present an assessment of the impact of pH con-

trol pretreatment choices on the cost and operation of a 
medium-sized high-recovery RO desalination plant by 
comparing three common acidification options (H2SO4, 
HCl, and CO2). We find that the impact of the acid choice 
on the cost can vary widely depending on the water 
source, with the seawater LCOW being significantly less 
sensitive to the acid choice than our brackish water 
(11.5% vs 49%). Our results show that the choice of pH 
control acid should account for the properties of the 
feedwater (e.g., buffer capacity), the chemistry of the ac-
ids (e.g., sulfate vs. bicarbonate anions), and the scalants 
of concern. Water sources with calcite scaling as a pri-
mary concern may prefer to avoid CO2 acidification, while 
H2SO4 may exacerbate sulfate scaling challenges. Our 
findings underscore why water chemistry incorporation 
at the design stage of water treatment systems is critical. 
The methodology used in this work can easily be applied 
to evaluate the benefits of process changes and innova-
tions that allow higher maximum allowable scaling 
tendencies or reduce the cost of chemical precipitation 
pretreatment. This includes the effect of antiscalants, 
which can be incorporated into our methodology by in-
creasing the tendency threshold (i.e., RHS of Eq. 2) be-
yond 1.0, as demonstrated in a previous work [4]. 

In the future, we will extend this analysis to include 
an assessment of alternative chemical softening options. 
We will also consider the impact of electrified pretreat-
ment as an alternative to chemical pretreatment.  
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ABSTRACT 
In this paper, a hybrid heuristic rule-based and deterministic optimization-driven process decision 
framework is presented for the analysis and optimization of process flowsheets for end-to-end 
optimal (E2E0) pharmaceutical manufacturing. The framework accommodates various operating 
modes, such as batch, semi-batch and continuous, for the different unit operations that implement 
each manufacturing step. To address the challenges associated with solving process synthesis 
problems using a simulation-optimization approach, heuristic-based process synthesis rules are 
employed to facilitate the reduction of the superstructure into smaller sub-structures that can be 
more readily optimized. The practical application of the framework is demonstrated through a case 
study involving the end-to-end continuous manufacturing of an anti-cancer drug, lomustine. Al-
ternative flowsheet structures are evaluated in terms of the sustainability metric, E-factor while 
ensuring compliance with the required production targets and critical product quality attributes. 

Keywords: Process Synthesis, Optimization, Modelling and Simulations, Derivative-Free Optimization, Industry 
4.0 

INTRODUCTION 
The ongoing technological transformations in phar-

maceutical manufacturing, driven by emerging para-
digms such as quality-by-design (QbD) and quality-by-
control (QbC), underscore the importance of model-
based digital design tools for informed decision-making 
in process design and operation [1], [2]. These tools play 
a crucial role in enabling the comprehensive analysis and 
optimization of various unit operations as well as inte-
grated process flowsheets to improve manufacturing ef-
ficiency while ensuring regulatory compliance and prod-
uct quality [3], [4]. As the pharmaceutical industry is in-
creasingly leaning towards transitioning from batch to 
continuous operations, there is a growing demand for 
modeling tools capable of flexibly simulating diverse op-
erating modes, such as end-to-end batch (E2EB) or con-
tinuous (E2EC) flowsheets, as well as hybrid processing 
schemes, which are often the desired alternatives to 

achieve end-to-end optimal (E2EO) manufacturing. To 
that end, PharmaPy a user-friendly, open-source Python-
based tool that has the capabilities of configuring and 
simulating various manufacturing setups, including 
batch, continuous, and hybrid systems (containing both 
batch and continuous unit operations) has been devel-
oped as reported in [5]. 

The optimization of flowsheets, particularly those 
involving unit operations with diverse operating modes, 
presents a significant challenge. For pharmaceutical pro-
cess development, this is crucial, especially during the 
selection and design of an optimal manufacturing 
scheme where the design needs to be based on the con-
sideration and analysis of various techno-economic, sus-
tainability, and regulatory compliance considerations ra-
ther than relying on pre-existing assumptions [5]. 

Traditional approaches for solving process flow-
sheet synthesis problems involve the formulation of a su-
perstructure network, typically solved using mixed-
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integer nonlinear optimization (MINLP) or generalized 
disjunctive programming (GDP) [6], [7]. However, the 
prevalent use of equation-oriented GDP/mixed-integer 
optimization tools is often limited to flowsheets modeled 
with simplified unit operation models and approximate 
thermodynamic property relations [8]. For flowsheets 
modeled with rigorous unit operation models, a simula-
tion-optimization-based framework is frequently 
adopted. Nevertheless, addressing complex process 
synthesis problems through a simulation-optimization 
approach presents challenges, either due to the need to 
exhaustively optimize each flowsheet resulting in high 
computational cost, or due to the requirement for spe-
cialized interfaces between MINLP optimization algo-
rithms and process simulators [9]. 

As a viable alternative, in this study, a hybrid pro-
cess-decision framework was devised for the optimiza-
tion of end-to-end pharmaceutical manufacturing flow-
sheets, which combines a rule-based selection approach 
with deterministic optimization steps. By applying a set 
of heuristic process synthesis rules influenced by user 
preferences, the goal is to systematically condense the 
initial master superstructure, encompassing all conceiva-
ble alternatives, into smaller, more manageable sub-
structures for subsequent optimization. This approach 
mitigates the computational complexity associated with 
simultaneously optimizing the entire array of flowsheets. 
By reducing the problem to smaller sub-structures, the 
framework enables the exploration of scenario-based 
practical situations, facilitating practical decision-making 
in the optimization of diverse manufacturing campaigns. 

The structure of the paper is organized as follows: 
firstly, the framework for hierarchical process generation 
in the end-to-end pharmaceutical manufacturing rou-
tines and the enumeration of all possible process candi-
date flowsheets are presented. Subsequently, the rule-
based decision system for reducing the master super-
structure into smaller case-specific sub-structures is for-
mally outlined and discussed. Finally, the efficacy of the 
devised framework is demonstrated through a case 
study focused on optimizing end-to-end pharmaceutical 
flowsheets for the production of the commercial active 
pharmaceutical ingredient (API), Lomustine. 

METHODOLOGY 

Framework for process synthesis of small 
molecule pharmaceutical processes 

The fundamental structure of a generic pharmaceu-
tical process superstructure template (PPSS) (Figure 1) 
for the production of a small molecule drug substance in 
solid form consists of a sequence of processing steps in-
cluding reactions, separations, and purifications before 
progressing to drug product manufacturing. Beginning 
with reaction steps, strategic decision points denoted by 
diamonds in Figure 1 arise within the template, prompting 
consideration for the inclusion of separation or solvent 
swap steps before progressing to subsequent reactions. 
A separation step becomes essential when isolating spe-
cific reaction intermediates is required before moving to 
further reaction steps, while a solvent swap step is cru-
cial when a change of solvent is needed before proceed-
ing to subsequent reaction or purification steps. The lat-
ter part of the template addresses purification and isola-
tion steps to obtain the desired API in solid form.  

For each processing step within the generic super-
structure, various alternatives exist in terms of unit oper-
ations. Furthermore, different operating mode choices 
such as batch, semi-batch, or continuous are also avail-
able for each unit operation. The exponential expansion 
of the search space over possible flowsheet alternatives 
becomes apparent with the increasing number of alter-
native unit operations and their operating modes for each 
step. Additionally, flowsheets featuring hybrid modes of 
operations necessitate the addition of supplementary 
units, such as holding tanks and batch-to-continuous 
connectors, to ensure seamless connectivity between 
the batch and continuous components of the flowsheets. 
This interplay of decision points, alternatives, and con-
siderations underscores the complexity inherent in de-
signing an effective process superstructure for the pro-
duction of small molecule drug substances in solid form.  

In combinatorial process synthesis methods, the su-
perstructure is formulated by listing relevant alternatives 
for processing steps and connecting them in all possible 
ways. However, as previously mentioned, this leads to a 
vast search space for the design problem, resulting in nu-
merous redundant and implausible configurations. The 

 
Figure 1: Pharmaceutical process superstructure template (PPSS). 
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expanded search space also increases the computational 
effort required for optimizing all these flowsheets [10].  

In-sights-based synthesis methods, on the other 
hand, utilize a synthesis logic that integrates commercial 
and engineering insights as input to systematically gen-
erate a superstructure [10]. These insights, derived from 
the problem definition (which involves defining the scope 
in terms of raw materials, products, and process technol-
ogies) and process chemistry, guide the adaptation of 
the generic superstructure template into a process-spe-
cific superstructure containing well-defined processing 
steps relevant to the specific manufacturing process. 
Nevertheless, the design search space with the process-
specific superstructure can still be considerable, particu-
larly when considering alternative unit operations and 
their operating modes. This presents a significant com-
putational bottleneck when optimizing all the flowsheets 
within the superstructure that are represented with rig-
orous models and optimized using a simulation-optimiza-
tion framework. Herein, the heuristic rule-based synthe-
sis logic becomes instrumental, facilitating the reduction 
of the superstructure into smaller, more manageable sub-
structures that can be optimized with moderate compu-
tational efforts.  

Rule-based heuristic decision system 
The heuristic process synthesis rules are formulated 

and generalized, taking into consideration common com-
mercial and process engineering decision points in phar-
maceutical manufacturing. The rules are categorized into 
five distinct groups: (1) process feasibility rules, (2) reg-
ulatory considerations, (3) equipment availability con-
straints, (4) experience or knowledge-based rules, and 
(5) scenario analysis.  

Regulatory considerations are of utmost importance 
in pharmaceutical manufacturing, encompassing rules 
that ensure compliance with regulations and guidance 
set forth by agencies such as the FDA and EMA. Equip-
ment availability constraints are included to anticipate 
practical limitations that will arise when transferring a 
conceptual design to existing manufacturing sites, such 
as the presence or absence of specific unit operations at 

these sites. This category ensures that the synthesis 
rules are grounded in real-world scenarios. Experience or 
knowledge-based rules are formulated by integrating 
logical process engineering knowledge. Lastly, scenario 
analysis rules are designed to facilitate the comparison 
and optimization of various industrially relevant and intri-
guing manufacturing scenarios such as end-to-end con-
tinuous (E2EC) manufacturing, end-to-end batch manu-
facturing (E2EB), telescoped reaction synthesis, etc. 
While presenting a comprehensive list of all rules is be-
yond the scope of this work, Table 1 provides illustrative 
examples from each category, offering a glimpse into the 
flexibility offered by the synthesis rules during the opti-
mization of pharmaceutical flowsheets.  

 Within the framework of the synthesis rules out-
lined above, a specific set of rules is chosen based on 
user preferences and insights. These selected rules are 
then applied to the master superstructure to generate 
smaller-scale superstructure realizations as shown in 
Figure 2. Configurations that violate one or more synthe-
sis rules are systematically eliminated from the search 
space. This exclusion of non-legal configurations stream-
lines the optimization process, by reducing the computa-
tional resources required to optimize different flow-
sheets. The explicit formulation of synthesis rules also 
provides a transparent and systematic procedure for 
both analyzing potential configurations and offering the 
rationale for the choices made [11].   

 
Figure 2: Heuristics reduce the search space of valid 
superstructure layouts. 

CASE STUDY 

Table 1: Process synthesis rules with their categories. 

No. Category Example 
1 Regulatory aspects R-1: Isolation of ISO intermediate after Rxn1, increases drug safety 
2 Feasibility rules F-1: For semi-batch reactors, all reactions are assumed to happen in single reactor 
3 Equipment availability 

constraints A-1: Semi-batch evaporator is not available 
4 Scenario Analysis S-1: End-end continuous manufacturing 

S-2: Telescoped reaction synthesis 
5 Experience or 

Knowledge-based rules E-1: If conversion of reactant in step 1 is not complete, and this reactant is inert for the next 
reaction, then separation of the reactant is not necessary. 
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In this study, the above methodology is applied for 
the optimization of end-to-end flowsheets for the manu-
facturing of Lomustine. Recent research has identified 
efficient lab-scale continuous synthesis pathways for Lo-
mustine, which allow replacing environmentally harmful 
solvents with more sustainable alternatives [12]. This 
case study aims to supplement the above studies, by de-
signing end-to-end optimal processes using different 
separation technologies and comparing solvent use as a 
function of process configuration. Based on the proposed 
methodology, at first, the process-specific superstruc-
ture template was drafted using the process chemistry of 
Lomustine manufacturing as shown in Figure 3. 

It should be noted that the scope of this case study 
is only limited to the analysis of synthesis, solvent swap, 
and separation processing steps. For conducting each of 
the processing steps shown in Figure 3, various alterna-
tive unit operations are available with varying operating 
modes. The process superstructure containing all possi-
ble flowsheet configurations is shown in Figure 4. An ex-
haustive enumeration of all potential flowsheets from this 
superstructure yields a total of 90 unique configurations. 
Since, the lab studies analyzed continuous manufactur-
ing routes, from the heuristic process synthesis rule da-
tabase regulatory rule R-1 and scenario analysis rule S-1 
were applied to the above superstructure to screen out 
end-to-end continuous (E2EC) manufacturing flow-
sheets. With these rules, the search space is significantly 
narrowed down from 90 flowsheets to 8 E2EC 

manufacturing flowsheets to be optimized. The next sec-
tion provides a detailed description of the optimization 
problem aimed at optimizing the screened flowsheets of 
interest.  

Design Problem 
The design problem is formulated as a nonlinear 

constrained optimization problem aimed at minimizing 
the overall waste produced in the process 𝐽𝐽(𝒙𝒙), which is 
the combination of total mass of solvent (Me-THF, Acetic 
acid, H2O, and Heptane) and the total mass of unreacted 
reactants. Due to the sequential modular architecture of 
PharmaPy, solving the optimization problem required a 
simulation-optimization framework where obtaining gra-
dient information is challenging. To address this, the 
problem was first transformed into an unconstrained op-
timization problem by integrating the nonlinear inequality 
constraints (𝑔𝑔𝑖𝑖) directly into the objective function via 
weighted penalties (𝛼𝛼𝑖𝑖), as represented by Equation (1). 
This enables the solution of the problem using derivative-
free or direct-search methods, and in this work, Nelder-
Mead algorithm was used.   

min
𝒙𝒙

𝐽𝐽(𝒙𝒙) +  ∑ max�0, 𝛼𝛼𝑖𝑖 ⋅ 𝑔𝑔𝑖𝑖�
2

𝑖𝑖∈𝐼𝐼                          (1)                         

𝑠𝑠. 𝑡𝑡.   𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑎𝑎 𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 𝑎𝑎𝑃𝑃𝑚𝑚𝑃𝑃𝑚𝑚                                                                                        

 𝒙𝒙𝑙𝑙𝑙𝑙 < 𝒙𝒙 < 𝒙𝒙𝑢𝑢𝑙𝑙                                  (2) 

The process model consists of set of differential-

 
Figure 3: Process specific superstructure template for Lomustine. 

 

 
Figure 4: Exhaustive enumeration of possible flowsheet alternatives. 
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algebraic equations simulated within PharmaPy. The val-
ues of the weighted penalties were carefully selected 
based on the desired residual values for the constraints 
at convergence. Decision variables 𝒙𝒙 used for all flow-
sheet optimizations are shown in Table 3.  

Table 3: Decision variables used in design problem. 

Step Unit operation Decision Variables 
Rxn- PFR/CSTR (R) 𝐶𝐶𝑖𝑖𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼 ,𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶,𝑉𝑉𝑅𝑅01,  𝜏𝜏𝑅𝑅01 
S- Dynamic extractor 

(EXTR) 
𝜏𝜏𝐸𝐸01 𝐹𝐹𝐶𝐶20,𝑖𝑖𝑖𝑖 

Rxn- PFR/CSTR (R) 𝐶𝐶𝑖𝑖𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇 , 𝜏𝜏𝑅𝑅02 
SS- Continuous va-

porizer (VAP) 
𝜏𝜏𝑉𝑉𝐶𝐶𝑉𝑉01, 𝑣𝑣,𝐹𝐹𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻,𝑖𝑖𝑖𝑖 

Continuous distil-
lation (DIST) 

𝐹𝐹𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝐻𝐻,𝑖𝑖𝑖𝑖, 𝑥𝑥𝐿𝐿𝐿𝐿 ,𝑅𝑅 

Table 4: List of all symbols. 

Symbol Meaning Unit 
𝐶𝐶𝑖𝑖𝑖𝑖 Inlet concentration mol/L 
𝑉𝑉 Volume of unit m3 
𝜏𝜏 Residence time S 
𝑃𝑃 Pressure bar 
𝑣𝑣 Vapor fraction - 
𝐹𝐹𝑖𝑖𝑖𝑖 Inlet flowrate mol/s 
𝑥𝑥𝐿𝐿𝐿𝐿 Mole frac of lowkey component - 
𝑅𝑅 Reflux ratio - 
𝐹𝐹𝐼𝐼𝐼𝐼 Steady state output flowrate m3/s 
𝐶𝐶𝐼𝐼𝐼𝐼 Steady state concentration kg/m 
𝐶𝐶𝑠𝑠𝑠𝑠𝑙𝑙𝑢𝑢𝑙𝑙 Solubility concentration kg/m 
𝐶𝐶𝐸𝐸𝐸𝐸𝑇𝑇𝑅𝑅  Concentration at EXTR outlet mol/m 
𝑇𝑇𝐼𝐼𝐼𝐼 Steady state temperature K 
𝑇𝑇𝑚𝑚𝐻𝐻𝑚𝑚  Maximum allowed temperature K 
𝑥𝑥𝐼𝐼𝐼𝐼,𝐶𝐶7 Mole frac of heptane at steady 

state 
- 

All the decision variables were scaled within a 0-1 inter-
val. Furthermore, various manufacturing constraints such 
as weekly production targets, product quality attributes, 
and process operational constraints were formulated as 
inequality constraints listed in Table 3. A comprehensive 
list of all the symbols used can be found in Table 4.  

Results 
Using the optimization framework outlined in the 

previous section, each flowsheet was optimized while 
satisfying all the operational constraints, product quality 
attributes and production targets. The comparative anal-
ysis of all optimal flowsheets in terms of waste minimiza-
tion, is illustrated in Figure 5.  

 
Figure 5: Bar graph showing E-factors for different 
flowsheets. 

The bar graph shows the E-factors for various com-
ponents including solvents and unreacted reactants, 
across all eight optimal flowsheets, calculated using fol-
lowing equation (8). 

𝐸𝐸 − 𝑓𝑓𝑎𝑎𝑃𝑃𝑡𝑡𝑃𝑃𝑎𝑎 =  𝑘𝑘𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑤𝑤𝑐𝑐𝑤𝑤

𝑘𝑘𝑘𝑘 𝐿𝐿𝑐𝑐𝑐𝑐𝐿𝐿𝑤𝑤𝑤𝑤𝐿𝐿𝑐𝑐𝑤𝑤
                                     (8) 

The E-factors for the reaction section for lomustine 

Table 2: List of inequality constraints. 

Weekly production 
constraint 

𝑔𝑔1(𝒙𝒙) = 1kg − �̇�𝐹𝑠𝑠𝑠𝑠 �𝐶𝐶𝑠𝑠𝑠𝑠,𝐶𝐶𝑉𝑉𝐼𝐼 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑙𝑙𝑢𝑢𝑙𝑙(273𝐾𝐾)� ⋅ 𝑡𝑡ℎ𝑠𝑠𝑜𝑜 ≤ 0 () 

Maximum precursor 
after extraction 

𝑔𝑔2(𝒙𝒙) = 𝐶𝐶𝐻𝐻𝑚𝑚𝐻𝐻𝑜𝑜,𝐼𝐼𝐼𝐼𝐼𝐼 − 8mol/m3 ≤ 0 () 

Path constraints 
(Solvent switch) 

𝑔𝑔3(𝒙𝒙) = � �𝐶𝐶𝑠𝑠𝑠𝑠,𝐶𝐶𝑉𝑉𝐼𝐼(𝑡𝑡) − 𝐶𝐶𝑠𝑠𝑠𝑠𝑙𝑙𝑢𝑢𝑙𝑙(𝑇𝑇,𝐶𝐶𝑀𝑀𝐻𝐻−𝑇𝑇𝐶𝐶𝑇𝑇 ,𝐶𝐶𝐻𝐻𝑎𝑎−𝐻𝐻𝑎𝑎𝑖𝑖𝑎𝑎)�d𝑡𝑡 ≤ 0

𝐻𝐻𝑓𝑓

𝐻𝐻𝑤𝑤𝑤𝑤

 
() 

𝑔𝑔4(𝒙𝒙) = � (𝑇𝑇𝑠𝑠𝑠𝑠(𝑡𝑡) − 𝑇𝑇𝑚𝑚𝐻𝐻𝑚𝑚)d𝑡𝑡

𝐻𝐻𝑓𝑓

𝐻𝐻𝑤𝑤𝑤𝑤

≤ 0 
() 

𝑔𝑔5(𝒙𝒙) = � �0.7 − 𝑥𝑥𝑠𝑠𝑠𝑠,𝐶𝐶7(𝑡𝑡)�d𝑡𝑡

𝐻𝐻𝑓𝑓

𝐻𝐻𝑤𝑤𝑤𝑤

≤ 0 
() 
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synthesis were like the typical E-factors encountered for 
synthesis steps in pharmaceutical manufacturing (25-80) 
[13]. Furthermore, it can be seen from the graph that 
flowsheets with flash separation have higher solvent us-
age, leading to significantly higher E-factors when com-
pared with flowsheets containing distillation columns. 
This is because, the start-up times for flash-containing 
flowsheets were found to be larger than the flowsheets 
containing distillation columns, leading to a higher waste 
generation. Lastly, the analysis also prompts that further 
reduction in E-factor could be achieved by solvent recov-
ery since solvent consumption contributes the highest 
among all towards waste generation.  

CONCLUSIONS 
In this study, a heuristic rule-based process deci-

sion framework was developed for the optimization of 
end-to-end pharmaceutical flowsheets encompassing 
various operating modes for the different unit operations. 
The framework was also applied for the optimization and 
analysis of end-to-end continuous manufacturing flow-
sheets for the synthesis of Lomustine. The resulting flow-
sheets were effectively optimized and evaluated in terms 
of sustainability metric E-factor while ensuring compli-
ance with respect to production targets and product 
quality attributes. 
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ABSTRACT 
Water chemistry plays a critical role in the design and operation of water treatment processes. 
Detailed chemistry modeling tools use a combination of advanced thermodynamic models and 
extensive databases to predict phase equilibria and reaction phenomena. The complexity and for-
mulation of these models preclude their direct integration in equation-oriented modeling plat-
forms, making it difficult to use their capabilities for rigorous water treatment process optimization. 
Neural networks (NN) can provide a pathway for integrating the predictive capability of chemistry 
software into equation-oriented models and enable optimization of complex water treatment pro-
cesses across a broad range of conditions and process designs. Herein, we assess how NN archi-
tecture and training data impact their accuracy and use in equation-oriented water treatment mod-
els. We generate training data using PhreeqC software and determine how data generation and 
sample size impact the accuracy of trained NNs. The effect of NN architecture on optimization is 
evaluated by optimizing hypothetical black-box desalination processes using a range of feed com-
positions from USGS brackish water data set, tracking the number of successful optimizations, 
and testing the impact of initial guess on the final solution. Our results clearly demonstrate that 
data generation and architecture impact NN accuracy and viability for use in equation-oriented 
optimization problems.  

Keywords: Machine Learning, Water, Technoeconomic Analysis, Pyomo, Wastewater 

INTRODUCTION 
Water chemistry plays a critical role in the design 

and operation of water treatment processes. Detailed 
chemistry modeling tools use a combination of advanced 
thermodynamic models and extensive databases to ac-
curately predict phase equilibrium and reaction pro-
cesses, such as those done by open-source PhreeqC 
software [1]. The complexity, formulation, and extensive 
database of these models preclude their direct integra-
tion in equation-oriented modeling platforms, making it 
difficult to use their capabilities for rigorous water treat-
ment process optimization.  

Neural networks (NN) can provide a pathway for in-
tegrating the predictive capability of chemistry software 
into equation-oriented models and enable optimization of 
complex water treatment processes across a broad 
range of conditions and process designs. A key challenge 
in developing a broadly applicable surrogate model for 
aqueous chemistry is the high non-linearity of the phe-
nomena and high problem dimensionality. NNs have the 
potential to learn chemical phenomena and provide 

accurate estimates over a broad range of ion and reac-
tant compositions [2].   

NNs developed for water treatment optimization 
must accurately predict three critical chemistry phenom-
ena: scaling tendencies, precipitation fractions, and 
changes in pH. 

Modeling scaling tendency in desalination pro-
cesses is critical for predicting solid formation, which oc-
curs as ion concentration increases and results in pro-
cess failure [3]. Typically, scaling is mitigated by reduc-
ing water recovery of desalination process, adding acids, 
which reduce scaling potential, and adding antiscalants 
that increase maximum allowable scaling tendency [4]. 

Modeling chemically driven precipitation is im-
portant for estimating the performance of pretreatment 
and softening processes, such as lime (CaO) and soda-
ash (Na2CO3) softening [5]. These processes are com-
monly used to drive the formation of solids that remove 
divalent ions and reduce water hardness. Removing di-
valent ions minimizes the potential for scale formation in 
downstream processes.   

Accounting for pH change due to chemical addition, 
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such as HCl and lime, is critical for modeling full treatment 
trains. The addition of HCl and lime will change the efflu-
ent stream pH and change requirements for chemical ad-
dition in downstream processes.  

Herein, we investigate how the training data and NN 
architecture affect NN performance for the three chem-
istry phenomena (Figure 1). We train NNs using stochas-
tically generated data, and validate NN accuracy and sta-
bility in equation-oriented optimization models using 
USGS data set [6] (Figure 1A). Stochastic data generation 
is used to simulate a broad range of chemistries and 
chemical additions, which are used as inputs for PhreeqC 
to predict chemical phenomena of interest. We investi-
gate the impact of training data by considering the effect 
of data skewing to sample lower ion concentration distri-
butions preferentially, which better captures real water 
compositions represented by the USGS brackish water 
data set. Finally, the developed NNs are integrated into 
equation-oriented models, and their stability is evaluated 
by tracking the number of successful solutions and the 
sensitivity to the initial guess. 
 
METHODS 
Data generation 

We use PhreeqC with the included Pitzer database 
to estimate scaling tendencies, precipitation fractions, 
and effluent pH based on feed composition and chemical 
addition (Figure 1A). Feed is charge neutralized by ad-
justing Cl ion concentration, and charge neutral compo-
sition is used as input for NN.  

For NN training, we stochastically generated ion 
compositions and chemical addition amounts (Table 1). 
We store PhreeqC result for feed composition without 
and with chemical addition (Table 2). The precipitation 

fraction is the fraction of primary ion in the tracked phase 
that precipitates from the solution (e.g. precipitate frac-
tion for CaCO3 is the ratio of precipitated Ca to total Ca 
in solution (feed and added reactant) before reaction.  

The feed compositions, pressure, pH, and amount of 
chemical added is sampled using the standard Latin hy-
percube (LHS) method [7]. The LHS samples are scaled 
0-1 and are rescaled to ion concentration, pressure, and 
chemical addition using the exponential skew function 
(eq. 1) and for pH using the log skew function (eq. 2). In 
these equations, x is the LHS sample, S is the skew mag-
nitude, Rhigh is the high range of absolute value, and Rlow 
is the low range for absolute value.  

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠(𝑥𝑥) = (𝑆𝑆𝑒𝑒 − 1) ∗ 𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ−𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙
𝑆𝑆−1

+ 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠 (1) 

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙−𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠(𝑥𝑥) = log10(𝑆𝑆 ∗ 𝑥𝑥 + 1) ∗ 𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ−𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙
log10 𝑆𝑆+1

+ 𝑅𝑅𝑙𝑙𝑙𝑙𝑠𝑠 (2) 

The exponential skew function rescales the input 
value to be exponentially lower, such that an LHS sample 
of 0.1 (range 0-1) would be rescaled to 0.028, 0.006, 
0.001, 0.0002 for skew magnitudes of 10, 100, 1,000, and 
10,000, respectively. This skewing increases the sam-
pling of low ion concentration distribution typically ob-
served in real waters. The log skew function has an in-
verse relationship; for an LHS sample of 0.1 (range 0-1) 
the rescaled samples would be 0.15, 0.34, 0.5, and 0.6 
for skew magnitudes of 10, 100, 1,000, and 10,000, re-
spectively. The log skew function is used to increase the 
number of samples with basic pH (higher pH), where pH 
sensitive scalants have high scaling tendencies and are 
filtered out during data generation (described below).  

We generate 2 million total samples using PhreeqC 
for NN training using a range of skew magnitudes only 
applied to ion composition, pressure, and chemical 

 
Figure 1: (A) Workflow schema for generation and testing NNs. (B) Schematic for scaling tendency NN use in 
desalination processes, where estimated scaling tendency must be less than point where solids form (can be 1 if 
no anti-scalants are used and exceed 80 with anti-scalants use for certain solids). (C) Schema for precipitation NN 
use in precipitation optimization problem, where precipitation fractions estimate amount of solids that form. 
 

Stochastically 
generated data

Ion composition, pH, 
pressure, chemical dose

PhreeqC simulation
Scaling tendencies

Solids precipitation fraction
Effluent pH

NN training 
Scaling NNs

Precipitation NNs

NN 
validation

USGS control set
Ion composition, pH, 

pressure, chemical dose

PhreeqC simulation
Scaling tendencies, Solid precipitation fraction, 

Effluent pH

Optimization 
with NNs

NN accuracy as 
function of data 

generation, data size, 
and NN architecture

NN architecture 
impact on 

optimization stability 

Feed Brine
Ion concentrations
pH
Pressure

Product water

HCl

Scaling NN Gypsum
Scaling NN Barite
Scaling NN Celestite
Scaling NN pH

Scaling NN Calcite

Desalination 
process

Precipitation  
processes

CaO
Na2CO3

Feed Brine
Ion concentrations
pH
Pressure

Product water
Desalination 

process

Softened brine

Solid waste

Precipitation NN Artinite
Precipitation NN Brucite

Precipitation NN Barite
Precipitation NN Celestite

Precipitation NN Calcite

Precipitation NN pH

A

B C

Scaling tendency 
constraint
NN estimate

≤ point of solid 
formation

Legend: Training data Validation data NN inputs NN outputsProcess streamsNN validation and testing



Dudchenko et al. / LAPSE:2024.1537 Syst Control Trans 3:267-274 (2024) 269 

addition, while pH skew magnitude is maintained at 10. 
The data is generated iteratively by taking 10,000 LHS 
samples at every step, applying the appropriate skew 
functions to the LHS samples, and keeping samples with 
total solids concentrations below 360 g per kg of water 
(g/kgw) and scaling tendency below 100. The procedure 
is repeated until 2 million samples are generated. 

We further use the USGS brackish water data set to 
test NNs for real water conditions. The data set was fil-
tered to isolate samples that exist in water-stressed re-
gions using the method described by Ahban et al.[8]. This 
data set was filtered to remove water composition with 
high silica scaling potential by removing samples with Si 
concentrations above 50 ppm and H4SiO2 concentration 
above >2 mM at 90% water recovery and pH of 6.5 [9]. 
This data is referred to as the USGS control set and con-
tains 782 feed compositions.  

Table 1: Feed composition and inputs in the stochastic 
data set. Temperature is fixed at 20°C. 

Feed composition in stochastic data 
Input Low range High range Unit 
Na 0 136 

g/kgw 

Cl 0 180 
Ca 0 10 
Mg 0 10 

HCO3 0 10 
SO4 0 100 
K 0 40 
Sr 0 10 
Ba 0 0.1 
pH 4 12 pH 

Inputs for scaling tendency prediction 
Input Low range High range Unit 

Pressure 1 401 atm 
HCl 0 2000 PPM 

Inputs for precipitation fraction prediction 
Input Low range High range Unit 
CaO 0 2000 PPM 

Na2CO3 0 2000 
 

The USGS control data set is used to generate test 
data by imitating a black box desalination process within 
PhreeqC. The test data set for scaling tendencies in-
cludes process operating with water recoveries ranging 
from 0 to 90% in 10% steps and with HCl addition of 10, 
50, 100, 1,000, and 1,500 ppm (N=38,357). The water re-
coveries for the precipitation fraction test data set were 
0, 20, 60, and 90%, and CaO and Na2CO3 addition was 
10, 100, and 1,000 PPM (N=27,460). All data sets ex-
cluded samples that resulted in scaling tendencies above 

100.   

Neural network training and validation 
NNs were built and trained using Pytorch 2.0.0 on 

NVIDIA GPUs using standard CUDA implementation [10]; 
only stochastically generated data was used for training, 
with 10,000 samples set aside for testing. Throughout the 
paper, we only present results that use the USGS control 
set to quantify errors in NNs.  

We build dense networks using 3 and 5 deep layers, 
with 30, 60, and 90 neurons with either sigmoid or tanh 
activation function applied to all layers except the output 
layer. All NNs use the ion composition and feed pH as in-
puts. Additionally, the scaling tendency NNs include HCl 
addition and pressure as inputs, while the precipitation 
NNs include CaO and Na2CO3 as inputs. Each NN predicts 
only a single output, resulting in five scaling NNs and six 
precipitation NNs per architecture type. Additionally, 
each network is trained using two different weight de-
cays of 0.001 and 10-6. Thus, a total of 24 NN architec-
tures are evaluated (2 deep layers x 3 neuron types x 2 
activation function x 2 weight decays). 

Table 2: Output scaling tendencies ranges and precipita-
tion fractions.  

Scaling tendency data set outputs 
Output Low range High range  
Calcite 0 98.19  

Gypsum 0 14.61  
Barite 0 99.03  

Celestite 0 97.7  
pH 0.56 11.96  

Precipitation fraction data set outputs 
Output Low range High range Primary ion 
Calcite 0 1 Ca 
Artinite 0 0.96 Mg 
Brucite 0 1 Mg 
Barite 0 1 Ba 

Celestite 0 0.99 Sr 
pH 4 12.8 N/A 
 
We use Pytorch implementation of AdamW opti-

mizer using cosine annealing with warm restart to train 
NNs [11]. We train with five cycles, that switch based on 
the number of gradient updates, performing ~2M gradi-
ent updates in total. The learning rates for sigmoid and 
tanh activation functions were 0.01 and 0.001, respec-
tively, with the final learning rate of 10-6. We use mini-
batches with a size of 4096 samples. At each epoch, the 
data is shuffled and sampled without replacement. Fi-
nally, we linearly scale all input and output data for train-
ing between 0 and 1.  
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To test the effect of skew magnitude and data size 
on NN accuracy, we use  NN with 5 layers and 60 neurons 
(5x60) with a sigmoid activation function and trained with 
a weight decay of 10-6 on Calcite scaling tendency, pH 
after HCl addition, and Calcite precipitation fraction.  

We validate NN accuracy by comparing their predic-
tions against the USGS control data sets and presenting 
errors in all figures as statistical distributions, showing 
5th, 25th, median, 75th, and 95th percentile errors. The error 
for scaling tendencies and pH is the percent difference 
between NN prediction and ground truth (GT) generated 
using PhreeqC, as shown in equation 3. 

error = NNprediciton−GT
GT

∗ 100%   (3) 

 We exclude any errors for scaling tendencies below 
0.5, as in water treatment no scaling occurs below scal-
ing tendencies of 1. For these samples, the absolute er-
rors remain below 0.2 but can significantly shift error dis-
tribution (e.g. for a scaling tendency of 0.1, the prediction 
could be 0.3, resulting in 200% error but having no impli-
cation for optimization of the water treatment process). 
For precipitation fractions, we present the absolute dif-
ference between NN and ground truth in percent, as 
shown in equation 4. 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑁𝑁𝑁𝑁𝑒𝑒𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝 − 𝑔𝑔𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑑𝑑𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝ℎ ∗ 100%  (4) 

Neural network integration into waterTAP 
The two desalination processes we consider (Figure 

1B and 1C) are modeled in WaterTAP, a framework for 
technoeconomic assessment of water treatment sys-
tems. We integrate developed NNs into WaterTAP using 
the Optimization and Machine Learning Toolkit (OMLT) 
[12, 13]. We use the reduced smooth formulation in 
OMLT, which loads the NN as a single large expression 
into the model. Additionally, we add constraints that con-
vert absolute values to scaled NN inputs and outputs.    

We formulate two optimization problems that emu-
late black box desalination processes with scaling and 
precipitation NNs (Figure 1B and 1C). The desalination 
process is emulated using a single feed block that spec-
ifies the feed mass flow of ions and water. The ion mass 
flow is fixed to ion concentrations as specified by a sam-
ple from USGS data set. The mass flow of water is un-
fixed during optimization, imitating a desalination pro-
cess that removes pure water from the feed block and 
increases ion concentration in the remaining brine. The 
difference between the initial and the optimized flow 
mass of water is equal to the amount of product water, 
while the optimized water flow mass is equal to mass flow 
of waste brine.  

The scaling tendency problem, as shown in Figure 
1B, is where scaling NNs are added to the desalination 
problem to predict scaling tendencies due to increased 
ion concentration in feed block, with HCl added as a scal-
ing control mechanism. The scaling tendencies are 

constrained to remain below 60 for Calcite, 2.3 for Gyp-
sum, 60 for Barite, and 8 for Celestite, imitating a desali-
nation process operating with anti-scalants [3].  

The precipitation problem, as shown in Figure 1C, is 
where precipitation NNs are added to the desalination 
problem to predict the removal of solids that form due to 
increased concentration of ions and chemical addition 
[5]. Here an additional constraint is added to calculate 
the final brine hardness after solid formation, which is 
constrained to be below or equal to 50 ppm of CaCO3 as 
shown in equation 5, where Caf-total is mole flow rate of Ca 
in feed and Ca added from CaO addition, Mgf  is mole flow 
rate of Mg in feed, and rmCalcite, rmartinite, and rmbrucite  are 
removal fraction for Calcite, Artinite, and Brucite respec-
tively.  

 𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇 − ℎ𝑇𝑇𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒𝑎𝑎𝑎𝑎 = 
��𝐶𝐶𝑇𝑇𝑓𝑓−𝑝𝑝𝑙𝑙𝑝𝑝𝑡𝑡𝑙𝑙 − 𝐶𝐶𝑇𝑇𝑓𝑓−𝑝𝑝𝑙𝑙𝑝𝑝𝑡𝑡𝑙𝑙 ∗ 𝑒𝑒𝑚𝑚𝐶𝐶𝑡𝑡𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒� ∗ 100.1 + �𝑀𝑀𝑔𝑔𝑓𝑓 −𝑀𝑀𝑔𝑔𝑓𝑓 ∗

(𝑒𝑒𝑚𝑚𝐴𝐴𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 + 𝑒𝑒𝑚𝑚𝐵𝐵𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒)� ∗ 100.1� ∗ 1000  (5)  

The optimization problems are formulated to max-
imize the value of produced water from black box desal-
ination processes. In the optimization, the product water 
can be sold with a value of 0.5 units/kg, while the remain-
ing waste brine is penalized with a cost of 10 units/kg, 
and the addition of chemicals (HCl, CaO, and Na2CO3) is 
penalized with the value of 0.19 units/kg. For the scaling 
tendency problem, there are 2 degrees of freedom: the 
amount of water to remove and the amount of HCl to add. 
For the removal fraction problem, there are 3 degrees of 
freedom: amount of water to remove, amount of CaO to 
add, and amount of Na2CO3 to add.  

In these optimization problems, removing water in-
creases ion concentration, which increases scaling 
tendencies and hardness. The scaling tendencies can be 
decreased for some scalants with HCl addition. Hardness 
can be reduced by adding CaO and Na2CO3, which in-
crease precipitation fractions of Ca and Mg containing 
solids. Thus, the optimization balances the cost of pro-
ducing water, disposing of brine, and satisfying scaling 
and hardness constraints through chemical addition. 

We optimize the two problems by randomly drawing 
500 feed compositions from the USGS control set, and 
providing two initial guesses. We provide one guess that 
is poorly posed where 90% water is removed and 1 PPM 
of chemicals is added, resulting in a feed composition 
that is likely violating the scaling tendencies and hard-
ness constraints. The second guess is well-posed, where 
feed is diluted by 5 times and 1,000 PPM of chemicals are 
added, resulting in a feed composition that is unlikely to 
violate scaling tendencies and hardness constraints. The 
total solvability is evaluated by tracking the percent of 
total solved samples and guesses (N=1000). The NN pro-
pensity to solve to a local minimum is quantified by track-
ing the number of solutions with different objective val-
ues caused by different initial guesses for the same feed 
composition and where one guess failed to solve. The 
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problems were solved using IPOPT with MA27 linear 
solver [14].  
 
RESULTS AND DISCUSSION 
Effect of data on Neural Network accuracy 

The ultimate accuracy of NNs in predicting phenom-
ena of interest depends on the statistical distribution of 
underlying training data and data size. In the case of 
aqueous chemistry used for water treatment 

applications, a common objective is to predict the pro-
pensity of ions in solution to form solids as a function of 
ion composition, pH, temperature, and pressure. Due to 
the sheer number of dimensions (12 dimensions are con-
sidered herein (Table 1)), a stochastic generation meth-
odology must be used to generate data sets that enable 
the training of surrogate models applicable to different 
feed water composition and water treatment processes.  

The nonlinear nature of aqueous chemistry requires 
a nonuniform sampling of ion compositions to ensure 
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relevant data is generated from chemistry software. For 
example, Calcium is an ion of great interest in water treat-
ment and will form Gypsum (CaSO4) in the presence of 
SO4, which has solubility below 2.5 g/kgw and limits Ca 
concentrations. However, in the absence of SO4, calcium 
concentrations can exceed 10 g/kgw, although such wa-
ters are uncommon, as SO4 is ubiquitous in real waters. 
Thus, uniformly sampling across ion concentrations will 
generally form ion compositions, scaling tendencies, and 
precipitation fractions that are not representative of real 
waters and conditions under which water treatment pro-
cesses operate.  

Skewing the sampling of ion concentrations to pri-
oritize lower concentrations generates ion composition 
distributions that are more representative of real water 
compositions (Figure 2A). Increasing skewing magnitude 
from 10 to 10,000 results in a sampling of much lower ion 
concentrations on the median that approach USGS con-
trol set values but still sample high ion concentrations 
that occur in desalination processes.  

Testing NNs against real ion composition and chem-
ical additions that would be encountered by desalination 
and precipitation water treatment processes (USGS con-
trol set) demonstrates that accuracy increases with an 
increase in the skew magnitude (Figure 2B). At skew 
magnitude below 100, the median error for Calcite scaling 
tendency approached 10%. Increasing the skew magni-
tude above 200 reduced 75th percentile errors to below 
5% for Calcite scaling tendency and reduced errors for 
precipitation fractions and pH.  

Testing NNs using stochastically generated test 
data demonstrated a slight increase in prediction errors 
of less 0.5 % on the median with an increase in skew 
magnitude from 10 to 10,000. These test errors were sig-
nificantly lower than those for USGS control set, with 75th 
percentile errors being less than <1% across all skew 
magnitudes. This clearly shows that NNs are learning 
chemistry in underlying training data, and skewing is 
shifting training to learning chemistry relevant to real wa-
ter composition, as found in USGS control data set. 

 Increasing the data size used for training improves 
NN accuracy (Figure 2C). Training with less than 100,000 
samples produces poor NN accuracy for Calcite scaling 
tendency, with median errors exceeding 10%. Increasing 
the sample size to above 200,000 samples reduced er-
rors to below 5% in the 75th percentile for Calcite scaling 
tendency and the 95th percentile for pH and Calcite pre-
cipitation fraction. Increasing the sample size from 
200,000 to 2,000,000 provided minimal improvements in 
overall network accuracy, suggesting that data sizes of 
around 500,000 could be sufficient for predicting scaling 
tendency. However, in the case of pH and precipitation 
fractions, data sizes of 50,000-100,000 samples could 
be adequate. The data size requirement is expected to 
increase with the number of inputs. 

Effect of architecture on accuracy 
We explore the effect of NN architecture by training 

24 different NN types using the 2M sample data set with 
a skew magnitude of 5,000. Each NN predicts a single 
output, resulting in five scaling NNs per architecture that 
predict scaling tendencies for the four scalants and pH, 
and six precipitation NNs per architecture that estimate 
precipitation fractions for the five solids and pH, as 
shown in Table 1 and Table 2. Calcite scaling tendencies 
and calcite precipitation fractions always have higher er-
rors and are thus used as benchmarks for the perfor-
mance of scaling tendencies and precipitation fraction 
prediction. 

Prediction error decreased with an increase in the 
number of NN trainable parameters (Figure 3). The small-
est NNs with 3 deep layers and 30 neurons (3x30) have 
2,281 trainable parameters and exhibited median error in 
scaling tendencies on the order of ~5% and ~7% for sig-
moid and tanh activation functions, respectively. In con-
trast, the largest 5x90 networks with 34,021 trainable pa-
rameters had errors <3% in 75th percentile (Figure 3A). 
Similar improvements were observed for precipitation 
networks (3B).   

In general, we observed that deeper networks had 
slightly lower errors than shallow networks with a similar 
number of trainable parameters. This is demonstrated by 
the 3x90 network with 17,641 trainable parameters typi-
cally exhibiting a higher or similar level of error compared 
to their 5x60 network counterparts with 15,481 trainable 
parameters. In theory, the three-layer deep and five-
layer deep network should be able to encode the same 
degree of nonlinear behavior, but it appears that higher 
depth improves encoding performance.  

Activation function type and weight decay had a 
small effect on prediction error relative to network size 
impact. On average, NNs with sigmoid activation function 
had lower errors than NNs with tanh activation function, 
but the difference was less than 0.5% for median errors. 
The weight decay did impact the accuracy of NNs, but 
the impact depends on their architecture, implying that 
each architecture has an optimal weight decay value. 

Effect of Neural Network architecture on 
optimization 

Surrogate models developed for equation-oriented 
programming models must faithfully capture underlying 
phenomena and provide smooth, continuous functions 
that ensure a successful optimization and avoid local so-
lutions when solved with a local solver such as IPOPT. We 
test the NNs stability in optimization by integrating them 
in two black box desalination problems, the scaling ten-
dency problem (Figure 1B), and the precipitation problem 
(Figure 1C).  

The optimization results demonstrate that optimiza-
tion problems that use NNs with tanh activation function 
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solve more often, are less likely to fall into a local mini-
mum, and solve more frequently regardless of initial 
guess (Figure 4). The use of the tanh activation function 
resulted in >98% of problems successfully solving for the 
scaling tendency problem and >88% for the removal frac-
tion problem (Figure 4A and 4C). In contrast, the use of 
the sigmoid activation function in small and shallow net-
works that use low weight decay (10-6) resulted in a large 
number of failed solves.  

The optimization problems that used NNs with tanh 
activation function were not strongly impacted by initial 
guess relative to problems that used NNs with sigmoid 
activation function (Figure 4B and 4D). For the scaling 
tendency problem, using the tanh activation function re-
sulted in less than 5% of solutions having different objec-
tive values caused by different initial guesses across all 
NNs. This contrasts the results for optimization problems 
that used NNs with the sigmoid activation function, even 
when it had a comparable number of solves to tanh, the 
sigmoid activation function produced a higher number of 
local solves (exceeding 10% in 4 of the NNs). This trend 
was not observed in the removal fraction problem, where 
a similar number of local minimums (~10% of samples) 
were observed for both activation functions. Similarly, for 
cases where the number of successful solves is compa-
rable between tanh and sigmoid, the initial guess resulted 
in a similar number of failed solves.  

We hypothesize that tanh function provides a more 
mathematically stable formulation than the sigmoid acti-
vation function, resulting in a higher likelihood that a 
problem is solved successfully, even as the use of the 
sigmoid function resulted in more accurate NNs. The tanh 
function provides larger gradients than the sigmoid acti-
vation function, improving the potential for IPOPT in 
avoiding local minimums. In addition, the sigmoid formu-
lation utilizes an exponential in its denominator, which is 
prone to overflow errors during computation. The proba-
bility of overflow decreases as the network size in-
creases and the weight decay parameter gets higher. 
Larger network size and weight decay regularize weights 
and reduce the potential for extreme values being passed 
into the activation function. This results in a lower likeli-
hood of an exponential overflow occurring when chang-
ing NN input values, explaining why the sigmoid function 
performs better with the increase in trainable parameters 
and weight decay. With the tanh formulation, however, 
overflow can not occur, and optimization algorithms can 
freely vary the inputs.  

NN architecture did not impact the number of itera-
tions required to solve an optimization problem, but it did 
increase computational time. On average, the scaling 
problem required 20 iterations to solve, with 95th percen-
tile of problems requiring 40 iterations, regardless of NNs 
used. The removal fraction problems required on average 
40 iterations to solve, with 95th percentile requiring ~100 
iterations, regardless of NNs used. The largest impact of 

increasing network size was on solving time, with the use 
of the 5x90 NNs requiring upto ten times more time per 
iteration than for 3x30 NNs. The activation function type 
and weight decay did not impact the solve time.  

The integration of NNs into optimization problems 
did not impact their accuracy. The results demonstrated 
similar error distributions to those observed in USGS con-
trol set, confirming the expectation that using NNs in an 
equation-oriented model does not affect their accuracy. 

  
CONCLUSION 

The results of this work have demonstrated that 
NNs can be effective surrogate models for accurately 
predicting scaling tendencies, pH change, and removal 
fraction across a broad range of real water compositions 
and use in the equation-oriented programming models of 
water treatment processes. Our results have extracted a 
set of generalizable guidelines for data generation and 
design of NNs for chemistry prediction in water treatment 
equation-oriented process optimization: 
• Sampling of ion compositions and chemical addition 

should be skewed to lower values to provide good 
accuracy in real water compositions. 

• The number of required stochastically generated 
data samples depends on the underlying chemistry 
being modeled.   

• Deeper networks provide slightly better performance 
over shallower networks with the same number of 
trainable parameters. 

• Tanh activation function provides better stability 
than sigmoid activation functions in equation-ori-
ented models, and should be preferred over sigmoid 
even at the cost of accuracy. This is a fundamental 
mathematical limitation and applies to all NNs, re-
gardless of the data they are predicting.  

• Weight decay should be optimized to a specific net-
work architecture to extract the highest accuracy. 

• Large NNs do not increase the number of iterations 
but do increase the solving time required per itera-
tion. 

The methods presented herein, for the first time, enable 
optimization studies of water treatment processes to 
consider a broad range of real water compositions, cap-
turing their performance while faithfully representing real 
and complex aqueous chemistry.  
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ABSTRACT 
Machine learning presents opportunities to improve the scale-specific accuracy of mechanistic 
models in a data-driven manner. Here we demonstrate the use of a machine learning technique 
called Sparse Identification of Nonlinear Dynamics (SINDy) to improve a simple mechanistic model 
of algal growth. Time-series measurements of the microalga Chlorella Vulgaris were generated 
under controlled photobioreactor conditions at the University of Technology Sydney. A simple 
mechanistic growth model based on intensity of light and temperature was integrated over time 
and compared to the time-series data. While the mechanistic model broadly captured the overall 
growth trend, discrepancies remained between the model and data due to the model's simplicity 
and non-ideal behavior of real-world measurement. SINDy was applied to model the residual error 
by identifying an error derivative correction term. Addition of this SINDy-informed error dynamics 
term shows improvement to model accuracy while maintaining interpretability of the underlying 
mechanistic framework. This work demonstrates the potential for machine learning techniques like 
SINDy to aid simple mechanistic models in scale-specific predictive accuracy.  

Keywords: Dynamic Modelling, Machine Learning, System Identification, Surrogate Model, Batch Process 

INTRODUCTION 
Within process design and system analysis, mecha-

nistic models have long stood as pillars for understanding 
and predicting the behavior of complex systems. Rooted 
in fundamental physical and chemical principles, these 
models offer a structured approach to dissecting system 
dynamics, providing insights that are crucial for industrial 
applications [1]. However, as we delve deeper into the 
nuances of these systems, particularly at varying scales, 
the limitations of mechanistic models become apparent. 
A key challenge lies in their generalization; while these 
models are adept at capturing overarching trends and 
basic interactions, they often fall short in accurately rep-
resenting the intricate dynamics of specific systems un-
der varied conditions.  

This is especially true in biological and ecological 
modeling, where the complexity of interactions and the 
sensitivity to environmental variables pose significant 
hurdles. The modeling of microalgal growth, such as that 
of Chlorella vulgaris, exemplifies this challenge. Here, the 

transition from laboratory-scale observations to com-
mercial-scale operations is fraught with complexities, as 
the models struggle to account for the myriad of factors 
influencing algal growth dynamics at different scales 
[3,4]. 

Yet the uptick of machine learning methods bolster-
ing traditional system identification offer a beacon of 
hope in this landscape. Among the various machine 
learning techniques, Sparse Identification of Nonlinear 
Dynamics (SINDy) emerges as a particularly promising 
tool. SINDy is a novel algorithm that seeks to identify the 
governing equations of a dynamical system in a sparse, 
interpretable form [2-4]. This approach is particularly rel-
evant in process modeling, where understanding the fun-
damental dynamics is as crucial as achieving predictive 
accuracy [5]. 

The objective of this study is to showcase the appli-
cation of SINDy in refining a mechanistic model of algal 
growth. Focusing on the microalga Chlorella vulgaris, we 
utilize time-series data collected under controlled photo-
bioreactor conditions at the University of Technology 

mailto:wfarless@purdue.edu
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Sydney (Unpublished Data).  
The following paper delves into the methods, where 

we describe the initial mechanistic model based on light 
intensity and temperature, followed by the integration of 
the SINDy algorithm derived error term. The results sec-
tion presents a comparative analysis between the original 
and the enhanced models, highlighting the improvements 
in accuracy and interpretability. In the discussion, we ex-
plore the implications of these findings for process de-
sign, particularly in the scaling of microalgal growth sys-
tems. Finally, the paper concludes with a summary of our 
key findings and their significance in the broader context 
of industrial applications. 

BACKGROUND 

Process Design 
Historically, process design has been deeply rooted 

in the principles of chemical engineering, with a strong 
emphasis on understanding and manipulating material 
and energy balances [6-8]. Mechanistic models, charac-
terized by their basis in fundamental scientific principles, 
have been extensively applied across various domains of 
process engineering [1, 9-13]. These models excel in their 
ability to predict system behavior under a range of con-
ditions, providing a reliable foundation for process design 
and optimization. However, their application is not with-
out limitations. One significant challenge is their general-
ization, which can lead to inaccuracies when applied to 
specific systems or at different scales [14]. Biological 
systems are inherently complex, and their dynamics can 
vary significantly with changing environmental conditions 
and scales, posing a substantial challenge to traditional 
mechanistic modeling approaches. 

Machine Learning 
In recent years, the emergence of machine learning 

as a complementary tool in scientific research has 
opened new avenues in process design. Machine learn-
ing's data-driven nature allows it to uncover complex, 
non-linear relationships within high-dimensional data 
sets, offering a level of insight and prediction that is often 
beyond the reach of traditional models [15, 16]. This has 
been particularly advantageous in process modeling, 
where machine learning algorithms have been success-
fully integrated with mechanistic models to enhance their 
accuracy and adaptability [14]. 

Among the various machine learning techniques, 
SINDy has emerged as a promising tool for process de-
sign. Developed as an algorithm to identify governing 
equations of dynamical systems, SINDy distinguishes it-
self by its ability to distill complex data sets into sparse, 
interpretable models [2, 3]. This capability makes SINDy 
particularly suitable for process design applications 
where understanding the fundamental dynamics is as 

crucial as achieving predictive accuracy. 

Microalgae 
The modeling of microalgal growth, specifically the 

growth dynamics of Chlorella vulgaris, provides a com-
pelling case study for the application of SINDy in process 
design [17, 18]. Microalgae, recognized for their potential 
in industrial applications, present significant challenges in 
scaling up from laboratory to commercial operations [18]. 
Traditional mechanistic models, while providing a basic 
understanding of algal growth, struggle to capture the full 
complexity of these biological systems at different scales 
[19, 20] 

METHODOLOGY 

Algae Mechanistic Model 
We attempt to improve upon a simplified model that 

based on two key environmental factors: light intensity 
and temperature. This model combines the principles of 
Haldane kinetics and the Cardinal Temperature Model 
with Inflection (CTMI), offering a comprehensive under-
standing of algal growth dynamics. The model's first 
component, based on Haldane kinetics, addresses the 
effect of light intensity on algal growth. It recognizes that 
growth rate increases with light intensity up to an optimal 
level, after which it starts to decline due to photoinhibi-
tion. This relationship is mathematically represented by 
the equation:  

𝜇𝜇(𝐼𝐼) =  𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 ∗  𝐼𝐼 �𝐼𝐼 +  �
𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝛼𝛼 � ∗  ��

𝐼𝐼
𝐼𝐼𝜇𝜇𝜇𝜇𝜇𝜇� −  1�

2

�    (1) 

Here, μ(I) represents the growth rate as a function 
of light intensity I, μopt is the maximum growth rate, Iopt 
is the optimal light intensity, and α is a parameter that 
moderates the effect of light intensity on the growth rate. 

The second component of the model, the CTMI, 
quantifies the influence of temperature on algae growth. 
This model defines the growth rate within a range of tem-
peratures, specifying minimum (Tmin), optimal (Topt), and 
maximum (Tmax) temperatures for growth. The CTMI 
model is encapsulated in the following equation: 

𝜇𝜇(𝑇𝑇) =  𝑘𝑘 ∗
�(𝑇𝑇 −  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∗  (𝑇𝑇𝜇𝜇𝜇𝜇𝜇𝜇 −  𝑇𝑇)�

�(𝑇𝑇𝜇𝜇𝜇𝜇𝜇𝜇 −  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∗  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −  𝑇𝑇)�
   (2) 

In this formulation, μ(T) denotes the growth rate as 
a function of temperature T, with Tmin, Topt, and Tmax 
being the minimum, optimal, and maximum temperatures 
for algal growth, respectively. k is a scaling constant.  

 The final model, encapsulating both the temper-
ature and light components, is then the product of μ(T) 
and μ(I). 

Data Source and Preparation 
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Our study utilizes data collected from the PBR 1250L 
photobioreactor system from Industrial Plankton as the 
primary cultivation equipment. This system provides a 
substantial working volume of 1250 liters, enabling a con-
tinuous harvesting capacity of up to 500 liters daily. Data 
collection was centered around minute measurements of 
pH level, irradiation, temperature, and relative density of 
the growth media within the photobioreactor. The pH 
control was managed by adjusting its setpoint and stabi-
lized through automatic CO2 injection. Irradiation was 
provided by LED light columns. Temperature control was 
maintained externally and the relative density of the al-
gae was monitored through an optical density sensor. 

The study involved a batch culture maintained over 
eleven days with alternating irradiation and pH setpoints, 
keeping the temperature constant and assuming a suffi-
cient initial nutrient supply. The operational sequence 
was adjusted bi-daily, and the bioreactor was prepared 
with specific concentrations of culture media, followed 
by a regulated air bubbling process to maintain optimal 
growth conditions. This resulted in 22,301 data points for 
use in training and testing models. 

SINDy-Derived Error Model 
We employ the SINDy algorithm [21] to identify a dif-

ferential equation to model the rate of change of error 
between the actual and predicted Chlorella vulgaris den-
sities. Here, the error given by Equation 4 as 

𝑒𝑒 =  𝐷𝐷𝑒𝑒𝑇𝑇𝐷𝐷𝑇𝑇𝜇𝜇𝐷𝐷_𝑇𝑇𝑎𝑎𝜇𝜇𝑎𝑎𝑇𝑇𝑎𝑎 −  𝐷𝐷𝑒𝑒𝑇𝑇𝐷𝐷𝑇𝑇𝜇𝜇𝐷𝐷_𝑇𝑇𝜇𝜇𝑚𝑚𝑒𝑒𝑎𝑎   (4) 

varies over time. The state data, represented by 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠in-
cludes the error, capturing the essential aspects of the 
model's performance over time. Additionally, control 
data, denoted as 𝑈𝑈sindy, incorporates key environmental 
factors, namely temperature T, light intensity I, and pH 
that significantly influence algal growth.   

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑒𝑒   (5) 

�̇�𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  �̇�𝑒   (6) 

𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑇𝑇 𝐼𝐼 𝜇𝜇𝑝𝑝]   (7) 

We develop a control-only error model using the 
SINDy framework with the introduction of a dummy state 
variable. This dummy variable, a zero-valued array, is de-
signed to match the dimensions of 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the derivative 
of the error. Its primary function is not to represent a 'real' 
state variable in the traditional sense; instead, it serves 
as a tool for facilitating the SINDy algorithm process of 
system dynamics identification, which typically expects 
state variables to influence the system dynamics. The 
SINDy algorithm is thus attempting to fit sparsity matrix 
Φ such that:  

�̇�𝑋{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} =  𝑈𝑈sindyΦ   (9) 

To capture the complexity of biological growth 

processes in our SINDy model, we included a variety of 
custom functions in the feature library. Each function rep-
resents a specific biological growth dynamic, such as lo-
gistic growth, exponential growth, and other well-known 
biological models shown in Table 1.  

Table 1: Functional basis for SINDy library. 

Logistic growth 
𝑓𝑓(𝑇𝑇) =

1
{1 +  𝑒𝑒{−𝑥𝑥}}   (10) 

Exponential 
growth 𝑓𝑓(𝑇𝑇) =  𝑒𝑒{𝑥𝑥}   (11) 

Gompertz func-
tion 𝑓𝑓(𝑇𝑇, 𝑎𝑎1, 𝑎𝑎2) =  𝑒𝑒�𝑐𝑐1𝑒𝑒{−𝑐𝑐2𝑥𝑥}�   (12)    

Allee effect 
𝑓𝑓(𝑇𝑇,𝐴𝐴) =

𝑇𝑇
{𝐴𝐴 −  𝑇𝑇 +  𝜖𝜖}   (13) 

Michaelis-Menten 
kinetics 𝑓𝑓(𝑇𝑇,𝐾𝐾𝑚𝑚) =

𝑇𝑇
{𝐾𝐾𝑚𝑚 +  𝑇𝑇 +  𝜖𝜖}   (14) 

Holling's Type II 
function 𝑓𝑓(𝑇𝑇, 𝑇𝑇) = 𝑎𝑎𝑥𝑥

{1 + 𝑎𝑎𝑥𝑥 + 𝜖𝜖}    (15)   

 Here, the logistic growth function represents a 
growth process that accelerates rapidly at first and then 
slows down as it approaches a maximum limit, commonly 
used to model population growth. The exponential 
growth function describes a process where the rate of 
growth is proportional to the current amount, leading to 
a rapid increase over time. The Gompertz function mod-
els growth that initially accelerates and then decelerates, 
commonly used in biology to describe the growth of tu-
mors or certain populations [22]. The parameters 𝑎𝑎1 and 
𝑎𝑎2 reflect the maximum value the function will reach and 
the rate at which that point will be reached respectively. 
The Allee effect function represents a scenario where 
population growth is positively correlated with the popu-
lation size, highlighting the difficulties in growth at very 
low densities, with 𝐴𝐴 representing this population thresh-
old value [23]. The parameter 𝜖𝜖 is used here as well as 
the following functions to as a small value that prevents 
division by zero. The Michaelis-Menten kinetics function 
is typically used to describe the rate of enzymatic reac-
tions, showing how reaction rate varies with substrate 
concentration [24]. The parameter 𝐾𝐾𝑚𝑚 is the substrate 
concentration at which the growth rate is half of its max-
imum. Holling's Type II function, models the rate of pre-
dation in an ecosystem, increasing linearly at low prey 
density and saturating at higher densities [25]. The 
growth rate 𝑇𝑇 here represents the efficiency of resource 
consumption by the growing population.  

Mechanistic & Error Model Coupling 
After the ODE model for the error derivative is re-

covered, this sum of functions representing the 
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derivative is added directly to the original mechanistic 
CTMI-light model, as shown in Figure 1. This updated, or 
“corrected,” model can then be integrated overtime to re-
turn the specific density from the estimated growth rate.  

 
Figure 1: Methodological flow resulting in an updated 
mechanistic model for Chlorella vulgaris rate of change 
of density.   

Model Evaluation 
In the evaluation of the error ODE model, key metrics 

of RMSE, MAPE, and R^2 are calculated for each fold of 
the time series cross-validation to assess model accu-
racy. RMSE is determined by taking the square root of the 
average of squared differences between predicted and 
observed values. MAPE is calculated as the average of 
the absolute differences between predicted and ob-
served values, divided by the observed values, and ex-
pressed as a percentage. R^2 is computed as the propor-
tion of variance in the observed data that is predictable 
from the model inputs.   

Visual comparisons of both the corrected and non-
corrected models’ predictions against the observed cu-
mulative growth data are integrated and tested for each 
validation fold through a process of data preparation, 
plotting, visual analysis, and comparison. These plots al-
low for the assessment of how closely the predicted 
growth curves follow the observed data and the extent 
to which the corrected predictions improve alignment 
with the observed data compared to the non-corrected 
predictions.   

RESULTS 

Algae Mechanistic Model 
We fit the combined CTMI-light model for density 

using the full 22,301 measurement points available for 
temperature, light intensity, and density. Since the mech-
anistic model is built for non-standardized relationships 

between components, we choose to pass in the raw data 
without standardization or normalization. We employed 
non-linear curve fitting techniques, utilizing the ‘curve_fit’ 
function from the Python ‘scipy.optimize’ library, to esti-
mate the parameters of the model with Topt = 27.329 C . 

To check the performance of this model, we inte-
grate the fitted model over time and compare the result 
to the measured specific density. As seen in Figure 2, the 
combined model predicts a linear increase in algae den-
sity overtime.  

 
Figure 2: Combined CTMI-light model for growth rate 
integrated over time versus measured model specific 
density over all 22,301 data points. Combined model 
RMSE is 0.009. 

Data Preparation 
To make the SINDy optimization more robust 

against outliers in feature weights, the inputs, tempera-
ture, light intensity, and pH are each normalized by sub-
tracting their time-series mean and dividing by standard 
deviation. This approach was chosen since the inputs to 
the batch were periodic, meaning their distribution was 
close to Gaussian.  

The full timeseries data, with standardized control 
inputs, is then broken into twenty folds of sequential 
data. Cross-validation is employed such that in each iter-
ation, the model is trained on an expanding window of 
past data and validated on a subsequent, non-overlap-
ping window of future data. This strategy allows the 
model to learn from a progressively larger dataset, cap-
turing more of the underlying temporal patterns and dy-
namics as it moves through the folds. 

SINDy Error ODE Model Recovery 
We leverage the sequentially thresholded least 

squares (STLSQ) algorithm as the optimization engine for 
Sparse Identification of Nonlinear Dynamics (SINDy). In 
this implementation, the STLSQ sparsity threshold is set 
at 0.0001, allowing the model to focus on the most im-
pactful predictors and enhance its transparency. Addi-
tionally, the maximum iteration limit is set to 2000, 
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balancing computational efficiency with sufficient con-
vergence time for the optimizer. These carefully chosen 
parameters ensure that the STLSQ algorithm effectively 
extracts the underlying dynamics of the system while 
maintaining interpretability and computational efficiency. 

 
Figure 3: Updated growth rate model (integrated model 
versus actual specific density) showing better 
performance than original CTMI-light model. 

We use a combination of custom, Polynomial, and 
Fourier libraries in SINDy. The custom library included lo-
gistic growth, exponential growth, Gompertz, Allee ef-
fect, Michaelis-Menten kinetics, and Holling's Type II 
functions, with all parameters uniformly set to one. This 
simplified configuration allowed for a consistent and 
straightforward interpretation of the model's outcomes 
while retaining the flexibility to model complex biological 
phenomena. The Polynomial Library, configured to in-
clude terms up to the second degree, enables the model 
to identify both linear and quadratic relationships. Mean-
while, the Fourier Library plays a key role in capturing re-
maining periodicity. 

An ensemble method is utilized to enhance the mod-
el's robustness and accuracy [26]. This approach in-
volves fitting the model multiple times using subsets of 
the training data, allowing for a comprehensive capture 
of potential dynamics and mitigating the impact of outli-
ers or anomalous data points. The ensemble method 
generates 1000 models, each trained on a random subset 
comprising half of the training data.  

Model Performance 
A SINDy model is trained for each of the 20 valida-

tion folds and the error metric scores for RMSE, MAPE, 
and R^2 are tabulated in Table 2. Scores across the early 
folds reflect completely unbounded and divergent be-
havior in the corrected model when integrated over time, 
due to the limited training data up to that point. Scores 
continue to improve (RMSE and MAPE decreasing and 
R^2 increasing) until Fold 6, where a  measurement fluke 
in specific density temporarily biases the training data. 
These high RMSE and MAPE and highly negative R^2 are 
seen again in Folds 14 and 15, reflecting completely di-
vergent behavior likely the result of similar poor data 
quality around that point in time.    

Table 2: Error metric scores across full 20 validation 
folds. 

Fold 
# 

Uncorrected  
RMSE  
MAPE  
R^ 
 

Corrected  
RMSE  
MAPE  
R^ 
 

 
e+ e+% -
e+ 

e+ e+% -
e+ 

 
 %  e+ e+% -

e+ 

 
 inf%  e+ inf% -

e+ 
  %   % - 
  %   % - 
  %   % - 
  %   %  
  %   % - 
  % -  % - 
  %   %  
  %   %  
  % -  %  
  %   %  

 
 % - e+ e+% -

e+ 
  % -  % - 
  % -  % - 
  % -  % - 
  %   % - 
  %   %  
  % -  % - 

The fold models not exhibiting this fully divergent 
behavior either outperform the original combined CTMI-
light model both visually quantitatively (for example mod-
els for Folds 9 and 12, see Table 2) or capture some pat-
tern or periodicity not found in the original mechanistic 
models, while simultaneously slowly diverging from the 
actual truth specific density (for example models for 
Folds 8 and 18, see Table 2). In Fold 9, we see that the 
corrected model outperforms the original mechanistic 
model even with experimental error due to the drop in 
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specific density.   

Model Trends  
The SINDy error-based models are provided as Sup-

plementary Material. The natural functions are given only 
by name and variable they operate on (see Table 1). For 
example, 13.512 𝑔𝑔𝜇𝜇𝑇𝑇𝜇𝜇𝑒𝑒𝑔𝑔𝜇𝜇𝑔𝑔(𝑇𝑇𝑒𝑒𝑇𝑇𝜇𝜇𝑒𝑒𝑔𝑔𝑇𝑇𝜇𝜇𝑎𝑎𝑔𝑔𝑒𝑒, 𝐿𝐿𝑇𝑇𝑔𝑔ℎ𝜇𝜇) refers to 
the Gomperz function applied to both temperature and 
light variables (separately) but with a coefficient of 
13.512 for each.   

Early fold equation coefficients (Folds 1-7) show no-
ticeable fluctuation in the impact of temperature. Initially, 
the effect is strongly negative (e.g., -104689.0 in Fold 1) 
but shows variability in subsequent folds, indicating 
changing sensitivity to temperature (see Supplementary 
Material). Light maintains a predominantly negative coef-
ficient, with large magnitudes (e.g., -43231100.0 in Fold 
1). pH coefficients show significant changes, starting 
positive and large (8179580.0 in Fold 1) but becoming 
negative by Fold 4, indicating a shifting role of pH in these 
systems. Squared terms like Temperature^2 and Light^2 
indicate evolving non-linear effects, with coefficients 
varying and reflecting changing dynamics. Interaction 
terms start to appear and vary in significance, suggesting 
the evolving interplay between factors. Logistic and ex-
ponential growth models are applied with varying coeffi-
cients, indicating differing growth dynamics under 
changing conditions.  

Folds (Folds 8-14) see the coefficient of Tempera-
ture stabilizing somewhat but continuing to show varia-
tion, possibly reflecting a nonlinear role not captured by 
the supplied function basis for SINDy. Light consistently 
shows a negative impact but with varying magnitudes, 
indicating a sustained but dynamically changing influ-
ence. The role of pH continues to evolve with coefficient 
changes. Cyclical terms become more pronounced, with 
sin and cos functions indicating more significant seasonal 
or cyclic effects.  

Late Folds (Folds 15-20) show temperature coeffi-
cients become more moderate, suggesting a refined un-
derstanding or a stabilizing effect. The influence of Light 
remains significant with large negative coefficients, indi-
cating a consistently crucial role. pH effects continue to 
show variability but within a narrower range, suggesting 
a more consistent but still variable role. The complexity 
in terms of diverse interactions and non-linear effects 
shows signs of convergence, with key relationships and 
factors becoming more defined. There is a tendency to-
wards more consistent use of growth models, indicating 
a stabilization in how growth or change processes are 
being represented. 
 

 
Figure 4: Updated growth rate model (integrated model 
versus specific density) showing divergent behavior. 

CONCLUSION 
This study demonstrates the potential of sparse ma-

chine learning techniques like SINDy to enhance the ac-
curacy of mechanistic models while retaining interpreta-
bility. However, it also highlights the limitations and chal-
lenges that can arise in applying data-driven methods to 
improve mechanistic insights, especially given con-
strained data availability. 

By focusing solely on a single experimental dataset 
for the microalga Chlorella vulgaris cultivated under 
tightly controlled photobioreactor conditions, the model's 
flexibility was restricted. While providing high temporal 
resolution measurements, spanning just one batch lim-
ited the diversity of growth dynamics captured. Periodic 
disturbances in the data, stemming from operational is-
sues, further hampered efforts to train robust models.  

Across 20 validation folds, adding the data-driven 
error dynamics equation resulted in improved error met-
rics. However, early folds suffered due to insufficient 
training data leading to a diverging trajectory with ex-
ploding error. Later folds demonstrated closer alignment 
with observed growth  trajectory or responded to oscil-
lation over time neglected by the linear mechanistic 
model. Inaccuracy in the phase of the oscillatory trajec-
tory predicted may be due to sensitivity to initial condi-
tions and warrants further exploration. The variation in 
types of biological growth functions applied over folds 
potentially indicated the model homing in on appropriate 
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representations for different mechanisms or growth 
phases as training data and timespan was increased. 
 These outcomes highlight the power of refining 
first-principles models with nuanced insights from real 
system observations. However, the instability across 
folds underscores the need for more comprehensive da-
tasets before operational deployment. Future efforts 
should focus on generating measurements encapsulating 
a wider array of cultivation conditions and durations. In-
creased scale and variance in datasets may enable ma-
chine learning to extract more robust patterns. Beyond 
SINDy, exploring alternative algorithms could further im-
prove the mechanistic correction. 

DIGITAL SUPPLEMENTARY MATERIAL 
The full set of error ODEs generated can be found 

here. Link: [Error_ODEs]. 
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ABSTRACT 
Antibody therapies are important in treating life-threatening ailments such as cancer and autoim-
mune diseases. Purity of the antibody is essential for successful applications and Protein A selec-
tive resin extraction is the standard step for antibody recovery. Unfortunately, such resins can 
cost up to 30% of the total cost of antibody production. Hence, the optimal design of this purifi-
cation step becomes a critical factor in downstream processing to minimize the size of the column 
needed. An accurate predictive model, as a digital twin representing the purification process, is 
necessary where changes in the flow rates and the inlet concentrations are modeled via the 
Method of Moments. The system uncertainties are captured by including the stochastic Ito pro-
cess model of Brownian motion with drift. Pontryagin’s Maximum Principle under uncertainty is 
then applied to predict the flowrate control strategy for optimized resin use, column design, and 
efficient capturing of the antibodies. In this study, the flow rate is controlled to optimize the pro-
cess efficiency via maximizing the theoretical plate number with time, the objective for efficient 
resin usage within a fixed-size column. This work successfully achieved optimality, which was also 
confirmed via experimentation, leading to higher antibody resin loading capacity. When the work 
was expanded to 200 cycles of Protein A usage, significant improvements in the downstream pro-
cess productivity were achieved allowing for smaller footprint columns to be used.  

Keywords: Optimization, Dynamic Modeling, Stochastic Optimization, Model Reduction, Antibody Extraction.

INTRODUCTION  
Antibodies are produced by many pharmaceutical 

companies to treat various autoimmune diseases [1]. Un-
fortunately, up to  30% of the production cost of the an-
tibody [2] is based on a single purification step, the Pro-
tein A resin, that selectively captures the antibody from 
the fermentation broth with up to 99% purity. Therefore, 
the optimal usage of such an expensive resin is neces-
sary. Since the cost of antibody production depends on 
the cost of this resin, an optimal control strategy is 
needed to maximize the efficient use of the resin as seen 
in Figure 1 giving the possibility to use smaller systems.  

The effluent concentration of the expensive capture 
step will also follow a sigmoidal function [3] as seen in 
Figure 1. With many sigmoidal models used to evaluate 
packed bed systems [4], the model parameters are highly 
dependent on flow rates and inlet concentrations [5].  

Figure 1. Optimal design and operating policy for the 
Protein A resin step in antibody extraction. 

https://doi.org/10.69997/sct.170492
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A generalized fixed bed model can be used where 
the parameters are defined by their relationships to the 
flow rate and inlet concentration [4]. Pontryagin’s maxi-
mum principle [6] defines our purification system as re-
quiring an optimization strategy via adjustments of con-
trollable process variables such as flow rate.  

To accomplish such optimality, the method of mo-
ments is used to simplify the system as a univariate func-
tion of time [7]. However since the moments are typically 
used to represent chromatographic steps [8] with a pop-
ulation distribution curve, the Protein A capture step cu-
mulative curve will need to be transformed via its deriva-
tive into a distribution curve (as shown in Figure 2). The 
Hamiltonian function [9] is then formulated using mo-
ments as state variables and introducing adjoint variables 
to define the path taken during the optimization via max-
imizing the theoretical plate number [10] for the most ef-
ficient use of the resin. 

 

 
Figure 2. Sigmoidal function transformation from a cumu-
lative to a distribution curve via its derivative. 

Since the inlet concentrations and model parame-
ters can vary during production, capturing such uncer-
tainties during optimization is important. The stochastic 
Ito process [11] was picked to capture the variability of 
the system. The purpose of this work is to confirm that 
varying the flow rate with time maximizes the resin per-
formance over using fixed flow rates, a standard practice 
in existing industrial chromatography column operations 
[12]. While some industries adopted continuous chroma-
tography [13], such as the use of simulated moving beds 
[14], to maximize the efficient use of the resin, consider-
able investments in such complex systems are required 
[15]. The novelty of our approach lies in its simplicity in 
maximizing the system performance of a single-column 
system avoiding the high cost of a continuous system. 

METHODOLOGY  
The procedure consists of feeding IgG4 antibody 

[16] through 1 ml of packed Minichrom column (supplied 
by Repligen) packed with Praesto Jetted A50 Protein A 
resin (supplied by Purolite). Three different concentra-
tions of the antibody (2, 5, and 7 mg/ml) were used at 4 
different residence times (3, 4.8, 6, and 10 min). A stand-
ard sigmoidal function [17], predicting the column output 
is seen below. 

 𝐶𝐶
𝐶𝐶0

= 1
1+exp(𝑎𝑎 – b 𝑡𝑡)    (1) 

where 𝐶𝐶0- inlet concentration, C - effluent concentration 
varying with time, a and b – empirical parameters of the 
sigmoidal function, and t – time. The model can be further 
modified into a modified Yoon-Nelson equation [18] 
where 𝑡𝑡1

2
 – time needed to get to 𝐶𝐶/𝐶𝐶0  = 1/2. 

𝐶𝐶
𝐶𝐶0

= 1
1+𝑒𝑒𝑒𝑒𝑒𝑒�𝑏𝑏 (𝑎𝑎𝑏𝑏 − 𝑡𝑡)�

 = 1

1+𝑒𝑒𝑒𝑒𝑒𝑒�𝑏𝑏 (𝑡𝑡1
2

 − 𝑡𝑡)�
   (2) 

The parameters in the model can be calculated by 
minimizing the Sum of Squares of the Error (SSE) be-
tween model predictions and experimental measure-
ments[19]. Since the sigmoidal function is represented by 
a cumulative curve, it is necessary to transform Eq. 2 into 
a distribution curve, closely depicting chromatographic 
separations[20]. Such a transformation is achieved by 
taking the derivative of the sigmoidal model, 𝑑𝑑(C/C0)/𝑑𝑑𝑡𝑡. 

The Method of Moments  
The general form of the truncated temporal mo-

ments [21] used in chromatographic separations is de-
fined by the following equation [22]:  

 mi = ∫ 𝑡𝑡𝑖𝑖
d� CC0

�

dt
  𝑑𝑑𝑡𝑡𝑡𝑡

0     (3) 

Eq. 3 is the basic form to present the 4 moments 
describing our system [23]. In chromatographic opera-
tions, the truncated temporal moment equations are rep-
resented as follows [24]:  

 Zeroth  moment =  m0(𝑡𝑡) = μ0(𝑡𝑡) 

 =  ∫
𝑑𝑑� 𝐶𝐶𝐶𝐶0

�

𝑑𝑑𝑡𝑡
 𝑑𝑑𝑡𝑡𝑡𝑡

0  = C
C0

(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡)   (4) 

 First normalized moment = μ1(𝑡𝑡) 

 =
∫ 𝑡𝑡

𝑑𝑑� 𝐶𝐶𝐶𝐶0
�

𝑑𝑑𝑑𝑑  𝑑𝑑𝑡𝑡𝑑𝑑
0  

∫
𝑑𝑑� 𝐶𝐶𝐶𝐶0

�

𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡𝑑𝑑
0

=
∫ 𝑡𝑡

𝑑𝑑� 𝐶𝐶𝐶𝐶0
�

𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡 𝑑𝑑
0

μ0(𝑡𝑡) = tm(𝑡𝑡) = 𝑦𝑦2(𝑡𝑡)  (5) 

 Second central normalized moment = μ2c(𝑡𝑡) 

 =  
∫ (𝑡𝑡−μ1)2

𝑑𝑑� 𝐶𝐶𝐶𝐶0
�

𝑑𝑑𝑑𝑑  𝑑𝑑𝑡𝑡𝑑𝑑
0  

𝜇𝜇0(𝑡𝑡) =  σ2(𝑡𝑡) = 𝑦𝑦3(𝑡𝑡)   (6) 

 Third central normalized moment = 𝜇𝜇3𝑐𝑐(𝑡𝑡) 

 = 1
𝜇𝜇2𝑐𝑐1.5  

∫ (𝑡𝑡−μ1)3
𝑑𝑑� 𝐶𝐶𝐶𝐶0

�

𝑑𝑑𝑑𝑑  𝑑𝑑𝑡𝑡𝑑𝑑
0  

𝜇𝜇0(𝑡𝑡) =  𝑠𝑠3(𝑡𝑡) =  𝑦𝑦4(𝑡𝑡)   (7) 

where tm – column residence time or the time needed to 
reach the maximum peak, σ2 – variance or square of the 
standard deviation, and s3 – skewness cubed. 

Capturing Uncertainties  
As uncertainties can affect the protein A resin per-

formance leading to inefficient removal of the antibodies, 
it is necessary to account for these variations via the 
adoption of stochastic process equations and models 
[25]. One of the simplest stochastic process models is 
the Brownian motion / Wiener process [26], where one 
begins at a known initial value and takes equiprobable 
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steps in any direction [27]. An example of the Brownian 
motion method is the Ito process with drift [28] defined 
below as a modified Euler step.  

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−𝛥𝛥𝑡𝑡  + α ∆t + κ ε (∆t)1/2   (8) 

where 𝑦𝑦𝑡𝑡 – the moment at time t, 𝑦𝑦𝑡𝑡−𝛥𝛥𝑡𝑡 – the moment at 
time t - ∆t, α – Ito process drift parameter, κ – Ito process 
deviation parameter, ε – random number with a normal 
distribution of zero as the mean and a standard deviation 
of 2, and ∆t – time step. The Ito process has been applied 
to other modes of purification such as crystallization [29] 
and distillation [30].  

Objective function and boundary conditions 
Figure 3 demonstrates that an increase in the nor-

malized first moment, tm, results in more antibody extrac-
tion, while a decrease in the second central moment, σ2, 
results in lower leakage. Therefore, the objective would 
be to maximize tm and minimize the variance σ2. In chro-
matography, better purification is achieved when the 
theoretical plate number (TPN) is maximized [31].  

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑡𝑡𝑚𝑚2

𝜎𝜎2
      (9) 

The objective, Jmax, is to maximize the theoretical 
plate number. 

𝐽𝐽𝑚𝑚𝑎𝑎𝑒𝑒(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡𝑚𝑚
2

𝜎𝜎2
� = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜇𝜇1

2

𝜇𝜇2𝑐𝑐
�    (10) 

The maximum value is achieved when the derivative 
of the objective function is equated to zero.  

 
Figure 3. Effect of increasing the residence time (A) com-
pared to decreasing the variance (B). 

Optimal Control  
To simplify the optimization approach, we can line-

arize the four stochastic moments into a single Hamilto-
nian function as follows[25]: 

H = � [𝑧𝑧𝑖𝑖𝐹𝐹𝑖𝑖 + 𝜔𝜔𝑖𝑖
𝑔𝑔𝑦𝑦𝑖𝑖
2

2

4

𝑖𝑖=1
]   (11) 

where H – Hamiltonian function, zi – adjoint variable, Fi – 
differential changes of the state variable with time = 𝑑𝑑𝑦𝑦𝑖𝑖

𝑑𝑑𝑡𝑡
, 

ωi – stochastic adjoint variable, and 𝑔𝑔𝑦𝑦𝑖𝑖 =  �𝑣𝑣𝑎𝑎𝑣𝑣(𝛥𝛥𝑦𝑦𝑖𝑖)
𝛥𝛥𝑡𝑡

 (12) 

The adjoint variables limit the pathways to achieve 
the objective and are defined by their derivatives: 

𝑑𝑑𝑧𝑧𝑖𝑖
𝑑𝑑𝑡𝑡

 =  −� [𝜕𝜕𝐹𝐹𝑘𝑘
𝜕𝜕𝑦𝑦𝑖𝑖

𝑧𝑧𝑘𝑘 + 1
2

4

𝑘𝑘=1

𝜕𝜕𝑔𝑔𝑘𝑘
2

𝜕𝜕𝑦𝑦𝑖𝑖
𝜔𝜔𝑘𝑘]  (13) 

𝑑𝑑𝜔𝜔𝑖𝑖

𝑑𝑑𝑡𝑡
 =  −� [2𝜔𝜔𝑘𝑘

𝜕𝜕𝐹𝐹𝑘𝑘
𝜕𝜕𝑦𝑦𝑖𝑖

+ 𝜕𝜕2𝐹𝐹𝑘𝑘
𝜕𝜕𝑦𝑦𝑖𝑖

2 𝑧𝑧𝑘𝑘 + 1
2

4

𝑘𝑘=1

𝜕𝜕2𝑔𝑔𝑘𝑘
2

𝜕𝜕𝑦𝑦𝑖𝑖
2 𝜔𝜔𝑘𝑘] (14) 

Pontryagin’s maximum principle (PMP) is used to ap-
ply the optimal control strategy [32] to our antibody ex-
traction system. PMP utilizes the Hamiltonian by impos-
ing the optimality conditions for the objective function 
[33]. Another optimization method that could be used is 
the orthogonal collocation method [34]. The collocation 
numerical method would simplify our optimization strat-
egy for our deterministic approach [35] but is challenging 
when dealing with uncertainties captured in the Hamilto-
nian function used in the PMP method.  

Optimal control is applied using a manageable sys-
tem parameter such as the flow rate. Derivatization of the 
Hamiltonian function to the flow rate (Q) can be repre-
sented by its coordinates (the state and the adjoint vari-
ables) using the following expression[29] of a derivative 
chain rule: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑄𝑄

 = � 𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦𝑖𝑖

𝑑𝑑𝑦𝑦𝑖𝑖
𝑑𝑑𝑄𝑄

+
4

𝑖𝑖=1
� 𝑑𝑑𝑑𝑑

𝑑𝑑𝑧𝑧𝑖𝑖

𝑑𝑑𝑧𝑧𝑖𝑖
𝑑𝑑𝑄𝑄

+
4

𝑖𝑖=1
� 𝑑𝑑𝑑𝑑

𝑑𝑑𝜔𝜔𝑖𝑖

𝑑𝑑𝜔𝜔𝑖𝑖

𝑑𝑑𝑄𝑄

4

𝑖𝑖=1
  (15) 

 
Eq. 15 defines the Hamiltonian gradient where the 

gradient is nullified when flow rate changes are no longer 
necessary. The integrations were done using the Euler 
steps[29]. The initial values of the state variables are ob-
tained from the starting point, and the final values of the 
adjoint variables (z 𝑚𝑚𝑎𝑎𝑑𝑑 ω) are obtained from the optimal 
objective for the purification system. 

Optimal Control Solution Strategy  
 The pump flow rate is bound between 2 flow rates 
corresponding to residence times of 3 and 10 min in our 
experimental work. Considering that the inlet antibody 
concentration enters at 5 mg/ml, the flow rate, initially set 
at the slow residence time of 10 min, is expected to 
change to optimize the extraction of the antibody.  

 

Figure 4. Flowchart for stochastic optimal control.  

 Figure 4 summarizes the algorithm using Matlab as 
the optimization tool for the deterministic and stochastic 
approach[36].  The main difference between the two 
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approaches is the bypass loop to calculate the stochastic 
adjoint variable ω. Figure 4 demonstrates how our state 
and adjoint variables are calculated before calculating 
the Hamiltonian gradient which is compared to the toler-
ance picked for the system. Depending on the Hamilto-
nian gradient value, the optimization would be achieved 
(below the tolerance) or the flow rate would be adjusted 
(above the tolerance) between the two flow rate bound-
aries for another iteration. 

RESULTS  
The experimental data for the concentration ratio of 

antibody igG4 with time from a 1 ml Minichrom column 
packed with Praesto Jetted A50 resin is seen in Table 1.  

Table 1: Experimental data. 
Inlet Concentration C0 = 2 mg/ml 

Residence 
time (min) 

Time to C/C0 
= 0.05 (min) 

Time to C/C0 
= 0.10 (min) 

Time to C/C0 
= 0.50 (min) 

3 82.7 90.6 135.2 
4.8 157.6 170.3 216.9 
6 198.3 216.8 271.3 
10 334.8 364.6 456.2 

Inlet Concentration C0 = 5 mg/ml 
Residence 
time (min) 

Time to C/C0 
= 0.05 (min) 

Time to C/C0 
= 0.10 (min) 

Time to C/C0 
= 0.50 (min) 

3 31.5 35.3 57.9 
4.8 61.4 67.8 97.8 
6 87.4 94.2 123.6 
10 162.8 173.2 209.2 

Inlet Concentration C0 = 7 mg/ml 
Residence 
time (min) 

Time to C/C0 
= 0.05 (min) 

Time to C/C0 
= 0.10 (min) 

Time to C/C0 
= 0.50 (min) 

3 23.7 24.9 30.2 
4.8 40.9 42.6 49.4 
6 52.0 54.1 62.0 
10 87.7 92.5 104.9 

We extrapolated the sigmoidal model parameters 
via the minimization of the SSE (sum of square errors). 

These parameters are summarized in Table 2 as they 
vary with changes in inlet concentration and flow rate. 

Table 2: The sigmoidal function parameters. 
Residence 
Time (min) 

Concentra-
tion (mg/ml) 

Empirical 
parameter 
t1/2 (min) 

Empirical pa-
rameter b 

(min-1) 
3 2 135.1 0.0519 

4.8 2 217.1 0.0480 
6 2 271.4 0.0403 
10 2 455.8 0.0241 
3 5 57.8 0.1031 

4.8 5 97.8 0.0762 
6 5 123.5 0.0772 
10 5 209.2 0.0619 
3 7 30.2 0.4317 

4.8 7 49.4 0.3344 
6 7 61.9 0.2849 
10 7 105.0 0.1748 

From Table 2, we extrapolate the relationships be-
tween the model parameters and system characteristics.  

 𝑡𝑡1
2

=  82.81 𝑅𝑅𝑇𝑇 exp(−0.295 𝐶𝐶0)  (16)  

 𝑏𝑏 = 1
−0.57 𝑅𝑅𝑅𝑅 𝐶𝐶0+ 4.49 𝑅𝑅𝑅𝑅 − 1.12 𝐶𝐶0+ 9.08

  (17) 

where RT – residence time = 𝑅𝑅𝑅𝑅/𝑄𝑄 , and RV – resin volume 
in the column. The results comparing the empirical pa-
rameters with the calculated data from Eq. 16 and Eq. 17 
are summarized in Table 3. It displays that the fluctua-
tions in the parameters 𝑡𝑡1

2
 and b are within ±10% and 

±20% respectively.   

Capture Uncertainty via Stochastic Processes 
 When considering an inlet antibody concentration 
that fluctuates 10% around 5 mg/ml and capturing the pa-
rameter fluctuations described by Table 3, we can dis-
play the effect of these uncertainties on the 4 moments.  

 

Table 3: Results of the sigmoidal function parameters for calculated versus empirical. 
Residence 

Time 
(min) 

Concentra-
tion 

(mg/ml) 

Empirical pa-
rameter t1/2 

(min) 

Empirical pa-
rameter b 

(min-1) 

Calculated pa-
rameter t1/2 

(min) 

Calculated pa-
rameter b 

(min-1) 

Percent dif-
ference on 

t1/2 

Percent 
difference 

on b 
3 2 135.1 0.0519 137.7 0.0592 -1.9 -14.1 

4.8 2 217.1 0.0480 220.3 0.0436 -1.5 9.1 
6 2 271.4 0.0403 275.4 0.0371 -1.5 7.9 
10 2 455.8 0.0241 459.0 0.0248 -0.7 -2.9 
3 5 57.8 0.1031 56.8 0.1190 1.7 -15.5 

4.8 5 97.8 0.0762 90.9 0.0881 7.0 -15.6 
6 5 123.5 0.0772 113.7 0.0751 8.0 2.8 
10 5 209.2 0.0619 189.5 0.0503 9.4 18.7 
3 7 30.2 0.4317 31.5 0.3650 -4.4 15.5 

4.8 7 49.4 0.3344 50.4 0.2747 -2.1 17.8 
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Figure 5. Static uncertainty (100 scenarios via sampling) 
manifested as Dynamic uncertainty.  

Figure 5 shows the effect of static uncertainties in 
the initial condition or process parameters manifesting as 
dynamic uncertainties in all the state variables (i.e. the 4 
moments with respect to time). Figure 6 demonstrates 
that the Ito process of Brownian motion with drift can 
capture the dynamic uncertainties of the 4 moments. 
 

 Figure 6. Ito process capturing the uncertainties for the 
four moments. 

Results from Stochastic Optimal Control  
 We run the Matlab flowchart program seen in 

Figure 4, for over 40,000 iterations to achieve the optimal 
flow rate path. While the state variables,𝑦𝑦𝑖𝑖 , are integrated 
in the forward direction from the initial conditions, [y1(0) 
0 0 0], the adjoint variables, 𝑧𝑧𝑖𝑖 and 𝜔𝜔𝑖𝑖 , are integrated in a 
backward direction from the final conditions, 
[0   (2𝜇𝜇1(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑚𝑚𝑡𝑡))/(𝜇𝜇2𝑐𝑐(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑚𝑚𝑡𝑡) )     − �𝜇𝜇12(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑚𝑚𝑡𝑡)�/
(𝜇𝜇2𝑐𝑐2 (𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑚𝑚𝑡𝑡))    0] and [0 0 0 0], respectively based on the 
final optimum of Eq. 11. We use Euler’s method for inte-
gration with a very small-time step. At each time step, the 
values of the Hamiltonian and its derivative are 

calculated.  
Two approaches were evaluated: a deterministic 

approach, ignoring the uncertainties, and a stochastic 
approach. During each of the iterations, the flow rate is 
adjusted until the optimal flow is achieved. Figure 7 dis-
plays the changes in the flow rates during the determin-
istic optimal control approach. It shows that deterministic 
optimal flow control will start by increasing the flow to-
wards the maximum flow to get as much product pro-
cessed before it reduces the flow to avoid early antibody 
breakthrough. 

Figure 7. Iterations of the flow rate to achieve 
deterministic optimal control.  

Experimental Validation of Optimal Control 
 From Figure 8, Both the stochastic optimal flow 

and the deterministic optimal flow will adjust to the max-
imum flow rate initially before reducing it to minimum flow 
rate around 70 minutes. The deterministic optimal flow 
decreases slightly earlier to the slow flow rate of around 
60 minutes. Since running the process at the fast flow 
rate initially followed by a slowdown improved the pro-
cess performance, we ran an experiment to confirm the 
improvement by manually changing the flow from the 
fastest flow rate to the slowest flow rate after C/C0 = 0.05 
is reached.  

 
Figure 8. Optimal flow control for both deterministic and 
stochastic approaches with manual flow rate adjustment. 

 Table 4 demonstrates the effectiveness of using an 
optimal flow rate to maximize the antibody extraction 
over using a constant flow rate. Both stochastic and 
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deterministic approaches succeeded in improving the 
system performance by extracting more antibodies in 
less time than a fixed slow flow rate. The actual experi-
ment also demonstrated an improvement in antibody ex-
traction over running at a constant flow rate. While the 
experimental manually controlled work did not duplicate 
the data obtained from the deterministic or the stochastic 
approach, the results confirmed that designing targeted 
operating policies such as the fast flow followed by de-
creased flow later in the process, will achieve more anti-
body extraction. 

Table 4: Optimal control results versus constant flow. 

Conditions Max 
Flow 

 Min 
 Flow 

Deter- 
ministic 

Stoch- 
astic 

Actual 
test 

Antibody Extracted  
to C/Co = 0.1 mg 

(mg antibody/ml resin) 
65.0 73.6 97.1 105.7 105.3 

Antibody Extracted 
to C/Co = 0.5 mg 

(mg antibody/ml resin) 
86.0 92.9 112.8 122.6 113.4 

When checking the amount of antibody extracted 
until 10% breakthrough, Table 4 demonstrates that the 
flow rate adjustment used in the experimental validation 
resulted in 43% more antibody removed than using the 
slowest flow rate setting. This validated improvement in 
the resin capacity leads to efficient utilization of the ex-
pensive Protein A resin. As the system residence time is 
influenced by the size of the column used, the optimiza-
tion allows for the efficient utilization of any size resin 
column within the limitations of the system flow rates.   

Multicycle Optimization 
Since the Protein A resin is the most expensive step 

in the downstream processing of antibodies, cycling it for 
multiple uses is necessary to get the most value out of its 
resin life. But with every cycle, the Protein A resin will de-
grade due to caustic cleaning or due to fouling from the 
various molecules in the fermentation broth.  

 
Figure 9. Protein A resin degradation during multicycle 
operations at 6 min residence time. 

Figure 9 shows the actual effect of Protein A degra-
dation during multiple cycles as the breakthrough tends 

to occur sooner in late cycles (also called life time study). 
For example, the time to reach 50% breakthrough 
dropped from 75 min to 68 minutes after 100 cycles. 
While the model parameters change with contact time 
and inlet concentration (as seen in equations 20 and 21), 
further modification of these parameters can be made to 
depict the degradation with each cycle. Therefore, it is 
expected that optimal flow rate pathways might be dif-
ferent as the resin degrades. 
 

 
Figure 10. Optimal flow rate during multicycle use 

 
Figure 11. Effect of resin degradation on the optimal flow 

 Figure 10 confirms that hypothesis showing that the 
system will not be running at the high flow rates for as 
long as when using a newer resin. At the end of the 200 
cycles, the optimal flow rate is to keep the flow constant 
at its lowest setting. Figure 11 confirms that the optimal 
flow rate will get closer to the slowest flow rate as the 
number of cycles increases. Once optimal conditions 
cannot be improved beyond running at the slowest flow 
rates, resin replacement becomes the next logical step.  

 Table 5 summarizes the effect of using the opti-
mal flow rate over 200 cycles of Protein A resin usage. 
Table 5 demonstrates that over 20% increase in cumula-
tive binding capacity, over 30% savings on cycle time, 
and over 80% in productivity can be achieved during the 
200-cycle life of the Protein A resin. The impact of such 
improvement allows the use of any size column while 
avoiding system overdesign usually necessary for similar 
results. An 84% improvement in productivity translates to 
using 46% less resin to get the same performance as the 
slowest flow rate and therefore 46% less footprint. In ad-
dition, reducing the loading time by 34% allows the ex-
tracted antibody to have less contact time with the host 
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cell proteins containing the damaging enzymes that can 
reduce the process yield [37]. 

Table 5: Performance Improvement in the Resin Usage 
Capacity over 200 Cycles. 

Dynamic binding capacity 
(total grams/ml-resin) 

C/C0 = 
10% 

C/C0 = 
50% 

Optimal control for 200 cycles 15.2 19.6 
Constant low flow at residence 
time = 10 min for 200 cycles 12.5 16.8 

% Improvement over 200 cycles 21.6 16.7 
Total time of loading production needed (hours) 

Optimal control for 200 cycles 351 565 
Constant low flow at residence 
time = 10 min for 200 cycles 531 772 

% Improvement (200 cycles) 33.9 26.8 
Productivity (total grams/liter-resin-hour) 

Optimal control for 200 cycles 43.3 34.7 
Constant low flow at residence 
time = 10 min for 200 cycles 23.5 21.8 

% Improvement over 200 cycles 84.2 59.2 

CONCLUSIONS  
Protein A resins are the most expensive step in the 

manufacturing of critical antibody therapies. Successful 
control strategies become necessary to maximize the ef-
ficiency of resin usage in downstream processing. When 
applying optimal control strategies via flow rate adjust-
ment, we demonstrated through prediction at first and 
then confirmed through experimentation that optimal de-
sign is achieved by varying the flow rates rather than us-
ing a fixed flow rate. Optimality is achieved by initially 
running the resin column at high flow rates to get as much 
feed processed before reducing the flow to avoid an 
early breakthrough. During the design of multicycle op-
eration of the Protein A resin, the optimal results show a 
decreasing trend until it reaches similar results as running 
at the slowest flow rate. However, optimization during 
the multicycle operation was able to achieve over 80% 
productivity in the use of Protein A resin, leading to better 
column design. 

With the successful implementation of such an opti-
mal strategy, we demonstrate that smaller designs can 
be used more efficiently while expecting savings in res-
ins, buffers/water, and utilities that accompany produc-
tivity improvements. 
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ABSTRACT 
Computer-aided Molecular and Process Design (CAMPD) is an equation-oriented multi-scale de-
cision making framework for designing both materials (molecules) and processes for separation, 
reaction, and reactive separation whenever material choice significantly impacts process perfor-
mance. The inherent nonlinearity and nonconvexity in CAMPD optimization models, introduced 
through the property and process models, pose challenges to state-of-the-art solvers. Recently, 
quantum computing (QC) has shown promise for solving complex optimization problems, espe-
cially those involving discrete decisions. This motivates us to explore the potential usage of quan-
tum optimization techniques for solving CAMPD problems. We have developed a technique for 
directly solving a class of mixed integer nonlinear programs using QC. Our approach represents 
both continuous and integer design decisions by a set of binary variables through encoding 
schemes. This transformation allows to reformulate certain types of CAMPD problems into Quad-
ratic Unconstrained Binary Optimization (QUBO) models that can be directly solved using quantum 
annealing techniques. We illustrate this technique for the selection of optimal ionic liquids (IL) and 
the configuration of a reactor-separator process network. We also discuss several challenges that 
are associated with quantum optimization when solving large scale CAMPD problems. 

Keywords: Optimization, Multiscale Modeling, Process Design, Quantum Optimization, CAMPD 

INTRODUCTION 
Computer-Aided Molecular and Process Design 

(CAMPD) allows systematic identification of optimal ma-
terials and processes, thereby facilitating the transition 
towards more sustainable and cost-effective chemical 
processes. CAMPD typically involves solving mixed-inte-
ger nonlinear program (MINLP) of the following form: 

min      𝐶𝐶�𝒙𝒙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝒙𝒙𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 

s.t.     𝒈𝒈𝟏𝟏�𝒙𝒙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚� ≤ 0

     𝒈𝒈𝟐𝟐�𝒙𝒙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚� = 0           (P1) 

     𝒈𝒈𝟑𝟑�𝒙𝒙𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝒙𝒙𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ≤ 0 

     𝒈𝒈𝟒𝟒�𝒙𝒙𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝒙𝒙𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 0 

𝒈𝒈𝟓𝟓�𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ≤ 0 

𝒈𝒈𝟔𝟔�𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 0 

𝒙𝒙𝑳𝑳 ≤ 𝒙𝒙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝒙𝒙𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝒙𝒙𝑼𝑼, 
where the decision variables include both discrete and 
continuous variables. Molecular design is achieved 
through the optimal choices for a set of design variables 
(𝒙𝒙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚) that correspond to the molecular fingerprints or 
groups that constitute the material, as well as perfor-
mance variables (𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚) that dictate the material proper-
ties. Process design and configuration is achieved 
through a set of variables (𝒙𝒙𝑑𝑑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) that represent pro-
cess design specifications and typically involve both in-
teger variables (such as feed location, number of column 
stages, etc.) and continuous variables (such as solvent 
flow rate, reflux ratio, operating pressure, and tempera-
ture). The process performance variables (𝒙𝒙𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) dic-
tate the separation efficiency, product purity, etc. The 
objective function 𝐶𝐶 aims to minimize the overall cost of 
the process and is subject to a set of constraints. The 
constraints 𝒈𝒈𝟏𝟏�𝒙𝒙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚� ≤ 0 and 𝒈𝒈𝟐𝟐�𝒙𝒙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚� = 0 in-
clude the thermodynamic and transport property 
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relations and molecular structure-property models. In 
many cases, empirical structure-property relationships, 
such as group contribution models [1-2] or trained neural 
networks [3] are considered. They also contain a set of 
constraints that describe molecular generation rules to 
form structurally feasible molecules from a collection of 
groups or descriptors [4]. For solvent design, for exam-
ple, these constraints typically involve the octet rule to 
ensure that the molecule satisfies atom balance. Often, 
bounds are imposed on the number of groups of a partic-
ular type to ensure the generation of a finite number of 
molecules. The constraints 𝒈𝒈𝟑𝟑�𝒙𝒙𝑑𝑑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝒙𝒙𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ≤ 0 are 

process inequality constraints (e.g., bounds on tempera-
ture, pressure, and other operational design decisions), 
while the constraint 𝒈𝒈𝟒𝟒�𝒙𝒙𝑑𝑑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝒙𝒙𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 0 pertains to 

the mass and energy conservation laws governing the 
process, and thermodynamic models such as the 
Gamma-Phi model [5-6] or equation of states that dictate 
the vapor-liquid equilibria (VLE) inside a separation unit, 
or nonlinear kinetic models integrated with VLE models 
for reactive-distillation processes [7-8]. Finally, 
𝒈𝒈𝟓𝟓�𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ≤ 0 and 𝒈𝒈𝟔𝟔�𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 0  are link-

ing constraints that describe the interaction between the 
material and process level performance through material 
property, thermodynamic property, and process models.  

Several solution techniques and CAMPD ap-
proaches have been reported in the past, especially in 
systematically identifying organic solvents and solvent-
based separation processes [9-12]. These approaches 
can be bottom-up, top-down, or simultaneous [13]. The 
bottom-up approach decomposes the CAMPD problem 
by first considering the molecular decisions, and sequen-
tially reducing the feasible space by adding constraints, 
thereby deriving optimal product and process pairs [10-
11]. The top-down approach also decomposes the 
CAMPD, and first optimizes the process performance by 
considering an ideal hypothetical molecule, and then op-
timizes over the molecular design space to match the 
molecular property targets [9,14]. The simultaneous ap-
proach often considers a relatively smaller design space 
for tractability and simultaneously solves CAMPD using 
modified outer approximation [15] or generalized bend-
ers decomposition algorithm [16]. CAMPD problems are 
multiscale in nature and often involve models with highly 
nonlinear, nonconvex terms, or many mixed variables and 
constraints. Despite significant progress in global optimi-
zation [17-18], large-scale discrete-continuous prob-
lems, as commonly occurred in CAMPD, can still be 
daunting, requiring extensive computational time to 
achieve feasible solutions [19].  

Recent advances in quantum computing (QC) show 
promise to unlock new avenues for solving complex op-
timization problems [20-21]. Quantum optimization tech-
niques are primarily used to solve Quadratic Uncon-
strained Binary Optimization (QUBO) problems [21]. 

Linear and quadratic integer programs can be converted 
to QUBO, with constraints reformulated as quadratic 
penalties to the objective function [21-22]. Once formu-
lated, these QUBO models are mapped onto quantum de-
vices, leveraging the principles of quantum annealing to 
solve these models as energy minimization problems 
[22]. However, CAMPD problems are characterized by 
their constraints and continuous decision variables, 
which do not have direct QUBO reformulations.  

To bridge this gap, we have formulated a technique 
that represents continuous and integer variables by a set 
of binary variables through efficient encoding schemes. 
This allows us to reformulate a class of MINLP to QUBO 
and subsequently solve them using QC platforms, 
thereby facilitating the solution to certain CAMPD prob-
lems. We illustrate our technique for the simultaneous se-
lection of ionic liquids (IL) and the configuration of a re-
actor separator process network. We convert the CAMPD 
model into QUBO and then solve them using D-Wave’s 
quantum annealer, with results compared against deter-
ministic solvers. Our results suggest that QC is able to 
obtain good feasible solutions in terms of process con-
figuration and IL selection, thereby establishing the effi-
cacy of QC for CAMPD. 

COMPUTER-AIDED MOLECULAR AND 
PROCESS DESIGN WITH IONIC LIQUIDS 

Designing efficient separation systems using ILs as 
solvent is gaining increasing research attention. ILs pos-
sess many desirable properties (e.g., high thermal and 
chemical stability, low vapor pressure, etc.) that make 
them a suitable choice for solvent, especially for separat-
ing gas mixtures [5-6]. ILs are salts that exist in the liquid 
state at ambient conditions. These are largely con-
structed by a pair of cation core, anion, and organic func-
tional groups that are attached to the cation core. For ex-
ample, 1-butyl-3-methylimidazolium chloride, a common 
IL known as [BMIM][Cl], is formed by an imidazolium cat-
ion core, a chloride ion, and a butyl group attached to the 
cation core. Based on the type and number of groups and 
ions that are present in an IL, the corresponding material 
performance can vary. As such, ILs can be molecularly 
designed for the desired performance that makes them 
suitable for CAMPD application. However, the design 
space for ILs is very large, owing to the combinatorial 
possibilities in the assignment of their anion and cation 
components as well as side groups. In addition to the op-
timal choice of IL, process optimization needs to be per-
formed which typically involves identifying the optimal 
process design variables. A process network synthesis 
with the consideration of IL selection involves mixed-in-
teger variables across multiple scales, making the opti-
mization highly non-trivial. To illustrate, consider a mix-
ture separation task in an extractive distillation column 
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using ILs. For this case, the molecular structural con-
straints for ILs, 𝒈𝒈1 and 𝒈𝒈2  can take the following form 
[23]: 

∑ 𝑐𝑐𝑗𝑗 = 1𝑗𝑗∈𝐶𝐶𝑚𝑚 , ∑ 𝑐𝑐𝑗𝑗 = 1𝑗𝑗∈𝐴𝐴𝐴𝐴  

∑ �2 − 𝑣𝑣𝑗𝑗� ⋅ 𝑐𝑐𝑗𝑗 − 2 =𝑗𝑗∈𝐶𝐶𝑚𝑚∪𝑆𝑆𝑆𝑆𝑆𝑆 0                                     (1) 

𝐿𝐿𝐿𝐿 ≤ � 𝑐𝑐𝑗𝑗 ≤ 𝑈𝑈𝐿𝐿
𝑗𝑗∈𝑆𝑆𝑆𝑆𝑆𝑆

 

where 𝐶𝐶𝐶𝐶, 𝐴𝐴𝐴𝐴, 𝑆𝑆𝑆𝑆𝑆𝑆 refer to the set of groups or molecular 
descriptors for the cation core, anion, and side groups 
respectively. 𝑣𝑣𝑗𝑗 is the number of bonds for group 𝑗𝑗, 𝐿𝐿𝐿𝐿 
and 𝑈𝑈𝐿𝐿 are the minimum and maximum number for each 
group. 𝒈𝒈1 and 𝒈𝒈2 can also include property models of the 
following form: 

𝑇𝑇𝑚𝑚(𝐾𝐾) = 𝑐𝑐1 + � 𝐴𝐴𝑗𝑗𝐺𝐺𝑗𝑗 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐶𝐶𝑚𝑚∪𝐴𝐴𝐴𝐴∪𝑆𝑆𝑆𝑆𝑑𝑑𝑝𝑝

                                      (2) 

ln 𝜇𝜇 (𝑐𝑐𝑐𝑐) = 𝑐𝑐2 + � 𝐴𝐴𝑗𝑗𝐶𝐶𝑗𝑗
𝑗𝑗∈𝐶𝐶𝑚𝑚∪𝐴𝐴𝐴𝐴∪𝑆𝑆𝑆𝑆𝑑𝑑𝑝𝑝

+ �
𝐴𝐴𝑗𝑗𝑆𝑆𝑗𝑗
𝑇𝑇 ≤ ln 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗∈𝐶𝐶𝑚𝑚∪𝐴𝐴𝐴𝐴∪𝑆𝑆𝑆𝑆𝑑𝑑𝑝𝑝

                     (3) 

where the set of properties can be a function of the 
groups, as well as of design variables such as tempera-
ture or pressure. Process constraints 𝒈𝒈𝟑𝟑 and 𝒈𝒈4 typically 
enforce bounds on the flowrates, operating temperature, 
and pressure. These also include mass, energy, and mo-
mentum balances of the following form: 

� 𝑥𝑥𝑆𝑆 = 𝛼𝛼𝑘𝑘 � 𝑥𝑥𝑆𝑆
𝑆𝑆∈𝑂𝑂𝑆𝑆𝑚𝑚𝑂𝑂𝑝𝑝𝑚𝑚𝑆𝑆∈𝐼𝐼𝐴𝐴𝑂𝑂𝑝𝑝𝑚𝑚

         ∀𝑘𝑘                                                    (4) 

where for a separation unit 𝑘𝑘, 𝛼𝛼𝑘𝑘 is the separation effi-
ciency that is dictated by the choice of ILs. The linking 
constraints 𝒈𝒈𝟓𝟓 and 𝒈𝒈6 relate the process level perfor-
mance with the material selection, and can take the form 
as follows: 

𝛽𝛽𝑆𝑆 = 1
𝛾𝛾𝑖𝑖
∞ × 𝑀𝑀𝑊𝑊𝑖𝑖

𝑀𝑀𝑊𝑊𝐼𝐼𝐼𝐼
≥ 𝛽𝛽𝑚𝑚𝑆𝑆𝐴𝐴                                                             (5)  

𝑆𝑆𝑆𝑆𝑗𝑗 =
𝛽𝛽𝑗𝑗∞

𝛽𝛽𝑆𝑆∞
≥ 𝑆𝑆𝑚𝑚𝑆𝑆𝐴𝐴                                                                                   (6) 

 
The distribution coefficient (𝛽𝛽𝑆𝑆) and selectivity (𝑆𝑆𝑆𝑆𝑗𝑗) can 
be obtained through a VLE model and are linked with the 
IL design through the molecular weight, 𝑀𝑀𝑊𝑊𝐼𝐼𝐼𝐼. Finally, the 
objective function can be a nonlinear function of the pro-
cess streams to minimize the overall cost. Therefore, the 
overall CAMPD model can be posed as a mixed-integer 
nonlinear program (MINLP) involving nonlinearities and 
nonconvexities across multiple scales making them chal-
lenging to solve.  

SOLVING MIXED-INTEGER PROGRAMS 
USING QUANTUM COMPUTING 

We will first assume a quadratic approximation of all 
nonlinear models, making the overall CAMPD a mixed in-
teger quadratically constrained quadratic program (MI-
QCQP). Then, we will demonstrate the reformulation of 
MIQCQP to QUBO. Finally, we will extend it to a class of 
MINLP by introducing nonlinear encoding.  

Assume that the vectors of all material and process 
level variables (𝒙𝒙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, 𝒙𝒙𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ,𝒙𝒙𝑑𝑑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝒙𝒙𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) are aggre-

gated in a vector 𝒙𝒙. We can then express the CAMPD (un-
der quadratic approximation, MIQCQP) in a compact form 
as follows: 

 min
𝒙𝒙

     𝒙𝒙𝑇𝑇𝑯𝑯𝒙𝒙 + 𝒄𝒄𝑇𝑇𝒙𝒙 

 s.t.     𝒙𝒙𝑇𝑇𝑪𝑪𝑘𝑘𝒙𝒙 + 𝒂𝒂𝑘𝑘𝑇𝑇𝒙𝒙 ≤ 𝑆𝑆𝑘𝑘 ,     𝑘𝑘 = 1, … ,𝑆𝑆      (P2) 

              𝒙𝒙 ∈ ℝ𝒏𝒏 × ℤ𝒑𝒑,                                                       

where 𝑯𝑯 ∈ ℝ(𝐴𝐴+𝑝𝑝)×(𝐴𝐴+𝑝𝑝) is a symmetric matrix of real con-
stants, 𝒄𝒄 ∈ ℝ(𝐴𝐴+𝑝𝑝), 𝑪𝑪𝑘𝑘 ∈ ℝ(𝐴𝐴+𝑝𝑝)×(𝐴𝐴+𝑝𝑝),𝒂𝒂𝑘𝑘 ∈ ℝ(𝐴𝐴+𝑝𝑝), and 𝑆𝑆𝑘𝑘 ∈
ℝ.  

Encoding 
To solve the model (P2) using QC, it first needs to 

be reformulated to a QUBO. For that, we utilize several 
encoding schemes for an approximate representation of 
both the continuous and integer variables in terms of bi-
nary variables. To illustrate this, let 𝑥𝑥𝑚𝑚 ∈ ℝ, with 𝑥𝑥𝑚𝑚𝐼𝐼 ≤
𝑥𝑥𝑚𝑚 ≤ 𝑥𝑥𝑚𝑚𝑈𝑈 . It can then be scaled to 𝑥𝑥�𝑚𝑚 ∈ ℝ with 0 ≤ 𝑥𝑥�𝑚𝑚 ≤ 1 
as follows: 

𝑥𝑥𝑚𝑚 = 𝑥𝑥𝑚𝑚𝐼𝐼 + (𝑥𝑥𝑚𝑚𝑈𝑈 − 𝑥𝑥𝑚𝑚𝐼𝐼 )𝑥𝑥�𝑚𝑚                                                                (7) 

Then 𝑥𝑥�𝑚𝑚 can be approximately represented by the 
binary variables using unary encoding as follows [24]: 

𝑥𝑥�𝑚𝑚 ≈ ∑ ∑ 10−𝑗𝑗𝑧𝑧𝑆𝑆,𝑗𝑗,𝑚𝑚 + 10−𝐽𝐽𝑧𝑧𝑚𝑚,9
𝑆𝑆=1

𝐽𝐽
𝑗𝑗=1                           (8) 

where 𝑧𝑧𝑆𝑆,𝑗𝑗,𝑚𝑚 ∈ {0,1}, and 𝐽𝐽 is the number of decimal places. 
To illustrate this, consider 𝑥𝑥�𝑚𝑚 = 0.342. For 𝐽𝐽 = 3, we can 
write 𝑥𝑥�𝑚𝑚 = 10−1�𝑧𝑧1,1,𝑚𝑚 + ⋯+ 𝑧𝑧9,1,𝑚𝑚� + 10−2�𝑧𝑧1,2,𝑚𝑚 + ⋯+
𝑧𝑧9,2,𝑚𝑚� + 10−3(𝑧𝑧1,3,𝑚𝑚 + ⋯+ 𝑧𝑧9,3,𝑚𝑚). The number of binary 
variables to represent 𝑥𝑥�𝑚𝑚 can be reduced by using a bi-
nary encoding as follows: 

𝑥𝑥�𝑚𝑚 ≈ ∑ 10−𝑗𝑗�𝑧𝑧1,𝑗𝑗,𝑚𝑚 + 2𝑧𝑧2,𝑗𝑗,𝑚𝑚 + 3𝑧𝑧3,𝑗𝑗,𝑚𝑚 + 3𝑧𝑧4,𝑗𝑗,𝑚𝑚�
𝐽𝐽
𝑗𝑗=1 +

10−𝐽𝐽𝑧𝑧𝑚𝑚                                                                                      (9) 

For an integer variable, that is, 𝑥𝑥𝑚𝑚 ∈ ℤ let 𝐼𝐼 be the 
least positive integer such that 2𝐼𝐼 ≥ |𝑥𝑥𝑚𝑚|. Then, using bi-
nary encoding, |𝑥𝑥𝑚𝑚| = ∑ 2𝑆𝑆𝑧𝑧𝑆𝑆,𝑚𝑚𝐼𝐼

𝑆𝑆=1 , where 𝑧𝑧𝑆𝑆,𝑚𝑚 ∈ {0,1}.   

Reformulating Mixed-Integer Quadratic 
Program with Linear Constraints to QUBO 

Let us first consider a mixed-integer quadratic 
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program with linear constraints (MIQP) by setting 𝑪𝑪𝑘𝑘 =
[0](𝐴𝐴+𝑝𝑝)×(𝐴𝐴+𝑝𝑝). Then (P2) can be written as: 

 min
𝒙𝒙

     𝒙𝒙𝑇𝑇𝑯𝑯𝒙𝒙 + 𝒄𝒄𝑇𝑇𝒙𝒙 

 s.t.     𝑨𝑨𝒙𝒙 ≤ 𝒃𝒃,                                                        (P3) 

                        𝒙𝒙 ∈ ℝ𝒏𝒏 × ℤ𝒑𝒑,                            

where 𝑨𝑨 ∈ ℝ𝑆𝑆×(𝐴𝐴+𝑝𝑝) and 𝒃𝒃 ∈ ℝ𝑆𝑆. At first, we convert all in-
equality constraints into equalities by adding slack varia-
bles (𝒔𝒔) to each constraint. Then we add a quadratic pen-
alty to the objective function by introducing penalty pa-
rameters (𝝀𝝀), as follows: 

min   𝒙𝒙𝑇𝑇𝑯𝑯𝒙𝒙 + 𝒄𝒄𝑇𝑇𝒙𝒙 + 𝝀𝝀𝑇𝑇(𝑨𝑨𝒙𝒙 − 𝒃𝒃 + 𝒔𝒔)𝑇𝑇(𝑨𝑨𝒙𝒙 − 𝒃𝒃 + 𝒔𝒔)   (10)     

where 𝝀𝝀 ∈ ℝ𝑆𝑆×𝑆𝑆, and 𝒔𝒔 ∈ ℝ𝑆𝑆×𝑆𝑆. We scale the continuous 
variables {𝑥𝑥𝑚𝑚}𝑚𝑚=1

𝐴𝐴  and {𝑠𝑠𝑣𝑣}𝑣𝑣=1𝑆𝑆  to {𝑥𝑥�𝑚𝑚}𝑚𝑚=1
𝐴𝐴  and {�̃�𝑠𝑣𝑣}𝑣𝑣=1𝑆𝑆 , re-

spectively with 0 ≤ 𝑥𝑥�𝑚𝑚, �̃�𝑠𝑣𝑣 ≤ 1. Note that, 𝑠𝑠𝑣𝑣𝐼𝐼 = 0,∀𝑣𝑣 ∈ 𝑆𝑆, 
and 𝑠𝑠𝑣𝑣𝑈𝑈 can be calculated as follows: 

        𝑠𝑠𝑣𝑣𝑈𝑈 = �𝑆𝑆𝑣𝑣 − 𝑥𝑥𝑚𝑚𝐼𝐼 𝐴𝐴𝑣𝑣𝑚𝑚,    𝑖𝑖𝑖𝑖 𝐴𝐴𝑣𝑣𝑚𝑚 ≥ 0
𝑆𝑆𝑣𝑣 − 𝑥𝑥𝑚𝑚𝑈𝑈𝐴𝐴𝑣𝑣𝑚𝑚,     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                       (11) 

After scaling, Equation (10) can be expressed in 
terms of scaled variables as follows: 

min   𝒙𝒙�𝑇𝑇𝑯𝑯�𝒙𝒙� + 𝒄𝒄�𝑇𝑇𝒙𝒙�,                                                    (12) 

where 𝑯𝑯� ∈ ℝ(𝒏𝒏+𝒑𝒑+𝒖𝒖)×(𝒏𝒏+𝒑𝒑+𝒖𝒖), 𝒄𝒄� ∈ ℝ𝒏𝒏+𝒑𝒑+𝒖𝒖 , and 𝒙𝒙� ∈ ℝ𝐴𝐴+𝑝𝑝+𝑆𝑆 
with 𝒙𝒙� = [[𝑥𝑥�1, … , 𝑥𝑥�𝐴𝐴] [𝑥𝑥�𝐴𝐴+1, … , 𝑥𝑥�𝐴𝐴+𝑝𝑝] [�̃�𝑠1, … , �̃�𝑠𝑆𝑆]], where 
the first 𝐴𝐴 decision variables are continuous, the next 
𝑐𝑐 variables are binary, and the remaining 𝑆𝑆 variables are 
slack variables. We then represent all these scaled varia-
bles using unary or binary encoding, and finally reformu-
late as QUBO as follows: 

 min
𝒛𝒛

     𝒛𝒛𝑇𝑇𝑸𝑸𝒛𝒛 

 s.t.     𝒛𝒛 = {0,1)𝛽𝛽 ,                                                        (P4) 

where 𝑸𝑸 ∈ ℝ𝛽𝛽×𝛽𝛽 and 𝛽𝛽 = (𝐴𝐴 + 𝑆𝑆) ⋅ (9𝐽𝐽 + 1) + 𝑐𝑐 and (𝐴𝐴 + 𝑆𝑆) ⋅
(4𝐽𝐽 + 1) + 𝑐𝑐 for unary and binary encoding, respectively. 
Thus, the original 𝐴𝐴 + 𝑐𝑐 dimensional MIQP (P3) is refor-
mulated into a 𝛽𝛽 dimensional QUBO.              

Reformulating Mixed-Integer Quadratically 
Constrained Quadratic Program to QUBO             

Reformulating a mixed-integer quadratically con-
strained quadratic program (MIQCQP) to QUBO involves 
two steps. In the first step, we reformulate MIQCQP to an 
MIQP. In the second step, we follow the steps described 
in the previous section to convert the reformulated MIQP 
to QUBO. For Step 1 we introduce additional binary vari-
ables to substitute binary quadratic terms that appear in 
the constraints and for each of them, add an equivalent 
penalty function, 𝑖𝑖 to the objective function as follows: 

𝑖𝑖 = 𝑃𝑃(3𝑒𝑒 − 2𝑧𝑧1𝑒𝑒 − 2𝑧𝑧2𝑒𝑒 + 𝑧𝑧1𝑧𝑧2)                            (13) 

where, 𝑒𝑒 = 𝑧𝑧1𝑧𝑧2, and 𝑒𝑒, 𝑧𝑧1, 𝑧𝑧2 ∈ {0,1}. 𝑧𝑧1𝑧𝑧2 is a binary 

quadratic term that appears in the constraint, and 𝑃𝑃 ∈ ℝ+ 
is a penalty parameter. As shown in Table 1, for a feasible 
configuration of 𝑧𝑧1, 𝑧𝑧2, and 𝑒𝑒, 𝑖𝑖 = 0 whereas infeasible 
configuration implies 𝑖𝑖 > 0.  

Table 1: Penalty function for MIQCQP 

𝑧𝑧1 𝑧𝑧2 𝑒𝑒 𝑖𝑖 
1 1 1 0  
1 1 0 > 0 
1 0 0 0 
1 0 1 > 0 
0 1 0 0 
0 1 1 > 0 
0 0 0 0 
0 0 1 > 0 

 

Illustrative Example 
 min
𝑚𝑚1,𝑦𝑦1,𝑦𝑦2

   −2𝑥𝑥1𝑦𝑦1 + 𝑦𝑦22 

   s.t.     𝑥𝑥1 + y1y2 ≤ 1,                                  (P5) 

                     0 ≤ 𝑥𝑥1 ≤ 1; 𝑦𝑦1,𝑦𝑦2 ∈ {0,1}                            

We substitute 𝑦𝑦1𝑦𝑦2 in the constraint by defining 𝑒𝑒 =
𝑦𝑦1𝑦𝑦2, and add the penalty to the objective as follows: 

 min
𝑚𝑚1,𝑦𝑦1,𝑦𝑦2,𝑤𝑤

   −2𝑥𝑥1𝑦𝑦1 + 𝑦𝑦22 + 𝑃𝑃(3𝑒𝑒 − 2𝑦𝑦1𝑒𝑒 − 2𝑦𝑦2𝑒𝑒 + 𝑦𝑦1𝑦𝑦2) 

       s.t.      𝑥𝑥1 + 𝑒𝑒 ≤ 1,                                  (P6) 

                          0 ≤ 𝑥𝑥1 ≤ 1;𝑒𝑒,𝑦𝑦1,𝑦𝑦2 ∈ {0,1}                            

Here, Problem P6 is an MIQP with linear constraints. 
We then encode the continuous variables using binary 
encoding: 

min   −2{10−1(𝑧𝑧111 + 2𝑧𝑧211 + 3𝑧𝑧311 + 3𝑧𝑧411) + 𝑧𝑧1}𝑦𝑦1 + 𝑦𝑦2
+ 𝑃𝑃(3𝑒𝑒 − 2𝑦𝑦1𝑒𝑒 − 2𝑦𝑦2𝑒𝑒 + 𝑦𝑦1𝑦𝑦2) 

    s.t. 10−1(𝑧𝑧111 + 2𝑧𝑧211 + 3𝑧𝑧311 + 3𝑧𝑧411) + 𝑧𝑧1 + 𝑒𝑒 ≤ 1,  (P7) 

𝑧𝑧111, 𝑧𝑧211, 𝑧𝑧311, 𝑧𝑧411, 𝑧𝑧1,𝑒𝑒,𝑦𝑦1,𝑦𝑦2 ∈ {0,1} 

Here, Problem (P7) is a binary quadratic program 
with linear constraints whose equivalent QUBO model is 
constructed with the 𝑸𝑸 matrix given in Table 2. For 𝐽𝐽 =
1,𝑸𝑸 ∈ ℝ13×13 with the last 5 binary variables used to en-
code the slack variable that corresponds to the con-
straint. We set 𝑃𝑃 = 10, and solve the resulting QUBO in D-
Wave’s quantum annealer [25], and obtain the optimal 
solution: 𝑥𝑥1∗ = 1,𝑦𝑦1∗ = 1,𝑦𝑦2∗ = 0.   
 

Encoding Nonlinear Terms 
 Assume that the CAMPD model consists of terms 
such as 𝑥𝑥�𝑚𝑚𝑚𝑚 , where 𝐶𝐶 ∈ ℝ. We can then encode this non-
linear term using the same binary variables correspond-
ing to 𝑥𝑥�𝑚𝑚 as follows:         
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𝑥𝑥�𝑚𝑚𝑚𝑚 ≈ ∑ ∑ 𝑃𝑃𝑆𝑆,𝑗𝑗,𝑚𝑚𝑧𝑧𝑆𝑆,𝑗𝑗,𝑚𝑚 + 𝑄𝑄𝑚𝑚𝑧𝑧𝑚𝑚,9
𝑆𝑆=1

𝐽𝐽
𝑗𝑗=1                           (14) 

𝑧𝑧𝑆𝑆+1,𝑗𝑗,𝑚𝑚 ≤ 𝑧𝑧𝑆𝑆,𝑗𝑗,𝑚𝑚     ∀𝑖𝑖 = 1,2, … , |𝐼𝐼|, 𝑗𝑗 = 1,2, … , |𝐽𝐽|          (15) 
Note that the constraints corresponding to Equation 

(15) have an exact penalty function that can be added to 
the objective as follows: ∑ ∑ 𝑃𝑃(𝑧𝑧𝑆𝑆+1,𝑗𝑗,𝑚𝑚 − 𝑧𝑧𝑆𝑆+1,𝑗𝑗,𝑚𝑚 ⋅8

𝑆𝑆=1
𝐽𝐽
𝑗𝑗=1

𝑧𝑧𝑆𝑆,𝑗𝑗,𝑚𝑚). Also note that, the parameters 𝑃𝑃𝑆𝑆,𝑗𝑗,𝑚𝑚 and 𝑄𝑄𝑚𝑚 can be 
precomputed for all instances of 𝑥𝑥�𝑚𝑚𝑚𝑚  since 𝐶𝐶 is known. 
Specifically, consider 𝐽𝐽 = 1. This implies  𝑥𝑥�𝑚𝑚 =
∑ 0.1𝑧𝑧𝑆𝑆,1,𝑚𝑚
9
𝑆𝑆=1 + 0.1𝑧𝑧𝑚𝑚. Then, 𝑥𝑥�𝑚𝑚𝑚𝑚 = ∑ 𝑃𝑃𝑆𝑆,1,𝑚𝑚 𝑧𝑧𝑆𝑆,1,𝑚𝑚

9
𝑆𝑆=1 + 𝑄𝑄𝑚𝑚𝑧𝑧𝑚𝑚, 

where 𝑃𝑃𝑆𝑆,1,𝑚𝑚 = 𝛾𝛾𝑆𝑆,1,𝑚𝑚 − 𝛾𝛾𝑆𝑆−1,1,𝑚𝑚   ∀𝑖𝑖 ∈ 𝐼𝐼. 𝛾𝛾0,1,𝑚𝑚 = 0, and 𝑄𝑄𝑚𝑚 =
1 − 𝛾𝛾9,1,𝑚𝑚, where 𝛾𝛾𝑆𝑆,1,𝑚𝑚 = (0.1𝑖𝑖)𝑚𝑚. To illustrate, assume that 
𝑥𝑥�𝑚𝑚 takes the value 0.3. Then Equation (14) and (15) to-
gether ensures that the only valid solution is 𝑧𝑧1,1,𝑚𝑚 = 
𝑧𝑧2,1,𝑚𝑚 = 𝑧𝑧3,1,𝑚𝑚 = 1 and the others are 0. This then enforces 
𝑥𝑥�𝑚𝑚𝑚𝑚 =𝛾𝛾3,1,𝑚𝑚 = (0.1 ⋅ 3)𝑚𝑚 = (0.3)𝑚𝑚, as desired.  

We can further encode other nonlinear terms that 
can be approximately expressed in terms of 𝑥𝑥�𝑚𝑚𝑚𝑚 , e.g.,   
exp(𝑥𝑥) , log(𝑥𝑥) , 𝑠𝑠𝑖𝑖𝐴𝐴(𝑥𝑥), 𝑐𝑐𝑜𝑜𝑠𝑠(𝑥𝑥), log (1 + 𝑥𝑥) and log (𝑥𝑥) using 
McLaurin expansion. Finally, we can also encode general 
nonlinear product terms such as ∏ 𝑥𝑥�𝑚𝑚

𝑚𝑚𝑚𝑚
𝑚𝑚  using the exp-

log-sum technique by encoding exp (∑ 𝐶𝐶𝑚𝑚 log 𝑥𝑥�𝑚𝑚)𝑚𝑚 , 
thereby allowing to reformulate MINLP with signomial 
terms to QUBO.   

INTEGRATED IL SELECTION AND 
CONFIGURATION OF REACTOR 
SEPARATOR NETWORK 

We formulate and solve a reactor-separator net-
work synthesis problem with integrated IL selection as 
shown in Figure 1. The separator performance depends 
on the choice of ILs, thus making the overall problem a 
CAMPD. In this illustrative case study, we assume that 
the selection of ILs is made by choosing one anion and 
one cation from a pool of anions and cations. Formally, 
consider 𝐶𝐶𝐶𝐶𝑜𝑜 = {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐶𝐶} and 𝐴𝐴𝐴𝐴 = {𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝐴𝐴}. Then 
all possible feasible ILs are constructed by 𝐼𝐼𝐿𝐿 =
{𝑐𝑐 × 𝐶𝐶 | 𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶𝑜𝑜, 𝐶𝐶 ∈ 𝐴𝐴𝐴𝐴}. With this construction, we formu-
late the following optimization model that integrates the 
selection of ILs with the synthesis of the reactor-separa-
tor network. 

          min �𝑐𝑐𝑘𝑘
𝑓𝑓𝑦𝑦𝑘𝑘

𝑘𝑘∈𝐾𝐾

+ � 𝑐𝑐𝑆𝑆𝐼𝐼𝑥𝑥𝑆𝑆0.6

𝑆𝑆∈𝐼𝐼𝐾𝐾𝑟𝑟
𝑖𝑖𝑖𝑖

+ � 𝑐𝑐𝑘𝑘𝐼𝐼 �� 𝑥𝑥𝑆𝑆
𝑆𝑆∈𝐼𝐼𝐾𝐾𝑠𝑠

𝑖𝑖𝑖𝑖

�

2

𝑘𝑘∈𝐾𝐾𝑠𝑠

+ � 𝑐𝑐𝑘𝑘𝑝𝑝 �� 𝑥𝑥𝑆𝑆
𝑆𝑆∈𝐼𝐼𝐾𝐾𝑠𝑠

𝑖𝑖𝑖𝑖

− � 𝑥𝑥𝑆𝑆
𝑆𝑆∈𝐼𝐼𝐾𝐾𝑠𝑠

𝑜𝑜𝑜𝑜𝑜𝑜

�
𝑘𝑘∈𝐾𝐾𝑠𝑠

 

s.t.    𝑖𝑖𝑘𝑘𝐼𝐼𝑦𝑦𝑘𝑘 ≤ ∑ 𝑥𝑥𝑆𝑆 ≤ 𝑖𝑖𝑘𝑘𝑈𝑈𝑦𝑦𝑘𝑘 ,                  ∀𝑘𝑘 ∈ 𝐾𝐾𝑆𝑆∈𝐼𝐼𝐾𝐾
𝑖𝑖𝑖𝑖         (P8) 

   ∑ 𝑥𝑥𝑆𝑆𝑆𝑆∈𝐼𝐼𝐾𝐾𝑟𝑟
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛼𝛼𝑘𝑘 ∑ 𝑥𝑥𝑆𝑆 ,                   ∀𝑘𝑘 ∈ 𝐾𝐾𝑝𝑝𝑆𝑆∈𝐼𝐼𝐾𝐾𝑟𝑟

𝑖𝑖𝑖𝑖      

                     �  𝑧𝑧𝑝𝑝 = 1
𝑝𝑝∈𝐶𝐶𝑚𝑚𝑚𝑚

 

                     �  𝑧𝑧𝑚𝑚 = 1
𝑚𝑚∈𝐴𝐴𝐴𝐴

 

                      𝑥𝑥𝑆𝑆 ≥ 𝛽𝛽𝑘𝑘,𝑝𝑝,𝑚𝑚 � 𝑥𝑥𝑆𝑆 − 𝑀𝑀(2 − 𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑚𝑚),
𝑆𝑆∈𝐼𝐼𝐾𝐾𝑠𝑠

𝑖𝑖𝑖𝑖

∀𝑖𝑖 ∈ 𝐼𝐼𝐾𝐾s
𝑝𝑝𝑆𝑆𝑚𝑚 , 𝑘𝑘 ∈ 𝐾𝐾𝑝𝑝, 𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶𝑜𝑜, 𝐶𝐶 ∈ 𝐴𝐴𝐴𝐴 

                      𝑥𝑥𝑆𝑆 ≤ 𝛽𝛽𝑘𝑘,𝑝𝑝,𝑚𝑚 � 𝑥𝑥𝑆𝑆 + 𝑀𝑀(2 − 𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑚𝑚),
𝑆𝑆∈𝐼𝐼𝐾𝐾𝑠𝑠

𝑖𝑖𝑖𝑖

∀𝑖𝑖 ∈ 𝐼𝐼𝐾𝐾s
𝑝𝑝𝑆𝑆𝑚𝑚 , 𝑘𝑘 ∈ 𝐾𝐾𝑝𝑝, 𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶𝑜𝑜, 𝐶𝐶 ∈ 𝐴𝐴𝐴𝐴 

                   � 𝑥𝑥𝑆𝑆 ≥ 𝑑𝑑
𝑆𝑆∈𝐼𝐼𝐾𝐾𝑠𝑠

𝑜𝑜𝑜𝑜𝑜𝑜

, 

where 𝐾𝐾 is the set of all process units,  𝐾𝐾𝑝𝑝 ,𝐾𝐾𝑝𝑝 ⊂ 𝐾𝐾 are the 
sets of all reactors and separators, respectively. 𝛼𝛼𝑘𝑘 is the 
stoichiometric reactor conversion factor for a reactor 𝑘𝑘, 
𝛽𝛽𝑘𝑘,𝑝𝑝,𝑚𝑚 is the separation factor for a separator 𝑘𝑘 with an IL 
constructed by cation 𝑐𝑐 and anion 𝐶𝐶. 𝐼𝐼𝐾𝐾𝑆𝑆𝐴𝐴 and 𝐼𝐼𝐾𝐾𝑝𝑝𝑆𝑆𝑚𝑚 are the 
set of all inlet and outlet streams, respectively, and 𝑑𝑑 is 
the demand. The decision variables involve all the 
flowrate streams 𝑥𝑥𝑆𝑆 and the selection of cation and anion, 
𝑧𝑧𝑝𝑝 and 𝑧𝑧𝑚𝑚, respectively. The objective is to minimize the 
overall cost that includes the fixed cost, investment cost, 
operating cost, and cost associated with emissions or 
waste. 𝑐𝑐𝑘𝑘

𝑓𝑓 are coefficients for fixed cost; 𝑐𝑐𝑆𝑆𝐼𝐼 and 𝑐𝑐𝑘𝑘𝐼𝐼  are co-
efficients for operating cost for reactors and separators, 
respectively; and 𝑐𝑐𝑘𝑘𝑝𝑝 are coefficients for the cost associ-
ated with waste or emission. The first constraint is re-
lated to the unit selection and flowrate bounds. The sec-
ond constraint is for the overall mass balance around the 
reactors. The third and fourth constraints ensure that a 
feasible IL is constructed by choosing only one cation 
and one anion. The fifth and sixth constraints relate the 
output flows from the separators to the IL selection. In 
this way, the effect of the material selection on the pro-
cess performance is captured. The final constraint en-
sures that the sum of all output flows must satisfy the 
demand. The overall problem involves both binary and 
continuous variables. We solve the optimization problem 
using a quantum annealer and compare the solution 
against a deterministic solver that uses classical compu-
ting. All the quantum computation is performed on D-
Wave’s LeapHybrid solver, and the results are compared 
to that of a deterministic solver (BARON v44.2) run on a 
Dell Windows system with Intel(R) Core (TM) i7-8750 
2.20 GHz CPU and 16 GB RAM.  
 We select an initial pool of two cations and two ani-
ons. The goal is to select the best IL from the cation and 
anion pool, as well as to select the best reactor-separator 
network from two reactors and three separators. For that, 
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the parameters used are as follows: 𝛽𝛽1,1,1 = 0.7,𝛽𝛽1,1,2 =
0.9, 𝛽𝛽1,2,1 = 0.8, 𝛽𝛽1,2,2 = 0.9,  𝛽𝛽2,1,1 = 0.8,  𝛽𝛽2,1,2 = 0.7,  𝛽𝛽2,2,1 =
0.9,  𝛽𝛽2,2,2 = 0.6,  𝛽𝛽3,1,1 = 0.9,  𝛽𝛽3,1,2 = 0.6,  𝛽𝛽3,2,1 = 0.7,  𝛽𝛽3,2,2 =
0.9. The conversion factors for the two reactors are: 𝛼𝛼1 =
0.8,𝛼𝛼2 = 0.9. Cost parameters in the objective function  
are as follows: 𝑐𝑐1

𝑓𝑓 = 10, 𝑐𝑐2
𝑓𝑓 = 15, 𝑐𝑐3

𝑓𝑓 = 8, 𝑐𝑐4
𝑓𝑓 = 9, 𝑐𝑐5

𝑓𝑓 = 10. 
Operating cost parameters for the reactors are [0.5, 0.7]. 
Operating cost parameters for the separators are 
[0.2,0.7,0.5]. Emission cost parameters for the separators 
are [1.2,1.5,0.9]. The upper bound on the flowrate for all 
streams (see Figure 1) is 2. This results in a MINLP with 
39 constraints. Using these model parameters, we first 

solve the optimization model in GAMS using BARON 
v44.2. The optimal objective and the network selections 
are as follows: 𝑖𝑖𝑝𝑝𝑆𝑆𝑗𝑗 = 46.009,𝑦𝑦1 = 1,𝑦𝑦2 = 1,𝑦𝑦3 = 1,𝑦𝑦4 =
1,𝑦𝑦5 = 0, 𝑧𝑧1𝑝𝑝𝑚𝑚𝑚𝑚𝑆𝑆𝑝𝑝𝐴𝐴 = 0, 𝑧𝑧2𝑝𝑝𝑚𝑚𝑚𝑚𝑆𝑆𝑝𝑝𝐴𝐴 = 1, 𝑧𝑧1𝑚𝑚𝐴𝐴𝑆𝑆𝑝𝑝𝐴𝐴 = 1, 𝑧𝑧2𝑚𝑚𝐴𝐴𝑆𝑆𝑝𝑝𝐴𝐴 = 0. The 
optimal IL is constructed by combining the 2nd cation with 
the 1st anion. Also, both reactors are selected, and only 
the first and the second separators are selected.  
 We then solve the same optimization model in D-
Wave’s LeapHybrid solver. For that, we first eliminate the 
constraints for anion and cation selection, that is, 
∑  𝑧𝑧𝑝𝑝 = 1𝑝𝑝∈𝐶𝐶𝑚𝑚𝑚𝑚  and ∑  𝑧𝑧𝑚𝑚 = 1𝑚𝑚∈𝐴𝐴𝐴𝐴 , by observing that, for 
|𝐶𝐶𝐶𝐶𝑜𝑜| = |𝐴𝐴𝐴𝐴| = 2, an exact penalty function 𝑃𝑃(1 − 𝑧𝑧1 − 𝑧𝑧2 +

Table 2: Q matrix for illustrative example. 

 𝑧𝑧111 𝑧𝑧211 𝑧𝑧311 𝑧𝑧411 𝑧𝑧1 𝑦𝑦1 𝑦𝑦2 𝑒𝑒 𝑧𝑧𝑝𝑝111 𝑧𝑧𝑝𝑝211 𝑧𝑧𝑝𝑝311 𝑧𝑧𝑝𝑝411 𝑧𝑧𝑝𝑝 

𝑧𝑧111 0 0 0 0 0 −10−1 0 0 0 0 0 0 0 

𝑧𝑧211 0 0 0 0 0 −2
⋅ 10−1 0 0 0 0 0 0 0 

𝑧𝑧311 0 0 0 0 0 −3
⋅ 10−1 0 0 0 0 0 0 0 

𝑧𝑧411 0 0 0 0 0 −3
⋅ 10−1 

0 0 0 0 0 0 0 

𝑧𝑧1 0 0 0 0 0 −10−1 0 0 0 0 0 0 0 

𝑦𝑦1 −10−1 
−2
⋅ 10−1 

−3
⋅ 10−1 

−3
⋅ 10−1 

−10−1 0 𝑃𝑃/2 −𝑃𝑃 0 0 0 0 0 

𝑦𝑦2 0 0 0 0 0 𝑃𝑃/2 0 −𝑃𝑃 0 0 0 0 0 
𝑒𝑒 0 0 0 0 0 −𝑃𝑃 −𝑃𝑃 0 0 0 0 0 0 

𝑧𝑧𝑝𝑝111 0 0 0 0 0 0 0 0 10−2 2
⋅ 10−2 

3
⋅ 10−2 

3
⋅ 10−2 10−2 

𝑧𝑧𝑝𝑝211 0 0 0 0 0 0 0 0 2
⋅ 10−2 

4
⋅ 10−2 

6
⋅ 10−2 

6
⋅ 10−2 

2
⋅ 10−2 

𝑧𝑧𝑝𝑝311 0 0 0 0 0 0 0 0 3
⋅ 10−2 

6
⋅ 10−2 

9
⋅ 10−2 

9
⋅ 10−2 

3
⋅ 10−2 

𝑧𝑧𝑝𝑝411  0 0 0 0 0 0 0 0 3
⋅ 10−2 

6
⋅ 10−2 

9
⋅ 10−2 

9
⋅ 10−2 

3
⋅ 10−2 

𝑧𝑧𝑝𝑝 0 0 0 0 0 0 0 0 10−2 2
⋅ 10−2 

3
⋅ 10−2 

3
⋅ 10−2 10−2 

 
Figure 1: Schematic of an integrated IL selection and reactor-separator network 



 

Iftakher et al. / LAPSE:2024.1540 Syst Control Trans 3:292-299 (2024) 298 

2𝑧𝑧1𝑧𝑧2) can be achieved, where 𝑃𝑃 is a penalty parameter 
whose value is set to 2. After removing the two con-
straints and adding the equivalent penalties to the objec-
tive, we now have a reduced MINLP with 37 constraints. 
We then reformulate it to QUBO by adding a quadratic 
penalty to the objective function and representing con-
tinuous variables by unary encoding (𝐽𝐽 = 5). We obtain a 
feasible solution as follows: 𝑖𝑖𝑝𝑝𝑆𝑆𝑗𝑗 = 58.369,𝑦𝑦1 = 1,𝑦𝑦2 =
1,𝑦𝑦3 = 1,𝑦𝑦4 = 1,𝑦𝑦5 = 1, 𝑧𝑧1𝑝𝑝𝑚𝑚𝑚𝑚𝑆𝑆𝑝𝑝𝐴𝐴 = 0, 𝑧𝑧2𝑝𝑝𝑚𝑚𝑚𝑚𝑆𝑆𝑝𝑝𝐴𝐴 = 1, 𝑧𝑧1𝑚𝑚𝐴𝐴𝑆𝑆𝑝𝑝𝐴𝐴 =
0, 𝑧𝑧2𝑚𝑚𝐴𝐴𝑆𝑆𝑝𝑝𝐴𝐴 = 1. From the results, we can observe that all the 
process units are selected resulting in a higher value for 
the objective. However, it confirms that it is possible to 
obtain good feasible solutions using QC.     

CONCLUSIONS 
We have developed a technique for solving mixed-

integer programs using Quantum Computing (QC) that al-
lows us to solve Computer-aided Molecular and Process 
Design (CAMPD) problems. Our methodology utilizes ef-
ficient encoding schemes and transforms a class of 
Mixed-Integer Nonlinear Programs into Quadratic Uncon-
strained Binary Optimization (QUBO) models, thus mak-
ing them possible to solve using QC platforms. We 
demonstrate the framework for the selection of optimal 
ionic liquid and configuration of a reactor-separator pro-
cess with promising results suggesting QC's potential to 
solve CAMPD problems. However, scalability and ap-
plicability to large-scale industrial problems remain a 
challenge for the quantum optimization-based approach. 
Also, the solution quality and feasibility of the QC solution 
heavily depend upon the penalty parameter. Ongoing 
works include the decomposition of CAMPD models as 
well as the QUBO matrix by exploiting their structure, 
thus enabling the solution to larger CAMPD problems. 
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ABSTRACT 
We present a string representation for hybrid extraction and distillation using symbols represent-
ing phenomena building blocks. Unlike the conventional equipment-based string representation, 
the proposed representation captures the design details of liquid-liquid extraction and distillation. 
We generate a set of samples through the procedure of input parameter sampling and superstruc-
ture optimization that minimizes separation cost. We convert these generated samples into a set 
of string representations based on pre-defined rules. We use these string representations as de-
scriptors and connect them with conditional variational encoder. The trained conditional variational 
encoder shows good prediction accuracy. We further use the trained conditional variational en-
coder to screen designs of hybrid extraction and distillation with desired cost investment.  

Keywords: Extraction, Distillation, Machine Learning, Process Intensification 

INTRODUCTION 
Separation design is critical for plastic upcycling, bi-

omass valorization, carbon capture and utilization [1-3]. 
Liquid-liquid extraction and distillation are two commonly 
used separation methods. Hybrid extraction and distilla-
tion further reduces material and energy consumption by 
leveraging driving forces of solubility difference and vol-
atility difference, which leads to process intensification 
[4-6]. Global optimization of hybrid extraction and distil-
lation has been reported [7]. To reduce the computa-
tional efforts, machine learning shows promise to identify 
optimal hybrid extraction and distillation design with de-
sired separation cost using machine-readable represen-
tations [8]. These motivate the research into construct-
ing machine-readable data representation for learning 
flowsheets with design details and screening flowsheets 
that meet design objectives. 

Construction of machine-readable representation is 
an active area in the field of machine learning. Develop-
ment of such data representation with physical interpre-
tation requires domain knowledge. In the field of molec-
ular modeling, starting from SMILES (Simplified Molecular 
Input Line Entry System) [9], diverse and inclusive string 
representations have been reported. These include IN-
CHI strings for standardized searching across databases 

and the internet, DEEPSMILES for automated inverse de-
sign using deep generative models, CurlySMILES for 
macromolecules, and BigSMILES for polymers among 
others [9-13]. These sting representations for molecules 
are constructed based on the molecular structure infor-
mation such as atoms and their connections (SMILES) [9], 
information on tautomer, isotope, stereochemistry, and 
electronic charge (INCHI strings) [10], information on mo-
lecular details and extra-molecular features such as non-
covalent interactions, surface attachment, solutions, and 
crystal structures (CurlySMILES) [12], and stochastic ob-
ject that represents a molecule fragment that is stochas-
tic in the molecular structure (BigSMILES) [13]. In the field 
of process modeling, d’Anterroches and Gani proposed 
SFILES (simplified flowsheet-input line-entry system) us-
ing equipment-based flowsheet building blocks [14], 
which enables the flowsheet similarity comparison in the 
work of Zhang et al [15]. SFLIES has been recently ex-
tended to SFILES2.0 that describes top and bottom prod-
ucts, and the control structure [16] and to eSFILES that 
integrates process engineering domain knowledge and 
machine learning [17]. Despite the success in construct-
ing string representation based on equipment, limited 
representations exist that capture design details and en-
able the identification of novel design opportunities. 

Once these string representations are constructed 
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as descriptors and the corresponding training samples 
are generated, these samples are often related with de-
sign objectives through machine learning models. In the 
filed of molecular modeling, commonly used machine 
learning models include graph neural network (GNN) [18], 
variational autoencoder (VAE) [19], and conditional vari-
ational autoencoder (CVAE) [20]. GNNs take molecular 
graphs as inputs and perform convolutions based on the 
graph topology by aggregating the features of a node 
and its connected neighbors. The node features are em-
bedded into a fixed-dimension space where similar 
nodes are close to each other. VAEs generalize autoen-
coders, add stochasticity to the encoder which is com-
bined with a penalty term, and encourage all areas of the 
latent space to correspond to a valid decoding. To iden-
tify the optimal molecule structures, VAEs are often 
jointly trained with a property prediction model [19]. 
CVAEs distinguish from the VAEs by imposing certain 
conditions in the encoding and decoding processes and 
do not require further optimization during the search of 
new molecular design, which is required for the frame-
work with VAE and an additional neural network jointly 
trained [21].  

In this work, with a novel phenomena-based string 
representation, we develop a data-driven framework for 
learning and screening the design details of hybrid ex-
traction and distillation. Firstly, to generate data for au-
tomatic construction of phenomena-based string repre-
sentation, we use superstructure optimization by 

modeling hybrid extraction and distillation based on 
state-by-stage model for extraction column and shortcut 
model for distillation column. Then, these models are 
solved to global optimality with sampled input feature 
vectors to obtain minimum separation cost. These input 
feature vectors are sampled from the thermodynamic 
space approximated using Conductor-like Screening 
Model for Real Solvents (COSMO-RS) and molecular dy-
namics simulation [3]. We define rules for constructing 
the string representation with information on the phe-
nomena nodes, equipment boundary, and equipment 
connections, which is extracted from the solution of su-
perstructure optimization. These phenomena-based 
string representations are learned using conditional vari-
ational autoencoder, where new designs that meet de-
sired cost investment are sampled from the latent space.  

PROBLEM STATEMENT 
We consider the hybrid extraction and distillation 

systems with the following processing conditions: (1) the 
feed stream only contains water and one product while 
other components are neglected, and (2) the liquid-liquid 
extraction and distillation enrich product into a product 
stream from a ternary system of product (P), water (W), 
and solvent (S).  

Given are (1) specification on the feed stream (i.e., 
product mole fraction in feed), (2) specifications on the 
product stream (i.e., total product flowrate, product 

 
Figure 1: A data-driven framework for learning and screening hybrid extraction and distillation. A) Sample gener-
ation using superstructure optimization. B) Automatic construction of phenomena-based string representation. C) 
Learning phenomena-based string representation using conditional variational autoencoder. The symbol ‘|’ is used 
to capture the equipment boundary that encapsulates the assembly of phenomena interactions. Condition vector 
consists of values for input features and separation cost. 
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recovery from the feed, and product purity), (3) physical 
properties (liquid-liquid equilibrium constants, relative 
volatilities), (4) cost coefficients used for determining 
capital and operating costs of liquid-liquid extraction and 
distillation (solvent price is an operating cost coefficient 
for extraction), and (5) the maximum number of liquid-
liquid extraction stages. The assumptions in this work in-
clude that: (1) we consider ternary systems where the 
product mole fraction is low such that liquid-liquid equi-
librium constants are composition-independent and are 
identical at all stages of liquid-liquid extraction column, 
and (2) we consider distillation of near-ideal mixtures, al-
lowing us to assume constant relative volatility.  

The goal of this work is to construct a string repre-
sentation with information on physicochemical phenom-
ena, stream connections, and equipment boundary. With 
the proposed string representation, we use conditional 
variational autoencoder to map the discrete separation 
design space to a continuous latent space. This enables 
fast sampling within the latent space to screen designs 
of hybrid extraction and distillation that meets desired 
cost investment. 

COMPUTATIONAL FRAMEWORK 
In this Section, we describe the computational 

framework for learning and screening hybrid extraction 
and distillation (Figure 1). This framework consists of (1) 
sample generation using superstructure optimization, (2) 
automatic construction of phenomena-based string rep-
resentation, and (3) learning phenomena-based string 
representation using conditional variational autoencoder. 
With the trained conditional variational encoder, we sam-
ple within the latent space to screen designs of hybrid 
extraction and distillation.  

Sample Generation using Superstructure 
Optimization 

To generate the flowsheet samples with design de-
tails, we adapted the workflow of integrated molecular 
modeling and process modeling from Li et al. to the re-
duced framework (shown in Figure 1A) [22]. Here, we 
used superstructure model as the first-principle model to 
generate flowsheet samples with detailed design infor-
mation. Specifically, we used this framework to (1) pre-
dict a physically reasonable space of thermodynamic 
properties, (2) generate feature vectors by sampling 
within the space of thermodynamic properties and 
ranges of feature values, and (3) separation modeling 
and optimization to obtain the costs and design details of 
hybrid extraction and distillation for the sampled feature 
vectors.  

The representation, modeling, and optimization of 
hybrid extraction and distillation were achieved using 
classic superstructure optimization [23]. The 

representation of hybrid extraction and distillation in-
volves stage-by-stage representation of liquid-liquid ex-
traction column, equipment-based representation of dis-
tillation column, which were modeled using a shortcut 
model (detailed design information is extracted following 
the procedure described in the next subsection), and 
their stream connections [22]. This representation was 
modeled as a mixed-integer nonlinear programming 
(MINLP) problem. Discrete decisions are made on the ac-
tivation of liquid-liquid extraction stages and the use of 
the second potential distillation column. We used both 
stage-by-stage model (for liquid-liquid extraction col-
umn) and shortcut Underwood-Fenske model (for distil-
lation column) to balance the accuracy of separation 
physics and tractability of the proposed mathematical 
model [22]. The specifications for all hybrid extraction 
and distillation systems are (1) total product flowrate of 1 
kmol/s, (2) 95% product purity, and (3) 90% product re-
covery. Each MINLP model were solved using BARON for 
each input feature vector with 1% optimality gap and 
within 5 CPU hours, using parallel computing resources 
[24]. 

In this work, we considered the input features as liq-
uid-liquid equilibrium constants of solvent (𝜅𝜅𝑆𝑆) and prod-
uct (𝜅𝜅𝑃𝑃) , relative volatility between water and product 
(𝛼𝛼𝑊𝑊,𝑃𝑃) , relative volatility between solvent and product 
(𝛼𝛼𝑆𝑆,𝑃𝑃), and solvent price (𝜋𝜋𝑆𝑆). Here, W, S, P are water, sol-
vent, and product respectively. The bounds for these 
features are [1, 1000], [1, 50], [1.1, 2], [50, 6000] ($ per 
kmol solvent) respectively to focus on a property region 
with difficult distillation. Liquid-liquid equilibrium con-
stant of water was fixed at 0.01. We considered the prod-
uct mole fraction as 0.1. Through this adapted frame-
work, we prepared and generated 10,000 samples with 
values of input features, separation cost, and their corre-
sponding lst files containing design details. 9816 samples 
remain after removing infeasible samples. 

Automatic Construction of Phenomena-
based String Representation 

Phenomena building blocks enable the identification 
of novel design opportunities and capture detailed design 
information compared with equipment-based process 
design and synthesis [25-27]. We leveraged phenomena 
building blocks to construct a string representation for 
learning and screening flowsheets.  

We followed the rule of constructing SMILES and 
considered the criterion of leveraging information that 
uniquely and discretely represents the solutions of hybrid 
extraction and distillation models, which are obtained in 
the previous subsection. Following this criterion, we fo-
cus on the identity of physicochemical phenomena nodes 
and their connections. Specifically, we considered phys-
icochemical phenomena as mixing (M), liquid-liquid 
phase equilibrium (L), and vapor-liquid phase equilibrium 
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(V) and constructed separation flowsheet strings with 
nodes as phenomena for each sample (Figure 1B). We did 
not consider other common factors for all samples such 
as system specifications (total product flowrate, product 
purity, and product recovery) and generic postulated su-
perstructure representation with all equipment options 
(technology availability) in the proposed string represen-
tations since all optimal solutions are obtained based on 
these specifications and from the same search space 
represented by the superstructure. Moreover, since we 
solved each MINLP model to global optimality, we did not 
consider the initial conditions of solutions in the proposed 
string representation. 

Note that the distillation column is modeled using 
equipment-based shortcut model and hence only equip-
ment-wide design information can be obtained, which 
does not include the information on the position of feed 
stage. To obtain this information, based on the optimal 
solution for the MINLP model, we used Kirkbride equation 
[28] to determine the ratio of the number of stages above 
and below the feed stage. Based on this ratio and the to-
tal number of stage number in the distillation column, we 
located the position of feed stage and part of the python 
script is shown as follows: 

def kirkbride(B, D, xFHK, xFLK, xBLK, xDHK):               
lnDB = 0.206*np.log(B/D*xFHK/xFLK*(xBLK/ 
xDHK)**2) 
return np.exp(lnDB) 

Here, the input B, D, xFHK, xFLK, xBLK, and xDHK for the 
above function are values of bottom flow rate, flow rate 
of distillate stream, composition of heavy key component 
in the feed stream, composition of light key component 
in the feed stream, composition of light key component 
in the bottom stream, and composition of heavy key com-
ponent in the distillate stream of the distillation column. 
The output np.exp(lnDB) is the ratio of the number of 
stages above and below the feed stage.  

The other key components of the proposed string 
representation are (1) integer number to label different 
connecting streams, (2) symbol ‘>’ to represent inlet 
streams for equipment, (3) symbol ‘<’ to represent outlet 
streams for equipment, and (4) symbol ‘|’ to represent the 
first or the last stage of equipment to represent equip-
ment boundary, which encapsulates all involved physico-
chemical phenomena within certain equipment. Symbols 
‘>’ and ‘<’ are always placed next to the right of phenom-
ena nodes where stream connections exist. Multiple 
stream connections on the same phenomena node are 
ranked based on the index of stream connection.  An ex-
ample is illustrated in Figure 1B. Firstly, the solution in Fig-
ure 1B shows a mixer connected with an inlet solvent (S) 
stream, inlet stream 1, and outlet stream 2. This gives a 
substring as SM>1<2. Moreover, the liquid-liquid extrac-
tion column contains 3 stages with feed stream supplied 

on stage 1. The liquid-liquid extraction column connects 
with inlet stream 2 on stage 3 and connects with outlet 
stream 3 on stage 1. This gives a substring as 
|L>2LFL<3|. Furthermore, the distillation column involves 
8 stages with the 4th stage as a feed stage, top stream 
connected with outlet stream 1, and bottom stream con-
nected with outlet stream 4. Inlet stream 3 enters feed 
stage. This gives a substring as |V<1VVV>3VVVV<4|. 
Following the ascending order of stream index, we com-
bine these three substrings, which gives the full string 
representation for the hybrid extraction and distillation 
system in Figure 1B. The construction procedure is auto-
matically enabled through a python script with part of 
codes shown as follows: 

a = 0 
Next = [] 
open('file_name.lst', 'rt') as f: 
  data = f.readlines() 
for line in data: 
  if line.__contains__('---- VAR Next '): 

 num=re.findall("(?<=[AZaz])?(?!\d*=)[0-
9.+-]+",data[a])[3] 

 Next.append(num) 
  a=a+1 
if (Next == []): 
  Next=['0'] 
if (float(Next[-1]) >= 0): 
  string = '|L'+'>2'+'L'*(int(float(Next[-
1]))-2)+'FL<3|' 

Here, file_name.lst is the lst file containing the optimal so-
lution of hybrid extraction and distillation model for each 
sampled feature vectors. The symbol ‘Next’ is the varia-
ble for the stage number of liquid-liquid extraction col-
umn in the lst file, which represents the multiplicity of ‘L’ 
nodes in the string representation. With the developed 
python script, we converted 9816 samples obtained in 
the previous section into a data set with 9816 hybrid ex-
traction and distillation flowsheets represented by phe-
nomena-based strings. Note that the substring of 
S(M)>1<2 exists for all samples in this work, and hence 
this substring is redundant. Computational comparison 
suggests that removing this substring improves the 
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performance of training CAVE. In the result interpretation, 
we appended this substring at the beginning of gener-
ated string representation.  

Figure 2: Distribution of separation cost in the full dataset 
(9816 samples). 

Figure 2 illustrates the distribution of separation 
cost in the full dataset. Most samples involve separation 
cost ranging from $20 per kmol product to $80 per kmol 
product, which indicates economical separation using 
hybrid extraction and distillation for a feed with product 
mole fraction of 0.1. Note that the constant relative vola-
tility assumption does not extend the current work to 
separation systems with azeotropes due to challenges in 
sample generation. Future work to allow the sample gen-
eration and construction of string representations for 
systems with azeotropes involves: (1) replacing the fea-
tures of relative volatility with the features of parameters 
or grouped parameters in activity coefficient model (e.g., 
Wilson model  and UNIQUAC model) to account for noni-
deality in the liquid phase [6], (2) enumeration of repre-
sentative separation structures that allow azeotropic dis-
tillation, and (3) modeling the azeotropic distillation using 
stage-by-stage model. 

Learning phenomena-based string 
representation using CVAE 

With the phenomena-based string representation 
constructed in the previous subsection, we canonicalize 
each representation by adding ‘E’ at the end of string rep-
resentation. We combine all strings with ‘E’ into an input 
matrix. Each entry of the input matrix is converted to an 
entry with the size of 200 by adding ‘E’. Then, each entry 
is combined with a condition vector, which results in the 
final string. We fill the sampled values for 𝜅𝜅𝑆𝑆 , 𝜅𝜅𝑃𝑃 , 𝛼𝛼𝑊𝑊,𝑃𝑃 , 
𝛼𝛼𝑆𝑆,𝑃𝑃, 𝜋𝜋𝑆𝑆, and the cost of hybrid extraction and distillation 
into the condition vector (shown in the bottom of Figure 
1B). The condition vector represents the known thermo-
dynamic properties, solvent price, and cost value for an 
optimized hybrid extraction and distillation system. We 
combine all final strings with condition vectors into the 
processed input matrix. 

The processed input matrix is related with the en-
coder of the CVAE to generate a latent space (Figure 1C). 
We used the recurrent neural network (RNN) with the 
long short-term memory (LSTM) cell for both the encoder 
and decoder of the CVAE [29]. The architecture of the 
RNN consists of (1) 3-layer and (2) 500 hidden nodes on 
each layer. A layer with softmax function was used in 
each output of the decoder cell. The latent vector com-
bined with the condition vector becomes an input of the 
decoder at each time step of the RNN cell. Finally, the 
output vector of each decoder cell was converted to a 
vector whose size is identical to that of the vector of the 

input matrix. The softmax activation function was applied 
to each converted vector. The loss function of CVAE is 
given as follows [20]: 

𝛦𝛦[log𝑃𝑃(𝑋𝑋|𝑧𝑧, 𝑐𝑐)] − 𝐷𝐷𝐾𝐾𝐾𝐾[𝑄𝑄(𝑧𝑧|𝑋𝑋, 𝑐𝑐) ∥ 𝑃𝑃(𝑧𝑧|𝑐𝑐)  (1) 

Here, 𝛦𝛦(𝑓𝑓) represents the expectation value of function 
𝑓𝑓 . 𝑃𝑃  and 𝑄𝑄  are probability distributions. 𝐷𝐷𝐾𝐾𝐾𝐾  is the kull-
back-leibler (KL) divergence. 𝑋𝑋 , 𝑧𝑧 , and 𝑐𝑐  indicate the 
data, latent space, and condition vector respectively. The 
first term is reconstruction error, and the second term is 
a regularization term that minimizes the KL-divergence 
between the variational and true encoders. We used 
cross entropy in the reconstruction error term of the cost 
function. To generate a flowsheet for hybrid extraction 
and distillation with given input feature values and de-
sired separation cost imposed by the condition vector, 
the cell of the RNN decoder was unrolled for 200 times. 
The result was considered as invalid if the following con-
ditions exist: (1) no ‘L’ exists within the 200 characters, 
(2) no ‘V’ exists within the 200 characters, (3) no ‘E’ exists 
within the 200 characters, (4) no ‘|’ exists on the left side 
of the first ‘L’ symbol, and (5) no ‘|’ exists on the right side 
of the last ‘V’ symbol. Each output vector of the decoder 
cell represents the probability distribution of the charac-
ters of the proposed phenomena-based representation 
and ‘E’. Finally, the output vector was converted to the 
phenomena-based string representation. We imple-
mented CVAE using TensorFlow 1.14.0 [30]. 

We set hyperparameters as follows: (1) 80 % of total 
samples are used for training and the remaining samples 
are used for test, and (2) the learning rate was set as 
0.0001 and exponentially decayed at a rate of 0.97. The 
model was trained within 250 epochs. Figure 3 gives the 

update of loss function values on training and test sets.  

Figure 3: Update of loss function values of conditional 
variation autoencoder on training and test set. 

Results Discussion 
In this Section, we use the proposed phenomena-

based string representation as the descriptor and lever-
age the CVAE to generate hybrid extraction and 



 

Li / LAPSE:2024.1541 Syst Control Trans 3:300-307 (2024) 305 

distillation systems with given thermodynamic property 
values and solvent price to meet desired cost investment.  

The feature values are 4.59, 696.38, 1.42, 1.23, and 
$5281.15 per kmol solvent for 𝜅𝜅𝑃𝑃 , 𝜅𝜅𝑆𝑆 , 𝛼𝛼𝑊𝑊,𝑃𝑃 , 𝛼𝛼𝑆𝑆,𝑃𝑃 , and 𝜋𝜋𝑆𝑆 , 
respectively. The separation cost for this feature vector 
is $79.44 per kmol product according to the optimal so-
lution for the hybrid extraction and distillation model. 
Based on this reference separation cost, we vary the 
separation cost value for the hybrid extraction and distil-
lation system to screen the most economical design. We 
consider separation cost values as 10， 60， 80，100, 
and 200 (with unit of $ per kmol product). Five conditional 
vectors are constructed by filling into the feature values 
and separation cost value. We combine the condition 
vector with the latent vector, which are sampled by add-
ing a Gaussian noise to the latent space of separation 
flowsheets selected randomly from the training set.  

Based on the corresponding latent vectors and con-
dition vectors, we generate the string representations 
and only keep the string representation with smallest 
length. These generated string representations with the 
smallest length for five separation cost values are given 
in Figure 4. The phenomena-based string representation 
(denoted as string 0) for the obtained optimal hybrid ex-
traction and distillation system is as follows: 

|L>2LLLLLLLLLLLLLLLLLLLLLLLLLLLLLFL<3||V<1VVVVV
VVVVVVVVVVVVVVVVVVVVVVVV>3VVVVVVV<4| 

This optimal separation system consists of one liquid-liq-
uid extraction column and one distillation column.  

As shown in Figure 4, the proposed data-driven 
framework has learned the representation of phenomena 
nodes (L and V), stream connections (< and >), and 
equipment boundary (|). For the separation cost of $80 
per kmol product, the predicted string representation is 
close to the one obtained from the optimal solution of 
MINLP model. This indicates good prediction perfor-
mance. The differences are (1) the number of nodes (32 
nodes) for liquid-liquid phase equilibrium (L) in the 

predicted string representation is more than those (31 
nodes) in the string representation obtained from the so-
lution of separation process optimization, and (2) the 
number of nodes (38 nodes) for vapor-liquid phase equi-
librium (V) in the predicted string representation is more 
than those (37 nodes) in the string representation ob-
tained from the solution of separation process optimiza-
tion. 

Figure 4: Generated phenomena-based string represen-
tations with varying separation costs. 

At the separation cost of $10 per kmol product, no 
valid string representations exist, which indicates that 
the desired separation cost of $10 per kmol product can 
not be achieved. Moreover, we observe that comparing 
the string representations for $60 per kmol product and 
$80 per kmol product, the predicted string representa-
tion has larger length for $60 per kmol product, which in-
dicates more stages in liquid-liquid extraction column or 
distillation column. The increase of stage number in liq-
uid-liquid extraction column or distillation column can de-
crease operating costs related with solvent or utility con-
sumption. We also note that string 2 for $60 per kmol 
product shows a separation system with two distillation 
columns. For the design of liquid-liquid extraction col-
umn, the separation system for string 2 has more extrac-
tion stages (49 stages) than the separation system for 
string 3 (32 stages). For the design of distillation column, 
the separation system for string 2 has more distillation 
stages (39 stages) than the separation system for string 
3 (38 stages). This case indicates that other factors that 
influence separation costs are solvent and utility con-
sumption, which are continuous variables and are not 
captured in the proposed string representation. When the 
desired separation cost is higher than $80 per kmol prod-
uct, we also observe string representations with larger 
length. This is because more stages in liquid-liquid ex-
traction column or distillation column make capital costs 
for separation systems represented by string 4, 5 higher 
than the capital cost for separation system represented 
by string 3.  

Moreover, the above analysis also indicates that 
more economical separation design can be achieved by 
adjusting solvent and utility consumption. Specifically, 
we observe an improved solution (string 2) for designing 
hybrid extraction and distillation system. To validate this, 
we fix the design of liquid-liquid extraction column, and 
activate two distillation columns in the MINLP model, and 
we obtain the optimal solution as $75.5 per kmol product. 
Although this improved solution is still not identical to the 
desired separation cost of $60 per kmol product, we ex-
pect to improve exploration performance of CVAE when 
using a training set with more samples. 
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CONCLUSION  
In this work, we propose a phenomena-based string 

presentation for learning and screening the designs of 
hybrid extraction and distillation. In the proposed repre-
sentation, we leverage the phenomena building blocks of 
liquid-liquid phase equilibrium, vapor-liquid phase equi-
librium, and mixing while considering stream connections 
and equipment boundary. We train conditional variational 
autoencoder with condition vector on the feature values 
of liquid-liquid equilibrium constants of solvent, and 
product, relative volatilities, and solvent price. The 
trained conditional variational autoencoder shows good 
prediction performance. We apply the proposed frame-
work for learning and screening separation systems for 
product separation with product mole fraction in the feed 
as 0.1. With the trained conditional variational autoen-
coder, we fix the values of input features, vary the values 
of separation cost, and predict the corresponding optimal 
designs of hybrid extraction and distillation represented 
by phenomena-based strings. Our proposed approach 
shows promise as a bottom-up data representation for 
flowsheet learning, data standardization, and generation 
of flowsheet database. Future work involves the consid-
eration of more phenomena node options, automatic 
conversion of phenomena-based string representations 
to equipment-based chemical flowsheets, and conver-
sion among different representations of flowsheet data.  
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ABSTRACT 
Adaptive and self-optimizing intelligent systems such as digital twins are increasingly important in 
science and engineering. Digital twins utilize mathematical models to provide added precision to 
decision-making. However, physics-informed models are challenging to build, calibrate, and vali-
date with existing data science methods. Model-based design of experiments (MBDoE) is a pop-
ular framework for optimizing data collection to maximize parameter precision in mathematical 
models and digital twins. In this work, we apply MBDoE, facilitated by the open-source package 
Pyomo.DoE, to train and validate mathematical models for batch crystallization. We quantitatively 
examined the estimability of the model parameters for experiments with different cooling rates. 
This analysis provides a quantitative explanation for the heuristic of using multiple experiments at 
different cooling rates.  

Keywords: Model-based Design, Batch Crystallization, Intelligent Systems, Pyomo, Digital Twins 

INTRODUCTION 

Digital Twins and Model-based Design of 
Experiments 

Spearheading the data-driven revolution, the indus-
trial implementation of inexpensive sensors and other 
data-capturing technologies has increased the availabil-
ity of information [1]. However, the collected data has 
significant analysis limitations due to existing software 
and modeling capabilities [2]. At the confluence of these 
challenges, digital twins, i.e., virtual representations of 
physical systems, are increasing across industries rang-
ing from agriculture to medicine [3,4]. At the heart of 
many digital twins are science-based mathematical mod-
els with physically meaningful parameters estimated 
from sensor data, often in real-time. These science-
based models are created, maintained, and updated us-
ing data science tools, including model selection, param-
eter estimation, sensitivity and uncertainty analysis, and 
model-based design of experiments (MBDoE). MBDoE 
supports improved parameter precision or model dis-
crimination for science-based models with physically 
meaningful parameters [5] through the following form: 

 𝑦𝑦𝑖𝑖 = 𝑚𝑚(𝒙𝒙𝑖𝑖 ,𝜽𝜽) + 𝜖𝜖𝑖𝑖, 𝜖𝜖𝑖𝑖~𝒩𝒩(0,𝜎𝜎𝜖𝜖2)        (1) 

where 𝑦𝑦 represents the 𝑖𝑖-th measurement from an exper-
iment with an observation error 𝜖𝜖𝑖𝑖 following an assumed 
probability distribution, e.g., independent and identically 
normally distributed with mean 0 and variance 𝜎𝜎𝜖𝜖2. Here, 
𝑚𝑚(⋅,⋅) denotes the mathematical model, 𝒙𝒙𝑖𝑖 depicts the in-
put and control variables for the 𝑖𝑖-th measurement, and 
𝜽𝜽 are the model parameters. 

Training and validating a mathematical model using 
MBDoE is done sequentially. The model is updated and 
recalibrated before determining the next best set of ex-
perimental conditions to maximize information gain [6]. 
MBDoE aims to improve parameter precision in the esti-
mated parameters by minimizing the associated uncer-
tainty [5,7]. Encoding the mathematical model requires 
initial parameter values. Estimating the values for these 
parameters is done by using data collected from simula-
tions of the experimental procedure. Model parameters 
are estimated from data using nonlinear regression:  

𝜽𝜽� = argmin
𝜽𝜽

Ψ ∶=  1
2
∑ [𝑦𝑦𝑖𝑖 − 𝑚𝑚(𝒙𝒙𝑖𝑖 ,𝜽𝜽)]2𝑖𝑖   (2) 

For more sophisticated observation error assumptions, 
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maximum likelihood estimation, variational inference, or 
Bayesian methods are used instead of Eq. (2).  
 Next, we consider the Hessian matrix 𝑯𝑯 to quantify 
the sensitivity of least-squares objective Ψ to the pertur-
bations in 𝜽𝜽: 

𝑯𝑯 =  

⎣
⎢
⎢
⎢
⎡

𝜕𝜕2Ψ
𝜕𝜕𝜃𝜃12

… 𝜕𝜕2Ψ
𝜕𝜕𝜃𝜃𝑛𝑛𝜕𝜕𝜃𝜃1

⋮ ⋱ ⋮
𝜕𝜕2Ψ

𝜕𝜕𝜃𝜃1𝜕𝜕𝜃𝜃𝑚𝑚
… 𝜕𝜕2Ψ

𝜕𝜕𝜃𝜃𝑚𝑚2 ⎦
⎥
⎥
⎥
⎤
              (3) 

When the residuals 𝑦𝑦𝑖𝑖 − 𝑚𝑚(𝒙𝒙𝑖𝑖 ,𝜽𝜽) are small, 𝑯𝑯 ≈ 𝑸𝑸𝑇𝑇𝑸𝑸, 
where 𝑸𝑸 is the sensitivity of the model predictions with 
respect to the model parameters 𝜽𝜽 [8]. The sensitivity 
matrix 𝑸𝑸(𝜽𝜽) is as follows: 

𝑸𝑸(𝜽𝜽) =  

⎣
⎢
⎢
⎡
𝜕𝜕𝑚𝑚(𝒙𝒙1, 𝜽𝜽) 

𝜕𝜕𝜃𝜃1
… 𝜕𝜕𝑚𝑚(𝒙𝒙1, 𝜽𝜽)

𝜕𝜕𝜃𝜃𝑚𝑚
⋮ ⋱ ⋮

𝜕𝜕𝑚𝑚(𝒙𝒙𝑛𝑛, 𝜽𝜽)
𝜕𝜕𝜃𝜃1

… 𝜕𝜕𝑚𝑚(𝒙𝒙𝑛𝑛, 𝜽𝜽)
𝜕𝜕𝜃𝜃𝑚𝑚 ⎦

⎥
⎥
⎤
         (4) 

 MBDoE uses the Fisher information matrix (FIM) 𝑀𝑀𝜽𝜽� 
to measure the information content about parameters 𝜽𝜽 
contained in proposed experiment(s) 𝒙𝒙𝑖𝑖 for the model 
𝑚𝑚(𝒙𝒙𝑖𝑖 ,𝜽𝜽): 

𝑴𝑴𝜽𝜽� ≈ Σ𝜽𝜽�
−1 ≈ 1

𝜎𝜎𝜖𝜖2
(𝑸𝑸𝑇𝑇𝑸𝑸)          (5) 

where 𝜎𝜎𝜖𝜖2 is the variance of the measurement uncertainty 
𝜖𝜖 and Σ𝜽𝜽� is the covariance of the estimated parameters. 
Finally, the MBDoE optimization formulation is given by:  

𝒙𝒙∗ = argmax
𝒙𝒙

 Φ[𝑴𝑴�𝜽𝜽�,𝒙𝒙� + 𝑴𝑴0]          (6) 

where 𝒙𝒙∗ are the optimal conditions for the next experi-
ment considering prior information 𝑴𝑴0. Φ(⋅) is a matrix 
operation such as determinant (D-optimality), trace (A-
optimality) or smallest eigenvalue (E-optimality). 
 Let 𝜆𝜆𝑖𝑖 and  𝐯𝐯𝑖𝑖 represent the eigenvalues and eigen-
vectors of 𝑴𝑴𝜽𝜽�. Because 𝑴𝑴𝜽𝜽� ≈ 𝚺𝚺𝜽𝜽�

−1, the eigenvalues and ei-
genvectors of 𝚺𝚺𝜽𝜽�

−1 are approximately  𝜆𝜆𝑖𝑖−1 and 𝐯𝐯𝑖𝑖. The co-
variance matrix 𝚺𝚺𝜽𝜽�

⬚ is often represented as a confidence 
ellipsoid with axes 𝜆𝜆𝑖𝑖−1𝐯𝐯𝑖𝑖 [5].  
 Model 𝑚𝑚(⋅,⋅) is identifiable if there exists a (possibly 
infinite) dataset for which it is possible to uniquely esti-
mate the model parameters [9]. Structural issues, such 
as a parameter appearing only in a sum (𝜃𝜃1 + 𝜃𝜃2) or prod-
uct (𝜃𝜃1 × 𝜃𝜃2) will cause a model to be not identifiable; even 
with an infinite amount of data it is impossible to uniquely 
estimate both parameters (𝜃𝜃1 and  𝜃𝜃2). In contrast, this 
short paper analyzes the practical identifiability, i.e., es-
timability, [10] of parameters in a batch crystallization 
model considering specific sets of experiments.  

Crystallization 
Crystallization is a fundamental unit operation for 

the purification of substances necessary for objectives 
relating to separations for critical mineral recovery [11], 

agriculture [12], food [13], fine chemicals [14], and phar-
maceuticals [15]. Depending on the application (i.e., fer-
tilizers, product quality and shelf life, fine chemicals, and 
active pharmaceutical ingredients), different critical qual-
ity attributes (i.e., crystal size, distribution) greatly impact 
the efficacy of the final product [16-19]. Tailored experi-
mental procedures are required for each application to 
identify desired crystal properties. This remains difficult 
due to the highly nonlinear nature of crystallization dy-
namics and the need to control the operating conditions 
necessary for crystallization [20]. Due to the experi-
mental design conditions of crystallization, open chal-
lenges include developing processes in confined volumes 
[21] as well as continuous manufacturing with time and 
material constraints [22].   

The basic driving mechanisms for crystallization are 
nucleation and growth, which are thermodynamically fa-
vorable through a concentration gradient (i.e., supersat-
uration). Kinetic parameters for these processes are tra-
ditionally found through experimental procedures [23]. 
As such, determining the size and shape distribution of 
crystals is attainable through crystallization modeling 
[24]. Understanding crystallization processes with ki-
netic parameters is often achieved through population 
balance modeling [25]. However, estimating these pa-
rameters in crystallization models from experimental data 
is challenging due to the numerical complexities in a pop-
ulation balance equation (PBE) [26]. 

Crystallization DoE Heuristics 
For in-silico processes, we focus on the heuristics in 

crystallization for designing improved experimental cam-
paigns. It is common practice to estimate primary nucle-
ation (𝑘𝑘𝑏𝑏1 and 𝑏𝑏1) through induction time measurements, 
i.e., unseeded with no cooling (𝛽𝛽=0), then later estimating 
secondary nucleation (𝑘𝑘𝑏𝑏2 and 𝑏𝑏2) from seeded experi-
ments. An aging process is necessary after the seeding 
process, and the decline of supersaturation can arise 
from growth only (𝑘𝑘𝑔𝑔 and 𝑔𝑔) or secondary nucleation and 
growth, which is based on the kinetics [27]. For unseeded 
experiments, a suitable seed for secondary nucleation is 
obtained from primary nucleation [28]. The growth of the 
crystal nuclei is necessary for detecting primary nuclea-
tion and activating secondary nucleation [29]. The rates 
for nucleation as well as crystal growth are usually de-
pendent on the power law relations of supersaturation 
[30].  

Paper Contribution 
This paper uses practical identifiability analyses to 

provide mathematical insights into the above-mentioned 
crystallization modeling heuristics.  

CRYSTALLIZATION MODEL 
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We now describe a simple batch crystallization 
model. We then analyze the practical identifiability of 
crystallization kinetics parameters 𝑘𝑘𝑏𝑏1 , 𝑏𝑏1,𝑘𝑘𝑏𝑏2 , 𝑏𝑏2,𝑘𝑘𝑔𝑔, and 𝑔𝑔 
(described below) using one or more unseeded experi-
ment performed at different cooling rates 𝛽𝛽. 

Population Balance Equation 
A standard PBE represents the change in particle 

population for a specified volume. For the given problem, 
a one-dimensional PBE was used to describe the batch 
crystallization system with the form: 

𝜕𝜕𝜕𝜕(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝜕𝜕𝜕𝜕𝜕𝜕(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝐿𝐿

= 𝐵𝐵𝐵𝐵(𝐿𝐿 − 𝐿𝐿0)                    (7) 

where the number of crystals per crystal length and the 
volume of slurry are depicted by the number density 
function 𝑛𝑛(𝐿𝐿, 𝑡𝑡), 𝐺𝐺 is the crystal growth rate, 𝐵𝐵 is the nu-
cleation rate, 𝐿𝐿 is the length of the crystals, 𝐿𝐿0 is the nu-
clei size, 𝐵𝐵 is the Dirac delta function, 𝜎𝜎 is relative super-
saturation, and 𝑡𝑡 represents the time. The kinetics for 
growth and nucleation of particles can be described with 
power laws: 

𝜎𝜎 = 𝐶𝐶−𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠
𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠

            (8) 

𝐺𝐺 = 𝑘𝑘𝑔𝑔𝜎𝜎𝑔𝑔                   if 𝜎𝜎 > 0         (9) 

𝐵𝐵𝑝𝑝 = 𝑘𝑘𝑏𝑏1𝜎𝜎
𝑏𝑏1               if 𝜎𝜎 > 0       (10) 

𝐵𝐵𝑠𝑠 = 𝜀𝜀𝑀𝑀𝑇𝑇𝑘𝑘𝑏𝑏2𝜎𝜎
𝑏𝑏2       if 𝜎𝜎 > 0        (11) 

𝐵𝐵 = 𝐵𝐵𝑝𝑝 + 𝐵𝐵𝑠𝑠          (12) 

Total nucleation rate (𝐵𝐵) is often described with both pri-
mary (𝐵𝐵𝑝𝑝) and secondary (𝐵𝐵𝑠𝑠) mechanisms. Here 𝑘𝑘𝑔𝑔, 𝑘𝑘𝑏𝑏1, 
𝑘𝑘𝑏𝑏2 and 𝑔𝑔, 𝑏𝑏1, 𝑏𝑏2 are the rate constants and the power law 
exponents for growth, primary nucleation, and secondary 
nucleation, respectively. These six parameters are the 
focus of our analysis. 𝑀𝑀𝑇𝑇 is the slurry density and 𝜀𝜀 is the 
power density. 𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡 is the saturation concentration for the 
system temperature given in the equation below: 

𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡 = 𝐴𝐴1exp (𝐴𝐴2𝑇𝑇)           (13) 

where 𝐴𝐴1 and 𝐴𝐴2 are parameters found through a solubil-
ity study. For an unseeded system (i.e., 𝑛𝑛=0), the initial 
and boundary conditions for this PBE are given by:  

𝑛𝑛(𝐿𝐿, 0) =  0          (14) 

𝑛𝑛(0, 𝑡𝑡) =  𝐵𝐵𝐵𝐵(𝐿𝐿−𝐿𝐿0) 
𝜕𝜕

       if 𝜎𝜎 > 0                        (15)      

where we assume that the initial birth rate is negligible 
and growth rate is independent of crystal length. As time 
progresses, a solute mass balance equation is used to 
define the change in concentration inside the crystallizer 
such that: 

𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

= −3𝜌𝜌𝑐𝑐𝐾𝐾𝑣𝑣 ∫ 𝑛𝑛𝐺𝐺𝐿𝐿2𝑑𝑑𝐿𝐿∞
0         (16) 

with 𝐶𝐶 as the solute concentration, 𝜌𝜌𝑐𝑐 as the solid density 

of a crystal, and 𝐾𝐾𝑣𝑣 as the volumetric shape factor.  

Method of Moments 
To reduce the complexity of the PBE, the method of 

moments converted the partial differential equations of 
the PBE to a set of ordinary differential equations [32] by 
solving the equations in the model using the first four mo-
ments calculated through the population density func-
tion:  

𝑑𝑑𝜇𝜇0
𝑑𝑑𝑡𝑡

= 𝐵𝐵          (17) 

𝑑𝑑𝜇𝜇𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝑖𝑖𝐺𝐺𝜇𝜇𝑖𝑖−1     ∀𝑖𝑖  𝜖𝜖  {1,2,3,4}        (18) 

𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

= −𝑑𝑑𝑀𝑀𝑇𝑇

𝑑𝑑𝑡𝑡
= −3𝜌𝜌𝑐𝑐𝐾𝐾𝑣𝑣𝐺𝐺𝜇𝜇2             (19)                                 

where 𝜇𝜇𝑖𝑖 is the 𝑖𝑖-th moment of the crystal size distribu-
tion. The moments represent a physical significance per 
unit volume for total crystal number, total crystal length, 
total crystal surface area, and total crystal volume.  

Model Implementation in Pyomo 
A typical experiment was defined for a batch crys-

tallization system in the Pyomo modeling environment. 
We fixed the parameters for a solid density of a crystal 
𝜌𝜌𝑐𝑐, volume shape factor 𝐾𝐾𝑣𝑣, and the solubility parameters 
𝐶𝐶1 and 𝐶𝐶2. For the linear cooling of the crystal suspension, 
an ordinary differential equation was used to describe 
temperature of the form: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

= −𝛽𝛽          (20) 

where 𝛽𝛽 refers to the cooling rate. Empirical equations 
were used to define the growth and birth rate in the crys-
tallizer [33,34]. The FIM 𝑴𝑴 ∈ ℝ6×6 was calculated using 
Pyomo.DoE [31] for the following six parameters: 𝑘𝑘𝑏𝑏1 and 
𝑏𝑏1 for primary nucleation, 𝑘𝑘𝑏𝑏2 and 𝑏𝑏2 for secondary nucle-
ation, and 𝑘𝑘𝑔𝑔 and 𝑔𝑔 for growth.   

RESULTS 
We simulated the batch crystallization experiment at 

four different cooling rates: 𝛽𝛽=0, 𝛽𝛽=0.1, 𝛽𝛽=0.2, and 𝛽𝛽=0.3 
in °C min-1. For each experiment, we calculated the FIM. 
Finally, we analyzed the practical identifiability of each 
experiment and several collections of multiple experi-
ments. All experiments start as a 1% supersaturated so-
lution.  

Simulation Profiles  
Figure 1 shows the temperature decreases linearly 

with time for 𝛽𝛽=0.1, 0.2, and 0.3 °C min-1 as expected. As 
noted previously, when applying cooling to a vessel, sol-
ubility of the solute generally decreases. Therefore, when 
the temperature of a solution changes, supersaturation is 
generated thermodynamically, causing the solute to 
crystallize out of solution. 
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Figure 1. Change in temperature (K) over time for 𝛽𝛽=0.1, 
0.2, and 0.3 (°C min-1). 

 Subsequently, Figures 2 to 4 show the decrease in 
solute saturation concentration and operating concentra-
tion as a function of time for 𝛽𝛽=0.1, 0.2, and 0.3 °C min-1. 
As expected, these concentrations decrease the fastest 
with the fastest cooling. This makes sense because the 
solubility will decrease as temperature decreases such 
that the solute separates from the solution as crystals 
form. 

 
Figure 2. Operating and saturation concentration (g cm-

3) over time for 𝛽𝛽=0.1 (°C min-1). 

 
Figure 3. Operating and saturation concentration (g cm-

3) over time for 𝛽𝛽=0.2 (°C min-1). 
 

 
Figure 4. Operating and saturation concentration (g cm-

3) over time for 𝛽𝛽=0.3 (°C min-1). 
 

 
Figure 5. Change in average particle size (𝜇𝜇m) over time 
for 𝛽𝛽=0.1, 0.2, and 0.3 (°C min-1). 

 Figure 5 investigates the change in average particle 
size over time for three different cooling rates to under-
stand the growth distribution. As the cooling rate in-
creases, the average particle size grows at a faster rate. 
This is likely due to incubation time (time to first nuclei 
forming) decreasing as the cooling rate increases, result-
ing in a longer period of low supersaturation where 
growth is the dominant mechanism. 

Eigendecomposition of the FIM 
 We now analyze the eigendecompositions of the 
FIMs from proposed experiments to explore the estima-
bility of the model. Recall, the basis of eigenvectors is de-
fined with respect to the model parameters. In Tables 1 
to 6 (after references), each row (except the last) corre-
sponds to a model parameter. Each column is an eigen-
vector. The last row reports the eigenvalues. Within each 
column, the largest absolute eigenvector element is high-
lighted in blue. For example, in Table 1, the fifth and sixth 
columns report 𝜆𝜆5 = 9.270 × 10−10 and 𝜆𝜆6 = 2.622 × 10−12. 

Both eigenvalues are small, indicating significant 
practical identifiability issues. Specifically, the largest 
components of 𝐯𝐯5 and 𝐯𝐯6 correspond to the secondary 
nucleation parameters 𝑘𝑘𝑏𝑏2 and 𝑏𝑏2. In other words, these 
eigenvectors are predominantly in the direction of 𝑘𝑘𝑏𝑏2 and 
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𝑏𝑏2. Because 𝜆𝜆5 and 𝜆𝜆6 are small, the proposed experiment 
contains little information about these two parameters. 
On the other hand, we can see for the largest eigenval-
ues, 𝜆𝜆1 and 𝜆𝜆2, the predominant direction of 𝐯𝐯1 is growth 
(𝑘𝑘𝑔𝑔), and 𝐯𝐯2 is primary nucleation (𝑏𝑏1), which contain the 
most information for this experiment. This makes sense 
since this experiment is not seeded, so we obtain infor-
mation about primary nucleation 𝑏𝑏1.  

 Table 2 shows a significant increase in the magni-
tude of the smallest eigenvalues and the number of ei-
genvalues above one for 𝛽𝛽=0.1 (°C min-1) compared to 
𝛽𝛽=0 (°C min-1) (Table 1). This corresponds with an im-
proved practical identifiability in the growth parameter 
(𝑔𝑔). This is likely because using a non-zero cooling rate 
disposes the system to the thermodynamic driving force: 

solute supersaturation. As the cooling rate increases, the 
smallest eigenvalue decreases from order 10−3 (Table 2) 
to 10−6 (Table 3). In both tables, 𝐯𝐯6 is predominantly in the 
direction of 𝑘𝑘𝑏𝑏1 . 

As the cooling rate increases (Table 4), the magni-
tude and primary direction of the eigenvalues and eigen-
vectors change. The smallest eigenvalue increases from 
order 10−6 (Table 3) to 10−5 (Table 4). Primary nucleation 
𝑘𝑘𝑏𝑏1 remains the parameter with the least information for 
Tables 2 to 4. 
 Often, in crystallization studies, multiple cooling 
rates are used to identify growth. Thus, we consider two 
possible experiment campaigns: (1) two experiments at 
𝛽𝛽=0.2 and 𝛽𝛽=0.3 and (2) three experiments at 𝛽𝛽=0.1, 
𝛽𝛽=0.2, and 𝛽𝛽=0.3. For both scenarios, the FIMs are 

Table 1: Eigendecomposition of the FIM for the 𝛽𝛽=0 (no cooling) candidate experiment. The columns are eigen-
vectors, and the rows are model parameters. The last row are the eigenvalues. The largest absolute elements in 
each vector are highlighted in blue. 

 𝐯𝐯1 𝐯𝐯2 𝐯𝐯3 𝐯𝐯4 𝐯𝐯5 𝐯𝐯6       

kb1  7.261 × 10−2 −6.303 × 10−1 4.392 × 10−2 −7.524 × 10−1 1.716 × 10−1 −2.966 × 10−3 

b1 
 −8.827 ×

10−2 
7.662 × 10−1 −2.861 × 10−2 −6.186 × 10−1 1.469 × 10−1 −2.069 × 10−3 

kb2 4.403 × 10−4 −3.815 × 10−3 −4.539 × 10−3 1.758 × 10−1 7.684 × 10−1 6.154 × 10−1 
b2 −2.953 × 10−4 2.562 × 10−3 2.497 × 10−3 −1.417 × 10−1 −5.988 × 10−1 7.882 × 10−1 
kg 7.922 × 10−1 1.214 × 10−1 5.979 × 10−1 9.889 × 10−3 9.894 × 10−4 5.374 × 10−4 
g 5.995 × 10−1 2.876 × 10−2 −7.998 × 10−1 −1.324 × 10−2 −1.322 × 10−3 −7.19 ×  10−4 
λ𝑖𝑖 2.192 × 103 1.754 × 101 2.118 × 10−4 1.052 × 10−7 9.270 × 10−10 2.622 × 10−12 

Table 2: Eigendecomposition of the FIM for the 𝛽𝛽=0.1 (°C min-1) candidate experiment. 

 𝐯𝐯1 𝐯𝐯2 𝐯𝐯3 𝐯𝐯4 𝐯𝐯5 𝐯𝐯6       

kb1 −0.031 0.029 −0.226 0.279 −0.355 0.862 
b1 0.061 −0.084 0.493 −0.768 −0.298 0.260 
kb2 −0.513 0.818 0.067 −0.038 −0.222 −0.107 
b2 0.117 −0.198 −0.092 0.163 −0.858 −0.419 
kg −0.808 −0.495 −0.260 −0.186 0.006 −0.019 
g −0.256 −0.194 0.791 0.520 0.005 0.039 
λ𝑖𝑖 5.753 × 104 4.905 × 103 2.357 × 101 9.083 × 100 1.441 × 10−2 2.127 × 10−3 

Table 3: Eigendecomposition of the FIM for the 𝛽𝛽=0.2 (°C min-1) candidate experiment. 

 𝐯𝐯1 𝐯𝐯2 𝐯𝐯3 𝐯𝐯4 𝐯𝐯5 𝐯𝐯6       

kb1 −0.025 0.009 0.318 −0.250 −0.095 −0.909 
b1 0.045 −0.032 −0.651 0.548 0.321 −0.413 
kb2 −0.624 0.751 −0.020 −0.045 0.211 0.009 
b2 0.125 −0.165 0.206 −0.275 0.915 0.047 
kg −0.743 −0.605 0.174 0.228 0.022 0.011 
g −0.203 −0.205 −0.634 −0.713 −0.080 −0.014 
λ𝑖𝑖 6.317 × 104 3.206 × 103 2.081 × 101 1.897 × 100 3.127 × 10−2 6.362 × 10−6 
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summed before computing the eigendecomposition. 
Consistent with intuition, considering two experiments 
(Table 5) results in a larger smallest eigenvalue (order 10-

3) compared to each cooling rate separately (order 10-6  to 
10-5). Similarly, three experiments (Table 6) further in-
crease the smallest eigenvalue (order 10-2).  

Optimality of the FIM 
 We now examine the A-, D-, and E-optimality 
measures of the FIMs from the proposed set of experi-
ments to explore the information content of the cooling 
rates. Recall, the optimality criterion is defined by the 
trace (Eq. 21), determinant (Eq. 22), and smallest eigen-
value (Eq. 23) of the FIM: 

trace(𝑴𝑴) = ∑ 𝜆𝜆𝑖𝑖𝑖𝑖                           (21)                                                  

det(𝑴𝑴) = ∏ 𝜆𝜆𝑖𝑖𝑖𝑖      (22)      

min�eig(𝑴𝑴)� = min (𝜆𝜆1, … , 𝜆𝜆𝜕𝜕)    (23)      

where 𝜆𝜆𝑖𝑖 is the eigenvalue of the FIM.  
 As denoted in Figure 6, the optimality measure has 
an overall increase for the experiments with the multiple 
cooling rates as opposed to the experiments with individ-
ual cooling rates. We can see that for no cooling (i.e., 
𝛽𝛽=0), there is minimal optimal measure. However, for the 
individual cooling rates, A-optimality is nearly constant, 
D-optimality decreases slightly, and the optimality meas-
ure is marginally better for E-optimality with 𝛽𝛽=0.1 °C min-

1. As expected, when we consider two measurements, we 
have more information for A- and D-optimality. Overall, 
the experiment set with the three cooling rates contains 
the most information.   

Computational Environment 
 The computational results were conducted using 
the following software versions: Python 3.10.12, Ipopt 
3.13.2, Pyomo 6.7.1, and CasADi 3.6.5. The computer 
specifications include Windows 11 Version 22H2, Intel(R) 
Core (TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz, and 16.0 
GB RAM. For each individual cooling rate (𝛽𝛽=0, 𝛽𝛽=0.1, 
𝛽𝛽=0.2, and 𝛽𝛽=0.3), we found the average computational 
times for running the model, computing the FIM, and the 
eigendecomposition of the FIM which were approxi-
mately 0.078 s, 8.881 s, and 0.124 s respectively. 

CONCLUSIONS 

 Through our analysis of the practical identifiabil-
ity of parameters for a batch crystallization system, we 
found that growth appears to be the most estimable pa-
rameter as it consistently corresponds to the largest ei-
genvalues. As expected, the secondary nucleation pa-
rameters 𝑘𝑘𝑏𝑏2 and 𝑏𝑏2 were not estimable in constant tem-
perature experiments (𝛽𝛽=0). If only one experiment is 
possible, a modest cooling rate (𝛽𝛽=0.1 °C min-1) is 

recommended to maximize estimability. However, per-
forming experiments at multiple cooling rates is the most 
informative, as expected. Further analysis for the opti-
mality measure of the FIM demonstrated an increase of 
information content when changing the cooling rate or 
adding multiple experiments.  

In conclusion, MBDoE and practicable identifiability 
analysis provides a mathematical context for a common 
replicate crystallization heuristic. This analysis is limited 
to this model, and although the framework is general, the 
specific conclusions may not generalize. Analysis like 
that performed in this work demonstrates a mathematical 
impetus for fitting selective parameter sets for specific 
experiments. There is an opportunity to integrate these 
insights with existing crystallization parameter estimation 
workflows and tools [35].  

 

Figure 6. A-, D-, and E-optimality measures for six sets 
of candidate experiments define by their 𝛽𝛽 values (°C 
min-1). 
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ABSTRACT 
Machine learning (ML) has become a powerful tool to analyze complex relationships between mul-
tiple variables and to unravel valuable information from big datasets. However, an open research 
question lies in how ML can accelerate the design and optimization of processes in the early ex-
perimental development stages with limited data. In this work, we investigate the ML-aided pro-
cess design of a microwave reactor for ammonia production with exceedingly little experimental 
data. We propose an integrated approach of synthetic minority oversampling technique (SMOTE) 
regression combined with neural networks to quantitatively design and optimize the microwave 
reactor. To address the limited data challenge, SMOTE is applied to generate synthetic data based 
on experimental data at different reaction conditions. Neural network has been demonstrated to 
effectively capture the nonlinear relationships between input features and target outputs.  The 
softplus activation function is used for a smoother prediction compared to the Rectified Linear 
Unit activation function. Ammonia concentration is predicted using pressure, temperature, feed 
flow rate, and feed composition ratio as input variables. For point-wise prediction based on dis-
crete operating conditions, the proposed SMOTE integrated neural network approach outperforms 
with 96.1% accuracy compared to neural networks (without SMOTE), support vector regression, 
and linear regression. The multi-variate prediction trends are also validated which are critical for 
design optimization. 

Keywords: Process Design, Process Intensification, Machine Learning, Neural Networks, Ammonia Production

INTRODUCTION 
Machine Learning (ML) offers the capability to sur-

pass the constraints of mechanistic modeling by enabling 
the learning of complex relationships between process 
variables and the target outputs, offering cost-effective 
model development, and proving advantageous for opti-
mization [1-2]. To reliably transform the data into valua-
ble predictions, ML aims to acquire rules and patterns 
from a sufficiently large number of samples [3-4]. How-
ever, in certain cases, data availability may be intrinsically 
limited such as during the early development stage of 
novel experimental technologies. The scarcity of the da-
tasets may hinder the accuracy of ML predictions. The 
prediction error typically follows a consistent power-ex-
ponential decline as the dataset size increases [5]. To 
give a more intuitive idea, doubling the number of training 
samples can result in approximately 20% reduction in 

prediction error [6]. As such, a key research challenge is 
how ML can successfully aid process design and optimi-
zation at early-stage process developments using sparse 
experimental data. 

To address this challenge, several approaches have 
been developed in recent research work which can be 
categorized as: (i) Sampling, encompassing both over 
and under sampling techniques [7,8], (ii) Cost sensitivity, 
which involves modifying the cost function to prompt 
models to prioritize minority samples [9], (iii) Adversarial 
network generation, which can produce spurious data 
[10]. However, these methods show inefficacy in han-
dling continuous target output prediction in the regres-
sion context which is essential for the data-driven mod-
eling of chemical process systems. 

In this work, we present a neural network-based 
method integrating synthetic minority oversampling 
technique (SMOTE). The proposed strategy is applied to 

https://doi.org/10.69997/sct.121422
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the design of a microwave-assisted ammonia production 
process with little experimental data. The remainder of 
this paper is organized as follows: Section 2 introduces 
the motivating case study of a microwave-assisted reac-
tor for ammonia production. Section 3 details the 
SMOTE-integrated neural network method. Section 4 
showcases this method for the data-driven modeling and 
optimization of the microwave reactor. Section 5 pre-
sents concluding remarks and ongoing work. 

CASE STUDY: MICROWAVE-ASSISTED 
AMMONIA PRODUCTION 

The use of microwaves in chemical synthesis has 
sparked considerable interest in recent years. Compared 
with traditional thermal heating, microwave offers the ca-
pability of direct and selective volumetric heating which 
can result in higher reaction selectivity, shorter reaction 
times, and milder reaction conditions [11,12]. One of the 
key applications of microwave reactor is ammonia pro-
duction under ambient/moderate pressure and moderate 
temperature [13]. This provides a promising technologi-
cal alternative to the current ammonia synthesis route via 
the highly energy intensive Haber-Bosch process.  

 
Figure 1. Schematic of a cylindrical microwave reactor. 

A schematic of the microwave-assisted ammonia 
reactor is shown in Fig. 1 which is adapted as the case 
study of this work [14]. Ru-based catalyst is used which 
has been demonstrated to exhibit high activity for ammo-
nia synthesis under moderate reaction conditions, partic-
ularly when alkali metal Cs is used as a promoter. A total 
of 46 data points is collected from the microwave reactor 
at different operating conditions. Table 1 gives examples 
of such measured data. Our research objective is to pre-
dict the optimal reaction conditions for ammonia synthe-
sis based on these experimental data. 

Table 1: Experimental data – an indicative list. 

T (°C) F 
(ml/h·gcat) 

NH3% F 
(ml/h·gcat) 

NH3% 

280 

6000 

0.56 

15000 

0.27 
320 1.57 1.02 
340 1.63 1.21 
360 1.55 1.25 
400 1.28 1.06 

THE PROPOSED METHODOLOGY 
As depicted in Fig. 2, a neural network approach is 

developed leveraging SMOTE and softplus activation 
function. Neural network is employed to capture the non-
linear input-output relationship. SMOTE regression [6,7] 
is applied to overcome the challenge of limited data avail-
ability, which can generate new synthetic data to be used 
for ML training together with the original experimental 
data. Soft plus activation function is applied to obtain 
smooth and differentiable output predictions. In what fol-
lows, we briefly introduce the key components of the 
proposed methodology. 

 
Figure 2. SMOTE integrated Neural Networks. 

SMOTE Regression 
SMOTE [7] is commonly employed for data simula-

tion to create distribution-dependent neighbor samples 
for the minority class. Unlike the random oversampling 
algorithms, SMOTE can dynamically generate the neces-
sary number of samples for the minority class. The use of 
SMOTE aims to explore new samples that closely resem-
ble the original data distribution. This is instrumental for 
generating experimentally relevant data with similarities 
to the existing dataset. In the data generation algorithm 
of SMOTE, several samples are randomly chosen from 
the 𝑘𝑘 neighbors for each sample 𝑦𝑦, in the minority class. 
A new sample is constructed for each randomly selected 
neighbor from the original sample, as shown by Eq. 1. The 
new synthetic data points are then merged with the orig-
inal experimental data to be fed to neural network train-
ing. 

 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) × (𝑦𝑦 − 𝑦𝑦�)    (1) 
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Neural Network with Soft plus Activation 
Neural network models are comprised of nodes, 

where each node has the capacity to host several neu-
rons. The neural network architecture used in this work 
comprises of one input layer, two hidden layers, and one 
output layer. Each neuron is associated with weights and 
biases which get updated to minimize the difference be-
tween the true labels and predicted labels of the input 
datasets. The output of a neuron becomes input for the 
consecutive neurons. The output is expressed by Eq. 2.  

𝑦𝑦𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑡𝑡)   (2) 

where 𝑤𝑤𝑡𝑡 is the weight vector, 𝑥𝑥𝑡𝑡 is the vector for input 
data, 𝑏𝑏𝑡𝑡 is the bias.  

The role of activation function in a neural network 
architecture is that it transforms the linear combination 
of summed weights and biases into a nonlinear output. 
Activation function normalizes the data that imposes a 
restriction to convert the output of a neuron into a spe-
cific bound. The Rectified Linear Unit (ReLU) and Softplus 
activation functions are compared as shown in Fig. 3. 
ReLU activation function is a non-differentiable function 
which may provide non-smooth predictions compared to 
Softplus, i.e. 𝑠𝑠(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑙𝑙 (1 + 𝑒𝑒𝑥𝑥). A major advantage of us-
ing Softplus is that it does not suffer from the “dying 
ReLU” problem which refers to the situation when some 
of the neurons become inactive, and they cannot update 
their weights and biases resulting in non-smooth predic-
tions.

 
Figure 3: Comparison of activation functions. 

MACHINE LEARNING-AIDED MICROWAVE 
DRIVEN REACTION DESIGN 

In this section, we apply the SMOTE-integrated neu-
ral network approach to model the microwave-assisted 
ammonia reaction. Specifically, we will investigate:  
a. Point-wise prediction for NH3 concentration based on 

discrete operating conditions (i.e., temperature, pres-
sure, inlet H2 to N2 ratio, inlet gas flow rate). 

b. Continuous prediction to capture the variation trend of 
NH3 concentration under varying operating conditions. 

c. Reaction design optimization for maximum NH3 con-
centration. 

Point-wise Prediction 
Two hidden layers are used for the neural networks 

with 128 and 64 nodes, respectively. 40,589 synthetic 
data are generated via SMOTE. The training and testing 
data are separated by an 80-20% split. The adam opti-
mizer is applied utilizing the mean squared error as the 
loss function. The number of epochs is set as 100 with a 
learning rate of 0.0001. The average discrete prediction 
accuracy of SMOTE-integrated neural network is 96.10% 
as shown in Table. 1. This accuracy is superior to other 
regression methods such as neural networks (without 
SMOTE, 95.10%), support vector regression (88.70%), 
and linear regression (86.30%). 

Table 2: SMOTE-integrated NN pointwise prediction. 

Actual NH 

Concentration 
Reaction Conditions 
[T(°C) P(psig) R F 
(ml/hgcat)] 

Prediction 
Accuracy 
(%) 

      
      
       
      
      
      
      
      
… … … 
 

 
Avg = 
 

Continuous Prediction 
Herein, the primary goal is to verify that the resulting 

data-driven model can also capture the continuous vari-
ational trend of ammonia concentration versus operating 
conditions. We first develop a SMOTE-integrated neural 
network model for two inputs and one output. For exam-
ple, NH3 concentration is computed from the two-input 
one-output data-driven model at varying pressures and 
inlet H2 to N2 ratios while temperature and inlet gas flow 
rate are kept constant. Two separate models are devel-
oped for the prediction of NH3 concentration, respec-
tively using 11,340 and 4,180 synthetic data generated 
by SMOTE. The total number of synthetic data is reduced 
to avoid overfitting. The prediction results are validated 
against the original experimental data as shown in Fig. 4, 
in which the markers represent the original experimental 
data, and the solid lines depict the continuous prediction 
using the above trained SMOTE-integrated NN model. 

On this basis, we proceed to build a single data-
driven model considering all the four input variables (i.e., 
temperature, pressure, H2 to N2 ratio, and feed flow rate). 
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As the input dimensions increase, the input-output rela-
tionship becomes more nonlinear and complex. Namely, 
the resulting data-driven model should simultaneously 
capture the nonlinear relationship between ammonia 
concentration versus temperature, pressure, inlet H2 to 
N2 ratio, and inlet gas flow rate. 23,000 synthetic data 
generated via SMOTE are used to train the four-input 
one-output neural network. As illustrated in Fig. 5, the 

continuous prediction using a higher dimensional data-
driven model can also effectively capture the variational 
trend while featuring larger deviations than the two-input 
one-output models. The role of activation functions is 
also investigated as shown in Fig. 6. It can be noted that 
the use of ReLU activation function may result in non-
smooth predictions compared with that of Softplus acti-
vation function. This is consistent with the observations 

 
Figure 4: Continuous prediction with two-input one-output data-driven model. 

(Markers: Original experimental data, Solid lines: SMOTE integrated NN prediction) 
 

 
Figure 5: Continuous prediction with four-input one-output data-driven model. 

 
Figure 6: Role of activation function. (Left) ReLU. (Right) Soft plus. 
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reported in open literature [15]. 

Comparison with SVR and NN 
The continuous predictions from our proposed 

methodology were compared to the support vector re-
gression (SVR) and NN (without SMOTE). For SVR, Radial 
Basis Function (RBF) is identified as the best kernel func-
tion for our datasets. As illustrated in Fig. 7, SVR identifies 
a pseudo-linear multi-variate relationship instead of cap-
turing the correct nonlinear trends. The predictions using 
NN (without SMOTE) are depicted in Fig. 8. Even if NN 
offers a point-wise prediction accuracy of 95.10%, it in-
troduces excessive nonlinear directional changes in the 
continuous prediction. In other words, NN cannot effec-
tively capture the continuous variational trend. If this 
data-driven model is applied for design optimization, it 
may fail to identify the correct direction toward optimal-
ity. 

Design Optimization 
Finally, we performed the design optimization to de-

termine the optimum reaction conditions. A mesh grid of 
data points is created and fed to the afore-trained 
SMOTE-integrated neural networks (Fig. 9). The ammo-
nia concentration for each of the input data is obtained 
from the data-driven model prediction and the index of 
maximum ammonia concentration is located. The opti-
mum temperature, pressure, H2 to N2 ratio, and inlet gas 
flow rate are identified as 324.37°C, 80psig, 1, and 
3000ml/h.gcat respectively. The optimum operating con-
ditions obtained from experimental data are at the tem-
perature of 320°C, pressure of 80psig, H2 to N2 ratio of 1, 
and inlet gas flow rate of 3000ml/h.gcat which well justi-
fies the validity of data-driven model prediction. 

CONCLUSION 
In summary, this work has developed a machine 

learning-aided method to design and optimize micro-
wave-assisted ammonia reaction conditions with little 
experimental data. The efficacy of the proposed ap-
proach is demonstrated on the point-wise and continu-
ous prediction of ammonia concentration under varying 
reaction temperature, pressure, H2 to N2 ratio, and feed 
flow rates. Ongoing work is investigating the systems-
level analysis leveraging this data-driven microwave re-
actor model. 
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Figure 7: Continuous prediction using SVR. 
 

 

 
 
Figure 8: Continuous prediction using NN without 
SMOTE. (Markers: Original experimental data, Solid lines: 
NN prediction 
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Figure 9: Illustration of design optimization. 
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ABSTRACT 
Modern industrial processes are continuously monitored by a large number of sensors. Despite 
having access to large volumes of historical and online sensor data, industrial practitioners still 
face challenges in the era of Industry 4.0 in effectively utilizing them to perform online process 
monitoring and fast fault detection and diagnosis. To target these challenges, in this work, we 
present a novel framework named “FARM” for Fast, Accurate, and Robust online process Monitor-
ing. FARM is a holistic monitoring framework that integrates (a) advanced multivariate statistical 
process control (SPC) for fast anomaly detection of nonparametric, heterogeneous data streams, 
and (b) modified support vector machine (SVM) for accurate and robust fault classification. Unlike 
existing general-purpose process monitoring frameworks, FARM’s unique hierarchical architecture 
decomposes process monitoring into two fault detection and diagnosis, each of which is con-
ducted by targeted algorithms. Here, we test and validate the performance of our FARM monitor-
ing framework on Tennessee Eastman Process (TEP) benchmark dataset. We show that SPC 
achieves faster fault detection speed at a lower false alarm rate compared to state-of-the-art 
benchmark fault detection methods. In terms of fault classification diagnosis, we show that our 
modified SVM algorithm successfully classifies 17 out of 20 of the fault scenarios present in the 
TEP dataset. Compared with the results of standard SVM trained directly on the original dataset, 
our modified SVM improves the fault classification accuracy significantly. 

Keywords: Fault Detection and Diagnosis, Process Monitoring, Statistical Process Control, Riemannian Mani-
fold, Support Vector Machine 

INTRODUCTION 
Safe and efficient operation of an industrial plant 

depends on effective, continuous process monitoring 
(e.g., fault detection and diagnosis), which is enabled by 
advanced sensory systems that continuously generate 
streams of data to dictate the state of the plant. Despite 
having access to large volumes of historical and online 
sensor data, challenges remain in how these data could 
be used for effective online process monitoring. Existing 
techniques for process monitoring are inadequate be-
cause (a) fault scenarios in industrial systems and plants 
are complex, (b) sensors continuously produce massive 
arrays of big data streams that are often nonparametric 
(i.e., data streams may not follow any specific distribu-
tion) and heterogeneous (i.e., data streams may not 

follow the same distribution), and (c) there is an intrinsic 
trade-off between fault detection time and diagnostic 
accuracy.  

To address this need, several process monitoring 
solutions have been developed over the past decades. 
Among them, dimensionality reduction techniques, such 
as principal component analysis (PCA), partial least 
squares (PLS) regression, as well as their different varia-
tions, are the most popular ones in the literature [1–3]. 
Dimensionality reduction techniques assume that the 
statistics characterizing the in-control profiles also span 
the subspace where out-of-control states (faults) lie in 
[4]. However, this assumption is generally invalid for in-
dustrial process monitoring as the process dynamics are 
quite complex and out-of-control states cannot be fully 
enumerated a priori. Also, plant operators often find it 
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difficult to interpret the results from PCA/PLS-based 
methods because the features are in the reduced space 
and do not have one-to-one mapping to the original sen-
sor data sources. In addition, monitoring only the most 
significant subset of features often causes significant er-
rors, as the fault may not be noticeable in the selected 
features. Lastly, dimensionality reduction techniques 
have no statistical guarantee on false alarm rate, making 
them unreliable for actual plant monitoring which requires 
false alarm to be low and controlled (e.g., ≤0.0027, the 
classic three-sigma limit) due to the significant money 
loss and safety issues of unplanned unit shutdown. 

More recently, various machine learning (ML) tools 
such as support vector machine, decision tree, and deep 
neural network, have also been proposed and applied to 
process monitoring [5–8]. Nevertheless, existing ML 
methods still face problems such as overfitting and poor 
predictive accuracy. For example, while most published 
ML algorithms perform well during training and validation, 
their fault detection accuracies deteriorate and rarely ex-
ceed 90-95% in test sets. Considering the severe conse-
quences in case of fault detection failure, such predictive 
accuracy is unacceptable. Furthermore, ML methods do 
not scale well with rare or new fault scenarios due to the 
lack of sufficient training data. 

To target these challenges, in this work, we present 
a novel industrial process monitoring tool, which we 
named it as “FARM”, for fast, accurate, and robust online 
fault detection and diagnosis. FARM is a holistic monitor-
ing framework that integrates (a) advanced multivariate 
statistical process control (SPC) for fast anomaly detec-
tion of nonparametric, heterogeneous data streams, and 
(b) a modified support vector machine (SVM) for accu-
rate and robust fault classification. Unlike existing gen-
eral-purpose process monitoring frameworks, FARM’s 
unique hierarchical architecture (see Figure 1) decom-
poses process monitoring into two fault detection and di-
agnosis, each of which is conducted by targeted algo-
rithms. Only if a process anomaly is detected will the 
online data be sent to the fault classification/diagnosis 
module for accurate fault classification. Such hierarchical 
architecture successfully bypasses the intrinsic trade-off 
between fault detection speed and accuracy that is pre-
sent in existing monitoring tools. Furthermore, using 
FARM, plant operators can choose a user-specified false 
alarm rate based on their expert knowledge of the pro-
cess.  

STRUCTURE AND WORKFLOW OF FARM 

 As mentioned earlier, FARM consists of two distinct 
yet interconnected modules. The first module performs 
fault detection by adopting the state-of-the-art quantile-
based non-parametric SPC proposed by Ye and Liu [9]. 
Quantile-based nonparametric SPC can detect any 

process mean shift or anomaly from heterogeneous high-
dimensional sensor data streams as early as possible 
while maintaining a pre-specified incontrol average run 
length. Inspired by the work of Smith et al. [10], 2the 
second module conducts fault classification through a 
modified SVM model. Both modules are connected as 
shown in Figure 1. FARM's workflow contains two steps: 
(1) offline training with historical data, followed by (2) 
online monitoring of real-time sensor data streams. 
During offline training, the parameters of the SPC module 
to be used for online monitoring are obtained using the 
historical in-control data. Also, the modified SVM module 
is trained by treating the faulty data's covariance 
matrices as features and the corresponding faulty 
scenario as labels. 
 Once offline training of FARM is complete, online 
sensor measurements will continuously be sent to FARM 
for simultaneous fault detection and diagnosis. First, they 
are monitored by the SPC module to detect any process 
anomaly in real time. Only if a process anomaly is 
detected will the online data be sent to the fault diagnosis 
module for accurate fault classification. Unlike general-
purpose process monitoring frameworks, FARM’s 
hierarchical architecture decomposes process 
monitoring tasks into two subtasks (fault detection and 
diagnosis), each of which is accomplished by specialized 
techniques. This allows fast, accurate, and robust fault 
detection and diagnosis to be simultaneously 
accomplished by FARM. 
 

 
Figure 1. FARM’s hiearchical structure consisting of fault 
detection and diagnosis modules. 

Fault Detection 
The backbone of FARM’s fault detection module is 

the quantile-based non-parametric SPC algorithm pro-
posed by Ye and Liu [9]. Jiang modified the original quan-
tile-based SPC formulation of Ye and Liu [9] to monitor 
fully observable data streams [11]. Here, a brief descrip-
tion of the modified SPC formulation is presented. In of-
fline training, the sensor measurements in each of the 𝑀𝑀 
historical in-control data streams 𝑋𝑋𝑗𝑗 (𝑗𝑗 = 1,2, … ,𝑀𝑀) are 
sorted in ascending order and partitioned into 𝑑𝑑 number 
of quantiles 𝐼𝐼𝑗𝑗,1, … , 𝐼𝐼𝑗𝑗,𝑑𝑑 defined as: 
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    𝐼𝐼𝑗𝑗,1  =  �−∞,  𝑞𝑞𝑗𝑗,1�, 𝐼𝐼𝑗𝑗,2 = �𝑞𝑞𝑗𝑗,1, 𝑞𝑞𝑗𝑗,2�, … , 𝐼𝐼𝑗𝑗,𝑑𝑑 = �𝑞𝑞𝑗𝑗,𝑑𝑑−1, +∞�  (1) 

 For each 𝑞𝑞𝑗𝑗,𝑖𝑖, two intervals called positive and nega-
tive cumulative intervals are defined as:  

    C𝐼𝐼𝑗𝑗,𝑖𝑖
+ = �𝑞𝑞𝑗𝑗,𝑖𝑖 , +∞� and 𝐶𝐶𝐼𝐼𝑗𝑗,𝑖𝑖

− = �−∞, 𝑞𝑞𝑗𝑗,𝑖𝑖�,      (2) 

for every 𝑖𝑖 = 1, … ,𝑑𝑑 − 1 and 𝑗𝑗 = 1,2, … ,𝑀𝑀. With these pos-
itive/negative cumulative intervals identified from histor-
ical in-control data, one can detect anomalies in real time 
by detecting any upward/downward mean shift of online 
sensor data streams. To do this, for an online sensor data 
stream 𝑋𝑋𝑗𝑗(𝑡𝑡) where 𝑡𝑡 stands for time, we define a binary 
variable 𝐴𝐴𝑗𝑗,𝑖𝑖∈[1,…,𝑑𝑑−1]

+  and 𝐴𝐴𝑗𝑗,𝑖𝑖∈[1,…,𝑑𝑑−1]
−  to indicate which pos-

itive and negative cumulative interval 𝑋𝑋𝑗𝑗(𝑡𝑡) lies in at time 
𝑡𝑡, respectively: 

𝐴𝐴𝑗𝑗,𝑖𝑖∈[1,2,…,𝑑𝑑−1]
+ =   �1 if 𝑋𝑋𝑗𝑗(𝑡𝑡)  ∈  𝐶𝐶𝐼𝐼𝑗𝑗,𝑖𝑖

+  
0        otherwise

,       (3) 

𝐴𝐴𝑗𝑗,𝑖𝑖∈[1,2,…,𝑑𝑑−1]
− = �1 if 𝑋𝑋𝑗𝑗(𝑡𝑡)  ∈  𝐶𝐶𝐼𝐼𝑗𝑗,𝑖𝑖

−  
0        otherwise

.       (4) 

With this, we obtain two vectors 𝐀𝐀𝑗𝑗+(𝑡𝑡) and 𝐀𝐀𝑗𝑗−(𝑡𝑡) as: 

    𝐀𝐀𝑗𝑗+(𝑡𝑡) = �𝐴𝐴𝑗𝑗,1
+ ,𝐴𝐴𝑗𝑗,2

+ , … ,𝐴𝐴𝑗𝑗,𝑑𝑑−1
+ �,        (5) 

 𝐀𝐀𝑗𝑗−(𝑡𝑡) = �𝐴𝐴𝑗𝑗,1
− ,𝐴𝐴𝑗𝑗,2

− , … ,𝐴𝐴𝑗𝑗,𝑑𝑑−1
− �.        (6) 

 One can show that 𝔼𝔼�𝐀𝐀𝑗𝑗+(𝑡𝑡)� = �1 − 1
𝑑𝑑

, 1 − 2
𝑑𝑑

, … ,1 −
𝑑𝑑−1
𝑑𝑑
� and 𝔼𝔼�𝐀𝐀𝑗𝑗−(𝑡𝑡)� = �1

𝑑𝑑
, 2
𝑑𝑑

, … , 𝑑𝑑−1
𝑑𝑑
� for 𝑗𝑗 = 1, … ,𝑀𝑀 and 𝑖𝑖 =

1, … ,𝑑𝑑. Therefore, by defining 𝐀𝐀𝑗𝑗+(𝑡𝑡) and 𝐀𝐀𝑗𝑗−(𝑡𝑡), the idea is 
to convert the task of detecting any mean shift in the dis-
tribution of 𝑋𝑋𝑗𝑗(𝑡𝑡) with respect to the distribution of histor-
ical in-control data into an equivalent task of detecting 
the upward (resp. downward) mean shift in the distribu-
tion of 𝐴𝐴𝑗𝑗,𝑖𝑖

+  (resp. 𝐴𝐴𝑗𝑗,𝑖𝑖
− ) with respect to 𝔼𝔼�𝐴𝐴𝑗𝑗,𝑖𝑖

+ � (resp. 𝔼𝔼�𝐴𝐴𝑗𝑗,𝑖𝑖
− �). 

This transformation presents at least two major ad-
vantages. First, it has been shown that 𝐴𝐴𝑗𝑗,𝑖𝑖

+  (resp. 𝐴𝐴𝑗𝑗,𝑖𝑖
− ) is 

more sensitive to upward (resp. downward) mean shifts 
than the original data streams themselves [9], thus allow-
ing faster fault detection. And second, it allows nonpara-
metric, heterogeneous data streams to be successfully 
monitored for the first time. 
 Quantile-based SPC implements the multivariate 
cumulative sum (CUSUM) procedure first proposed by 
Qiu and Hawkins [12, 13] to monitor multivariate big data 
streams of 𝐀𝐀𝑗𝑗+(𝑡𝑡) and 𝐀𝐀𝑗𝑗−(𝑡𝑡) for 𝑗𝑗 = 1, … ,𝑀𝑀. This is achieved 
by defining 𝐶𝐶𝑗𝑗+(𝑡𝑡) and 𝐶𝐶𝑗𝑗−(𝑡𝑡) as: 

𝐶𝐶𝑗𝑗
±(𝑡𝑡) = ��𝑺𝑺𝑗𝑗

±, obs(𝑡𝑡 − 1)+ 𝑨𝑨𝑗𝑗
±(𝑡𝑡)� − �𝑺𝑺𝑗𝑗

±, exp(𝑡𝑡 −

1)+ 𝔼𝔼(𝑨𝑨𝑗𝑗
±(𝑡𝑡)��

𝑇𝑇
 ⋅ (diag �𝑺𝑺𝑗𝑗

±, exp(𝑡𝑡 −

1)+ 𝔼𝔼(𝑨𝑨𝑗𝑗
±(𝑡𝑡)�

−1
⋅   ��𝑺𝑺𝑗𝑗

±, obs(𝑡𝑡 − 1)+ 𝑨𝑨𝑗𝑗
±(𝑡𝑡)� − �𝑺𝑺𝑗𝑗

±, exp(𝑡𝑡 −

1)+ 𝔼𝔼(𝑨𝑨𝑗𝑗
±(𝑡𝑡)��              (7)

                         

 In Equation (7), 𝑺𝑺𝑗𝑗
±,obs(𝑡𝑡) and 𝑺𝑺𝑗𝑗

±,exp(𝑡𝑡) are four vec-
tors of size 𝑑𝑑 − 1 that are the CUSUM statistics initiated 
at 𝑺𝑺𝑗𝑗

±,obs(𝑡𝑡 = 0) = 𝑺𝑺𝑗𝑗
±,exp(𝑡𝑡 = 0) = 0: 

⎩
⎪
⎨

⎪
⎧𝑺𝑺𝑗𝑗

±, obs(𝑡𝑡) = 0 , 𝑺𝑺𝑗𝑗
±, exp(𝑡𝑡) = 0,                                     if 𝐶𝐶𝑗𝑗

±(𝑡𝑡) ≤ 𝑘𝑘

𝑺𝑺𝑗𝑗
±, obs(𝑡𝑡) =

�𝐶𝐶𝑗𝑗
±(𝑡𝑡)−𝑘𝑘�

𝐶𝐶𝑗𝑗
±(𝑡𝑡)

�𝑺𝑺𝑗𝑗
±, obs(𝑡𝑡 − 1)+ 𝑨𝑨𝑗𝑗

±(𝑡𝑡)�

𝑺𝑺𝑗𝑗
±, exp(𝑡𝑡) =

�𝐶𝐶𝑗𝑗
±(𝑡𝑡)−𝑘𝑘�

𝐶𝐶𝑗𝑗
±(𝑡𝑡)

�𝑺𝑺𝑗𝑗
±, exp(𝑡𝑡 − 1)+ 𝔼𝔼(𝑨𝑨𝑗𝑗

±(𝑡𝑡)�
. if 𝐶𝐶𝑗𝑗

±(𝑡𝑡) > 𝑘𝑘 
   (8) 

 In Equation (8), 𝑘𝑘 is an allowance parameter that re-
starts the CUSUM procedure if no evidence of significant 
shift is detected after a while [14]. The value of 𝑘𝑘 is ob-
tained during offline training using historical in-control 
data. Then, one-sided local statistics 𝑊𝑊𝑗𝑗

+ and 𝑊𝑊𝑗𝑗
− for re-

spectively detecting upward and downward mean shifts 
of data stream 𝑗𝑗 can be defined as: 

𝑊𝑊𝑗𝑗
+(𝑡𝑡) = max�0,𝐶𝐶𝑗𝑗+(𝑡𝑡) − 𝑘𝑘�,      (9) 

𝑊𝑊𝑗𝑗
−(𝑡𝑡) = max�0,𝐶𝐶𝑗𝑗−(𝑡𝑡) − 𝑘𝑘�.      (10) 

 If one wants to detect either upward or downward 
mean shifts, then a two-sided local statistic 𝑊𝑊𝑗𝑗(𝑡𝑡) can be 
defined as the maximum of the two one-sided local sta-
tistics: 

�
𝑊𝑊𝑗𝑗(𝑡𝑡 = 0) = 0,

𝑊𝑊𝑗𝑗(𝑡𝑡 > 0) = max �𝑊𝑊𝑗𝑗
+(𝑡𝑡),𝑊𝑊𝑗𝑗

−(𝑡𝑡)� .
     (11)  

 Finally, to determine the stopping time 𝑇𝑇 for raising 
the alarm by declaring the process is out-of-control, the 
top-𝑟𝑟 approach proposed by Mei [15] is adopted. First, at 
each time step 𝑡𝑡, the values of individual local statistics 
𝑊𝑊𝑗𝑗(𝑡𝑡) for all data streams are ranked from largest to 
smallest: 𝑊𝑊(1)(𝑡𝑡) > ⋯ > 𝑊𝑊(𝑘𝑘)(𝑡𝑡) > ⋯ > 𝑊𝑊(𝑀𝑀)(𝑡𝑡), in which 
𝑊𝑊(𝑘𝑘)(𝑡𝑡) corresponds to the 𝑘𝑘th largest local statistic. Next, 
the top 𝑟𝑟 of the local statistics at time 𝑡𝑡 is calculated, and 
the stopping time 𝑇𝑇, also known as the out-of-control run 
length, is defined as: 

𝑇𝑇 = inf {𝑡𝑡 > 0:∑ 𝑊𝑊(𝑘𝑘)(𝑡𝑡) ≥ ℎ}𝑟𝑟
(𝑘𝑘)=1 ,     (12) 

where ℎ is a threshold value that corresponds to the pre-
specified false alarm rate and can be obtained during of-
fline training using historical in-control data. A commonly 
used ℎ is obtained based on the false alarm rate of 0.27% 
(the classic 3𝜎𝜎 limit). 

Fault Classification and Diagnosis 

 
 
Figure 2. Flowchart of the modified SVM algorithm for 
improved facult classifcation. 

 In this section, we discuss how accurate fault 
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diagnosis can be achieved using a modified SVM module 
in FARM. Figure 2 illustrates how we modify standard 
SVM for fault classification by adding a data pre-pro-
cessing step in the training step. To train the SVM model 
using the historical sensor data corresponding to differ-
ent fault scenarios, we first compute the covariance ma-
trix of the historical faulty data streams, followed by 
training the SVM model over the covariance matrix in-
stead of the original faulty data streams. This modifica-
tion is inspired by the fact that covariance matrices are 
symmetric and positive definite, and thus always lie on a 
Riemannian manifold. It has been recently shown that, by 
respecting this important geometric insight, one can 
greatly enhance the accuracy and interpretability of clas-
sification, regression, dimensionality reduction algo-
rithms by conducting these computations on the tangent 
space of the manifold [10]. Inspired by this finding, we 
map the generated covariance matrices to their tangent 
space, which intersect the Riemannian manifold where 
these covariance matrices reside at the geometric mean 
of the covariance matrices (see Figure 3). This mapping 
is done through the logarithm operation as: 

𝐀𝐀�𝑖𝑖 = log�̅�𝐴(𝐀𝐀𝑖𝑖),          (13) 

where 𝐀𝐀𝑖𝑖  is the covariance matrix of sensor data streams 
for dataset 𝑖𝑖 calculated as: 

𝐀𝐀𝑖𝑖 = 1
𝑁𝑁−1

𝐗𝐗𝑖𝑖𝐗𝐗𝑖𝑖𝑇𝑇,        (14) 

where 𝐗𝐗i is the original sensor data matrix containing 𝑀𝑀 
number of data streams values over 𝑁𝑁 time steps. 𝐀𝐀� is the 
geometric mean of covariance matrices (𝐀𝐀𝑖𝑖), and 𝐀𝐀�𝑖𝑖 is the 
mapped matrix of matrix 𝐀𝐀𝑖𝑖 to the tangent space as 
shown on Figure 3. The reader is encouraged to read the 
main reference explaining this mathematical calculation if 
interested [10].  

 
  (a)     (b) 

Figure 3. Illustration of (a) a Riemannian manifold and (b) 
the associated tangent space. The logarithmic map as 
well as the geodesic between the geometric mean 𝐀𝐀� and 
each covariance matrix 𝐀𝐀𝑖𝑖 are also shown. 

After this data preprocessing step, the mapped covari-
ance matrices are used as input features, whereas the 
corresponding fault scenarios are used as labels to train 
a standard SVM model using a radial basis function (RBF) 
kernel.  
 
 During online monitoring stage, real-time sensor 

data streams are processed in the fault/anomaly detec-
tion module first. Only when a process anomaly is de-
tected will the data streams be sent to the fault classifi-
cation/diagnosis module. Such an arrangement will fur-
ther enhance the accuracy and reliability of fault diagno-
sis module, as the data streams are certain to be faulty. 
Next, the covariance matrix for the sensor data streams 
is calculated, mapped to the tangent space of the Rie-
mannian manifold, and used as the input to the trained 
SVM model to classify its fault label.  

CASE STUDY: TENNESSEE EASTMAN 
PROCESS 

Abstracted from a real chemical process, the Ten-
nessee Eastman Process (TEP) is a nonlinear open-loop 
unstable process that has been widely used in various 
computational studies as benchmark case for plant-wide 
control, process monitoring, and data-driven optimiza-
tion [16]. As shown in the schematic of Figure 4, the TEP 
consists of 4 major unit operations: a reactor, a stripping 
column, a separator, and a product condenser. The pro-
cess involves the production of two liquid product com-
ponents G and H from four gaseous reactants A, C, D and 
E with an additional inert B and a by-product F. The pro-
cess is continuously monitored by a total of 52 process 
variables, including 11 manipulated and 41 measured var-
iables. 

 
Figure 4. Schematic of TEP (figure extracted from [17]). 

Fault Detection Module Performance 
Table 1 lists the comparison results of our SPC mod-

ule with respect to two benchmark fault detection algo-
rithms, which are PCA-T2 and SVM [11]. The data used for 
this study is obtained by the MATLAB graphical user in-
terface (GUI) originally developed by Andersen et al. [18]. 
Overall, a total of 50 hours (simulation) of normal opera-
tion data were generated using this GUI to determine the 
threshold value ℎ in Equation (12) and to construct the 
quantiles 𝐼𝐼𝑗𝑗,1, … , 𝐼𝐼𝑗𝑗,𝑑𝑑 as well as the cumulative intervals 
𝐶𝐶𝐼𝐼𝑗𝑗,𝑖𝑖

± . In addition to normal operation (in-control) data, the 

Riemannian manifold

Tangent Space
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GUI can generate process data for 28 different fault sce-
narios. Here, we select three faults, namely IDV 2, 3, and 
13 (see Table 1 for description), to compare the perfor-
mance of the SPC algorithm with other benchmarks.  
 
Table 1. Description of faults for comparison study of 
multiple fault detection benchmarks. 
Fault # Description  Fault Type 
IDV  B composition in stream  with 

A/C ratio constant 
Step 

IDV  D feed temperature in stream  Step 
IDV  Reaction kinetics Slow drift 
 
 Table 2 summarizes the comparison results of fault 
detection speed and the corresponding false alarm rate 
of all three monitoring frameworks, quantified by out-of-
control run length (i.e., how many additional observations 
are needed to declare out-of-control status and raise 
alarm after the actual fault is introduced) for each algo-
rithm. As we can see, among the three monitoring frame-
works, quantile-based SPC framework yields the fastest 
fault detection speed in all three fault scenarios, while 
maintaining the lowest false alarm rate. Given that a lower 
false alarm rate generally sacrifices fault detection speed 
due to more conservative monitoring behavior, the quan-
tile-based SPC framework achieves a win-win situation 
compared to other benchmark algorithms. 

Table 2. Fault detection results in terms of out-of-control 
run length (false alarm rate) for SPC , PCA-T2 and SVM 
for TEP dataset [11]. 

Fault # SPC PCA-T SVM 

IDV   (%)  (%)  (%) 

IDV   (%)  (%)  (%) 

IDV   (%)  (%)  (%) 
 

Fault Diagnosis Module Performance 
For fault diagnosis, we experimented various classi-

fication algorithms using the TEP dataset developed by 
Rieth et al. [19], which consists of 500 simulation cases 
of normal (in-control) operation as well as 20 fault sce-
narios. To illustrate, we present three representative 
models here. 

First, we highlight the “best model” obtained by fol-
lowing training procedure illustrated in Figure 2. Figure 5 
shows the confusion matrix obtained through 10-fold 
cross-validation of these 20 faults. Clearly, the modified 
SVM model demonstrated outstanding classification per-
formance for all faults except for faults IDV 3, 9, and 15. 
This result outperforms a number of fault diagnosis algo-
rithms in the literature. It is worth noting that faults IDV 3, 
9, and 15 correspond to “step change in temperature of 

reactor feed D”, “random variation in temperature of re-
actor feed D”, and “sticking value failure for condenser 
cooling water valve”, respectively. And these three faults 
are well-known to be particularly challenging to differen-
tiate due to the close similarity of their dynamic behaviors 
to the overall process. To tackle this longstanding chal-
lenge of successful differentiation of these faults, new, 
creative methodologies need to be developed. 

 
Figure 5. Confusion matrix (after 10-fold cross validation) 
of fault diagnosis results for our proposed modified SVM 
model. 

 
 As a direct comparison, Figure 6 shows the 
confusion matrix for the case where standard SVM 
without any data pre-processing is used for training and 
validation. It is clear that fault classification accuracy 
deteriorates significantly in this case.  
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Figure 6. Confusion matrix (after 10-fold cross validation) 
of fault diagnosis results for standard SVM model without 
the introduced data pre-processing step. 
 
 Finally, we present the results for another fault 
diagnosis algorithm based on principal geodesic analysis 
(PGA) discussed by Smith et al. [10]. PGA is a counterpart 
of principal component analysis (PCA) applied on the 
tangent space of the Riemannian manifold, as it identifies 
the geodesics that capture the most variance in the data. 
In other words, in PGA, we simply apply PCA technique to 
the mapped covariance matrices of faulty data streams 
for dimensionality reduction. To determine the number of 
principal geodesics (which are the “principal 
components” in PGA) needed, we perform sensitivity 
analysis and identify that 29 principal geodesics are 
required to capture 99% of the variance in the original 
dataset containing covariance matrices on the 
Riemannian manifold. Furthermore, four distance 
measures, namely Euclidean, Mahalanobis, Manhattan, 
and Cosine are tested and compared. Clustering is done 
by assigning a point to its closest cluster based on the 
distance mesure used. We identify that, among these 
four measures, the cosine distance offers the best fault 
classification performance. Figure 7 shows the confusion 
matrix of PGA-cosine approach with the 10-fold cross 
validation. As we can see, in general, 12 out of the 20 
faults can be fully classified, whereas faults IDV 3, 5, 9, 
10, 12, 13, 15, and 18 cannot. Although its accuracy is yet 
to match with the best model, the PGA-Cosine algorithm 
performs much better than standard SVM without data 
pre-processing. 
 Since the modified SVM model showed superior 
performance over PGA-Cosine method, the confusion 

matrix of this method is compared with 10-fold confusion 
matrix of the ridge classifier model presented by Smith et 
al. [10], which trained on the mapped covariances. Figure 
8 depicts the difference of confusion matrices between 
the modified SVM (A) and Ridge (B) classifiers. Positive 
numbers show that the prediction probability values of 
modified SVM model were higher than Ridge classifier. 
Conversely, the negative values indicate that the Ridge 
model’s prediction probabilies were more than the 
modified SVM. Lastly, zero means that both models had 
the same prediction probability. As can be seen, both 
models have the same accuracy for all faults excepts 
faults 9 and 15, which the ridge classifier had a better 
accuracy than the modified SVM model by looking at the 
diagnoal values of the difference matrix. 
 

 
Figure 7. Confusion matrix (after 10-fold cross validation) 
of fault diagnosis results for PGA-Cosine classification 
algorithm with 29 principal components being selected. 
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Figure 8. The difference confusion matrix between 10-
fold cross validation matrices of the modified SVM 
classifier presented in this study (A) and the ridge 
classifier presented by Smith et al. (B) [10]. 

CONCLUSION 
 In this work, we present a fast, accurate, and robust 
algorithmic framework named FARM for industrial pro-
cess monitoring. FARM is a holistic framework that syn-
ergistically performs fault detection and diagnosis tasks 
to improve monitoring performance. The fault detection 
module inside FARM adopts an advanced quantile-based 
SPC approach that can detect any mean shift of non-par-
ametric and heterogenous multivariate data streams as 
soon as possible while maintaining a pre-specified false 
alarm rate. Meanwhile, the fault diagnosis module inside 
FARM implements a modified SVM algorithm for fault 
classification. Compared to standard SVM approach, our 
modified SVM algorithm includes an important data pre-
processing step that makes use of the manifold insight of 
covariance matrix to greatly enhance classification accu-
racy. By validating and evaluating the performance of our 
FARM framework using the TEP dataset, we observe that 
1) our fault detection module can achieve fast anomaly 
detection speed at a low false alarm rate, and 2) our fault 
diagnosis module successfully classifies 17 out of 20 fault 
scenarios at 100% accuracy. Unfortunately, faults IDV 3, 
IDV 9, and IDV 15 of the TEP dataset, which are known to 
be hard to classify, still face challenges in differentiating 
among one another with high accuracy. Our future work 
involves revamping the FARM framework to improve the 
classification accuracy of these hard-to-differentiate 
faults.  
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ABSTRACT 
This paper presents the development of algorithms for mass-energy constrained neural network 
(MECNN) models that can exactly conserve the overall mass and energy of distributed chemical 
process systems, even though the noisy steady-state/transient data used for optimal model train-
ing violate the same. For developing dynamic mass-energy constrained network models for dis-
tributed systems, hybrid series and parallel dynamic-static neural networks are used as candidate 
architectures. The proposed approaches for solving both the inverse and forward problems are 
validated considering both steady-state and dynamic data in presence of various noise charac-
teristics. The proposed network structures and algorithms are applied to the development of data-
driven models of a nonlinear non-isothermal reactor that involves an exothermic reaction making 
it significantly challenging to exactly satisfy the mass and energy conservation laws of the system 
only by using the available input and output boundary conditions. 

Keywords: Mass Conservation, Energy Conservation, Equality Constraints, Inverse Problem, Forward Problem, 
Noisy Data 

INTRODUCTION 
Complex first-principles models are often needed to 

represent the complicated physics and chemistry asso-
ciated with many chemical engineering applications. 
While the first-principles models can exactly satisfy mass 
and energy conservation, their development can con-
sume considerable time, and resources, and require good 
understanding of the physics/chemistry that may not be 
available or may be difficult to obtain. One alternative is 
the data-driven / artificial intelligence (AI) modeling tools, 
that are relatively easier to develop, simulate, and adapt 
online for many chemical engineering applications [1,2]. 
Recent advances of machine learning (ML) have signifi-
cantly influenced a wide range of scientific and engineer-
ing fields with applications to thermofluidic processes 
[3,4], computational fluid dynamics [5,6], as well as vari-
eties of other complex industrial applications [7]. More 
recently, physics informed neural networks [8] (PINNs) 
have gained popularity due to their effectiveness in solv-
ing realistic practical problems with noisy data and often 
partially missing physics, with implementations ranging 
from solving systems of partial differential equations 

[9,10] to modeling different chemical processes such as 
photochemical systems [11], hydrofluorocarbon refriger-
ant mixtures [12], biomass pyrolysis process [13], heat 
transfer problems [7], etc. In all these works, the physics 
conservation equations have been either augmented in 
the loss (objective) function as additional penalty terms 
to penalize the violation of such constraint(s) or by inte-
grating them into sequential conservation layers follow-
ing the data-driven model. If the system conservation 
laws are included in the objective function for training the 
neural network (NN) models, they serve as soft con-
straints and do not ensure an ‘exact’ satisfaction of the 
physics constraints. However, in numerous chemical en-
gineering applications, it is desired that certain mathe-
matical relationships (such as mass and energy balances) 
are exactly conserved and not only approximated3. In 
very few recent publications [3,14] that seek to satisfy 
the physics constraints exactly, the proposed algorithms 
are either highly system specific, or require rigorous un-
derstanding of the chemical process to impose appropri-
ate physics conservation laws pertaining to the system. 
These approaches can lead to higher errors, especially 
during the forward problem. Another common approach 
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in the open literature is to send the NN model outputs 
through a linear transformation block to satisfy mass and 
energy balances. However, physics-conserving equa-
tions are not necessarily linear. Furthermore, the correc-
tions applied to the network output in the conservation 
layer, if applied simultaneously while training the network 
rather than sequentially, can affect the training of the NN 
model. 

It is also desired that the physics constraints be ex-
actly satisfied not only during solving the inverse prob-
lem, but also during the forward problem for unknown in-
puts. In this work, ‘inverse’ problem refers to the training 
approaches for optimal NN models, whereas ‘forward’ 
problem is represented by model validation / simulation. 
Most variants of typical PINNs that seek to conserve the 
mass [3,4,13] and energy [7] of chemical systems are 
found to satisfy the conservation constraints only ap-
proximately through penalty terms included in the objec-
tive function. Furthermore, these models may not satisfy 
the mass/energy balances during the forward problem. 
Exactly satisfying mass and energy conservation of 
chemical process systems is critical to ensure that model 
predictions remain realistic and bounded by physical 
laws. 

Another aspect which poses to be a significant chal-
lenge during optimal model synthesis and parameter es-
timation is to develop accurate constrained network 
models when the data are noisy [15]. The presence of 
noise in the training data can corrupt the gradient calcu-
lations during estimation of network parameters [16] and 
can result in biased estimates of parameters during 
model training. Though variants of PINNs such as Bayes-
ian PINNs [17], fractional PINNs [18], etc. address exist-
ence of noise in data while solving systems of partial dif-
ferential equations, existing algorithms that seek to ex-
actly conserve system physics, especially mass and en-
ergy balances, do not consider the presence of uncer-
tainties in training data at all [3,4,15]. However, to the 
best of our knowledge, although a few papers exist till 
date trying to exactly conserve mass of a system [3,4], 
there is currently no work in existing literature focused on 
exactly conserving the energy of distributed chemical 
process systems, perhaps due to the complexities asso-
ciated with distributed nature of energy constraints, en-
ergy addition/removal at different spatial locations as 
well as loss or generation of heat due to complicated 
mechanisms including endothermic/exothermic reactions 
in the system. Furthermore, such approaches consider 
only static feedforward NNs and obviously only steady-
state data for model development. Developing a fully 
data-driven dynamic model that can satisfy system phys-
ics, especially mass and energy balance constraints, can 
be challenging since mass/energy conservation can be 
adequately applied only to the steady-state data espe-
cially if the system is distributed and there is no 

measurement available for the system holdup. Though 
one may desire to satisfy practically any type of physics-
based constraint equation through such approaches, in 
this work we are primarily focused on exactly conserving 
the mass and energy of a system, hence denoting the 
corresponding NNs as Mass-Energy Constrained Neural 
Networks (MECNNs). The primary objective of the paper 
is to develop optimal NN models that exactly satisfy mass 
and energy conservation of chemical processes, even in 
the presence of noise in transient training data. In sum-
mary, contributions of this work are as follows: 
• Both training (inverse problem) and validation (for-

ward problem) algorithms are developed for MECNNs, 
where the mass (atom) and energy (enthalpy) balance 
equations are imposed as equality constraints during 
parameter estimation to ensure that mass and energy 
conservation laws are exactly satisfied in a fully data-
driven approach. 

• It is desired that the proposed approach accommo-
dates nonlinear transformations for constraint satis-
faction and is also applicable when there is no close-
form equation available for satisfying the desired con-
straints. 

• Different uncertainty characteristics, represented by 
presence of a constant (time-invariant) and random 
(time-varying) bias in addition to a zero-mean (known 
variance) Gaussian noise are simulated. 

• In addition to steady-state modeling of nonlinear 
chemical process systems, our approach also ad-
dresses dynamic data-driven model development us-
ing noisy transient data. The proposed algorithms are 
demonstrated for modeling the non-isothermal Van de 
Vusse reactor system [19]. 

MECNN STRUCTURE AND FORWARD / 
INVERSE PROBLEMS 

Steady-State MECNN Implementation 
Novel model structures have been developed for 

both steady-state and dynamic implementations of 
MECNNs. The block-oriented structure for steady-state 
MECNNs, as shown in Figure 1, considers a typical feed-
forward neural network (FFNN) model followed by a 
steady-state data reconciliation (SDR) step, where 
𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represent the final outputs from the optimal 
MECNNs, 𝒚𝒚𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 refer to the intermediate outputs ob-
tained from the FFNN corresponding to the model inputs 
�𝒖𝒖𝑀𝑀𝑀𝑀(𝑘𝑘)�, and 𝑘𝑘 denotes the indices of steady-state train-
ing data. The FFNN model is a single hidden-layered 
feedforward NN involving logistic sigmoid activation 
functions and the Levenberg-Marquardt (LM) algorithm 
for parameter estimation. The choice of FFNN model is 
completely arbitrary since the proposed approaches can 
be applied irrespective of the specific network model ar-
chitecture. More details about various FFNN models can 
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be found in numerous references [1,20]. The SDR block 
provides the additional degrees of freedom necessary for 
solving the equality constrained optimization problem, 
thus facilitating the simultaneous estimation of parame-
ters for both FFNN and SDR blocks through the inverse 
problem formulation described by Equation (1). The mass 
and energy balance equations of the system represent 
the equality constraints imposed on the MECNN during 
both inverse and forward problems to guarantee the ex-
act conservation of system physics. The proposed archi-
tecture is also flexible to accommodate any linear or non-
linear close-form transformation equations that may be 
used for constraint satisfaction by substituting the SDR 
block which requires solving an optimization problem for 
convergence. 

 
Figure 1. General Architecture of Steady-State MECNNs 

The inverse problem for steady-state modeling us-
ing MECNNs combines optimization problems represent-
ing the regression of FFNN model as well as reconciliation 
of the neural network outputs. Therefore, in such ap-
proaches, not only the FFNN model parameters (referred 
to as 𝜃𝜃𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀) are estimated, but also the outputs from the 
FFNN model (𝒚𝒚𝑀𝑀𝑀𝑀) are reconciled simultaneously, in pres-
ence of the mass and energy conservation constraints 
represented by Equations (1c) and (1d). 

min
𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝜃𝜃𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀

∑ ��𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘) − 𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘)�𝑇𝑇𝑅𝑅−1�𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘) − 𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘)�� +

                       ∑��𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘) − 𝒚𝒚𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀(𝑘𝑘)�𝑇𝑇𝑅𝑅−1�𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘) − 𝒚𝒚𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀(𝑘𝑘)��     (1a) 

       𝑠𝑠. 𝑡𝑡.   𝒚𝒚𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀(𝑘𝑘) = 𝒇𝒇𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭(𝒖𝒖𝑀𝑀𝑀𝑀(𝑘𝑘),𝜃𝜃𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀)           (1b) 

                     𝒉𝒉𝑴𝑴(𝒖𝒖𝑀𝑀𝑀𝑀 ,𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑘𝑘) = 0                    (1c) 

                    𝒉𝒉𝑬𝑬(𝒖𝒖𝑀𝑀𝑀𝑀 ,𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑘𝑘) = 0                     (1d) 

where, 𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡 denotes the target training data for MECNNs. 
Although the FFNN model parameters (weights and 

biases) can be regressed to guarantee the exact satis-
faction of mass and energy balance constraints for all 
data on which the MECNN is trained on, it can still not be 
ensured that that the optimal FFNN �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑡𝑡� will con-
tinue to exactly conserve mass and energy of a system 
when subjected to unknown inputs different from those 
encountered during model training. Therefore, for the 
forward problem (i.e., model simulation) as well, the SDR 
block exists following the optimal FFNN model, in a simi-
lar configuration as Figure 1, to ensure the exact conser-
vation of system mass and energy even during model 
simulation (validation). However, for this case, the SDR 

block simply acts as a post-processing step leading to 
the following formulation of the forward problem: 

min
𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

∑��𝒚𝒚𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘)  − 𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘)�
𝑇𝑇
𝑅𝑅−1 �𝒚𝒚𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘)  −

                                          𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘)��                                (2a) 

          𝑠𝑠. 𝑡𝑡.   𝒚𝒚𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘) = 𝒇𝒇𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 �𝒖𝒖𝑀𝑀𝑀𝑀(𝑘𝑘),𝜃𝜃𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜�        (2b)     

                           𝒉𝒉𝑴𝑴(𝒖𝒖𝑀𝑀𝑀𝑀 ,𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑘𝑘) = 0                       (2c) 

                           𝒉𝒉𝑬𝑬(𝒖𝒖𝑀𝑀𝑀𝑀 ,𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑘𝑘) = 0                       (2d) 

Dynamic MECNN Implementation 
Although typical FFNNs feature sufficiently satis-

factory performance while modeling various steady-state 
systems, it may be significantly challenging for static net-
works to accurately model highly complex nonlinear tem-
poral systems with time-lagged input variables. One of 
our previous papers [1] has shown that hybrid series and 
parallel all-nonlinear static-dynamic network models ex-
hibit superior performance than many state-of-the-art 
recurrent neural networks (RNNs), especially while han-
dling large-sized dynamic training data containing com-
plex nonlinearities. Such hybrid models consider typical 
FFNNs representing the nonlinear static (NLS) network, 
while the nonlinear dynamic (NLD) network is character-
ized by the Nonlinear Auto-Regressive with eXogenous 
inputs (NARX) type RNN which provide efficient approxi-
mations while modeling temporal systems due to pres-
ence of feedback connections eradicating the necessity 
of data windows for time-lagged inputs [21]. The NARX-
type RNN models considered in this work also consist of 
a single hidden layer and the logistic as well as hyperbolic 
tangent sigmoid activation functions, where the parame-
ters are estimated by the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm. Furthermore, for different tran-
sient systems, local measurements depicting holdup in-
formation may or may not be available. Therefore, the al-
gorithms for developing accurate dynamic MECNNs may 
differ based on whether holdup measurements are avail-
able. Since both hybrid parallel and series network mod-
els can be considered during development of dynamic 
MECNNs, two different configurations are possible, 
namely the hybrid parallel MECNN and the hybrid series 
MECNN respectively, as shown in Figure 2. 

The hybrid parallel MECNN operates under the as-
sumption that the entire time-series data can be dis-
tinctly partitioned into steady-state and dynamic zones. 
This approach of partitioning training data also facilitates 
the flexibility of solving a sequential optimization problem 
[1,23] for the overall inverse problem of the hybrid paral-
lel MECNN. In such an approach, the steady-state 
MECNN is first developed based on only the steady-state 
zones, i.e., the formulation of the inverse problem 
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remains exactly same as given by Equation (1), followed 
by constructing a deterministic NLD deviation model 
�𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑� represented by a NARX-type RNN to match the 
residuals / deviations obtained with respect to the train-
ing data and steady-state MECNN model outputs. The 
deviation data thus generated serve as target data for 
training the NARX-type RNN model independently during 
the sequential approach while minimizing the typical 
squared error objective function as given by Equation (3). 

 
Figure 2. General Architecture of (a) hybrid parallel and 
(b), (c) hybrid series MECNNs   

  min
𝜃𝜃𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁

  �𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) − 𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) − 𝒚𝒚𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)�
𝑇𝑇
𝑅𝑅−1 �𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) −

                                𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) − 𝒚𝒚𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)�                            (3a)  

    𝑠𝑠. 𝑡𝑡.  𝒚𝒚𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) =  𝒈𝒈𝑭𝑭𝑵𝑵𝑵𝑵𝑵𝑵(𝒖𝒖𝑀𝑀𝑀𝑀(𝑡𝑡),𝜃𝜃𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁)            (3b) 
 

Unlike hybrid parallel MECNNs, the hybrid series 
MECNNs are flexible to accommodate the entire time-se-
ries dynamic data, regardless of whether there is access 
to system holdup information or not. When holdup meas-
urements are not available, then the mass and energy 
conservation constraints can only be applied to the 
steady-state zones while formulating the SDR block in 
the inverse problem due to insufficient information about 
the system holdup during transients. On the other hand, 
for the case when the system holdup information is avail-
able during formulation of the inverse problem for hybrid 
series MECNNs, the approach discussed above can 
readily be extended to exactly satisfy the mass �𝒉𝒉𝑴𝑴(∙)� 
and energy �𝒉𝒉𝑬𝑬(∙)� balance constraints at each time step 
in the transient profile, thus leading to substituting the 
SDR step with a dynamic data reconciliation (DDR) based 
transformation [22]. For systems with no or negligible 

spatial distribution, holdup measurements may be avail-
able, such as continuous stirred tank reactors (CSTRs). 
The corresponding forward problems for dynamic 
MECNNs follow similar formulations based on the se-
quential architectures involving the SDR / DDR post-pro-
cessing step.  

Error Characterizations 
Measurement data considered for developing opti-

mal accurate data-driven models often contain uncer-
tainties stemming from various factors. The two types of 
error characterizations (Equations (4) and (5)) that have 
been considered in this work during both steady-state 
and dynamic implementations of MECNNs include adding 
constant (time-invariant) and random (time-varying) bi-
ases (𝜷𝜷) respectively, to the true data, 𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (generated 
from simulation) in presence of Gaussian noise �𝜂𝜂(0,𝜎𝜎2)�. 
The primary goal is to assess how the presence or ab-
sence of noise and its characterization impact the perfor-
mance of the proposed MECNNs and their capabilities to 
exactly conserve the mass and energy of a system. It is 
to be noted that for the case when the measurements are 
corrupted with a random (time-varying) bias, the inverse 
problem formulation as given by Equation (1) may lead to 
lack of identifiability while constructing accurate data-
driven models which yield results close to the system 
truth. Therefore, in this work, additional parametric (lin-
ear, quadratic, etc.) noise models have been incorpo-
rated into the inverse problem formulation while address-
ing random (time-varying) bias in measurement data. 

𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = 𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) + 𝜷𝜷 + 𝜂𝜂(0,𝜎𝜎2)                         (4) 

𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = 𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) + 𝜷𝜷(𝑡𝑡) + 𝜂𝜂(0,𝜎𝜎2)                    (5) 

CASE STUDY: NON-ISOTHERMAL VAN 
DE VUSSE REACTOR SYSTEM 

The nonisothermal model of the Van de Vusse reac-
tor system is one of the most vastly studied multi-input-
multi-output (MIMO) processes due to its high complex 
nonlinearities [19]. The reaction involves the production 
of cyclopentenol (B) from cyclopentadiene (A) by acid-
catalyzed electrophilic addition of water in dilute aque-
ous solution. The side products of this reaction are cy-
clopentanediol (C) and dicyclopentadiene (D). Cooling 
water flows through the jacket surrounding the reactor to 
remove excess heat generated due to the highly exother-
mic reaction within the system, as shown in Figure 3. The 
detailed mathematical model consisting of the overall 
material and energy balance equations and nominal val-
ues of the involved parameters can be found in the liter-
ature [19]. 
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Figure 3. Schematic of the Nonisothermal Van de Vusse 
Reactor for MECNN Implementation 

The feed stream contains predominantly compo-
nent A, with small quantities of B. Following variables are 
considered to be the inputs to the MECNN model-volu-
metric flowrate (𝐹𝐹) and inlet temperature (𝑇𝑇0) of the feed, 
volumetric flowrate �𝐹𝐹𝑗𝑗� of the jacketing fluid, along with 
the concentrations of A �𝐶𝐶𝑁𝑁𝑓𝑓� and B �𝐶𝐶𝐵𝐵𝑓𝑓� in the feed 
stream. Following variables are considered to be the out-
puts for the model-concentration of all reaction species, 
i.e., A (𝐶𝐶𝑁𝑁), B (𝐶𝐶𝐵𝐵), C (𝐶𝐶𝑀𝑀), D (𝐶𝐶𝐷𝐷) in the product stream 
and the outlet temperatures of the product stream 
(𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) and jacketing fluid �𝑇𝑇𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�. It is assumed that 
the inlet and outlet volumetric flowrates are the same 
across the reactor system as well as across the cooling 
jacket. The steady-state mass balance constraints in 
terms of elemental atom (C, H, and O) balance equations 
and the energy balance constraint have been provided in 
Equations (6) through (9), where 𝑛𝑛𝑀𝑀𝑖𝑖 , 𝑛𝑛𝐻𝐻𝑖𝑖, and 𝑛𝑛𝑂𝑂𝑖𝑖 repre-
sent the number of C, H, and O atoms respectively in the 
𝑖𝑖𝑡𝑡ℎ species, 𝜌𝜌𝑡𝑡 denotes the density of the reactor mixture, 
ℎ𝑖𝑖𝑑𝑑 and ℎ𝑜𝑜𝑡𝑡𝑡𝑡 refer to the specific enthalpies of the reac-
tant and product mixtures as functions of inlet (𝑇𝑇0) and 
outlet (𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) temperatures, 𝑚𝑚𝑗𝑗, 𝑉𝑉𝑗𝑗 and 𝐶𝐶𝑜𝑜𝑗𝑗 refer to the 
mass, volume and specific heat capacity of cooling water 
flowing through the jacket, and 𝑇𝑇𝑗𝑗0 represent the inlet 
temperature of the jacketing fluid (cooling water). 

� 𝑛𝑛𝑀𝑀𝑖𝑖 ∗ 𝐹𝐹(𝑘𝑘) ∗ 𝐶𝐶𝑖𝑖𝑓𝑓(𝑘𝑘)
𝑖𝑖=𝑁𝑁,𝐵𝐵,𝐻𝐻2𝑂𝑂

= � 𝑛𝑛𝑀𝑀𝑖𝑖 ∗ 𝐹𝐹(𝑘𝑘) ∗ 𝐶𝐶𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑘𝑘)

𝑖𝑖=𝑁𝑁,𝐵𝐵,𝑀𝑀,𝐷𝐷,𝐻𝐻2𝑂𝑂

    (6) 

� 𝑛𝑛𝐻𝐻𝑖𝑖 ∗ 𝐹𝐹(𝑘𝑘) ∗ 𝐶𝐶𝑖𝑖𝑓𝑓(𝑘𝑘)
𝑖𝑖=𝑁𝑁,𝐵𝐵,𝐻𝐻2𝑂𝑂

= � 𝑛𝑛𝐻𝐻𝑖𝑖 ∗ 𝐹𝐹(𝑘𝑘) ∗ 𝐶𝐶𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑘𝑘)

𝑖𝑖=𝑁𝑁,𝐵𝐵,𝑀𝑀,𝐷𝐷,𝐻𝐻2𝑂𝑂

    (7) 

� 𝑛𝑛𝑂𝑂𝑖𝑖 ∗ 𝐹𝐹(𝑘𝑘) ∗ 𝐶𝐶𝑖𝑖𝑓𝑓(𝑘𝑘)
𝑖𝑖=𝑁𝑁,𝐵𝐵,𝐻𝐻2𝑂𝑂

= � 𝑛𝑛𝑂𝑂𝑖𝑖 ∗ 𝐹𝐹(𝑘𝑘) ∗ 𝐶𝐶𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑘𝑘)

𝑖𝑖=𝑁𝑁,𝐵𝐵,𝑀𝑀,𝐷𝐷,𝐻𝐻2𝑂𝑂

    (8) 

𝐹𝐹(𝑘𝑘) ∗ 𝜌𝜌𝑡𝑡 ∗ �ℎ𝑖𝑖𝑑𝑑�𝑇𝑇0(𝑘𝑘)� − ℎ𝑜𝑜𝑡𝑡𝑡𝑡� 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘)��

=
𝐹𝐹𝑗𝑗(𝑘𝑘)
𝑉𝑉𝑗𝑗

∗ 𝑚𝑚𝑗𝑗 ∗ 𝐶𝐶𝑜𝑜𝑗𝑗 ∗ �𝑇𝑇𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑘𝑘) − 𝑇𝑇𝑗𝑗0�       (9) 

Since this case study considers a CSTR system with 
no spatial distribution, the system holdup information can 
be explicitly modeled using the outlet boundary condi-
tions and reactor instantaneous volume, since the accu-
mulation term for concentrations / temperature of the 

reaction species in a CSTR is exactly same as the corre-
sponding outlet values at every time instance during dy-
namic modeling. For example, the mass (in terms of C 
atom) and energy balance constraints which can be im-
posed at every time step (𝑡𝑡) for this case study can be 
expressed in terms of inlet / outlet flowrates (𝐹𝐹𝑖𝑖𝑛𝑛, 𝐹𝐹𝑜𝑜𝑜𝑜𝑡𝑡) 
and instantaneous reactor volume (𝑉𝑉) as: 
𝑑𝑑(𝑉𝑉𝐶𝐶𝑖𝑖)
𝑑𝑑𝑡𝑡

− � � 𝑛𝑛𝑀𝑀𝑖𝑖 ∗ 𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡) ∗ 𝐶𝐶𝑖𝑖𝑓𝑓(𝑡𝑡)
𝑖𝑖=𝑁𝑁,𝐵𝐵,𝐻𝐻2𝑂𝑂

− � 𝑛𝑛𝑀𝑀𝑖𝑖 ∗ 𝐹𝐹𝑜𝑜𝑡𝑡𝑡𝑡(𝑡𝑡) ∗ 𝐶𝐶𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑡𝑡)

𝑖𝑖=𝑁𝑁,𝐵𝐵,𝑀𝑀,𝐷𝐷,𝐻𝐻2𝑂𝑂

� = 0   (10) 

𝑑𝑑(𝜌𝜌𝑡𝑡𝑉𝑉ℎ)
𝑑𝑑𝑡𝑡

− � 𝜌𝜌𝑡𝑡 ∗ �𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡)ℎ𝑖𝑖𝑑𝑑� 𝑇𝑇0(𝑡𝑡)� − 𝐹𝐹𝑜𝑜𝑡𝑡𝑡𝑡(𝑡𝑡)ℎ𝑜𝑜𝑡𝑡𝑡𝑡� 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)�� −
𝐹𝐹𝑗𝑗(𝑡𝑡)
𝑉𝑉𝑗𝑗

∗ 𝑚𝑚𝑗𝑗 ∗ 𝐶𝐶𝑜𝑜𝑗𝑗 ∗ �𝑇𝑇𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑡𝑡) − 𝑇𝑇𝑗𝑗0�� = 0                   (11) 

RESULTS AND DISCUSSIONS 

Steady-State Modeling 
The different types of error characterizations con-

sidered for generating measurement data for the steady-
state modeling of the non-isothermal Van de Vusse reac-
tor system have been separately analyzed. For present-
ing both steady-state and dynamic results, the data used 
for training MECNN models are referred to as ‘measure-
ments’, irrespective of whether they had been generated 
from a first-principles model or collected from experi-
ments. Furthermore, the violation of mass and energy 
conservation constraints by the network models have 
been quantified in terms of absolute percentage error 
(APE) in atom and energy (Q) balances defined as: 

𝐴𝐴𝐴𝐴𝐸𝐸𝑡𝑡𝑡𝑡𝑜𝑜𝑚𝑚𝑖𝑖 = �
∑ 𝐹𝐹𝑚𝑚𝑎𝑎𝑜𝑜𝑜𝑜𝑚𝑚𝑖𝑖𝑖𝑖𝑑𝑑 − ∑ 𝐹𝐹𝑚𝑚𝑎𝑎𝑜𝑜𝑜𝑜𝑚𝑚𝑖𝑖𝑜𝑜𝑡𝑡𝑡𝑡

∑ 𝐹𝐹𝑚𝑚𝑎𝑎𝑜𝑜𝑜𝑜𝑚𝑚𝑖𝑖𝑖𝑖𝑑𝑑
� ∗ 100%          (12) 

                 𝐴𝐴𝐴𝐴𝐸𝐸𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑒𝑒𝑑𝑑 = �
𝑄𝑄𝑁𝑁 − 𝑄𝑄𝑗𝑗
𝑄𝑄𝑁𝑁

� ∗ 100%                        (13) 

where, ∑ 𝐹𝐹𝑚𝑚𝑎𝑎𝑜𝑜𝑜𝑜𝑚𝑚𝑖𝑖𝑖𝑖𝑑𝑑  and ∑ 𝐹𝐹𝑚𝑚𝑎𝑎𝑜𝑜𝑜𝑜𝑚𝑚𝑖𝑖𝑜𝑜𝑡𝑡𝑡𝑡  respectively denote the 
total mass flowrate of the 𝑖𝑖𝑡𝑡ℎ atom in all inlet and outlet 
streams, and 𝑄𝑄𝑁𝑁 and 𝑄𝑄𝑗𝑗 refer to the total heat lost by the 
reactor mixture and that gained by the jacketing fluid 
(cooling water) respectively. While the root mean 
squared error (RMSE) calculated between the measure-
ments / truth and model predictions account for the pre-
dictive capabilities of the proposed data-driven models 
for nonlinear steady-state / dynamic data, the APE in 
atom and energy balances represent the magnitude of 
the maximum (worst-case) violation of the mass and en-
ergy balance constraints respectively. The specific en-
thalpy terms involved in the energy balance constraint 
(as given by Equation (9)) have been appropriately ex-
pressed in terms of specific heat capacity of the reactor 
mixture and the heat of reaction calculated from the 
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respective heats of formation of the reactants and prod-
ucts. For brevity, only the steady-state results obtained 
when the measurement data are corrupted with a con-
stant bias along with Gaussian noise, have been included 
here. Constant biases equal to 5% of the mean of the true 
concentrations and a constant positive value of 3.5°C for 
each temperature variables have been added to the re-
spective outputs in presence of a Gaussian noise with 𝜇𝜇 =
0 and 𝜎𝜎2 = 0.25. Figure 4 compares the model results vs 
truth and measurements for MECNN and NN w/o mass-
energy constraints (MEC) for simulation data of 𝐶𝐶𝑁𝑁  �𝑘𝑘𝑚𝑚𝑜𝑜𝑘𝑘

𝑚𝑚3 �. 

 
Figure 4. Comparison of results between MECNN and NN 
w/o MEC for simulation data of 𝐶𝐶𝑁𝑁 (noise in measurement 
data represented by Equation (4)) 
 

The unconstrained NN yields an excellent match 
with about 0.03% RMSE with respect to the 
measurements but results in biased estimates compared 
to the truth, thus leading to around 5.3% RMSE with 
respect to the true data. On the contrary, the MECNN 
accurately captures the system truth (characterized by 
approximately 0.01% RMSE) but shows a clear mismatch 
with the measurements leading to around 4.9% RMSE. 
The imposition of mass and energy conservation laws as 
equality constraints, along with modification of the 
objective function as given in Equation (1a) results in the 
outputs from MECNN that minimize error with respect to 
the system truth, as opposed to minimizing error with 
respect to the measurements (training data). 
Furthermore, the MECNN exactly satisfies both mass and 
energy balance constraints during the forward problem 
as well, as evident from Figure 5, whereas the NN w/o 
those constraints show maximum APE in C, H, O and Q 
balance as 7.4%, 10.1%, 21.8%, and 0.22% respectively. 

 
Figure 5. Comparison between MECNN and NN w/o MEC 
in terms of violating (a) C, (b) H, (c) O and (d) Q balance 
constraints during simulation (noise in measurement data 
represented by Equation (4))  

Dynamic Modeling 
The performance of dynamic MECNNs is evaluated 

in this paper for the case when a time-varying bias is 
added to the system truth to generate measurements in 
presence of Gaussian noise, as given in Equation (5). As 
discussed before, different parametric forms of a noise 
(error) model, such as linear, quadratic, etc. have been 
considered during optimal model synthesis when the 
measured data are corrupted with a time-varying bias. In 
this case, time-varying biases in the range of -4% to +6% 
of the true outlet concentrations have been added to the 
concentration variables and that within -1°C to 6°C have 
been incorporated into the true temperature variables to 
generate training data, along with an additional Gaussian 
noise distribution with 𝜇𝜇 = 0 and 𝜎𝜎2 = 0.25. The linear par-
ametric form of the noise (error) model yielded superior 
results in terms of percentage RMSE with respect to true 
data as well as minimum values of the corrected Akaike 
Information Criteria [1,23] (AICc) evaluated during model 
training, as compared to the quadratic form as well as the 
case when no separate error model was considered dur-
ing parameter estimation. Figure 6 shows the comparison 
between the results obtained from the hybrid series 
MECNN vs standalone series NN without mass-energy 
constraints (MEC) for simulation data of 𝑇𝑇. 

While the unconstrained hybrid NLS – NLD model 
shows an excellent match with the measurements (rep-
resented by around 0.09% RMSE), the results obtained 
violate the mass and energy conservation of the system 
leading to approximately 2.5% RMSE with the true data. 
On the other hand, the hybrid series MECNN shows a sig-
nificant mismatch with the measured data (characterized 
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by around 2.8% RMSE) but accurately captures the sys-
tem truth recording an overall percentage RMSE of just 
0.04%. The MECNN has also been seen to exactly satisfy 
the C, H, O, and energy balances at steady state while 
showing some mismatch during transients. However, the 
unconstrained NN model show APE in the mass and en-
ergy conservation equations as high as 22%, 30%, 60%, 
and 0.5% respectively. It is to be noted that for process 
control applications, the dynamic models for MECNNs 
can be used as soft sensors, especially for those involv-
ing an economic measure where such mass / energy im-
balances can lead to inaccurate accounting of the control 
objective. The impact of inaccurate measurements on the 
key economic measures of the process such as efficiency 
has been extensively investigated by other researchers 
[24,25].  

 
Figure 6. Comparison of results between hybrid series 
MECNN and NN w/o MEC for simulation data of 𝑇𝑇 (noise 
in measurement data represented by Equation (5)) 

When holdup measurements are available, the pro-
posed algorithms can be extended to exactly satisfy 
mass and energy balance constraints even during the 
transients. Since this case study example is essentially a 
CSTR, the concentrations of the reaction species and the 
instantaneous temperature of the reaction mixture inside 
the reactor at any given point of time can be assumed to 
be exactly equal to the outlet concentrations and tem-
perature of the same at that time instant. The plots com-
paring results from unconstrained vs constrained net-
work models when system holdup information is available 
have not been discussed here for brevity. However, un-
like previous cases, the MECNN exactly satisfies the 
mass and energy conservation even during the transients 
due to the imposition of mass and energy balance con-
straints at every time step of the dynamic training / sim-
ulation data. The unconstrained NN model, for this case, 

shows significantly higher APEs in C, and Q balances re-
cording maximum errors of 9% and 4.5% respectively, as 
shown in Figure 7. 

 
Figure 7. Comparison between hybrid series MECNN and 
NN w/o MEC in terms of violating (a) C (b) Q constraints 
(holdup info available) during simulation (noise in meas-
urement data represented by Equation (4)) 

CONCLUSIONS 
In this study, we have developed algorithms for syn-

thesizing steady-state and dynamic neural network mod-
els capable of exactly satisfying mass and energy con-
servation laws, even when the training data used for 
training the networks violate these laws. Furthermore, we 
have also demonstrated that if system holdup infor-
mation is available during process transience, these al-
gorithms can also exactly satisfy physics constraints dur-
ing process dynamics. The proposed approaches can be 
individually applied to different equipment items in inter-
connected systems assuming that the required boundary 
information is measured / available. For interconnected 
reactive systems and systems involving mass / energy 
integration / losses, application of the proposed ap-
proach to the plant-wide system needs further investiga-
tion. For all results presented in this paper, the steady-
state and dynamic MECNNs consistently exhibited RMSE 
of less than 1% when compared to the true data for both 
inverse and forward problems. On the contrary, the cor-
responding unconstrained networks resulted in signifi-
cantly higher errors. The MECNN structures developed 
as part of this work can be applied not only for steady-
state modeling, but also in effectively representing dy-
namic process systems represented by noisy measure-
ments. However, since the proposed approaches work 
on a minimum-bias principle during estimation of optimal 
parameters in presence of different types of uncertain-
ties in training data, it is important to clarify that these 
algorithms do not necessarily guarantee perfect predic-
tions of the true data as expected but do ensure that 
mass and energy balance constraints are exactly satis-
fied during both inverse (training) and forward (simula-
tion) problems. 
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ABSTRACT 
A hybrid model for the fluid bed granulation operation was built. The deterministic component 
focuses on the mass and energy balances representing the water ingress and egress from the 
powder bed. The empirical one does on granule growth. Estimability techniques were used to de-
termine which parameters to regress from the available data. A partial least squares approach was 
used to better understand the impact of the model parameters onto key model responses and 
sensitivity plots were made to aid operational decisions and support pharmaceutical development. 

Keywords: Process Operations 

INTRODUCTION 
Fluid bed granulation is a common operation in the 

manufacture of pharmaceutical oral solid dosage forms 
(i.e. tablets and capsules). The aim of the operation is to 
agglomerate the blend of primary particles in the incom-
ing powder blend to increase particle size and density. 
This operation becomes necessary when simpler ap-
proaches (e.g. direct compression) are unfeasible due to 
the poor flowability of the unprocessed powder mixture. 
The operation typically consists of a closed chamber 
where powder is loaded, an aqueous solution of a binding 
polymer  

Figure 1. Schematic of a fluid bed granulation chamber 

is sprayed onto the powder as drying air is fed through 
the bottom of the chamber fluidizing the powder and aid-
ing the incorporation of the spray into the powder bed. 
The operation consists of two main phases after the pow-
der is loaded, a spray phase where a pre-defined amount 
of solution is sprayed onto the powder and a drying 
phase where the spray is stopped, and air continues to 
be fed to fluidize and dry the agglomerates (granules) to 
a desired level of humidity (Figure 1). 
The common manipulated variables (MV) in this operation 
are i) the amount of spray added ii) the spraying rate, iii) 
the temperature of the drying air, iv) the air flow during 
the spraying phase and v) airflow during the drying 
phase. A typical constraint is the composition of the pow-
der blend since this is determined to satisfy a desired 
dose in the final product. 

The aim of this study is to approach the design of 
the operating conditions for this unit for a specific prod-
uct, utilizing scientific understanding rather than solely 
through empiricism. We do this through the formulation 
of a mathematical expression (a model) that captures the 
combined effect of the multiple driving forces affecting 
the in the system. Once the model is formulated, we use 
in-sillico studies to define a design space for commercial 
manufacturing.  

https://doi.org/10.69997/sct.121077
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MODEL DESCRIPTION 
Detailed studies [1] demonstrate the strong coupling 

between granule growth and drying mechanism. Both 
mechanisms are tied since the granule size will determine 
the particle specific surface area available for water in-
take and drying. Some researchers have focused on 
studying the granule growth solely [2], while others focus 
the study on the water intake an egress [3] under the hy-
pothesis that controlling one mechanism will result in 
control of the other. 

 Our work approaches the drying phenomena 
through mechanistic modeling while addressing the 
granule size through an empirical model. 

Mass and Energy Conservation 
Our approach follows that of Ochsenbein et. al [3] 

with some differences that are discussed. The consid-
ered flows of water across the system are illustrated in 
figure 2. Three distinct phases are considered: spray, 
powder bed, and chamber (gas phase). Liquid water in-
gresses the system through the spray and most of it as-
sumed to be immediately transferred to the powder bed. 
Water vapor is assumed to be lost directly from the spray 
to the gas phase through an efficiency and transferred 
between the powder bed and the gas phase through a 
drying expression.  

 
Figure 2. Mass flows across phases 

Several key differences separate our work from that 
of Ochenbein et al. [3]. The way we calculate the outlet 
airflow is discussed first. The only inlet of bone-dry air is 
the inlet air flow. We assume that the volume of humid air 
leaving the chamber is a natural response to equalizing 
the pressure in the chamber as it can build up or down 
depending on the temperature or the water content in the 
gas phase. This approach is known as a pressure-driven 
simulation and would typically require complex momen-
tum transfer calculations, we took a short-cut approach. 
In this work we calculate the pressure in the chamber as 
a function of temperature and water content using an 
ideal gas approach (the volume of the chamber is fixed). 
We determine the necessary volumetric flow of humid air 
leaving the chamber necessary to keep the pressure in 

the chamber steady at atmospheric conditions.  This is 
calculated using the equations of a fictitious PI controller 
(Equations. 1 and 2) tuned to be fast but stable. 

�̇�𝑣𝑊𝑊+𝐴𝐴𝐴𝐴𝐴𝐴
𝑂𝑂𝑂𝑂𝑂𝑂  = 𝐾𝐾𝑝𝑝𝜀𝜀+

1
𝜏𝜏𝑖𝑖
∫ 𝜀𝜀 + �̇�𝑣𝑊𝑊+𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐼𝐼     (1) 

𝜀𝜀 = 𝑃𝑃𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 − 𝑃𝑃𝑆𝑆𝑆𝑆    (2) 

A second difference is the assumed driving force for 
the water transfer from powder to the gas phase. In our 
work we assume that the difference between the abso-
lute humidity in the powder and the equilibrium humidity 
of the powder when exposed to the current conditions in 
the gas phase �∆𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎 − 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏

@𝑏𝑏𝑒𝑒 𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎� is the drying 
driving force. This equilibrium condition can be obtained 
in the laboratory using a dynamic vapor sorption instru-
ment. Typically, these equilibrium curves will be pro-
duced at ambient conditions, which are not reflective of 
the powder bed temperatures in the process. In our work 
we chose to consider the dependency of this equilibrium 
with respect to temperature. We include this in the model 
by measuring the water sorption isotherms at multiple 
temperatures and following the approach by Quirijns et. 
al. [4] to modify the GAB equation and thus be able to 
include the temperature effect on the equilibrium condi-
tion. This equilibrium is also a function of composition 
since each different ingredient has a different sorption 
curve and the composition of the bed changes as binder 
is added through the spray; a simple mass fraction 
weighted average is used.  

We also consider the inclusion of a spraying effi-
ciency (γ) equation (Equation 3) to capture the losses of 
water directly from the spray into the gas phase as a 
function of the absolute humidity of the powder bed. This 
expression introduces into the model the phenomena 
known as “wetting” where water permeation onto a dry 
powder is more difficult that onto a wet powder. We also 
consider the inclusion of a modifying scalar omega (ω) to 
the available surface area for drying (Equation 4). This 
scalar is less than one during the spray phase and equal 
to one during drying. During the spray phase, water is en-
tering the powder bed, and it is assumed that the portion 
of the total surface area of the powder that is used for 
water intake cannot be used for drying. The evaporation 
rate coefficient (𝑘𝑘𝑏𝑏𝑒𝑒𝑎𝑎𝑝𝑝) is assumed to follow a first order 
exponential function with respect to the driving force. 
This allows 𝑘𝑘𝑏𝑏𝑒𝑒𝑎𝑎𝑝𝑝to be a constant during the constant dry-
ing phase; and to decay when the drying is limited by 
mass transfer. This approximation Eq (5) enables the dry-
ing calculations without formally solving the intra-particle 
mass transfer problem. 

𝛾𝛾 = �1 − 𝑒𝑒�−𝜏𝜏𝑠𝑠 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏
𝑎𝑎𝑏𝑏𝑠𝑠��     (3) 

�̇�𝐻𝑏𝑏𝑒𝑒𝑎𝑎𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑆𝑆𝑆𝑆𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑏𝑏𝑎𝑎𝑘𝑘𝑏𝑏𝑒𝑒𝑎𝑎𝑝𝑝 ∗ 𝜔𝜔   (4) 
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(5) 

The exchanges of energy across the unit are illus-
trated in Figure 3, they are the same transfers considered 
by Ochsenbein [3]. 

Figure 3. Energy transfers across phases 

One final parameter to discuss is that of a correction 
factor for the measured absolute humidity of the outlet 
air. After discussions with the equipment vendor, it be-
came clear that value reported by this sensor needed a 
multiplier to be reflective of the true value. This is an ad-
ditional parameter considered in the model. 

Parameter Estimability 
The mass and energy portion of the model consists 

of 9 model parameters plus the initial wall temperature as 
quantities that need to be estimated from data.  

Table 1: Model Parameters 

Parameter Estimability Measure Rank 
u wall_air 6.498  
k_evap_rateK 3.313  
temp wall init 1.245  
u wall_bed 1.028  
omega_factor 0.551  
u bed_air 0.372  
spraying_effi-
ciencytau 

0.155  

k_evap_ratetau 0.003  

abshumidity 
out correction 
factor 

-0.004  

u wall_env -1.380  

The fluid bed granulator unit is fitted with sensors 
that provide electronic data captured throughout the op-
eration. Specifically for the airflow, the temperatures and 

absolute humidity for the air before and after the cham-
ber, the temperature of the powder bed and the spray 
rate. Additional to these real-time measurements, sam-
ples are taken from the unit and analyzed for water con-
tent. This is reported in percent weight loss after drying 
(LOD). With these data available, we analyzed the esti-
mability [5] of the model parameters to determine which 
parameters to estimate and which to fix. The absolute 
humidity correction factor and the heat transfer from wall 
to environment are the least estimable parameters from 
the data. The low estimability for the heat transfer coef-
ficient from wall to environment was expected since the 
wall temperature is not measurable in the unit.  

Three sets of parameters were obtained for nominal 
conditions that would incrementally create larger granule 
sizes (referred to as under-granulation, nominal and 
over-granulation conditions). 

Obtained predicted vs measured values for the LOD 
and the bed temperature are shown in figure 4 for illus-
tration purposes. 

Figure 4. Predicted vs observed profiles 

Hybrid component for total particle growth 
Through all the mass and energy calculations a fun-

damental assumption is made that the particle size of the 
powder is constant. This also fixes the available particle 
specific surface area which is essential in the calculations 
of drying kinetics and heat transfers to/from the bed. This 
mimics the approach taken by Ochsenbein et. al. [3]. 

A hybrid component is added to the model to ac-
count for the effect of the process conditions onto the 
final granule particle size. This extension adds predicta-
bility to the granule size and particle specific surface 
area, bonding the granule growth and drying mecha-
nisms. A Partial Least Squares (PLS) model is built to pre-
dict the final granule properties (including particle spe-
cific surface area) as a function of the recipe parameters 
that also dictate the drying behaviour. The particle spe-
cific surface area is predicted with an R2 value of ~90%. 
The hybrid model proves to be adequate to predict the 
time varying values for the LOD, the powder bed temper-
ature and the humidity of the outlet air. The PLS model 
was built with open-source code (https://github.com/sal-
vadorgarciamunoz/pyphi). 

The PLS model was implemented along with the 

𝑘𝑘𝑏𝑏𝑒𝑒𝑎𝑎𝑝𝑝 = �
= 𝐾𝐾𝑏𝑏𝑒𝑒𝑎𝑎𝑝𝑝 𝑖𝑖𝑖𝑖  ∆𝐻𝐻𝐻𝐻𝐻𝐻 ≥ ∆𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝

= 𝐾𝐾𝑏𝑏𝑒𝑒𝑎𝑎𝑝𝑝�1 − 𝑒𝑒�−𝜏𝜏𝑏𝑏𝑒𝑒𝑎𝑎𝑒𝑒∆𝐶𝐶𝐻𝐻𝐻𝐻�� 𝑖𝑖𝑖𝑖∆𝐻𝐻𝐻𝐻𝐻𝐻 < ∆𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝

https://github.com/salvadorgarciamunoz/pyphi
https://github.com/salvadorgarciamunoz/pyphi


Muñoz et al. / LAPSE:2024.1546 Syst Control Trans 3:338-343 (2024) 341 

mass and energy balance using gPROMS (Siemens In-
dustry Software, Ltd). 

MODEL PARAMETERS EFFECT 
Once a model is assembled and parametrized a nat-

ural question to further the understanding of the model is 
to explore the effect of the model parameters onto the 
predictions. We explore this dependency in two ways: a) 
the effect of parameter uncertainty and b) The effect of 
true statistically significant changes in the model param-
eters (beyond uncertainty) onto the responses of inter-
est. 

To explore the propagation of parameter uncer-
tainty, a sensitivity analysis is done simultaneously vary-
ing the values of each model parameter by three stand-
ard deviations above and below the optimal value ob-
tained at the parameter estimation step. The variation of 
LOD due to this parametric uncertainty is shown in figure 
5. The variation is ~0.125 % which is acceptable for the
application at hand.

Figure 5. Variation in LOD prediction due to model 
parameter uncertainty. 

A second sensitivity study was carried out to under-
stand the numerical effect from meaningful changes to 
the model parameters onto the predictions of interest: 
the LOD, the absolute humidity of the outlet air, and the 
temperature of the powder bed. This analysis was done 
by simultaneously varying the 10 estimated parameters 
to random values within 20% (above and below) of its es-
timated one. Ten thousand simulations were conducted 
for each of the three scenarios of interest (under, nominal 
and over granulation). A PLS model was fitted to better 
understand the multivariate interactions between the 
model parameters and the time varying profiles for the 
responses. Three significant latent variables were found 
across the three scenarios. From the coefficients of cor-
relation (Figure 6) one can conclude that the model pa-
rameters that cause the largest change across the time 
varying profiles for the  three  model  outputs are:  the 
time constant and the gain for the evaporation rate 

Figure 6. R2X and R2Y for the PLS model at nominal 
conditions fitted to meaningful variation in model 
parameters and its effect onto responses. 

Coefficient (Equation 5 ), and the omega factor that con-
trols the fraction of surface area available for drying dur-
ing the spray phase. The second latent variable captures 
the influence of the time constant for the spray efficiency 
equation (Equation 3) and the initial temperature of the 
bed onto the LOD and the bed temperature. The third la-
tent variable represents the effect of the outlet absolute 
humidity correction factor. Interestingly, this analysis 
also seems to indicate the almost negligible effect of the 
heat transfer coefficients. The trends and conclusions 
form Figure 6 are shared (with minor differences) across 
the three scenarios (under, nominal and over granula-
tion). The overall ranking of importance for the model pa-
rameters can be summarized in the Very Important to the 
Projection (VIP) plot shown in Figure 7. This diagnostic 
considers the importance for each regressor accounting 
for the multivariate consequence onto the response. 
The combined effect on the LOD from of these meaning-
ful variations in model parameters with the necessary ad-
justments in the process parameters to go from under to 
nominal to over granulation are shown in Figure 8. 

Beyond the correlations illustrated in Figure 6, the 
PLS model diagnostics could be further analyzed to also 
uncover the directionality in these correlations. This un-
derstanding is useful to determine necessary direction 
and magnitude for a change in a model parameter to cre-
ate a positive of negative change in a model response. 
This information in the PLS model can be embedded with 
an optimization routine for example to find improved ini-
tial guesses for the model parameters for a new product. 
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Figure 7. Very Important to the Projection (VIP) plot for 
the PLS model fitted to meaningful variation in model 
parameters and its effect onto responses  

Figure 8. Variation in LOD prediction due to meaningful 
changes in model parameters at different operating 
regimes. 

PROCESS PARAMETERS EFFECT 
The pharmaceutical development process requires 

the study of the impact of all the MV in the operation of a 
process onto the quality of the final product. Regulatory 
agencies encourage practitioners to take a risk-based 
approach to optimize development efforts [6]. Although 
the granules produced from the fluid bed granulation op-
eration can be the end-product [7]; more commonly 
these are intermediate materials to the final oral solid 
dosage form. As such, the study of this operation is cus-
tomarily coupled with the study of all downstream oper-
ations in a systematic way [8]. Through a combination of 
experimentation and modeling described elsewhere [9] 
two intermediate process characteristics were identified  

Figure 9. Variation in LOD due to changes in Airflow 
during the spraying phase (top) and drying phase 
(bottom) 

Figure 10. Sensitivity of the average water intake 
and drying by the powder bed with changes in 
air temperature and spray rate. 

as key for this operation: The average rate of water intake 
into the powder bed and the average rate of drying. 
These are as indicative of the downstream performance 
of the granule. 

Univariate studies per MV are conducted to help 
identify initial criticality and isolate the effect per MV. For 
illustrative purposes, Figure 9 shows the LOD result from 
variations in volumetric airflow during spraying, and dur-
ing drying (as two independent MV). Remarkably, the ef-
fect of the airflow during spraying has a stronger effect 
on the LOD during the drying period than the airflow dur-
ing drying. A similar effect emerges in Figure 10 showing 
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the effect of the air temperature (which remains constant 
throughout the operation) and the spray rate onto the av-
erage rate of water ingress (top) and the average drying 
rate (bottom). These figures show that while the spray 
rate dominates the effect of the water ingress to powder 
bed, it also has a strong effect onto the drying rate. The 
strong impact of the manipulated variables defining the 
water ingress onto the drying rate is because these vari-
ables define the initial conditions for the drying phase. 
This follows what other researchers have also postu-
lated: that the dynamics of water intake and egress from 
the powder bed are intrinsically coupled with the dynam-
ics of granule grown and thus the final attributes of the 
granule [1].  The model described here was utilized to 
better understand the effect of the MV in the process as 
they affected these two rates. These sensitivity plots can 
be used in the definition of design spaces once con-
straints are given for the rates of water intake and drying. 

CONCLUSIONS 
The foundations for the assembly of a useful math-

ematical representation of a process are the initial artic-
ulation of the assumptions made, and the systemic enu-
meration of the driving forces to be considered. In a sys-
temic approach, the latter exercise needs to be done in 
consideration to the available measurements that can 
help identify the individual contributions from the sub-
systems of the model, and their behavior upon interac-
tion. After the euphoric task of postulating equations and 
equations to represent a process; the modeler must sub-
ject itself to the sobering exercise of statistics, such as 
performing an Estimability analysis [5] to better under-
stand what level of rigor can be afforded by the available 
data for the parametrization of the model. This intersec-
tion of statistical and deterministic approaches is the key 
to the construction of a useful model with optimal level of 
parsimony. 

Once a model is built and well parametrized two nat-
ural questions arise. One resulting from the need to make 
operational decisions, and one from the desire to better 
understand the interaction of the different sub-systems 
built onto the model. What is the effect of the process MV 
onto key model outputs? and what is the impact of the 
model parameters onto the key responses? And with 
coupled and non-linear effects at play, the answer to 
both questions is often of a multivariate nature. Herein 
we used simple graphical approaches to support opera-
tional decisions, these of course are limited to a small 
number of factors. We present the use of PLS as a useful 
tool to better understand the multivariable relations be-
tween model parameters and responses. In the authors 
opinion, the visual aids and diagnostics obtained by PLS 
are richer and provide a more intuitive way to uncover the 
complex relations represented by the model structure 

and its parameters, which ultimately represent the inner-
most fundamental understanding of the process. 
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ABSTRACT 
Cardiomyocytes (CMs), the contractile heart cells that can be derived from human induced plu-
ripotent stem cells (hiPSCs). These hiPSC derived CMs can be used for cardiovascular disease 
drug testing and regeneration therapies, and they have therapeutic potential. Currently, hiPSC-
CM differentiation cannot yet be controlled to yield specific heart cell subtypes consistently. De-
signing differentiation processes to consistently direct differentiation to specific heart cells is im-
portant to realize the full therapeutic potential of hiPSC-CMs. A model that accurately represents 
the dynamic changes in cell populations from hiPSCs to CMs over the differentiation timeline is a 
first step towards designing processes for directing differentiation. This paper introduces a mi-
crosimulation model for studying temporal changes in the hiPSC-to-early CM differentiation. The 
differentiation process for each cell in the microsimulation model is represented by a Markov chain 
model (MCM). The MCM includes cell subtypes representing key developmental stages in hiPSC 
differentiation to early CMs. These stages include pluripotent stem cells, early primitive streak, 
late primitive streak, mesodermal progenitors, early cardiac progenitors, late cardiac progenitors, 
and early CMs. The time taken by a cell to transit from one state to the next state is assumed to 
be exponentially distributed. The transition probabilities of the Markov chain process and the mean 
duration parameter of the exponential distribution were estimated using Bayesian optimization. 
The results predicted by the MCM agree with the data. 

Keywords: Process Design, Derivative-free optimization, Biosystems, hiPSC cardiac differentiation 

INTRODUCTION 
Cardiovascular diseases are the leading cause of 

death worldwide [1]. Almost 695,000 people in the US 
died of cardiovascular disease in 2022 [2]. Cardiomyo-
cytes (CMs), i.e. contracting heart cells, can be derived 
from human induced pluripotent stem cells (hiPSCs) to be 
used for drug testing, regenerative therapies, and dis-
ease modeling for cardiovascular diseases [3]. The mod-
ulation of the Wnt signaling pathway using small mole-
cules and growth factors provides the standard CM dif-
ferentiation protocol, yielding CMs with up to 98% purity 
[4]. However, this benchmark protocol produces mostly 
left ventricular cells, with a little to no atrial cells, or right 
ventricular cells [5]. To model specific diseases in the 
heart requires specific heart cell types. For example, 

atrial diseases like atrial fibrillation and Ebstein's anom-
aly, or right ventricular diseases, such as Tetralogy of 
Fallot or arrhythmogenic right ventricular cardiomyopa-
thy, require atrial CMs and right ventricular CMs respec-
tively [6]. 

Designing a differentiation process to consistently 
yield specific heart cells is essential to fully realize the 
therapeutic, drug testing, and disease modeling potential 
of CMs. The first step in designing a differentiation pro-
cess that directs hiPSCs to specific heart cell subtypes is 
understanding the temporal changes in the cell type pop-
ulations during differentiation.  

Several mathematical models have been developed 
to capture cell differentiation process [7-16]. Stiehl et al 
[7] investigated if stemness (characterization of stem
cells) can be defined at the single-cell level, and what
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properties are suitable for defining stem cells. The au-
thors proposed a multi-compartment deterministic 
model, which consists of discrete sets of ordinary differ-
ential equations, to describe the dynamics of cell differ-
entiation and self-renewal regulated by extracellular sig-
naling feedback. The cell behavior is characterized by 
parameters including the proliferative activity, the prob-
ability of differentiation, and the probability of dying. The 
model was developed to predict the cell type population 
and signaling molecule concentration over time. The 
model, calibrated with clinical data from multiple mye-
loma patients undergoing high-dose chemotherapy and 
stem cell transplantation, aimed to observe stem cell dif-
ferentiation and determine cell type populations. Each 
differential equation in the model describes a distinct dif-
ferentiation stage, reflecting the conventional notion that 
within each lineage of blood cell precursors, there is a 
discrete sequence of maturation stages traversed se-
quentially. Models presented in this paper characterize 
stem cells as the population that is most sensitive to en-
vironmental signals. The stem cell differentiation charac-
terization developed in this paper identified stem cells 
and other cell types as a population. However, the model 
could not capture the differentiation mechanism happen-
ing in a single cell. The drawback of this deterministic 
model is that it does not capture the stochastic nature of 
the differentiation process.  

Paździorek [8] investigated the stochastic stability 
of the model presented by Mar-Czohara and examined 
its response to noise. The deterministic model from [7] 
was transformed into a stochastic process using Ito dif-
ferential equations. Ito calculus addresses processes 
with evolving random variables over time, where the ran-
dom variable here is the cell type population. The random 
behavior of cells, whether differentiating, maturing, dy-
ing, or proliferating was modeled as a Wiener process, 
which is a continuous-time stochastic process. The in-
crements of the Wiener process across disjoint time in-
tervals exhibit a normal distribution. Premslaw demon-
strated that the stochastic model achieves asymptotic 
stability, signifying that over time, stem cells tend to 
reach stable and well-defined states.  

Pisu et al [9] introduced a novel mathematical model 
to simulate the differentiation of mesenchymal stem cells 
into specialized cells to study the effect of growth factors 
on cell proliferation/differentiation mechanisms. The 
model was built on material balances for extracellular ma-
trix compounds, growth factors, and nutrients, along with 
a mass-structured population balance that describes cell 
growth, proliferation, and differentiation. The DNA con-
tent and the glycosaminoglycans (GAG) content present 
in the cells at different time points were used as indica-
tors to identify the cell types. The model incorporated 
several parameters, with key ones being the kinetic con-
stant of GAG synthesis, kinetic constant of collagen 

synthesis, time rate of change of cells, maximum collagen 
and GAG concentration, concentration of 𝑂𝑂2 in saturation 
condition, and number of cell types. Regression analysis 
of the model predictions demonstrates that the average 
error for different differentiation pathways is below 20 
percent. 

The models presented in [10-16] also incorporate 
macroscopic analysis, lacking representation of mecha-
nisms occurring at the single-cell level. Capturing the dif-
ferentiation mechanism at the single-cell level will offer 
insights into interactions at the cellular level. This paper 
introduces a microsimulation model (MSM) to study the 
temporal changes in the cell type populations during car-
diac differentiation at cell-level analysis. A microsimula-
tion model, which is a stochastic model, aims to simulate 
individual entities of the system through stochastic pa-
rameters. Each cell is modeled as an individual entity of 
the MSM, and the differentiation process in each cell is 
represented with a continuous-time Markov chain model 
(CTMCM). The states of the CTMCM are cell subtypes 
representing the developmental stages in hiPSC differ-
entiation to early CMs. They include pluripotent stem 
cells, early primitive streak, late primitive streak, meso-
dermal progenitors, early cardiac progenitors, late car-
diac progenitors, and early CMs. The transition probabil-
ities define the probability of a cell transitioning from one 
cell subtype to another or an absorbing state. The hold-
ing times, representing the time a cell spends in each 
state, are modeled using exponential distributions. The 
MSM is embedded in a Bayesian optimization framework 
to estimate the CTMCM parameters, i.e., transition prob-
abilities and mean of the exponential distributions.  

This paper is structured as follows: Next section dis-
cusses the modeling of cell differentiation using the Mar-
kov chain model and modeling the duration of state tran-
sitions using exponential distribution. The application of 
the microsimulation model for simulating the differentia-
tion process is introduced next. The results for the mi-
crosimulation model parameters and a comparison of the 
model predictions to experimental data are in Results and 
Discussion section. Concluding remarks and future direc-
tions are given in the last section. 

MODELING DIFFERENTIATION 

Modeling cell differentiation 
 The data used to build the MSM model was obtained 
from the single-cell RNA sequencing analysis of 2D car-
diac differentiation of two cell lines (WTC cell line and 
SCVI cell line) [5]. The differentiation was carried out for 
6 days and samples were collected from day 1 to day 6 
daily. The collected samples were captured, and single-
cell RNA sequencing was performed. The gene expres-
sion matrix was analyzed and labeled to get the cell type 
population during differentiation from day 1 to day 6. 
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Based on the results obtained from 2D cardiac differen-
tiation, the developmental trajectory of hiPSCs to early 
CMs follows a path. The path includes a series of states: 
which are pluripotent stem cells, early primitive streak, 
late primitive streak, mesodermal progenitors, early car-
diac progenitors, late cardiac progenitors, and early CMs. 
At late primitive streaks and mesodermal progenitors 
state, cells may differentiate into non-CM cells. When a 
cell begins differentiation, it either moves into the next 
state in sequence or becomes a non-CM cell type, or re-
mains in the same pluripotent state that it started in. 
There are two possible states from which cells can be-
come non-CMs; cells from the late primitive streak can 
differentiate into hepatic endoderm and definitive endo-
derm, and cells from the mesodermal progenitor state 
can differentiate into endothelial cells, epicardial progen-
itors, and epicardial cells. Differing cell types have differ-
ing timings for differentiation, and, therefore, the time a 
cell spends in one state is dependent on the cell type be-
ing made. Based on this explanation, to model the cell 
differentiation, two questions need to be answered: 

1) What is the next state in the differentiation path? 

2) If a cell differentiates to the next state in sequence, 
how long will it stay between those two states? 

The important assumptions here are the cells do not 
die during differentiation and they do not split or divide 
during the differentiation. Although we recognize the lim-
itations of these assumptions, given the lack of data for 
modeling cell division and death rates for this differenti-
ation protocol, this preliminary model allows making pro-
gress towards modeling hiPSC to early CM differentiation 
process.  

 
Figure 1. Modeling cell differentiation. 

Continuous time Markov chain model 
The first question can be answered by transition 

probabilities of a Markov chain model (MCM). A Markov 
chain model is a mathematical model that represents a 
sequence of events in a process in which the probability 
of transitioning from one state to another depends solely 
on the current state [17,18,19]. Markov chain models are 
memoryless, meaning the probability of transitioning to 
future states depends only on the current state and is in-
dependent of the sequence of states that led to the cur-
rent state. Markov chains are used for modeling dynamic 
systems like financial markets, weather patterns, and lan-
guage processing. In a Markov chain, the transition prob-
ability describes the probability of moving from one state 

to another in the chain at each time step. The general 
representation of transition probability, 𝑃𝑃𝑖𝑖𝑖𝑖, for the transi-
tion from state 𝑖𝑖 to 𝑗𝑗, is given in Equation (1). 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗 |𝑋𝑋𝑛𝑛 = 𝑖𝑖)   (1) 

In Equation 1, 𝑋𝑋𝑛𝑛 and 𝑋𝑋𝑛𝑛+1 represent two consecu-
tive states in a Markov chain. The RHS of Equation (1) 
represents the conditional probability that, given the cur-
rent state 𝑋𝑋𝑛𝑛 = 𝑖𝑖, the system will transition to state 𝑋𝑋𝑛𝑛+1 =
𝑗𝑗. Markov chains are characterized by a transition matrix 
that represents the probabilities of moving from one state 
to another. The transition matrix enables predictions and 
analysis of system behavior over time. 

Markov chain models can be classified into different 
types based on time homogeneity (homogenous Markov 
chain and non-homogenous Markov chain), state conti-
nuity (finite state Markov chains and continuous state 
Markov chains), time continuity (discrete-time Markov 
chains and continuous time Markov chains), absorbing or 
non absorbing states (absorbing Markov chains and non-
absorbing Markov chains). [20]. The classifications re-
lated to cell differentiation based on scRNA-seq data are 
discrete-time and absorbing Markov chains. In a dis-
crete-time Markov chain, the transitions between states 
occur at discrete, evenly spaced time intervals. An ab-
sorbing Markov chain is used to model systems where 
certain states, known as absorbing states, act as final 
destinations from which there is no escape. This means 
that in a Markov chain, the transitions between states oc-
cur with probabilities, however, once the system reaches 
an absorbing state, it remains there indefinitely. In other 
words, the probability of transition from an absorbing 
state to any other non-absorbing state is zero. These 
chains can be characterized by their probability of tran-
sition between transient states (non-absorbing states) 
and absorbing states, leading to absorption, which rep-
resents the final resting places of the system.  

A continuous-time absorbing Markov chain model is 
developed to represent hiPSC to CM cell differentiation. 
Figure 2 demonstrates the Markov chain model of cell dif-
ferentiation. Late primate streak can differentiate into en-
doderm cells, and mesodermal cells can differentiate into 
epithelial and epicardial cells. When cells commit to be-
coming endodermal, epicardial, or epithelial cell types, 
they can no longer differentiate into CMs. Hence, the 
transition probability from these cell types to any other 
cell types in the cardiac trajectory is zero. Two absorbing 
states, one from the late primitive streak and the other 
from the mesodermal progenitor state, were included in 
the MCM to denote cells that differentiate into non-CMs. 
Absorbing state 1 consists of hepatic endoderm cells and 
definitive endoderm cells, and absorbing state 2 consists 
of epithelial cells, epicardial progenitors, and epicardial 
cells.  

The probability 𝑃𝑃𝑖𝑖𝑖𝑖 denotes the probability of 
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transition of the MCM from state 𝑖𝑖 to state 𝑗𝑗 in the cardiac 
differentiation trajectory and 𝑝𝑝𝑖𝑖𝑖𝑖 denotes the transition 
probability in a specific instance of simulating a Markov 
chain. 𝑃𝑃𝑖𝑖𝑖𝑖 is the Markov chain model parameter and 𝑝𝑝𝑖𝑖𝑖𝑖  is 
the probability of transitioning from state 𝑖𝑖 to state 𝑗𝑗 dur-
ing a simulation run. In the simulation, for cell types other 
than late primitive streak and mesodermal progenitors, if 
𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 𝑃𝑃𝑖𝑖𝑖𝑖, the cell will differentiate from cell type 𝑖𝑖 to cell 
type 𝑗𝑗. If a cell is initially in the late primitive streak or 
mesodermal progenitors state, there are three potential 
outcomes for the cell's eventual destination. If 𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 𝑃𝑃𝑖𝑖𝑖𝑖, 
the cell will differentiate into cell type 𝑗𝑗, or if 𝑃𝑃𝑖𝑖𝑖𝑖 < 𝑝𝑝𝑖𝑖𝑖𝑖 ≤
𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖, the cell will differentiate into absorbing state, or 
if 𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖 < 𝑝𝑝𝑖𝑖𝑖𝑖, the cell will stay in the same state 𝑖𝑖. 
Based on the transition probability parameters of the 
MCM, the cells in the simulation will differentiate into dif-
ferent cell types. The Markov chain stops when the cell 
reaches either an absorbing state or an early CM state. 

 
Figure 2. Markov chain representation of cell 
differentiation (Table 1 defines cell type abbreviations).  

Table 1: Expansion of the cell types in the MCM. 

Abbreviations Cell types 
hiPSCs Human induced pluripotent stem 

cells 
eps Early primitive streak 
lps Late primitive streak 
as Absorbing state  
mp Mesodermal progenitors 
as Absorbing state  
ecp Early cardiac progenitors 
lcp Late cardiac progenitors 
ec Early cardiomyocytes 

 
Modeling state duration in the MCM with exponen-
tial distribution 
The exponential distribution is a continuous probability 
distribution commonly used to model the time between 
events in a Poisson process, where events occur at a 
constant average rate and are independent of each other 
[21]. The probability density function 𝑓𝑓(𝑥𝑥) of the expo-
nential distribution is given by Equation 2. 

𝑓𝑓(𝑥𝑥) = 𝜆𝜆exp (−𝜆𝜆𝑥𝑥)    (2) 

In Equation 2, 𝑥𝑥 is a non-negative variable repre-
senting the time between events, and 𝜆𝜆 is the rate pa-
rameter, which is a positive constant. It determines the 

average number of events occurring per unit of time and 
is also equal to the inverse of the average time between 
events. The rate parameter quantifies the event rate, the 
frequency, on average, of the events occurring. One of 
the notable properties of the exponential distribution is 
memorylessness. It suggests that the probability of the 
next event occurring in the next time increment is the 
same, regardless of how much time has already passed. 
This property of exponential distribution helps modeling 
systems with no memory of past events. 

In the cell differentiation process, the time a cell 
spends between two states is random, with a constant 
average rate of occurrence and the events are independ-
ent of each other. Therefore, the duration spent by a cell 
between two states can be modeled using the exponen-
tial distribution. The average duration 𝑑𝑑𝑖𝑖𝑖𝑖, spent by the 
cells between state 𝑖𝑖 and state 𝑗𝑗 is the inverse of the rate 
parameter used to model the time spent by the cells be-
tween states.  

MODELING CELL POPULATIONS 

Microsimulation models 
Microsimulation models (MSM) are computational 

models designed to simulate individual-level behavior 
using individual entities within a population [22,23]. Each 
entity is represented with specific attributes. In the case 
of modeling cell populations, the individual entity denotes 
each cell in the differentiation process, and the attributes 
denote transition probability and the average duration 
parameters. MSM consists of three components, the 
agents, rules, and environment. The agents represent in-
dividual cells. The rules denote the behavior and deci-
sion-making processes for each cell, which means the 
transition of cells into different states that are controlled 
by the Markov chain probabilities. The environment rep-
resents the context in which the cells interact. The con-
straint in the MSM is the sum of probability in each state 
should add up to one. 
 In the developed MSM (Figure 3), each cell in the 
simulation will move into the next state based on the 
transition probability of the Markov chain model, and 
whenever the cell moves to the next state, the duration 
the cell spends in that state is sampled from the expo-
nential distribution. For transition from states 𝑖𝑖 to 𝑗𝑗, ex-
cluding absorbing states, the sampled time interval is cal-
culated based on the average duration parameter, 𝜆𝜆𝑖𝑖𝑖𝑖. 
The age associated with the cell in a state is obtained by 
adding the sampled time for that state to the age of the 
cell in the previous state. Since we are modeling the cell 
population at the end of each differentiation day, the re-
sult obtained from the simulation is converted into a bi-
nary matrix, in which the rows represent the differentia-
tion days, and the column represents the cell states. For 
example, let us consider that the age of a cell when it 
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reaches the early primitive streak is 0.78 days, and the 
age of a cell when it reaches the late primitive streak is 
2.4 days and it stays in the late primitive streak. In the 
given example, at the end of day 1, the cell state is the 
early primitive streak, so in the binary matrix, in the day 1 
row, the eps column will have a value of 1. From 0.78 days 
to 2.4 days, the cell remains in the early primitive streak 
state, meaning at the end of day 2, the cell in the eps 
column will have a value of one, and the rest of the day 2 
row will have a value of 0. From 2.4 days up to day 6, the 
cell will stay in the late primitive streak, and therefore, for 
the rows from day 3 to day 6, the lps column will have a 
value of 1, and the rest equal to zero. Five thousand cells 
were run in the simulation to generate the cell type matrix 
for each cell. The number of cells in each cell type at the 
end of each differentiation day was added and then nor-
malized by the total number of cells. By this procedure, 
the cell population percentage matrix can be obtained 
using the microsimulation model with the Markov chain 
process.  

 
Figure 3. Modeling cell population using a 
microsimulation model. 

Parameter estimation 
 The MSM parameters, transition probabilities, and 
the average durations were estimated using Bayesian 
optimization by minimizing the mean squared error be-
tween the model output and the experimental data. 
Bayesian optimization, driven by Bayesian inference and 
surrogate modeling, is a versatile and efficient approach 
for solving complex optimization problems [24,25]. 
Bayesian optimization uses a surrogate model, typically a 
Gaussian process (GP) model, to estimate the unknown 
objective function. Bayesian optimization balances ex-
ploration (sampling in uncertain regions), and exploitation 
(sampling in the regions with the highest estimated 

objective value), to find the global optimum efficiently. 
The objective function (Equation 3) used is the mean 
squared error between the model output and the experi-
mental data. 

𝑓𝑓 = 1
𝑛𝑛

((𝑌𝑌 − 𝑋𝑋1)2 + (𝑌𝑌 − 𝑋𝑋2)2)   (3) 

𝑌𝑌 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑖𝑖𝑖𝑖)     (4) 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑙𝑙 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖1 ≤ 1    (5) 

𝑃𝑃𝑚𝑚𝑙𝑙,𝑖𝑖2 + 𝑃𝑃𝑚𝑚𝑙𝑙,𝑒𝑒𝑒𝑒𝑙𝑙 ≤ 1    (6) 

0 ≤ 𝑃𝑃𝑖𝑖𝑖𝑖 < 1;𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 0    (7) 

 𝑌𝑌 is the MSM output. The variables 𝑋𝑋1 and 𝑋𝑋2 repre-
sent the cell population matrices obtained from the sin-
gle-cell RNA sequencing of the cell samples. These sam-
ples were collected from two cell lines during differenti-
ation days 1-6, as mentioned in the ‘Modeling cell differ-
entiation’ section. The cell population matrix for WTC cell 
line, 𝑋𝑋2, is shown in Table 2 as an example.  Equation 4 
states that the model output is a function of the decision 
variables 𝑃𝑃𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑖𝑖𝑖𝑖. To ensure the probabilities at the cell 
states having two states always less than or equal to 1, 
constraints (Equations 5, 6 and 7) were included in the 
model. 
 Bayesian optimization begins with generating an in-
itial set of samples from the model. The Gaussian Process 
(GP) model is built based on the initial samples. The ac-
quisition function selects the next sample for evaluation, 
balancing the exploration and exploitation. The selected 
point is evaluated in the true objective function. The sur-
rogate model is updated with new data and the process 
iterates. 

RESULTS AND DISCUSSION 
 Five thousand cells were simulated in the Markov 
chain model embedded within the microsimulation 
model. The parameters obtained using Bayesian optimi-
zation are shown in Table 3. Based on the data, the opti-
mization result showed that the probability of transition-
ing from psc state to eps state, and eps state to lps state 
is 1. During these two transitions, the cells spend an 

Table 2: Cell population matrix from WTC cell line (𝑋𝑋1) used in the optimization problem (Equation 3). All numeri-
cal values are expressed as percentages. 

 Days hiPSCs eps lps as mp as Ecp lcp Ec 

Day           
Day           
Day           
Day           
Day           
Day           
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average duration of 0.45 days and 1.32 days, respec-
tively. At the lps state, 16% of cells transition into hepatic 
endoderm and definitive endoderm cells. These 16% of 
cells never become CMs. The remaining 84% of the cells 
take about 1.3 days to enter the mesoderm state, where 
42% of these cells (35% of the initial number of cells) be-
come endothelial cells, epicardial progenitors, and epi-
cardial cells. The remaining 42% of the cells take about 
one day to enter the early cardiac progenitor state. After 
reaching the early progenitor state, 69% of these cells 
become late cardiac progenitors. Following this, 31% of 
the late progenitors become early cardiomyocytes. 
These cells spend about 3.58 days to become late car-
diac progenitors and 2.98 days to become early CMs.  

Table 3: MSM parameters obtained using Bayesian opti-
mization. 

Current 
state 

Next state Transition 
probability 

Average 
duration 

hiPSCs eps   
eps lps   
lps mp   
lps as  - 
mp ecp   
mp as  - 
ecp lcp   
lcp ec   

  
 Figure 4 shows the predicted cell population versus 
the experimental data. From the plot, we can see that 
there are differences between the WTC cell line data and 
the SCVI cell line data. Since the aim of this work is to 
develop a model that is independent of the cell line, the 
effect of the cell line is not introduced in the model. This 
can also be observed in Figure 4, where the predicted cell 
type populations by the MSM model are between the two 
datasets. The mean squared error and the 𝑅𝑅2  between 
the model and the data are 0.004 and 0.43, respectively. 
The performance of the developed model will undergo 
validation with further experimental data in the future. 

CONCLUSION AND FUTURE DIRECTIONS 
 Using the cardiac cell type population obtained from 
2D cardiac differentiation, a microsimulation model with 
a Markov chain model was developed to predict the car-
diomyocyte cell type population during differentiation. 
The model parameters were obtained using Bayesian op-
timization. The results showed that the simulation model 
predicted the cell type population with a low mean square 
error. The developed model can act as a digital twin to 
the cardiac differentiation experiment. The data for train-
ing this model was generated in a 2D environment 

following the modulated Wnt signaling differentiation 
protocol, which mostly yields ventricular cells. This pro-
tocol will be tested to analyze if the ventricular cells can 
be produced on a large-scale using 3D techniques. The 
model will also be trained with data using the 3D differ-
entiation protocol. If different sets of experimental pa-
rameters are used to obtain different cell-type popula-
tions, the model can be trained on those datasets, and a 
set of transition probabilities and average duration pa-
rameters can be estimated for each set of experimental 
parameters. Finding the relationship between the exper-
imental parameters and the model parameters will help 
tune the experimental parameters to get the desired CM 
percentage on a certain differentiation day. 

 
Figure 4. MSM predicted cell population vs 
differentiation experiment. 
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ABSTRACT 
Modeling the non-linear dynamics of a system from measurement data accurately is an open chal-
lenge. Over the past few years, various tools such as SINDy and DySMHO have emerged as ap-
proaches to distill dynamics from data. However, challenges persist in accurately capturing dy-
namics of a system especially when the physical knowledge about the system is unknown. A prom-
ising solution is to use a hybrid paradigm, that combines mechanistic and black-box models to 
leverage their respective strengths. In this study, we combine a hybrid modeling paradigm with 
sparse regression, to develop and identify models simultaneously. Two methods are explored, 
considering varying complexities, data quality, and availability and by comparing different case 
studies. In the first approach, we integrate SINDy-discovered models with neural ODE structures, 
to model unknown physics. In the second approach, we employ Multifidelity Surrogate Models 
(MFSMs) to construct composite models comprised of SINDy-discovered models and error-cor-
rection models.   

Keywords: Data-driven modeling, Model identification, Hybrid modeling, Multifidelity, Sparse regression 

INTRODUCTION 
Present modeling approaches of intricate dynamic 

systems rely on ordinary and/or partial differential equa-
tions (ODEs, PDEs) to describe their behaviors. These 
governing equations are conventionally obtained from 
rigorous first principles like conservation laws or derived 
from phenomenological knowledge-based approaches. 
However, many dynamic systems remain unexplored, 
lacking comprehensive analytical descriptions. Exploiting 
advances in data acquisition, digitization, and storage, 
data-driven 'black box' models have emerged as an al-
ternative [1, 2]. These data-driven methods excel in re-
gression and classification tasks, yet their resultant 
black-box nature commonly lacks physical insight and 
exhibits limitations in extrapolation beyond the training 
data's boundaries. Certain systems exist, such as biolog-
ical processes or intricate design problems, that neces-
sitate a deeper understanding of governing equations. 
Consequently, recent developments focus on the inte-
gration of data-driven techniques into modeling system 
dynamics. Early attempts utilized symbolic regression [3] 
and genetic programming algorithms [4]. However, 

challenges like overfitting and the computational de-
mands arising from their combinatorial nature limited 
their applicability to low-dimensional systems and small 
initial candidate sets of symbolic expressions. An alter-
native approach called SINDy [5] was proposed, that re-
constructs the underlying equations based on a large-
space library of candidate terms and transforming the 
discovery problem to sparse regression and over time, 
several extensions to SINDy and alternative approaches 
on similar ideas were also introduced [6-9]. More re-
cently, another such approach (DySMHO) [10] was pro-
posed that uses moving horizon optimization for identi-
fying the governing equations. Nevertheless, the effec-
tiveness of these techniques relies on the identification 
and selection of terms from an array of potential candi-
date terms. While an exhaustive pool covering all poten-
tial terms might aid in building a highly accurate mecha-
nistic model, this presents a challenge, especially in 
cases involving complex nonlinear systems and when the 
system dynamics are not fully known. A potential solution 
is to use hybrid modeling techniques with these methods. 
These hybrid models (HMs), also referred to as ‘grey-box’ 
models have the advantages of both mechanistic and the 

mailto:fani.boukouvala@chbe.gatech.edu
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black-box models [1, 11]. Figure 1 shows the comparison 
between the mechanistic, grey- and black-box models. 
Early implementations of these hybrid models can be 
found in works that date back to 1980’s.  

 

 
Figure 1: A comparison between white-box/mechanistic, 
grey-box and black-box models. 
 

In this work, we combine a hybrid modeling para-
digm with sparse regression, with the goal of simultane-
ous hybrid model development and model identification. 
Specifically, in our study, we investigate two distinct 
methods. In the first method, we employ the SINDy for-
mulation to establish the initial physics-based model 
from the incomplete candidate library. Subsequently, we 
integrate this with neural ordinary differential equations 
(NODEs) [12-14], to improve the accuracy of the final 
model. Leveraging the NODE formulation to model un-
known or missing physics within a mechanistic model has 
previously proven to be successful [12, 15, 16]. For the 
second approach, we employ composite structures 
known as Multifidelity Surrogate Models (MFSMs) [17, 18] 
using true data/high-fidelity (HF) and the low-fidelity (LF) 
data. The model output from SINDy constructed using 
the incomplete candidate library is treated as the LF 
model. In the subsequent step, we develop MFSMs that 
use HF and LF data to refine the model accuracy.  

In the following sections of this paper, we introduce 
the methods for our proposed HM approaches and a 
workflow to build the HMs. In the subsequent sections, 
we utilize two non-linear case studies to test our HM 
models and show their prediction accuracy. Furthermore, 
we show our analysis on the impact of sampled data den-
sity and noise on the accuracy of the HMs, as well as the 
HMs extrapolation capabilities.  

2. METHODS 

2.1 Sparse identification of nonlinear 
dynamics 

In [6], the authors leveraged the fact that most 
physical systems have only a few relevant terms that 

define the dynamics, making the governing equations 
sparse in a high-dimensional nonlinear function space. 
Consider the example first-order ODE system with 𝑛𝑛 
states which are denoted by 𝑿𝑿. We denote the derivative 
with respect to time for 𝑿𝑿 as 𝑿𝑿′. The right-hand side of 
the ODE is given by the derivative with respect to time, 𝑡𝑡, 
denoted by the function 𝑓𝑓, 

𝑿𝑿′ = 𝑑𝑑𝑿𝑿
𝑑𝑑𝑑𝑑

=  𝑓𝑓(𝑿𝑿)    (1) 

Next, a library 𝛩𝛩(𝑿𝑿), consisting of candidate nonlin-
ear functions of the columns of 𝑿𝑿 is constructed. For ex-
ample, the library may consist of constant, polynomial, 
and trigonometric terms. Finally, a sparse regression 
problem is set up to determine the sparse vectors of co-
efficients 𝜩𝜩 = [𝜀𝜀1, , 𝜀𝜀1, 𝜀𝜀1 … , 𝜀𝜀𝑛𝑛], which determines the non-
linearities that are active. 

Θ(𝐗𝐗) = �
∣    ∣    ∣    ∣        ∣    ∣                   ∣
1    𝐗𝐗    𝐗𝐗𝑃𝑃2     𝐗𝐗𝑃𝑃3     ⋯     sin (𝐗𝐗)    cos (𝐗𝐗)    ⋯
∣    ∣    ∣    ∣        ∣    ∣                  |

�    (2) 

𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺′ = Θ(𝐗𝐗)𝜩𝜩                            (3) 

𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(Θ(𝐗𝐗)𝜩𝜩,𝑋𝑋0, 𝑡𝑡)    (4) 

Discovering the mechanistic equations from state 
data with SINDy is subject to a) estimating the derivatives 
accurately with data limitations and b) formulating the 
candidate library 𝛩𝛩(𝑿𝑿) to contain all the terms that could 
potentially form an accurate mechanistic equation. While 
several extensions to SINDy have been proposed over 
the years to address the former issue, the later is still a 
challenge. This is especially a major issue when we are 
dealing with state data from non-linear systems where 
the potential terms in the candidate library are not known. 
To address this, we propose to use the following hybrid 
modeling approaches.  

2.2 Neural Ordinary Differential Equations for 
Error Correction 

Neural networks (NNs) are one of the widely used 
ML models in data-driven modeling due to their ability to 
approximate complex nonlinear relationships.  Since the 
early 90s, NNs have been used to model dynamic sys-
tems within differential equations [19]. Recently, NODEs 
have emerged, integrating NNs with automatic differen-
tiation tools [12-14]. NODEs predict system derivatives 
directly during training, capturing both state and deriva-
tive data. The potential of this approach was shown in 
better capturing curvature in dynamic data when com-
pared to data-driven models that ignore derivative infor-
mation. A neural ODE is essentially a NN used to model 
𝑓𝑓(𝑋𝑋) from Eq (1). We denote the modeled derivative by 
𝑿𝑿𝑺𝑺𝑺𝑺′ . We can obtain the predicted ODE solution 𝑿𝑿𝑺𝑺𝑺𝑺 by 
employing any preferred ODE solver.  

𝑿𝑿𝑺𝑺𝑺𝑺′ = 𝑑𝑑𝑿𝑿𝑺𝑺𝑺𝑺
𝑑𝑑𝑑𝑑

=  𝑁𝑁𝑁𝑁(𝑋𝑋)    (5) 
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𝑿𝑿𝑺𝑺𝑺𝑺 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁,𝑋𝑋0, 𝑡𝑡)   (6) 

Training the NODE can be done either by minimizing the 
error between the predicted and true states 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑀𝑀𝑀𝑀𝑂𝑂(𝑿𝑿,𝑿𝑿𝑺𝑺𝑺𝑺) by passing the NN through an ODE solver 
[14] or, utilize a collocation-based approach [13] and 
avoid using explicit ODE solver by minimizing the loss 
function 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑀𝑀𝑀𝑀𝑂𝑂�𝑿𝑿𝒆𝒆𝒆𝒆𝒆𝒆′ ,𝑁𝑁𝑁𝑁(𝑿𝑿𝒆𝒆𝒆𝒆𝒆𝒆)�. In [13], the authors 
show that by using the collocation based approach, train-
ing a NODE is faster. We utilize this collocation-based ap-
proach to train our HM with NODE formulation for model 
identification from state data. In the first step, we gener-
ate a low-fidelity (LF) mechanistic model using SINDy by 
assuming few terms in the candidate library 𝛩𝛩(𝑿𝑿). In the 
next step, we correct the error resulting from the LF 
model with a NODE. We utilize the following formulation 
shown in Eq (7).  
 

𝑿𝑿𝑯𝑯𝑯𝑯′ = 𝑑𝑑𝑿𝑿𝑯𝑯𝑯𝑯
𝑑𝑑𝑑𝑑

=  Θ(𝑿𝑿)𝜩𝜩+ 𝑁𝑁𝑁𝑁(𝑿𝑿)                 (7) 

𝑿𝑿𝑯𝑯𝑯𝑯 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(Θ(𝑿𝑿)𝜩𝜩 + 𝑁𝑁𝑁𝑁(𝑿𝑿),𝑋𝑋0, 𝑡𝑡)   (8) 

 
To train the NODE we take the collocation-based 

approach and minimize the error between the derivatives 
directly. In the next step, we calculate the difference be-
tween the derivatives values between the HF and the LF 
derivatives at the sampled data. This derivative differ-
ence corresponds to the mismatch between the true 
model and the LF model. A NN model is then trained to 
predict this difference when given the true state data. Fi-
nally, the hybrid model states 𝑿𝑿𝑯𝑯𝑯𝑯 are estimated by using 
an ODE solver.  

2.3 Multifidelity Surrogate Models for Error 
Correction 

In recent years, hybrid composite structures that 
can learn from both HF and LF data were proposed to 
improve the LF model predictions by correcting the error 
between the HF and LF data. These composite structures 
are referred to as multi-fidelity surrogate models 
(MFSMs) [17, 18, 20]. A widely used structure of MFSMs 
is  𝑦𝑦𝐻𝐻 =  𝜌𝜌(𝑥𝑥)𝑦𝑦𝐿𝐿 +  𝛿𝛿(𝑥𝑥), where 𝑦𝑦𝐿𝐿,𝑦𝑦𝐻𝐻  represent the low 
and high-fidelity data respectively, 𝜌𝜌(𝑥𝑥) is multiplicative 
correlation surrogate and 𝛿𝛿(𝑥𝑥) is the additive surrogate. It 
can be re-written as 𝑦𝑦𝐻𝐻  =  𝐹𝐹(𝑥𝑥,𝑦𝑦𝐿𝐿). To establish a con-
nection between the HF and LF data, it's necessary to 
have both a HF model and a LF model that can produce 
this data. Similar to the NODE model correction approach, 
we use SINDy to obtain the LF model. The LF model from 
SINDy is then integrated using an ODE solver to obtain 
𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 using Eq (4). We then formulate the MFSM by uti-
lizing a NN to model the error. The NN model is trained to 
minimize the loss function 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑀𝑀𝑀𝑀𝑂𝑂(𝑿𝑿,𝑿𝑿𝑯𝑯𝑺𝑺𝑴𝑴𝑯𝑯), and 
takes both time and LF states as input to predict 𝑿𝑿𝑯𝑯𝑺𝑺𝑴𝑴𝑯𝑯. 

𝑿𝑿𝑯𝑯𝑺𝑺𝑴𝑴𝑯𝑯 =   𝑁𝑁𝑁𝑁 (𝑡𝑡,𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺)           (9) 

2.3 Workflow for constructing hybrid models 
We utilize the workflow shown in Table (1) for con-

structing the hybrid models under approach 1 and ap-
proach 2. Here 𝑿𝑿𝑯𝑯𝑴𝑴 represent the true state data. 
𝛽𝛽1,𝛽𝛽2,𝛽𝛽3 are the regularization coefficients.  

Table 1: Workflow for constructing the hybrid models to 
correct error for NODE and MFSM formulations. 

Let [𝑡𝑡,𝑿𝑿𝑯𝑯𝑴𝑴]  be the complete HF dataset 

 
Generate 
SINDy model 

1. Set 𝑡𝑡 ←   Input and 𝑿𝑿𝑯𝑯𝑴𝑴 ←  HF output 

2. Estimate the derivatives 𝑿𝑿𝑯𝑯𝑴𝑴
′  from [𝑡𝑡,𝑿𝑿𝑯𝑯𝑴𝑴] data.  

3. Generate the feature library 𝜣𝜣(𝑿𝑿) and set the optimizer           

While termination criteria not true: 

𝑚𝑚𝑚𝑚𝑛𝑛(|𝑿𝑿𝑯𝑯𝑴𝑴
′ −   𝜣𝜣(𝑿𝑿)𝜩𝜩|𝟐𝟐) + 𝛽𝛽1 (𝜩𝜩) 

                            Tune 𝜩𝜩 

Set 𝑿𝑿𝑳𝑳𝑴𝑴
′ =  𝜣𝜣(𝒙𝒙)𝜩𝜩  and generate data, 𝑿𝑿𝑳𝑳𝑴𝑴 ←  LF output. 

If Approach 1: 
Correct LF 
model error 
with NODE 
formulation 

1. Initialize NN, Set 𝑿𝑿𝑯𝑯𝑴𝑴  ←  Input and 𝜟𝜟𝑿𝑿′ =  𝑿𝑿𝑯𝑯𝑴𝑴
′ − 𝑿𝑿𝑳𝑳𝑴𝑴

′ ←
 output 

2. While termination criteria not true: 

              𝑚𝑚𝑚𝑚𝑛𝑛(|𝜟𝜟𝑿𝑿′ −   𝑿𝑿𝑺𝑺𝑺𝑺
′ |𝟐𝟐) + 𝛽𝛽2 ||𝛷𝛷𝑁𝑁𝑁𝑁||2 

Set  𝑿𝑿𝑯𝑯𝑯𝑯
′ =  𝜣𝜣(𝑿𝑿)𝜩𝜩+ 𝑺𝑺𝑺𝑺(𝑿𝑿) ← final model 

If Approach 2: 
Correct LF 
model error 
with MFSM 
formulation 

1. Initialize a NN, Set [𝑡𝑡,𝑿𝑿𝑳𝑳𝑴𝑴]  ←  Input and 𝑿𝑿𝑯𝑯𝑴𝑴 ←  output 

2. While termination criteria not true: 

                      𝑚𝑚𝑚𝑚𝑛𝑛(|𝑿𝑿𝑯𝑯𝑴𝑴𝑺𝑺𝑯𝑯 −   𝑿𝑿𝑯𝑯𝑴𝑴|𝟐𝟐) + 𝛽𝛽3 ||𝛷𝛷𝑁𝑁𝑁𝑁||2 

Set  𝑿𝑿𝑯𝑯𝑴𝑴𝑺𝑺𝑯𝑯 =  𝑺𝑺𝑺𝑺(𝑡𝑡,𝑿𝑿𝑳𝑳𝑴𝑴) ← final model 

3. RESULTS AND DISCUSSION 
In this section, we first introduce the case studies 

that we use to use to test and compare the approaches 
from 2.1 – 2.3. In the subsequent sections, we show the 
analysis on the model accuracy, effect of density of data 
and noise on the model accuracy and the extrapolation 
ability of the models. 

3.1 Case Studies 
To test the two approaches, we utilize two non-lin-

ear case studies. The first case study is a non-isothermal 
continuously stirred tank reactor (CSTR) problem, and 
the second case study is a penicillin biosynthesis prob-
lem. 

3.1.1 The non-isothermal CSTR problem 
The CSTR's governing equation, Eq (11), represents 

mass conservation. But, in non-isothermal operating sce-
narios which is common in practical applications, the en-
ergy balance must also be considered. Thus, tempera-
ture is added as an extra state variable, along with ob-
taining temperature measurements in addition to compo-
sition data, as depicted in Eq (12). We utilize the model 
equations and assumptions from [10].  

 
𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑞𝑞
𝑉𝑉
�𝐶𝐶𝐴𝐴,𝑖𝑖 − 𝐶𝐶𝐴𝐴� − 𝑘𝑘0𝑂𝑂

−𝐸𝐸a
RT𝐶𝐶𝐴𝐴         (11) 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞
𝑉𝑉

(𝑇𝑇𝑖𝑖 − 𝑇𝑇) + (−Δ𝐻𝐻R)
𝜌𝜌𝐶𝐶

𝑘𝑘0𝑂𝑂−
𝐸𝐸a
RT𝐶𝐶𝐴𝐴(𝑡𝑡) + 𝑈𝑈𝑈𝑈

𝑉𝑉𝜌𝜌𝐶𝐶
(𝑇𝑇c − 𝑇𝑇)    (12) 

3.1.2 The penicillin biosynthesis problem 
For the second case study, we chose to model the 

production of penicillin via yeast fermentation. The level 
of nonlinearity in the system differs significantly between 
state variables. The process is modeled by four differen-
tial equations on the following states: volume (𝑉𝑉), con-
centrations of biomass (𝐵𝐵), product (𝑃𝑃) and substrate (𝑀𝑀). 
The system of ODEs is defined as shown in Eq (14) and 
Eq (15). The parameter values have been taken from [12]. 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐵𝐵(𝜇𝜇 − 𝑂𝑂 − 𝑐𝑐𝐿𝐿)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜎𝜎𝐵𝐵 + �𝑀𝑀𝑓𝑓 − 𝑀𝑀�𝑂𝑂
𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑝𝑝𝐵𝐵 − 𝑃𝑃(𝑂𝑂 + 𝑐𝑐1𝑘𝑘)
𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝐹𝐹

         (13) 

 
𝜇𝜇 = 𝜇𝜇𝑚𝑚𝑑𝑑

𝑘𝑘𝑥𝑥𝑋𝑋+10

𝜎𝜎 = 𝜇𝜇
𝑌𝑌𝑥𝑥
𝑠𝑠

+ 𝑞𝑞𝑝𝑝
𝑌𝑌𝑝𝑝
𝑠𝑠

+ 𝑚𝑚𝑥𝑥

𝑞𝑞𝑝𝑝 = 1.5𝑞𝑞𝑝𝑝𝑚𝑚𝑑𝑑𝑑𝑑

4𝑘𝑘𝑃𝑃+𝑑𝑑𝑑𝑑�1+
𝑆𝑆
3𝑘𝑘𝑖𝑖

�

𝑐𝑐𝐿𝐿 =
𝑐𝑐𝐿𝐿𝑚𝑚𝐿𝐿𝑥𝑥 B exp�− 𝑆𝑆

100
�

𝐾𝐾𝐿𝐿+𝑑𝑑+1

𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑥𝑥𝑥𝑥
𝑑𝑑

𝑑𝑑+10

     (14) 

3.2 Analysis with no noise in true state data 
 The case study shown in 3.1.1 and 3.1.2 were simu-
lated with the initial conditions �𝐶𝐶𝐴𝐴,0,𝑇𝑇0� =  �0.5 𝑥𝑥𝑚𝑚𝑚𝑚

𝐿𝐿
, 350𝐾𝐾� and 

[𝐵𝐵0 ,𝑀𝑀0,𝑃𝑃0,𝑉𝑉0] =  �5 𝑔𝑔
𝐿𝐿

, 525 𝑔𝑔
𝐿𝐿

, 0 𝑔𝑔
𝐿𝐿

, 0.2𝐿𝐿� respectively, to generate 50 HF 
data points for each case. In the next step, the workflow 
shown in Table (1) was utilized to generate the Hybrid 
model with NODE and MSFM formulations to correct the 
error from SINDy – LF model. The results for both the ap-
proaches are shown below. Figure (2) shows the predic-
tion using hybrid models with NODE MFSM formulation 
for case study 3.1.1 and Figure (3) shows the results for 
case study 3.1.2. In both Figures (2) and (3), the solid blue 
dots represent true (HF) state data. The green dashed 
line represents SINDy-LF model predictions. The solid or-
ange line and the dotted red lines represent the HM 
model predictions with NODE and MFSM formulations re-
spectively. 

Figures (2) and (3) illustrate the limitation of the 
constructed SINDy model in accurately predicting the 
true states. This mismatch between the HF state data 
and the SINDy model stems from the candidate library's 
inability to comprehensively encompass all potential non-
linear terms contributing to the final mechanistic model 
equation. Consequently, the mechanistic model derived 
lacks accuracy in predicting the HF states. However, the 
HMs built using this SINDy model as the LF model, 

employing both NODE and MFSM formulations, demon-
strate the ability to accurately predict the HF state pro-
files. This HM structure effectively compensates for mis-
match and missing terms within the LF model.  

 

 
Figure 2: Concentration (𝐶𝐶𝐴𝐴) and temperature (𝑇𝑇) profiles 
from SINDy model, HM-NODE and HM-MFSM formulation 
for case study 3.1.1, compared with true state data. 
 

 
Figure 3: Volume (𝑉𝑉), Biomass (𝐵𝐵), product (𝑃𝑃) and sub-
strate (𝑀𝑀) profiles from SINDy model, HM-NODE and HM-
MFSM formulation for case study 3.1.2 with 50 HF data 
points, compared with true state data. 
 

3.3 Effect of density of sampled data on HMs 
 To analyze the effect of density of sampled data on 
the HM model, we repeated the experiment from 3.2, by 
decreasing the amount of HF data available. For this anal-
ysis, we reduced the data size to 30 HF samples. The 
case study shown in 3.1.1 and 3.1.2 were simulated with 
the initial conditions in 3.2 to generate 30 HF data points. 
In the next step, using the workflow from Table (1) HMs 
are built. Figures (4) and (5) show the prediction from the 
SINDy and HMs.  
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Figure  Concentration (𝐶𝐶𝐴𝐴) and temperature (𝑇𝑇) pro-
files from SINDy model HM-NODE and HM-MFSM for-
mulations for case study  with  HF datapoints 
 

 
Figure 5: Volume (𝑉𝑉), Biomass (𝐵𝐵), product (𝑃𝑃), substrate 
(𝑀𝑀) profiles from SINDy model, HM-NODE and HM-MFSM 
formulations for case study 3.1.2, with 30 datapoints 
 

We repeat the analysis once again, but this time by 
reducing the data size to 20 HF samples. We simulate the 
case studies from 3.1.1 and 3.1.2 with the same initial 
conditions to generate 20 HF data points to train the 
SINDy and HM models. Figures (6) and (7) show the pre-
diction from the SINDy model and HMs.  
 

 
Figure 6: Concentration (𝐶𝐶𝐴𝐴) and temperature (𝑇𝑇) profiles 

from SINDy model, HM-NODE and HM-MFSM 

formulations for case study 3.1.1, with 20 HF datapoints. 

 
Figure 7: Volume (𝑉𝑉), Biomass (𝐵𝐵), product (𝑃𝑃), substrate 
(𝑀𝑀) profiles from SINDy model, HM-NODE and HM-MFSM 
formulations for case study 3.1.2, with 20 HF datapoints 
 

Figures (4-7) show that the HMs constructed with 
both NODE and MFSM approaches are robust to the low 
densities of sampled data and can still predict the true 
states with decent accuracy and capture the profile 
trends better than the SINDy model. We can also notice 
that the decrease in density of the data affects the model 
accuracy, and we start to observe a slight mismatch in 
HM predictions, and this increases as the density of sam-
pled data decreases. Among the two HM approaches, the 
HM-MFSM approach performs marginally better than the 
HM-NODE approach. This is because we take a two-step 
approach for correcting the error, and decreasing the 
density of data affects the LF model in step 1. Conse-
quently, the LF model directly affects the NODE approach 
which is aimed at correcting the derivative space error 
and results in low errors as we integrate it forward in time 
for the state profiles. On the other hand, we see an im-
proved fit with MFSMs in the training range. This is be-
cause the MFSM approach corrects the error in the state 
space and does not need integrating the states forward 
in time.  

3.3 Extrapolation of the HMs  
 To analyze the extrapolation ability of the con-

structed HMs, we show the model predictions with a test 
dataset that contains input to the HM model from outside 
the training dataset region. We also compare the results 
with the SINDy model we obtained in the first step and 
with decreasing data density. Figure (8) shows three sce-
narios aimed at illustrating extrapolation using HMs for 
the case study 3.1.1. Specifically, Figures (8A, 8B, 8C) 
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correspond to instances with 50, 30, 20 HF samples, re-
spectively. It is evident that HMs utilizing both NODE and 
MFSM formulations demonstrate better extrapolation ca-
pabilities. On the other hand, predictions obtained from 
the SINDy model show limited extrapolative power. 

We can also notice that as data density decreases, 
the extrapolation performance of these HM with NODE 
formulation is slightly better than the MFSM formulation. 
This observation can be attributed to the manner in which 
error correction is implemented in both approaches. As 
the NODE approach corrects error in the derivatives, it 
has an edge in capturing profiles compared to MFSMs 
when extrapolating the corresponding HM. 

  
Figure 8: Extrapolated (𝐶𝐶𝐴𝐴) and (𝑇𝑇) profiles from SINDy 
model, HM-NODE and HM-MFSM formulations for case 
study 3.1.1 with 50, 30, and 20 HF samples. 
 

Figure (9) shows the same analysis for the case 
study 3.1.2. Figures (9A, 9B, 9C) correspond to instances 
with 50, 30, 20 HF samples, respectively. We observe a 
similar behavior for this case study as well. HMs with 
NODE and MFSM formulations demonstrate better ex-
trapolation capabilities than the SINDy. We can also ob-
serve a similar trend that shows HM with NODE formula-
tion is slightly better than the MFSM formulation.  

3.4 Effect of noise on the HMs prediction 
 In most practical applications, there is noise associ-
ated with the true state measurements. It is necessary to 

evaluate the model performance with noise in the true 
state data and check for robustness. To test our ap-
proach, we replicate a practical scenario by adding noise 
to the simulated data. The true state dataset was modi-
fied by adding Gaussian-distributed noise to each state 
variable data for the two case studies 3.1.1 and 3.1.2. The 
noise was simulated using a normal distribution, where 
the mean was set to zero and the standard deviation was 
adjusted to represent 3%, 5% of the range of the uncor-
rupted data. To test the methods at challenging scenar-
ios, we present results with 20 HF samples and varying 
levels of noise.  

Figure (10) shows the results for this analysis. The 
legend (A) in Figure (10) represents the 3% noise and (B) 
represents 5% noise in data. We can notice the robust-
ness of the HM approach towards the noise in data and 
both HM approaches are able to still predict the profiles 
accurately in both cases studies 3.11 and 3.1.2. But we 
can also observe that increasing the noise for the same 
sparsity reduces the accuracy of predicted profiles. This 
is expected because modeling accuracy becomes a chal-
lenge with increasing sparsity and noise. When compar-
ing the two methods, the HM-MSFM approach performs 
better because the HM-MFSM structure directly fits the 
state values for each variable and proper tuning of the 
model helps in making it more robust towards noise. On 
the other hand, the HM-NODE fits the derivative values 
and estimating the derivatives in the presence of noise 
and sparsity becomes a challenge. While there exist 
many noise filtering techniques to smoothen the noisy 
data and mitigate this issue, we intend to include those 
as the future work. 

4. CONCLUSIONS 
In this work, we address the complexities inherent in 
data-driven model identification, especially when the un-
derlying physics of the model remains unknown. We in-
vestigate the limitations of current state-of-the-art tools 
like SINDy when the available candidate library inade-
quately covers all potential terms contributing to the final 
mechanistic model equation. To tackle this challenge, we 
propose combining hybrid modeling techniques with 
sparse regression with the goal of simultaneous hybrid 
model development and model identification. To achieve 
this, we outline a workflow that employs two distinct 
methods: a) utilizing a NODE formulation, and b) employ-
ing an MFSM formulation as hybrid modeling approaches 
integrated with SINDy. Our study demonstrates the ef-
fectiveness of this hybrid model architecture in con-
structing accurate models capable of predicting profiles 
that predict the true data accurately, while integrating 
the mechanistic model knowledge.  
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Figure 9: Extrapolated Volume (𝑉𝑉), Biomass (𝐵𝐵), product (𝑃𝑃), substrate (𝑀𝑀) profiles from SINDy model, HM-NODE 
and HM-MFSM formulations for case study 3.1.2 with 50, 30, and 20 HF samples. 

 
Figure 10: Predicted profiles from SINDy model, HM-NODE and HM-MFSM formulations for case study 3.1.1 (1A, 
1B), and 3.1.2 (2A, 2B) with noise in the data. A, B correspond to 3% noise and 5% noise respectively. 
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We also showcase the robustness of hybrid models 
in handling low densities in sampled data and their ability 
to extrapolate. At lower amounts of sampled data, HM-
NODE formulation can extrapolate better and HM-MFSM 
formulation can predict the states more accurately. Fur-
thermore, we investigated the effect of noise in the true 
state data on these hybrid models. While the HM formu-
lations could still predict the true profiles with a good ac-
curacy, we saw that reducing the sampling data and in-
creasing the noise can affect the model performance di-
rectly and make them less accurate. Future directions on 
this work will be focused on testing our methods with ex-
perimental data to formulate the models and proposing 
more efficient techniques to train hybrid models and im-
proving their robustness towards data sparsity and noise.  
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ABSTRACT 
Continuous manufacturing in pharmaceutical industries has shown great promise to achieve pro-
cess intensification. To better understand and justify such changes to the current status quo, a 
technoeconomic analysis of a continuous production must be conducted to serve as a predictive 
decision-making tool for manufacturers. This paper uses PharmaPy, a custom-made Python-
based library developed for pharmaceutical flowsheet analysis, to simulate an annual production 
cycle for a given active pharmaceutical ingredient (API) of varying production volumes for a batch 
crystallization system and a continuous mixed suspension, mixed product removal (MSMPR) crys-
tallizer. After each system is optimized, the generalized cost drivers, categorized as capital ex-
penses (CAPEX) or operational expenses (OPEX), are compared. Then, a technoeconomic and 
sustainability cost analysis is done with the process mass intensity (PMI) as a green metric. The 
results indicate that while the batch system does have an overall lower cost and better PMI metric 
at smaller manufacturing scales in comparison with the continuous system, the latter system 
showed more potential for scaling-up for larger production volumes. 

Keywords: Technoeconomic Analysis, Industry 4.0, Process Design, Modelling and Simulations, Optimization 

INTRODUCTION 
As technology develops and industries advance into 

the “Industry 4.0” era, the sector of chemical and phar-
maceutical manufacturing is no exception. As such, the 
pharmaceutical industry has been working tirelessly to 
discover and apply innovations to the field [1]. In particu-
lar, the concept of Quality-by-design (QbD), which was 
first adopted by the FDA as a means to ensure quality in 
the development, manufacturing, and regulation of drugs 
[2], has been augmented by the Quality-by-Control 
(QbC) framework, which employs real-time process ob-
servation and control [3]. The paradigm of QbC has no-
tably been applied to concept of continuous crystallizers 
[3,4]. Continuous manufacturing has been accepted as a 
promising technology to achieve process intensification 
in pharmaceutical manufacturing [4,5]. Such methods are 
important as it promises flexibility and efficiency for both 
high volume products as well as personalized medicine 

[4-6]. However, before the entire industry can adopt a 
new method of production, technoeconomic cost anal-
yses of continuous production are necessary as a predic-
tive decision-making tool for manufacturers. This is be-
cause an intimate understanding of the cost drivers and 
performance of continuous crystallizers is necessary for 
manufacturers to adopt change in an already batch sys-
tem dominated industry [7]. But beyond the importance 
of technoeconomic analyses in industry, the issue of sus-
tainable processes has also become more pressing. The 
importance of coupling technoeconomic models with 
sustainable metrics for a technoeconomic sustainability 
analysis, not just chemical processes, but for process de-
sign in general has been noted [8]. Thus, the application 
of sustainability metrics, either in forms of life cycle as-
sessment or simple quantitative standards is important 
for chemical manufacturing [9]. 

In this paper, a preliminary investigation on the com-
parison of conventional batch crystallizers and mixed 
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suspension, mixed product removal (MSMPR) continuous 
crystallizers is conducted. First, simulated models of the 
annual performance of both types of systems are con-
structed using PharmaPy, a custom-made library for 
pharmaceutical flowsheet analysis [10]. For both layouts, 
the common active pharmaceutical ingredient (API) of 
paracetamol (PCM), a common analgesic drug, has been 
selected. Then, given three different fixed annual pro-
duction volumes, operational parameters, and desired 
critical quality attributes (CQAs), each system is opti-
mized for both overall cost as well as sustainability, using 
the process mass intensity (PMI) as a quantitative metric. 
For each case, a derivative-free optimizer was used. 

METHODOLOGY 

Modeled Flowsheets 
For this study, the analyses were conducted on the 

crystallizer unit operation. For both batch and continuous 
crystallizer layouts, the selected API for simulation was 
paracetamol. The kinetic parameters for the API have 
been adapted from Szilagyi et al. [11]. Additionally, an ar-
bitrary number of annual workdays were selected 
wherein the system was set to produce three different 
annual production volumes. For the batch cooling crys-
tallizer setup, a single unit is set as the default. However, 
as part of the decision variables, up to three parallel units 
are considered, thus allowing for the batch crystallizer to 
be optimized for numbering-up as well as scaling-up. In 
comparison, the continuous crystallizer setup is com-
prised of two chained MSMPR crystallizer units. The rea-
son for this setup is because while a single batch cooling 
crystallizer has the flexibility to operate with a dynamic 
cooling profile, each MSMPR unit can only be operated 
under a static temperature value. Thus, by setting up two 
MSMPR units, the optimizer can affect the process with 
two different crystallizer dimensions, residence times, 
and operating temperatures, which enable to manipulate 
both throughput and critical quality attributes (CQAs), 
thus allowing for sufficient control and complexity for 
comparison with the batch process. 

For the batch layout, the API is produced in batch, 
wherein the number of total batches are calculated from 
the optimal cycle time, which factors in a static one-hour 
ramp-down/cleanup time. However, for the continuous 
crystallizer, API is produced continuously in a singular 
campaign duration. This optimal campaign duration is 
calculated by multiplying the residence time of the sec-
ondary MSMPR, 𝜏𝜏𝐶𝐶𝐶𝐶02, by the optimal steady state hori-
zon multiplier, 𝐻𝐻𝑠𝑠𝑠𝑠.  This determines the duration at which 
the MSMPR system operates at steady state and contin-
uously produces API. Additionally, the optimal value for 
𝜏𝜏𝐶𝐶𝐶𝐶02  was obtained from a preliminary optimization se-
quence prior. Like the batch system, the MSMPR system 
also has a ramp-down/cleanup time, but it is only initiated 

once after the campaign. However, the MSMPR also has 
ramp-up time wherein it must reach steady state, which 
was estimated for the temperature decision variables of 
the MSMPR units. 

Finally, for each setup, an inlet of feed slurry is de-
fined. This feed slurry serves to represent an input from 
a reactor unit. However, as the focus of this work is to 
analyze the performance of the crystallizer unit, the re-
actor unit has been omitted. Then, the output of each 
crystallizer is run through a filtration process step. How-
ever, like the reactor, the filtration unit operation has 
been omitted. A schematic summary of the two setups 
can be seen in Figure 1. 

 
Figure 1. Schematic summary of the two different 
crystallization unit operations, a) batch crystallization 
and b) continuous crystallization. 

Both crystallization configurations were simulated 
using PharmaPy. As previously mentioned, PharmaPy is a 
custom-made Python-based library for the analysis of 
pharmaceutical flowsheets. Using this tool, the defined 
unit operations can have operational parameters, such as 
inlet flows, initial conditions, and pharmacokinetic param-
eters assigned to in an object-orient software structure 
[10]. Then, once the unit operations are defined as such, 
a simulation object of the flowsheet is created. This cou-
pled with a callback function, decision variables can be 
set as inputs and PharmaPy operations as outputs allows 
for an optimization framework to be established. 

Optimization Formulation 
For this study, the optimization problem is ex-

pressed as a non-linear constrained design problem 
wherein the objective is to minimize either the total cost 
of the manufacturing the API or the sustainability metric, 
PMI. The proper definition can be seen in Equation (1) 
[12]. 

min
𝒙𝒙
𝐽𝐽(𝒙𝒙,𝒚𝒚, 𝒛𝒛)     (1) 

s. t. 𝑑𝑑𝒚𝒚
𝑑𝑑𝑑𝑑

= 𝑓𝑓1�𝑡𝑡,𝒚𝒚, 𝒛𝒛,𝒖𝒖(𝑡𝑡)�,  (2) 

𝑓𝑓1�𝑡𝑡,𝒚𝒚, 𝒛𝒛,𝒖𝒖(𝑡𝑡)� = 𝟎𝟎,    (2) 

𝒚𝒚(𝑡𝑡 = 0) = 𝒚𝒚𝟎𝟎, 𝒛𝒛(𝑡𝑡 = 0) = 𝒛𝒛𝟎𝟎,  (2) 

and 
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𝑔𝑔𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑢𝑢) ≤ 0, ∀𝑖𝑖 ∈ 𝐼𝐼,   (3) 

𝒙𝒙𝒍𝒍𝒍𝒍 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝒖𝒖𝒍𝒍   (2) 

 The equations in Equation (2), adapted from Casas-
Orozco et al. [12], correspond to the process model of a 
differential-algebraic equation (DAE) system, with 𝒚𝒚 ∈
�𝑦𝑦1, … ,𝑦𝑦𝑗𝑗 , … ,𝑦𝑦𝑛𝑛𝑦𝑦�  being the set of differential states and 
𝒛𝒛 ∈ �𝑧𝑧1, … , 𝑧𝑧𝑛𝑛𝑧𝑧�  being the set of algebraic states, and 𝒚𝒚𝟎𝟎 
and 𝒛𝒛𝟎𝟎 being their respective initial values. Additionally, 
the model inputs are represented by the variables, 𝑢𝑢(𝑡𝑡) ∈
�u1(𝑡𝑡), … unu(𝑡𝑡)�. The entirety of the DAE system is repre-
sented by the PharmaPy simulation. Finally, Equation (3) 
shows the nonlinear constraints and decision variable 
bounds for the problem. 

For this study, the decision variables are dependent 
on the type of crystallizer that is being simulated. Conse-
quently, the lower and upper bounds represented in 
Equation (3) vary by the system. Thus, the decision vari-
ables that are considered as well as their bounds are 
listed in Table 1. 

Table 1: Description of decision variables considered in 
the optimization problem along with their bounds. 

Variable  System Description Bounds 
𝑉𝑉𝐶𝐶𝐶𝐶 Batch Cryst Volume  ~  [m³] 
𝑡𝑡𝐶𝐶𝐶𝐶 Batch Cycle Time  ~  [min] 

𝑛𝑛𝐶𝐶𝐶𝐶 Batch No of parallel 
process lines  ~  [lines] 

𝑇𝑇𝐶𝐶𝐶𝐶,𝑖𝑖 Batch Cryst 𝑖𝑖th 
Temp Point  ~  [K] 

𝑉𝑉𝐶𝐶𝐶𝐶01,𝑉𝑉𝐶𝐶𝐶𝐶02 Cont Cryst Volume  ~  [m³] 
𝑇𝑇𝐶𝐶𝐶𝐶01,𝑇𝑇𝐶𝐶𝐶𝐶02 Cont Cryst Temp  ~  [K] 

𝐻𝐻𝑠𝑠𝑠𝑠 Cont Steady state 
multiplier  ~  

 
Finally, the function 𝑔𝑔𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑢𝑢)  represent the non-

linear constraints that are being applied to the problem. 
These constraints are representative of CQAs or stand-
ards that would be an important metric for determining 
the success of the system. The first constraint is that the 
API produced in a system must be at least a certain di-
ameter. This an important CQA for a crystallization unit 
as the mean size of the crystals, and to an extent the 
crystal size distribution (CSD) can determine the flowa-
bility and filterability of the API produced [13]. This then 
has large implications for how easily the API is handled, 
or even how effective the drug is. The second constraint 
is the production volume. This is simply to ensure that the 
optimal results always at least produce enough API prod-
uct to meet the fixed annual production volume. The third 
constraint is the yield constraint, which is in place to 
make sure that the optimal results would produce a cer-
tain percentage of the theoretical maximum yield, thus 
ensuring a certain level of efficiency. The fourth con-
straint is an operational constraint to make sure that the 

temperature profile for the batch and the temperatures in 
the consecutive MSMPRs are monotonically decreasing. 
Finally, the fifth and final constraint are implemented to 
make sure that the total calculated time for manufactur-
ing does not exceed the allotted annual workdays. This is 
in place because while the total time for the batch system 
is divided into distinct batches, the continuous system 
simply has a single campaign to continuously create API. 
These constraints are summarized in Table 2. In addition, 
Table 2 also lists the weights for each constraint. These 
weights were then applied to a penalty function for the 
constraints to ensure that the optimal solution wasn’t 
trivial or impractical. 

Table 2: Description of the constraints considered in the 
optimization problem and their respective weights. 

Variable  Description Weight Constraint 

𝑔𝑔1 
Mean Crystal 
Size 𝑤𝑤1 = 102 40 [𝜇𝜇𝜇𝜇] <  𝐿𝐿� 

𝑔𝑔2 
Production 
Volume 𝑤𝑤2 = 103 𝑃𝑃𝑉𝑉𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 < 𝑃𝑃𝑉𝑉𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 

𝑔𝑔3 Overall Yield 𝑤𝑤3 = 102 0.9𝑌𝑌𝑚𝑚𝑡𝑡𝑚𝑚 < 𝑌𝑌𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 

𝑔𝑔4 Decreasing 
Temp 𝑤𝑤4 = 100 𝑇𝑇𝑖𝑖+1 ≤ 𝑇𝑇𝑖𝑖 

𝑔𝑔5 Total Time 𝑤𝑤5 = 101 260 [days] > 𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 
 
 For this simulation, the defined optimization prob-

lem was then solved with the adaptive Nelder-Mead al-
gorithm included in the SciPy library. Thus, to translate 
the problem to an unconstrainted optimization problem 
for the derivative-free Nelder-Mead algorithm, the non-
linear constraints were reformulated into an augmented 
objective function. It should be noted that given the non-
convexity of the problem and due to the challenges of 
employing a gradient-based method in a simulation-opti-
mization approach to the problem, a derivative-free algo-
rithm was preferred. Furthermore, to improve optimizer 
performance, the objective function and constraint val-
ues were normalized. Thus, the objective function was 
transformed to Equation (4) and the constraints were 
transformed to Equations (5). 

𝐽𝐽𝑛𝑛𝑡𝑡𝑡𝑡𝑚𝑚(𝒙𝒙,𝒚𝒚, 𝒛𝒛) = �𝐽𝐽(𝒙𝒙,𝒚𝒚,𝒛𝒛)−𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙,𝒚𝒚,𝒛𝒛)
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙,𝒚𝒚,𝒛𝒛) �

2
  (4) 

𝑔𝑔𝑛𝑛𝑡𝑡𝑡𝑡𝑚𝑚,𝑖𝑖 = �
𝑖𝑖 ∈ [1,4],   1 − 𝑡𝑡𝑚𝑚,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑚𝑚

𝑖𝑖 = 5,   𝑡𝑡𝑚𝑚,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑚𝑚

− 1
  (5) 

where 𝐽𝐽𝑚𝑚𝑖𝑖𝑛𝑛(𝒙𝒙,𝒚𝒚, 𝒛𝒛)  is the overall lowest function 
evaluation the optimizer found and 𝑔𝑔𝑖𝑖,𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑  is the con-
straint value for 𝑔𝑔𝑖𝑖. Thus, the final augmented and nor-
malized objective function is shown in Equation (6). 

min
𝒙𝒙
𝐽𝐽𝑛𝑛𝑡𝑡𝑡𝑡𝑚𝑚(𝒙𝒙,𝒚𝒚, 𝒛𝒛) + ∑ �max�0,𝑤𝑤𝑖𝑖 ∙ 𝑔𝑔𝑛𝑛𝑡𝑡𝑡𝑡𝑚𝑚,𝑖𝑖��

2
𝑖𝑖∈[1,5]  (6) 

Cost Calculation 
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As previously mentioned, one of the objective func-
tions used to evaluate the simulation is the overall cost of 
the system. The cost of the system can be broken down 
into two categories, capital expense (CAPEX) and opera-
tional expense (OPEX). 

CAPEX Calculation 
CAPEX involves all the terms that are related to the 

purchase of equipment. However, while the volume of the 
crystallizers as a decision variable are not discrete val-
ues, in reality, equipment are usually made and sold at 
discrete capacities. Thus, to account for this, a cost-ca-
pacity correlation equation is from Diab et al. [6] is used: 

𝐶𝐶𝐵𝐵 = 𝑓𝑓𝐶𝐶𝐴𝐴 �
𝑆𝑆𝐵𝐵
𝑆𝑆𝐴𝐴
�
𝑛𝑛
    (7) 

Wherein, the 𝐶𝐶𝑖𝑖 is the cost of the equipment and 𝑆𝑆𝑖𝑖 
is the capacity of the given equipment. Next, 𝑓𝑓 are equip-
ment-dependent coefficients to account for indirect 
costs that may be involved for certain equipment. Finally, 
𝑛𝑛 is a value is the cost exponent to represent the expo-
nential increase in cost of equipment as capacity in-
creases. The index of 𝐴𝐴 in Equation (7) represent existing 
equipment while the index of 𝐵𝐵  refer to the equipment 
selected for the simulation. The specific values for base 
equipment values in Equation (7) are based on the Chem-
ical Engineering Plant Cost Indices (CEPCIs) [14]. How-
ever, for this study, the values are identical as the ones 
used by Diab et al. [6]. 

Furthermore, to provide a more realistic estimation 
for the technoeconomic cost model, rather than taking 
the flat equipment cost, a battery limit installed cost 
(BLIC) is calculated. Thus, the additional indirect costs 
associated with installing the equipment are considered. 
To calculate the BLIC, the Chilton method is employed 
[6]. In summary, the BLIC is a factor of the total physical 
plant cost (TPPC), which is the sum of the installed equip-
ment cost (IEC) and the process piping and instrumenta-
tion (PPI) cost. The PPI is a percentage of the IEC while 
the IEC is a factor of the previously calculated equipment 
cost. The exact coefficients and factors for these calcu-
lations are the same as the ones used by Diab et al. [6]. 

Finally, once the BLIC was calculated, rather than 
apply the flat equipment cost, an equivalent uniform an-
nual cost (EUAC) was calculated. This is to reflect the 
fact that while it is not unheard of for a company to out-
right purchase all the required equipment for a new 
setup, it is more customary for the annual equipment cost 
of a production line to be expressed as an annuity [15]. 
The calculation can be seen in Equation (8). An interest 
rate, 𝑖𝑖𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡 of 5% and a project timeline, 𝑡𝑡𝑃𝑃𝑃𝑃 of 20 years is 
taken from literature [6].  

𝐸𝐸𝐸𝐸𝐴𝐴𝐶𝐶 = 𝐵𝐵𝐿𝐿𝐼𝐼𝐶𝐶 �𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(1+𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑡𝑡𝑃𝑃𝑃𝑃
(1+𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑡𝑡𝑃𝑃𝑃𝑃−1

�   (8) 

In addition to the equipment cost, the CAPEX for this 

simulation also takes into consideration for the working 
capital (WC) and the contingency costs (CC) of the plant. 
The WC and CC are set to be 3.5% of the annual material 
costs and 20% of the total BLIC, respectively. These val-
ues can be found in literature [16]. 

Summary of the total CAPEX calculation is summa-
rized in Equation (9). 

 
𝐶𝐶𝐴𝐴𝑃𝑃𝐸𝐸𝑋𝑋𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 = 𝐸𝐸𝐸𝐸𝐴𝐴𝐶𝐶 + 𝑊𝑊𝐶𝐶 + 𝐶𝐶𝐶𝐶  (9) 
 

OPEX Calculation 
As opposed to CAPEX, which represented expenses 

that are investments that need to be made prior to es-
tablishing a setup, OPEX represents all expenses that are 
incurred during the hours of plant operation. The major 
cost drivers here are the cost of the materials that serve 
as inputs for the pharmaceutical process and the cost in-
volved with dealing with the waste material of a process. 
The material cost, 𝐶𝐶𝑚𝑚𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑎𝑎, can be straightforwardly cal-
culated as the product of the total mass of each chemical 
species 𝜇𝜇𝑖𝑖 and their respective cost per mass, 𝐶𝐶𝑖𝑖. Finally, 
the waste cost, 𝐶𝐶𝑤𝑤𝑡𝑡𝑠𝑠𝑑𝑑𝑡𝑡, can be calculated as a certain per-
centage of the total cost of solvents, 𝐶𝐶𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠, involved in the 
process. The exact percentage, while it may vary on a 
plant-by-plant basis, was set as 35%. The summary of 
these calculations as well as the final total OPEX calcula-
tion can be seen in Equations (10-12). 

 
𝐶𝐶𝑚𝑚𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑎𝑎 = ∑ 𝐶𝐶𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖     (10) 
𝐶𝐶𝑤𝑤𝑡𝑡𝑠𝑠𝑑𝑑𝑡𝑡 = 0.35∑ 𝐶𝐶𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠,𝑖𝑖𝑖𝑖    (11) 
 
𝑂𝑂𝑃𝑃𝐸𝐸𝑋𝑋𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 = 𝐶𝐶𝑚𝑚𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑎𝑎 + 𝐶𝐶𝑤𝑤𝑡𝑡𝑠𝑠𝑑𝑑𝑡𝑡   (12) 
 

Thus, the objective function when calculating for minimal 
costs can be seen in Equation (13). 
 

min
𝒙𝒙
𝐽𝐽𝑎𝑎𝑡𝑡𝑠𝑠𝑑𝑑(𝒙𝒙,𝒚𝒚, 𝒛𝒛) = 𝐶𝐶𝐴𝐴𝑃𝑃𝐸𝐸𝑋𝑋𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 + 𝑂𝑂𝑃𝑃𝐸𝐸𝑋𝑋𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 (13) 

Sustainability Calculation 
 In the previous section, the method of calculating 
the cost of a crystallization unit operation has been out-
lined. However, while cost is an important metric for a 
technoeconomic model, sustainability, or “green pro-
cessing”, is an ever-growing concern for the future of the 
sustainable pharmaceutical industry [17]. Thus, optimiz-
ing the manufacturing system in regard to a sustainability 
metric in addition to the cost is a necessary perspective 
to take. Over time, many different metrics for sustainabil-
ity have emerged. Notably, the E factor, seen in Equation 
(14), has often been used in studies as a metric for effi-
ciency of pharmaceutical manufacturing [17]. 
 

E factor = 𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 𝑚𝑚𝑡𝑡𝑠𝑠𝑠𝑠 𝑡𝑡𝑜𝑜 𝑤𝑤𝑡𝑡𝑠𝑠𝑑𝑑𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑚𝑚 𝑡𝑡 𝑝𝑝𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠  [𝑘𝑘𝑡𝑡]
𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 𝑚𝑚𝑡𝑡𝑠𝑠𝑠𝑠 𝑡𝑡𝑜𝑜 𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑 [𝑘𝑘𝑡𝑡]

 (14) 
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However, as the E factor serves as a ratio of the API 
produced and the waste material produced from the en-
tire process, the E factor can be a misleading metric as it 
only represents the waste material, thus not guarantee-
ing the efficiency or lack thereof in regard to the other 
materials involved in the process [18]. Thus, as a correc-
tion, the process mass intensity (PMI) metric has been 
introduced. The PMI, shown in Equation (15), serves a ra-
tio of the total API produced with the mass of all chemical 
species that was involved in the process [18]. 

 
PMI = 𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 𝑚𝑚𝑡𝑡𝑠𝑠𝑠𝑠 𝑜𝑜𝑡𝑡𝑡𝑡𝑚𝑚 𝑡𝑡 𝑝𝑝𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠  [𝑘𝑘𝑡𝑡]

𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑎𝑎 𝑚𝑚𝑡𝑡𝑠𝑠𝑠𝑠 𝑡𝑡𝑜𝑜 𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑 [𝑘𝑘𝑡𝑡]
  (15) 

 
Thus, with PMI as a secondary objective function, 

the manufacturing system can also be investigated re-
garding sustainability as well as minimized costs. 

RESULTS AND DISCUSSION 
 With the optimization problem defined in the previ-
ous section as well as the layout of the batch and contin-
uous crystallization manufacturing units, we can then 
compare the differences in performance and cost for the 
systems. For both batch and continuous systems, the 
simulation was optimized for minimal total cost, which 
was the sum of the CAPEX and OPEX, and for minimal PMI 
The results of the optimization for both systems with the 
two different objective functions and at three different 
target annual production volumes can be seen in Figure 
2. Additionally, it is important to note that the CAPEX and 

OPEX have been graphed separately on different axes. 
This is because while the technoeconomic cost model 
was created to provide a holistic view of the unit opera-
tions, the inclusion of CAPEX is not always relevant for 
some industries, for example where the equipment is al-
ready in place. Also, the numerical values of the simula-
tions, optimal decision variables as well as some addi-
tional performance metrics for the batch system and the 
continuous system can be seen in Table 3 and Table 4, 
respectively. 
 When first observing the results of the simulation, it 
is important to note that from Figure 2, we can observe 
that the overall OPEX for the continuous system, regard-
less of annual production volume, is higher than that for 
the batch system. This is a logical outcome as one of the 
drawbacks of MSMPR crystallizers is that a constant feed 
of slurry needs to be input. However, it should also be 
noted that the CAPEX values for continuous systems are 
always lower than their batch counterparts across the 
board. This is even with the consideration that a single 
production line of continuous crystallization requires two 
MSMPR units in cascade. This is reflective of the result 
that, due to the higher throughput of the continuous sys-
tems, a smaller crystallizer unit is sufficient to meet the 
annual production targets. However, this result comes 
with the caveat that the inclusion of CAPEX may not be 
significant for manufacturers who are not looking to cre-
ate a new manufacturing line from scratch, thus making 
the difference in CAPEX irrelevant. 
   

 
Figure 2: Annual CAPEX and OPEX comparison for different annual production volumes between batch and 
continuous crystallization units. In addition, the differing values on whether the optimizer prioritized minimal cost 
or minimal PMI have been presented next to each other. 
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In addition to this observation, we can see from Table 3 
and Table 4 that despite the differences in CAPEX, the 
overall cost for the batch system is lower than their con-
tinuous counterparts. However, that comparison does 
not provide a full view of the comparison. An important 
aspect of continuous crystallization is the efficiency in 
terms of throughput and availability. This is observed in 
the simulation results in Table 4. The results show that 
for all annual production volumes, the continuous system 
resulted in a more consistent throughput rate while Table 
3 indicates that the batch system has a steeper drop in 
throughput. This is also reflected in the fact that for all 
three annual production volumes, the batch system 
needed to use all 260 days for all cases, even though the 
batch cases have already optimized for 2 parallel lines. 
 Additionally, we can see that for the continuous sys-
tem, the overall optimized crystallizer volume is lower 
than for the batch scenario. In conjunction with this, we 
can see that the total availability, which is the percentage 
of time in which the system is actually running and not 
ramping up, ramping down or cleaning, the continuous 
system predictably has a higher percentage. With all 
these observations, we can see that the MSMPR setup, 
while for the selected parameters may have an overall 
higher cost, shows a better potential for scaling up and 
provides a more agile manufacturing alternative. 

 Finally, the previously made observations can also 
be seen when considering the PMI. From the same tables, 
we when we see the results for optimizing for PMI rather 
than cost, we can compare the sustainable nature of both 
setups. As expected, the continuous system has a higher 
PMI value due to the necessity for a continuous input of 
slurry. However, when comparisons with cost in mind, we 
can see that while optimizing for PMI decreases the re-
sultant PMI by less than 1%, the cost in continuous sys-
tems increases less significantly than the batch systems. 
Thus, while the significance of decreasing PMI would be 
different on a case-by-case basis, we can observe that 
the continuous system has a lower cost necessary for im-
proving the overall sustainability of the process. 

CONCLUSION 
 This study was an example to show the capabilities 
of the technoeconomic cost model simulation to serve as 
a decision-making tool for manufacturers. By employing 
a simulation-optimization strategy with the annual pro-
duction of paracetamol as a generic representative API 
and applying CAPEX and OPEX calculations that have 
been standardized in literature, a good first simulation re-
sult was achieved. Furthermore, with the simulation, 
other than directly comparing cost, the potential 

Table 3: Numerical results of the batch crystallization setup simulation 

  
M kg / yr M kg / yr M kg / yr 

Cost Obj PMI Obj Cost Obj PMI Obj Cost Obj PMI Obj 

Material  $   $   $   $   $   $  

Waste  $   $   $   $   $   $  

EUAC  $   $   $   $   $   $  

WC  $   $   $   $   $   $  

CC  $   $   $   $   $   $  

Total  $   $   $   $   $   $  

API Made  kg  kg   kg  kg  kg 

Solvent Used  kg  kg  kg  kg  kg  kg 

API Used  kg  kg  kg  kg  kg  kg 

Total Time  days  days  days  days  days  days 

Throughput   kg/h  kg/h  kg/h  kg/h  kg/h  kg/h 

Availability % % % % % % 

Cost/Kg $ /kg $ /kg $ /kg $ /kg $ /kg $ /kg 

PMI E+ E+ E+ E+ E+ E+ 

Cost Change  %  %  % 

PMI Change  -%  -%  -% 

 Optimal Decision Variables 

𝑽𝑽𝑪𝑪𝑪𝑪   m³  m³  m³  m³  m³  m³ 

𝒕𝒕𝑪𝑪𝑪𝑪   s  s  s  s  s  s 

𝒏𝒏𝑪𝑪𝑪𝑪   lines  lines  lines  lines  lines  lines 

𝑻𝑻𝑪𝑪𝑪𝑪,𝟏𝟏   K  K  K  K  K  K 

𝑻𝑻𝑪𝑪𝑪𝑪,𝟐𝟐   K  K  K  K  K  K 

𝑻𝑻𝑪𝑪𝑪𝑪,𝟑𝟑   K  K  K  K  K  K 

 

Table 4: Numerical results of the continuous crystallization setup simulation. 

  
M kg / yr M kg / yr M kg / yr 

Cost Obj PMI Obj Cost Obj PMI Obj Cost Obj PMI Obj 

Material  $    $    $    $    $    $   
Waste  $    $    $    $    $    $   
EUAC  $    $    $    $    $    $   
WC  $    $    $    $    $    $   
CC  $    $    $    $    $    $   
Total  $    $    $    $    $    $   
API Made  kg  kg  kg  kg  kg  kg 
Solvent Used  kg  kg  kg  kg  kg  kg 
API Used  kg  kg  kg  kg  kg  kg 
Total Time  days  days  days  days  days  days 
Throughput   kg/h  kg/h  kg/h  kg/h  kg/h  kg/h 

Availability % % % % % % 
Cost/Kg $ /kg $ /kg $ /kg $ /kg $ /kg $ /kg 

PMI E+ E+ E+ E+ E+ E+ 
Cost Change   %   %   % 
PMI Change   -%   -%   -% 
 Optimal Decision Variables 

𝑽𝑽𝑪𝑪𝑪𝑪𝟎𝟎𝟏𝟏   m³  m³  m³  m³  m³  m³ 

𝑽𝑽𝑪𝑪𝑪𝑪𝟎𝟎𝟐𝟐   m³  m³  m³  m³  m³  m³ 

𝑻𝑻𝑪𝑪𝑪𝑪𝟎𝟎𝟏𝟏   K  K  K  K  K  K 

𝑻𝑻𝑪𝑪𝑪𝑪𝟎𝟎𝟐𝟐   K  K  K  K  K  K 

𝑯𝑯𝒔𝒔𝒔𝒔        
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capabilities of continuous production methods in the 
pharmaceutical industry could be explored. While the 
overall costs of continuous systems may higher than the 
existing batch production setup, the potential for contin-
uous systems to scale up and maintain efficiency in both 
availability and throughput shows promise. Furthermore, 
in the light of sustainability for pharmaceutical processes, 
we could see that the trade-off in cost for improving PMI 
metrics would be much less than that for batch pro-
cesses, thus additionally showing how continuous sys-
tems could be more easily adapted to be more sustaina-
ble and embody the idea of “green chemistry”.  
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ABSTRACT 
Copolymers are commonplace in various industries. Nevertheless, fine-tuning their properties 
bears significant cost and effort. Hence, an ability to predict polymer properties a priori can sig-
nificantly reduce costs and shorten the need for extensive experimentation. Given that the physi-
cal and chemical characteristics of copolymers are correlated with molecular arrangement and 
chain topology, understanding the reactivity ratios of monomers—which determine the copolymer 
composition and sequence distribution of monomers in a chain—is important in accelerating re-
search and cutting R&D costs. In this study, the prediction accuracy of two Artificial Neural Net-
work (ANN) approaches, namely, Multi-layer Perceptron (MLP) and Graph Attention Network 
(GAT), are compared. The results highlight the potency and accuracy of the intrinsically interpret-
able ML approaches in predicting the molecular structures of copolymers. Our data indicates that 
even a well-regularized MLP cannot predict the reactivity ratio of copolymers as accurately as 
GAT. This is attributed to the compatibility of GAT with the data structure of molecules, which are 
graph-representative. 

Keywords: Reaction Engineering, Polymerization, Artificial Neural Network, Multilayer Perceptron, Graph At-
tention Network,  

INTRODUCTION 
Copolymers are widely used and have a variety of 

applications such as coatings, in electronic devices, the 
packaging industry, or pharmaceutical manufacturing[1-
3]. Copolymers are often designed with the aim of creat-
ing materials that possess the characteristics of their 
constituent monomers. 

The properties of a copolymer are basically deter-
mined by the paired monomers' sequence distribution in 
the constructed copolymers. This distribution is com-
monly defined by the reactivity ratios, presenting the ra-
tio of each monomer's propensity to react with itself over 
the inclination to react with another monomer[4]: 

r1 =  
kp,11

kp,12

r2 =  
kp,22

kp,21

Here, the 𝑘𝑘𝑝𝑝,𝑥𝑥𝑥𝑥 is the rate coefficient of propagation of 
radical 𝑥𝑥 with monomer species 𝑦𝑦. For instance, poly 

(ethylene-co-vinyl acetate) or EVA is a commercial poly-
mer in various industries and is constructed from eth-
ylene and vinyl acetate. The reactivity ratios for these 
monomers are r1=0.88≈1 and r2=1.03≈1[5]. In a system 
where both r1 and r2 are close to one, the copolymeriza-
tion tends to produce a random copolymer, and no spe-
cific sequence is expected. On the other hand, when r1≪1 
and r2≪1, an alternating copolymer can be expected Like 
Styrene-Maleic Anhydride copolymer or SMA in which 
r1=0.02 and r2=0.003[5]. In this condition, each monomer 
has a preference to react with the other monomer instead 
of itself. As evident, varying values of reactivity ratios (r1 
and r2) in copolymerization lead to different arrange-
ments in the copolymer structure, subsequently influenc-
ing the final properties of the copolymer. Thus, having a 
reasonable prediction for the sequence of monomers in a 
copolymer chain facilitates the process of producing fit-
for-purpose macromolecules. Traditionally, estimation of 
the reactivity ratio for a new polymer heavily depends on 
experimental work and the repeatability of the experi-
ments, which are laborious, sluggish, and costly. 

mailto:mona.bavarian@unl.edu
https://doi.org/10.69997/sct.157792


 

Safari et al. / LAPSE:2024.1550 Syst Control Trans 3:367-372 (2024) 368 

Numerous computational methods, such as Density 
Functional Theory (DFT), are used for predicting the re-
activity ratio in copolymers. However, these methods 
generally incur significant computational costs, rendering 
them impractical for certain engineering applications[6]. 
 To this end, using of Machine Learning (ML) ap-
proaches can be a pragmatic solution for addressing the 
reaction engineering problems specifically for copolymer 
synthesis. From a process design perspective, ML mod-
els serve as a pivotal tool in predicting the chain topology 
of copolymers derived from novel monomer pairs. This 
application, termed the Forward Design Problem, utilizes 
predictive analytics to determine the reactivity ratios of 
two monomers, thereby identifying the final chain topol-
ogy of the resultant copolymers. Such predictive capabil-
ity enables researchers to envision the structural and 
functional attributes of new materials before their syn-
thesis, streamlining the development process and en-
hancing the efficiency of material discovery. Conversely, 
the Backward Design Problem represents an equally vi-
tal application of ML in polymer science. By integrating 
ML models with optimization frameworks, it is possible to 
reverse-engineer the design process to identify mono-
mer structures that yield specific reactivity ratios[7]. This 
is particularly crucial when aiming for copolymers with 
precise structural configurations, such as those with al-
ternating monomer sequences achieved when the reac-
tivity ratios of two monomers are significantly less than 
one. Through optimization, the model identifies 'mono-
mer fingerprints' that are most likely to result in the de-
sired topology, thus guiding the synthesis towards copol-
ymers with predetermined properties and applications. 
This dual approach—predicting copolymer topologies 
through forward design and deducing optimal monomer 
structures for targeted outcomes via backward design il-
lustrates the notable potential of ML in polymer design. 
This not only accelerates the material development cycle 
but also opens new realm for the tailored synthesis of co-
polymers, marking a significant advancement in the field 
of polymer reaction engineering. The organization of the 
rest of this paper is as follows. The methodology section 
presents the data preprocessing and implementation of 
the Multilayer Perceptron (MLP) and Graph Attention 
Network (GAT). The result and discussion describe the 
models’ performance in predicting the monomers' reac-
tivity ratios. Eventually, we present some concluding re-
marks. 

METHODOLOGY 

Data Curation and Preprocessing 
In the large view, the development of an ML 

model constitutes 4 phases including Data Mining, Data 
Cleaning, Model Construction, and Performance Assess-
ment. Figure 1 presents a general overview of the 

development of an ML approach for reactivity ratio pre-
diction in copolymers. In the development of machine 
learning models, our investigation is positioned within the 
realm of supervised learning, where each data point is la-
belled. Our dataset comprises pairs of monomer names, 
with the associated label being their reactivity ratio dur-
ing the copolymerization process. Given that the output 
variable, the reactivity ratio, is a continuous value, our 
problem is identified as a regression task within the su-
pervised learning framework. A significant challenge in 
this context is the effective introduction of monomer 
pairs to the machine learning model (particularly in the 
development of Multi-Layer Perceptron). 

 
Figure 1. Schematic Workflow for Presentation of an ML 
Approach for Reactivity Ratio Prediction. 

After the collection of reactivity ratios of monomers 
from different references, we evaluated the data in terms 
of value and distribution. It is generally observed that ex-
tracting patterns from a dataset with a distribution close 
to normal is more effective. To ameliorate the training 
process of the ML model, we applied a square root trans-
formation to the raw data, aiming to achieve a distribution 
that is more closely aligned with a normal distribution. 
Figure 2. represents the original reactivity ratio (r1 and r2) 
distribution and also schemes the data distribution when 
we impose a square root transformation on our data (√r1 
and √r2). 

In the next phase, we convert the monomers into 
the Simplified Molecular-Input Line-Entry System 
(SMILES) format using open-source cheminformatics 
toolkits. This allows us to transform the monomers into a 
machine-readable language, suitable for machine learn-
ing development. 

Multi-Layer Perceptron 
Here, a Multilayer Perceptron (MLP) for the 

prediction of the reactivity ratio in copolymers is 
considered. For converting the SMILES to a numerical 
vector that is ANN-compatible, a Morgan fingerprint with 
2048 bits for each monomer was employed. In the  
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following, the fingerprint vectors of the two monomers 
were concatenated, and the concatenated vector was 
considered as the input of the MLP. So, the input of the 
model is a one-dimensional vector (X ∊ R4096), and the 
outputs of the model are √r1 and √r2 (y ∊ R2). 

In defining the structure of the model, a pro-
posed MLP with 4096 inputs, 80 neurons in the first hid-
den layer, 40 neurons in the second hidden layer, and 2 
outputs is used[8]. Regarding the full connectivity of the 
neurons in all layers, the MLP performance was improved 
using the dropout technique. Figure 3 represents a sche-
matic overview of the multilayer perceptron used for re-
activity ratio estimation. For a better training process, it 
was found that the implementation of a regularization 
technique can improve the Mean Square Error (MSE) sig-
nificantly. In this regard, a Grid Search Optimization 
method was implemented to find L1 Regularization, L2 
Regularization, and Dropout Rate. It was found that using 
Dropout Rate = 0.65 can significantly ameliorate the MLP 
performance. Using the optimum dropout rate in the MLP 
could significantly improve the reported MSE in the mod-
ified model (0.1 in the test dataset and 0.08 in the training 
dataset) compared to the reference model[8].  
 For the training of our optimized Multilayer Per-
ceptron (MLP), the dataset was allocated as follows: 10% 
was reserved for testing, while the remaining 90% was 
utilized for both training and validation. Specifically, of 
the data allocated for model training and validation, 90% 

was used for actual training purposes, and the remaining 
10% served as validation data. This approach of incorpo-
rating a validation subset within the training data allows 
for regular assessment of the model's performance 
against overfitting. By doing so, we ensure that the model 
not only learns from the training data but also generalizes 
well to unseen data, thereby enhancing its reliability and 
applicability in real-world scenarios. 

Graph Attention Network 
In the realm of reaction engineering, the structural 

intricacies of molecular data present unique challenges 
and opportunities for computational analysis. A promising 
approach for addressing these challenges is the adoption 
of graph-based machine learning approaches in which 
molecules are represented as graphs, atoms as nodes, 
and chemical bonds as edges. This approach appears to 
be an encouraging solution for various problems, 
including reactivity ratio prediction in polymer science. 
Graph Attention Networks (GAT) are a specific type of 
Graph Neural Network (GNN) that incorporate attention 
mechanisms to specify different weights to different 
nodes in a graph[9,10].   

Herein, In the second part, a Graph attention 
Network with an Attentive Fingerprint was utilized. This 
approach employs a Recurrent Neural Network (RNN) 
and an Attention Mechanism for the extraction of the 

 
Figure 2. Distribution of original data (r1 and r2) and distribution of data with applied square root transformation 
(√r1 and √r2). As shown in the figure, the skewness of data reduces significantly and make data close to normal 
distribution. In the quantile-quantile (Q-Q) plot, the degree to which our data aligns with the reference line (y = 
ax+b) provides an indication of how closely the data conform to a normal distribution. A close alignment suggests 
that the data are approximately normally distributed. 
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most important features from the input in a molecule 
structure. The attention mechanism in the GAT operates 
based on the three which are mechanism-alignment, 
weighting, and context operation[11]: 

The alignment equation is represented as follows: 

𝑒𝑒𝑣𝑣𝑣𝑣 = (𝑊𝑊. [ℎ𝑣𝑣, ℎ𝑣𝑣])          (1) 

For weighting, the softmax function is applied: 

𝑎𝑎𝑣𝑣𝑣𝑣 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑥𝑥(𝑒𝑒𝑣𝑣𝑣𝑣) = exp (𝑒𝑒𝑣𝑣𝑣𝑣)
∑ exp (𝑒𝑒𝑣𝑣𝑣𝑣)𝑣𝑣∈𝑁𝑁(𝑣𝑣)

                                      (2) 

The context vector is then calculated using the 
Exponential Linear Unit (ELU) function: 

𝐶𝐶𝑣𝑣 = 𝑒𝑒𝑒𝑒𝑒𝑒(∑ 𝑎𝑎𝑣𝑣𝑣𝑣.𝑊𝑊. ℎ𝑣𝑣𝑣𝑣∈𝑁𝑁(𝑣𝑣) )                                                 (3) 

Here, ′𝑣𝑣′ denotes a specific target node or atom, ′𝑁𝑁(𝑣𝑣)′ its 
neighboring nodes, ′ℎ𝑣𝑣′ the states vector of node ′𝑣𝑣′, ′ℎ𝑣𝑣′ 
the states vector of a neighboring atom or node ′𝑒𝑒′, and 
′𝑊𝑊′ the learnable weight matrix indicating relationships 
between the target node and its neighbors. The 
alignment scores are calculated using Equation 1 and 
then normalized (Equation 2). Subsequently, the context 
vector is formulated using the ELU function, allowing a 
non-zero gradient for negative inputs[11]. Features close 
to a score of 1 exert more influence on the output, while 
those closer to 0 are deemed less significant, and 
negative values result in feature exclusion. 

The second stage involves constructing a viable 
model incorporating a Gate Recurrent Unit (GRU), which 
enhances the RNN by adding reset and update gates. 
This allows the GRU to selectively retain and disregard 
information, thereby augmenting RNN's memory 
capabilities. The GRU functions in two phases within the 
model: messaging and readout, described 
mathematically in Equations (4) and (5). 
𝐶𝐶𝑣𝑣𝑘𝑘−1 = ∑ 𝑀𝑀𝐾𝐾−1(ℎ𝑣𝑣𝑘𝑘−1, ℎ𝑣𝑣𝑘𝑘−1)𝑣𝑣∈𝑁𝑁(𝑣𝑣)                                       (4) 

ℎ𝑣𝑣𝑘𝑘 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘−1(𝐶𝐶𝑣𝑣𝑘𝑘−1, ℎ𝑣𝑣𝑘𝑘−1)                                                  (5) 

In the messaging stage of the GAT model, the 
message function, denoted as 𝑀𝑀𝑘𝑘−1 plays a crucial role. 
This function operates at the 𝑘𝑘 − 1 iteration, where it aids 
in assimilating the learned features of the nodes. During 
this phase, the representation of the nodes within the 
molecules is compiled. The message function aggregates 
details from neighboring nodes on the graph for each tar-
get node. This process is pivotal as the graph attention 
mechanism focuses on collating data from all adjacent 
nodes in the messaging phase to effectively update their 
state in the subsequent read-out phase. In this context, 
the GRU acts by integrating inputs from the previous 
state vector ℎ𝑣𝑣𝑘𝑘−1 of the target node and the attention 
context 𝐶𝐶𝑣𝑣𝑘𝑘−1 from its neighboring nodes. In the readout 
phase, the GRU updates the current hidden state of the 
target node by employing information obtained from the 
messaging phase and the node's prior hidden state. 

The representations of the target nodes, once 
learned, are then employed in the read-out phase to pre-
dict molecular properties. Detailed explanations of the 
functioning and application of these processes and equa-
tions (1-5) within the GAT framework can be found in the 
cited references[11] The model further refines its accu-
racy by using features such as atom symbols, neighbor-
ing atoms, atom masks, bond types, and neighboring 
bonds to effectively differentiate each target node from 
its neighbors. In our study, the Multi-Input-Multi-Output 
Graph Attention Network (MIMO GAT) was used as an 
advanced version of the Graph Attention Network. This 
new model includes a special multimodal fusion block, 
making it different from the Attentive FP model. This net-
work was employed to predict the reactivity ratios of 
monomers, using SMILES notations of monomers and co-
polymers. Leveraging multi-task learning, we first con-
verted molecular structures into graph representations 
using RDKit for feature extraction. These features are 
then encoded and processed through individual Graph 
Attention Modules within MIMO GAT. Each module incor-
porated attentive-layer embedding for both atom and 
full molecule levels. After that, the outputs from these 
modules were concatenated and fed to fully connected 
layers for final prediction. The details of this approach 
can be found in the reference[10]. 

RESULT AND DISCUSSION  
Traditional Artificial Neural Networks (ANNs) of-

ten employ a black-box methodology for problem-solv-
ing, where their primary goal is to identify patterns or re-
lationships within raw input data, without an explicit fo-
cus on underlying physical laws or domain-specific 
knowledge. While these approaches prove effective in 
numerous scenarios, they may fail to capture crucial 

 

Figure 3. Representation of MLP Architecture  
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insights tied to the intrinsic properties or governing prin-
ciples of the system in question. 

In contrast, there is an emerging interest in the 
development of specialized ANNs tailored for particular 
data types and tasks. For example, Graph Attention Net-
works (GATs) have shown superior performance com-
pared to Multi-Layer Perceptron (MLPs) in handling 
graph-structured data. This advancement is largely due 
to GATs' ability to more accurately represent and pro-
cess-relational and structural information inherent in 
such data. Given that chemical science data fundamen-
tally relates to molecular structures, which are naturally 
representable as graphs, Graph Neural Networks, includ-
ing GATs, emerge as particularly promising for tackling 
challenges in polymer science. Their capacity to intui-
tively map and interpret the complex, interconnected na-
ture of molecular structures positions them as a fitting 
choice for this field. 

In this study, an MLP model was developed for 
the prediction of the reactivity ratio of paired monomers 
in copolymerization. It was observed that a regularized 
MLP predicted the reactivity ratios with improved accu-
racy, yet the Mean Square Error (MSE) could not be re-
duced to less than 0.1 in the evaluation of the test da-
taset. Although this MSE is substantially lower than those 
reported in other references[8], the model does not seem 
to be entirely appropriate for accurate prediction in this 
context. 

Figure 4. compares the R2 score on the test da-
taset when MLP and GAT are used as the reactivity ratio 
estimator. As shown in the figure, GAT significantly out-
performs in comparison to MLP in the prediction of r1 and 
r2. While the R2 score could hardly be more than 10% in 
using MLP, the GAT could achieve 85±5%[10]. 

It is evident that there is a substantial enhance-
ment in the prediction of reactivity ratios for copolymeri-
zation when using GATs. This suggests that employing a 
graph-based machine-learning approach can outperform 
conventional ANNs. The key advantage lies in the graph-
based model’s ability to incorporate the natural intrinsic 
structure of the data into the training process, enabling it 
to capture patterns more effectively than other machine 
learning models, which may treat each model completely 
as a black box without considering the system's inherent 
nature. 

 
Figure 4. Comparing the R2 score in test data for Grah 
Attention Network (GAT) and Multilayer Perceptron(MLP) 
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CONCLUSION  

Here, this study clearly demonstrates the superiority 
of Graph Attention Networks (GATs) over traditional Mul-
tilayer Perceptron (MLPs) in the context of predicting re-
activity ratios for copolymers. The substantial improve-
ment in prediction accuracy, as evidenced by the R2 
scores, underscores the effectiveness of GATs in han-
dling complex, graph-structured data inherent in chemi-
cal science. By integrating the intrinsic structural infor-
mation of molecular data into their learning process, 
GATs not only outperform conventional ANNs but also 
pave the way for more nuanced and accurate models in 
polymer science. This comparison highlights the potential 
of graph-based machine learning approaches to revolu-
tionize data analysis in fields where understanding the in-
terconnected nature of data is critical. 
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ABSTRACT 
The integrated design and control (IDC) framework is becoming increasingly important for sys-
tematic design of flexible manufacturing and energy systems. Recent advances in computing and 
derivative-free optimization have enabled more tractable solution methods for complex IDC prob-
lems that involve, e.g., multi-period dynamics, the presence of high-variance and non-stationarity 
probabilistic uncertainties, and mixed-integer control/scheduling decisions. Parallelly, develop-
ments in techno-ecological synergy (TES) have allowed co-design of industrial and environmental 
systems that have been shown to lead to win-win solutions in terms of the economy, ecological, 
and societal benefits. In this work, we propose to combine the IDC and TES frameworks to more 
accurately capture the real-time interactions between process systems and the surrounding nat-
ural resources (e.g., forests, watersheds). Specifically, we take advantage of (multi-scale) model 
predictive control to close the loop on a realistic high-fidelity simulation of the overall TES system. 
Since this closed-loop simulation is computationally expensive, we propose to solve the resulting 
design problem using a data-efficient constrained Bayesian optimization method. We demonstrate 
that the new perspective offered by the proposed TES-IDC framework leads to robust win-win 
solutions that can more effectively handle uncertainty in future disturbances compared to tech-
nology-only solutions on a chloralkali manufacturing unit built in an urban forest.  

Keywords: Sustainable design, Model predictive control, Bayesian optimization, Uncertain systems 

INTRODUCTION 
Within the discipline of process systems engineer-

ing (PSE), the systematic and simultaneous consideration 
of design and time-varying operation parameters has be-
come paramount for the creation of next-generation 
manufacturing and energy systems. Over the last four 
decades, there have been several contributions in PSE 
that seek to optimize process design with the considera-
tion of future uncertainties and operational decisions. 
One of the earliest works that provided the quantitative 
framework for assessing various designs and their ability 
to handle uncertainty for steady state systems was the 
concept of flexibility analysis [1, 2], which was later ex-
tended to dynamical systems by inclusion of time varying 

constraints [3]. More recently, flexibility analysis of 
black-box functions has also been proposed [4–6]. One 
of the major shortcomings of the flexibility approach was 
the fact that this paradigm assumed analysis of open-
loop systems, which entails that an attainable operating 
point according to flexibility analysis, would in fact be in-
tractable under closed-loop conditions. During the devel-
opment of flexibility analysis, another concept was par-
allelly developed, which assess controllability of process 
design, namely, the dynamic resilience [7] which was ex-
tended to account for other inherent characteristics of 
the system, such as constraints on manipulated varia-
bles, plant-model mismatch, etc. These traditional engi-
neering design approaches, however, considered design 
and control of processes and systems as separate 
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problems. The design problem establishes the flow of 
components within a process, while the control problem 
addresses the maintenance of process conditions under 
disturbances and constraints. Addressing these prob-
lems separately can lead to decisions that result in sub-
optimal process performance operationally, economi-
cally, or sustainably. Thus, the advent of concurrent de-
sign and control methodologies for process systems 
gained momentum in the early 1990s [8]. 

To improve the flexibility and resilience of process 
systems, the integrated design and control (IDC) frame-
works relies on the fact that achievable plant dynamics 
are completely tied to the selected process design [9]. 
Early IDC literature [10–12] framed the problem to consist 
of an economic objective function constrained by the op-
erating capabilities of classical control strategies such as 
PI controllers. Incorporation of more advanced optimiza-
tion-based controller strategies such as model predictive 
controllers (MPC) were proposed in [13, 14], with as-
sumptions that simplified the overall optimization prob-
lem. One can apply coarse approximations to the problem 
formulation; however, this will fundamentally degrade the 
quality of the problem/solution – if we miss out on these 
realistic phenomena then it is not clear that IDC provides 
any added value over traditional two-stage “design then 
control” strategies. The requirement of high-fidelity sim-
ulated solutions is buttressed by advancements in com-
putational resources that allow implementation of pow-
erful optimization methods, and detailed simulations 
which can span multiple spatiotemporal scales. The 
standard formulation of an IDC problem is a challenging 
stochastic optimization problem; although the design 
variables are often finite dimensional, the set of all pos-
sible feedback control policies is infinite dimensional. Re-
cent work [15, 16] has shown that a combination of effi-
cient derivative-free optimization (DFO) solvers and low-
dimensional decision rule approximations can be used to 
tackle the challenging optimization problem. 

These works, however, only consider technocentric 
solutions and don’t incorporate the interactions between 
process operations with nature. The coupling of techno-
centric and nature-based solutions is important because 
multi-scale dynamics results in complex, unpredictable 
systems. Historically, engineering has developed a ten-
dency to modify and dominate ecosystems to improve 
predictability. Building large dams, canals and levees are 
a consequence of engineering’s tendency to convert the 
homeorhetic nature of ecosystems into homeostatic be-
havior. As another example, for air quality regulation, 
conventional engineering systems would recommend 
fast-growing genetically modified trees that provide con-
stant air quality regulation services throughout the year. 
In the short run, such highly engineered systems would 
be able to meet human needs, by transferring variability 
to other parts of watershed or airsheds. Unfortunately, 

this improvement in “efficiency” comes at the cost of re-
siliency. Due to poor biodiversity, genetically engineered 
trees would be more susceptible to pests or diseases as 
compared to natural forests. Similarly, floods and hurri-
canes can damage dams and levees leaving them inop-
erable. To analyse the interaction between nature and 
technology, we refer to techno-ecological synergy (TES) 
[17], which is a systems-based framework to account for 
ecosystems capacity and benefit from its synergy with 
technological systems. TES offers an opportunity to-
wards resilient systems when compared to technological 
only systems. However, the resilience comes at a cost of 
homeorhetic behavior. For gaining maximum benefits 
from TES, engineering design and operation needs to 
evolve beyond hemostatic behavior towards a system 
that adapts nature’s intermittency. In this work, we ad-
dress the open question - how to systematically solve the 
IDC problem with embedded real-time interactions be-
tween nature and technology? 

BACKGROUND AND PRELIMINARIES 
In this section we will briefly discuss two important 

components of the proposed framework, namely the IDC 
formulation, and Bayesian optimization, which is our se-
lected method for tackling the IDC problem. 

Integrated Design and Control under 
Uncertainty 

The integrated design and control problem can be 
formulated in terms of the following stochastic optimiza-
tion problem: 

min
(𝑑𝑑,𝑧𝑧)∈𝒟𝒟,𝒵𝒵

𝐶𝐶(𝑑𝑑) + 𝔼𝔼𝜔𝜔{𝑂𝑂(𝑑𝑑, 𝑧𝑧,𝜔𝜔)},   (1) 

where 𝑑𝑑 ∈ ℝ𝑛𝑛𝑑𝑑 are the design variables that must be se-
lected from a compact set 𝒟𝒟 ∈ ℝ𝑛𝑛𝑑𝑑; 𝑧𝑧 ∈ ℝ𝑛𝑛𝑧𝑧 are the control 
decisions restricted to compact set 𝒵𝒵 ∈ ℝ𝑛𝑛𝑧𝑧, which pa-
rameterize recourse/control actions in response to un-
certainties (only impact operating cost of the process); 
𝜔𝜔 ∈ ℝ𝑛𝑛𝜔𝜔 is a sequence of random variables that describe 
the complete set of exogenous disturbances/uncertain-
ties in the process. The objective function (1) is the com-
position of two functions, namely, the capital expenditure 
𝐶𝐶(𝑑𝑑):𝒟𝒟 → ℝ, and the expected value 𝔼𝔼𝜔𝜔 of the operating 
expenditure 𝑂𝑂(𝑑𝑑, 𝑧𝑧(𝑑𝑑),𝜔𝜔) with respect to 𝜔𝜔. In this work, 
we are interested in computing realistic estimates of op-
erating costs 𝔼𝔼𝜔𝜔{𝑂𝑂(𝑑𝑑, 𝑧𝑧,𝜔𝜔)}, meaning we do not want to 
make coarse approximations (e.g., steady-state opera-
tion). To achieve this, we assume that the system dynam-
ics can be represented by the following generalized time-
varying nonlinear system in the presence of uncertainty: 

𝑥𝑥𝑡𝑡+1(𝑑𝑑, 𝑧𝑧,𝜔𝜔) = ℎ𝑡𝑡(𝑥𝑥𝑡𝑡(𝑑𝑑, 𝑧𝑧,𝝎𝝎),𝑢𝑢𝑡𝑡(𝑥𝑥𝑡𝑡(𝑑𝑑, 𝑧𝑧,𝝎𝝎),𝑤𝑤𝑡𝑡 ,𝑑𝑑),  

𝑥𝑥0(𝑑𝑑, 𝑧𝑧,𝜔𝜔) = 𝑏𝑏0(𝑑𝑑),    (2) 
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where 𝑡𝑡 ∈ 𝒯𝒯 ≔ {0, … ,𝑇𝑇 − 1} is the discrete time index that 
ranges over finite number of 𝑇𝑇 time stages; 𝜔𝜔 is a se-
quence of random disturbances 𝜔𝜔 ∈ 𝓦𝓦 ⊂ ℝ𝑛𝑛𝜔𝜔, which is 
assumed to be measurable at corresponding 𝑡𝑡 ∈
𝑇𝑇;𝑢𝑢𝑡𝑡(𝑑𝑑, 𝑧𝑧,𝜔𝜔) ∈ 𝓤𝓤 ⊂ ℝ𝑛𝑛𝑢𝑢 are control inputs parameterized 
by 𝑧𝑧; and 𝑥𝑥𝑡𝑡(𝑑𝑑, 𝑧𝑧,𝜔𝜔) ∈ 𝓧𝓧 ⊂ ℝ𝑛𝑛𝑥𝑥 are state variables with in-
itial conditions 𝑏𝑏0(𝑑𝑑) that depend on design variables. Our 
only assumption is that we can simulate the process (2) 
to get future state sequences {𝑥𝑥0(𝑑𝑑, 𝑧𝑧,𝜔𝜔), … , 𝑥𝑥𝑇𝑇(𝑑𝑑, 𝑧𝑧,𝜔𝜔)} 
for specific realizations of the design 𝑑𝑑, control parame-
ters 𝑧𝑧, and disturbances 𝜔𝜔. We do not need closed-form 
expressions for any of these components – we only need 
to be able to generate sample trajectories, which could 
be from some high-fidelity black-box process simulator.  
 The control inputs are assumed to be set by a para-
metrized decision rule (DR) with the following structure: 

𝑢𝑢𝑡𝑡(𝑑𝑑, 𝑧𝑧,𝜔𝜔) = 𝜅𝜅𝑡𝑡(𝑥𝑥𝑡𝑡(𝑑𝑑, 𝑧𝑧,𝜔𝜔),𝑤𝑤𝑡𝑡 , 𝑧𝑧),  (3) 

where 𝜅𝜅𝑡𝑡:𝓧𝓧 × 𝓦𝓦 × 𝓩𝓩 → 𝓤𝓤  is a known function with free 
parameters 𝑧𝑧. The value of (3) is twofold: (i) it enables us 
to work in a reduced-dimensional space through proper 
selection of 𝑧𝑧 and (ii) it enforces causality by design such 
that only past-revealed information can be exploited in 
the selection of the current control action. We typically 
select (3) to be some form of advanced control such as 
MPC due to its nice combination of performance and flex-
ibility.  
 Given this dynamic model, the operating cost will 
typically be represented as a sum of stage costs over the 
entire system lifetime such as: 

𝑂𝑂(𝑑𝑑, 𝑧𝑧,𝜔𝜔) = ∑ ℓ𝑡𝑡(𝑥𝑥𝑡𝑡(𝑑𝑑, 𝑧𝑧,𝜔𝜔),𝑢𝑢𝑡𝑡(𝑑𝑑, 𝑧𝑧,𝜔𝜔),𝑤𝑤𝑡𝑡 ,𝑑𝑑) +𝑇𝑇−1
𝑡𝑡=0

+ ℓ𝑇𝑇(𝑥𝑥𝑇𝑇(𝑑𝑑, 𝑧𝑧,𝜔𝜔, 𝛾𝛾),𝑑𝑑),    (4) 

where ℓ𝑡𝑡:𝓧𝓧 × 𝓤𝓤 × 𝓦𝓦 × 𝓓𝓓 → ℝ is the contribution to the 
operating cost at each time step 𝑡𝑡 ∈ 𝓣𝓣, and ℓ𝑇𝑇:𝓧𝓧 × 𝓓𝓓 →
ℝ is contribution to the operating cost at the final time 
step (e.g., recoverable cost from equipment or product). 

The Bayesian Optimization Framework 
Bayesian optimization (BO) is a powerful tool for 

solving black-box optimization problems in the presence 
of zeroth-order data and expensive to evaluate func-
tions. The objective of BO is to globally minimize a cost 
function 𝑓𝑓 such that 𝑓𝑓∗ = min

𝜃𝜃∈Θ
𝑓𝑓(𝜃𝜃), where domain Θ is a 

closed set. The optimization framework usually begins 
with "warm-starting" a surrogate model with small num-
ber of randomly selected function evaluations over the 
domain of decision variables. In low-data regime, Gauss-
ian process (GP) regression has been most widely used 
surrogate model since they are both probabilistic and 
nonparametric. A GP prior is placed on the objective 
function 𝑓𝑓(∙) ~ 𝒢𝒢𝒢𝒢(𝑚𝑚(∙),𝑘𝑘(∙,∙)), which can be fully speci-
fied by its mean function 𝑚𝑚(⋅), and covariance kernel 𝑘𝑘(∙
,∙). The mean function and covariance kernels for a pair 
of inputs 𝜃𝜃,𝜃𝜃′ ∈ ℝ𝑛𝑛𝜃𝜃 is defined as follows: 

𝑚𝑚(𝜃𝜃) =𝔼𝔼𝑓𝑓{𝑓𝑓(𝜃𝜃)},    (5a) 

𝑘𝑘(𝜃𝜃,𝜃𝜃′) =𝔼𝔼𝑓𝑓{(𝑓𝑓(𝜃𝜃) −𝑚𝑚(𝜃𝜃))(𝑓𝑓(𝜃𝜃′) −𝑚𝑚(𝜃𝜃′))}. (5b) 

Given a set of inputs 𝜃𝜃 = {𝜃𝜃𝑞𝑞 , … ,𝜃𝜃𝑛𝑛}, we can update the 
GP model prior with available data using Gaussian condi-
tioning formula and obtain the following analytical form 
for mean and variance for a test point 𝜃𝜃, and noisy meas-
urements 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝜃𝜃𝑖𝑖) + 𝜖𝜖𝑖𝑖 for all 𝑖𝑖 = 1, … ,𝑛𝑛  [18]: 
𝜇𝜇𝑛𝑛(𝜃𝜃) = 𝑚𝑚(𝜃𝜃) + 𝑘𝑘(𝜽𝜽,𝜃𝜃)(𝑘𝑘(𝜽𝜽,𝜽𝜽) + 𝜎𝜎𝜖𝜖2𝐼𝐼𝑛𝑛)−1�𝑦𝑦1:𝑛𝑛 − 𝑚𝑚(𝜽𝜽)�,
         (6a) 

𝜎𝜎𝑛𝑛2(𝜃𝜃) = 𝑘𝑘(𝜃𝜃,𝜃𝜃) + 𝑘𝑘(𝜃𝜃,𝜽𝜽)(𝑘𝑘(𝜽𝜽,𝜽𝜽) + 𝜎𝜎𝜖𝜖𝐼𝐼𝑛𝑛)−1𝑘𝑘(𝜽𝜽,𝜽𝜽), (6b) 

Given a predictive surrogate model, one must now select 
a so-called “acquisition function” 𝛼𝛼𝑛𝑛(𝜃𝜃) whose value at 
any 𝜃𝜃 ∈ Θ provides a good quantitative measure of the 
(expected) benefit in querying 𝑓𝑓 at this point in the future. 
By definition, the next best sample can then be found by 
solving an optimization problem: 

𝜃𝜃𝑛𝑛+1 = max
𝜃𝜃∈Θ

𝛼𝛼𝑛𝑛(𝜃𝜃) .    (7) 

Note that this problem is significantly easier to solve the 
original problem since it is only defined in terms of the GP 
surrogate model, which can be cheaply evaluated (in the 
low data limit) and whose derivatives can be computed 
using established automatic differentiation schemes. A 
variety of acquisition functions have been proposed for 
single-level optimization problems [19, 20] .The same 
concept can also be generalized to other types of prob-
lems with additional structure such as optimization with 
black-box constraints [21] [22], multi-objective optimiza-
tion [23], robust optimization [24–26], just to name a few.  
 In this work, we use a high-fidelity, offline simulator 
to compute cost and operating expenditures for a given 
(𝑑𝑑, 𝑧𝑧). Similar to previous work [15], the decision variable 
of BO framework is given by the concatenation of design 
variables and control decisions of the IDC problem, i.e., 
𝜃𝜃 ∶= (𝑑𝑑, 𝑧𝑧). We leverage steps (5-7) to sequentially search 
over 𝜃𝜃 ∈ Θ ∶= 𝒟𝒟 × 𝒵𝒵, and find the optimal solution of (1) in 
a data-efficient manner.  

CASE STUDY: CHLORALKALI SYSTEM 
DESIGN  

We consider a chloralkali manufacturing process lo-
cated in Freeport, Texas, which was originally studied by 
Shah and Bakshi [27] . The energy-intensive process de-
rives its energy from a coal-fired generator, which results 
in air emissions such as nitrogen dioxide (NO2), sulfur di-
oxide (O2), carbon dioxide (CO2) and particulate matter. 
The NO2 emissions acts as a precursor to ground level 
ozone O3. Our goal is to design a minimal cost system 
that can provide effective air quality regulation (such that 
it is potentially a net benefit to society), even under un-
known variability in weather conditions. We specifically 
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want to leverage the natural ability of trees to uptake air 
emissions, while accounting for dynamic uncertainty in 
solar irradiance, wind velocity, and leaf surface area.  

Model Description 
For the decision rule, we formulate an economic 

MPC (eMPC), whose objective is to minimize the total an-
nualized cost, 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇 of the cholalkali production unit with 
hourly sampling, which corresponds to 𝑇𝑇 = 8760 time-
steps. Two design variables (𝑛𝑛𝑑𝑑 = 2) can be varied at the 
BO level; first, is the technocentric choice of the size of 
selective catalytic reactor (SCR), 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 to treat NO2, 
whereas the second is the eco-centric option of refor-
estation area, 𝐴𝐴𝑟𝑟 , in the vicinity of the facility. There are 
seven uncertain variables in the air quality regulation 
problem - namely NO2 concentration in ambient air, O3 
concentration in ambient air, NO2 dry deposition rate, at-
mospheric mixing height, photo-chemical destruction 
rate of NO2, and photo-chemical production rate of O3. 
Presence of uncertain variables leads to high computa-
tional demand because the eMPC not just has to predict 
the future behavior of the uncertain variable, but also be 
robust against future changes or deviations. We select a 
control horizon of one hour (𝑁𝑁𝑢𝑢 = 1) and we take ad-
vantage of the fixed total time-steps T of the closed loop 
simulation and consider a prediction horizon of 𝑁𝑁𝑝𝑝 =  𝑇𝑇 −
 𝑡𝑡0 + 1, where 𝑡𝑡0 is the initial time step of simulation. For 
example, at first hour, 𝑡𝑡0 = 1 and 𝑁𝑁𝑝𝑝 = 8760; after imple-
mentation of control action recommended by the DR, at 
the next time step (i.e., second hour), 𝑡𝑡0 = 2, prediction 
horizon decreases to 𝑁𝑁𝑝𝑝 = 8759. Although the proposed 
shrinking horizon approach improves computational trac-
tability of the IDC simulation, there would still exist the 
computational burden for long prediction horizons. To al-
leviate this drawback, we divide the prediction horizon 
into two parts; the first 24 hours after 𝑡𝑡0, for which we 
build a multivariate time series forecasting model using a 
Gated Recurrent Unit (GRU) neural network using past 
data of 168 hours; the predictions for time steps after 24 
hours to 𝑁𝑁𝑝𝑝 are allotted values using time series cluster-
ing of historical data. The number of time series clusters 
(|𝓓𝓓|) is set to be one of the control decisions (𝑛𝑛𝑧𝑧 = 1) at 
the BO level. The DR in this setting is given by the mini-
mizer of the below optimization problem: 

min
�𝐹𝐹𝐶𝐶𝑙𝑙2(𝑡𝑡+𝑘𝑘|𝑡𝑡�

𝑘𝑘=1
𝑁𝑁𝑢𝑢

𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇,    (8a) 

subject to chlorine production model and power require-
ment, 

𝑃𝑃𝑡𝑡 = 𝑓𝑓1�𝐹𝐹𝑡𝑡
𝑇𝑇𝑙𝑙2�,∀𝑡𝑡 ∈ 1, … ,𝑁𝑁𝑝𝑝,   (8b) 

supply-demand accounting for NO2 and O3, 

𝐷𝐷𝑖𝑖,𝑡𝑡𝐸𝐸 = 𝑓𝑓2(𝑃𝑃𝑡𝑡 , 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆),∀𝑡𝑡 ∈ 1, … ,𝑁𝑁𝑝𝑝, 𝑖𝑖 = {NO2, O3},  (8c) 

𝑆𝑆𝑖𝑖,𝑡𝑡𝐸𝐸 = 𝑓𝑓3(𝐴𝐴𝑟𝑟),∀𝑡𝑡 ∈ 1, … ,𝑁𝑁𝑝𝑝, 𝑖𝑖 = {NO2, O3},  (8d) 

air quality constraints, 
𝐶𝐶𝑖𝑖,𝑡𝑡
𝑓𝑓 = 𝑓𝑓4�𝐶𝐶𝑖𝑖,𝑡𝑡0 ,𝐷𝐷𝑖𝑖,𝑡𝑡𝐸𝐸 , 𝑆𝑆𝑖𝑖,𝑡𝑡𝐸𝐸 �,∀𝑡𝑡 ∈ 1, … ,𝑁𝑁𝑝𝑝, 𝑖𝑖 = {NO2, O3},  (8e) 

and economic and health impact cost calculation, 

𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ 𝑓𝑓5�𝐹𝐹𝑡𝑡
𝑇𝑇𝑙𝑙2 ,𝐴𝐴𝑟𝑟 , 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆�𝑁𝑁𝑝𝑝

𝑡𝑡=1 ,   (8f) 

𝑍𝑍𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙𝑡𝑡ℎ = ∑ 𝑓𝑓6�𝐶𝐶𝑖𝑖,𝑡𝑡
𝑓𝑓 ,𝐶𝐶𝑖𝑖,𝑡𝑡0 �

𝑁𝑁𝑝𝑝
𝑡𝑡=1 ,   (8g) 

where 𝐹𝐹𝑇𝑇𝑙𝑙2 is the production rate of chlorine. For details 
about the constraints in the control policy, the reader is 
referred to Shah and Bakshi [28] (see supporting infor-
mation). We refer to the same study to define societal 
health impact cost, 𝑍𝑍𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙𝑡𝑡ℎ, which reflects the monetary 
valuation of the chloralkali facility’s operation on the 
health of neighbourhood. We use iTree Eco v6 to calcu-
late hourly dry deposition velocity of NO2 and O3, and at-
mospheric mixing height. The deposition velocities for 
year 2006-2015 are obtained using local meteorological 
conditions obtained from the National Climate Data Cen-
ter (NCDC) for Clover Field Airport, which is the nearest 
good quality data source to our study site. The case 
study assumes the vicinity of the manufacturing facility 
to be barren i.e. having zero supply capacity and availa-
bility of 15 km2 for restoration to increase capacity. The 
cost of reforestation is set at $75/km2 [29]. Native spe-
cies of White Ash is considered to approximate the ca-
pacity of the restored forest ecosystem. Constrained BO 
[21, 30] is used to make design decisions on 𝑑𝑑 =
 {𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 ,𝐴𝐴𝑟𝑟}, and 𝑧𝑧 = {|𝓓𝓓|}, with constraints that enforce 
𝑍𝑍𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙𝑡𝑡ℎ ≤ 0. The workflow is summarized in Figure 1. 

  

Figure 1: Illustration of the proposed efficient TES-IDC 
framework combining MPC and BO.  

Results and Discussion 
The BO algorithm applied to the TES-IDC problem 

converged to a solution of reforestation area of 11.798 
km2, 17 representative cluster days, and no SCR require-
ment. The optimal total annualized cost of production has 
a mean value of $920k and standard estimation error of 
$4.53k. The uncertainty in objective value results from 
consideration of 10 different meteorological years data 
used in the simulation. The optimal solution obtains a 
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societal health impact cost with mean $−194k (i.e., a net-
positive impact on society) and standard estimation error 
of $57.72k. The operational solution needs to satisfy 
hourly air quality constraints. Due to forecasting error and 
prediction mismatch, it is not possible to satisfy con-
straints at each and every time step. Thus, the magnitude 
of constraint violation (8 b-g) is minimized by adding a 
corresponding weighted exact penalty function to the 
objective function in (8a), which leads enforcement of 
soft constraints in the optimization problem (8). The op-
timal operational solution is expected to have a mean of 
10.3 constraints violations with standard measurement 
error of 5 instances. This is compared with a retrospec-
tive scheduling approach, which uses past data to set an 
operating schedule for the future plant operation [27, 28, 
31]. The optimal operational schedule for meteorological 
year 2010 obtained from TES-IDC framework is depicted 
in Figure 2b. It should be noted that the operational 
schedule was obtained in closed-loop manner, where the 
optimal control actions were updated with each realiza-
tion of uncertainty. Figure 2a shows retrospective oper-
ational schedule of year 2009 applied to year 2010. The 
retrospective solution (207 violations) has an order of 
magnitude more hourly constraint violations as compared 
to TES-IDC solution (10 violations). Therefore, the TES-
IDC optimal configuration is robust to changes in mete-
orological conditions. Assuming meteorological condi-
tions remain similar to that of the last 10 years, the opti-
mal solution (design conditions and controller configura-
tion) found by BO can maintain optimality and constraint 
satisfaction of the chloralkali unit. 

 

 
(a) Simulation of operations in year 2010 using an optimal 
retrospective solution obtained for meteorological year 
2009 using the previous method by Shah and Bakshi [27].

 
(b) Simulation of operations in year 2010 using solution ob-
tained from proposed IDC-TES. The number of instances of 
air quality constraint violation decreases significantly as 
compared to previous retrospective approach. 
Figure 2: Operational schedule using (a) retrospective and 
(b) TES-IDC approach. TES-IDC approach allows for better 
constraint satisfaction as compared to previous approach. 

CONCLUSIONS 
In this work, we consider real-time interactions be-

tween nature and technology in the IDC simulation, re-
ferred to as TES-IDC, which has not been previously ad-
dressed in the literature. Furthermore, the proposed so-
lution does not make any assumptions about continuity, 
linearity or convexity of the underlying design and control 
problem. Application of TES-IDC framework on air quality 
regulation problem demonstrates the ability of techno-
logical systems to account for intermittency and variabil-
ity of ecosystems in real-time operations. The operation 
using TES scheme can ensure long-term net-positive 
manufacturing goals and societal gain. Explicitly ac-
counting for uncertainty through scenarios, allows us to 
report expected values of objective along with a measure 
of uncertainty. This framework motivates application in 
design and operation of flexible renewable systems. The 
case study considered in this work has assumed con-
stant spatial capacity of ecosystem. Future work is to for-
malize the TES-IDC framework and provide the PSE com-
munity with access to open-source codes for bench-
mark. Another interesting avenue for further investigation 
is the inclusion of spatial dimension to the IDC problem to 
obtain spatio-temporally explicit work design and opera-
tion of TES-IDC problems. 
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ABSTRACT 
Pharmaceutically elegant tablets are an expectation from pharmacists, health care providers and 
consumers for solid oral dosage forms. The presence of non-aesthetically pleasing defects in solid 
oral dosage forms can result in complaints back to the manufacturer and potentially non-compli-
ance with medicines. The purpose of this study was to simulate and analyze the design of a tablet 
core and the aqueous film-coating process, to gain a better understanding of tablet defect gen-
eration, and to help eliminate the defects from the finished product. This evaluation employs Dis-
crete Element Method (DEM) using the software product Altair® EDEM™ to understand the poten-
tial mechanisms that are causing the defects, based on the forces tablets experience in the coating 
operation, along with the number of tablet-to-tablet interactions that occur during the duration of 
the process. Defects observed during the scale up of the coating process to a commercial pro-
duction scale confirmed the DEM results where physical damage was observed more on the edges 
of the tablets than the face of the tablets. Also based on the number of tablet-to-tablet interac-
tions, operating the coating process under thermodynamically wetter processing conditions can 
result in elevated levels of picking and sticking defects being observed based on the specific tab-
let design evaluated. The results of these efforts allowed the manufacturing and development 
team to evaluate improvement opportunities not only in tablet design but also to re-evaluate the 
thermodynamic design space of the coating operation and the mechanical set up of the coating 
equipment. 

Keywords: Defects, Discrete Element Method, EDEM, Pharmaceutics, Round Concave Tablet, Solid Oral Dos-
age Forms, Tablet Coating 

INTRODUCTION 
Pharmaceutically elegant tablets are an expectation 

from pharmacists, health care providers and consumers. 
One approach to ensure aesthetically pleasing dosage 
forms is to apply a film coating [1]. Not only does the 
coating aid in the appearance and identification of the 
tablet, but it also helps patients by protecting the product 
from light, aids in swallowability of the tablets and also 
protects the caregivers from accidental exposure to the 
drug substance contained within the film-coated tablet. 

Periodically, non-aesthetically pleasing defects can 
be present in the finished product. These defects have 
no impact on the safety or efficacy of the tablet but may 

garner complaints from the marketplace and impact the 
company’s brand and reputation and patient compliance 
to the medicine. This is of extreme importance for the Ja-
pan market. If the defect level present in each batch of 
drug product does not meet the current standards, the 
batch can be considered unfit for sale and then must be 
sorted or in a worse case discarded. Destruction of a 
batch of product not only interrupts the manufacturer 
supply chain because the batch will need to be replaced 
but can also impact the patients depending on the inven-
tory levels. Batches can be sorted by employing an in-
spection/sorting step. This step can be manual, mechan-
ical, or electronic based on the nature of the defect. The 
sorting technique could result in a considerable time 
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delay in releasing the batch. 
Many variables come into effect when applying 

aqueous film coatings to tablet cores that can impact the 
elegance of the coated tablet. These include the physical 
design of the tablet, mechanical strength of the tablet 
core, mechanical design of the coating equipment, the 
thermodynamics of the coating operation and handling of 
coated tablets once the coating process is complete. 
Each one of these variables will impact the type, severity 
and number of defects created. In some cases, it takes a 
combination of the variables to result in the generation of 
a specific defect. 

The purpose of this study was to simulate and ana-
lyze the design of a specific tablet core shape with the 
commercial production coating equipment design i.e., 
pan size, number of baffles and baffle design and coating 
pan load. This effort would allow for a better appreciation 
for the interaction between the tablet shape and the 
coating equipment and the operation parameters. The 
defects being observed were a result of a transfer and 
scale up of a manufacturing process from pilot to com-
mercial scale. The two main defects being observed were 
edge damage, Figure 1 and picking and sticking, Figure 2. 
These defects were observed during the end of the batch 
statistical inspection of the bulk finished product. Under-
standing of the interactions and the defects being ob-
served can then be applied back to the coating operation, 
allowing for the appropriate actions to be taken to aid in 
the reduction or elimination of the defect in future 
batches of finished product, resulting in increased quality 
and production yields. 

 
Figure 1. Tablet edge damage defects 

 

Figure 2. Picking and sticking defects on tablet faces 

LITERATURE REVIEW 
Since the introduction of discrete element method 

(DEM) simulation techniques [2], there has been an 
increasing interest in utilizing DEM to improve 
understanding of the intricate behavior exhibited by 
particulate systems. Furthermore, there has been a 
recent expansion in its application across various 
industries [3], and more recently in the pharmaceutical 
industry [4]. The coating operation has been one of the 
very common applications where the coating uniformity 
and breakage are the main concerns in the process. 
Although there are many computational studies on the 
coating of the tablets [5][6][7], there are few 
computational studies on the breakage of the tablet core 
itself. 

Computational analyses of breakage have been 
done for general cases wherein the impact of 
agglomerate particles across various impact velocities 
[8] and impact angles [9] were examined. However, there 
has been little work done on pharmaceutical tablets as 
opposed to general spherical agglomerates. Bharadwaj 
et al [10] used DEM to compare the characteristic forces 
exerted on tablets in a friability tester with those 
experienced during the operation of lab-, pilot-, and 
commercial-scale film coating pans. But this study also 
lacks the prediction of the likelihood of tablet breakage 
during the coating process. Ketterhagen et al [11] 
overcomes this limitation by providing a probabilistic 
model to predict tablet fracture in the film coating 
process. Ketterhagen uses the impact velocity of the 
tablets during contact to predict probability of breakage 
of a tablet using a population balance model proposed by 
Vogel & Peukert [12][13]. 

All of the above studies mentioned above have 
been performed for spherical agglomerates using a 
“glued-sphere” approach. This present study extends 
from the previous studies and takes into account the 
physical shape of a pharmaceutical polyhedral tablet and 
provides a surface distribution of forces on regions of the 
tablet to predict localized breakage. 

METHODOLOGY 

Discrete Element Method 
Discrete Element Method (DEM) is a numerical 

method which is used to simulate bulk material. This 
method was first developed by Cundall and Strack [2] in 
which all the individual particles in a bulk system are 
modelled as discrete elements. A Lagrangian-based ap-
proach is used in DEM to track these individual particles 
in the system at every timestep. The contacts between 
particles are detected at each timestep, and the contact 
forces are calculated based on this contact. Newton’s 
second law of motion is applied to each particle to 
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calculate the accelerations of each particle. Explicit nu-
merical integration is then done twice to calculate the po-
sition of each particle in the subsequent timestep. Con-
tact detection is carried out again for these updated po-
sitions, and then this cycle repeats for every timestep. 
DEM is the highest fidelity numerical modelling approach 
for particulate solids available because the discrete na-
ture of these particulate solids is not ignored, although it 
comes with very high computational expense compared 
to other methods. 

DEM was traditionally developed for spherical parti-
cles. For non-spherical arbitrarily shaped particles in a 
bulk, the particles are approximated by idealized numer-
ical elements such as clumped spheres or multi-spheres, 
and this multi-sphere approach has been widely used 
and validated for particle distributions which do not have 
a fixed shape or size [14]. This is due to the simplicity of 
contact detection algorithms for spheres. However, in 
this study, a polyhedral particle shape, standard round 
concave shape [15], was used since tablets in pharma-
ceutical industries generally include sharp edges that are 
difficult to capture with spheres.  Consequently, the con-
tact detection algorithm needs to be modified to accom-
modate such polyhedral shapes. 

Governing Equations 
This study employs DEM using the software product 

Altair® EDEM™. The default contact model in EDEM is 
based on the Hertzian theory of contact mechanics [16]. 
However, for polyhedron-shaped particles, the force 
equations are modified to account for non-spherical 
shapes, according to Nassaeur and Kuna [17]. Addition-
ally, a spinning friction model was also introduced to ac-
count for the friction that would occur if a particle face 
were rotating against another particle or geometry. 

Contact forces between two particles in the normal 
direction are given by the following equation: 

𝐹𝐹𝑛𝑛 = �
0.62

0.752
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3√𝜋𝜋
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where 
 𝑉𝑉 = overlap volume between two particles during 
contact 
 𝑑𝑑𝑛𝑛 = indentation depth which is the extension of the 
overlapping region in the direction of force 
 𝐸𝐸∗ = equivalent Young’s modulus, defined as 

1
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 Dissipative effects were also taken into account by 
modelling a damping force in the normal direction. The 
equation for the damping force is given by the following:  
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where 
 𝑒𝑒 = coefficient of restitution between two particles 
 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 = magnitude of relative velocity between both 
particles in the direction of normal force  
 𝑚𝑚∗ = equivalent mass, defined as 

1
𝑚𝑚∗ =

1
𝑚𝑚1

+
1
𝑚𝑚2

 

 The tangential force between two particles during 
contact is given by the following equation which is also 
limited by the Coulomb friction model µ𝐹𝐹𝑛𝑛 where µ is the 
coefficient of friction. 

𝐹𝐹𝑡𝑡 = −8𝐺𝐺∗�
𝑉𝑉
𝜋𝜋𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡 

where 
 𝑑𝑑𝑡𝑡 = extension of the overlapping region in the di-
rection normal to the force 
 𝐺𝐺∗ = equivalent shear modulus, defined as 

1
𝐺𝐺∗

=
2 − 𝜈𝜈1
𝐺𝐺1

+
2 − 𝜈𝜈2
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 Dissipative effects in the tangential direction were 
also considered, and are given by the following equation: 

𝐹𝐹𝑡𝑡,𝑑𝑑 = −2�5
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where 
 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 = magnitude of relative velocity in the tangen-
tial direction 
 The terms 𝐸𝐸, 𝜈𝜈, 𝑚𝑚, and 𝐺𝐺 with subscripts 1 and 2 cor-
respond to the Young’ modulus, Poisson’s ratio, mass, 
and Shear modulus of both particles in contact, respec-
tively. 
 The introduction of spinning friction [18] was essen-
tial in this model to account for the friction between two 
particles whose faces are rotating against each other. 
This involves calculating the contact area and then ap-
plying the torque in the opposite direction to the normal 
component of the relative angular velocity. The equation 
for torque on the particle is given as follows: 

𝑀𝑀 =
2
3 𝜇𝜇𝐹𝐹𝑛𝑛

�𝐴𝐴
𝜋𝜋 

where 
 𝜇𝜇 = coefficient of friction 
 𝐴𝐴 = normal area of the overlap region 
 This torque is limited to avoid numerical instability 
and any oscillating behavior when the angular velocity is 
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small. This was done by calculating the torque required 
to damp the angular velocity in one timestep. 

𝑀𝑀 =
0.125𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

𝑛𝑛min (𝐼𝐼1, 𝐼𝐼2)
∆𝑡𝑡

 

where 
 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

𝑛𝑛 = normal component of the relative angular 
velocity 
 ∆𝑡𝑡 = timestep used in the model 
 min(𝐼𝐼1, 𝐼𝐼2) = minimum value of the moment of inertia 
of the two contacting particles 

Material model calibration 
 Material model calibration is a fundamental compo-
nent of the Discrete Element Modelling methodology. 
Material model calibration typically consists of replicating 
a rheological measurement in the model, so that there is 
confidence in the model behaving in a physically accurate 
manner. Bulk density is a rheological measurement that 
needs to be replicated for any DEM model to capture the 
inertial effects. The other test done for this study to en-
sure the tablet-tablet interactions are modelled correctly, 
is the angle of repose test. Since a coating process is 
modelled for this study, both the bulk density and the an-
gle of repose measurements were done for both core and 
coated tablets. The average value for both measure-
ments were computed, and the average value was repli-
cated within the DEM model. 
 For the bulk density measurement, tablets were 
filled in a known cylindrical volume, and was weighed. 
The mass of the bulk of the tablets was then divided by 
the known volume to calculate the bulk density. This pro-
cess was done for both core and coated tablets. The av-
erage value of 601.9 kg/m3 was replicated within a similar 
virtual cylinder within the DEM model. This involved a 
trial-and-error method with running multiple simulations 
with different parameters on the same setup, until the 
target bulk density was achieved. 
 Similarly, for the angle of repose measurement, the 
tablets were allowed to form a pile on the horizontal after 
lifting a hollow cylinder filled with these tablets. The angle 
that this pile makes with the horizontal was measured, for 
both core and coated tablets respectively. Again, the av-
erage value of 35 degrees was replicated within a similar 
setup in the DEM model. The angle of repose is sensitive 
to the coefficient of friction values along with other pa-
rameters like the individual particle density and the coef-
ficient of restitution, and therefore, these parameters 
were changed using a trial-and-error method until the 
DEM model reproduced the same pile with the same an-
gle in the virtual setup. 

Process Modelling 
 The calibrated interaction parameters are used for 
the modelling of the industrial scale tablet coater opera-
tion. As mentioned earlier, the tablets are polyhedron-

shaped with 78 faces and approximately 10 mm in size, 
which is a very close estimation of the physical particle 
shape. The particle shape is shown in Figure 3. 
 A singular batch in the coater consists of approxi-
mately 200,000 tablets, therefore, the simulation was 
also done for the same load of tablet cores. The simula-
tion was split into two stages – the filling stage and the 
process modelling stage. To introduce realistic settling of 
the tablets within the coater before the operation, the 
tablets were introduced into the coating pan from an 
opening on the side and allowed to settle under gravity. 
The coating pan was then rotated at 7 rpm, for 30 sec-
onds of operation. The model was run on an NVIDIA Tesla 
V100 GPU card which took an approximate of 225 hours 
of clock time for the whole 30 seconds of operation. 

Figure 3: Tablet shape used in DEM (left); EDEM simula-
tion of the industrial tablet coating process (right). 

 All the forces during each contact of the tablet core, 
with another tablet core or with the coating pan itself, 
were calculated using the governing equations. However, 
data was saved at every 0.1 seconds interval due to prac-
tical hardware limitations. This data includes position and 
orientation of the tablets, their velocities, their contact 
forces and the location of the contact on both interacting 
bodies. In total, about 98 million contacts were recorded, 
for these 200,000 tablets at these 0.1 seconds interval 
during the whole 30 second operation, and analyzed. The 
force values on each vertex of the polyhedron during 
each of these contacts are then compared to determine 
the region of the polyhedron-shaped tablet with maxi-
mum propensity for breakage or defect formation.  

RESULTS 
In a DEM simulation, for every collision, the impact 

force increases until it reaches a peak value, and then it 
decreases with the particles separating from each other. 
The value of the forces acting on each of the tablets, in 
this case, and their location of impact for each contact, 
or collision, was recorded at every 0.1 seconds. Due to 
this frequency of data recording, it is possible that the 
peak forces may not be recorded if the peak occurs 
between data save periods. However, since steady 
state is achieved relatively early in the process, at about 
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5 seconds, the simulation consists of random sampling 
of contacts during twenty-five seconds of steady state 
operation. This study assumes that the highest recorded 
forces are indicative of the impact events that lead to 
tablet defects. Hence, the magnitude of the force itself 
is insignificant, but the relative distribution of forces is 
bound to give more insight into the results. 

Force Analysis 
 In this coating pan simulation, there is a huge num-
ber of contacts, and forces are evaluated at each of 
these contacts. However, a large number of these con-
tacts are weak, primarily in the small movements of the 
tablets in the avalanche region. There are a few contacts 
which are stronger, and it is assumed that these stronger 
contacts are the reason for tablet defects. Considering 
this, the ten contacts with highest force values were an-
alyzed in Figure 4. 
 On the top, the orange bar represents the total force 
magnitude, and the blue and yellow bars represent the 
normal and tangential force components respectively. 
This shows the strength of the contact relative to the 
other contacts in the system. In the first column, since 
the tangential force is very insignificant, it is almost en-
tirely a normal contact, with an impact on the edge of the 
tablet. The streamline plot at the bottom also shows that 
this was caused due to the lifting the tablet by the coater 

baffle and dropping it on the coater itself.  Figure 4 re-
veals that although there are some impacts from tablets 
colliding with other tablets, it is less significant than the 
tablets impacting the coater pan itself. 
 The force values at each vertex were summed for all 
the contacts in the simulation, and a heat map of the 
force distribution was plotted in Figure 5. This figure 
gives a pictorial representation of the locations on the 
tablet that have the highest propensity for defect for-
mation. 

Grouped Statistics 
 For practical purposes, the defects were classified 
into two groups – edge defects and face defects. The 
force distribution on every individual tablet was used to 
group them. The force value at each vertex were summed 
up for each of the 200,000 tablets in the system, for 
every contact that was experienced during the twenty-
five seconds of steady-state operation. Out of these 
summed up force values at every vertex, if the highest 
force value on an individual tablet was present near the 
edge of the tablet, that tablet was classified to incur an 
edge defect, or chipping defect. Consequently, if the 
highest force value was on the face of the tablet, it was 
classified as a face defect, or picking defect. Figure 6 
shows the regions on the tablet based on which the 
groups were classified. 

 
Figure 4: Strength (top) and location of impact on the symmetrical cross-section of the tablets (middle), and the 
respective tablet trajectories (bottom); for the top ten highest force values (decreasing left-to-right) observed 
during the coating operation. 
 

 
Figure 5: Distribution of the sum of normal force values for the whole simulation on individual tablets with the top 
ten highest force impacts (decreasing left-to-right) 
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The simulation found that 72.12% of the particles are 
prone to have a chipping defect or an edge defect, while 
only 27.88% of the particles are prone to have a face de-
fect. Although the highest force values on an individual 
contact was from lifting of the coater baffles, the highest 
sum of forces across all contacts is caused in the ava-
lanche region of the coater. 

Figure 6. Regions on the tablet classified for edge 
defects (left) and face defects (right)  

CONCLUSIONS 
The simulation estimated ~70/30 split between 

edge defects and face defects. The end-of-batch statis-
tical inspection for visual defects confirmed that physical 
damage to the tablet edges constituted a far greater per-
centage of tablet defects than those observed on the 
face of the tablets. Electronic inspection of the batches 
also confirmed the simulation results, again showing that 
the majority of the physically damaged tablets experi-
enced edge damage, with little physical damage being 
observed on the face of the tablets. During process scale 
up, when coating conditions fell on the wetter side of the 
thermodynamic design space, picking defects were ob-
served mainly on the face of the tablets, Figure 2. This 
would not be unexpected due to the number of tablet-to-
tablet interactions that occur during the coating process 
while the tablets are avalanching in the spray zone of the 
coating pan. The result of this DEM analysis was used by 
the manufacturing and development teams to investigate 
potential modifications. The tablet core robustness was 
modified to prevent damage to the tablet edges. To pre-
vent picking damage, the coating operation was moved 
towards the drier thermodynamic space, since reducing 
the number of tablet-to-tablet interactions would have 
required altering the production batch size, which was 
not an option. 

The use of the Discrete Element Method to look at 
the forces that the tablets were experiencing during the 
coating operation was one part of an investigation that 
was critically reviewing the drug product formulation and 
process to establish causal factors associated with tablet 
edge and face defects. The evaluation looked at the drug 
production formulation, raw material attribute and varia-
bility within a given attribute for the excipients and drug 
substance. The processing evaluation included the pro-
duction of the tablet cores, the tablet core robustness to 

downstream processing conditions and environment, re-
view of the coating process and the thermodynamic 
space for which processing was being performed. Addi-
tionally, the evaluation also included identifying the loca-
tion within processing time of the coating operation that 
the tablet damage was occurring, i.e. beginning middle or 
end of the coating operation. Since the edge and face 
defects did not result in exposed cores, the investigation 
concentrated to the loading of core tablet to the coating 
pan, the start up of the coating process though the mid-
dle of the coating operation. No review of the post coat-
ing operation was evaluated for the investigation for 
causal factors again supported by the defects present 
did not show any signs of exposed cores. 

This present study can also inform population bal-
ance models to predict breakage of the tablet cores. This 
DEM model can provide micromechanical data which can 
be used in conjunction with a breakage criterion resulting 
in an analytical breakage model. An approach similar to 
Ketterhagen et al [11] can be taken to utilize the material 
strength parameter and the impact energy to character-
ize a stochastic breakage model using the Vogel and 
Peukert [12][13] model to quantitatively predict break-
age. 
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ABSTRACT 
In this work, we present a follow-up work of reinforcement learning (RL)-driven process design 
using the Institute for Design of Advanced Energy Systems Process Systems Engineering (IDAES-
PSE) Framework. Herein, process designs are generated as stream inlet-outlet matrices and opti-
mized using the IDAES platform, the objective function value of which is the reward to RL agent. 
Deep Q-Network is employed as the RL agent including a series of convolutional neural network 
layers and fully connected layers to compute the actions of adding or removing any stream con-
nections, thus creating a new process design. The process design is then informed back to the RL 
agent to refine its learning. The iteration continues until the maximum number of steps is reached 
with feasible process designs generated. To further expedite the RL search of the design space 
which can comprise the selection of any candidate unit(s) with arbitrary stream connections, we 
investigate the role of RL reward function and their impacts on exploring more complicated versus 
intensified process configurations. A sub-space search strategy is also developed to branch the 
combinatorial design space to accelerate the discovery of feasible process design solutions par-
ticularly when a large pool of candidate process units is selected by the user. The potential of the 
enhanced RL-assisted process design strategy is showcased via a hydrodealkylation example. 

Keywords: Process Design, Process Synthesis, Machine Learning, Reinforcement Learning, Optimization

1. INTRODUCTION
Process synthesis aims to determine the optimal se-

lection of unit operations and their flowsheet intercon-
nections at the optimal operating conditions [1]. How-
ever, it is not a trivial task to select the optimal process 
design considering the plethora of plausible unit opera-
tions and flowsheet configurations which have been in-
vestigated in chemical process industry.  

Optimization-based approaches [2-3] offer a sys-
tematic strategy utilizing mathematical programming to 
synthesize the overall flowsheet based on a superstruc-
ture which contains all the possible flowsheet structural 
alternatives of interest. The representation of chemical 
processes also plays a key role to ensure fit-for-purpose 
design creativity and sufficient modeling accuracy with 

tractable computational formulations (e.g., state-task-
network [4], unit-port-conditioning streams representa-
tion [5], phenomena-based representation [6-7]). Alt-
hough the efficacy of optimization-based process syn-
thesis has been well demonstrated in many chemical and 
energy systems, major challenges remain on: (i) the re-
quest of a user-specified superstructure which heavily 
relies on engineering expertise to ensure the quality of 
optimal design solutions, and (ii) algorithmic complexity 
to solve the resulting large-scale mathematical optimiza-
tion problems, etc. 

To address these challenges, recent research ef-
forts have been made to drive process synthesis using 
reinforcement learning (RL) in place of optimization algo-
rithms [8-9]. RL-driven process design typically starts 
from a maximum pool of unit operations without 
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requesting any superstructure pre-specification. The in-
telligent RL agent will select among the available unit op-
erations and generate arbitrary process design struc-
tures. The objective function value of the derived process 
design serves as the reward to keep training RL agent to 
generate better process designs. Despite the ad-
vantages, key open research questions lie in the search 
efficiency and algorithmic scalability as the number of 
available unit operations increases.  

In this paper, we present a follow-up work to the RL-
driven process design approach introduced by Wang et 
al. [8] integrated with the Institute for Design of Ad-
vanced Energy Systems Process Systems Engineering 
(IDAES-PSE) Framework [10]. To enhance the efficiency 
of RL-driven design, we will discuss the role of reward 
functions and the implementation of a sub-space branch 
and search strategy. Section 2 provides a brief overview 
of the methodology workflow and highlights the interac-
tions between IDAES-PSE and reinforcement learning. 
Section 3 introduces the hydrodealkylation case study 
and the process design analyses. Section 4 presents 
concluding remarks and ongoing work. 

2. RL-DRIVEN PROCESS DESIGN WITH 
IDAES-PSE FRAMEWORK 

2.1. Overview of the Methodology  
The methodology workflow is summarized in Fig. 1 

with stepwise procedure detailed in what follows [8].  
 

 
Figure 1. The methodology workflow. 

2.1.1. Step 1 – Candidate process-units pool 

The design process starts with the users selecting a 
maximum set of candidate process units which can be 
used for process design in the next steps. An indicative 
list of the process unit models, which are supported in 
the IDAES model library, includes feed (coupled with 
mixer), product (coupled with flash), flash drum, 
mixer/splitter, heat/cooler, heat exchanger, stoichio-
metric reactor, etc. Users are required to specify the 
types and the maximum number of units available (e.g., 
maximum of 3 flash drums), while no pre-postulation of 
flowsheet connections or superstructures is needed. 

2.1.2. Step 2 – Flowsheet representation 
After defining the candidate process units, an initial 

process design will be generated via random initializa-
tions in the form of inlet-outlet stream matrix. Table. 1 
presents an example of the stream matrix representation 
if the current process flowsheet comprises a heater fol-
lowed by a stoichiometric reactor. Lists of unit inlets and 
outlets are first generated to describe the flowsheet con-
nections. The stream matrix then maps the inlet-outlet 
relationships using 0-1 variables, which serves as the ob-
servations to the reinforcement learning algorithm. 

Table 1: Stream matrix representation. 

 Feed 
outlet 

Heater 
outlet 

Reactor 
outlet 

Flash 
outlet 

Productinlet      
Heaterinlet     
Reactorinlet     
Flashinlet     

2.1.3. Step 3 – Connect rules pre-screening 
As the flowsheet structure is generated via random 

initialization (at the first iteration) or via RL (at the suc-
cessive iterations), it is essential to pre-screen if the 
structure satisfies general connectivity rules before pro-
ceeding with rigorous simulation. Some examples of such 
rules include: 

 At least one unit operation must be selected.  

 The outlet of a unit operation cannot be connected 
with its own inlet. 

 Liquid outlet streams cannot connect to 
compressors or expanders. 

 Heaters cannot directly connect to coolers, and 
compressors cannot directly connect to expanders 
(turbines). 

 There must be a reactor between an outlet 
product or flash and an inlet feed. 

2.1.4. Step 4 – Simulate and optimize process 
design using IDAES platform 

If the structural screening is passed, the flowsheet 
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is to be simulated and optimized using the IDAES platform 
with its built-in process-units modeling library, property 
packages, and mathematical solvers [10]. It is worth not-
ing that the RL reward function is defined as a function of 
the key process design objectives (e.g., product flow and 
purity). In this way, the reinforcement learning is contin-
ually rewarded to identify better design solutions. 

2.1.5. Step 5 – RL agent to generate new design 
alternatives  

This step aims to intelligently learn from the obser-
vations (step 2) and reward (step 4), thus making a deci-
sion on the next action (i.e., generate a new design). 
Herein, the RL agent adapts the Deep Q-Network (DQN) 
as illustrated in Fig. 2. DQN utilizes a series of convolu-
tional neural network layers to extract key features from 
the 2D stream matrices followed by successive fully con-
nected layers to compute the 𝑄𝑄 value as per Eq. 1. The 𝑄𝑄 
value will dictate the value of each action, i.e. adding or 
removing any unit operation to or from a certain location 
of the current flowsheet structure. The max  (𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) term 
selects the best action in the future 𝑄𝑄 values. 

𝑄𝑄 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  𝛾𝛾 ∙ max  (𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)   (1) 

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is calculated in step 4 as a function of the 
objective function, 𝛾𝛾 is the decay factor, 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the set 
of future 𝑄𝑄 values by taking each possible action. 

 
Figure 2. RL agent using Deep Q-Network. 

Therefore, a new process design will be generated 
by the DQN agent which will be sent to Step 3 for con-
nectivity rule pre-screening and IDAES optimization, etc. 
until a maximum number of iterations is reached. The out-
come of this RL-driven process design strategy is a num-
ber of feasible process designs with improved quality 
against the objective function. 

This RL-driven process design method can be 
applied for grassroots chemical process design, as will be 
showcased in Section 3. It can also significantly 
contribute to: (i) Retrofitting to improve existing 
flowsheet designs, and (ii) Integrating new process 
technologies (e.g., fuel cell, novel intensified reactors) to 
exsiting flowsheet infrastructure. In the latter cases, this 
method may demonstrate more superior computational 
efficiency as the design space is smaller. 

2.2. Integration of RL and IDAES 
This integrated tool can be accessed via the open-

source IDAES platform. The information flow between 
IDAES and RL interactions is summarized in Fig. 3 from 
software perspective. An interactive user interface has 
also been developed as a Jupyter Notebook (i.e., Note-
book Interface.ipynb) which allows the users to select 
candidate process units, adjust RL algorithm parameters 
(e.g., learning rate), execute RL-driven design, and report 
the results. The RL algorithm provides new process de-
signs to the IDAES platform for optimization, and the 
IDAES platform supplies RL with the rewards based on 
optimization results. The flowsheets are represented re-
spectively using unit list arrays in IDAES and stream ma-
trices in RL, the conversion of which is performed by the 
obs2list file to enable mutual communication. 

 
Figure 3. Integrated IDAES and RL information flow. 

3. CASE STUDY: HYDRODEALKYLATION 
PROCESS DESIGN 

In this section, we apply the afore-introduced meth-
odology to design a hydrodealkylation (HDA) process. 
Based on the scenario analyses, we discuss several im-
plementations to further improve the RL-driven design 
efficacy by refining reward function and performing sub-
space branching.   

3.1. Problem Statement 
An HDA process is to be designed to produce ben-

zene (C6H6) from toluene (C6H5CH3) and hydrogen (H2) at 
elevated temperatures. The reaction scheme is shown in 
Eq. 2, which takes place in the vapor phase. The unde-
sired side reactions are not considered in this case study 
(e.g., diphenyl production). Ideal vapor-liquid equilibrium 
can be used to describe the mixture separation behavior.  

𝐶𝐶6𝐻𝐻5𝐶𝐶𝐻𝐻3 + 𝐻𝐻2 → 𝐶𝐶6𝐻𝐻6 + 𝐶𝐶𝐻𝐻4, ∆𝐻𝐻 = −1.08 × 105 𝐽𝐽
𝑚𝑚𝑚𝑚𝑚𝑚

      (2) 
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The feed streams are given in Table 2, consisting of 
a vapor stream of hydrogen and methane and a liquid 
stream of toluene. Available process units include feed 
(coupled with mixer), product (coupled with flash opera-
tion), heater, cooler, stoichiometric reactor, mixer, flash, 
splitter, and compressor. The operating constraints of 
each type of units are also given, such as heat outlet tem-
perature between 500-600 K. Product specification is set 
to obtain a vapor product with benzene purity higher than 
0.55. The design objective is to determine process solu-
tion(s) with optimal vapor product benzene flowrate. 

Table 2: HDA feed conditions. 

 Vapor feed Liquid feed 
Temperature (K)   
Pressure (kPa)   
Flowrate (mol/s)   
Benzene   
Toluene   
Hydrogen   
Methane   

3.2. Scenario Analysis 
We first investigate a series of scenarios with differ-

ent candidate process units selected by user, i.e. differ-
ent maximum unit sets that can be used for HDA design. 

3.2.1. Scenario 1  
In this scenario, at most 1 heater and at most 1 re-

actor can be used to design the HDA process (Table 3). 
Feed and product are regarded as defaults to be included 
in process design. Applying the RL-driven approach, the 
first design solution obtained is shown in Fig. 4. This de-
sign solution is referred as Design 1-1, which represents 
Scenario 1, Solution 1. It is identified at the 63rd episode.  

The flowsheet comprises a heater with an outlet 
temperature of 536.9 K followed by a reactor with an out-
let temperature of 897.8 K. The flash coupled with outlet 
product only produces a vapor product stream at 705.7K 
around 1 atm. The objective value is 0.225 mol/s benzene 
flowrate, with benzene purity at 0.75 and revenue at 
$7.65×105/year.  

To run a total of 300,500 episodes for this scenario, 
the total computational time is 2.9 minutes. A substantial 
portion of the time is spent on RL learning to generate 
process structures which can pass the pre-screening 
rules. Only around 4 seconds are consumed by IDAES 
simulation and optimization. From the aspect of concep-
tual design, Design 1-1 is actually the best solution of all 
plausible designs with the maximum benzene flowrate 
and revenue as well as a most simplified flowsheet. 

Table 3: User specified candidate units – Scenario 1. 

Heater Cooler Reactor Mixer 
    
Flash Splitter Compressor 
    

Table 4: User specified candidate units – Scenario 2. 

Heater Cooler Reactor Mixer 
    
Flash Splitter Compressor 
    

 
Figure 4: Design 1-1 (and Design 3-1). 

3.2.2. Scenario 2  
The pool of candidate process units is increased in 

this scenario, allowing the use of at most 1 unit of each 
type as defined in Table 4. The first flowsheet design so-
lution (Design 2-1, representing Design Scenario 2, Solu-
tion 1) is identified at the 151,507th episode, as depicted 
in Fig. 5. The objective value is 0.180 mol/s benzene 
flowrate, with benzene purity at 0.75 and revenue at 
$2.49×105/year. The inlet feed streams are first heated 
to 537.6K before entering the reactor. The reactor efflu-
ent is cooled down from 898.4K to 325.0K giving a liquid-
vapor mixture. The outlet product flash operation then re-
heats the product temperature to 595 K and reduces the 
pressure to around 1 atm. A total of 0.18 mol/s benzene 
flowrate is obtained from the outlet product vapor 
stream, while no liquid stream is obtained. Another 0.045 
mol/s benzene flowrate exists in the outlet exhaust (or 
purge) stream. While this flowsheet is feasible, it is not a 
good design. The cooler decreases the energy efficiency 
and results in the loss of benzene product in the vapor 
phase via the outlet exhaust.  

Another flowsheet design solution (Design 2-2) is 
generated at the 284,253rd episode, as shown in Fig. 6. 
The objective value is 0.225 mol/s benzene flowrate, with 
benzene purity at 0.75 and revenue at $5.08×105/year. 
To run a total of 300,500 episodes for this scenario, the 
total computational time is 12.0 minutes.  

Several observations can be made for Design 2-2: 
(i) Similar to Design 2-1, the cooler decreases the energy 
efficiency, (ii) Compressor is redundant as pressure 
change is not an essential requirement, (iii) Despite the 
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fact that the splitter is not completely connected to mixer 
(one of the pre-screening constraints), the loop of mixer, 
compressor, and splitter is redundant. 

 
Figure 5: Design 2-1. 

 
Figure 6: Design 2-2. 

3.2.3. Scenario 3  
 The pool of candidate process units is further in-

creased to allow the use of at most 2 units of each type 
(Table 5). To run 300,500 episodes for this scenario, the 
total computational time is 24.6 minutes. A flowsheet de-
sign solution (Design 3-1) is found at the 788,161st epi-
sode, which is identical with Design 1-1. No more design 
solutions are found up to 4,150,000 episodes.  

Table 5: User specified candidate units – Scenario 3. 

Heater Cooler Reactor Mixer 
    

Flash Splitter Compressor 
    

 

3.2.4. Summary of Observations  
As the design space increases (i.e., user selects 

more unit operations to use), the following can be ob-
served based on the above scenario analyses: 

 More computational efforts are required to identify 
any feasible flowsheet design solution. For 
example, to generate the first feasible design, 
Scenario 1 at 63rd episode, Scenario 2 at 151,507th 
episode, Scenario 3 at 788,161st episode.  

 The RL algorithm tends to explore the use of more 
unit operations, despite the possible use of 
redundant units and/or stream loops (e.g., cooler, 
compressor, recycle loop). 

 The solutions generated from larger combinatorial 
design space may not recover that from smaller 
design space. For example, Scenario 2 cannot 
recover Design 1-1, which is the best design 
solution. 

3.3. Impact of Reward Function 
To drive the RL algorithm automatically toward a 

more refined design space with a minimum essential 
number of unit operations, changing the reward function 
can be of potential help. The current reward function is 
given in Eq. 1 which accounts for benzene purity and 
flowrate. This renders the reward values independent of 
the number of units. Or in other words, RL does not obtain 
higher rewards by generating more simplified flowsheet 
designs. In this context, we propose to incorporate the 
number of unit operations as part of the reward consid-
eration as defined in Eq. 2. 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1000 + 𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓−0.10
0.05

× 𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝−0.55
0.10

× 𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠
                                                                          (1) 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1000 + 𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓−0.10
0.05

× 𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝−0.55
0.10

× 𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠 +
                50 × (𝑚𝑚𝑟𝑟𝑚𝑚_𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑢𝑢𝑑𝑑𝑢𝑢 − 𝑟𝑟𝑎𝑎𝑑𝑑𝑛𝑛𝑟𝑟𝑑𝑑_𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑢𝑢𝑑𝑑𝑢𝑢)           

        (2) 

Testing again on Scenario 2, the modified reward 
function leads to the identification of a second flowsheet 
design at the 242,654th episode, which is identical to De-
sign 1-1. This is a faster identification compared to the 
previous 284,253th episode using Eq. 1 while featuring a 
reduced number of unit operations to identify the best 
design solution. This reward function is also tested on 
Scenario 3, in which the user selects maximum 2 units of 
each type. The first feasible flowsheet design is still 



 

Tian et al. / LAPSE:2024.1553 Syst Control Trans 3:387-393 (2024) 392 

reported at the 788,161st episode. Compared to the re-
ward function of Eq. 1 which cannot generate a second 
flowsheet design within 4,150,000 episodes, the modi-
fied function of Eq. 2 reports a second design at the 

3,069,993rd episode. The flowsheet design comprises a 
heater, a reactor, a splitter, the outlet exhaust, and the 
outlet product. 

The modified reward function has been 

 
Figure 7: Search strategy for RL-driven design. 

 

 
Figure 8: Sub-space search illustration for Scenario 2. 
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demonstrated to drive the RL search to prioritize the use 
of fewer unit operations and, thus, to accelerate the 
search of flowsheet designs after the first design is iden-
tified. However, this formulation cannot contribute to ac-
celerate or improve the identification of the first feasible 
flowsheet design. 

3.4. Sub-Design Space Branch and Search  
As shown in Fig. 7a, the current RL-driven design is 

set to always explore the entire design space of all can-
didate process units specified by the user. Arguably, the 
infeasible flowsheet design space for the arbitrary selec-
tions and combinations of these units can be significantly 
larger than the feasible space. In this way, with a larger 
number of available unit operations, the RL-driven design 
may spend the most time learning the infeasible space 
while directed away from the feasible space. As such, we 
propose a parallel sub-space search as illustrated in Fig. 
7b. Namely, for each of the feasible flowsheet design 
generated from learning the entire design space, a quick 
RL search is performed using the list of units in this de-
sign as candidate process units (ignoring the specific in-
let and outlet connections in this design). Thus, the sub-
space search aims to identify, using a reduced pool of 
unit operations that can construct a feasible flowsheet 
design, if better design solutions can be generated. This 
branch and search strategy is implemented for Scenario 
2 and the reported results are given in Fig. 8. Better de-
sign options are efficiently identified in the sub-space 
search. 

4. CONCLUDING REMARKS 
In this paper, we have introduced a reinforcement 

learning-driven process design approach with applica-
tion to HDA production. Two improvements are imple-
mented to enhance the RL efficiency to search the com-
binatorial design space, respectively by refining the re-
ward function and branching the search space. Ongoing 
work is applying superstructure optimization to expedite 
the sub-design space search. In other words, RL will 
identify a minimum essential set of unit operations based 
on which superstructure optimization will screen this 
sub-design space to find the optimal design solution. The 
integrated strategy aims to augment RL exploration abil-
ity in large combinatorial design space and superstruc-
ture optimization rapid screening in smaller design space 
when mixed-integer nonlinear optimization becomes 
tractable. 
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ABSTRACT 
Water-gas shift membrane reactors (WGS-MRs) offer a pathway to affordable blue H2 genera-
tion/purification from gasified feedstock or reformed fuels. To exploit their cost benefits for blue 
hydrogen production, WGS-MRs’ performance needs to be optimized, which includes navigating 
the multidimensional design space (e.g., temperature, feed pressures, space velocity, membrane 
permeance and selectivity, catalytic performance).  This work describes an equation-oriented 
modeling framework for WGS-MRs in the Pyomo ecosystem, with an emphasis on model scaling 
and multi-start initialization strategies to facilitate reliable convergence with nonlinear optimization 
solvers. We demonstrate, through sensitivity analysis, that our model converges rapidly (< 1 CPU 
second on a laptop computer) under a wide range of operating parameters (e.g., feed pressures 
of 1-3 MPa, reactor temperatures of 624-824 K, sweep-to-feed ratios of 0-0.5, and steam/carbon 
ratios of 1-5). Ongoing work includes (1) validation and calibration of the WGS-MR model using 
benchtop laboratory data and (2) design, intensification, and optimization of blue H2 processes 
using the WGS-MR model.  

Keywords: Modelling, Membranes, Hydrogen, Process Design, Water-Gas Shift, Model Initialization 

INTRODUCTION 
The water-gas shift (WGS) reaction is essential for 

converting CO into CO2 and producing additional hydro-
gen from syngas generated from reforming or gasifica-
tion [1-2]. WGS is especially critical in blue H2 production 
technologies, where the produced CO2 is captured and 
sequestrated downstream [3].  

WGS is an established industrial reaction that has 
been broadly studied [4]. Ebrahimi et al. [5] provide a 
comprehensive overview of the WGS reaction, including 
the CO conversion, H2 selectivity, and structural proper-
ties of transition and noble metal catalysts on oxide and 
carbon-based supports. The state-of-the-art design for 
WGS reactors includes a two-staged packed bed reactor: 
a high-temperature shift (643 K to 673 K) stage followed 
by inter-stage cooling and then a low-temperature shift 
(450 K to 553 K) [6]. One prevailing challenge with WGS 
is that it is a reversible and exothermic reaction (∆𝐻𝐻2980 =
 −41 kJ/mol), which imposes thermodynamic limitations
on the attainable conversion.

Incorporating a membrane within a water gas shift 
reactor enhances H2 production [2, 6-7]. H2-selective 
membranes (e.g., dense metallic membranes, polymer 
membranes, and other inorganic membranes) have been 
previously used for this purpose [7-8].  Particularly, Pd-
based membranes are promising for H2 separation due to 
their ultra-high H2-selectivity [2, 9]. One major challenge 
with Pd-based membranes is inadequate thermal stabil-
ity/chemical tolerance in these harsh operating condi-
tions, which can be mitigated by alloying Pd with other 
elements [2, 10]. Pd-based membranes are used for H2 
production in the form of membrane separators [7, 10] or 
membrane reactors, i.e., membrane reformers or water-
gas shift membrane reactors (WGS-MR) [9, 11].  

WGS-MRs offer the added benefit of combining 
separation and reaction in one unit, providing process in-
tensification opportunities. The continuous separation of 
H2 from the reactor through Pd-based membranes pro-
vides three distinct advantages:  

1. The thermodynamic equilibrium continuously
shifts in favor of the forward reaction, leading to

about:blank
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improved CO conversion [2, 12, 13]. 
2. The continuous production of H2 from the reac-

tion boosts the H2 partial pressure on the reten-
tate side, enhancing the recovery of H2 through 
separation. 

3. The retentate is a high-pressure CO2-concen-
trated stream, making carbon capture less en-
ergy intensive [14].  

 Mathematical modeling and numerical simulation 
are needed to elucidate the design of WGS-MRs for max-
imizing technical and economic benefits [7, 9, 12]. Mem-
brane modules have been widely modeled in flow sheet 
simulators such as Aspen Plus to support process-scale 
optimization and technoeconomic analysis [13, 15]. Our 
approach, based on equation-oriented (EO) design, sup-
ports the simultaneous solution of the various model 
equations, making it easier to embed them directly into 
large-scale optimization models [16-18].  However, EO 
models require careful equation and variable scaling and 
initialization to ensure reliable solver convergence [19]. 
Additionally, the literature on EO modeling of WGS-MR is 
notably sparse, with significant contributions from 
Gosieswki et al. [14].  

 This brief paper introduces an EO modeling 
framework of WGS-MRs. We focus on model scaling 
analysis and multi-start initialization strategies to pro-
mote fast and reliable convergence in the solution of the 
nonlinear model. Finally, we show the model’s capabilities 
for the rapid study of the WGS-MR system through sen-
sitivity analysis.  

 
Figure 1. Schematic of a WGS-MR module. The syngas 
feed flows on the shell side, which is packed with a 
catalyst for the WGS reaction; the tube is made of a Pd-
based membrane that is selectively permeable to H2; 
permeated H2 and an optional sweep gas flow on the tube 
side in a counter-current flow direction. Based on similar 
schematics in Brunetti et al. [9]. 

METHODS  

WGS-MR model 
 We consider a cylindrical, tube-in-shell reactor 
module with the reaction occurring on the shell side in a 
packed catalyst bed, as shown in Figure 1. The tube 

comprises a Pd-based membrane that selectively sup-
ports H2 permeation, which flows on the tube side in a 
counter-current direction.  

Mass Balance: 
The retentate side mass balance for this reactor config-
uration is given as:  

  𝑑𝑑𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖

𝑑𝑑𝑑𝑑
=  − 𝐽𝐽𝑖𝑖

𝐴𝐴𝑚𝑚𝑟𝑟𝑚𝑚

𝑙𝑙
+ 𝜈𝜈𝑖𝑖(−𝑟𝑟𝐶𝐶𝐶𝐶) 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

𝑙𝑙
.  (1) 

Similarly, the permeate side mass balance is given as: 

  𝑑𝑑𝐹𝐹𝑝𝑝𝑟𝑟𝑟𝑟𝑚𝑚,𝑖𝑖

𝑑𝑑𝑑𝑑
=  − 𝐽𝐽𝑖𝑖

𝐴𝐴𝑚𝑚𝑟𝑟𝑚𝑚

𝑙𝑙
,    (2) 

where 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 (mol s-1) and 𝐹𝐹𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝,𝑖𝑖  (mol s-1) are the retentate 
and permeate side flowrates of species 𝑖𝑖 respectively; 𝑧𝑧 
(m) is the axial distance along the WGS-MR module; 𝐴𝐴𝑝𝑝𝑟𝑟𝑝𝑝 
(m2) is the membrane area; 𝑙𝑙 (m) is the total length of the 
module; 𝜈𝜈𝑖𝑖 (unitless) is the stoichiometric coefficient of 
species 𝑖𝑖 in the WGS reaction; 𝑟𝑟𝐶𝐶𝐶𝐶 (mol m-3 s-1) is the re-
action rate of CO in the WGS reaction; 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 (m3) is the re-
tentate side volume of the WGS-MR available for the re-
action. 𝐽𝐽𝑖𝑖 (mol m-2 s-1) is the flux of species 𝑖𝑖 through the 
Pd-based membrane.  

The flux, 𝐽𝐽𝑖𝑖 is defined by the Sievert-type expression 
[9, 20]: 

𝐽𝐽𝑖𝑖 =

�𝑄𝑄(𝑇𝑇)��𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝜀𝜀�𝑟𝑟 − �𝑃𝑃𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑦𝑦𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝,𝑖𝑖 + 𝜀𝜀�𝑟𝑟�,   𝑖𝑖 = 𝐻𝐻2
0,   otherwise

 (3) 

Here, 𝑄𝑄(𝑇𝑇) (mol m-2 Pa-0.5 s-1) is the permeance of the 
membrane, which correlates with the reactor tempera-
ture as given in Eq. (4). 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 (Pa) and 𝑃𝑃𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝 (Pa) are the 
retentate and permeate side pressures, respectively. 
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 and 𝑦𝑦𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝,𝑖𝑖 are the retentate and permeate side 
compositions of gas species 𝑖𝑖, respectively, as defined in 
Eq. (5). The Sievert’s law pressure exponent, 𝑛𝑛, ranges 
from 0 to 1 and takes a value of 0.5 for the ideal Sievert 
behavior where the diffusion of H atoms in the bulk Pd 
metal forms the rate-limiting step for H2 permeation in the 
Pd-based membrane, and the Pd-H system is infinitely 
diluted [20]. 𝜀𝜀 is a small number (e.g., 10-8) that prevents 
computing the n < 1 exponent of near zero when the par-
tial pressure is very small. 

𝑄𝑄(𝑇𝑇) =  𝑄𝑄0𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅
�,    (4) 

𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 =  𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖
∑ 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗𝑗𝑗

 ,        𝑦𝑦𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝,𝑖𝑖 =  𝐹𝐹𝑝𝑝𝑟𝑟𝑟𝑟𝑚𝑚,𝑖𝑖

∑ 𝐹𝐹𝑝𝑝𝑟𝑟𝑟𝑟𝑚𝑚,𝑗𝑗𝑗𝑗
 .  (5) 

 In Eq. (4), 𝑄𝑄0 (mol m-2 Pa-0.5 s-1) is the pre-expo-
nential factor; 𝐸𝐸𝑎𝑎 (J mol-1) is the activation energy of per-
meation; and 𝑅𝑅 is the universal gas constant (8.314 J mol-
1 K-1).  

 WGS is a reversible exothermic reaction given in 
Eq. (6) [9]. In this work, we use the reaction rate expres-
sion, Eq. (7), proposed by Amadeo and Laborde [21] for 
WGS catalyzed by copper/zinc oxide/alumina. 
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CO + H2O ⇌ H2 + CO2    ∆𝐻𝐻298𝐾𝐾0 = −41 kJ/mol (6) 

−𝑟𝑟𝐶𝐶𝐶𝐶 =

 
0.92 𝑟𝑟�−

454.3
𝑇𝑇 �𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝐻𝐻2𝐶𝐶�1−�

𝑃𝑃𝐶𝐶𝐶𝐶2𝑃𝑃𝐻𝐻2
𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝐻𝐻2𝐶𝐶

�� 1
𝐾𝐾𝑟𝑟𝑒𝑒

��

�1+2.2 𝑟𝑟�
101.5
𝑇𝑇 �𝑃𝑃𝐶𝐶𝐶𝐶+0.4 𝑟𝑟�

158.3
𝑇𝑇 �𝑃𝑃𝐻𝐻2𝐶𝐶+0.0047 𝑟𝑟�

2737.9
𝑇𝑇 �𝑃𝑃𝐶𝐶𝐶𝐶2+ 0.05 𝑟𝑟�

1596.1
𝑇𝑇 �𝑃𝑃𝐻𝐻2�

2 ×

 16.6667 𝜌𝜌𝑐𝑐𝑎𝑎𝑟𝑟𝑎𝑎𝑙𝑙𝑐𝑐𝑐𝑐𝑟𝑟,     (7) 

where 𝑃𝑃𝐶𝐶𝐶𝐶, 𝑃𝑃𝐻𝐻2𝐶𝐶, 𝑃𝑃𝐶𝐶𝐶𝐶2, and 𝑃𝑃𝐻𝐻2 denote the partial pres-
sures in Pa of gas species, CO, H2O, CO2, and H2, respec-
tively, 𝜌𝜌𝑐𝑐𝑎𝑎𝑟𝑟𝑎𝑎𝑙𝑙𝑐𝑐𝑐𝑐𝑟𝑟 (kg m-3) is the density of the WGS catalyst, 
and 𝑇𝑇 (K) is the reactor temperature. The 16.6667 multi-
plier enforces unit conversion from mol g-1 min-1 to mol 
kg-1 s-1 units. 𝐾𝐾𝑟𝑟𝑒𝑒 is the equilibrium constant, given by 
[22]: 

𝐾𝐾𝑟𝑟𝑒𝑒 = 1.2 × 10−2 𝑒𝑒�
4639
𝑇𝑇
�.   (8) 

Momentum Balance:  
 Assuming constant pressure drop on both sides of 
the Pd-based membrane, the momentum balances in the 
WGS-MR are as follows: 

𝑑𝑑𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑

 =  constant,     𝑑𝑑𝑃𝑃𝑝𝑝𝑟𝑟𝑟𝑟𝑚𝑚
𝑑𝑑𝑑𝑑

 =  constant.  (9) 

A total pressure drop of 35 kPa was used on the retentate 
side and 0 kPa on the permeate side. 
 The boundary conditions for the WGS-MR module 
are: 
𝑧𝑧 = 0: 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 =  𝑦𝑦𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑,𝑖𝑖𝐹𝐹0,     𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑃𝑃𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑,  (10) 
𝑧𝑧 = 𝑙𝑙: 𝐹𝐹𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝,𝑖𝑖 =  𝑦𝑦𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝,𝑖𝑖𝐹𝐹𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝,     𝑃𝑃𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝 = 𝑃𝑃𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝, (11) 

where 𝐹𝐹0 (mol s-1) is the total feed flowrate and 𝐹𝐹𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝 (mol 
s-1) is the total sweep flowrate. 

Model scaling 
The material balances in Eqs. (1) & (2) result in poor 

solver convergence when the component flowrates,  𝐽𝐽𝑖𝑖, 
are near minimal values (≤ 10−4). To circumvent this, we 
apply dimensionless analysis to scale the flowrates and 
axial distance using the characteristic parameters 𝐹𝐹0 and 
𝑙𝑙: 

𝐹𝐹�  =  𝐹𝐹
𝐹𝐹0

 ⟷  𝑑𝑑𝐹𝐹 =  𝐹𝐹0𝑑𝑑𝐹𝐹�                              (12) 

𝑧𝑧̅  =  𝑑𝑑
𝑙𝑙

 ⟷ 𝑑𝑑𝑧𝑧 = 𝑙𝑙𝑑𝑑𝑧𝑧̅ .                                             (13) 

The material balances in Eqs. (1) & (2) become: 
𝑑𝑑𝐹𝐹�𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖

𝑑𝑑�̅�𝑑
=  − 𝐽𝐽𝑖𝑖

𝐴𝐴𝑚𝑚𝑟𝑟𝑚𝑚

𝐹𝐹0
+ 𝜈𝜈𝑖𝑖(−𝑟𝑟𝐶𝐶𝐶𝐶) 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

𝐹𝐹0
  (14) 

𝑑𝑑𝐹𝐹�𝑝𝑝𝑟𝑟𝑟𝑟𝑚𝑚,𝑖𝑖

𝑑𝑑�̅�𝑑
=  − 𝐽𝐽𝑖𝑖

𝐴𝐴𝑚𝑚𝑟𝑟𝑚𝑚

𝐹𝐹0
    (15) 

The boundary conditions in Eqs. (10) and (11) are up-
dated accordingly by dividing the component flowrates 
(𝑦𝑦𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑,𝑖𝑖𝐹𝐹0 and 𝑦𝑦𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝,𝑖𝑖𝐹𝐹𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝) by 𝐹𝐹0. 

Table 1 reports the model parameters used in this 
study. 

Table 1. WGS-MR model parameters. These parameters 
are based on the work of Brunetti et al. [9]. *Estimated 
from property data. 

Numerical solution and computational 
environment 

The WGS-MR model represented by the differential-
algebraic system in Eqs. (3) to (11) and (14) to (15) was 
discretized using 20 finite volumes, resulting in 520 
equations with 520 variables. The model was imple-
mented in Pyomo v6.4.0 [23] and solved using Ipopt 
v3.13.2 [24] with linear solver ma27 [25], distributed as 
part of the Institute for the Design of Advanced Energy 
Systems Process Systems Engineering Framework 
(IDAES PSE) [26]. The model reliably converged in less 
than 0.1 CPU seconds on a laptop computer running Win-
dows 11 with Intel® Core™ i5-8250U processor and 8GB 
of RAM.  

Performance criteria 
      CO conversion is the percentage of CO in the WGS 
reactor feed that is reacted to produce H2 and CO2 as ex-
pressed below [9]: 

CO Conversion =  �1 −  𝐹𝐹
�𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝐶𝐶
𝑜𝑜𝑜𝑜𝑟𝑟

𝐹𝐹�𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝐶𝐶
𝑖𝑖𝑟𝑟 � × 100%.              (16) 

H2 recovery is the percentage of available H2 in the reac-
tor that is recovered in the permeate outlet [9, 14]: 

Parameter Value Description 

𝐴𝐴𝑝𝑝𝑟𝑟𝑝𝑝 (m2) 1.57
× 10−2 Membrane area 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 (m3) 3.93
× 10−5 Reaction volume 

𝑄𝑄0 (mol m−2 s−1 Pa−0.5) 
1.62
× 10−2 

Permeance pre-
exponential fac-
tor 

𝐸𝐸𝑎𝑎
𝑅𝑅  (K) 

3.10
× 103 

Activation en-
ergy of permea-
tion per gas con-
stant 

𝜌𝜌𝑐𝑐𝑎𝑎𝑟𝑟𝑎𝑎𝑙𝑙𝑐𝑐𝑐𝑐𝑟𝑟  (kg m−3) 1.38
× 103 Catalyst density 

𝑛𝑛 (unitless) 0.5 H partial pres-
sure exponent 

𝐹𝐹0 (mol s−1) 1.26
× 10−3∗ Feed flowrate 

𝑇𝑇 (K) 553 
Reactor temper-
ature 

𝑃𝑃𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑  (MPa) 1 Feed pressure 

𝑃𝑃𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝 (MPa) 0.1 Sweep-side 
pressure 

𝑦𝑦𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑,𝐶𝐶𝐶𝐶 (vol%) 20 
Molar composi-
tion of gas spe-
cies in the feed 

𝑦𝑦𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑,𝐻𝐻2𝐶𝐶 (vol%) 20 
𝑦𝑦𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑,𝐶𝐶𝐶𝐶2 (vol%) 10 
𝑦𝑦𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑,𝐻𝐻2 (vol%) 50 
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H2 Recovery =  �
𝐹𝐹�𝑝𝑝𝑟𝑟𝑟𝑟𝑚𝑚,𝐻𝐻2
𝑜𝑜𝑜𝑜𝑟𝑟

𝐹𝐹�𝑝𝑝𝑟𝑟𝑟𝑟𝑚𝑚,𝐻𝐻2
𝑜𝑜𝑜𝑜𝑟𝑟 + 𝐹𝐹�𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻2

𝑜𝑜𝑜𝑜𝑟𝑟 � × 100%.  (17) 

Model initialization procedure 
 In the sensitivity analysis, we solved the WGS-MR 
model in three steps using a multi-start initialization strat-
egy to improve solver convergence: 
Step 1: Toggle off the reaction by fixing the reaction rate 
variable −𝑟𝑟𝐶𝐶𝐶𝐶 to zero and deactivating Eq. (7). Then, 
solve the resulting model. This reduces model complexity 
by eliminating the nonlinear reaction rate from the mate-
rial balances in Eq. (14). 
Step 2: Activate the reaction rate expression in Eq. (7), 
unfix and initialize the reaction rate, −𝑟𝑟𝐶𝐶𝐶𝐶, using partial 
pressure and temperature values from the solution from 
the previous step. Solve the entire model.  
Step 3: Iteratively update the perturbed parameter (e.g., 
sweep ratio or steam/carbon ratio), defined as a mutable 
parameter in Pyomo, and re-solve the model for each 
point in the sensitivity analysis.  

RESULTS  

WGS-MR model reproduces the expected 
concentration profiles  

 
Figure 2. The retentate side concentration profiles of gas 
species shows that the WGS-MR model captures the 
relevant physics (i.e., species production/consumption 
by WGS reaction and H2 depletion due to transmembrane 
permeation).  

Figure 2 shows the retentate side composition of 
gas species along the dimensionless length of the reac-
tor. As expected, the concentration of the reactants, CO 
and H2O, decreases along the reactor length due to their 
consumption in the WGS reaction. The concentration of 
CO2, on the other hand, increases along the length of the 
reactor. The concentration of H2, which is the only gas 
permeating through the Pd-based membrane, increases 
and then decreases with a peak near 𝑧𝑧̅ = 0.2. The 

increasing H2 concentration corresponds to the reaction-
dominated regime, whereas the decreasing H2 concen-
tration corresponds to the transport-dominated regime. 
This concentration profile conforms to other WGS-MR 
concentration profiles reported in the literature [14, 27]. 

Sweep gas increases H2 production 
 Using an inert sweep gas on the permeate side pro-
motes H2 recovery and CO conversion in the WGS-MR by 
increasing the driving force for H2 permeation [9, 12]. N2 
was used as the sweep in this study. The sweep-to-feed 
ratio (i.e., the ratio of sweep gas flowrate to feed gas 
flowrate) was systematically varied to investigate the in-
fluence of sweep gas on CO conversion and H2 recovery 
in the WGS-MR (Figure 3).  
 Figure 3(a) H2 recovery: Using a N2 sweep-to-feed 
ratio of 0.1 resulted in a 4% increase in H2 recovery in the 
WGS-MR compared to baseline WGS-MR with no sweep. 
The sweep gas increases the H2 recovery by diluting the 
H2 in the permeate, which lowers its partial pressure and 
increases the transmembrane partial pressure difference 
in Eq. (3), which is the driving force for H2 flux across the 
membrane. For reaction temperatures of 724 K and 
higher, the gain in H2 recovery plateaus at a sweep ratio 
of 0.1 as it approaches the theoretical maximum of 100%. 
Although sweep gas flow shows the potential for improv-
ing H2 recovery in the reactor, it also dilutes the recov-
ered H2 which may necessitate additional purification 
based on the application. 

Figure 3(b) CO conversion: At 724 K, a sweep-to-
feed ratio of 0.5 raises CO conversion from 86% to 98%. 
This improvement in CO conversion is explained by the 
gain in H2 recovery, which translates to increased with-
drawal of a reaction product, prompting the reversible 
WGS reaction to be favored in the forward direction. 
 Generally, improved performance is observed at 
higher temperatures. This is the expected behavior for H2 

recovery because increasing the temperature boosts the 
H2 permeance of the membrane as shown in Eq. (4). 
However, the increased CO conversion at higher temper-
atures is intriguing because WGS is an exothermic reac-
tion. We expect lower conversions at higher tempera-
tures. We hypothesize the trends in Figure 3(b) are an 
interplay between temperature effects on the equilibrium 
constant and H2 flux. Specifically, increasing the temper-
ature enhances the flux of H2 across the membrane, ac-
cording to Eqs. (3) and (4), shifting the equilibrium to in-
crease CO conversion. Concurrently, the elevated tem-
perature diminishes the equilibrium constant according 
to Eq. (8), thereby reducing the CO conversion. Figure 4 
shows additional sensitivity analysis for varying either (a) 
reactor temperature or (b) membrane temperature while 
the other is fixed at 624 K. Figure 4 confirms the increase 
in CO conversion from the increased H2 flux outweighs 
the temperature shift in the reaction equilibrium. 
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Figure 3. Increasing the sweep-to-feed ratio produces 
considerable gains in (a) H2 recovery and (b) CO 
conversion in a WGS-MR.  

CO conversion sensitive to steam/carbon 
ratio in a WGS-MR 

Next, we vary the steam/carbon ratio in the feed 
(Figure 5). The total feed flowrate (and, by extension, the 
gas hourly space velocity) is fixed as reported in Table 1; 
only the relative proportions of steam and carbon in the 
feed changed. 

 Figure 5 shows that excess steam (greater than the 
stoichiometric ratio) promotes CO conversion in the 
WGS-MR. We observe that for a given feed pressure, CO 
conversion increases monotonically with the 
steam/carbon ratio up to 98 to 99% conversions at a 
steam/carbon ratio of 5.0. This observation is consistent 
with the experimental results of Bang et al. [28] for a Pd-
Cu WGS-MR. Increasing the steam/carbon ratio 
increases reactant concentration, which triggers the 
forward reaction to nullify the disturbance in the 
equilibrium state as prescribed by La Chatelier’s principle 
[28]. Increasing the steam/carbon ratio beyond 3.0 yields 

modest improvements in CO conversion as it approaches 
the theoretical maximum of 100%. The optimal choice of 
steam/carbon ratio would maximize CO conversion while 
constraining steam consumption in the reactor. 

 

Figure 4. CO conversion as a function of sweep-to-feed 
ratio in a WGS-MR for two hypothetical conditions: (a) 
The reactor temperature is fixed at 624 K, and the mem-
brane temperature varies. (b) The membrane tempera-
ture is fixed at 624 K and the reactor temperature varies.  

Model convergence with Ipopt solver 
 The WGS-MR model demonstrates good solver 

convergence over a wide range of input parameters (e.g., 
feed pressures of 1 to 3 MPa, reactor temperatures of 
624 to 824 K, sweep-to-feed ratios of 0 to 0.5, and 
steam/carbon ratios of 1 to 5). For instance, the CPU time 
corresponding to the sensitivity analysis results in Figure 
3 for T = 624 K is 0.26 CPU seconds for Step 1, 0.080 
CPU seconds for Step 2, and 0.010 to 0.64 CPU seconds 
(average 0.074 CPU seconds) for Step 3.  
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Figure 5. CO conversion in the WGS-MR increases with 
the steam/carbon ratio. Higher conversions are observed 
at higher feed pressures due to increased H2 recovery at 
elevated pressures. 

 Table 2 compares the solver convergence perfor-
mance (i.e., number of iterations and CPU seconds) of 
the WGS-MR model before and after rescaling the model 
using the initialization procedure described above. These 
data correspond to the sensitivity analysis in Figure 3 
and show that the scaled model converges in about 50% 
of the CPU seconds for the unscaled model, emphasizing 
the role of proper model scaling in improving numerical 
performance. A similar trend is observed for other tem-
peratures and sweep-to-feed ratios in Figure 3, which 
are omitted for brevity. We found the scaled model is 
more robust to a naive initialization, although we recom-
mend the procedure described above. 

Table 2: Solver convergence of WGS-MR model.  

 
624 K 824 K 

scaled un-
scaled 

scaled un-
scaled 

Sweep 
ratio = 
0.0 

# of it-
erations 4 4 6 7 

CPU 
secs 0.019 0.036 0.043 0.111 

Sweep 
ratio = 
0.2 

# of it-
erations 4 5 5 6 

CPU 
secs 0.028 0.058 0.034 0.046 

 
 Figure 6 investigates the impact of the number of 
discretization points on the solve time and percent error. 
Here, percent error is defined relative to the numeric so-
lution with 𝑁𝑁 = 100 discretization points. As expected, 
the solve time increases approximately linearly with the 
number of disclination points, whereas the percent error 
decays nearly exponentially as 𝑁𝑁 increases. Based on 
these results, we conclude that 𝑁𝑁 = 20  is likely sufficient 
for process design and optimization. 

 

Figure 6. Sensitivity analysis quantifies the impact of the 
number of discretization points on the solve time and 
percent error. The percent error was calculated for the 
flowrate of H2 in the permeate relative to the numerical 
solution with 𝑁𝑁 = 100.   

CONCLUSIONS  
 We present an EO modeling framework for WGS-MR 
and propose a scaling analysis and multi-start initializa-
tion procedure that promotes solver convergence. 
Through sensitivity studies with this model, we show that 
sweep gas on the permeate side could drive up conver-
sion to over 95% and H2 recovery to ~99% for tempera-
tures 674 K and above. We also show that excess steam 
could promote CO conversions in the WGS-MR up to a 
steam/carbon ratio of 3.0 for the dataset considered in 
this study. This EO model converges rapidly (<1 CPU sec) 
and serves as a tool for the design and optimization of 
WGS-MRs.      
 Ongoing work utilizes this model to optimize the 
technoeconomic benefits of WGS-MRs for blue H2 pro-
duction from gasified biomass. The EO modeling ap-
proach adopted in this work motivates further work into 
integrating the design of WGS-MR membrane modules 
into large-scale, EO-based flow sheets for process-wide 
optimization of H2 production technologies. 
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ABSTRACT 
Direct air capture (DAC) of carbon dioxide is a promising technology to enable climate change 
mitigation. The liquid solvent DAC (LSDAC) process is one of the leading technologies being pi-
loted. However, LSDAC uses a high-temperature regeneration process which requires a lot of 
thermal energy. Although current LSDAC designs incorporate pre-heat cyclones and a heat recov-
ery steam generator to enable heat recovery, these do not maximize the use of the heat in the 
products of calcination. In this paper, a linear optimization model is developed to minimize energy 
cost in a LSDAC that is powered by renewable energy and natural gas. First, the material flow 
network is modified to include a heat exchanger (HX) and water supply to a proton exchange 
membrane (PEM) electrolyser. Mass and energy balance constraints are then developed to include 
the water flow as well as the energy balance at the PEM and the HX. Results show that about 911 
tonnes of hydrogen could be produced over 336 hours of operation using a 136MW PEM. Further 
analysis reveals that hydrogen production is only prioritized if the value is higher than the cost of 
natural gas. 

Keywords: Climate change, Direct air capture, Hydrogen, Negative emission technologies, PEM

INTRODUCTION 
To forestall a possible climate crisis, negative emis-

sion technologies (NETs) such as direct air capture (DAC) 
of  𝐶𝐶𝐶𝐶2(𝑔𝑔) from the atmosphere are considered a neces-
sary addition to other mitigation measures [1]. This is due 
to its ability to capture the already emitted carbon from 
the atmosphere independent of the origin of the emis-
sion. Also, DAC is likely to reduce the cost of achieving 
net-zero power grids [2], [3]. DAC has special ad-
vantages over other NETs such as traceability, controlla-
bility, and modularity. Two crucial DAC technologies are 
currently being piloted in various parts of the globe: liquid 
solvent DAC (LSDAC) and solid sorbent DAC.  Compared 
to the solid sorbent technologies, the LSDAC has a 
slightly lower energy requirement per tonne of 𝐶𝐶𝐶𝐶2(𝑔𝑔), 
better scalability and continuity of operation [1]. Further, 
LSDAC uses mature chemical process technologies such 
as calcium looping (CL) [4]. 

Despite the promising features of LSDAC, it faces 

several challenges. First, its capture rate is heavily influ-
enced by climate as the liquid solvent may freeze at tem-
peratures below 0 ºC [5]. Second, the high-temperature 
regeneration process is energy intensive requiring a sta-
ble power supply necessitating the use of high capacity 
factor power generation technologies, most of which de-
pend on fossil fuels. DAC energetics is an important re-
search agenda that would enable efficient integration of 
the technology into the energy system. Among the as-
pects of improving the energy profile of LSDAC is reduc-
ing the energy required for regeneration through electro-
chemical processes [6]. Another important aspect is 
making the regeneration process flexible so that it could 
be powered using renewable energy (RE) sources, which 
are intermittent by nature [7]. One technique of improving 
DAC energetics that is missing in the literature is the full 
utilization of heat recovered from the LSDAC. In [8], 𝐻𝐻2(𝑔𝑔) 
is produced using waste heat from an organic Rankine 
cycle generator. The waste heat is useful in providing the 
thermal needs of the PEM and raising the temperature of 
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the inflowing water to the PEM’s operating temperature, 
thereby improving its performance [9], [10]. 

Keith et al [4] discussed several heat integration 
techniques that enhanced the use of heat recovered from 
the calciner and the slaker. In their model, heat is recov-
ered from outgoing 𝐶𝐶𝐶𝐶2(𝑔𝑔) from the calciner to pre-heat 
the incoming 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 pellets from the pellet reactor to 650 
ºC through two cyclones. Another cyclone is used to re-
cover heat from 𝐶𝐶𝐶𝐶𝐶𝐶 to pre-heat oxygen from the air sep-
aration plant (ASP) to 674 ºC. Heat is also recovered from 
these two substances and the steam slaker through a 
heat recovery steam generator to produce steam which 
is used to drive a steam turbine to produce electricity for 
the plant. However, this elaborate heat recovery scheme 
still leaves a lot of thermal energy wasted. For instance, 
after all the heat recovery processes, 𝐶𝐶𝐶𝐶2(𝑔𝑔) is still at 325 
ºC, which has energy that could still power the system if 
properly integrated. Furthermore, if the system is all elec-
tric, there is no need for an ASP, thus freeing the heat 
from  𝐶𝐶𝐶𝐶𝐶𝐶 for reuse in the process.  

This paper proposes the use of the recovered heat 
from the products of calcination to produce 𝐻𝐻2(𝑔𝑔). It is an 
improvement of [7], where a linear programming (LP) 
model was proposed to lower energy costs in the LSDAC 
plant by flexibly scheduling regeneration process to max-
imize the utilization of RE in the plant. First, the process 
flow is modified to include a heat exchanger (HX) and wa-
ter supply to a proton exchange membrane (PEM) elec-
trolyser. Additional constraints are then developed to 
model the additional water flow as well as the energy bal-
ance at the PEM and the HX.  

METHODOLOGY  

Process Flow Design of the Proposed DAC 
Plant 

Designed by Keith et al [4], a typical liquid solvent 
DAC plant has two major loops. The first loop – the po-
tassium cycle – starts at the air contactor where 𝐾𝐾𝐶𝐶𝐻𝐻(𝑎𝑎𝑎𝑎) 
reacts with 𝐶𝐶𝐶𝐶2(𝑔𝑔) from the air, producing 𝐾𝐾2𝐶𝐶𝐶𝐶3(𝑎𝑎𝑎𝑎), 
which is reacted with 𝐶𝐶𝐶𝐶(𝐶𝐶𝐻𝐻)2(𝑎𝑎𝑎𝑎) in the pellet reactor, 
thereby regenerating the 𝐾𝐾𝐶𝐶𝐻𝐻(𝑎𝑎𝑎𝑎) to complete the cycle. 
The second cycle starts with the thermal decomposition 
of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3(𝑠𝑠) from the pellet reactor in a calciner to regen-
erate the captured 𝐶𝐶𝐶𝐶2(𝑔𝑔). This is followed by slaking of 
the resultant 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 using steam to produce 𝐶𝐶𝐶𝐶(𝐶𝐶𝐻𝐻)2(𝑎𝑎𝑎𝑎) for 
use in the pellet reactor, thus completing the second cy-
cle. In  [7], the second loop is remodeled to include solids 
storage silos to enable flexible scheduling of the calcina-
tion process to maximize RE utilization in the energy-in-
tensive process. In this paper, a further modification is 
proposed to improve the utilization of the energy con-
tained in the 𝐶𝐶𝐶𝐶2(𝑔𝑔) and  𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 from the calciner. This is 
done by including  𝐻𝐻2(𝑔𝑔) production in the process flow to 
make use of the waste heat. Pre-heat cyclones included 
by Keith et al [4] are utilized here except for the one that 
is associated with the air separation plant, which is not 
necessary in our electrified calciner. The process flow of 
the proposed DAC plant with an integrated PEM is shown 
in Figure 1. 

Optimization Model of the Flexible DAC with 
Hydrogen Production 

A new model is developed to include 𝐻𝐻2(𝑔𝑔) produc-
tion constraints. The model is defined as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹 = ∑ �𝐶𝐶𝑛𝑛𝑔𝑔𝑝𝑝𝑡𝑡
𝑛𝑛𝑔𝑔∆𝑡𝑡 + 𝐶𝐶𝑖𝑖𝐶𝐶𝑐𝑐𝑝𝑝𝑡𝑡

𝑛𝑛𝑔𝑔∆𝑡𝑡 − 𝐶𝐶𝐻𝐻2𝑚𝑚𝑡𝑡
𝐻𝐻2�𝑡𝑡∈𝑇𝑇   (1) 

 
 
Figure 1: The process flow of the proposed DAC plant with an integrated PEM.  
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𝑝𝑝𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝛼𝛼𝑚𝑚𝑡𝑡

𝐻𝐻2𝑂𝑂,𝑝𝑝𝑝𝑝𝑝𝑝,     ∀𝑡𝑡 ∈ 𝑇𝑇                     (2) 

𝑚𝑚𝑡𝑡
𝐻𝐻2𝑂𝑂,𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑚𝑚𝑡𝑡

𝐻𝐻2𝑂𝑂,𝑖𝑖𝑛𝑛 − 𝑚𝑚𝑡𝑡
𝐻𝐻2𝑂𝑂,𝑝𝑝𝑝𝑝𝑝𝑝,    ∀𝑡𝑡 ∈ 𝑇𝑇   (3) 

𝑚𝑚𝑡𝑡
𝐻𝐻2 = 2

18
𝑚𝑚𝑡𝑡
𝐻𝐻2𝑂𝑂,𝑝𝑝𝑝𝑝𝑝𝑝,     ∀𝑡𝑡 ∈ 𝑇𝑇                          (4) 

𝑚𝑚𝑡𝑡
𝑂𝑂2 = 16

18
�𝑚𝑚𝑡𝑡

𝐻𝐻2𝑂𝑂,𝑝𝑝𝑝𝑝𝑝𝑝�,     ∀𝑡𝑡 ∈ 𝑇𝑇                      (5) 

𝑝𝑝𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑡𝑡

𝐻𝐻2𝑂𝑂,𝑖𝑖𝑛𝑛𝑐𝑐𝐻𝐻2𝑂𝑂�𝑇𝑇ℎ𝑥𝑥
𝐻𝐻2𝑂𝑂 − 𝑇𝑇𝑎𝑎� = 𝛽𝛽𝑚𝑚𝑡𝑡

𝐻𝐻2𝑂𝑂,𝑝𝑝𝑝𝑝𝑝𝑝 +
𝑚𝑚𝑡𝑡
𝐻𝐻2𝑐𝑐𝐻𝐻2�𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑎𝑎� + 𝑚𝑚𝑡𝑡

𝑂𝑂2𝑐𝑐𝑂𝑂2�𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑎𝑎� +
𝑚𝑚𝑡𝑡
𝐻𝐻2𝑂𝑂,𝑜𝑜𝑜𝑜𝑡𝑡𝑐𝑐𝐻𝐻2𝑂𝑂�𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑎𝑎�,     ∀𝑡𝑡 ∈ 𝑇𝑇          (6) 

𝑚𝑚𝑡𝑡
𝐻𝐻2𝑂𝑂,𝑖𝑖𝑛𝑛𝑐𝑐𝐻𝐻2𝑂𝑂�𝑇𝑇ℎ𝑥𝑥

𝐻𝐻2𝑂𝑂 − 𝑇𝑇𝑎𝑎� = 𝜂𝜂𝑥𝑥𝑡𝑡𝑐𝑐 �0.44𝑐𝑐𝑂𝑂2�𝑇𝑇𝑑𝑑𝑎𝑎𝑐𝑐
𝐶𝐶𝑂𝑂2 − 𝑇𝑇ℎ𝑥𝑥

𝐶𝐶𝑂𝑂2� +

0.56𝑐𝑐𝐶𝐶𝑎𝑎𝑂𝑂�𝑇𝑇𝑑𝑑𝑎𝑎𝑐𝑐𝐶𝐶𝑎𝑎𝑂𝑂 − 𝑇𝑇ℎ𝑥𝑥𝐶𝐶𝑎𝑎𝑂𝑂�� ,     ∀𝑡𝑡 ∈ 𝑇𝑇       (7) 

𝑃𝑃𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑡𝑡𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑡𝑡

𝑛𝑛𝑔𝑔 + 𝑝𝑝𝑡𝑡𝑤𝑤 + 𝑝𝑝𝑡𝑡𝑠𝑠,      ∀𝑡𝑡 ∈ 𝑇𝑇 (8) 

𝑝𝑝𝑡𝑡𝑑𝑑𝑑𝑑 = 𝜙𝜙𝑚𝑚𝑡𝑡
𝐶𝐶𝑂𝑂2 ,    ∀𝑡𝑡 ∈ 𝑇𝑇                                   (9) 

0 ≤ 𝑝𝑝𝑡𝑡𝑤𝑤 ≤ 𝑃𝑃𝑝𝑝𝑎𝑎𝑥𝑥
𝑤𝑤 ,     ∀𝑡𝑡 ∈ 𝑇𝑇                                       (10) 

0 ≤ 𝑝𝑝𝑡𝑡𝑠𝑠 ≤ 𝑃𝑃𝑝𝑝𝑎𝑎𝑥𝑥
𝑠𝑠 ,     ∀𝑡𝑡 ∈ 𝑇𝑇                                (11) 

0 ≤ 𝑝𝑝𝑡𝑡
𝑛𝑛𝑔𝑔 ≤ 𝑃𝑃𝑝𝑝𝑎𝑎𝑥𝑥

𝑛𝑛𝑔𝑔 ,     ∀𝑡𝑡 ∈ 𝑇𝑇   (12) 

𝑚𝑚𝑡𝑡
𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑡𝑡−1

𝑐𝑐𝑐𝑐 + 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐∆𝑡𝑡,     ∀𝑡𝑡 ∈ 𝑇𝑇   (13) 

−𝑅𝑅𝑝𝑝𝑎𝑎𝑥𝑥
𝑐𝑐𝑐𝑐 ≤ 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐 ≤ 𝑅𝑅𝑝𝑝𝑎𝑎𝑥𝑥

𝑐𝑐𝑐𝑐 ,     ∀𝑡𝑡 ∈ 𝑇𝑇                 (14) 

0 ≤ 𝑚𝑚𝑡𝑡
𝑐𝑐𝑐𝑐 ≤ 𝑀𝑀𝑝𝑝𝑎𝑎𝑥𝑥

𝑐𝑐𝑐𝑐 ,     ∀𝑡𝑡 ∈ 𝑇𝑇                 (15) 

𝑚𝑚𝑡𝑡
𝑐𝑐𝑐𝑐 = 0, 𝑡𝑡 ∈  {0,𝑇𝑇}                           (16) 

𝑚𝑚𝑡𝑡
𝑐𝑐 = 𝑚𝑚𝑡𝑡−1

𝑐𝑐 + 𝑟𝑟𝑡𝑡𝑐𝑐∆𝑡𝑡,     ∀𝑡𝑡 ∈ 𝑇𝑇                (17) 

−𝑅𝑅𝑝𝑝𝑎𝑎𝑥𝑥
𝑐𝑐 ≤ 𝑟𝑟𝑡𝑡𝑐𝑐 ≤ 𝑅𝑅𝑝𝑝𝑎𝑎𝑥𝑥

𝑐𝑐 ,     ∀𝑡𝑡 ∈ 𝑇𝑇                (18) 

0 ≤ 𝑚𝑚𝑡𝑡
𝑐𝑐 ≤ 𝑀𝑀𝑝𝑝𝑎𝑎𝑥𝑥

𝑐𝑐 ,     ∀𝑡𝑡 ∈ 𝑇𝑇                         (19) 

𝑚𝑚0
𝑐𝑐 = 𝑚𝑚𝑇𝑇

𝑐𝑐                                               (20) 

𝑥𝑥𝑡𝑡𝑐𝑐 ≤ 𝑋𝑋𝑝𝑝𝑎𝑎𝑥𝑥
𝑐𝑐 ,     ∀𝑡𝑡 ∈ 𝑇𝑇                           (21) 

𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐 + 𝑥𝑥𝑡𝑡𝑐𝑐 = 𝑋𝑋𝑝𝑝,     ∀𝑡𝑡 ∈ 𝑇𝑇                          (22) 

0.56𝑥𝑥𝑡𝑡𝑐𝑐 = 𝑋𝑋𝑠𝑠 + 𝑟𝑟𝑡𝑡𝑐𝑐 ,     ∀𝑡𝑡 ∈ 𝑇𝑇                (23) 

𝑚𝑚𝑡𝑡
𝐶𝐶𝑂𝑂2 = 0.44𝑥𝑥𝑡𝑡𝑐𝑐∆𝑡𝑡,     ∀𝑡𝑡 ∈ 𝑇𝑇               (24) 

The objective of the model is to minimize energy 
cost as given by equation (1), where the sales of hydro-
gen is subtracted to encourage heat recovery. Equation 
(2)-(7) are the PEM plant constraints defined as follows:  
the PEM electrical energy supply constraint (2); the water 
flow balance for the PEM (3); the 𝐻𝐻2(𝑔𝑔) output (4);  𝐶𝐶2(𝑔𝑔) 
output (5); power equilibrium at the PEM (6); and the HX 
thermal energy balance (7). In (2), 𝛼𝛼 is the Gibb’s free en-
ergy, ∆𝐺𝐺, of water at the operating temperature (353K) in 
MWh/kg. This is obtained from the value of ∆𝐺𝐺 in kJ/mol 
expressed as [11], [12], [13]: 

 

∆𝐺𝐺 = 𝑚𝑚𝐹𝐹 (1.229 − 0.0009(𝜏𝜏 − 298))  (25) 

where 𝑚𝑚 = 2 is the number of electrons transferred in the 
electrolysis of a molecule of water, 𝐹𝐹 = 96485𝐶𝐶 is Fara-
day’s constant and 𝜏𝜏 is the temperature in Kelvin. Equa-
tions (8)-(12) and (13)-(26) are the energy supply con-
straints and mass flow constraints for the flexible DAC 
plant; the reader is referred to [7] for a detailed descrip-
tion of these constraints. The energy supply constraints 
are briefly defined as follows: power equilibrium at the 
supply bus (8), variable calciner and compressor demand 
(9), wind power generator boundary (10), solar genera-
tion constraint (11), and NGG capacity constraint (12).  
The mass flow constraints for the DAC plant are defined 
as follows: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 storage silo mass flow dynamics (13), 
silo flowrate (14) and capacity limits (15); capture rate en-
forcement constraint for the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 silo (16), which en-
sures all the captured 𝐶𝐶𝐶𝐶2(𝑔𝑔) is regenerated; 𝐶𝐶𝐶𝐶𝐶𝐶 silo mass 
flow dynamics (17), flowrate (18) and capacity limits (19);  
capture rate enforcement constraint for the 𝐶𝐶𝐶𝐶𝐶𝐶 silo (20); 
calciner throughput limit (21); coupling constraint be-
tween the calciner and the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 silo (22); coupling con-
straint between the calciner and the 𝐶𝐶𝐶𝐶𝐶𝐶 silo (23) and a 
constraint to compute the mass of 𝐶𝐶𝐶𝐶2(𝑔𝑔) regenerated. 
Table 2 shows the model decision variables that are op-
timized. 

Data 
The parameters of the model are shown in Table 1. De-
tails of the RE profiles and the DAC parameters have 
been provided in [7].  

RESULTS AND DISCUSSION 
This paper models 𝐻𝐻2(𝑔𝑔) production from waste heat 

from a liquid solvent DAC plant using a PEM. The PEM is 
assumed to be able to make use of all the heat recovered 
to produce the 𝐻𝐻2(𝑔𝑔), thus, the PEM size is not limiting.  In 
this section, PEM output and the impact of this modifica-
tion on the overall energy cost of the plant are discussed. 

PEM Performance and Energy Consumption 
Over the 336 hours modeled, which represent vari-

ation in renewable energy supply, a total of about 
910,890 kg of 𝐻𝐻2(𝑔𝑔) is produced, which translates to about 
2,711 kg/h. This level of production would need a 136 MW 
PEM, if losses are ignored. Given that the higher heating 
value (HHV) of 𝐻𝐻2(𝑔𝑔) is about 0.0394 MWh/kg, the output 
energy is close to 35,889 MWh of energy produced at an 
average rate of 106 MW, which is equivalent to 78.4% ef-
ficiency. This efficiency value would be lower if all the 
losses are considered. However, it would still result in a 
better efficiency compared to using the recovered heat 
to generate power using an organic Ranking cycle, whose 
efficiency is less than 30%. 
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Table 1: Model Parameters 

Pa-
rame-
ter 

Description Value and 
Units 

𝐶𝐶𝑐𝑐 Carbon tax  $/tonne-
𝐶𝐶𝐶𝐶2 

𝐶𝐶𝑖𝑖 NGG carbon intensity  tonne-
𝐶𝐶𝐶𝐶2/MWh 

𝐶𝐶𝐻𝐻2  Price of 𝐻𝐻2(𝑔𝑔)  $/kg 
𝐶𝐶𝑛𝑛𝑔𝑔 Cost of natural gas  $/MWh 
𝑐𝑐𝐶𝐶𝑂𝑂2 Specific heat capacity of 𝐶𝐶𝐶𝐶2  kJ/kg/K 
𝑐𝑐𝑂𝑂2 Specific heat capacity of 𝐶𝐶2  kJ/kg/K 
𝑐𝑐𝐻𝐻2𝑂𝑂 Specific heat capacity of 

𝐻𝐻2𝐶𝐶 
 kJ/kg/K 

𝑐𝑐𝐻𝐻2  Specific heat capacity of 𝐻𝐻2  kJ/kg/K 
𝑐𝑐𝐶𝐶𝑎𝑎𝑂𝑂 Specific heat capacity of 

𝐶𝐶𝐶𝐶𝐶𝐶 
 kJ/kg/K 

𝑀𝑀𝑝𝑝𝑎𝑎𝑥𝑥
𝑐𝑐  𝐶𝐶𝐶𝐶𝐶𝐶 silo capacity  tonnes 

𝑀𝑀𝑝𝑝𝑎𝑎𝑥𝑥
𝑐𝑐𝑐𝑐  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 silo capacity  tonnes 
𝑃𝑃𝑑𝑑𝑑𝑑 Fixed DAC demand  MW 
𝑃𝑃𝑝𝑝𝑎𝑎𝑥𝑥
𝑛𝑛𝑔𝑔  NGG capacity  MW 

𝑃𝑃𝑝𝑝𝑎𝑎𝑥𝑥
𝑠𝑠  Maximum PV power  MW 

𝑃𝑃𝑝𝑝𝑎𝑎𝑥𝑥
𝑤𝑤  Maximum wind power  MW 

𝑅𝑅𝑝𝑝𝑎𝑎𝑥𝑥
𝑐𝑐  𝐶𝐶𝐶𝐶𝐶𝐶 silo maximum flowrate  tonnes/h 

𝑅𝑅𝑝𝑝𝑎𝑎𝑥𝑥
𝑐𝑐𝑐𝑐  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 silo maximum flowrate  tonnes/h 
𝑇𝑇 Optimization horizon h 
𝑇𝑇𝑎𝑎 Ambient temperature  ºC 
𝑇𝑇𝑑𝑑𝑎𝑎𝑐𝑐
𝐶𝐶𝑂𝑂2  Temperature of 𝐶𝐶𝐶𝐶2 leaving 

the pre-heat cyclones of 
DAC 

 ºC 

𝑇𝑇𝑑𝑑𝑎𝑎𝑐𝑐𝐶𝐶𝑎𝑎𝑂𝑂 Temperature of 𝐶𝐶𝐶𝐶𝐶𝐶 leaving 
the calciner 

 ºC 

𝑇𝑇ℎ𝑥𝑥𝐶𝐶𝑎𝑎𝑂𝑂 Temperature of 𝐶𝐶𝐶𝐶𝐶𝐶 leaving 
the HX 

 ºC 

𝑇𝑇ℎ𝑥𝑥
𝐻𝐻2𝑂𝑂 Temperature of 𝐻𝐻2𝐶𝐶 leaving 

the HX 
 ºC 

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 PEM operating temperature 80 ºC 
𝑋𝑋𝑝𝑝𝑖𝑖𝑛𝑛
𝑐𝑐  Minimum calciner flowrate  tonnes/h 

𝑋𝑋𝑝𝑝𝑖𝑖𝑛𝑛
𝑐𝑐  Minimum calciner flowrate  tonnes/h 
𝑋𝑋𝑝𝑝 Pellet reactor flowrate  tonnes/h 
𝑋𝑋𝑠𝑠 Slaker flowrate  tonnes/h 
𝛼𝛼 Gibb’s free energy of 𝐻𝐻2𝐶𝐶 at 

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 
 
MWh/kg 

𝛽𝛽 Enthalpy of formation of 𝐻𝐻2𝐶𝐶  
MWh/kg 

𝜂𝜂 HX efficiency  
𝜙𝜙 Calciner and compressor 

consumption 
 

MWh/tonne- 
𝐶𝐶𝐶𝐶2 

∆𝑡𝑡 Timestep size h 
   

 

Sensitivity Analysis: Factors Affecting the 
Mass of Hydrogen Produced 

The production of 𝐻𝐻2(𝑔𝑔)requires both thermal and 
electrical energy. Although the amount of thermal energy 
recovered from the calciner is constant – provided the  

Table 2: Model Decision Variables 

Variable Description Units 
𝑚𝑚𝑡𝑡
𝑐𝑐 Mass of stored 𝐶𝐶𝐶𝐶𝐶𝐶 at 

time 𝑡𝑡  
tonne 

𝑚𝑚𝑡𝑡
𝑐𝑐𝑐𝑐 Mass of stored 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 at 

time 𝑡𝑡 
tonne 

𝑚𝑚𝑡𝑡
𝐶𝐶𝑂𝑂2 Mass of 𝐶𝐶𝐶𝐶2 regenerated 

at time 𝑡𝑡 
tonne 

𝑚𝑚𝑡𝑡
𝐻𝐻2 Mass of 𝐻𝐻2 produced at 

time 𝑡𝑡 
kg 

𝑚𝑚𝑡𝑡
𝐻𝐻2𝑂𝑂,𝑖𝑖𝑛𝑛 Mass of 𝐻𝐻2𝐶𝐶 flowing into 

the PEM at time 𝑡𝑡 
kg 

𝑚𝑚𝑡𝑡
𝐻𝐻2𝑂𝑂,𝑜𝑜𝑜𝑜𝑡𝑡 Mass of 𝐻𝐻2𝐶𝐶 flowing out of 

the PEM at time 𝑡𝑡 
kg 

𝑚𝑚𝑡𝑡
𝐻𝐻2𝑂𝑂,𝑝𝑝𝑝𝑝𝑝𝑝 Mass of 𝐻𝐻2𝐶𝐶 electrolyzed 

by the PEM at time 𝑡𝑡 
kg 

𝑚𝑚𝑡𝑡
𝑂𝑂2 Mass of 𝐶𝐶2 produced by 

the PEM at time 𝑡𝑡 
kg 

𝑝𝑝𝑡𝑡𝑑𝑑𝑑𝑑 Variable demand of the 
DAC plant at time 𝑡𝑡 

MW 

𝑝𝑝𝑡𝑡
𝑛𝑛𝑔𝑔 Power generated by the 

NGG at time 𝑡𝑡 
MW 

𝑝𝑝𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝 Electrical power supplied 

to the PEM at time 𝑡𝑡 
MW 

𝑝𝑝𝑡𝑡𝑠𝑠 Solar power consumed at 
time 𝑡𝑡 

MW 

𝑝𝑝𝑡𝑡𝑤𝑤 Wind power consumed at 
time 𝑡𝑡 

MW 

𝑟𝑟𝑡𝑡𝑐𝑐 Mass flow rate of the 𝐶𝐶𝐶𝐶𝐶𝐶 
silo at time 𝑡𝑡 

tonne/h 

𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐 Mass flow rate of the 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 silo at time 𝑡𝑡 

tonne/h 

𝑥𝑥𝑡𝑡𝑐𝑐 Calciner flowrate at time 𝑡𝑡 tonne/h 
   

 
𝐶𝐶𝐶𝐶2(𝑔𝑔)capture rate is enforced – the electrical input is de-
rived from RE and the NGG. The objective function of the 
optimization model penalizes the use of NGG while en-
couraging the production of 𝐻𝐻2(𝑔𝑔). Therefore, two main 
factors affect the amount of 𝐻𝐻2(𝑔𝑔) produced. 

First, if the cost of NGG is constant, the price of 𝐻𝐻2(𝑔𝑔) 
determines whether 𝐻𝐻2(𝑔𝑔) is produced. Observing the 
amount of 𝐻𝐻2(𝑔𝑔) produced per hour for the value of 
𝐶𝐶𝐻𝐻2ranging from 0.0 to 3.0 $/kg, it was established that 
the 𝐻𝐻2(𝑔𝑔) production becomes attractive at 𝐶𝐶𝐻𝐻2 =
1.67 $/kg. Considering that the higher heating value 
(HHV) of  𝐻𝐻2(𝑔𝑔) is about 0.0394 MWh/kg, this price coin-
cides with an energy price of about 42.38 $/MWh, which 
is very close to but slightly above the cost of NGG power 
from the NGG, which is 42.22 $/MWh. Figure 2 shows the 
impact of the price of 𝐻𝐻2(𝑔𝑔) on its hourly production rate. 

The second important factor affecting the 𝐻𝐻2(𝑔𝑔)pro-
duction rate is the NGG capacity. If the price is set at 
1.67 $/kg, increasing the NGG capacity increases the rate 
of 𝐻𝐻2(𝑔𝑔) production provided the PEM capacity is not lim-
ited. This is because the increase in NGG capacity in-
creases the amount of energy available for 𝐻𝐻2(𝑔𝑔) produc-
tion. The production also increases because the price of 
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𝐻𝐻2(𝑔𝑔) is set slightly higher than the cost of energy from the 
NGG. Figure 3 shows the impact of the NGG capacity on 
𝐻𝐻2(𝑔𝑔) production rate. 

 
Figure 2. Impact of 𝐻𝐻2(𝑔𝑔) price on the production rate. 
 

 
Figure 3. Impact of NGG capacity on 𝐻𝐻2(𝑔𝑔) production 
rate. 

Though the rate of production of 𝐻𝐻2(𝑔𝑔) increases with 
NGG capacity, it also leads to more emission of 𝐶𝐶𝐶𝐶2(𝑔𝑔), 
therefore, only the capacity needed to sustain the system 
is allowed, which is set at 165 MW. 

Implications of Including the PEM on System 
Energy Use Dynamics 

With flexibility in the 𝐻𝐻2(𝑔𝑔), the role of the solids stor-
age silos in minimizing curtailment vanishes, provided the 
PEM size is not a limiting factor. Therefore, the silo size 
no longer impacts the cost of energy, which departs from 
the findings in [7] where the silos played a major role in 
curtailment reduction. This is because the cheap RE fa-
cilitates the 𝐻𝐻2(𝑔𝑔) production so that none of the available 
renewable energy is curtailed. Furthermore, including the 
PEM increases the energy demand considerably such 
that no moments of oversupply exist. 

Consequently, the calciner and the NGG operate at 
full capacity throughout the optimization horizon. This is 
because there is an incentive in the objective function for 
increasing hydrogen production. The calciner operates at 
full capacity to supply the thermal demands of the PEM 
while the NGG supplies the electrical energy demand. 

However, the PEM’s output profile coincides with 
that of the RE. This is because RE provides cheap electri-
cal energy for hydrogen production, which could be used 
for both the PEM’s thermal and electrical needs. Figure 4 
shows the mass of 𝐻𝐻2(𝑔𝑔) produced by the PEM, which 
aligns with RE availability and use. 

 
Figure 4. 𝐻𝐻2(𝑔𝑔) production profile alongside RE supply 
(Smoothing was done using Savitzky–Golay filter). 

CONCLUSION 
This paper presents a linear programming optimiza-

tion model which was developed to incorporate a PEM in 
the process flow design of an LSDAC plant to maximize 
the use of waste heat for hydrogen production. Novel 
mass and energy flow constraints are developed to main-
tain energy and water supply to the PEM electrolyser. Re-
sults show that 911 tonnes of hydrogen could be pro-
duced over 336 hours of operation by a 136 MW PEM. 
Sensitivity analyses reveal that hydrogen production is 
only prioritized if its sale value is higher than the cost of 
natural gas. Under such market conditions, the produc-
tion of hydrogen would only be limited by the PEM size 
and availability of the required electrical energy. The in-
clusion of the PEM also eliminates the need for solids 
storage silos, which were previously required to enhance 
process flexibility and use of variable renewable energy. 
Future research could develop temperature-dependent 
models for the PEM hydrogen output profile to enable 
analysis of the impact of temperature on the amount of 
hydrogen produced from the recovered heat.  
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ABSTRACT 
Chemical looping ammonia synthesis (CLAS) is a new ammonia synthesis method capable of effi-
ciently synthesizing ammonia at atmospheric pressure. The low-pressure operation of CLAS sys-
tems could decrease the capital and operational costs of ammonia synthesis. Despite its early 
developmental stage, the use of standard process engineering equipment in CLAS makes it pos-
sible to reasonably assess its economic potential. In this study, we evaluated the technoeconomic 
potential of CLAS systems in comparison to a Haber-Bosch (HB) synthesis process in the context 
of green ammonia production. CLAS is more compatible with the separate nitrogen and hydrogen 
feedstocks used in green ammonia production, and cost savings from CLAS could improve the 
economic viability of green ammonia production. Ammonia synthesis loops were modeled in Aspen 
Plus and the levelized cost of ammonia (LCOA) of each system was calculated. Three CLAS sys-
tems; two high temperature and one low-temperature chemical loop, were compared to a conven-
tional HB system of equivalent size. This study found that CLAS can reduce the synthesis cost by 
90% and that the low temperature CLAS as more economically viable than the high temperature 
CLAS. The need for an external heater in the high temperature CLAS diminished any cost savings 
that would have been realized due to the low-pressure operation. This work highlights the poten-
tial of CLAS to reduce ammonia synthesis costs and emphasizes the need for further development 
of low-temperature CLAS systems. 

Keywords: Aspen Plus, Food & Agricultural Processes, Modelling and Simulations, Technoeconomic Analysis, 
Process Design 

INTRODUCTION 
Ammonia is a vital chemical for our modern society. 

Most of the industrially produced ammonia is used as a 
fertilizer to feed the global population, and the remainder 
is used to manufacture pharmaceuticals, chemicals, or 
used as a refrigerant [1]. The high energy density of am-
monia and hydrogen capacity per volume, makes ammo-
nia an attractive solution as a carbon-free energy carrier 
[1]. Because of this, ammonia is expected to play a pivotal 
role in decarbonizing notoriously difficult to abate sectors 
like aviation, and maritime shipping [2-3]. However, am-
monia production itself is a carbon-intensive and hard to 
abate sector. Global ammonia production emits 1.8% of 
annual CO2 emissions while consuming 1% of the annual 
energy demand [1]. As global reliance on ammonia grows 
with the emergence of new applications, it is crucial to 

ensure that the rising demand for ammonia production 
does not lead to a corresponding increase in CO2 emis-
sions. 

Industrial ammonia synthesis is performed by the 
Haber-Bosch (HB) process which combines nitrogen and 
hydrogen to synthesize ammonia via R1:  

N2 + 3H2  2NH3. (R1) 

Although the ammonia synthesis reaction doesn't directly 
emit carbon dioxide, it results in the emission of 2 tons of 
CO2 for every ton of ammonia produced [1]. This signifi-
cant carbon footprint stems largely from generating hy-
drogen via steam methane reforming and combusting 
natural gas to heat the process [1]. Consequently, adopt-
ing carbon-free sources for hydrogen and heating is es-
sential to curtail CO2 emissions associated with ammonia 
production. 

mailto:george.bollas@uconn.edu
https://doi.org/10.69997/sct.188791
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 Green ammonia production offers a low-carbon so-
lution for ammonia synthesis. This approach typically in-
volves generating hydrogen through water electrolysis 
and extracting nitrogen from air using an air separation 
unit (ASU). These gases are then reacted in a Haber 
Bosch (HB) reactor to produce ammonia, with the entire 
process powered by renewable energy, making it envi-
ronmentally friendly [2]. While technically viable, green 
ammonia production is not yet economically feasible in 
most cases [1]. Current efforts to lower production costs 
have primarily focused on reducing electrolyzer costs, 
with less emphasis on cost savings within the ammonia 
synthesis loop. Additionally, the HB reactor's sensitivity 
to minor fluctuations poses a challenge in integrating with 
intermittent renewable energy sources, underscoring the 
need for a more robust synthesis loop [4]. 

Chemical Looping Ammonia Synthesis (CLAS) is a 
new ammonia synthesis method that enables efficient 
ammonia production at atmospheric pressure and mild 
temperatures (<300°C) [5].  CLAS synthesizes ammonia 
in two or more steps mediated by a carrier material, typ-
ically a metal catalyst. A generalized CLAS process is 
shown in R2-R3:  

                   3M + N2  M3N2,                           (R2) 

                  M3N2 + 3H2 3M + 2NH3,             (R3) 

where nitrogen is fixed to the metal catalyst in R2 and 
removed as ammonia in R3 using hydrogen. The primary 
benefit of CLAS is its ability to circumvent the equilibrium 
constraints of the traditional HB process (R1) [5]. This al-
lows for ammonia production at reduced pressures and 
temperatures, which can significantly lower both capital 
and operational costs by enabling the use of more afford-
able compressors and reactors than those required for 
the HB process. Furthermore, CLAS is particularly well-
suited for green ammonia production, which generates 
nitrogen and hydrogen in separate streams – a require-
ment for CLAS reactors. CLAS systems can vary in their 
number of steps, carrier materials, operating tempera-
tures, and hydrogen sources making them difficult to as-
sess [5]. Despite ongoing development of more CLAS 
systems, there's a gap in assessing their technoeconomic 
viability, especially as a direct replacement for the HB 
synthesis loop in green ammonia production proposals. 
Currently, CLAS has a low technology readiness level 
(TRL) of 3. However, its use of established technologies 
such as compressors, heaters, heat exchangers, and 
fixed bed reactors allows for a reasonably confident 
early-stage economic assessment. In this work we aim to 
assess the technoeconomic feasibility of CLAS reactors 
as a drop-in replacement for a HB synthesis loop in a 
green ammonia production system. 

METHOD 

In this study, HB and CLAS systems were simulated 
in Aspen Plus and their levelized cost of ammonia (LCOA) 
were compared. For the HB process, we simulated a 
state-of-the-art loop featuring a three-bed reactor. For 
the CLAS systems, we examined two high-temperature 
processes operating at 400°C using data from two pre-
liminary catalysts (Catalyst A & B) studied in-house re-
ported in [6], and a low-temperature process operating 
at 270°C utilizing Ni-BaH2 [7]. Each synthesis loop was 
fed with 2,600 kmol/h of nitrogen and hydrogen in a ratio 
of 3:1 at a temperature of 80°C and a pressure of 5 atm 
to replicate the pressure from a PEM electrolyzer [1]. The 
capital cost of each equipment was calculated using pub-
lished correlations [8]. The levelized cost of ammonia 
was calculated using a 20-year period and 5% discount 
rate. The effect of conversion and CLAS reactor configu-
ration was studied in relation to LCOA. The details of this 
analysis are described in this section. 

Chemical Looping Reactor Model 
The chemical looping reactor models were simu-

lated at cyclical steady state using adiabatic RSTOIC re-
actors with a fixed fractional conversion of N2 [9]. In this 
context, cyclical steady state describes a condition in 
which the reactor performance is stabilized across multi-
ple chemical looping cycles and reaches a steady state. 
In this work the single reactor model shown in Figure 1.a, 
and the three-reactor model shown in Figure 1.b were 
studied. In the single reactor model, the feed gas is 
heated to the set point temperature of the chemical loop 
before being reacted. Ammonia is separated from the re-
actor outlet using a separator, and the unreacted gases 
are recycled back to the reactor using a compressor.  In 
the three-reactor setup three CLAS reactors are con-
nected in series and the feed gas is preheated in a heat 
exchanger, before being sent to the heater that is set to 
the setpoint of the chemical looping reactor. Again, am-
monia is separated from the reactor outlet, and unre-
acted N2 and H2 are recycled, forming the synthesis loop. 
Three CLAS configurations were examined, using prelim-
inary production rates of 105 µmol/gcat·h for Catalyst A, 2 
mmol/gcat·h for Catalyst B, and 28 mmol/gcat·h for Ni-BaH2 
[7]. 

Haber-Bosch Reactor Model 
The Haber-Bosch synthesis loop shown in Figure 

1.c, was simulated as a three-bed reactor system with a 
preheater and quench splits [10]. The molar flow of the 
feed, shown in Figure 1.c, was split sending 23%, 13.9% 
and 12.7% to beds 1, 2, and 3, respectively and the bal-
ance sent to the preheater [10]. The catalyst beds were 
modeled as adiabatic plugged flow reactors with a cata-
lyst void fraction of 0.33 and a density of 2200 kg/m3. 
The iron-based catalyst kinetics are described by Eq. 1 
[10]:  
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𝑟𝑟Fe = 9.5
𝜌𝜌cat

�
𝑘𝑘Fe𝑃𝑃N2𝑃𝑃H2

1.5

𝑃𝑃NH3
− 𝑘𝑘−Fe𝑃𝑃NH3

𝑃𝑃H2
1.5 �,   (1) 

where 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐 is the catalyst bulk density, 𝑃𝑃𝑖𝑖 is the partial 
pressure of component 𝑖𝑖 in bar, and 𝑘𝑘𝐹𝐹𝐹𝐹 and 𝑘𝑘−𝐹𝐹𝐹𝐹 are the 
kinetic constants for the forward and reverse reactions 
of R1 respectively as: 

𝑘𝑘Fe = 1.79 × 104𝑒𝑒�−
87,090
𝑅𝑅𝑅𝑅

�,   (2) 

𝑘𝑘−Fe = 2.75 × 1016𝑒𝑒�−
198,464
𝑅𝑅𝑅𝑅

�,   (3) 

where 𝑅𝑅 is the universal gas constant, and 𝑇𝑇 is the gas 
temperature in Kelvin.  

Auxiliary Equipment  
Auxiliary equipment was simulated to replicate real-

istic operation of each synthesis loop. A multistage com-
pressor was used to elevate the pressure from 5 atm to 
200 atm for the HB synthesis loop. The compressor in-
cludes an interstage cooler to reduce the outlet gases 
temperature to 250°C. The cooler was modeled as a heat 
exchanger with pumped cooling water as the working 
fluid. The pumps were modeled to increase the cooling 
water pressure by 1 atm with a 95% pump and driver ef-
ficiency. The cost of cooling water was not considered in 
this work. Compressors were simulated as isentropic us-
ing the ASME method with an efficiency of 95%. The 
compressors were powered by explosion proof drivers 

[8]. Heat exchangers were modeled with a 1 atm pressure 
drop across each side with a design specification to 
achieve a 50°C temperature change. The reported area 
of the heat exchangers was used to size the equipment. 
Heaters were modeled as electric heaters in Aspen Plus, 
and the duty of the heater was used to size the equip-
ment. The separator used in each model assumed to be 
an absorbent based separator with a return stream of 
250°C and a pressure drop of 1 atm [11]. The cost of sep-
aration was not included in the scope of this work.  

Economic Calculations  
The capital cost of each synthesis loop was calcu-

lated using Eq 4-6 : 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 =  ∑ 𝐶𝐶𝑗𝑗𝑛𝑛
𝑗𝑗  ,    (4) 

𝐶𝐶𝑗𝑗 = 𝐶𝐶𝐹𝐹 × 𝐴𝐴𝐴𝐴 × 𝑃𝑃𝐹𝐹 × 𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶
1000

 ,   (5) 

log10 𝐶𝐶𝐹𝐹 = 𝐾𝐾1 + 𝐾𝐾2 log10(𝐴𝐴) + 𝐾𝐾3[log10(𝐴𝐴)]2, (6) 

where 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 is the capital cost of the synthesis loop, 𝐶𝐶𝑗𝑗 is 
the bare module cost of equipment 𝑗𝑗, 𝑛𝑛 is the number of 
equipment in the synthesis loop, 𝐴𝐴𝐴𝐴 is the alloy factor 
used as 2.7 for stainless steel, 𝑃𝑃𝐹𝐹 is the pressure adjust-
ment factor for each equipment, and the chemical engi-
neering plant cost index, 𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶, was taken as 800 for 
2023 [8,12]. 𝐶𝐶𝐹𝐹 is the bare cost of the equipment defined 
by Eq. 6 where parameters 𝐾𝐾1 − 𝐾𝐾3 and 𝐴𝐴 are described 

 
 

Figure 1: Diagrams of the ammonia synthesis loops modeled in this work where; a) is the single CLAS reactor 
model, b) is the three reactor CLAS model, and c) is the three bed Haber Bosch model. 
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in Table 1 for each equipment.  

Table 1: Equipment capital cost parameters for Eq. 6 [8].  

Unit  Basis 
(A) 

K K K 

Heater Duty 
(kW) 

   

Heat Ex-
changer 

Area 
(m) 

   

Compressor Duty 
(kW) 

  - 

Driver Duty 
(kW) 

  - 

Pump Duty 
(kW) 

   

 
The reactor capital costs were calculated using Eq. 7: 

𝐶𝐶𝑟𝑟𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝑓𝑓𝑖𝑖𝑓𝑓𝐹𝐹𝑓𝑓

𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑃𝑃𝐶𝐶𝑟𝑟𝐹𝐹𝑓𝑓
𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑉𝑉

20 𝑚𝑚3�
0.52

+ 15.50 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 , (7) 

where 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 is the catalyst weight in kg, 𝑉𝑉 is the reactor 
volume in m3, 𝐶𝐶𝑟𝑟𝐹𝐹𝑓𝑓

𝑐𝑐𝑐𝑐𝑐𝑐
 is the reference reactor cost of 

$268,000, 𝐶𝐶𝑓𝑓𝑖𝑖𝑓𝑓𝐹𝐹𝑓𝑓
𝑐𝑐𝑐𝑐𝑐𝑐  is the fixed capital cost of the reactor at 

$66,800, 𝑓𝑓𝑃𝑃 is the pressure multiplier that accounts for 
the increase in vessel wall thickness at higher pressures, 
calculated as: 

𝑓𝑓𝑃𝑃 = 0.125 � 𝑃𝑃
10
� + 0.875,    (8) 

where 𝑃𝑃 is in units of bar [11]. To calculate the volume of 
the RSTOIC reactors, we first established the required 
weight of the catalyst by dividing the ammonia produc-
tion rate of each reactor by the catalyst production rate 
per gram of catalyst. Next, we determined the catalyst's 
volume using its density. Finally, we increased this vol-
ume by 25% to estimate the reactor volume. The HB cat-
alyst cost was assumed to be $15.5/kg [11] and the CLAS 
catalyst costs were calculated using the bare metal costs 
[13-15] plus an 80% markup.   

The operating cost of each synthesis loop, 𝐶𝐶𝑟𝑟𝑐𝑐, was 
calculated using Eq. 5:  

𝐶𝐶𝑟𝑟𝑐𝑐 =  ∑ 𝐶𝐶𝑗𝑗
𝑟𝑟𝑐𝑐𝑛𝑛

𝑗𝑗  ,                              (9) 

𝐶𝐶𝑗𝑗
𝑟𝑟𝑐𝑐 =  𝐶𝐶𝑗𝑗,𝑓𝑓𝑑𝑑𝑐𝑐𝑑𝑑 × 𝑒𝑒𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 × 𝑂𝑂𝑐𝑐 ,                 (10) 

where 𝐶𝐶𝑗𝑗
𝑟𝑟𝑐𝑐 is the operating cost of equipment 𝑗𝑗 in the syn-

thesis loop defined by Eq 10. 𝐶𝐶𝑗𝑗,𝑓𝑓𝑑𝑑𝑐𝑐𝑑𝑑 is the reported duty 
of equipment 𝑗𝑗, 𝑛𝑛 is the number of equipment in the syn-
thesis loop, 𝑒𝑒𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 is the cost of electricity assumed as 7 
cents per kWh, and 𝑂𝑂𝑐𝑐 is the operating period in hours. 
The levelized cost of ammonia was then calculated using 
Eq. 11 [16]: 

LCOA =  
∑

C𝑡𝑡
cap+C𝑡𝑡

op

(1+𝑟𝑟)𝑡𝑡
𝑅𝑅
𝑡𝑡=0

∑
𝑚𝑚NH3
(1+𝑟𝑟)𝑡𝑡

𝑅𝑅
𝑡𝑡=0

,                             (11) 

where 𝑇𝑇 is the lifetime of the plant, 𝑡𝑡 is the year, 𝑟𝑟 is the 
discount rate, and 𝑚𝑚𝑁𝑁𝐻𝐻3 is the annual ammonia produc-
tion in tons. The LCOA was calculated for each synthe-
sis loop using a 5% discount rate over the 20-year life-
time of the plant with an 90% uptime. 

Parameter Analysis 
Four studies were conducted to understand how 

different model parameters affect the levelized cost of 
ammonia in CLAS systems. The first study varied the re-
actor conversion rates between 1%, 5%, and 10%. The 
second study changed the number of reactors in a series, 
while varying the reactor conversion. The third study in-
volved a sensitivity analysis on the three reactor Ni-BaH2 
CLAS system, where N2 conversion, electricity cost, cat-
alyst cost, and plant uptime were varied by ±20% individ-
ually to determine their impact on the LCOA. Lastly, in the 
fourth study, a six-reactor CLAS system was studied us-
ing the Ni-BaH2 configuration with a conversion of 10% to 
determine the marginal cost of adding more reactors. 

RESULTS 
Figure 2 shows the levelized cost of ammonia for the 

single and three-reactor CLAS systems using Catalyst A, 
B, and Ni-BaH2. The figure identifies a "cost-effective" 
zone where CLAS systems are more economical than the 
HB synthesis loop, which costs $63.9/ton. Catalyst A has 
the lowest production rate of the CLAS systems studied 
(105 µmol/gcat·h), and due to this it is the least economical 
option. The low production rate requires more catalyst 
resulting in larger more expensive reactors and a higher 
LCOA. Increasing the number of reactors with Catalyst A 
did not make the system more economical than the HB 
process as shown in Figure 2. Catalyst B has a higher pro-
duction rate (2 mmol/gcat·h) than Catalyst A; however, it 
was only economically competitive in a three-reactor 
setup sized for a 10% conversion. In this case, the addi-
tion of more reactors reduced the LCOA of the configu-
ration, to where it could be cost competitive with the HB 
process. The CLAS with Ni-BaH2 is the only CLAS system 
that have economical configurations with the single reac-
tor and the three-reactor setup. The Ni-BaH2 configura-
tion is less expensive overall due to its high production 
rate (28 mmol/gcat·h) and low temperature operation. The 
high production rate reduces the amount of catalyst 
needed which in-turn reduces the reactor size and cost. 
Additionally, the low temperature operation eliminates 
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the need for large external heaters. As a result, its single 
reactor configuration can achieve a LCOA lower than the 
HB process. A six-reactor configuration with Ni-BaH2 was 
studied and shown to achieve a $9.73/ton LCOA, which 
represents an 84.8% reduction over the HB loop. The 
capital cost of the six-reactor synthesis loop is compared 
to the HB process in Table 2, showing an 82% reduction 
in capital costs. Table 2 shows that the compressor 
costs, inclusive of the driver costs, are the main differ-
ences between the two systems.   

 

 

Figure 2: LCOA for each system, highlighting the “cost-
effective zone” where systems outperform the HB loop.  

The capital contribution of each equipment in the 
synthesis loop is shown in Figure 3. In the HB synthesis 
loop, over 95% of the capital expense is attributed to the 

compressor. In the CLAS systems, the major cost con-
tributor varied significantly which each configuration. In 
the high temperature chemical loops, the need for an ex-
ternal heater drove up the capital cost making it a major 
cost contributor. In configurations with Catalyst A, the 
low production rate of the catalyst resulted in the reactor 
being the major cost driver in most configurations.  

Table 2: Synthesis loop capital cost ($Millions USD), 
comparing the six-reactor Ni-BaH2 system to the HB. 

Stream Haber-Bosch Chemical Loop 
Compressor   
Reactor + Catalyst   
Heat Exchanger   
Pump   
Total   

 
A sensitivity analysis was performed on the three-

reactor Ni-BaH2 CLAS system at 5% conversion. The re-
actor conversion, electricity cost, catalyst cost, and plant 
uptime were varied ± 20% and the effects on the LCOA 
were recorded. Figure 4 presents the change in LCOA as 
a result of the sensitivity analysis showing that the LCOA 
is most sensitive to changes in the reactor conversion. A 
20% decrease in conversion increased the LCOA by 47%, 
while a 20% increase in conversion decreased LCOA by 
25.5%. A ±20% change in electricity costs resulted in a 
proportional ±11% change in LCOA. Finally, a ± 20% 
change in catalyst cost and uptime had little effect on the 
LCOA.  

 
Figure 3: The capital contribution of each equipment in the synthesis loops studied where R represents the number 
of reactors and the percentage represents the N2 conversion of the reactors. 
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Figure 4: Percent change in Levelized Cost of Ammonia 
(LCOA) in response to a ± 20% change in various model 
parameters: Tornado Diagram Analysis. 

Figure 5 shows the energy demand of the Ni-BaH2 
CLAS configurations compared to the HB system. Figure 
5 shows that the CLAS systems can reduce energy de-
mand by 86% compared to the HB process, when a six-
reactor configuration is used. However, CLAS systems 
with low conversion (< 1%) can consume more energy 
than the HB process. Low conversion systems have a 
higher recycling rate which requires more energy to op-
erate their compressors. On the other hand, CLAS sys-
tems with higher conversion have reduced recycling 
needs and consequently lower energy demands. Never-
theless, CLAS is a more energy-efficient method for am-
monia synthesis as the majority of configurations studied 
are more energy efficient than the HB system. 

 
Figure 5. Energy required to produce 585 tons NH3 per 
day from the Ni-BaH2 CLAS systems compared to the HB 
system. 
 
 

DISCUSSION 
This study demonstrates the significant potential of 

chemical looping ammonia synthesis reactors in reducing 
ammonia production costs. By operating at a lower pres-
sure (5 atm) compared to the Haber Bosch (HB) reactor 
(200 atm), CLAS can decrease the synthesis loop cost 
from $63.9/ton to $9.95/ton at a scale of 585 tNH3/day. 
This study shows that the cost reduction in CLAS sys-
tems is largely due to lower compressor costs, a major 
cost factor in the HB synthesis loop. However, these sav-
ings are not just due to reduced pressure but also be-
cause CLAS operates at lower temperatures, eliminating 
the need for costly external heating. In contrast to the 
adiabatic HB reactor, CLAS requires active temperature 
control. Therefore, focusing on mild temperature (T < 
300°C), low-pressure CLAS systems could significantly 
lower ammonia production costs compared to the HB 
process. This reduction in synthesis cost is achievable 
today using a Ni-BaH2 CLAS with reported production 
values. Among the studied systems, the Ni-BaH2 CLAS 
had the lowest LCOA due to its high production rate (28 
mmol/gcat·h) and low temperature and pressure opera-
tion. A three-reactor system using Ni-BaH2 had a LCOA 
of $9.95/ton while the six-reactor system had a LCOA of 
$9.73/ton. The additional reactors did not significantly 
improve the LCOA beyond the three-reactor system.  

Despite its low TRL, the equipment similarities be-
tween CLAS and HB systems enable early economic 
evaluations of CLAS. This research highlights contrasting 
cost dynamics between the equipment in a HB system 
and a CLAS system. While the HB system has low catalyst 
costs and high reactor vessel costs, the CLAS system 
have low reactor vessel costs and high catalyst costs. 
These cost differences effectively balance each other 
out when the total reactor costs are considered. In the 
HB system, the compressor costs are high because of the 
elevated pressure, whereas the compressor costs in the 
CLAS system is driven by the high recycle rate. Notably, 
if reactor conversion in CLAS is too low (≤1%), its com-
pressor costs can surpass those of the HB system. CLAS 
need an external heater, which is an important consider-
ation to factor into future CLAS developments. In this 
work external heat was provided by an electrically driven 
heater, alternative renewable heating sources could be 
studied to reduce the heating costs.  

This early economic evaluation sheds light on the 
economic potential of CLAS systems in development. 
However, there are three limitations in this work. Firstly, 
the catalyst production rate at 1 atm is assumed to be the 
same at 5 atm. CLAS production rates have not been ex-
tensively studied at elevated pressures therefore the re-
ported production rate at 1 atm is used. Presumably, ele-
vated pressures would increase the production rate of 
the CLAS improving the performance of the CLAS studied 
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and reducing their LCOA. Secondly, the analysis assumes 
the catalyst can last for the lifetime of the plant. There's 
a lack of long-term data on catalyst longevity and meth-
ods for their regeneration in CLAS systems. Shorter re-
generation cycles and rising catalyst costs could signifi-
cantly impact the levelized cost of ammonia by necessi-
tating frequent expensive catalyst replacement. Lastly, 
the equipment sizing assumes that nitrogen and hydro-
gen are present in each equipment simultaneously. This 
is not accurate because CLAS alternate gas flows, which 
results in the CLAS equipment being oversized. While this 
is not optimal, it does provide a margin of contingency in 
relation to the CLAS cost estimates.  

Future research into CLAS should focus on two key 
areas: the development of low-temperature CLAS sys-
tems and the exploration of strategies to maintain cata-
lyst activity. The emphasis on low-temperature CLAS is 
crucial due to the economic challenges posed by high-
temperature systems, which require substantial external 
heating. On the other hand, given the significant impact 
of catalyst costs on CLAS economics, finding ways to 
prolong catalyst life is essential. This involves conducting 
long-term tests to establish replacement timelines and 
understand degradation processes. Additionally, it is im-
portant to develop environmentally friendly methods for 
catalyst regeneration. 

CONCLUSION 
This study evaluated the technoeconomic potential 

of chemical looping ammonia synthesis (CLAS) reactors 
compared to a state-of-the-art Haber Bosch loop using 
Aspen Plus simulations. Three CLAS configurations were 
studied, two high temperature CLAS using preliminary 
catalyst performance data and one low-temperature 
CLAS using Ni-BaH2 as a catalyst. Studies were per-
formed focusing on the number of reactors in series, their 
conversion, and a sensitivity analysis on operating varia-
bles. The chemical loop with the lowest LCOA was the 
low temperature Ni-BaH2 chemical loop, due to its effi-
cient operation at low temperature and pressure. The Ni-
BaH2 chemical loop could reduce the LCOA by 90% when 
compared to the HB process, when 6 reactors were sim-
ulated in series. The study emphasizes the significance 
of operating CLAS at moderate temperatures to maxim-
ize cost savings because the need for an external heater 
can diminish the cost benefits of low-pressure operation, 
as was seen in the high temperature chemical loops. De-
spite CLAS's low TRL, its integration of existing technol-
ogies like compressors, heat exchangers, heaters, and 
fixed bed reactors make it possible to evaluate their eco-
nomic viability even at this early stage. Future research 
should focus on the long-term catalyst degradation and 
regeneration, and performance at varied pressures to op-
timize CLAS further. This study underscores the need for 

ongoing research to make ammonia synthesis more cost-
effective and sustainable. 
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ABSTRACT 
The growing electrification of buildings and vehicles, while a natural step towards achieving global 
decarbonization, poses some challenges for the electric grid in terms of power consumption. One 
way of addressing them is by deploying onsite, behind-the-meter resources (BTMR), such as bat-
tery energy storage and solar PV generation. The optimal design of these systems, however, is a 
demanding task that depends on the integration of multiple complex subsystems. In this work, the 
optimal integrated design and dispatch of BTMR systems for retail buildings with electric vehicle 
fast charging stations is addressed. A framework is proposed, combining high-fidelity simulation 
(of buildings, electric vehicle fast charging stations, and BTMR), predictive control strategies with 
closed-loop implementation, and a derivative-free design method that explores parallelization and 
high-performance computing. Focus is given to the design layer, highlighting the effect of paral-
lelization on the choice of the method, computational effort, and types of results. A case study of 
a big-box grocery store with an EV fast charging station is presented, and its optimal BTMR system 
is identified in terms of equipment sizes, costs (capital, utility, lifecycle, and levelized) and resili-
ency against outages, demonstrating great potential for real-world applications. 

Keywords: Battery Energy Storage, Distributed Generation, Electric Vehicle Fast Charging, Model Predictive 
Control, Derivative-free Optimization. 

INTRODUCTION 
Electrification is held as one of the fundamental pil-

lars for achieving widespread decarbonization, especially 
for historically fuel-dominated sectors such as transpor-
tation (now the largest contributor to greenhouse gas 
emissions in the United States [1]). This trend, however, 
comes with its own challenges. Widespread electrifica-
tion will generate loads not seen in the past – a single 
electric vehicle (EV) fast charger can have a comparable 
load to an entire commercial building or hundreds of sin-
gle-home residences, while a fast charging station can 
overshadow its building counterpart [2]. These loads, if 
not addressed adequately, will incur hefty penalties in the 
form of utility charges and power distribution upgrades. 

One way of reducing the peak demand and overall 
energy consumption of these systems is by employing 
onsite, distributed, behind-the-meter (BTM) resources 
(BTMR), such as energy storage and generation – battery 
storage and solar PV generation being the most notable 

examples – as shown in Figure 1. This allows the system 
to generate renewable solar energy during the day and 
store it for later when either demand or prices are high 
(reducing both energy and demand charges), as well as 
to reduce the peak demand by charging the battery in 
advance and using it instead of the grid to meet the sys-
tem’s demand (reducing demand charges).  

The design of BTMR systems, however, is a chal-
lenging task integrating multiple time scales, complex 
subsystems and application-specific parameters (e.g., 
expected building and EV charging loads, climate data, 
utility tariff, and power distribution capacity). The most 
cost-effective design of such systems also depends on 
their day-to-day operation in response to all these fac-
tors over long time periods. Moreover, the high variability 
of loads such as for EV fast charging requires a high-res-
olution time step to accurately predict system sizes. 

Several tools and works have addressed this prob-
lem in the past. REopt [4], DER-CAM [5], and DER-VET 
[6] are examples of free software tools, while HOMER and 
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Energy Toolbase are examples of commercial software. 
The majority of these tools employ a structured, mixed-
integer linear programming (MILP) optimization frame-
work that solves an integrated design and dispatch prob-
lem. This allows the representation of a large variety of 
technologies [4], buildings and microgrid configurations 
[5, 6], but hinder accuracy. The building (and EV charg-
ing) loads are typically treated as exogeneous inputs, ob-
tained from historical records or pre-computed hypo-
thetical profiles. Detailed simulation models, essential for 
capturing equipment performance and financial mecha-
nisms and validating the solutions generated by the sim-
plified dispatching models, are not supported. The 
closed-loop implementation of the control solutions is 
also a critical missing component, overlooking forecast 
errors and their associated limitations (the projection of 
peak demand charges over the following month being 
one of the biggest challenges). Lastly, 1 minute time dis-
cretization, required to capture EV fast charging dynam-
ics, are difficult to implement (using a year-long horizon, 
necessary for solar generation) without facing scalability 
issues.  

 
Figure 1. Diagram of behind-the-meter resources. 
(adapted from [3]) 

To address these limitations, a novel framework is 
proposed for simulation-based design of BTMR. This 
framework is used as the basis for the NREL tool EVI-
EDGES (Electric Vehicle Infrastructure - Enabling Distrib-
uted Generation and Energy Storage) [7].  

METHODOLOGY 
An overview of the methodology framework is pre-

sented in Figure 2. Each individual component is de-
scribed in the following subsections. 

 
Figure 2. Methodology for sizing behind-the-meter 
resources. 

Simulation 
The simulation environment is composed by three 

main components: building, electric vehicle charging sta-
tion, and BTMR (battery energy storage, PV, thermal 
storage).  In its simplest form, the first two models can be 
pre-solved before running the framework (for instance, 
when solving the base case without BTMR), while the 
third group of models needs to be solved in real-time with 
the control layer. When thermal storage (either active or 
passive) is present (in other words, when the operation 
of building cooling and heating equipment can be shifted 
in time), the building load depends on the BTMR dispatch 
and can no longer be detached and pre-simulated [8]. 
Thus, ideally, all the models would be integrated and 
solved simultaneously, allowing the consideration of in-
teraction effects between them (e.g., battery thermal 
gain affecting the building indoor temperature, or EV 
charging schedule affected by the buildings loads). 

Building 
The building thermal and electrical loads are gener-

ated using EnergyPlus (U.S. Department of Energy, 
2023), a whole building energy simulation program with 
a rich database of construction material properties that 
allows the accurate representation of interactions be-
tween building zones and environment, and its resulting 
energy consumption (e.g., heating, cooling, ventilation, 
lighting, and plug loads). In its most general form, the 
framework allows passing operating setpoints from the 
control block to the building simulation, scheduling the 
operation of electrically-driven HVAC equipment such as 
chiller or heat pumps, in turn affecting the building’s elec-
trical load. The battery is placed inside of one of the 
building’s zones with temperature control, modeling ther-
mal interaction that determines zone cooling loads as 
well as battery thermal degradation and effects. 

Electric Vehicle Charging Station 
The EV fast charging station is simulated using an 

Real-Time Simulation

Building (EnergyPlus)1,
EV Charging (EVI-EnSite)1, 

BTMR: Battery (SAM), 
PV (PVWatts), TES (custom)2

Model Predictive Control

Dispatch BTMR (simplified 
model) minimizing utility 

and degradation costs

Control actions (BTMR dispatch) 
closed-loop implementation

Parallel Derivative-free 
Design

Minimize lifecycle cost

Equipment size: Battery energy storage and solar PV 

State measurements (battery SOC)
Perfect day-ahead forecast

System lifecycle cost (over n years, projected using 
365 days of simulation data)

1Electrical loads can be pre-computed depending on the level of detail required
2Not included in this work
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agent-based model (NREL’s EVI-EnSite [9]). Input data 
includes probability distributions of vehicle arrival time 
and arrival state-of-charge (SOC), the number of vehicle 
arrivals per day or week, as well as general vehicle type-
related characteristics, such as battery size and charge 
acceptance curves (power x SOC). The vehicle charging 
process is simulated by assigning arriving vehicles to un-
occupied charging ports following a certain metric (usu-
ally either first-in-first-out, or a managed-charging 
schedule based on cost minimization). In case all charg-
ing ports are occupied, the arriving vehicles are queued 
and must wait in order to charge. Typically, the charging 
station design (i.e., number of charging ports and charg-
ing port power level) is performed to minimize the queue-
ing time distribution (mean or a certain percentile), the 
latter constructed empirically by repeatedly sampling the 
input distributions in a Monte-Carlo fashion. 

BTMR: Battery Energy Storage and PV 
A detailed technoeconomic BTM battery storage 

model from NREL’s System Advisor Model (SAM) [10] is 
employed to simulate the real system’s performance (as 
opposed to the simplified battery model inside of the 
MPC formulation). This model is able to represent differ-
ent battery types (lithium-ion, lead-acid, redox flow) and 
multiple chemistries of lithium-ion batteries (LMO, LTO, 
LCO, LFP, NMC, NCA) with associated typical voltage 
curves, thermal behavior, and lifetime degradation pro-
files. 

The solar PV panels are modeled using NREL’s 
PVWatts model [11, 12], which considers a grid-con-
nected photovoltaic system with modules/panels com-
posed by crystalline silicon or thin film photovoltaic cells. 
Inputs related to the system's physical characteristics in-
clude power capacity, module and array types, losses, 
array orientation (angles) and mounting type, as well as a 
few built-in module and inverter characteristics. 

Optimal Dispatch/Control 
The battery dispatch/control problem is formulated 

as a Linear Programming (LP) model (Nonlinear Program-
ming depending on the type of battery degradation con-
sidered [13], or Mixed-Integer Nonlinear Programming if 
thermal storage is included [8]). This problem optimizes 
the adjusted cost of operation of the system (utility costs 
and battery degradation). A condensed formulation of 
the LP problem is presented next: 

min𝜙𝜙 =𝐶𝐶𝐸𝐸 + 𝐶𝐶𝐷𝐷 + 𝐶𝐶𝑅𝑅   (1) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡  

𝐶𝐶𝐸𝐸 = Δ𝑠𝑠∑ 𝜙𝜙𝑡𝑡𝐸𝐸(𝑃𝑃𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ

𝑡𝑡 − 𝛾𝛾𝑛𝑛𝑛𝑛𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  (2) 

𝐶𝐶𝐷𝐷 = ∑ 𝜙𝜙𝑠𝑠𝐷𝐷𝑃𝑃�𝑠𝑠𝑛𝑛𝑚𝑚𝑚𝑚𝑠𝑠     (3) 

𝐶𝐶𝑅𝑅 = �𝐸𝐸𝑛𝑛𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑡𝑡=𝑡𝑡f
ℎ �(𝑅𝑅𝐶𝐶𝑃𝑃 ∗ 𝐸𝐸𝑃𝑃𝑅𝑅 + 𝑅𝑅𝐶𝐶𝐸𝐸)  (4) 

−𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑃𝑃𝑡𝑡
𝑝𝑝𝑝𝑝 + �𝑃𝑃𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ −  𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�+    
�𝑃𝑃𝑡𝑡𝑠𝑠𝑝𝑝𝑡𝑡 − 𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛� = 0     (5) 

𝐸𝐸𝑡𝑡 − 𝐸𝐸𝑡𝑡−1 = Δ𝑠𝑠�𝜂𝜂𝑖𝑖𝑛𝑛𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛 − 𝜂𝜂𝑠𝑠𝑝𝑝𝑡𝑡𝑃𝑃𝑡𝑡𝑠𝑠𝑝𝑝𝑡𝑡�  (6) 

𝐸𝐸𝑡𝑡=𝑡𝑡0
ℎ 𝑆𝑆𝑛𝑛𝑖𝑖𝑛𝑛 ≤ 𝐸𝐸𝑡𝑡 ≤ 𝐸𝐸𝑡𝑡=𝑡𝑡0

ℎ 𝑆𝑆𝑛𝑛𝑚𝑚𝑚𝑚   (7) 

𝐸𝐸𝑡𝑡=𝑡𝑡f
ℎ = 𝐸𝐸𝑛𝑛𝑚𝑚𝑚𝑚 − 𝐷𝐷𝐸𝐸𝑡𝑡=𝑡𝑡f

𝑡𝑡𝑝𝑝     (8) 

𝐸𝐸𝑡𝑡=𝑡𝑡f
𝑡𝑡𝑝𝑝 = 𝐸𝐸𝑡𝑡=𝑡𝑡i

𝑡𝑡𝑝𝑝 + Δ𝑡𝑡
2
∑ �𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛 + 𝑃𝑃𝑡𝑡𝑠𝑠𝑝𝑝𝑡𝑡�𝑡𝑡   (9) 

𝑃𝑃�𝑡𝑡̅
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ = Δ𝑡𝑡

Δ𝑡𝑡̅
∑ 𝑃𝑃𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ
𝑡𝑡∈𝑇𝑇𝑡𝑡�     (10) 

𝑃𝑃�𝑠𝑠𝑛𝑛𝑚𝑚𝑚𝑚 ≥ 𝑃𝑃�𝑡𝑡̅∈𝑇𝑇�𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ,   𝑃𝑃�𝑠𝑠𝑛𝑛𝑚𝑚𝑚𝑚 ≥ 𝑃𝑃�𝑠𝑠

𝑛𝑛𝑚𝑚𝑚𝑚,𝑖𝑖   (11) 

where indices include the time step 𝑠𝑠 ∈ 𝑇𝑇 (initial and final 
time steps 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑓𝑓); 15-min average time step 𝑠𝑠̅ ∈ 𝑇𝑇�; and 
demand charge periods 𝑑𝑑 ∈ 𝐷𝐷. Special sets include 𝑇𝑇𝑡𝑡̅ (all 
time steps 𝑠𝑠 inside of each 15-min average time step 𝑠𝑠̅); 
and 𝑇𝑇�𝑠𝑠 (all average time steps 𝑠𝑠̅ inside of each demand 
period 𝑑𝑑).  
 Parameters include the difference between time 
steps Δ𝑠𝑠 and Δ𝑠𝑠̅ (hours); battery installed cost per power 
𝐼𝐼𝐶𝐶𝑃𝑃 ($/kW) and per energy 𝐼𝐼𝐶𝐶𝐸𝐸 ($/kWh); battery replace-
ment cost per power 𝑅𝑅𝐶𝐶𝑃𝑃 ($/kW) and per energy 𝑅𝑅𝐶𝐶𝐸𝐸 
($/kWh); time-of-use energy prices 𝜙𝜙𝑡𝑡𝐸𝐸 and demand 
prices 𝜙𝜙𝑠𝑠𝐷𝐷; net-metering factor (representing the lesser 
value of selling power to the grid as opposed to purchas-
ing it) 𝛾𝛾𝑛𝑛𝑛𝑛 (decimal); battery charging and discharging ef-
ficiencies 𝜂𝜂𝑖𝑖𝑛𝑛 and 𝜂𝜂𝑠𝑠𝑝𝑝𝑡𝑡 (decimal), battery degradation per 
energy throughput 𝐷𝐷 (decimal/kWh); energy to power ra-
tio 𝐸𝐸𝑃𝑃𝑅𝑅 (kWh/kW) (from design layer); minimum and max-
imum state-of-charge 𝑆𝑆𝑛𝑛𝑖𝑖𝑛𝑛 and 𝑆𝑆𝑛𝑛𝑚𝑚𝑚𝑚 (decimal); and the 
15-min peak power demand from the previous day for 
each demand charge period 𝑃𝑃�𝑠𝑠

𝑛𝑛𝑚𝑚𝑚𝑚,𝑖𝑖 (kW). Forecasted pa-
rameters include the system electrical load (sum of 
building and EV charging) 𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 (kW), and PV generation 
𝑃𝑃𝑡𝑡
𝑝𝑝𝑝𝑝(kW).  

 Variables include the battery power charged and 
discharged 𝑃𝑃𝑡𝑡𝑖𝑖𝑛𝑛 and 𝑃𝑃𝑡𝑡𝑠𝑠𝑝𝑝𝑡𝑡 (kW); the battery energy 𝐸𝐸𝑡𝑡 
(kWh), throughput 𝐸𝐸𝑡𝑡

𝑡𝑡𝑝𝑝 (kWh), and health 𝐸𝐸𝑡𝑡ℎ (decimal); 
power purchased from and sold to the grid, 𝑃𝑃𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ and 
𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (kW); 15-min average purchased power 𝑃𝑃�𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ and 
maximum purchased power in each demand period 𝑃𝑃�𝑠𝑠𝑛𝑛𝑚𝑚𝑚𝑚 
(for demand charge calculations). All variables are non-
negative reals. 
 The objective function (1) minimizes energy cost 𝐶𝐶𝐸𝐸 
($), demand cost 𝐶𝐶𝐷𝐷 ($), and battery replacement cost 𝐶𝐶𝑅𝑅 
($). Constraints include cost calculations (2-4); power 
balance (5); battery energy storage difference equation 
(6); battery energy bounds based on its health (7); bat-
tery health at the end of the control window as a function 
of its energy throughput (8); battery energy throughput 
definition (9); 15-min averaging of power purchased from 
the grid (10); and 15-min peak demand power calculation 
(11). 
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 A control horizon of 1 day is used (typical for short-
duration energy storage problems with diurnal patterns), 
with a recalculation frequency of 1 day and a time step 
discretization of 1 minute to accurately capture the high 
variability from EV charging loads (battery and power dis-
tribution must be sized with the instantaneous load in-
stead of averages). After each horizon is solved, a time 
series of control setpoints is provided to the simulation 
for evaluating the response of the subsystems and up-
dating the stationary battery health. Then the final sys-
tem state from the simulation is set as initial point of the 
successive control problem.  

Optimal Design 
Under the formulation described above, the overall 

design problem can be posed as a nested optimization 
problem, in which each evaluation of the design layer de-
pends on the solution of a lower-level layer consisting of 
several coupled control optimization subproblems, fur-
ther complicated by their closed-loop implementation in 
the simulation environment. The objective function (sys-
tem lifecycle cost) is also time-consuming to evaluate (in 
the order of hours), which makes approximating the de-
rivatives via finite-difference methods an ineffective ap-
proach. For these reasons, only derivative-free (black-
box) optimization methods were considered [14, 15]. 

These methods are generally classified according to 
the properties of the black-box oracle function [15], 
which in the present case is assumed to be deterministic, 
generally nonconvex and non-smooth, multimodal (alt-
hough empirically observed to be unimodal), uncon-
strained, with bounded feasible region (decision varia-
bles are typically nonnegative real variables, with upper 
bounds determined from space and weight constraints or 
heuristics), and time-consuming evaluation (hours). The 
latter is a key characteristic that prohibits or hinders the 
application of direct-search methods such as Nelder-
Mead (with a low number of simplex vertices) or trust-
region methods, which require several iterations to con-
verge. 

The ability to parallelize (concurrent) function eval-
uations is considered as a critical feature to determine 
the choice of method. Most optimization methods tend to 
minimize the total number of function evaluations over 
the entire algorithm, as opposed to minimizing the time 
required to solve the problem (typically proportional to 
each other). When each function evaluation is time con-
suming, however, it is more efficient to parallelize as 
many concurrent evaluations as possible, then use the 
ensemble information to perform the search.  

Sequential Grid Search Method 
A sequential grid search method is employed, which 

samples the decision space using symmetric hypercubes 
that begin by covering the whole feasible space and 
shrink around the observed optimum after each iteration. 

In other words, after each iteration, the optimum point is 
identified between two (if the solution lies at the bounds) 
or three (if it falls in the middle) grid points in each direc-
tion, which are set as the new bounds for the reduced 
grid at the next iteration (previously evaluated points are 
reused for the new grid to reduce effort). The number of 
function evaluations for each iteration depends on the 
number of discrete points in each of the grid’s independ-
ent coordinates (variables). For a problem with three de-
cision variables, the number of evaluations will then be 
equal to the number of points to the power of three. This 
points out the major deficiency of this approach, which is 
its scalability with the number of decision variables. While 
it is efficient for this problem setup, it becomes more 
challenging when including other design variables (e.g., 
TES or charging station). The method is illustrated in Fig-
ure 3, showing the evolution of the grid and optimal point 
throughout subsequent iterations.  

 After each iteration, a surrogate model can be 
fitted and the next-iteration grid can be generated 
around the surrogate optimum instead of the sampled 
one. However, the benefit of this approach is not guaran-
teed, as it depends on how well the surrogate represents 
the real underlying function. If the surrogate model does 
not capture the function appropriately, it can mislead the 
search and affect it negatively, adding iterations and in-
creasing the runtime. It was empirically observed that low 
order polynomial models do not add a significant value in 
predicting the true optimum location and were thus not 
employed. 

 
Figure 3. Illustration of a 3-dimensional sequential grid 
search with 5 points in each direction and 3 iterations. 
used to interpolate the optimum location.  

Accuracy and Computational Effort 
The upper bound on the final accuracy level 𝛿𝛿𝑥𝑥𝑛𝑛𝑖𝑖 

(difference between two evaluated points) after 𝑛𝑛𝑖𝑖 
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iterations, using 𝑛𝑛𝑝𝑝 points in each direction (assuming the 
same number of points for all directions), and starting 
with an initial range 𝛥𝛥𝑥𝑥0, is given in (12). Solutions ob-
tained at the grid boundaries at any iteration will have a 
better accuracy due to its one-sided shrinkage (as op-
posed to two-sided shrinkage necessary for non-bound-
ary solutions). 

𝛿𝛿𝑥𝑥𝑛𝑛𝑖𝑖 = (2𝑛𝑛𝑖𝑖−1𝛥𝛥𝑚𝑚0)
�𝑛𝑛𝑝𝑝−1�

𝑛𝑛𝑖𝑖     (12) 

Two ways of refining the solution accuracy consist 
in increasing the number of evaluation points (𝑛𝑛𝑝𝑝) or num-
ber of iterations (𝑛𝑛𝑖𝑖). To guide the parameter tuning de-
cision, the final solution accuracy (relative to the initial 
range 𝛥𝛥𝑥𝑥0) and computational effort (in terms of core-
hours, a typical measure for HPC systems) are presented 
in Table 1. It is assumed that each design evaluation point 
(one year simulation with closed-loop optimal control) 
has a runtime of approximately 2 hours, and that the 
number of cores equals the number of evaluated design 
points. Cells with final solution accuracy under 1% of the 
initial range are highlighted in bold in both tables.  

Table 1: Solution accuracy and computational effort 
over varying number of grid points (cols) and iterations 
(rows). 
𝒏𝒏𝒑𝒑         
𝒏𝒏𝒊𝒊 Final Solution Accuracy (Upper Bound on Error Margin) h 
 % % % % % % %  
 % % % % % % %  
 % % % % % % %  
 % % % % % % %  
 % % % % % % %  
 % % % % % % %  
 % % % % % % %  
 % % % % % % %  
 % % % % % % %  
 % % % % % % %  

 Computational Effort (Core-Hours)  
         
         
         
         
         
         
         
         
         
         

 
For the presented setup, the number of grid points 

should be equal or greater to 5 (using 4 points requires 
at least 10 iterations, which would entail 20 hours of 
runtime), while the appropriate number of iterations var-
ies between 3 and 6 (runtime of 6 and 12 hours). The bot-
tom table shows that computational effort increases 
more rapidly with the number of grid points (total number 
of evaluations/cores per iteration is given by 𝑛𝑛𝑝𝑝3) than it-
erations, although the latter increases runtime linearly by 
2 hours. The final setup (grid coarseness and number of 
iterations) should thus be a function of several factors, 
including required solution time, number of parallel cores 

available, and acceptable solution accuracy. 
In summary, a few conditions that encourage the 

application of this method include time-consuming ob-
jective function evaluation (in the order of hours); small 
number of design variables (up to 3 or 4); high parallel-
ization (100s of concurrent function evaluations); 
bounded feasible region; and an acceptable final solution 
accuracy within 1% of initial range. 

CASE STUDY 

Building Model 
A big-box grocery store building energy model, de-

veloped and validated in [2], was employed in this work. 
This represents a common type of commercial building in 
the United States, at which EV fast charging stations are 
expected to be increasingly deployed in the near future – 
fast charging stations in retail buildings will attract cus-
tomers and bring additional revenue, increasing business 
competitiveness, while also providing charging access to 
disadvantaged areas with lacking access to home charg-
ing. The building model has 18 thermal zones, 136 sur-
faces, and 263 sub-surfaces (e.g., windows, doors), and 
an area of approximately 20,000 m2. Figure 4 presents 
the 3D model of the building, with different zones roughly 
separated by solid roof lines, while the electrical load 
generated by the building (from HVAC and plug loads) is 
presented in Figure 5. 

 
Figure 4. 3D model of the generic big-box grocery store 
from OpenStudio. 

Electric Vehicle Charging Loads 
A fast charging station with two 150 kW charging ports 
and 6 events per port per day was simulated. The load 
profile is presented in Figure 6. Default inputs for com-
monly used EVs were employed (vehicle battery size, 
charge acceptance curves), while the probability distri-
butions (vehicle arrival time and SOC) were correlated to 
the building occupation patterns. The load has a high var-
iability (spikiness), which may not significantly increase 
the total energy consumption, but will likely result in a 
higher peak demand, affecting the sizes of both the 
power distribution system and energy storage, as well as 
utility demand charges. 
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Figure 5. Building electrical load over a week for all 
weeks in a year. 

 
Figure 6. Violin plot (left) and weekly profile (right) of EV 
fast charging electrical load (one week shown as the dark 
line, remaining weeks in the background). 

Utility Rate Structure 
A utility rate tariff structure based on a high-price 

region (PG&E in Northern California) is used. The demand 
and energy prices are shown in Figure 7.  

s  
Figure 7. Utility rate tariff: demand (top) and energy 
(bottom) prices. 

Location/Weather Inputs 
The most relevant location-dependent weather pa-

rameters are presented in Figure 8, namely, ambient tem-
perature (which drives the building energy consumption 
and equipment efficiency) and solar irradiance (which 
drives building heat gains and solar PV power genera-
tion). The city of Tucson, AZ, was chosen as the location 
for the study. 

 
Figure 8. Weather inputs. 

Remaining Inputs 
A summary of the remaining inputs and settings is 

presented in Table 2. 

Table 2: Remaining inputs. 

Input Value 

Life-cycle Analysis Horizon  years 

Discount Rate % 

Battery Installed Cost $/kW + $/kWh 

PV Installed Cost $/kW 

PV initial range  –  kW 

Battery initial range  –  kW 
0 – 10,000 kWh 

Forecast Method Perfect 

PV annual degradation % 

Battery usable SOC range  – % 

Battery Chemistry LMO-LTO 
Battery cost de-escalation rate 
for replacement %/year 

Battery replacement capacity 
threshold % 

MPC time horizon  h 

MPC time step  min 
MPC demand charge time av-
eraging  min 

RESULTS 
The problem was solved using NREL’s high-perfor-

mance computing system Kestrel with dual socket Intel 
Xeon Sapphire Rapids (52-core) processors, 104 cores 
per CPU node, and 256 GB DDR5 memory. The sequential 
grid method was applied with 5 points and 6 iterations, 
achieving an accuracy upper bound of 0.8% of the initial 
range (or lower). 
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Design Solution: System Sizes and Costs 
The main results of the analysis are presented in Ta-

ble 3 for the base case (without BTMR), and the BTMR 
case (both cases with the EV charging station). The iden-
tified BTRM system consists of a battery with 390.6 kW 
capacity and 8.7 hours of duration, and a PV capacity of 
1625 kW, highlighting the potential for PV deployment in 
locations with high solar incidence. Their associated cap-
ital costs follow a similar trend, being dominated by the 
large PV deployment and its higher unit cost. In this set-
ting, the EV supply equipment (EVSE) capital cost is only 
a fraction of the BTMR system (which is not always the 
case, specially for commercial fleets). The benefits of 
BTMR deployment are shown in the metrics associated 
with electricity consumption and utility costs. Annual en-
ergy and peak demand are significantly reduced (by over 
half), in turn reducing their associated utility-related 
charges. The Levelized Cost of Charging (LCOC) (as de-
fined in [13]) demonstrates the positive impact that BTMR 
systems can have on fast charging station deployment, 
decreasing from $0.33/kWh (a typical value in the US) to 
-$0.96/kWh (negative value representing the fact that 
the BTMR system reduces the total operating cost more 
than the EVSE increases it). Finally, the lifecycle net-pre-
sent cost (adjusted capital and operating cost) indicates 
that the BTMR system increases profit gains by $1.41 mil-
lion over the system’s lifetime. 

Sensitivity Analysis 
One of the benefits of evaluating a grid of points (as 

opposed to a narrow search employed by most deriva-
tive-based methods) is that the sensitivity of the objec-
tive with respect to the decision variables can be evalu-
ated. This allows the decision maker to identify design 
solutions with low sensitivity (in which adjusting a design 
variable does not significantly affect the objective func-
tion), adding more flexibility and confidence to the final 
design solution. Figure 9 shows contour plots of net-pre-
sent cost with respect to two decision variables at a time 
(fixing the remaining one at its optimal value). Black dots 
represent points evaluated during the design procedure, 
while contour lines are generated performing interpola-
tion using cubic radial-basis functions (RBF). The top-left 
plot shows a balanced effect between the two variables, 
with nonconvexities arising for large battery duration val-
ues. The top-right plot indicates that the battery power 
affects the design solution more significantly than PV 
size (contour lines are closer to each other). A similar 
trend is observed in the bottom-left plot, where battery 
power seems to affect the objective more significantly 
than battery capacity/duration. The ripples and non-con-
vexities shown in the contour lines (more pronounced in 
the top-left plot) indicate a possibly low quality of the in-
terpolation fit. One way of improving it would be to use a 
larger number of grid points in the design method. 

Table 3: Overview of results: system sizes and costs. 

Variable Base Case BTMR 

System Sizes   

Battery Power --  kW 
Battery Storage 
(Duration) --  kWh 

( h) 
PV Power --  kW 

Capital Costs   
Battery Capital 
Cost -- $ 

PV Capital Cost -- $ 

EVSE Capital Cost $ $ 

Electricity Consumption  

Energy from Grid  MWh/year  MWh/year 
Monthly Peak De-
mand 

 kW max 
 kW mean 

 kW max 
 kW mean 

Utility Costs   

Energy charges $/year $/year 

Demand charges $/year $/year 

Levelized Costs   

EV Charging $/kWh -$/kWh 

Energy (Electricity)  $/kWh $/kWh 

Lifecycle Costs   

Net Present Cost $ M $ M 

Net Present Value -- $ M 

 
Figure 9. Contour plots of net present cost with respect 
to system design variables. 

Dispatch and Load Profiles 
The storage dispatch and load profiles (PV genera-

tion, building and EV loads, and power purchased from or 
sold to the grid) are presented in Figure 10. The first two 
subplots highlight the synergistic effect between battery 
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storage and PV generation, the former being discharged 
soon after the latter starts to decrease. The timing be-
tween PV generation and the building and EV charging 
loads also works in favor of BTMR, allowing most of the 
solar electricity generated onsite to be directly used to 
address the load. Finally, the power purchased from the 
grid shows a significant reduction in peak power demand 
(as well as energy consumption), inverting the time in 
which it happens from day to night, and the utilization of 
the net-metering mechanism to sell electricity back to the 
grid (despite its price being substantially lower than the 
purchase) during periods with solar generation surplus. 

 
Figure 10. Dispatch and load profiles over all weeks in a 
year (week 26 highlighted as the dark solid line). 

Resiliency against power outages 
The cost-optimal BTMR system sized in the previ-

ous section also has the added benefit of providing resil-
iency against grid interruptions. That is, whenever there 
is an interruption in the power grid service (average of 4 
hours, 1.4 times per year in the United States [16]), the 
battery storage (and PV generation) can be used to meet 
the system’s electrical load. However, since the battery 
operates according to a cost-optimal dispatch, there is 
no guarantee that it will be able to meet that load. To as-
sess this, the battery’s SOC at all time steps in the simu-
lated year was used to estimate its resiliency potential 
(how many time steps into the future it would be able to 
meet the system’s load). The result is a probability distri-
bution of resiliency hours, presented in Figure 11. The bar 
plots show the resiliency histogram with two levels of 

time step granularity (hourly and 15-min intervals). This 
graph represents the probability that the provided resili-
ency will be inside of each time interval (e.g., 29% be-
tween 0 and 1 hours, or 21% between 45 and 60 minutes). 
The solid line represents the inverse cumulative distribu-
tion function (with 15-min intervals), or the probability 
that the BTMR will provide over 𝑛𝑛 hours of resiliency (e.g., 
75% of the time the system provides over 1 hour of resil-
iency). The BTMR system provides over 30 minutes of 
resiliency 100% of the time, meaning that it can naturally 
address small outages without having to change its dis-
patching priorities, and can potentially meet up to 23 
hours of future load. 

 
Figure 11. Resiliency provided by the cost-optimally-
sized BTMR (battery + PV). 

CONCLUSIONS 
In this work, the optimal integrated design and dis-

patch of Behind-the-Meter Resources (BTMR) (i.e., bat-
tery energy store and PV generation) for retail commer-
cial buildings with EV fast charging stations was ad-
dressed. A novel modeling framework was proposed, in-
tegrating detailed simulation models (of building, electric 
vehicle fast charging station, and BTMR equipment), 
model predictive control (MPC) strategies for equipment 
dispatch with closed-loop implementation, and a deriva-
tive-free design layer that leverages parallelization and 
high-performance computing. A sequential grid search 
method was employed to solve the design problem, bal-
ancing accuracy and computational effort. Results from a 
case study involving a big-box grocery store retail build-
ing model highlight the benefits of BTMR in reducing en-
ergy and peak demand charges, by generating clean 
electricity onsite, and shifting power purchases from the 
electric grid. Contour plots of lifecycle cost, generated by 
leveraging the parallel evaluations from the design 
method, indicate the design variables that have the big-
gest impact on the objective. Finally, the system’s resili-
ency under grid outages was also evaluated, demon-
strating a good potential for replacing fuel-based alter-
natives. 

Ideas for future work include expanding the case 
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study to assess the potential of BTMR for retail buildings 
across multiple locations and utility rates; including a re-
siliency-based cost in the dispatch objective; considering 
the effect of forecast errors of future electrical load (from 
both building and EV charging station) in the control 
problem; and including carbon emissions in the design 
and dispatch optimization objectives. 
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ABSTRACT 
The chemical industry is actively pursuing energy transition and decarbonization through renew-
ables and other decarbonization initiatives. However, navigating this transition is challenging due 
to uncertainties in capital investments, electricity costs, and carbon taxes. Adapting to decarbon-
ization standards while preserving existing valuable infrastructure presents a dilemma. Early tran-
sitions may lead to inefficiencies, while delays increase the carbon footprint. This research pro-
poses a framework to find an optimal retrofit decarbonization strategy for existing oil refineries. 
We start with a generic process flowsheet representing the refinery's current configuration and 
operations, and consider various decarbonization alternatives. Through superstructure optimiza-
tion, we identify the most cost-effective retrofit strategy over the next three decades to achieve 
decarbonization goals. We develop a Mixed-Integer Linear Programming (MILP) model, integrating 
simplified process equations and logical constraints to identify the most economical retrofit de-
carbonization strategy. The paper presents numerical results from the MILP model. Furthermore, 
the trends exhibited by the outcomes across various scenarios considering distinct electricity 
costs and carbon tax levels are presented. These results provide valuable insights into the eco-
nomic feasibility of retrofit electrification strategies for decision-makers in the chemical industry. 

Keywords: Optimization, Process Design, Electricity & Electrical Devices, Process Operations, Renewable and 
Sustainable Energy 

INTRODUCTION 
The 2021 UN Climate Change Conference (COP26) 
stressed the urgent need to reduce global greenhouse 
gas emissions to limit global warming to 1.5  ̊C [25]. This 
goal coupled with a global increase in energy 
consumption has urged nations to accelerate the 
adoption of low-emission energy systems. There is a 
pressure for the chemical industry to embrace emerging 
low-carbon technologies [16] [8].  

Decarbonization of oil refineries is challenging due 
to their diverse configurations and high operational effi-
ciencies. One potential pathway for decarbonization in-
volves incorporating low-carbon feed into refinery oper-
ations. Retrofitting a fossil-based refinery to use a bio-
mass-based feed over a time horizon of 10 years has 
been studied in [30] using a Mixed-Integer Linear Pro-
gramming (MILP) model. Currently, significant effort is di-
rected towards reducing scope 1 [32] emissions by elec-
trification of process heat & hydrogen and the use of 

carbon capture and storage techniques.  Other possible 
pathways involve the use of carbon capture technologies 
and/or electrification of hydrogen production and steam 
generation integrated within existing refinery infrastruc-
ture (see Fig. 1 (a)) which are described below.  

Carbon capture (CC) Techniques 
Post-combustion, pre-combustion, and oxy-com-

bustion are the primary techniques for carbon capture 
(CC) [18]. Post-combustion capture suits low CO2 con-
centration flue gas, while pre-combustion applies to gas-
ification plants. Oxy-combustion involves burning fuel in
an oxygen-rich environment. This study exclusively fo-
cuses on pre- and post-combustion capture due to their
ease of retrofitting existing operations. [22, 24, 28, 12]

H2 production
One approach for decarbonizing H2 production is through 
blue H2 production, where SMR (Steam Methane Reform-
ing) and WGS (Water Gas Shift) reactors are augmented 
with pre-combustion CC [9]. Alternatively, the flue gas 

https://doi.org/10.69997/sct.114841
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from these reactors, after extracting hydrogen through 
adsorption-based separation, can be mixed with flue gas 
from other plant sources. This mixture allows for absorp-
tion-based post-combustion CC.  Another method for 
decarbonizing H2 production involves using renewable 
electricity for the electrolysis of water, producing green 
hydrogen [21, 20, 15, 27] . We focus on the use of low-
temperature electrolyzers, such as Alkaline Electrolyzers 
(AE) and Proton Exchange Membrane Electrolyzer 
(PEME), due to their level of maturity (AE), efficiency, and 
adaptability to handling variable operational conditions 
(PEME) [7]. 
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DHT
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HDC

DC

LPG

LPG
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DF
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BLENDER

BLENDER

BLENDERVB

Mixer

Mixer  
Fig 1(a) : Generic Flowsheet for an oil refinery; CT 
denotes different types of crude oil fed to Hydrotreating 
units—NHT (Naphtha Hydrotreater), DHT (Distillate 
Hydrotreater), GHT (Gas Oil Hydrotreater), and RHT 
(Residue Hydrotreater)—further treated in processing 
Units: CCR (Continuous Catalytic Reformer), HDC 
(Hydrocracking), FCC (Fluid Catalytic Cracking), DC 
(Delayed Coking), and VB (Visbreaking); Output streams 
are blended in desired proportions to produce LPG 
(liquified petroleum gas), JF (Jet Fuel), DF (Diesel Fuel), 
FO (Fuel Oil); adopted from [29]  
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Fig 1(b): Superstructure with possible pathways for 
hydrogen and HPS (high-pressure steam) production: 
considered routes for H2 production include Gray H2, Blue 
H2, and Green H2 (using PEME or AE); HPS generation 
alternatives encompass utilization of Natural Gas (NG) 
Boilers or e-boilers; Blue hydrogen can be synthesized 
employing either pre-combustion or post-combustion 

techniques; the flue gas released from the rest of the 
plant is captured by post-combustion CC. 

Process heat 
In the refinery, most of the heating demands are met 

using steam. Boilers in Fig 1 (b) generate only HPS. MPS 
and LPS are obtained from HPS by reducing the pressure 
with let-down valves. Other heating needs are fulfilled by 
furnaces tailored to individual unit operations in the refin-
ery. To simplify the analysis, we assume that flue gas 
from these sources can be collected and treated by post-
combustion CC units. Currently, steam production relies 
on gas boilers that burn natural gas. Electric boilers (e-
boilers) are a possible greener replacement for gas boil-
ers due to their easy installation, control, and mainte-
nance, as well as higher thermal efficiency. e-boilers can 
also be easily retrofitted with renewable power sources, 
offering a more sustainable option for steam generation 
[26]. 
 

The gap: Electrification from a systems 
perspective 

While market-ready technologies exist and tech-
noeconomic analysis are available for individual decar-
bonization initiatives, there is a lack of literature on how 
these initiatives can be optimally combined to retrofit ex-
isting units cost-effectively. As emphasized in [33] since 
the heat and mass flow between units are interconnected 
in a chemical industry it is extremely critical to perform a 
systems level analysis to perform for decarbonization or 
electrification planning. This work develops a tool for 
planning a transition towards such a retrofit solution, 
which can cater to each specific oil refinery at a given 
location.  

PROBLEM STATEMENT 
Existing literature discusses some market-ready 

technologies for alternative decarbonized technologies 
[17] but lacks a clear framework for understanding which 
ones should be chosen, when these alternative technol-
ogies should be implemented, and how they could be op-
timally integrated. This paper aims to fill this gap by de-
veloping a comprehensive decarbonization plan that is 
applied to a given oil refinery operating over 29 years 
(2022-2050). The plan involves strategic selection and 
timely implementation of the best set of initiatives for ret-
rofitting the supply of HPS and hydrogen to the given re-
finery (by addition and removal of units and interconnec-
tions), considering operating data for a typical crude-
based refinery with a distillation capacity of 100 kbbl 
crude oil per day. The objective is to minimize the Present 
Value of the cost for decarbonization retrofit design, 
while meeting predefined environmental commitments. 
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METHODOLOGY 
Fig. 1 (b) shows a superstructure representing po-

tential pathways for High-Pressure Steam (HPS) genera-
tion, hydrogen production, and CC. 

The variables used in the model are, 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑦𝑦𝑦𝑦, a posi-
tive continuous variable representing the amount of com-
ponent 𝑘𝑘 present in a stream flowing from unit 𝑖𝑖 to unit 𝑗𝑗 
in year 𝑦𝑦𝑦𝑦.  𝑦𝑦𝑖𝑖,𝑦𝑦𝑦𝑦  �𝑚𝑚𝑖𝑖,𝑦𝑦𝑦𝑦�,  a binary variable indicating 
whether the installation of a specific unit of technology  
𝑖𝑖 (e.g. PEME, AE) is initiated (completed) in year 
𝑦𝑦𝑦𝑦. 𝑧𝑧𝑖𝑖,𝑦𝑦𝑦𝑦  (𝑝𝑝𝑖𝑖,𝑦𝑦𝑦𝑦), a non-negative integer variable indicating 
the number of initiated (completed) installations in year 
less than or equal to 𝑦𝑦𝑦𝑦 for units of technology 𝑖𝑖. 𝑄𝑄𝑖𝑖,𝑦𝑦𝑦𝑦; 
(𝑄𝑄𝑄𝑄𝑖𝑖,𝑦𝑦𝑦𝑦), a continuous variable indicating the total (expan-
sion in) installed capacity of a technology 𝑖𝑖 in a given year 
𝑦𝑦𝑦𝑦. 

Logic Timing constraints 
Eqs. (1) and (2) capture the relationships between 

the described binary variables.  

∑ 𝑦𝑦𝑖𝑖,𝑦𝑦𝑦𝑦𝑙𝑙
𝑦𝑦𝑦𝑦=1 = 𝑧𝑧𝑖𝑖,𝑙𝑙         ∀𝑖𝑖,  𝑙𝑙  (1) 

∑ 𝑚𝑚𝑖𝑖,𝑦𝑦𝑦𝑦
𝑙𝑙
𝑦𝑦𝑦𝑦=1 = 𝑝𝑝𝑖𝑖,𝑙𝑙        ∀𝑖𝑖,  𝑙𝑙  (2) 

These Eqs. are valid for all years in the range 1-29 
unless specified otherwise. Furthermore, additional logi-
cal constraints are added to specify that z and p are time-
lagged copies of y and m respectively depending on the 
duration of installation of each equipment. Flow to units 
of technology 𝑖𝑖 is non-zero if the installation of any unit 
of 𝑖𝑖 has been completed by a given year. This relationship 
can be expressed as an upper bound constraint, shown 
in Eq. (3):  

𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑦𝑦𝑦𝑦 ≤ 𝑈𝑈𝑈𝑈 ∗ 𝑝𝑝𝑖𝑖,𝑦𝑦𝑦𝑦    (3) 

Mass Balance constraints 
The proposed formulation requires specifying that 

flow can take place only when the units are connected in 
the superstructure. 

𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑦𝑦𝑦𝑦 = 0 ∀𝑗𝑗 ∉ Out(i),  ∀𝑘𝑘,∀𝑦𝑦𝑦𝑦 
Additionally, equations specify that air, natural gas, 

water, and electricity are obtained from their respective 
supply nodes.  

Mass Balance constraints given by Eqs. (4) and (5) 
relate the amount of components present in inlet and out-
let streams to reactors and separators through simplified 
yield-based models. In Eq. (6), µ𝑖𝑖𝑖𝑖,𝑗𝑗,𝑘𝑘 represents the 
amount of reactant 𝑘𝑘 reacting with a certain amount of 
reactant 𝑘𝑘′  in unit 𝑗𝑗, denoted as µ𝑖𝑖𝑖𝑖,𝑗𝑗,𝑘𝑘′. Similarly, in Eq. 
(5), µ𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗,𝑘𝑘 denotes the amount of product 𝑘𝑘 in the outlet 
stream of unit 𝑗𝑗, given a certain amount of reactant 𝑘𝑘′ in 
the inlet stream.  

∑ 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑦𝑦𝑦𝑦𝑖𝑖 ∈𝐼𝐼𝑖𝑖(𝑗𝑗) = 𝜇𝜇𝑖𝑖𝑖𝑖,𝑗𝑗,𝑘𝑘

𝜇𝜇𝑖𝑖𝑖𝑖,𝑗𝑗,𝑘𝑘′
∑ 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘′,𝑦𝑦𝑦𝑦𝑖𝑖 ∈𝐼𝐼𝑖𝑖(𝑗𝑗)   (4) 

∑ 𝐹𝐹𝑗𝑗,𝑖𝑖,𝑘𝑘,𝑦𝑦𝑦𝑦𝑖𝑖 ∈𝑂𝑂𝑜𝑜𝑜𝑜(𝑗𝑗) = 𝜇𝜇𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗,𝑘𝑘

𝜇𝜇𝑖𝑖𝑖𝑖,𝑗𝑗,𝑘𝑘′
∑ 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘′,𝑦𝑦𝑦𝑦𝑖𝑖 ∈𝐼𝐼𝑖𝑖(𝑗𝑗)   (5) 

𝑘𝑘 Ɛ {𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶,𝑄𝑄𝑙𝑙𝑅𝑅𝐸𝐸𝑅𝑅𝑦𝑦𝑖𝑖𝐸𝐸𝑖𝑖𝑅𝑅𝑦𝑦} 
 ∀ 𝑖𝑖{ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅𝐶𝐶𝑦𝑦𝐶𝐶, 𝑅𝑅𝑙𝑙𝑅𝑅𝐸𝐸𝑅𝑅𝑦𝑦𝐶𝐶𝑙𝑙𝑦𝑦𝑧𝑧𝑅𝑅𝑦𝑦𝐶𝐶, 𝑏𝑏𝐶𝐶𝑖𝑖𝑙𝑙𝑅𝑅𝑦𝑦𝐶𝐶}  

Here, the notations 𝐼𝐼𝑅𝑅(𝑗𝑗) and 𝑂𝑂𝑂𝑂𝑅𝑅(𝑗𝑗) represent the 
set of nodes connected at the inlet and outlet of node 𝑗𝑗 
respectively. 

For the CC units, a component-wise mass balance 
constraint is applied, as no reactions occur. The con-
straint is represented by Eq. (6) 

∑ 𝐹𝐹𝑗𝑗,𝑖𝑖,𝑘𝑘,𝑦𝑦𝑦𝑦𝑖𝑖 ∈𝑂𝑂𝑜𝑜𝑜𝑜(𝑗𝑗) = ∑ 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑦𝑦𝑦𝑦   ∀𝑗𝑗 ∈ 𝐶𝐶𝐶𝐶 𝑂𝑂𝑅𝑅𝑖𝑖𝑅𝑅𝐶𝐶𝑖𝑖 ∈𝐼𝐼𝑖𝑖(𝑗𝑗)  (6) 

Additional constraints are imposed to guarantee the 
specified purity of the final streams. 

Energy Balance Constraints 
Energy balances for Natural Gas (NG) boiler, e-

boiler, and electrolyzers are given by Eqs. (7), (8) and (9) 
respectively. 

𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑙𝑙𝑦𝑦, 𝑁𝑁𝑁𝑁 𝐵𝐵𝑜𝑜𝑖𝑖𝑙𝑙𝐵𝐵𝑦𝑦, 𝑁𝑁𝑁𝑁, 𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿𝑉𝑉𝑁𝑁𝑁𝑁 𝐵𝐵𝑜𝑜𝑖𝑖𝑙𝑙𝐵𝐵𝑦𝑦𝜂𝜂𝑁𝑁𝑁𝑁 𝑏𝑏𝑜𝑜𝑖𝑖𝑙𝑙𝐵𝐵𝑦𝑦 =
𝐹𝐹𝑊𝑊𝑊𝑊𝑜𝑜𝐵𝐵𝑦𝑦 𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑙𝑙𝑦𝑦, 𝑁𝑁𝑁𝑁 𝐵𝐵𝑜𝑜𝑖𝑖𝑙𝑙𝐵𝐵𝑦𝑦,𝑁𝑁𝑁𝑁, 𝑦𝑦𝑦𝑦ΔHvap   (7) 

𝐹𝐹𝑁𝑁𝑦𝑦𝑖𝑖𝐺𝐺, e−𝑏𝑏𝑜𝑜𝑖𝑖𝑙𝑙𝐵𝐵𝑦𝑦, 𝐵𝐵𝑙𝑙𝐵𝐵𝑒𝑒𝑜𝑜𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖𝑜𝑜𝑦𝑦, 𝑦𝑦𝑦𝑦𝜂𝜂𝐵𝐵−𝑏𝑏𝑜𝑜𝑖𝑖𝑙𝑙𝐵𝐵𝑦𝑦 =
∆𝐿𝐿𝑣𝑣𝑊𝑊𝑁𝑁𝐹𝐹H2O 𝑠𝑠𝑜𝑜𝑁𝑁𝑁𝑁𝑙𝑙𝑦𝑦, 𝐵𝐵−𝑏𝑏𝑜𝑜𝑖𝑖𝑙𝑙𝐵𝐵𝑦𝑦, H2O, 𝑦𝑦𝑦𝑦   (8) 

𝐹𝐹𝐵𝐵𝑙𝑙𝐵𝐵𝑒𝑒𝑜𝑜𝑦𝑦𝑜𝑜𝑙𝑙𝑦𝑦𝑒𝑒𝐵𝐵𝑦𝑦, H2𝑦𝑦𝐵𝐵𝑟𝑟𝑜𝑜𝑖𝑖𝑦𝑦𝐵𝐵𝑟𝑟𝐵𝐵𝑖𝑖𝑜𝑜,𝐻𝐻𝑦𝑦𝐺𝐺𝑦𝑦𝑜𝑜𝐻𝐻𝐵𝐵𝑖𝑖,𝑦𝑦𝑦𝑦∆𝐿𝐿𝐵𝐵𝑙𝑙𝐵𝐵𝑒𝑒𝑜𝑜𝑦𝑦𝑜𝑜𝑙𝑙𝑦𝑦𝑠𝑠𝑖𝑖𝑠𝑠 

= 𝐹𝐹𝐻𝐻𝑦𝑦𝑖𝑖𝐺𝐺,𝐵𝐵𝑙𝑙𝐵𝐵𝑒𝑒𝑜𝑜𝑦𝑦𝑜𝑜𝑙𝑙𝑦𝑦𝑒𝑒𝐵𝐵𝑦𝑦,𝐸𝐸𝑙𝑙𝐵𝐵𝑒𝑒𝑜𝑜𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖𝑜𝑜𝑦𝑦,𝑦𝑦𝑦𝑦  𝜂𝜂𝐵𝐵𝑙𝑙𝐵𝐵𝑒𝑒𝑜𝑜𝑦𝑦𝑜𝑜𝑙𝑙𝑦𝑦𝑒𝑒𝐵𝐵𝑦𝑦 
       (9) 

Ƞ denotes the energy efficiency of equipment and 
LHV is the Lower Heating Value of natural gas.  

Design Constraints 
The values of the total HPS and hydrogen produced 

by all the different pathways must match the total hydro-
gen and HPS requirements of the refinery. The amount of 
CO2 captured and emitted after passing through CC units 
are linearly related by a constant factor given by the ef-
ficiency of the respective CC equipment. Similarly, the 
steam produced and the losses through the purge stream 
(blowdown) from the boilers are linearly related by a con-
stant factor.  

The amount of CO2 and other gases present in the 
flue-gas released from the rest of the operations in the 
refinery are specified by constraints. Decarbonization 
goals of the refinery impose an upper limit on the emis-
sions as shown in Eq. (10) 

∑ 𝐹𝐹𝑖𝑖,CO2𝐵𝐵𝑟𝑟𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖, 𝐶𝐶𝑂𝑂2,𝑦𝑦𝑦𝑦𝑖𝑖 𝜖𝜖𝐼𝐼𝑖𝑖(CO2 𝐵𝐵𝑟𝑟𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖) ≤ CO2𝐸𝐸𝑅𝑅𝑝𝑝𝑦𝑦𝑦𝑦 (10) 

Eq. (11) imposes a logical constraint on the capacity 
expansion in any year ∀ 𝑖𝑖 ∈ 𝑃𝑃𝑄𝑄𝑃𝑃,  𝐴𝐴𝑄𝑄,  𝑅𝑅 − 𝑏𝑏𝐶𝐶𝑖𝑖𝑙𝑙𝑅𝑅𝑦𝑦,  𝐶𝐶𝐶𝐶 𝑂𝑂𝑅𝑅𝑖𝑖𝑅𝑅𝐶𝐶. 

𝐿𝐿𝑈𝑈1𝑚𝑚𝑖𝑖,𝑦𝑦𝑦𝑦 ≤ 𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦 ≤ 𝑈𝑈𝑈𝑈1𝑚𝑚𝑖𝑖,𝑦𝑦𝑦𝑦     (11) 
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Eq. (12) evaluates the total capacity at the end of any 
year yr. [23, 19] 

𝑄𝑄𝑄𝑄𝑖𝑖,𝑦𝑦𝑦𝑦 +   𝑄𝑄𝑖𝑖,𝑦𝑦𝑦𝑦−1  = 𝑄𝑄𝑖𝑖,𝑦𝑦𝑦𝑦   (12) 

Eqs. (13) and (14) state that the operating flowrate or 
power is less than the installed capacity. 

𝐹𝐹𝐻𝐻𝑦𝑦𝑖𝑖𝐺𝐺,𝑖𝑖,𝐵𝐵𝑙𝑙𝐵𝐵𝑒𝑒𝑜𝑜𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖𝑜𝑜𝑦𝑦,𝑦𝑦𝑦𝑦 ≤ 𝑄𝑄𝑖𝑖,𝑦𝑦𝑦𝑦   (13) 

∀i ∈ 𝑅𝑅 − 𝑏𝑏𝐶𝐶𝑖𝑖𝑙𝑙𝑅𝑅𝑦𝑦,  𝑅𝑅𝑙𝑙𝑅𝑅𝐸𝐸𝑅𝑅𝑦𝑦𝐶𝐶𝑙𝑙𝑦𝑦𝑧𝑧𝑅𝑅𝑦𝑦 

𝐹𝐹𝐶𝐶𝐶𝐶 𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜,CO2 𝑒𝑒𝑊𝑊𝑁𝑁𝑜𝑜𝑜𝑜𝑦𝑦𝐵𝐵𝐺𝐺,CO2, 𝑦𝑦𝑦𝑦 ≤ 𝑄𝑄𝐶𝐶𝐶𝐶 𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜, 𝑦𝑦𝑦𝑦   (14) 

We consider that the capacity expansion for e-boiler 
and CC facilities can take any value within a continuous 
range, whereas the expansion of electrolyzer capacity 
can only take discrete values based on available stand-
ard sizes. To handle this, we introduce binary variables 
𝑤𝑤𝑖𝑖,ℎ,𝑠𝑠,𝑦𝑦𝑦𝑦 which denote whether, in year 𝑦𝑦𝑦𝑦, the ℎ𝑜𝑜ℎ electro-
lyzer (ℎ 𝜀𝜀 {1, … . .𝐿𝐿}) of type 𝑖𝑖 𝜀𝜀 {𝑃𝑃𝑄𝑄𝑃𝑃,𝐴𝐴𝑄𝑄} is of the 𝐶𝐶𝑜𝑜ℎ size 
𝐶𝐶 𝜀𝜀 {𝐴𝐴𝑅𝑅𝑅𝑅𝑖𝑖𝑙𝑙𝑅𝑅𝑏𝑏𝑙𝑙𝑅𝑅 𝑑𝑑𝑖𝑖𝐶𝐶𝐸𝐸𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝑖𝑖𝑧𝑧𝑅𝑅𝐶𝐶}, with 𝑑𝑑𝑖𝑖,𝑠𝑠 denoting the availa-
ble sizes for each type of electrolyzer. 

Eq. (15) adds the size of all installed electrolyzers to 
calculate the total capacity expansion in any given year 
[10]. Eq. (16) ensures that at most one size is chosen for 
every electrolyzer. Eq. (17) is added in order to avoid de-
generate solutions.[6] 

∑ ∑ 𝑤𝑤𝑖𝑖,ℎ,𝑠𝑠,𝑦𝑦𝑦𝑦
𝐺𝐺1,𝑆𝑆
𝑠𝑠=𝐺𝐺1,𝑠𝑠

𝐻𝐻
ℎ=1 𝑑𝑑𝑖𝑖,𝑠𝑠 = 𝑄𝑄𝑄𝑄𝑖𝑖,𝑦𝑦𝑦𝑦∀𝑖𝑖 ∈ 𝑃𝑃𝑄𝑄𝑃𝑃,𝐴𝐴𝑄𝑄 (15) 

∑ 𝑤𝑤𝑖𝑖,ℎ,𝑠𝑠,𝑦𝑦𝑦𝑦𝑠𝑠 ≤ 1 ∀ 𝑖𝑖 ∈ 𝑃𝑃𝑄𝑄𝑃𝑃,  𝐴𝐴𝑄𝑄   (16) 

∑ 𝑤𝑤𝑖𝑖,ℎ,𝑠𝑠,𝑦𝑦𝑦𝑦𝑑𝑑𝑖𝑖,𝑠𝑠𝑠𝑠 ≥  ∑ 𝑤𝑤𝑖𝑖,ℎ+1,𝑠𝑠,𝑦𝑦𝑦𝑦𝑑𝑑𝑖𝑖,𝑠𝑠𝑠𝑠   (17) 

Cost Constraints and Objective function  
Eq. (18) & (19) incorporate an upper limit on the an-

nual capital expenditure (CAPEX) that can be allocated.  
Eq (18) shows that the total CAPEX for an expansion 

is denoted by 𝛼𝛼+  𝛽𝛽 𝑄𝑄𝑄𝑄, where 𝛼𝛼 represents the fixed cost 
and 𝛽𝛽 𝑄𝑄𝑄𝑄 represents the variable cost. 

𝐶𝐶𝐴𝐴𝑃𝑃𝑄𝑄𝑋𝑋𝑦𝑦𝑦𝑦 = ∑ 𝛼𝛼𝑖𝑖,𝑦𝑦𝑦𝑦�𝑒𝑒𝑖𝑖,𝑦𝑦𝑦𝑦−𝑁𝑁𝑖𝑖,𝑦𝑦𝑦𝑦�
𝐺𝐺𝑜𝑜𝑦𝑦(𝑖𝑖)

+ ∑ 𝛽𝛽𝑖𝑖,𝑦𝑦𝑦𝑦  𝑄𝑄𝐸𝐸𝑖𝑖,𝑦𝑦𝑦𝑦+𝑝𝑝
𝐺𝐺𝑜𝑜𝑦𝑦(𝑖𝑖)

𝐺𝐺𝑜𝑜𝑦𝑦(𝑖𝑖)
𝑁𝑁=1𝑖𝑖  (18) 

𝐶𝐶𝐴𝐴𝑃𝑃𝑄𝑄𝑋𝑋𝑦𝑦𝑦𝑦 ≤ 𝐶𝐶𝐴𝐴𝑃𝑃𝑄𝑄𝑋𝑋 𝐶𝐶𝐴𝐴𝑃𝑃   (19) 

Here dur(i) is the time taken to install the unit i. The 
OPEX incurred for pursuing the decarbonization initia-
tives each year is given by Eq. (20). The OPEX consists 
of two primary components: the first pertains to the con-
sumption of natural gas and electricity from their respec-
tive sources, while the second, linked to the CC units, is 
directly proportional to emission reductions. 

𝑂𝑂𝑃𝑃𝑄𝑄𝑋𝑋𝑦𝑦𝑦𝑦 = �∑ 𝐹𝐹𝑁𝑁𝑁𝑁 𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑙𝑙𝑦𝑦, 𝑗𝑗,𝑁𝑁𝑁𝑁,𝑦𝑦𝑦𝑦𝑗𝑗𝜖𝜖𝑂𝑂𝑜𝑜𝑜𝑜(𝑁𝑁𝑁𝑁 𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑙𝑙𝑦𝑦) $ 𝑁𝑁𝑁𝑁
𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

+

∑ 𝐹𝐹𝑁𝑁𝑦𝑦𝑖𝑖𝐺𝐺, 𝑗𝑗,𝐸𝐸𝑙𝑙𝐵𝐵𝑒𝑒𝑜𝑜𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖𝑜𝑜𝑦𝑦,𝑦𝑦𝑦𝑦$ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖𝑜𝑜𝑦𝑦
𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜energy

𝑗𝑗𝜖𝜖𝑂𝑂𝑜𝑜𝑜𝑜(𝑁𝑁𝑁𝑁 𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑙𝑙𝑦𝑦) +

                         ∑ 𝐹𝐹𝑖𝑖, 𝐶𝐶𝑊𝑊𝑁𝑁𝑜𝑜𝑜𝑜𝑦𝑦𝐵𝐵𝐺𝐺 CO2,CO2,𝑦𝑦𝑦𝑦𝑖𝑖𝜖𝜖𝐶𝐶𝐶𝐶𝑁𝑁 𝑈𝑈𝑖𝑖𝑖𝑖𝑜𝑜𝑠𝑠 𝑂𝑂𝑃𝑃𝑄𝑄𝑋𝑋𝑖𝑖� 𝑅𝑅𝑖𝑖𝑚𝑚𝑅𝑅 𝑂𝑂𝑅𝑅𝑖𝑖𝑅𝑅𝐶𝐶

       (20) 

Finally, we formulate the objective function as the 
Present Value of the Cost of the decarbonization project 
in Eq. (21) which is subject to Eqs. (1) to (20), the con-
straints of the optimization problem. 

𝑃𝑃𝑖𝑖𝑅𝑅𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑅𝑅 ∑ (𝐶𝐶𝐴𝐴𝑃𝑃𝑄𝑄𝑋𝑋𝑦𝑦𝑦𝑦 + 𝑂𝑂𝑃𝑃𝑄𝑄𝑋𝑋𝑦𝑦𝑦𝑦)/(1 + 𝑖𝑖)𝑦𝑦𝑦𝑦29
𝑦𝑦𝑦𝑦=1  (21) 

RESULTS 
The formulated retrofit MILP model was imple-

mented in Pyomo Pyomo 6.6.1 with the Gurobi 10.0.1 
solver [11], for a 29-year horizon containing 204,700 con-
straints and 102,918 variables (97,233 continuous, 5,684 
integer). Discounting for the inequality constraints and 
dependent equations, there are ~3,900 degrees of free-
dom 

Base Case 
As shown in Fig. 2 (a) for the base case when pre-

defined targets for reduction in CO2 emissions.  (i.e. 50% 
reduction by year 10 and reduction to the minimum at-
tainable value using the given superstructure by year 28) 
are implemented, carbon capture technology is favored 
over electrified options. Electrified technologies are not 
chosen due to the high operating costs associated with 
them [2, 1, 14, 3, 13, 31, 4]. Due to space constraints de-
tails regarding the data used for natural gas and electric-
ity prices and capital costs for e-boilers, electrolyzers 
and CC technologies shall be disseminated in a full-
length journal publication which is under preparation. 
Among the CC technologies, post-combustion capture is 
preferred for both SMR and other combustion-related 
flue gases, as the additional CAPEX for pre-combustion 
technology outweighs operational cost savings.  

Transition to electrified technologies for both steam 
and H2 production occurs in 2049 when stringent re-
strictions are enforced (as shown in Fig. 2 (a) and (c)) that 
limits the emissions to the minimum attainable value. For 
electrification of H2, PEM electrolyzers are preferred at 
given electricity price forecasts due to the associated 
savings in OPEX. 

As shown in Fig. 2 (b) the capital expenditure for CC 
alternatives was very high compared to electrified tech-
nologies and reached the upper limit. Fig. 2 (c) shows that 
carbon neutrality was not achieved in the final years as 
the current superstructure only allows post-combustion 
CC of the flue gas from the rest of the plant, which is not 
100% efficient. Fig 2(c) also shows that the emission cap 
constraint is always active at the optima. 

We can see in Fig. 2 (d) that lowering the maximum 
allowed CAPEX spending per year leads to a preference 
for installation and use of e-boilers until the CAPEX inten-
sive capture facility is built. Hence, enterprise specific 
economic policies can alter the optimal solution. 
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However, adding a penalty for unused capital could alter 
the optima away from the presented solution. 

To gain insight on scenarios that could lead to adop-
tion of electrified options, we studied how the optimal so-
lution varied when (i) Carbon taxes are applied, and (ii) 
Electricity prices are reduced by different percentages. 

Case 2: Introduction of Carbon taxes 
Given carbon tax implementation at specified rates 

as shown in Figure 3 (b), (mimicking Canadian rates) it 
was observed that transitioning to CC based decarboni-
zation technologies relatively earlier is economically ben-
eficial as shown in Fig 3(a), decreasing the overall CO2 
emissions. Fig 3(b) also shows that economically optimal 
emission levels are below the maximum allowed levels. 
However, C-taxes do not expedite the adoption of car-
bon-neutral electrified technologies at the optimal design 
as can be seen in Fig. 3 (a). Additional case studies have 
also shown us that the results remain qualitatively similar 
if carbon credits are introduced instead of carbon taxes. 

 
Fig 2 (a) The panels from top to down show the 
contribution of each technology in carbon capture; 
Hydrogen production and HPS production. 
Postcombustion CC is preferred over years 10-27; e-
boilers and PEMS operated in years 28-29 

 
Fig 2 (b) Upper panel shows the actual CAPEX spending 
and the maximum CAPEX spending limit; along with the 
total cash outflow associated with hydrogen and HPS 

production. The panel below shows the rate at which the 
electriied alternatived should be installed in KW capacity. 
It also shows the optimal rate of CC capacity installation 
in kg/s. CAPEX spending reaches maximum limit when CC 
infrastructure is built; CAPEX for electrified alternatives is 
relatively cheaper; large cash outflow after adoption of 
electrified alternatives 

 
Fig 2(c) The total carbon-di-oxide emissions as 
compared to the maximum allowed emissions over the 
years. The emissions avoided as a result of the 
decarbonization initiatives are also shown. Emissions are 
restricted to 50% of current values from years 10-27; 
Emissions are capped at the minimum attainable value in 
years 28-29. Emission cap constraint is always active. 

 
Fig 2(d) With $100,000,000 cap in annual capital 
expenditure e-boiler is operated until CC technology is 
built 

Case 3: With reduction in electricity prices 
Examining the impact of reductions in electricity 

costs, it was observed that with 25-70% reduction in 
electricity costs, the overall solution remained qualita-
tively similar to the base case. However, a mix of PEME 
and AE was chosen in the final solution due to the trade-
off in CAPEX and OPEX as shown in fig 4(a). Fig 4 (b) 
shows that upon further reducing electricity costs to 80% 
below the forecasted levels, e-boiler technology is se-
lected earlier. Nevertheless, the adoption of electrolyzer 
technology is delayed due to high energy requirements 
for electrolysis. Fig 4(c) shows that when electricity costs 
are reduced by 90%, a partial shift from SMR-based 
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hydrogen production to electrolysis-based hydrogen 
production is observed, suggesting the use of a mix of 
both types of electrolyzers. A higher capacity of AEs (Al-
kaline Electrolyzers) is chosen in the final mix due to the 
cheap electricity prices in this scenario. 

Case 4: Electricity price reduction and carbon 
taxes 

With reduction in electricity prices and carbon taxes 
implemented, we further analyze three sub-cases where 
the electricity prices are reduced by 85%, 90%, and 95% 
compared to the currently forecasted prices. In all the 
scenarios, the introduction of carbon capture units is ac-
celerated due to carbon tax introduction as shown in fig-
ures 4(d)-4(f). Simultaneously, electrified technologies 
were also chosen earlier as compared to the base case. 
In other words, the trends observed are a superposition 
of the effects obtained in the 2 previous cases.  In sum-
mary, while carbon taxes Encourage early transition to 
CC-based technologies, substantial electricity cost re-
ductions or stringent environmental norms are needed 
for favoring electrified technologies. 

CONCLUSION 
This paper has proposed a MILP-based superstruc-

ture optimization model to minimize the Present Value of 
the Cost for retrofit decarbonization of an oil refinery. 
Higher electricity prices relative to natural gas favor CC 
over electrification alternatives. Lowering electricity 
costs by up to 70% has little impact, but further reduc-
tions significantly affect the optimal solution. Carbon 
taxes accelerate adoption of carbon capture technolo-
gies. Substantial electricity cost reductions make e-boil-
ers financially attractive.  

It should be noted that for the two different carbon 
capture technologies we have assumed MEA based ab-
sorption operating at different conditions and with differ-
ent costs for dilute (post-combustion) and concentrated 
(pre-combustion) CO2 concentrations of the flue gas. For 
each technology, the cost per unit of captured CO2 was 
assumed to remain constant. Future work will enhance 
the tool by taking into account the differential pricing for 
carbon capture technologies as a function of the CO2 
concentration of the flue gas stream using piecewise lin-
ear approximations. In addition, future work may include 
the carbon intensity of the fuel and electricity as they are 
expected to change over time and affect the optimal ret-
rofit plan. 

Finally, obtaining accurate cost forecasts are chal-
lenging due to energy and carbon market uncertainties. 
Hence, an enhancement of the solution's robustness is 
needed. For this, we plan to explore stochastic program-
ming techniques to account for uncertainties in the MILP 
model [5]. 
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Fig. 4(a) Optimal PEME and AE mix selected in years 28-29 with a 25% electricity price reduction; 4(b) E-boilers 
chosen from year 10 onward with an 80% electricity price reduction; 4(c) Electrolyzers selected from year 10 
onward with a 90% electricity price reduction; 4(d) Mix of PEME and AE chosen in years 28-29 with a 25% 
electricity price reduction and C-taxes; CC implemented from year 8; 4(e) E-boilers chosen from year 6 with an 
80% electricity price reduction and C-taxes; CC implemented from year 8; 4(f) e-boilers selected from year 4 with 
a 90% electricity price reduction and C-taxes; partial shift to electrolyzers year 9; CC implemented from year 10. 
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ABSTRACT 
Most integrated energy system (IES) optimization frameworks employ the price-taker approxima-
tion, which ignores important interactions with the market and can result in overestimated eco-
nomic values. In this work, we propose a machine learning surrogate-assisted optimization frame-
work to quantify IES/market interactions and thus go beyond price-taker. We use time series clus-
tering to generate representative IES operation profiles for the optimization problem and use ma-
chine learning surrogate models to predict the IES/market interaction. We quantify the accuracy 
of the time series clustering and surrogate models in a case study to optimally retrofit a nuclear 
power plant with a polymer electrolyte membrane electrolyzer to co-produce electricity and hy-
drogen. 

Keywords: Integrated Energy System, Surrogate Models, Machine Learning, Optimization, Time Series Clus-
tering

INTRODUCTION 
Integrated energy systems (IES) exploit synergies 

between different technologies and energy carriers [1] 
such as fossil, nuclear, renewable (e.g., solar, wind), and 
storage to produce multiple products such as electricity, 
heat, and chemicals while increasing energy efficiency 
and supporting greater renewable integration into the 
grid. Moreover, IES can provide more flexibility to the 
grid, which is critical for increasing the integration of non-
dispatchable renewable energy sources and meeting de-
carbonization goals.  

The price-taker approximation is a widely used ap-
proach to incorporate dynamic market signals into the 
optimization of IES. The price-taker approximation treats 
the electricity grid as an “infinite bus” that can receive 
any amount of electricity produced by each generator or 
IES at any time without affecting the location marginal 
price (LMP) of electricity. Price-taker allows for co-opti-
mizing IES design and operating decisions using histori-
cal or forecasted time-series LMPs. Lakey et al. [2] 

proposed a framework that allows users to generate a 
multi-period, price-taker model instance and automati-
cally generate common operational constraints for their 
model in the IDAES-PSE platform [3].

Recent papers [2-5] highlight the inaccuracies of 
the price-taker approximation compared to more rigor-
ous production cost models (PCM) for analyzing IES. 
Specifically, Martinek et al. [4] compare the revenue, dis-
patch, and scheduling of concentrating solar power 
plants using the PCM and price-taker models. They show 
the price-taker approximation can over-aggressively re-
spond to short-duration peaks in LMP. Likewise, Frew et 
al. [5] show the price-taker approximation can overesti-
mate the value of IES that co-produces electricity and hy-
drogen. Sousa et al. [6] evaluate the integration of wind 
energy and pump storage systems and find that in the 
PCM, storage operation will decrease the electricity price 
and dispatch less wind power than the price-taker.  Fi-
nally, Xian et al. [7] propose a multiscale simulation 
framework that combines rigorous process (IES) and grid 
(PCM) models to quantify IES-grid interactions across 

https://doi.org/10.69997/sct.168255
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hourly to annual timescales. They find that optimizing the 
design, operation, and control of a single IES impacts the 
prices and dispatch of generators across the electric 
grid.  

We recently proposed a machine learning surro-
gate-assisted optimization framework [8] to integrate the 
process-centric model (price-taker) and grid-centric 
model (PCM) into the IES conceptual design optimization. 
Specifically, we contemplate how to size a replacement 
generator while considering market impacts. We com-
pare algebraic and neural network surrogate models to 
predict market revenue, annual capacity factor distribu-
tion, and the number of shutdowns as a function of the 
characteristics of the replacement generator. We embed 
these surrogates into a nonlinear optimization problem 
and show more accurate results versus the price-taker 
approximation compared to PCM simulations (ground 
truth). While promising, this approach only considers 
steady-state models and surrogates.  
 In this short conference paper, we extend our prior 
work [8] by using time series clustering to generate time 
series representative dispatch scenarios. Then, we train 
a frequency surrogate model that predicts the frequency 
of each scenario according to the different IES designs. 
Together, these surrogate models provide dynamic op-
eration profiles that may be embedded in multiscale IES 
optimization problems. We develop the surrogate models 
and clustering methods using a baseload nuclear power 
plant (NPP) with a polymer electrolyte membrane (PEM) 
electrolyzer that produces hydrogen (H2) as a case study. 

 

Figure 1.  The nuclear + PEM IES can divert the power to 
co-produce hydrogen when the LMP is low to increase its 
profitability and flexibility.  

METHODS 

Nuclear and H2 IES 

We consider retrofitting an existing nuclear power plant 
with a polymer electrolyte membrane (PEM) electrolyzer 
to co-produce electricity and hydrogen, as shown in 
Figure 1. The NPP has a nameplate capacity of 400MW 
and operates strictly as a baseload generator. After 
retrofitting, the IES (i.e., NPP + PEM) operates as a hybrid 
baseload and peaking generator when power from the 
NPP can be diverted to the PEM to produce hydrogen. 
Thus, from the perspective of the electric grid, the PEM 
provides flexibility. Hydrogen is an important resource for 
the future energy industry and is essential to the 
decarbonization of many industries [9]. The retrofit thus 
increases and diversifies the NPP’s revenue. 

Production Cost Models 
        A PCM simulates the operation of an electricity 

system by scheduling generators and clearing the market 
(i.e., setting time-varying prices). In summary, each gen-
erator communicates its (time-varying) production costs 
and operational constraints (e.g., minimum up and down 
times, startup costs) to the market. This includes a bid 
curve (see Figure 2 for an example), which communicates 
the cost of producing electricity as a function of the mar-
ket price.  Using this information, the market operator 
solves unit commitment and economic dispatch optimi-
zation problems, which seek to minimize the total sys-
tem-wide generation costs subject to the costs and con-
straints of each generator and forecasted demand and 
renewables production. Most regions schedule most 
electricity generation in the day-ahead market (DAM). 
The real-time market (RTM) operates (sub)hourly to cor-
rect for forecasting errors and unplanned events. The 
PCM simulates the rolling horizon operation of the DAM 
and RTM. See [10] for details.  

 In this work, all PCM simulations were performed 
using the open-source production cost model Prescient 
[11] and the RTS-GMLC [12] dataset. RTS-GMLC is an 
open-source test network that approximates the charac-
teristics of the southwest United States [7]. We consider 
retrofitting the 121_NUCLAER-1 nuclear generator in RTS-
GMLC region 1 with a PEM. 
 



 

Chen et al. / LAPSE:2024.1559 Syst Control Trans 3:434-441 (2024) 436 

 
Figure 2. Bid curve of the NPP-PEM IES. The IES will 
dispatch all power to the grid when the electricity price 
exceeds 𝜋𝜋∗. Otherwise, the IES will divert 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑃𝑃𝑃𝑃 

power to co-produce H2.  

Surrogate-Assisted Optimization Workflow 
Figure 3 illustrates the four-step surrogate-assisted 

optimization workflow.  

 

Figure 3. Surrogate-assisted IES conceptual design 
workflow, adapted from [6]. 

Step 1: Perform PCM simulations to generate train-
ing data for surrogate models. We consider two IES de-
sign variables: (1) the ratio of maximum PEM power 
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑃𝑃𝑃𝑃) to the maximum power plant power (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁), and (2) 

the threshold LMP price (𝜋𝜋∗) that the IES diverts from the 
electricity production mode to the hydrogen co-produc-
tion mode. In PCM simulations, we use different bidding 
curves [13] (production-cost pairs, see Figure 2) to com-
municate the IES’s flexibility and economics to the 

market. We discretize the continuous IES design space 
and simulate all combinations in the PCM. We performed 
192 annual IES PCM simulations in the NPP-PEM IES case 
study. PCM simulation results give detailed hourly LMP 
and dispatch profiles within the simulation horizon (366 
days).  

Step 2: Train IES-market surrogate models. Using 
the LMP and dispatch profile, we calculate the total elec-
tricity revenue of each IES design combination. Then, we 
train a neural network revenue surrogate model (2 hidden 
layers, 25 nodes each layer and activated by hyperbolic 
tangent) to predict the annual electricity revenue accord-
ing to the IES design. We subdivide the annual hourly time 
series IES dispatch profile into 366 daily dispatch pro-
files. Next, we use time series clustering [14] to identify 
24-hour representative dispatch profiles for the IES con-
ceptual design optimization problem. A neural network 
dispatch frequency surrogate model (3 hidden layers, 75 
nodes each layer and activated by sigmoid) is trained to 
predict the occurrence probability of each representative 
day. Inputs of surrogate models are two design variables 
mentioned in Step 1, plus PCM simulation reserve factor 
and load shed price.  Both surrogate models are trained 
by Keras [15], and we use 80% of the data for training and 
20% for validation.  

Step 3: Solve conceptual design optimization of 
IES with surrogate models. We then formulate and solve 
a stochastic optimization problem, Equations (1) to (5), 
with IES-market surrogate models to obtain the optimal 
IES design and operation decisions: 

max  𝜑𝜑[𝑅𝑅(𝑥𝑥) +  ∑ 𝜔𝜔𝑠𝑠(𝑥𝑥)∑ 𝑅𝑅𝐻𝐻2�𝑥𝑥,𝑢𝑢𝑠𝑠,𝑡𝑡 , 𝛿𝛿𝑠𝑠,𝑡𝑡� −𝑡𝑡𝑠𝑠

                     𝐶𝐶�𝑥𝑥,𝑢𝑢𝑠𝑠,𝑡𝑡 , 𝛿𝛿𝑠𝑠,𝑡𝑡�)] − 𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶(𝑥𝑥)              (1) 

s. t.          ℎ�𝑥𝑥,𝑢𝑢𝑠𝑠,𝑡𝑡 , 𝛿𝛿𝑠𝑠,𝑡𝑡� ≤ 0, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇        (2) 

             𝑔𝑔�𝑥𝑥,𝑢𝑢𝑠𝑠,𝑡𝑡 , 𝛿𝛿𝑠𝑠,𝑡𝑡� = 0, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇       (3) 

             𝑅𝑅(𝑥𝑥) = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥)      (4) 

             𝜔𝜔𝑠𝑠(𝑥𝑥) = 𝑓𝑓𝑑𝑑𝑑𝑑𝑠𝑠(𝑥𝑥), 𝑠𝑠 ∈ 𝑆𝑆                    (5) 

The objective function is the 30-year NPV value of 
the IES retrofit. The two-stage stochastic optimization 
problem aims to optimize the IES design and operation 
together under the operation uncertainty. Table 1 sum-
marizes the nomenclature.  

For brevity, we do not report optimization results for 
(1) – (5) in this short conference paper. We recommend 
using OMLT [16] to embed neural network surrogate 
models in Pyomo [17]. Because the neural network uses 
nonlinear activation functions, we recommend using 
IPOPT [18] with HSL linear algebra [19] distributed as part 
of the IDAES platform [3]. 

Step 4: Verify the optimal IES design with PCM. 
Perform PCM simulation of the optimal design IES and 
compare the result obtained from Step 3. If the verifica-
tion result varies dramatically from the optimization 
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results, the training data can be expanded and Steps 2 to 
4 repeated.  

This conference paper focuses on the time-series 
clustering in Steps 1 and 2. 

Table 1. Conceptual design model nomenclature.  

Symbol  Meaning 
𝑠𝑠, 𝑆𝑆  Scenario (Set) 
𝑡𝑡,𝑇𝑇  Time step (Set) 
𝑅𝑅()  Revenue surrogate model 
𝜔𝜔𝑠𝑠()  Frequency surrogate model 
𝐶𝐶()  Operation cost 
𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶()  Capital cost 
ℎ()  Inequality constraints 
𝑔𝑔()  Equality constraints 
𝑥𝑥  Surrogate input variables 
𝑢𝑢  Operation variables 
𝛿𝛿  Representative dispatch profiles 
𝜑𝜑  NPV multiplier 

 

Time Series Clustering of PCM Data 
Time series clustering is employed to generate rep-

resentative IES operation profiles. In Step 1, we perform 
PCM simulation of different IES designs and obtain an an-
nual IES operation profile. We slice the dispatch profile 
into 24-hr daily time series and use the K-means cluster-
ing algorithm to minimize the within-cluster sum of 
squares Euclidean distance to get the representative 
days.  

In the NPP-PEM model, due to the different PEM 

max capacity, the minimum power of the IES will be dif-
ferent. To increase the clustering accuracy and avoid the 
potential infeasibility in the conceptual design model, we 
scale the capacity factor of NE/PEM IES between 0 and 
1, given in Equation (6). The 0 corresponds to the mini-
mum power output to the grid, i.e., when the PEM is op-
erating at the maximum power. 

𝑐𝑐𝑓𝑓𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁− 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁   (6) 

Before applying K-means clustering, we filter the 
time series with capacity factors equal to 0 (minimum dis-
patch at  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑃𝑃𝑃𝑃) or 1 (max dispatch at  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁) at 
every time step. These time series are placed into two 
clusters labeled “min” and “max” in Figure 4. We find this 
filtering improves the accuracy of K-means clustering 
and reduces the size of the clustering dataset by 43.5%. 

RESULTS AND DISCUSSION 

Time Series Clustering Centers Reliably 
Represent the Entire Dispatch Dataset 

In Figure 4, we use a box plot to sort the daily ca-
pacity factor of all clusters from “min” to “max” calculated 
via:  

𝑐𝑐𝑓𝑓𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁 =  ∑ 𝑐𝑐𝑐𝑐𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇
𝑡𝑡=1

𝑇𝑇
   (7) 

Figure 4 shows that cluster centers accurately rep-
resent the data in the cluster, and each cluster center has 
a substantial amount of data. As we can see there, except 
for the “min” and “max,” all other clusters hold the time 

 
Figure 4. Daily capacity factors of clustering centers. Green lines are median capacity factors, and red lines are 
representative capacity factors. The clusters are sorted by the capacity factor from low to high. In the horizontal, 
we show the index of each cluster and the amount of data that falls in the cluster.  
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series from 1.2% to 6.7%, and there is no single cluster 
with a significant large or small amount of data. None of 
the clusters have a significant number of outliers. 

As shown in Figure 2, the NPP-PEM IES offers power 
between 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑃𝑃𝑃𝑃 (min) and  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁 (max). Moreover, 
because the PEM model is linear (constant efficiency as-
sumption), the bid curve is piecewise constant with two 
segments. This means the NPP-PEM is almost always 
dispatched at min or max (unless it is the marginal gen-
erator). However, the K-means clustering algorithm gives 
the average of the time series data within the cluster, 
whose values may deviate from the true NPP-PEM IES 
operation. To avoid this, we can choose the time series 
data with the median capacity factor in each cluster to 
replace the representative time series generated by the 
K-means algorithm. Figure 4 shows that the median and 
mean capacity factors are very similar. 

Figure 5 shows the training data and results for clus-
ter 13. The median and representative time series have 
similar patterns and capacity factors. However, all values 
in the median time series are either 0 or 1, which mimics 
the NPP-PEM IES dispatch from the PCM simulations. 

Figure 6 compares the cumulative density of the 
NPP capacity for the entire dataset and representative 
days. Using a large number of representative days (N = 
22) helps ensure the capacity factors of the representa-
tive days match the entire dataset, as all red dots are dis-
tributed closely around the blue line. 

 

 

Figure 5. Clustering results of cluster 13. Black lines are 
the time series data in this cluster. The red and green 
lines are the representative time series calculated by K-
means and the time series data from cluster 13 with the 
median capacity factor, respectively.  

 

 

Figure 6. Comparison of the cumulative density of the 
capacity factor. The blue line is the full dataset used as 
input to the time series clustering algorithm, and the red 
line and dots are the representative days.  

Surrogate Models are Accurate 
Figure 7 compares contour plots of the electricity 

revenue from PCM simulations and surrogate model pre-
dictions. These plots are strikingly similar, with the root-
mean-squared error (RMSE) of 0.71 M$ and R2 of 0.995, 
emphasizing the surrogate’s accuracy. Moreover, in both 
plots, the electricity revenue does not monotonically de-
crease with the increasing power of the PEM, which high-
lights the non-trivial IES-market interactions. Diverting 
power to co-produce hydrogen reduces the supply of 
electricity in the market, which increases the LMP; the 
average day-ahead LMP of all PCM simulations (22.43 
$/MWh) is 1.5% higher than the price-taker signal (22.09 
$/MWh).  

The output of the frequency surrogate model pre-
dicts the weight of each representative day regarding the 
given IES design. For the different input 𝒙𝒙, the frequency 
surrogate model predicts the frequency of each repre-
sentative day within a year. Table 2 summarizes the R2 

value of all 22 representative days.   

Table 2: R2 of dispatch frequency surrogate models  
 

Value 
Mean R  
Standard Deviation  
Max R  
Min R  
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Figure 7. Contour plots of electricity revenue from (a) 
PCM Simulation and (b) revenue market surrogate model. 
In (a), electricity revenue is calculated from 48 PCM 
simulations with different divergency price and capacity 
ratio combinations. In (b), we use the surrogate model to 
predict the electricity revenue using divergency price and 
capacity ratio combinations as inputs.    

To further test the accuracy of the frequency model, 
we calculated the annual NPP-PEM IES capacity factor 
predicted by the frequency surrogate model. We com-
pared then compare these predictions with the PCM sim-
ulation data. The annual capacity factor is calculated by 
Equation (8): 

𝑐𝑐𝑓𝑓𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁 =  ∑ 𝑁𝑁𝑑𝑑𝑚𝑚𝑑𝑑 ∙ 𝜔𝜔𝑠𝑠 ∙ ∑
𝑐𝑐𝑐𝑐𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁

𝑇𝑇
𝑇𝑇
𝑡𝑡𝑠𝑠  (8) 

𝜔𝜔𝑠𝑠 is the weight predicted by the frequency surro-
gate model. 𝑐𝑐𝑓𝑓𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁 is the capacity factor of the IES at time 
t in each representative day, 𝑁𝑁𝑑𝑑𝑚𝑚𝑑𝑑 is the number of days 
in a year (equal to 366). 

Figure 9 shows the parity plot of the predicted ver-
sus actual annual IES capacity factors. The predicted an-
nual capacity factors closely agree with the PCM simula-
tion results, with the root-mean-squared error (RMSE) of 
0.006.  

 

Figure 9. Annual capacity factor parity plot. The green 
dots correspond to the 192 annual simulations 
considered in the training dataset. The parity line is 
shown in blue. 

CONCLUSIONS AND FUTURE WORK 
This work develops time-series clustering methods 

for surrogate-assisted IES design and operation optimi-
zation considering IES/market interactions. The result 
shows that time series clustering identifies accurate rep-
resentative days. The representative days and frequency 
surrogate models accurately predict the annual capacity 
factor. Finally, the neural network surrogate models for 
revenue accurately capture complex IES/market interac-
tions as revealed by the PCM simulations (ground truth).  

In future work, these surrogate models should be 
compared within the context of the IES optimization 
problem (Step 3) and compared to PCM verification sim-
ulations (Step 4). Moreover, the modeling strategy 
should be extended to consider energy storage systems 
[19], uncertainty from renewables, and additional reve-
nues from ancillary services [20]. We also plan to extend 
the approach to consider price fluctuations in co-prod-
ucts, which is especially important as hydrogen and other 
renewable-energy-derived chemical markets continue to 
mature.  
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ABSTRACT 
Biogas is a promising energy source for sustainable hydrogen production due to its high concen-
tration of CH4. However, determining the optimal process configuration is challenging due to the 
uncertainty of the fed biogas composition and the sensitivity of the operating conditions. This 
necessitates early-stage evaluation of the biomass-to-hydrogen process's performance, consid-
ering economics, energy efficiency, and environmental impacts. A data-driven model was intro-
duced for early-stage assessment of hydrogen production from biogas without whole process 
simulation and optimization. The model was developed based on various biogas compositions and 
generated parameters for mass and energy balance. A database of unit processes was created 
using simulation models. Sensitivity analysis was performed under four techno-economic and en-
vironmental evaluation criteria: Unit Production Cost (UPC), Energy Efficiency (EEF), Net CO2 
equivalent Emission (NCE), and Maximum H2 Production (MHP). The early-stage evaluation of the 
biogas-to-hydrogen process can guide the establishment of biogas utilization strategies and pro-
pose effective biogas enhancement process development solutions to respond to market disturb-
ances. 

Keywords: Hydrogen, Biosystems, Optimization, Environment, Technoeconomic Analysis, Data-driven model 

1. INTRODUCTION
Continuous concerns over global warming and the

depletion of fossil fuels have spurred research into effi-
cient technologies and sustainable energy generation. 
Currently, hydrogen is gaining increasing attention as a 
substantial energy carrier, primarily due to its environ-
mental advantages and high calorific value. Although hy-
drogen is a potentially valuable material especially for the 
environment as a fuel, the conventional steam methane 
reforming plant, responsible for 50% of conventional hy-
drogen production emits 13.7 kg eq. CO2 per kg of net H2 
produced [1]. Biogas is a viable alternative raw material 
for hydrogen production, as the methane within biogas 
can be utilized to prevent greenhouse gas emissions into 
the atmosphere [2]. There are various sources from 
which biogas can be obtained, such as sewage sludge 
digesters, organic waste digesters, or landfills. The bio-
gas typically comprises 55 – 75% of methane, 25-45% of 
CO2, and trace elements like nitrogen (N2), oxygen (O2), 
hydrogen sulfide (H2S), siloxanes, and some dust 

particles [3]. Before constructing a biogas utilization 
plant, an early-stage assessment of the biogas-to-hy-
drogen process is necessary. Zhao X, et al investigated 
various biogas reforming technologies utilizing different 
catalysts to convert biogas to syngas. They conducted 
techno-economic analysis of biogas conversion technol-
ogies [4]. However, the previous research has not ex-
plored and evaluated the most efficient pathways for bi-
ogas utilization. 

In this study, we have presented a superstructure-
based data-driven model that can provide optimal strat-
egies for biogas-to-hydrogen conversion. We carried out 
a comprehensive analysis of economic, environmental, 
and technological aspects by generating mass and en-
ergy balance data for every possible pathway and oper-
ating conditions from the superstructure. The main oper-
ating variables include the types of reformers and each 
operating conditions for various criteria. The techno-
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economic analysis and sensitivity analyses were con-
duced prior to optimization to assess the overall process 
parameters. As a result of the optimization, we can rec-
ommend the appropriate technologies with defined op-
erating conditions for the process. 

2. RESEARCH OVERVIEW AND 
METHODOLOGY 

Research Overview 
The section demonstrates the conceptual frame-

work for hydrogen production through the reforming of 
biogas. Figure 1 provides an overall view of the research 
on the utilization of biogas, which comprises five steps: 
Problem setting, superstructure generation, data-driven 
modelling, development of optimization models, and op-
timal strategy formulation. To begin the process, we 
identify the feedstock, types of reformers, and product. 
The superstructure for the biogas-to-hydrogen process 
can be generated via various pathways, each involving 
different types of reformers and operating conditions for 
the applied technologies. Afterwards, data generated 
from the process simulation can be utilised to estimate 
additional mass and energy balance. This is done using 
the Excel-based data-driven model and is key to calcu-
lating techno-economic and environmental parameters. 
Prior to recommending optimal strategies, an optimiza-
tion model was created based on diverse evaluation cri-
teria evaluating the impact of economic and environmen-
tal factors. The optimization outcomes enable the recom-
mendation of appropriate strategies for the distinct ele-
ments of biogas.  
 We considered three biogas compositions, compris-
ing 55%, 65%, and 75% CH4. To attain the best pathways 
for each composition, we evaluated four reformers: 
Steam Methane Reforming (SMR), Dry Reforming (DR), 
Auto-Thermal Reforming (ATR), and Tri-Reforming (TRI). 

In the case of conventional hydrogen production from 
natural gas, SMR is typically employed in conjunction with 
water gas shift reactions to maximize hydrogen produc-
tion. However, the significant quantity of CO2 emissions 
produced by the conventional process necessitates the 
assessment of the biogas utilization process on various 
parameters. Steam methane reforming, which has a 3:1 
H2/CO ratio, is highly endothermic, whereas dry reform-
ing reduces CO2 by consuming it as a reactant. Nonethe-
less, DR is also an extremely high endothermic process. 
To reduce the consumption of the reforming process, the 
ATR that employs partial oxidation with steam methane 
reforming has emerged. The TRI, which simultaneously 
employs partial oxidation and dry reforming with steam 
methane reforming, is a viable technology for biogas uti-
lization. Both ATR and TRI can minimise energy consump-
tion for the reforming process, although H2/CO ratio may 
decrease to less than 3. Prior to constructing a biogas 
utilization process, it is crucial to assess the advantages 
and disadvantages of various technologies. Table 1 
showcases the operating limits of each reformer under 
atmospheric pressure. 

Table 1: Types and operating conditions of biogas re-
forming technologies at atmospheric pressure [5-8].  

Steam reforming 
(Ni/Mg AlO spinel) 

Temperature -℃ 
HO/CH - 

Dry reforming 
(Rh/AlO) 

Temperature -℃ 
CO/CH - 

Auto-thermal reforming 
(Ni/Mg AlO) 

Temperature -℃ 
HO/CH - 
O/CH - 

Tri-reforming 
(Ni/Mg AlO) 

Temperature -℃ 
HO/CH - 
O/CH - 

 

 
Figure 1: Research overview of biogas utilitzation process. 
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Process Analysis Method 
The process was assessed using multiple criteria, 

including unit production cost (UPC), Net CO2-equivalent 
emissions (NCE), and energy efficiency (EEF), as demon-
strated in Eqs. (1)-(3). In the economic evaluation, capital 
expenditures (CAPEX) and operating expenses (OPEX) 
were divided by the quantity of produced hydrogen. The 
UPC was estimated using an interest rate of 7% over a 
25-year plant lifespan.  

𝑈𝑈𝑈𝑈𝑈𝑈 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝑜𝑜 ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦𝐴𝐴

, ($/𝑘𝑘𝑘𝑘𝐻𝐻2)  (1) 

In order to calculate the environmental parameters, we 
considered the net CO2-equivalent emissions (NCE). The 
term 'direct CO2eq' refers to greenhouse gas emissions 
during process operations, whilst 'indirect CO2eq' pertains 
to the emissions caused by the consumption of utilities 
for the consumption of electricity and heating sources in 
the process operation. The 'carbon credit' (CC) repre-
sents the decrease in the amount of CO2 achieved by uti-
lizing CO2 as a reactant.  

𝑁𝑁𝑈𝑈𝑁𝑁 =  𝐷𝐷𝐷𝐷𝑦𝑦𝑦𝑦𝐷𝐷𝐴𝐴 𝐶𝐶𝑂𝑂2𝑒𝑒+𝐼𝐼𝐴𝐴𝑦𝑦𝐷𝐷𝑦𝑦𝑦𝑦𝐷𝐷𝐴𝐴 𝐶𝐶𝑂𝑂2𝑒𝑒−𝐶𝐶𝐶𝐶
𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝑜𝑜 ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦𝐴𝐴

, (𝑘𝑘𝑘𝑘𝐶𝐶𝑂𝑂2−𝑒𝑒𝑒𝑒/𝑘𝑘𝑘𝑘𝐻𝐻2)(2) 

For the assessment of the technical aspects of the bio-
gas-to-hydrogen process, energy efficiency (EEF) serves 
as an assessment parameter. To determine the EEF of the 
process, the heat generated by the product (hydrogen) 
is divided by the energy used by utilities and the heat in-
troduced by the fed feedstock (biogas).  

𝑁𝑁𝑁𝑁𝐸𝐸 =  𝐻𝐻𝑦𝑦𝐻𝐻𝐴𝐴 𝐴𝐴𝑜𝑜 ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦𝐴𝐴
𝐻𝐻𝑦𝑦𝐻𝐻𝐴𝐴 𝐴𝐴𝑜𝑜 𝑜𝑜𝑦𝑦𝑦𝑦 𝑏𝑏𝐷𝐷𝐴𝐴𝑦𝑦𝐻𝐻𝑏𝑏+ 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢

× 100%, (%) (3) 

3. RESULTS AND DISCUSSION 

Techno-economic analysis 
For the purpose of economic evaluation, we ana-

lysed the breakdown of overall production cost and op-
erational cost for producing hydrogen.  

Figure 2: Total production cost analysis of biogas-to-hy-
drogen processes with different reformers. 

To address different strategies, we initially studied the 
optimal operating conditions for each type of reformers. 
Figure 2 presents the cost breakdown of hydrogen pro-
duction, indicating that the total operating cost (TOC) 
represents more than 80% of the total cost for all tech-
nologies. To evaluate the impact of OPEX, which is a sig-
nificant factor in this research, we analysed the specific 
breakdown of the total operating cost, which is displayed 
in Figure 3.  

Figure 3: Analysis of total operating cost of the biogas-
to-hydrogen processes. 
 
The analysis of total operating costs indicates that utility 
costs (UTC) dominate the process that employs SMR and 
DMR for reforming, while raw material costs (RMC) are 
the most influential parameter for the process using ATR 
and TRI reactions. It has been determined that highly en-
dothermic reforming reactions yield a relatively larger 
amount of hydrogen than processes utilizing partial oxi-
dation reactions. Furthermore, we have observed that 
the process which adopts highly endothermic reforming 
reactions can produce a greater quantity of hydrogen 
compared to the partial oxidation reaction process. How-
ever, the high heat consumption rate has led to an in-
creased proportion of utility costs in the total operating 
costs. 

Sensitivity analysis 
 The sensitivity analysis of the hydrogen UPC was 
conducted by examining the impact of a 20% change in 
major economic parameters, as displayed in Figure 4. Op-
timal conditions for every biogas composition and type of 
reformer were analyzed, with results presented as a 
range distribution. The bar graph demonstrates the aver-
age values obtained across all cases. Technical abbrevi-
ations have been explained within the text.  
 The results of the sensitivity analysis indicate that 
the price of biogas (feedstock) has the largest impact on 
the UPC, decreasing and increasing by 20.1% and 18.1%, 
respectively. The price of fired heat and electricity are 
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the second and third most sensitive parameters, resulting 
in UPC changes of around 5% and 3%, respectively.  

Figure 4: Sensitivity analysis for the unit production cost 
of total biogas-to-hydrogen processes. 
 
Other factors have a minor impact on UPC, staying below 
2%. Accordingly, we scrutinized that the cost of generat-
ing hydrogen is significantly linked to OPEX, particularly 
the expenses concerning raw materials, fired heat, and 
electricity. Thus, these costs have a trade-off relation 
with respect to economic and environmental factors.  

Optimization model 
 To identify the optimal pathways of biogas-to-H2, 
we developed optimization models using a mixed-integer 
linear programming (MILP) technique. Here, we consid-
ered various evaluation criteria as objective functions to 
identify the viable biogas utilization strategies. Eq. (1) 
identifies the minimum unit production cost for a fixed ca-
pacity of biogas as a feedstock, which represents the 
most economic strategy.  

F U
j j i ij i ij

j j i I i I

MinUPC F Uα ϕ φ π
∈ ∈

= + + +∑ ∑ ∑ ∑                        (1) 

where jα is the total capital investment cost of pathway 

j  , jϕ  is the fixed operating cost factor of pathway j  , 

and iπ  and iφ   are the unit costs for utilities and 
feedstock, respectively. ijF  and ijU  is the amount of 

feedstock ∈ Fi I and utilities ∈ Ui I , respectively. 
Eq. (2) seeks for the most eco-friendly process, which is 
minimum net CO2 emission strategy for the same amount 
of process capacity. 

F F
j i ij i ij

j i I i I

MinNCE U Fδ ε γ
∈ ∈

= + −∑ ∑ ∑                                         (2) 

where jδ  is the amount of directly emitted CO2 by 

technology j . iε  is the amount of indirect CO2 emission 

by using utility ∈ Ui I  , and iγ   is the CO2 inventory for 

feedstock ∈ Fi I . 
Finally, maximum energy efficient process is identified via 
Eq. (3), which is maximum energy stored in product with 
a certain input energy to process. 

i ij
j

MaxEE Pρ= ∑                                                                   (3) 

where iρ is the heating value of final product ∈ Pi I . ijP

is the amount of product of pathway j .  
 The optimization model with proper corresponding 
constraints is developed as follows.  
 Flow conservation: Eq. (4) is used to balance the 
amount of flows between the utilized feedstock and the 
total amount of processed feedstock in pathway j . 

1 1

n nj j
in F

ij ij
j j

F Q i I= ∀ ∈∑ ∑                                                              (4) 

where in
ijQ  is the flow rate of the feedstock input to 

technology j .  
Similaryly, the flow rate of the feedstock input to the 
technology must be identical to the sum of the three 
output flow rates for the final product, by-product, and 
waste, as illustrated in Eq. (5) 

' ' '' , ' , '' ,in F P W
ij i j i j i jQ P B W i I i I i I j J= + + ∀ ∈ ∈ ∈ ∈   (5) 

where ijP  , 'i jB  , and ''i jW   are the amount of product, 

byproduct and wate from pathway j , respectively.  
 Feed availability: The amount of feedstock should 
be bounded by an upper limit (i.e., availability) and a 
lower limit (i.e., minimum purchase for realistic technol-
ogy operation) as shown in Eq. (6) 

F
i ij ir F i Iω≤ ≤ ∀ ∈∑                                                              (6) 

where ir  and iω  are the minimum purchase and feed 
availabiltiy, respectively.  
 Logistic constraint: In case an input can be pro-
cessed by various technologies, only one technology that 
can satisfy the objective function should be selected us-
ing binary variables.  

1

11 { , , }
n

n

j

j n
j

X j j J≤ ∀ ⋅⋅⋅ ∈∑                                                              (7) 

where 
nj

X  is a binary variable that represents the 

pathway selection.  
 Technology capacity: The involved technology is 
limited by its capacity ( jψ ). 

n n

in
j j j nQ X j Jψ≤ ∀ ∈                                                              (8) 

Optimal strategies of biogas-to-hydrogen 
process  
 The most efficient hydrogen production methods 
from diverse biogas compositions are evaluated using 
Figure 5, based on three different criteria. The first col-
umn of Figure 5, representing the optimization results, 
takes into account black utility and levelized cost of bio-
gas (LCOB). According to the estimated process cost by 
UPC, SMR utilization strategies show the most cost-ef-
fective pathways for all the examined biogas 
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compositions. The utilization process for low-concentra-
tion methane within biogas resulted in an increase in 
UPC due to the limited production of hydrogen caused 
by the low levels of methane. By comparing the operat-
ing conditions of strategies aimed at minimizing UPC, 
we can determine that a relatively low-temperature re-
forming process was utilized for low-concentration me-
thane within biogas. When considering the environmen-
tal impact, the TRI utilization strategies exhibit the low-
est NCE for all biogas compositions evaluated. The TRI 
reaction has the potential, in theory, to use CO2 as a re-
actant via partial oxidation, thereby supporting the 
highly endothermic steam methane reforming reaction. 
The process has the potential to reduce utility con-
sumption through partial oxidation while also reducing 
CO2 in the feedstock.  
 Based on the results of the sensitivity analysis, three 
parameters that potentially present a trade-off between 
UPC and NCE when modified can be viewed as con-
straints for the optimization process. In Case 1, we opted 
for the use of a green utility with a low CO2-eq value de-
spite its higher utilization cost instead of a black utility. 
Remarkably, the optimal pathway for hydrogen produc-
tion from biogas has been altered. For all evaluation val-
ues (UPC, NCE, and EEF), the utilization of SMR process 
displays the most viable option for converting biogas-to-
hydrogen. The SMR utilization strategy generates signif-
icant hydrogen production with minimal CO2 emissions 
from the utilities, which is the best pathway for minimiz-
ing NCE when the biogas contains 75% concentrated me-
thane. Optimal pathway changes when biogas contains 
less than 65% methane. The DMR strategies were se-
lected for their eco-friendly nature, reducing significant 
CO2 emissions by using CO2 as a feedstock. Consumption 
of sustainable, 'green' utilities can reduce the significant 
CO2 emissions generated from traditional utilities. In case 
2, we assumed a biogas price of 0, which can be obtained 

from upcycling waste. There is no significant change in 
the optimization results, but the utilization processes of 
ATR and TRI could be more cost-effective pathways 
compared to the SMR process for biogas with methane 
concentrations of 55% and 65%, respectively.  
 Finally, if we consider both assumption that are used 
in Case 1 and Case 2, the optimization results can be 
drastically altered. In terms of cost-effectiveness, strat-
egies utilizing partial oxidation reactions to reduce en-
ergy consumption are preferred, while SMR and DMR 
may be the most environmentally friendly processes by 
reducing CO2 emissions from utility consumption and uti-
lizing CO2 as a feedstock. For technology, the SMR-
based process remains the most energy-efficient option.  

4. CONCLUSIONS 
In this study, we analysed the process of converting 

biogas directly to hydrogen and optimised it for three 
evaluation criteria: UPC, NCE, and EEF. This was 
achieved by constructing a superstructure that consid-
ered multiple variables and evaluation parameters. We 
determined the economic, environmental, and technical 
feasibility and suggested optimal pathways for the pro-
cess. The major findings and contributions of this re-
search are as follows: 

 To solve the problem of multi variables and 
evaluation parameters, the superstructure based 
data driven-modeling was conduced.  

 Before the optimization process, we conducted 
techno-economic evaluation and sensitivity 
analysis that identified major cost drivers (i.e., 
price of feedstock, price of electricity and fired 
heat).  

 For the case of process which utilizes black 
utilities and LCOB, the SMR based process is 
economically and technically optimal while TRI 

Figure  Optimal strategies for different evaluation scenario by considering different biogas compositions 
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based process shows the best results for 
environmental parameters for every biogas 
compositions.  

 The analysis for different assumptions which 
showed trade-off relationship between economical 
and environmental parameters were conducted. 

 By considering every assumptions for alternative 
scenarios which was shown in Case 3, we can 
analyze that ATR and TRI based process is cost-
effective process for each biogas compositions 
while SMR and DMR can be the technically 
effective and eco-friendly process.  
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ABSTRACT 
This study focuses on optimizing solid oxide electrolysis cell (SOEC) systems for efficient and 
durable long-term hydrogen (H2) production. While the elevated operating temperatures of SOECs 
offer advantages in terms of efficiency, they also lead to chemical degradation, which shortens 
cell lifespan. To address this challenge, dynamic degradation models are coupled with a steady-
state, two-dimensional, non-isothermal SOEC model and steady-state auxiliary balance of plant 
equipment models, within the IDAES modeling and optimization framework. A quasi-steady state 
approach is presented to reduce model size and computational complexity. Long-term dynamic 
simulations at constant H2 production rate illustrate the thermal effects of chemical degradation. 
Dynamic optimization is used to minimize the lifetime cost of H2 production, accounting for SOEC 
replacement, operating, and energy expenses. Several optimized operating profiles are compared 
by calculating the Levelized Cost of Hydrogen (LCOH).   

Keywords: Fuel Cells, Dynamic Degradation Modelling, Hydrogen, Optimization, Solid Oxide Cells

INTRODUCTION 
Solid oxide cells (SOCs) are flexible energy conver-

sion and H2 generation devices that have many benefits 
including modularity, high theoretical efficiency, and low 
operating greenhouse gas emissions. They can be oper-
ated reversibly in either power generation mode as a 
solid oxide fuel cell (SOFC) or H2 production mode as a 
solid oxide electrolysis cell (SOEC). Steam electrolysis in 
SOECs has a variety of benefits over a conventional 
steam-methane reforming process such as no direct 
emission of CO2 when renewable sources of electricity 
are used. High-temperature SOCs offer high electrical ef-
ficiency especially at high temperatures. 

However, the high temperature needed for achiev-
ing high efficiency in SOCs also leads to chemical degra-
dation of the microstructure in the electrodes and elec-
trolytes. Chemical degradation results in changes in the 
composition and microstructure of the triple-phase 

boundary. The dynamics of these changes are very slow, 
but the changes can steadily build up during the operat-
ing lifetime of a cell. Chemical degradation causes an in-
crease in the voltage losses that reduce the effective 
voltage utilized for electrolysis.  

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the cell voltage that contributes to electrolysis, 
is given by Equation 1. In Equation 1, 𝑉𝑉𝑁𝑁𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is the Nernst 
potential and 𝑉𝑉𝑎𝑎𝑐𝑐𝑁𝑁 ,𝑉𝑉𝑂𝑂ℎ𝑚𝑚𝑚𝑚𝑐𝑐 , and   𝑉𝑉𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐 are the activation, 
Ohmic, and concentration overpotentials. The magni-
tudes of these overpotentials depend on the operating 
conditions of the cell, but these losses are inevitable even 
in fresh, undegraded cells. The total overpotential due to 
all long-term chemical degradation mechanisms is given 
by 𝑉𝑉𝑑𝑑𝑐𝑐𝑑𝑑𝑁𝑁𝑎𝑎𝑑𝑑𝑎𝑎𝑁𝑁𝑚𝑚𝑐𝑐𝑁𝑁. In a new (i.e., undegraded) cell, the 
𝑉𝑉𝑑𝑑𝑐𝑐𝑑𝑑𝑁𝑁𝑎𝑎𝑑𝑑𝑎𝑎𝑁𝑁𝑚𝑚𝑐𝑐𝑁𝑁 term  is 0, but this term increases with time. 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑁𝑁𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑉𝑉𝑎𝑎𝑐𝑐𝑁𝑁 − 𝑉𝑉𝑂𝑂ℎ𝑚𝑚𝑚𝑚𝑐𝑐 − 𝑉𝑉𝑑𝑑𝑐𝑐𝑑𝑑𝑁𝑁𝑎𝑎𝑑𝑑𝑎𝑎𝑁𝑁𝑚𝑚𝑐𝑐𝑁𝑁 (1) 

Figure 1 shows a typical SOEC and the reactions 
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occurring in the fuel and oxygen electrodes. In the oxy-
gen electrode (anode during electrolysis), high partial 
pressure of oxygen contributes to the oxidation of the 
active material LSM-YSZ. In the fuel electrode, nickel (Ni) 
agglomeration occurs due to Ostwald ripening. 

 
Figure 1. SOEC Schematic and Reactions 

In the literature, many approaches have been pro-
posed to include degradation models for making SOC de-
sign and operation decisions. A few relevant optimization 
studies are reviewed here. For detailed review, we refer 
readers to [1]. Parhizkar et al. [2] combined microstruc-
ture degradation models with a simplified input-output 
SOFC performance model to perform steady-state opti-
mization to identify operating conditions for minimizing 
the cost of electricity. Naeini et al. [3] coupled a data-
driven model for SOEC degradation with a steady-state 
model for SOEC operation. In their work, the Levelized 
Cost of Hydrogen (LCOH) is minimized over a 20-year 
operating horizon.  

In this work, models of key degradation mechanisms 
are coupled with a first principles two-dimensional (2D) 
non-isothermal SOEC model. This work seeks to fill two 
gaps in the existing literature. First, most modeling stud-
ies in the literature use isothermal 0D models; therefore, 
spatial variation and thermal characteristics of a de-
graded cell are neglected. The 2D non-isothermal SOC 
model used in this work provides detailed insights into 
the spatial distribution of degradation in each cell. A sec-
ond gap, which this work aims to fill, is that most SOC 
degradation simulation studies do not consider the ef-
fects of degradation on the balance of plant. While some 
studies incorporate simplified heating and compression 
duties in their calculations for total energy consumption, 
this work extends this to capture the impact of cell level 
degradation on the balance of plant by considering a fully 
modeled SOEC flowsheet. The flowsheet model is used 
in dynamic optimization to identify optimal operating pro-
files for system- and cell-level decision variables as a 
function of time. 

MODELING AND METHODS 

Flowsheet modeling details 
As shown in Figure 2, the SOEC hydrogen produc-

tion system is modeled as a collection of linked unit mod-
els in the open-source IDAES, equation-oriented IDEAS 
(Institute for the Design of Advanced Energy Systems) 
platform. The system consists of an SOEC stack (mod-
eled as a single cell), and electric heaters for the feed and 
sweep input streams along with heat exchangers for heat 
recovery. For a detailed description of SOEC flowsheet 
modeling details, we refer readers to [4-5]. The models 
used in this study are available in the open-source IDAES 
modeling framework [9]. 

 
Figure 2. SOEC system flowsheet 

Health modeling 
 Degradation mechanisms in SOCs vary depending 

on the materials of construction of the cell. For this study, 
we consider fuel electrode of a Ni-YSZ composite, an ox-
ygen electrode of LSM-YSZ separated by a YSZ electro-
lyte as a part of a planar fuel electrode supported SOC.  

One of the dominant degradation mechanisms that 
take place in the fuel electrode is the agglomeration of Ni 
particles due to surface diffusion. The dynamics of the Ni 
particle growth are described by Equation 2 [6]. Here, �̅�𝑑𝑁𝑁𝑚𝑚 
is the average Ni particle diameter, 𝑚𝑚 = 0.5 and 𝑛𝑛 = 8. 

𝑑𝑑��̅�𝑑𝑁𝑁𝑚𝑚�
𝑑𝑑𝑑𝑑 =

𝑎𝑎′

𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁−1������ �
𝑃𝑃𝐻𝐻2𝑂𝑂
𝑃𝑃𝐻𝐻2
0.5 �

𝑚𝑚

𝑒𝑒
−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 (2) 

The oxygen electrode undergoes degradation due 
to the growth of oxide scales under high oxygen partial 
pressure. Under these conditions, Wagner’s law for par-
abolic oxidation is used as a semi-empirical model to de-
scribe growth of oxide scale. In LSM-YSZ electrodes, the 
scales formed are of lanthanum zirconate (LZO) and 
chromium oxide (COS). The chromium oxide scale is lo-
calized to the interface between the oxygen electrode 
and interconnect. Equation (3) describes the tempera-
ture-dependent Wagner’s law for a general oxide scale 
growth length 𝑙𝑙𝑁𝑁𝑐𝑐 [7]. Here, 𝑋𝑋0,𝑁𝑁𝑐𝑐, 𝜌𝜌𝑁𝑁𝑐𝑐, 𝐾𝐾𝑁𝑁𝑐𝑐 , and 𝐸𝐸𝑁𝑁𝑐𝑐 are the 
weight fraction, density, weight gain rate, and activation 
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energies of oxide scale growth, respectively. 

𝑑𝑑𝑙𝑙𝑁𝑁𝑐𝑐
𝑑𝑑𝑑𝑑 =

𝐾𝐾𝑁𝑁𝑐𝑐
2�𝑋𝑋0,𝑁𝑁𝑐𝑐𝜌𝜌𝑁𝑁𝑐𝑐�

2𝑙𝑙𝑁𝑁𝑐𝑐
𝑒𝑒−

𝐸𝐸𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅      ∀   𝑠𝑠𝑠𝑠 ∈ {𝐶𝐶𝐶𝐶𝐶𝐶, 𝐿𝐿𝐿𝐿𝐶𝐶} (3) 

Other degradation mechanisms that are modeled in-
clude coarsening of the LSM-YSZ oxygen electrode and 
phase transformation of the YSZ electrolyte. Additionally, 
we make use of property models to relate microstructure 
parameters to degradation overpotentials [8].  

Solution methodology 
Incorporating degradation models into first princi-

ples unit models requires solving a differential algebraic 
equation (DAE) system with multiple timescales. For the 
SOEC system, these timescales can be broadly divided 
into two categories: one faster timescale for process op-
erations and SOEC dynamics (minutes to hours) and an-
other slower timescale for degradation (hundreds of 
hours). To simplify the problem, we assume quasi-steady 
state for the faster timescale processes. This allows us 
to discretize and dynamically integrate the slower degra-
dation timescale. With this approach, we can simulate 
SOEC operation with degradation effects for extended 
periods, spanning tens of thousands of operational hours, 
providing insights into long-term performance and de-
sign strategies. 

We employ the implicit Euler method to discretize 
the degradation dynamic equations. The discretized sys-
tem of equations can be solved simultaneously and effi-
ciently using a nonlinear solver such as IPOPT [10]. Be-
cause of the quasi-steady state assumption, the only ac-
tive differential equations in the model are those pertain-
ing to the slow degradation dynamics. The advantage of 
a simultaneous solution method is the ability to optimize 
across the entire operational horizon, ensuring a compre-
hensive assessment of system performance. Addition-
ally, this approach enables the incorporation of con-
straints spanning multiple time points, thus providing en-
hanced modeling versatility. In contrast, the sequential 
time-stepping approach restricts optimization to instan-
taneous performance metrics like instantaneous effi-
ciency. 

Hydrogen Production Profiles 
The discretized SOEC system model is used to as-

sess different long-term operating scenarios by first 
specifying the nature of the hydrogen production profile.  

 
Constant H2 Production: In this profile, a constant H2 
production rate is maintained throughout the operating 
lifetime. As shown in Equation 4, an equality constraint 
indexed over time ensures that the average current den-
sity 𝐽𝐽𝑎𝑎𝑎𝑎𝑑𝑑 remains constant. Here, 𝑗𝑗𝑁𝑁,𝑧𝑧 is the local current 
density at a point z along the length of the cell and Nz is 
the number of finite elements. As degradation proceeds, 

it is expected that increased degradation losses will re-
sult in an increase in operating voltage to sustain the 
fixed H2 production rate.  

1
𝑁𝑁𝑧𝑧

�𝑗𝑗𝑁𝑁,𝑧𝑧
𝑧𝑧

= 𝐽𝐽𝑎𝑎𝑎𝑎𝑑𝑑,0  ∀ 𝑑𝑑 (4) 

Constant Potential Operation: In this strategy, a con-
stant cell potential is maintained over time [3]. This keeps 
cell-level energy consumption constant. However, as 
degradation progresses, current density decreases. This 
leads to a gradual reduction in H2 production at a con-
stant operating temperature. However, by varying the 
cell operating temperature over time, more complex op-
erating scenarios can be investigated. Cell voltage is held 
constant by fixing operating voltage for all time points 
(Equation 5).  

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑁𝑁 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,0  ∀ 𝑑𝑑 (5) 

Dynamic optimization 
Typically, steady-state optimization is used to de-

termine the operational setpoints of a system. In this 
case, minimization of the system power requirement for 
a given H2 production rate [5]. This methodology can be 
used to determine steady-state optimal operating condi-
tions corresponding to different load conditions. In the 
absence of degradation, operational efficiency, power 
consumption, and local cell temperature profile would re-
main at the steady-state optimal value. In this work, we 
provide a methodology to optimize the operational profile 
over 20,000 hours for long-term stability and efficient 
operation, while accounting for performance degrada-
tion.  

For long-term dynamic optimization, we propose to 
maximize the integral average efficiency over the oper-
ating lifetime (Equation 6). As a surrogate for system ef-
ficiency, we use a simplified version as described in [11]. 
Under constant H2 load, the numerator is invariant, and 
the objective simplifies to the minimization of system 
power consumption. Obviously, under constant potential 
operation, the numerator is not constant. Here, 𝑃𝑃𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑐𝑐𝑚𝑚 is 
the total electric power consumption of the system, in-
cluding stack work, electric heater, and blower duties 
(Equation 7).  

max �
𝐻𝐻𝐻𝐻𝑉𝑉��̇�𝑚𝐻𝐻2,𝑁𝑁�
𝑃𝑃𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑐𝑐𝑚𝑚,𝑁𝑁𝑁𝑁 ∈ 𝑁𝑁𝑚𝑚𝑚𝑚𝑐𝑐

(6) 

𝑃𝑃𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑐𝑐𝑚𝑚 = 𝑃𝑃𝑆𝑆𝑂𝑂𝐸𝐸𝑆𝑆 + 𝑃𝑃sweep heater + 𝑃𝑃feed heater + 𝑃𝑃𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑁𝑁 (7) 

A second operational strategy involves minimization 
of the degradation rate. To include all degradation ef-
fects into one combined term, it is desirable to use the 
degradation overpotential 𝑉𝑉𝑑𝑑𝑐𝑐𝑑𝑑𝑁𝑁𝑎𝑎𝑑𝑑𝑎𝑎𝑁𝑁𝑚𝑚𝑐𝑐𝑁𝑁 in Equation 1. How-
ever, since the overpotential at any given point in time 
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depends on the operating temperature and composition 
following an Arrhenius-type temperature dependence, 
we consider the voltage at a reference temperature 𝑉𝑉�  . 
This ensures that the voltage degradation rate for opti-
mization only depends on the operating trajectory. With 
this we minimize the average voltage degradation rate 
from t=0 to t=tf, the final time point (Equation 8).  

min
𝑉𝑉�𝑁𝑁𝑓𝑓 − 𝑉𝑉�0
𝑉𝑉�0

(8) 

Finally, under constant potential operation, market 
conditions may require the system to operate at the high-
est possible H2 production rate (�̇�𝑚𝐻𝐻2). This can be 
achieved by maximizing the H2 production rate (Equation 
9). 

max � �̇�𝑚𝐻𝐻2,𝑁𝑁
𝑁𝑁 ∈ 𝑁𝑁𝑚𝑚𝑚𝑚𝑐𝑐

∆𝑑𝑑 (9) 

The decision variables for optimization include feed 
and trim heater duties, recycle ratios, blower flowrate, 
sweep and steam inlet and outlet temperatures. For de-
tails on bounds and operational constraints refer to [5].  

Levelized Cost of H2 (LCOH) Calculation 
The different optimized cases are compared based 

on the resultant LCOH, as shown in Equation 10. We com-
pute the LCOH by modifying the method of [12] to incor-
porate stack replacement costs. The LCOH includes the 
capital recovery factor (CRF) and capital costs (CC) for 
the stack and balance of the plant (BOP). 
 𝐶𝐶𝐶𝐶,𝐸𝐸𝐶𝐶, and 𝑚𝑚𝐻𝐻2, lifetime  are the operating costs, energy 
costs, and lifetime H2 production, respectively. Costing 
parameters are obtained from [12].   

𝐿𝐿𝐶𝐶𝐶𝐶𝐻𝐻 =
𝐶𝐶𝐶𝐶𝐹𝐹𝐵𝐵𝑂𝑂𝐵𝐵𝐶𝐶𝐶𝐶𝐵𝐵𝑂𝑂𝐵𝐵 + ∑  𝑅𝑅

𝑚𝑚=1 𝐶𝐶𝐶𝐶𝐹𝐹stack ,𝑚𝑚𝐶𝐶𝐶𝐶stack + 𝐶𝐶𝐶𝐶 + 𝐸𝐸𝐶𝐶
𝑚𝑚𝐻𝐻2, lifetime 

  (10) 

The number of stack replacements (𝑛𝑛𝑁𝑁𝑐𝑐𝑟𝑟) over the plant 
lifetime of 30 years is computed based on the extent of 
degradation at the end of the 20,000-hour optimization 

horizon as per Equations 11 and 12.  

Replacement time =
Δ𝑉𝑉�𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁

�Δ𝑉𝑉
�

Δ𝑑𝑑 �𝑎𝑎𝑎𝑎𝑑𝑑

 (11) 

𝑛𝑛𝑁𝑁𝑐𝑐𝑟𝑟 =
30 years

replacement time (12) 

RESULTS 
Figure 3 compares 20,000 hours of operation, at 

constant current density and constant potential through 
simulations. As the degradation overpotential increases 
over time, we observe that constant current density op-
eration results in a higher voltage degradation rate than 
constant potential operation. Due to the increase in 
Ohmic resistance, the thermal characteristics along the 
length of the cell change with time.  

 

 
Figure 3. Effect of degradation on voltage and current 
density 

As shown in Figure 4, there is a significant increase 
in the average temperature along the length of the cell 
for constant current density operation. Here the inlet 
temperatures were held constant over the 20,000 hours 

Table 1: Summary of Optimization Results 
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Production  
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Production Rate 
(× 107𝑘𝑘𝑘𝑘/𝑦𝑦𝑦𝑦) 
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Efficiency     
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Operation 
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of operation. 
The spatial temperature profile shown is at the cen-

ter of the cell along the electrolyte layer. During constant 
current density operation, we observe a large increase in 
local cell temperature. The increase in degradation over-
potential results in an increase in operating potential, 
which corresponds to operation above the thermoneutral 
voltage. Furthermore, the larger Ohmic resistance due to 
degradation also results in higher Ohmic heating. Under 
constant potential operation, a drop in current density re-
sults in lower cell temperatures.  

 

 
Figure 4. Change in temperature profile due to 
degradation 
 

 
Figure 5. Optimal Constant H2 Production Operation               
(Maximize Integral Efficiency) 

Table 1 compares key performance measures from 
the different dynamic optimization case studies. These 
include the average H2 production rate, specific energy 

consumption, and average degradation rate as calcu-
lated in Equation 13.  

Voltage Degradation Rate =
1
𝑑𝑑𝑓𝑓
𝑉𝑉�𝑁𝑁 − 𝑉𝑉�0
𝑉𝑉�0

× 100 (13) 

The initial operating point for all cases is identical, 
and the specific operating conditions were obtained by a 
steady-state optimization to ensure a H2 production rate 
of 1.5 kg/s. This corresponded to an optimal initial voltage 
of 1.31 V. For more details on the steady-state optimiza-
tion, refer to [5]. 
 When operating at a constant H2 production rate, 
the choice of operating objective can result in significant 
changes in specific energy consumption and degrada-
tion. In this work, we consider the fixed H2 production rate 
achieved by constant current density operation to be the 
upper limit of H2 production by the system. Based on the 
costing methods used in this study, a lower LCOH is ob-
tained when integral system efficiency is maximized. Fig-
ure 5 describes the temporal profiles of the key decision 
variables to achieve the maximum integral efficiency. Due 
to increased voltage losses caused by degradation, op-
erating potential must be increased to maintain the initial 
H2 production rate (�̇�𝑚𝐻𝐻2) of 1.5 kg/s. Since inevitable 
losses depend directly on temperature, the optimal inlet 
temperatures for both the fuel and oxygen electrodes 
must be increased to maintain voltage efficiency. Feed 
and sweep heater duties are kept low due to the pres-
ence of recycle streams. Therefore, internal stack resis-
tive heating is used instead of electric heating in the trim 
heaters. In contrast, degradation rate can be minimized 
by operating the cell at low temperatures. This results in 
a significant increase in inevitable losses and, conse-
quently, there is a drop in efficiency as evidenced by the 
increase in specific energy consumption. 

Under a constant potential operating regime (Figure 
6), it is observed that the degradation rate depends 
heavily on the specific operating profile even when oper-
ating under constant potential. Under a constant poten-
tial over the operating lifetime of the cell, the lowest deg-
radation rate is achieved by operating the cell at low tem-
peratures and, consequently, a very low H2 production 
rate (~70% reduction compared to constant H2 produc-
tion). Consequently, the specific energy consumption 
and LCOH when the degradation rate is minimized at 
constant potential is the highest of all the cases. On the 
other hand, if operation is optimized for maximum H2 pro-
duction under a constant operating potential, we observe 
a significantly higher degradation rate. At any point in 
time to maximize H2 production rate at a constant oper-
ating potential, the cell must be operated at the upper 
bounds of the temperature. Therefore, high temperature 
ensures a high instantaneous H2 production rate at all 
points in time. Consequently, the degradation rate is sig-
nificantly higher than in all other cases, including those 
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where H2 production is held constant.  
Figure 6 describes the optimal operating profiles for 

constant voltage with the objective to maximize integral 
efficiency. While keeping potential constant, initially it is 
preferred to operate at a decreasing H2 production rate 
to minimize degradation in the early periods of a cells life-
time. Once degradation in the cell reaches a certain level, 
it is observed that the H2 production rate increases again. 
This is likely because of a phenomenon known as cell 
break in, resulting from the different rates of degradation 
of the electrode materials. For example, in Ni-YSZ fuel 
electrodes, there is a coarsening of Ni particles, while the 
YSZ particles remain unchanged. The YSZ backbone 
therefore has a limiting effect on the maximal extent of Ni 
degradation. Similarly, the parabolic growth rate of oxide 
scales in the oxygen electrode decreases with the in-
crease in the extent of the oxide scale. To evaluate all 
optimization formulations and H2 demand profiles, the 
LCOH was computed for the five cases. For details on 
LCOH calculations and costing methodology, refer to 
[12]. Results presented in the paper correspond to an 
electricity price of 0.30 $/kWh. According to this costing 
methodology, operating at a constant potential and max-
imizing integral average efficiency leads to the lowest 
LCOH. The cases with the highest LCOH are those with 
high energy consumption, where the degradation rate is 
explicitly minimized. This indicates that system efficiency 
and H2 production rate have a higher impact on LCOH 
than stack replacement costs.  

 

 
Figure 6. Optimal Constant Voltage Operation                           
(Maximize Integral Efficiency) 

CONCLUSION 

 In this work, we present a dynamic optimization 
methodology to obtain time dependent operating points 
for an SOEC system considering the effects of chemical 
degradation on operating efficiency. The quasi-steady 
state assumption enables model size reduction to per-
form dynamic optimization on a fully discretized DAE 
model.  

The 2D non-isothermal SOEC model used in this 
study captures the thermal implications of chemical deg-
radation. In addition to an increase in electrochemical 
losses, it is found that chemical degradation results in an 
overall increase in exothermicity due to an increase in re-
sistive heating. The balance-of-plant model facilitates 
accurate estimation of SOEC system energy require-
ments from auxiliary equipment such as heaters and 
blowers.  

Dynamic optimization of long-term operating condi-
tions over 20,000 hours was performed under two H2 
production profiles; namely, constant H2 production and 
constant potential operation. This study shows that both 
operating profiles can result in efficient long-term opera-
tion depending on the optimization objective. Strong 
trade-offs between the integral average operating effi-
ciency and the degradation rate are observed. LCOH is 
computed for each of the cases and is used to evaluate 
the different operating trajectories. Operating at a con-
stant potential while maximizing the integral efficiency is 
found to have the lowest LCOH at 0.29 $/kWh H2 with a 
replacement schedule of 2 years. It must be noted that 
the LCOH calculation depends on many factors such as 
the interaction between stack replacement costs and the 
price of electricity. In a situation where stack replace-
ment costs are higher, it is possible that lower degrada-
tion rates would be favorable. Furthermore, this study 
does not consider the impact of operation on physical 
degradation. This poses the challenge of incorporating 
operating profiles from a shorter timescale of daily oper-
ation.   
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ABSTRACT 
The decarbonization of the society has a very high effect on the power grids as especially the 
energy generation will be almost completely shifted to CO2-neutral sources such as wind and solar. 
This implies significant design changes to the power grids and power systems, which lie between 
the electricity producers and consumers. In this paper, we discuss both the generation and 
consumer side, including the grid changes and required data exchange to support the transition. 
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INTRODUCTION 
Traditionally, power systems have been relatively 

straightforward: Control a set of electricity generation 
units balancing the demand and transfer the needed 

power to the consumer – one way. This has been a very 
robust design scheme between the energy providers and 
consumers, also from the controllability point of view. 
However, with the introduction of new energy 
technologies (wind, solar, distributed energy resources, 

Figure 1. Future power grid design with all major components. 
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demand-side management, hydrogen, etc.), the 
traditional design paradigm is no longer sufficient [1][2]. 

Deregulation of electricity markets and the 
increased awareness of the climate change have 
massively increased the share of weather-dependent 
renewable generation and the need for more flexible 
power systems. Consequently, due to the volatility of 
renewable sources, not only are the electricity grids 
pushed to their boundaries, but there is also a stronger 
need to create designs where process systems and 
power systems meet and become strongly integrated. 
One concrete example is sector coupling, in which 
various processes are utilized to transfer between 
electricity and other energy carriers (e.g. ammonia and 
hydrogen). 

Figure 1 depicts the structure and different 
components of a future power system. The focus of this 
paper is on highlighting and discussing potential design 
changes and challenges involving hardware to enable 
stronger grids with higher and more intelligent electricity 
transfer volumes, as well as processes for conversion 
between electricity and hydrogen. To realize these, the 
related investments must be both economically and 
practically feasible to ensure the needed flexibility, and 
enable secure and sustainable energy supply in all 
situations, while avoiding stranded infrastructure costs. 

In this paper we follow the main structure of  Figure 
1 and go into details of the generation and grid aspects. 
We also discuss the role of industry and large commercial 
electricity users, as well as the data exchange as an 
enabler of future collaboration and communication. 

GENERATION SIDE 
 In short, due to the electrification of industrial 

processes and transportation sector as well as fast 
growing share of distributed renewable generation, we 
can expect that the total global installed electricity 
generation capacity will increase by a factor of four and 
the related electricity transfer capacity by a factor of 
three until 2050. Maybe the most visible changes that 
have been penetrating the energy landscape in the last 
decades are on the generation side. To reduce the CO2-
emissions and due to safety concerns, energy generation 
has shifted towards variable renewables, mainly utilizing 
solar and wind power. Many coal-fired and CO2-free 
nuclear power plants have been retired and replaced by 
significant renewable capacity. In practice, this means 
going from dispatchable to non-dispatchable energy 
generation, i.e. we cannot anymore decide and fully 
control how much and when to generate. The only long-
term “traditional” CO2-free and flexibly dispatchable 
electricity generation is hydro power resources, including 
pump hydro storage. However, as it is both 
geographically limited and subject to societal constraints, 

this “green” transition has already presented significant 
changes in the electricity supply, mainly observable 
through significant price changes and spikes during 
energy scarcity. 

The imminent change to the power grid is that 
maintaining the stability (ensuring and controlling the grid 
frequency and voltage) becomes more challenging as 
there is less inertia, dynamic voltage support and 
sufficient short circuit capacity, e.g., from synchronous 
rotating machinery present in the system. If, for instance 
50% of the electricity generation comes from renewable 
sources, of which solar power is guaranteed to produce 
0 MW in the nighttime and wind power production is 
highly weather-dependent, it is of great importance to 
design methodologies for how to deal with times where 
renewable production is low or even non-existing. 

Figure 2 shows examples across the globe where 
extreme weather events had an unexpected and 
significant negative impact on the renewable generation. 
One approach is to increase the capacity, but this will not 
solve the root cause of the problem. Another approach is 
to investigate novel electricity generation technologies 
such as microreactors, wave power, solar power 
provided in space and many more recently discussed 
ideas or solutions at a very early prototype or conceptual 
phase. 

The main target is to be able to deal with the high 
volatility (worst case is a cold and windless winter night 
where the energy demand is high) and secure energy 
supply also through those times where renewable energy 
is temporarily unavailable [3]. As depicted in Figure 3, 
investing in generation overcapacity is not sufficient 

 

Figure 2. Examples of global weather-dependent 
disturbances on renewable production.  
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since it does not solve the underlying problems of spatial 
and temporal mismatches between the generation and 
demand. A possible solution could also lie in process 
design by making processes more resistant to short- or 
mid-term energy scarcity. Currently, much research is 
focused on energy storage options [4], where most 
alternatives can only provide hours or maximally a few 
days of capacity. Even the largest electrochemical 
energy storage (e.g. lithium-ion batteries) can only serve 
short-term demand and therefore alternatives vary 
between e.g. gravitation-based energy storage, power 
electronics, compressed air, molten sand batteries and 
sector coupling. 

Sector coupling, i.e. switching to alternative energy 
carriers such as hydrogen or ammonia is still in its very 
early stages. There are still challenges to overcome, e.g. 
the low round-trip efficiency of 35% for hydrogen and the 
fact that upfront investment costs are currently quite 
high. However, this technology is attractive from a few 
points of view.  

1. Alternative energy carriers are relatively stable and 
can in principle with sufficient capacity help bridging 
across low renewable power periods.  

2. They can also be distributed along the power grids 
to end consumers, naturally with much slower 
dynamics (pipelines, ships, trucks). However, a 
compatible infrastructure is still missing. 

3. They can be stored at various sites in small amounts 
reducing the regional risks of energy scarcity. Larger 

storage capacities are geographically constrained. 

4. Apart from pure energy storage, many of them can 
also be used as raw-material or produced as by-
product of essential industrial processes. 

Especially the last point is worth considering as 
without re-electrification the losses are much smaller. It 
is still unclear how the related conversion processes 
should be designed and embedded into an effectively 
working energy system. The ongoing overall 
development also implies that generation will become 
more local (solar rooftop etc.) and therefore the grid 
structures must also be adapted to meet the ongoing 
changes. 

GRID SIDE 
As already stated in the introduction, the increased 

generation also results in roughly three times more 
energy transmission capacity needed by 2050. Due to 
this, there are many design changes necessary in the 
power grids, both on the level of transmission grids that 
are responsible for the long-distance electricity transfer 
and connected to large-scale power plants, as well as 
distribution grids, which operate on a lower voltage level 
and connect to local consumers and prosumers (e.g. 
households with solar rooftop and energy storage 
systems) [5]. The increasing power production within the 
distribution grid must be supported by stronger local 
grids. Already today, there are situations where the 
generation or load must be curtailed in order to avoid grid 
congestion or voltage issues. 

Network switching within a distribution grid, i.e. 
changing the network topology, can also help in avoiding 
some congestions. Here, the connection points to the 
transmission grid may also be changed. Thus, in many 
situations a closer and faster coordination between the 
distribution and transmission grids with different voltage 
levels is required. As much of the energy generation is in 
fact done in direct current (DC) (e.g. solar power), it must 
be converted to alternating current (AC) through power 
converters. Here, many discussions on building pure local 
DC grids and experimental microgrids for this exist [6]. 
This could also affect the industry electrification as many 
processes also utilize direct current.  

One of the perhaps largest changes in the 
transmission grids is caused by the long transmission 
distance needs between remote renewable generation 
and the major load centers (often > 1000 km, the longest 
one of 3300 km built in China). Here a large capacity is 
transferred and, in order to reduce the power losses and 
keep the voltage drop within acceptable range, this 
should take place in high voltage and preferably using 
high voltage direct current (HVDC) technology, which has 
significantly lower losses compared to traditional AC-

 
Figure 3. Actual use of versus potentially available 
wind and solar generation (dots represent different 
regions each with an optimal mix of solar and wind 
generation). Red numbers show the average 
penetration percentage based on annual generation 
and demand match with hourly resolution. Static and 
dynamic system limits will push the grey zone further 
down. 
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grids. This also enables the transfer of very high 
capacities of e.g. 12 GW. Investment costs in HVDC grids 
and converters are not only very high, but together with 
other grid improvement measures, including more 
flexible switching and power converters, also open up 
new dimensions that require a higher level of automation 
to work seamlessly. The power network should be 
continuously monitored and seamlessly adapted to 
changing situations as well as be able to minimize the 
impact of local disturbances trying to isolate blackouts to 
as small areas as possible. 

In order to both build more safety buffers for the 
grid, as well as to maximize the utilization possibility of 
intermittent renewable generation, we also need energy 
storage options to support short-term network 
imbalances and long-term seasonal variations. All of 
these must naturally also be connected to the power grid 
(be it transmission or distribution), and may also include 
sector coupling that calls for simultaneous coordination 
between multiple energy carriers, e.g. electricity, 
ammonia, hydrogen and the respective processes 
managing the conversion. 

As the energy supply chain gets increasingly 
concentrated around electricity, it also becomes a 
possible target for various threats. Cyber security should 
be significantly strengthened to ensure a fully functional 
power grid in all situations – also when the automation 
systems are under attack. 

INDUSTRY AND LARGE COMMERCIAL 
Industry and large commercial are typically 

consuming around 50% of the total energy (region-
dependent) and will play a significant role in the new 
energy system since we can expect more industrial 
processes being electrified. With the increasing volatility 
as well as higher electricity demand, these sectors must 
provide more flexibility by design, i.e. become prosumers 
(consumers that can also at least virtually act as 
producers by temporarily lowering their energy demand). 
Typically, we refer to this as industrial demand-side 
management [7]. The main idea is to be able to plan the 
processes in a way that provides more flexibility towards 
their electricity need, often with the main objective of 
reducing the electricity costs. This also gives the power 
grid operators the opportunity to provide incentives to 
the market participants through dynamic pricing 
schemes. Enabling the capability to participate may 
require significant and expensive changes in process 
design, as e.g. can be seen in the ongoing electrification 
of steel industry [8]. 

Once processes are adapted to provide more 
flexibility, the next natural step would be to create 
collaboration opportunities to support large electricity 
fluctuations with lower impact on the individual 
processes. Here, we can also expect to see more 
“isolated” or per need autonomous microgrids that can 
maintain all critical operations even during a major 
blackout. These could comprise communities, but also 
critical functions such as hospitals or industrial sites that 

 
Figure 4 CIM norms and standards 
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are strongly affected by any power disruptions. There is 
already much research on how to realize this, e.g. using 
smart cities concepts with rural areas [9] and university 
campuses as testing platforms. Nonetheless, it is still an 
open question how to realize this on a larger scale. 

What is unquestionable is that certain autonomy 
requires local energy generation – even power plants for 
securing times without renewable generation. To further 
ensure a CO2-free future, these could also be based on 
sector coupling and various energy storage technologies, 
either in form of electricity (batteries), hydrogen, 
ammonia or other chemical forms, as well as number of 
currently studied technologies, such as gravity batteries 
[10]. There has been recently also studies looking into 
either coupled processes with batteries [11] or enabling 
the process itself being used as energy storage [12][13].  

In order to enable and realize these opportunities, 
there needs to be – apart from novel designs and 
respective operational updates – also changes to the 
current power systems market design, which is still not 
built for enabling sufficient flexibility but rather relies on 
dispatchable energy generation.  

DATA EXCHANGE  
To enable smooth cooperation between various 

entities in the power system, including system operators, 
market participants and owners of various assets, 
standardized data exchange processes are needed. This 
includes not only standardized data formats to reduce 
the overhead of data post-processing, but also 
systematic platforms for data exchange with sufficient 
cyber-security and ensured data privacy. Information 
exchange between various entities can be split into three 
categories based on the time domain: 

1. Static data exchange covering general information 
such as grid topology and installed assets with their 
characteristics and capabilities.  

2. Scheduled data exchange covering information on 
scheduled functioning of different elements such as 
day-ahead market bids, generation and load 
forecasts, planned outages, and information about 
expected flexibility. 

3. Real-time data exchange covering all real-time 
information such as telemetry measurements, 
control setpoints, open/close states of switching 
equipment, node voltages, and any calculated values 
(line flows, reserves, etc.). 

Depending on the nature of data and the role of 
different entities, data exchange can be either unilateral 
or bilateral. It is complex to define a unique list of data 
requirements that are suitable for all entities and all 
possible cooperation architectures. Still, it is commonly 

agreed upon that in addition to the data values 
themselves, each dataset should be supplemented with 
metadata including data source, data user, purpose of 
the data exchange, principles to be applied (e.g. privacy), 
and KPIs (e.g. data accuracy and latencies) to verify 
compliance with requirements of different entities. 

International Electrotechnical Commission’s (IEC) 
has introduced the Common Information Model (CIM) 
standards to facilitate data exchange between different 
entities [14] as shown in Figure 4. Despite the great 
improvement in interoperability that CIM standards 
provide, they still need to continuously evolve to meet 
the changing requirements due to the emerging power 
system landscape. For instance, practical implementation 
can be challenging since CIM standards do not cover 
many aspects such as data portability, aggregation and 
anonymization, data exchange logs and authentication 
information. How to create working interfaces to other 
industrial standards and protocols (e.g. OPC UA, 
ANSI/ISA-95 and S88) is still undefined, as most 
standards have been created in an isolated business-
specific manner. This, however, needs to be done to 
enable stronger and more straightforward collaboration 
opportunities and relationships between the power grids 
and industrial processes. 

CONCLUSIONS 
In this paper we have discussed future challenges 

arising through the energy transition towards zero 
emission society. This transition has a great impact on 
the generation and consumption side but also on the 
often-ignored power grids and -systems. These must be 
properly expanded w.r.t. capacity and capability to 
enable a flexible electricity supply and demand. Energy 
storage and sector coupling play here an important role. 
The transition will not happen in an isolated way but calls 
for stronger collaboration as the resulting system will be 
a co-play between process- and power systems. One of 
the first steps is to have proper data exchange where the 
common information models play a central role. Other 
concrete design-related challenges are: 

 Electrification of processes and the related major 
changes needed in process design. 

 Making processes more resilient against 
short/mid-term electricity scarcity. 

 Related to this, evaluating the cost and benefits of 
microgrid-enabling design alternatives. 

 Enabling flexibility by design in order to allow 
stronger operational collaboration between 
process and energy markets. 

 Optimal designs to support and benefit from 
sector coupling, using alternative carriers as CO2-
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free raw-materials, energy storage for trading and 
to securing own operations. 

The next decades will be a golden era for 
researchers who are interested in focusing on both 
process and energy aspects – in design, operations and 
control domains. 
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ABSTRACT 
The energy transition is driven both by the motivation to decarbonize as well as the decrease in 
cost of low carbon technology. Net-carbon neutrality over the lifetime of technology use can nei-
ther be quantitatively assessed nor realized without accounting for the flows of carbon compre-
hensively from cradle to grave.  Sources of emission are disparate with contributions from re-
source procurement, process establishment and function, and material refining. The synergies be-
tween the constituent value chains are especially apparent in the mobility transition which involves 
(i) power generation, storage and dispatch, (ii) synthesis of polymeric materials, (iii) manufacturing
of vehicles and establishment of infrastructure. Decision-making frameworks that can coordinate
these aspects and provide cooperative sustainable solutions are needed. To this end, we present
a multiscale modeling and optimization framework for the simultaneous resolution of the material
and energy value chains. A case study focusing on the transition of mobility technology towards
electric vehicles in Texas is presented. The key contributions of the proposed framework are (i)
integrated network design and operational scheduling, (ii) the tracking of disparate emissions, (ii)
simultaneous modeling of the material and energy supply chains, (iv) implementation on ener-
giapy, a python package for the multiscale modeling and optimization of energy systems.

Keywords: energy transition, material transition, mixed integer programming, multiscale modeling, carbon ac-
counting 

INTRODUCTION 
The ongoing energy transition towards net-carbon 

neutrality has various challenges, not limited to (i) man-
aging the storage for intermittent renewables, (ii) ac-
counting for emissions from disparate sources, (iii) man-
aging the cost to consumers, (iv) coordinating the transi-
tion of technologies for different applications such as the 
generation of power, transportation and production of 
dense energy carriers (DECs) (v) meeting the material re-
quirements for establishing infrastructure sustainably [1]. 
Addressing these challenges requires a holistic view of 
multiple interdependent supply chains and the synergies 
between them.  

Moreover, decarbonization requires both direct and 

indirect emissions to be accounted for. Direct emissions 
occur from the release of pollutants at the operational 
level by processes, whereas indirect emissions occur due 
to the refining and procurement of materials and re-
sources as well as the establishment of processes and 
infrastructure. Further, indirect emissions occur at the 
onset of establishing infrastructure, while direct emis-
sions can occur over a protracted temporal horizon 
throughout the lifetime of technology. Decision-makers 
planning energy systems of the future need to coordinate 
both aspects to determine optimal transition pathways. 

Materials such as minerals, metals, and polymers 
are required to establish infrastructure. The refining and 
processing of these is a contributor to emissions. How-
ever, polymers can also act as a carbon sink and, in the 

https://doi.org/10.69997/sct.171988
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context of the circular economy, provide an opportunity 
for the valorization of the carbon vector.   

Given our contemporaneous dependence on car-
bon-based feedstock for both power generation and pro-
duction of polymers, the oil & gas (O&G) industry plays a 
central role in enabling both the energy and material tran-
sition. The repurposing of the O&G industry towards the 
manufacturing of polymeric materials through captured 
carbon dioxide will also preserve established production 
infrastructure and capital. Furthermore, polymers offer a 
durable alternative to metallic materials which have a 
high energy demand for refining, produce toxic refuse 
during mining, and have challenges in terms of recycling 
and reuse in some cases. For example, passenger vehicle 
designs have evolved to include a larger amount of poly-
mers in their interior while achieving improvements in ef-
ficiency and safety due to lower density and higher im-
pact resistance respectively [2].  

The use of hydrocarbon feedstock to produce poly-
mers for electric vehicles (EVs) as opposed to transpor-
tation fuels for internal combustion engine (ICE) vehicles 
can also reduce direct carbon emissions as they can act 
as a sink for carbon that would be otherwise emitted as 
greenhouse gases (GHGs) [3]. Readily available polymers 
such as polypropylene (PP), polyamide (PA), polystyrene 
(PS), polycarbonate (PC), polyurethane (PUR), polyvinyl 
chloride (PVC), polyethylene (PE), and polyethylene ter-
ephthalate (PET) all find use in automobile production. 
Moreover, polymers are also needed for insulation in grid 
infrastructure, power conversion systems, and also for 
ancillary infrastructure in solar and wind farms. 

While the modeling and optimization of different as-
pects of the energy transition has been an active field of 
research [4,5,6,7], the parallel transition of materials has 
not received equal attention. In this publication, we intro-
duce a framework for the simultaneous modeling of the 
material and energy transition, allowing the identification 
of solutions that reduce emissions across disparate 
emission scopes. The system is represented through the 
resource task network (RTN) methodology augmented 
for the consideration of different material options for pro-
cess infrastructure. The emissions arising from disparate 
sources such as material synthesis, resource consump-
tion and utilization post discharge, and production are 
considered. The mathematical programming framework 
is modeled as a mixed integer linear program (MILP) with 
binaries assigned for the establishment of processes and 
the choice of material modes for said processes. Moreo-
ver, the model does simultaneous network design and 
scheduling which is able to account for renewable inter-
mittency and optimize energy storage.  

The publication is organized as follows: first the de-
tails of the considered mobility transition supply chain are 
discussed, next the modeling and solution methodology 
are elucidated upon and certain aspects of the general 

formulation are discussed, followed by the results and 
ongoing work.   

A MOBILITY TRANSITION SUPPLY CHAIN 
The mobility transition with respect to passenger 

vehicles entails the adoption of EVs to replace ICE vehi-
cles. Using a simple linear forecast to predict EV sales for 
Texas, more than 900,000 units will be sold in 2050 con-
sidering an annual sales growth rate of 16% [8], and about 
12 million EVs will be on the road. EVs differ from ICE ve-
hicles in both the energy source for their function, as well 
as the supply chains involved in making energy available. 
Fossil fuels utilized in ICE vehicles cause emissions at the 
point of use. Conversely, EVs have no direct emission but 
can cause emissions as a result of power generation 
through fossil fuel-based power generation. Moreover, 
while power can be generated through renewable means, 
materials required to establish power generation and dis-
tribution infrastructure are still privy to emissions. The 
transition to EVs will need to be supported by an expan-
sion of the grid and power generation infrastructure. 

Figure 1. A schematic of the mobilty transition supply 
chain. 

The transition of mobility infrastructure requires the 
transition of technologies for 1) transportation 2) manu-
facturing, 3) power generation, and 4) polymer produc-
tion. As a whole, three distinct blocks can be considered 
as shown in Figure 1, viz. 1) Power generation which in-
clude solar photovoltaics (PVs) and wind farms (WFs), 2) 
Polymer production wherein High Density Polyethylene 
(HDPE), 3) the production of vehicle parts through a com-
bination of different molding methods. As a whole, we 
look at two different technology pathways: 

1. The business as usual (BAU) pathway where in 
HDPE is produced from fossil feedstock such as 
natural gas and oil  

2. The carbon capture utilization and sequestration 
(CCUS) pathway which necessitates the direct air 
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capture (DAC) of CO2 followed by one of three 
processes for the production of olefins, with 
polymerization of produced ethylene as the final 
step  

The three pathways for olefin production considered are: 

 Methanol to Olefins (MTO): In this route, methanol 
is synthesized from CO2 hydrogenation and 
converted into olefins (ethylene and propylene). 

 Methanol to Propylene (MTP): In this process, the 
major product is propylene, which is synthesized 
from CO2. 

 Oxidative Coupling of Methane (OCM): This 
process produces mainly ethylene through 
oxidative coupling of methane derived from the 
hydrogenation of CO2 

The MTO and MTP processes represent successful 
initiatives aimed at reducing reliance on petroleum for 
olefin production. In the MTO process, methanol is trans-
formed into olefins with a carbon selectivity ranging from 
78% to 82% at approximately 500 °C and 250 kPa, utiliz-
ing a SAPO-34-type zeolite catalyst. The by-products in-
clude propylene, C4 fraction, and liquified petroleum gas 
(LPG).   

Similarly, in the MTP process, methanol is converted 
into propylene with a carbon selectivity of around 71% at 
temperatures between 400 and 500 °C and a pressure of 
150 kPa, employing a zeolite-based catalyst [9]. LPG, 
propylene, and C5 fraction are by-products.  

 In the OCM process [10], methane (CH4) and oxy-
gen (O2) undergo an exothermic reaction on a catalyst 
bed, resulting in the formation of ethylene (C2H4), ethane 
(C2H6), water (H2O), and heat. Traditional reactors, such 
as packed bed reactors (PBR) and fluidized bed reactors, 
have been commonly employed for this purpose. How-
ever, there is a current exploration of Fluidized Bed Mem-
brane Reactor (FBMR) options to assess the potential im-
provement in selectivity. The operating conditions for 
this technology involve temperatures of approximately 
800 °C and pressures of 200 kPa. Further, all three pro-
cesses require the provision of steam, cooling water, ox-
ygen, and hydrogen besides power.   

Produced ethylene is converted into HDPE via 
polymerization through different technologies such as 
CSTRs, loop slurry, fluidized-bed gas phase, and stirred-
bed gas phase reactors. Various processes have been 
marketed by companies such as LyondellBasell, Mitsui 
Chemicals, Chevron Phillips Chemicals, Univation, Lum-
mus Novolen, etc. Nevertheless, as data for such pro-
cesses is not publicly available, the average data from 
Europe for such processes is considered [11]. Both HDPE 
production routes, BAU or CCUS, are subject to the fin-
ishing processes; a combination of compression molding 

(CM) 24.25%, extrusion (EX) 9.25% and injection molding 
(IM) 66.5% [8].  

Currently, the energy demand for EVs and produc-
tion of resources is met through a mix of fossil fuel (coal 
and natural gas), and renewable (wind and solar) power 
generation. In the transition scenario, renewable power 
will replace fossil fuel-based power generation. Moreo-
ver, requisite power generation and management sys-
tems can be established through different material alter-
natives as well. PVs, for example, can be made from 
monocrystalline or polycrystalline silicon, lithium for lith-
ium-ion batteries can be sourced either through rock or 
brine lithium, and wind farms can be offshore or land-
based each with different material requirements. The 
other materials required for construction include glass, 
steel, concrete, aluminum, silicon, copper, and cast iron. 

Polymers in EVs account for about 13% of the mass 
of the vehicle. In the illustrative example, we only con-
sider the need for HDPE which accounts for about 2.7 kg 
(1.4%) mass of the total amount of polymers used in cars 
[12], the total car mass considered is 1481 kg. The objec-
tive of the considered study is to analyze the network de-
signs of the current HDPE demand for the ~1.3 million 
passenger vehicles produced annually in Texas through 
renewable means. Of key interest are 1) the identification 
of optimal cost and emission technology pathways, 2) the 
quantitative determination of the trade-offs between 
cost and emission, 3) identification of optimal material 
modes for the establishment of infrastructure.   

 The region of Houston is used as a proxy for the 
entire state of Texas for the collection of wind and solar 
data. The GREET model is used to source parameters for 
natural gas, oil, electricity use, and related process emis-
sions [12], while the Ecoinvent version 3.9.1 database is 
used to assign a global warming potential (GWP) for 
every material considered in the study [13].  

METHODOLOGY AND FORMULATION 
The framework is multiscale in that it models spati-

otemporally disparate phenomena such as renewable in-
termittency and augmentations in technology costs and 
efficiency. Moreover, the operational and network plan-
ning decisions are modeled simultaneously as well. Emis-
sions are considered from: 1) resource consumption, 2) 
resource discharge, 3) material procurement for estab-
lishing infrastructure. The framework can also consider 
emissions from construction or manufacturing pro-
cesses, but this is not modeled in the presented case 
study given the lack of reliable data. Note, that the frame-
work can also account for different environmental indica-
tors, namely, global warming, ozone depletion, acidifica-
tion, and eutrophication (marine, terrestrial, freshwater). 
However, the presented case study only accounts for the 
global warming aspect of emissions.   
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For energy technologies, power generation pro-
cesses are modeled alongside energy storage, and dif-
ferent material modes are considered. The lithium-ion 
battery (LiI), for example, can use lithium sourced from 
brine or rock. Each option has different associated emis-
sions due to the process of mining these materials differ 
significantly. Similarly, different combinations of materi-
als such as steel, cast iron, silicon, concrete, etc. are con-
sidered for establishing PVs and WFs.   

The system is represented and modeled through an 
augmentation of the resource task network (RTN) meth-
odology , which considers the materials required to set 
up processes [14]. This representation is christened the 
resource task material network (RTMN). Resources, by 
definition, can be consumed, discharged, stored, trans-
ported, or produced. On the other hand, materials are uti-
lized solely for the establishment of infrastructure such 
as transport linkages and processes. The need for this 
strict distinction between materials and resources stems 
from: (i) unlike resources, materials are not converted, (ii) 
disparate temporal nature of use, wherein resources are 
used continuously over the scheduling scale and materi-
als are used only in time periods over the network scale 
when technologies are established, (iii) convenience of 
reporting emissions in terms of scopes. As a whole, this 
streamlines the system representation as well as the 
mathematical modeling. As an example, in the mobility 
transition supply chain, HDPE is a resource produced 
through the culmination of a set of processes, whereas 
the concrete required to establish a wind farm is a mate-
rial.   

The planning horizon is considered at two distinct 
discretizations: 1) a scale for network level decisions, 2) 
a scheduling scale with 8760 discretizations to capture 
the intermittency of renewables and the flow of re-
sources. Given that a single period is considered for net-
work level decisions, the capital cost or emissions related 
to material utilization are not annualized. However, the 
model can be easily expanded to consider multiple net-
work periods along with associated changes in technol-
ogy costs. Further, while the example presented models 
a single location, multiple locations along with associated 
transportation modes between these locations can also 
be considered. 

The framework simultaneously optimizes network 
design and process scheduling. Mixed integer program-
ming is used with binaries for decisions such as locating 
processes and determining optimal material modes. Con-
tinuous variables capture the mass balance, and mone-
tary aspects. Some important constraints such as the 
material balance, emission constraints, and network de-
sign are discussed here. Network design is achieved 
through constraints (1 and 2). Material constraints (3-5) 
allow the model to choose between different available 
material modes. Each material mode in turn has an 

associated consumption of materials (𝜙𝜙) per unit capac-
ity. Notably, emissions can also occur through 1) the con-
sumption or use of produced resources, and 2) direct 
process emissions as shown in emission constraints (6-
9). Inventory balance in every time period in the schedul-
ing horizon is done through constraint 10, wherein each 
variable is bounded by either a parameter (𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 for S, 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 for C), or by a variable in the network scale (𝐶𝐶𝐶𝐶𝑝𝑝𝑆𝑆 
for 𝐼𝐼𝐼𝐼𝐼𝐼,  𝐶𝐶𝐶𝐶𝑝𝑝𝐼𝐼 for 𝑃𝑃).   
 

sets definition 
𝑙𝑙 ∈  𝐿𝐿  location 

𝑖𝑖 ∈  𝐼𝐼  process 

𝑟𝑟 ∈  𝑅𝑅  resource 

𝑚𝑚 ∈  𝑀𝑀  material 

𝑤𝑤 ∈  𝑊𝑊  material modes 

𝑒𝑒 ∈  𝐸𝐸  emissions 

𝑡𝑡 ∈  𝑇𝑇𝑁𝑁   or 𝑡𝑡 ∈  𝑇𝑇𝑆𝑆   network or scheduling scale 

 
variables definition 

 𝐶𝐶𝐶𝐶𝑝𝑝𝐼𝐼/𝑆𝑆𝑙𝑙,𝑖𝑖/𝑟𝑟,𝑡𝑡 process/inventory capacity 
  

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑟𝑟/𝑖𝑖/𝑚𝑚,𝑡𝑡 
𝑟𝑟/𝑖𝑖/𝑚𝑚  resource/process/material emission  

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑡𝑡
(𝐿𝐿)  Emission (total at location) 

𝐶𝐶𝑙𝑙,𝑟𝑟,𝑡𝑡
(𝐿𝐿)  Resource consumption (total at lo-

cation) 

𝑆𝑆𝑙𝑙,𝑟𝑟,𝑡𝑡 
(𝐿𝐿)  Resource discharge (total at loca-

tion) 
𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙,𝑖𝑖,𝑚𝑚𝑡𝑡

𝐼𝐼  Material utilized for process 

𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙,𝑚𝑚,𝑡𝑡
𝐿𝐿  Material utilized at location 

𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑖𝑖,𝑚𝑚,𝑡𝑡
𝐼𝐼−𝑊𝑊  Capacity of material mode 

𝑋𝑋𝑙𝑙,𝑖𝑖,𝑚𝑚,𝑡𝑡
𝐼𝐼  Binary for locating process 

𝑋𝑋𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐼𝐼−𝑊𝑊  Binary for choosing process mode 

𝑋𝑋𝑙𝑙,𝑟𝑟,𝑡𝑡
𝑆𝑆  Binary for storage facility 

𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙,𝑟𝑟,𝑡𝑡 Inventory level for resource 

𝑃𝑃𝑙𝑙,𝑖𝑖,𝑡𝑡 Production level for process 

parameters definition 

𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑟𝑟/𝑖𝑖,𝑡𝑡
𝑆𝑆/𝐼𝐼−𝑚𝑚𝑖𝑖𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚 max/min inventory/process 
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capacity  

𝐸𝐸𝑃𝑃𝑒𝑒
𝑟𝑟/𝑚𝑚 resource/material emission 

𝜙𝜙 (𝑚𝑚,𝑤𝑤) material consumption  

𝜂𝜂(𝑟𝑟, 𝑖𝑖) conversion  

 
 

𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑟𝑟,𝑡𝑡
𝑆𝑆−𝑚𝑚𝑖𝑖𝑚𝑚 ⋅ 𝑋𝑋𝑆𝑆

𝑙𝑙,𝑟𝑟,𝑡𝑡 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑆𝑆𝑙𝑙,𝑟𝑟,𝑡𝑡
≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑟𝑟,𝑡𝑡

𝑆𝑆−𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑋𝑋𝑆𝑆
𝑙𝑙,𝑟𝑟,𝑡𝑡   

(1) 

𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑖𝑖,𝑡𝑡𝐼𝐼−𝑚𝑚𝑖𝑖𝑚𝑚 ⋅ 𝑋𝑋𝐼𝐼𝑙𝑙,𝑖𝑖,𝑡𝑡 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝐼𝐼𝑙𝑙,𝑖𝑖,𝑡𝑡 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑖𝑖,𝑡𝑡𝐼𝐼−𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑋𝑋𝐼𝐼𝑙𝑙,𝑖𝑖,𝑡𝑡   (2) 

𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙,𝑖𝑖,𝑚𝑚𝑡𝑡
𝐼𝐼 = �

∀ 𝑤𝑤 ∈ 𝑊𝑊

�𝜙𝜙 (𝑚𝑚,𝑤𝑤) ⋅ 𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐼𝐼−𝑊𝑊 �  

(3) 

𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑖𝑖,𝑡𝑡𝐼𝐼−𝑚𝑚𝑖𝑖𝑚𝑚 ⋅ 𝑋𝑋𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐼𝐼−𝑊𝑊  ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝐼𝐼−𝑊𝑊 ≤  𝐶𝐶𝐶𝐶𝑝𝑝𝑙𝑙,𝑖𝑖,𝑡𝑡𝐼𝐼−𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑋𝑋𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐼𝐼−𝑊𝑊  (4) 

𝑋𝑋𝑙𝑙,𝑖𝑖,𝑡𝑡𝐼𝐼 = �
∀ 𝑤𝑤 ∈ 𝑊𝑊

𝑋𝑋𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐼𝐼−𝑊𝑊   

(5) 

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑟𝑟,𝑡𝑡 
𝑟𝑟 = 𝐸𝐸𝑃𝑃𝑒𝑒𝑟𝑟−𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐 ⋅ 𝐶𝐶𝑙𝑙,𝑟𝑟,𝑡𝑡

𝐿𝐿 +  𝐸𝐸𝑃𝑃𝑒𝑒𝑟𝑟−𝑢𝑢𝑐𝑐𝑒𝑒 ⋅ 𝑆𝑆𝑙𝑙,𝑟𝑟,𝑡𝑡 
𝐿𝐿  (6) 

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑚𝑚,𝑡𝑡
𝑚𝑚 = 𝐸𝐸𝑃𝑃𝑒𝑒𝑚𝑚 ⋅ 𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙,𝑚𝑚,𝑡𝑡

𝐿𝐿  (7) 

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑖𝑖,𝑡𝑡
𝑖𝑖 = �

∀𝑖𝑖∈𝐼𝐼

𝐸𝐸𝑃𝑃𝑒𝑒𝑟𝑟 ⋅ 𝜂𝜂(𝑟𝑟, 𝑖𝑖)𝑃𝑃𝑙𝑙,𝑖𝑖,𝑡𝑡𝐿𝐿  
(8) 

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑡𝑡
𝐿𝐿 = �

∀𝑟𝑟∈𝑅𝑅

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑟𝑟,𝑡𝑡
𝑟𝑟  + �

∀𝑚𝑚∈𝑀𝑀

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑚𝑚,𝑡𝑡
𝑚𝑚  

+ �
∀𝑖𝑖∈𝐼𝐼

𝐸𝐸𝑚𝑚𝑙𝑙,𝑒𝑒,𝑖𝑖,𝑡𝑡
𝑖𝑖  

(9) 

∑∀𝑖𝑖∈𝐼𝐼 𝜂𝜂(𝑟𝑟, 𝑖𝑖)𝑃𝑃𝑙𝑙,𝑖𝑖,𝑡𝑡+ 𝐶𝐶𝑙𝑙,𝑟𝑟,𝑡𝑡 + 𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙,𝑟𝑟,𝑡𝑡−1 =  𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙,𝑟𝑟,𝑡𝑡 + 𝑆𝑆𝑙𝑙,𝑟𝑟,𝑡𝑡 (10) 

The implementation in energiapy [15] utilizes a 
component based architecture with temporal horizon, re-
sources, materials, processes, locations, and scenarios 
serving as modeling components. Various material 
modes can be declared for each process, wherein the 
material consumption for the establishment of said infra-
structure on a per unit basis is provided as attributes. The 
associated GWP is declared as an attribute of each ma-
terial and resource in the object-oriented programming 
framework. A small example is available in the package 
documentation to guide users on the application.  

RESULTS AND DISCUSSION 

The framework can be optimized to various objec-
tives, the two objectives discussed here are to 1) mini-
mize system costs, and 2) minimize system emissions. 
First a base case is established wherein the system is op-
timized only to minimize the system cost while not re-
stricting emissions. The network design for the base case 
as shown in Figure 2 consists of WF, LiI, HDPE production 
from the BAU pathway and the molding processes (ex-
trusion, compression, injection). Moreover, the land-
based material mode is chosen for establishing WF, and 
brine lithium is chosen for the LiI. The emissions resulting 
from the 2.7 kg requirement of HDPE per car is found to 
be 11.08 kg CO2-eq. This includes 3.15 and 0.8 kg CO2-
eq from the purchase of natural gas and oil respectively,  
5.12 from the venting of CO2, and 2.00 from the material 
requirements for establishing the land-based WF and 
brine lithium based LiI.  

 
Figure 2. Low cost pathway for HDPE production. 
 

 
Figure 3. Low carbon pathway for HDPE production. 

With the base case established, the network is then 
optimized towards the reduction of GWP. The maximum 
possible reduction in emissions is found to be ~9.07%. 
The cost optimal design for a ~9.07% reduction in emis-
sion tilts in favor of the CCUS pathway. The reduction  
entails a 2.2 factor increase in cost compared to the base 
case. Even in the minimum emission case, the BAU path-
way for the production of HDPE is still utilized. This is due 
the the energy intense nature of the CCUS pathway 
which requires larger power generation and energy stor-
age capacities, which are subject to both material emis-
sions and cost. Further, the OCM process is considered. 
Note that the MTP and MTO processes both have LPG as 
a by-product which results in emissions at the point of 
utilization. The WF and LiI capacities are 1.86 and 3.74 
times larger than the base case scenario. 

 The system can then be analyzed for the succes-
sive reduction of emissions up to 9.07%. Figure 4 shows 
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a Pareto front which compares the reduction of emis-
sions to the cost as compared to the base case. Notably, 
the first 6% reduction in emissions comes at a marginal 
increase (16.44%) in cost. The network design also 
evolves with the reduction in emissions, this includes the 
choice of technologies, the choice of materials to estab-
lish said processes, and the process capacities.   

 
Figure 4. Trade-off between cost and emissions 
reduction. 

The initial 4% reduction in emissions is achieved 
largely by setting up the energy intensive OCM process 
(refer to Table 1), and managing the capacity of the WF 
with a larger LiI. Beyond 4%, larger power systems are 
needed to accommodate the higher power demand. 
Given the higher cost of power infrastructure, system 
costs increase considerably.   

Further, the consistent choice of land-based wind 
farms in both the minimum cost and minimum emissions 
represents a win-win scenario that offers the best solu-
tion across multiple objectives. Similarly, some options 
are never chosen such as the olefin production through 
the MTP and MTO route which are recognized as being 
both cost and emission intensive. As a reminder, pro-
cesses can have different efficiencies based on the 
choice of materials, as well as different emission poten-
tials based on the sourcing of materials (such as rock or 
brine lithium). Also, the cost of technologies are expected 
to reduce along with augmentations in efficiency result-
ing from adoption and research as the transition pro-
gresses.   

 It is also observed that a production capacity of 
HDPE from the BAU pathway is established even in the 
low carbon scenarios. This pathway is utilized on days 
with low wind availability given the low power require-
ment. If this pathway is not made available, the required 
power generation and energy storage capacity is signifi-
cantly larger. In fact, to achieve a 6% reduction in emis-
sions without the BAU pathway, the WF is sized at 28.98 
MW and LiI is sized at 17.7 MW, representing an increase 
of 315% and 514.5% respectively. Meanwhile the cost of 
the system increases 388%. This highlights the trade-
offs between direct and indirect emissions. The CCUS 
pathway utilizes significantly higher power which results 
in larger power generation capacities which in turn cause 
an increase in the emissions resulting from material utili-
zation.  

Figure 5 shows the disparate contribution to emis-
sions. The largest source of emissions is direct CO2 dis-
charge. The lower emission scenarios have a larger con-
tribution from WF and LiI as they are sized at a larger ca-
pacity. Natural gas (NG) and oil consumption decreases 
with the lower reliance on the BAU pathway and hence 
the emissions resulting from their sourcing and purchase. 
It can also be noted that, in the given model, none of the 
sources of emissions can be entirely eliminated.  

The framework also provides optimal schedules. For 
example in Figure 6, the schedule for power generation 
through WF is plotted alongside the power discharged 
from LiI, and the production through OCM is plotted 
alongside the production through the BAU pathway for 
the scenario with a GWP reduction of 6%.  It can be seen 
that the constant demand for HDPE is met either through 
the OCM or BAU pathway. However, when the wind po-
tential is high the OCM pathway is preferred. During pe-
riods of low wind availability, the BAU pathway is pre-
ferred with the power demand being met from the dis-
charge of energy stored in the LiI. This is also reflected in 
the sizing of processes, wherein the BAU process has the 
same capacity as the OCM process (refer to Table 1).    

 

Table 1. Process capacities for different scenarios. 

Scenario DAC (tons) 
HDPE-BAU 

(tons) 
HDPE-CCUS 

(tons) OCM (tons) Lil (MW) WF (MW) 
Base       
-%       
-%       
-%       
-%       

-%       
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Figure 5. Contribution to GWP fro msource for each 
scenario.  

 
Figure 6. Schedule for power generation and discharge 
from energy storage. 

Caution should be exercised when interpreting the 
results due to two limitations: 1) the unavailability of ma-
terial use data for some processes causing a possible 
bias in results where values are assumed, and 2) the GWP 
associated with materials can vary by literature source. 
Nevertheless, the framework can be interrogated to 
quantify the sensitivity of the solution to parameter val-
ues. 

The framework preserves the simultaneous sched-
uling and network design capability of earlier frameworks 
in literature [4,5,6,7] while allowing: 1) the estimation of 
emissions from disparate sources, and 2) identifying op-
timal material choices for the establishment of pro-
cesses. Moreover, the framework is applied to a novel 
case study wherein the material and energy supply 
chains are modeled simultaneously. This provides a more 
holistic view of the system, thus enabling decarboniza-
tion across the different scopes of emissions. In principle, 
this framework can be applied towards the optimal 

design of systems bearing awareness to life cycle con-
siderations.  

FUTURE WORK 
While only GWP is considered in the presented work, 

other environmental effects such as ozone depletion and 
acidification potential can also be modeled. The optimi-
zation of multiple criteria using multi-objective optimiza-
tion (MOO) can be reported. In its current form, the emis-
sion accounting methodology cannot be considered a 
comprehensive life cycle assessment (LCA) [7] given the 
lack of focus on process lifetimes and circularity of ma-
terials [16]. A challenge that needs to be addressed in the 
RTMN methodology is the fact that resources and mate-
rials are often not distinct. For example, while HDPE is 
treated as a resource in the considered mobility example, 
it may also serve as a material for the establishment of 
grid infrastructure. 

Furthermore, the sensitivity of the model solution to 
considered parameters can also be assessed. The frame-
work can also be run for longer temporal horizons which 
will allow the consideration of reductions in technology 
cost over the temporal horizon. Moreover, only HDPE is 
analyzed in the presented work, future iterations of the 
framework will also assess the role of other polymers uti-
lized in the manufacturing of vehicles. Power is also re-
quired for charging EVs which can be modeled in tandem.  
Besides renewable intermittency, the framework can also 
accommodate variability in the cost of resources such as 
NG and oil and resource demand. Case studies consider-
ing the aforementioned aspects will be presented in fu-
ture publications.  
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ABSTRACT 
This study presents a comprehensive approach to optimizing hydrogen supply chain network 
(HSCN), focusing initially on Texas, with potential scalability to national and global regions. Utiliz-
ing mixed-integer nonlinear programming (MINLP), the research decomposes into two distinct 
modeling stages: broad supply chain modeling and detailed hub-specific analysis. The first stage 
identifies optimal hydrogen hub locations, considering county-level hydrogen demand, renewable 
energy availability, and grid capacity. It determines the number and placement of hubs, county 
participation within these hubs, and the optimal sites for hydrogen production plants. The second 
stage delves into each selected hub, analyzing energy mixes under variable solar, wind, and grid 
profiles, sizing specific production and storage facilities, and scheduling to match energy availa-
bility. Iterative refinement incorporates detailed insights back into the broader model, updating 
costs and configurations to converge upon an optimal supply chain design. This design encapsu-
lates macro-level network configurations, including centralization versus decentralization strate-
gies, transportation cost analysis, and carbon footprint assessment, as well as micro-level opera-
tional specifics like renewable energy contributions, facility scale, and energy portfolio manage-
ment. The methodology's robustness allows for strategic insights into hydrogen production facility 
siting, aligning with local energy resources and supply chain economics. This adaptable, multi-
scale approach contributes to informed decision-making in the evolution of sustainable hydrogen-
based energy systems, offering a roadmap for policy reforms and strategic supply chain develop-
ment in diverse energy landscapes. 

Keywords: Energy Management, Hydrogen, Optimization, Renewable and Sustainable Energy, Supply Chain, 
Network Design.

INTRODUCTION 
The global energy landscape is undergoing a para-

digm shift towards sustainable and clean energy sources, 
with hydrogen emerging as a pivotal player in this transi-
tion. Hydrogen, particularly green hydrogen produced 
from renewable energy sources, offers a promising solu-
tion to decarbonize various sectors, including transpor-
tation, industrial processes, and energy storage [1, 2]. 
The U.S. Department of Energy's (DOE) investment in hy-
drogen hubs underscores their pivotal role in advancing 
the nation's clean energy agenda. With a commitment of 
$7 billion towards establishing H2Hubs, alongside $1 bil-
lion to boost clean hydrogen demand and $1.5 billion to 
enhance electrolysis technologies, the DOE aims to 

significantly reduce the cost of clean hydrogen to $1 per 
kilogram within a decade [3]. This initiative is not just an 
investment in sustainable energy but also a substantial 
job creator, promising to generate tens of thousands of 
well-paying jobs across the country. Moreover, the 
H2Hubs are expected to play a crucial role in environ-
mental conservation by eliminating approximately 25 mil-
lion metric tons of carbon dioxide emissions annually, 
equating to the emissions of about 5.5 million gasoline-
powered cars [4]. This strategic move marks a significant 
step towards realizing a more sustainable, low-carbon 
future, positioning hydrogen hubs as a cornerstone in the 
transition to cleaner energy sources.  

https://doi.org/10.69997/sct.125411
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However, establishing an efficient hydrogen supply 

chain network (HSCN) poses significant challenges due 
to its complexity and the need for a multi-scale optimiza-
tion approach encompassing production, storage, trans-
portation, and distribution [5, 6]. The complexity stems 
from several key aspects: the geographical dispersion of 
supply and demand centers, the integration of diverse 
and intermittent renewable energy sources, and the need 
to align production with fluctuating energy availability. 
Additionally, the network comprises various intercon-
nected components, including production sites, storage 
facilities, and distribution hubs, each with its own set of 
operational constraints and dependencies (see Fig. 1). 
The variability in renewable energy output, such as solar 
and wind, adds another layer of complexity, necessitat-
ing advanced planning and forecasting methods. This 
complexity is further amplified by the dynamic nature of 
market demands, technological advancements, and reg-
ulatory landscapes. Solving this multifaceted problem re-
quires not only sophisticated computational models and 
optimization algorithms but also a deep understanding of 
the interplay between various elements of the hydrogen 
supply chain. 

Pertinent literature reveals various approaches to 
modeling and optimizing Hydrogen Supply Chain Net-
works (HSCNs). Study such as by Vijayakumar et al. [7] 
have focused on geographic and economic aspects of 
hub placement. They highlight the importance of long-
term planning in mitigating system costs and retail prices, 
but their deterministic approach overlooks uncertainties 
in demand and feedstock prices which are crucial for ac-
curate forecasting. In contrast, Li et al. [8] provide an op-
timization-oriented review of hydrogen supply chain net-
work design, noting gaps such as the treatment of uncer-
tainty. Alkatheri et al. [9] address the intermittency chal-
lenges of renewable energies with a multiscale stochastic 

programming approach for energy hub design, despite 
the computational complexity. Moran et al. [10] offer a 
flexible tool for analyzing regional hydrogen hubs, as ex-
emplified by their Irish case study, but do not fully con-
sider the implications of using grid electricity from non-
renewable sources and the variability of the renewable 
integration. Additionally, Marouani et al. [11] delved into 
the integration of renewable energy sources into the sup-
ply chain. However, the dynamic and variable nature of 
renewable energy availability, particularly solar and wind, 
and its impact on hydrogen production and storage 
scheduling and sizing remains under-addressed. 

To address these challenges, this study proposes a 
novel two-stage mixed-integer nonlinear programming 
(MINLP) approach. The first stage involves broad supply 
chain modeling to identify optimal hydrogen hub loca-
tions and configurations, considering county-level de-
mand, renewable energy availability, and grid capabili-
ties. The second stage focuses on detailed hub-specific 
modeling, specifying energy mixes, production and stor-
age capacities, and schedules in alignment with variable 
energy inputs. 

The results of this approach include the identifica-
tion of optimal hub locations and configurations, tailored 
energy mixes for each hub, and detailed operational 
schedules that maximize efficiency and minimize costs. 
Moreover, the iterative refinement process employed in 
this study allows for the continuous updating of model 
parameters, leading to increasingly accurate and optimal 
solutions. This study not only contributes to the existing 
body of knowledge on HSCN optimization but also pro-
vides a practical and scalable framework for policymak-
ers and industry stakeholders.  

PROBLEM STATEMENT 
The central hypothesis of our study posits that by 

 
Figure 1. Complex hydrogen supply chain network [6] . 
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addressing key research questions within Texas' hydro-
gen supply chain, the findings could be extrapolated to 
national or even international scales. McKinsey & Compa-
ny's sustainability report projects that Texas' demand for 
clean hydrogen may increase to 21 million tonnes (MT) by 
2050, up from the current 3.6 MT produced convention-
ally [12]. Our assumption is that all 254 counties in Texas 
will contribute to this demand based on factors such as 
local energy requirements, population, available land, and 
the variability of energy sources including the grid, wind, 
and solar. The target is to answer the following key re-
search questions: 

 What are the strategic locations for the hydrogen 
production plants? 

 What constitutes the optimal energy mix for 
electrolytic hydrogen production, given variable 
electricity pricing, wind availability, and solar 
irradiance? 

 What are the optimal size of H2 production 
facilities, renewable farms, energy storage, 
considering the temporal variations in renewable 
energy availability? 

 What is the comprehensive cost of the hydrogen 
supply chain, including production, storage, and 
transportation?   

 What will be the optimal scheduling of the 
hydrogen production process to match energy 
availability? 

METHODOLOGICAL APPROACH 
We adopt a multi-scale optimization framework that 

integrates both supply chain optimization (level 1) and 
process design and energy scheduling (level 2), ensuring 
convergence towards an optimal supply chain design 
that encapsulates macro-level network configuration and 
micro-level operational details. 

Level 1: Supply Chain Optimization  
At the macro-level, the network configuration is in-

formed by the optimization of strategic decisions such as 
site selection, facility sizing, hydrogen distribution, trans-
portation costs to/from other counties, energy portfolio 
mix and management cost, guided by county-specific 
roles and requirements. In our supply chain optimization, 
we employ piecewise linearization to address the econo-
mies of scale inherent in hydrogen production. This 
mathematical technique allows us to model the cost ben-
efits of scaling production facilities accurately. By break-
ing down the nonlinear cost structure into linear seg-
ments, we can analyze scenarios where a single large 
production facility or multiple smaller ones are more eco-
nomically viable. This is crucial in evaluating the 

feasibility of a hub approach to hydrogen production. 
Furthermore, this linearization facilitates the use of linear 
programming techniques, which significantly expedite 
the optimization process, ensuring a swift and efficient 
path to finding the optimal supply chain configuration. 
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Level 2: Process Design and Energy 
Scheduling  

The micro-level details focus on operational intrica-
cies within individual counties. This includes determining 
the roles counties play within the network, scaling pro-
duction and storage facilities, configuring the energy 
portfolio, aligning production timing with renewable en-
ergy availability, devising energy storage solutions, sizing 
renewable energy farms for grid independence, and for-
mulating strategies to meet emissions reduction goals.  
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𝑇𝑇𝑝𝑝𝑖𝑖,𝑡𝑡𝑝𝑝𝑡𝑡 =  𝑇𝑇𝑝𝑝𝑖𝑖,𝑔𝑔𝑡𝑡𝑖𝑖𝑝𝑝 + 𝑇𝑇𝑝𝑝𝑖𝑖,𝑢𝑢𝑚𝑚 + 𝑇𝑇𝑝𝑝𝑖𝑖,𝑐𝑐𝑝𝑝2 + �𝑇𝑇𝑖𝑖
𝑝𝑝𝑖𝑖,𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡

𝑖𝑖
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Renewable farm constraints, 
𝑃𝑃𝑡𝑡𝑖𝑖𝑡𝑡,𝑡𝑡
𝑡𝑡𝑝𝑝𝑡𝑡 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑡𝑡𝛬𝛬𝑡𝑡𝑖𝑖𝑡𝑡 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑝𝑝𝑒𝑒𝑡𝑡𝑡𝑡,𝑡𝑡

= 𝑔𝑔ℎ𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑒𝑒 �1

− max (
𝑃𝑃𝐷𝐷𝑡𝑡ℎ − 𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑡𝑡

𝑃𝑃𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚 − 𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑡𝑡
,
𝑃𝑃𝐷𝐷 − 𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑡𝑡

𝑃𝑃𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚 − 𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑡𝑡
)� 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑤𝑤𝑖𝑖𝑡𝑡𝑝𝑝,𝑡𝑡

= 0.5𝜋𝜋𝜌𝜌𝑡𝑡𝑖𝑖𝑡𝑡𝐴𝐴𝑡𝑡3𝐴𝐴𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑒𝑒 �1

− max (
𝑃𝑃𝐷𝐷𝑡𝑡ℎ − 𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑡𝑡

𝑃𝑃𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚 − 𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑡𝑡
,
𝑃𝑃𝐷𝐷 − 𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑡𝑡

𝑃𝑃𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚 − 𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑡𝑡
)� 

𝑇𝑇𝑡𝑡𝑖𝑖𝑡𝑡
𝑖𝑖𝑖𝑖,𝑡𝑡𝑝𝑝𝑡𝑡 =  𝑇𝑇𝐿𝐿𝑡𝑡𝑖𝑖𝑡𝑡𝛬𝛬𝑡𝑡𝑖𝑖𝑡𝑡𝑇𝑇𝐶𝐶𝐶𝐶

𝑇𝑇
8760 

Electrolyzer constraints, 

𝑁𝑁𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒 =  
1000 Λ𝑖𝑖𝑒𝑒

𝑛𝑛𝑐𝑐ℎ2
𝑝𝑝𝑝𝑝,𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒  

𝑚𝑚𝑡𝑡
𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚 =  

𝑚𝑚𝑡𝑡
𝑖𝑖𝑒𝑒

𝑁𝑁𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑚𝑚𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒,𝑚𝑚𝑡𝑡𝑚𝑚   

𝑃𝑃𝑡𝑡𝑖𝑖𝑒𝑒 =  �−8.5231𝑚𝑚𝑡𝑡
𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚2 + 23.995𝑚𝑚𝑡𝑡

𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚

+ 47.752�𝑚𝑚𝑡𝑡
𝑖𝑖𝑒𝑒10−3 

𝑇𝑇𝑖𝑖𝑖𝑖,𝑖𝑖𝑒𝑒 =  𝑇𝑇𝐿𝐿𝑖𝑖𝑖𝑖,𝑖𝑖𝑒𝑒Λ𝑖𝑖𝑒𝑒𝑇𝑇𝐶𝐶𝐶𝐶
𝑇𝑇

8760 

𝑇𝑇𝑝𝑝𝑜𝑜,𝑖𝑖𝑒𝑒 =  𝑇𝑇𝐿𝐿𝑝𝑝𝑜𝑜,𝑖𝑖𝑒𝑒𝑇𝑇𝑖𝑖𝑖𝑖,𝑖𝑖𝑒𝑒 
Hydrogen compressor constraints, 

𝑃𝑃𝑡𝑡
𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝 =  𝑚𝑚𝑡𝑡

𝑖𝑖𝑒𝑒𝑐𝑐ℎ2
𝑝𝑝0,𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝 

𝑃𝑃𝑡𝑡
𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝 ≤ Λ𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝 

𝑇𝑇𝑖𝑖𝑖𝑖,𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝 = 𝑇𝑇𝐿𝐿𝑖𝑖𝑖𝑖,𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝Λ𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝𝑇𝑇𝐶𝐶𝐶𝐶
𝑇𝑇

8760 

𝑇𝑇𝑝𝑝𝑜𝑜,𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝 =  𝑇𝑇𝐿𝐿𝑝𝑝𝑜𝑜,𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝𝑇𝑇𝑖𝑖𝑖𝑖,𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝 
Hydrogen storage constraints, 

𝑚𝑚𝑡𝑡+1
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑚𝑚𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + �𝑚𝑚𝑡𝑡
𝑖𝑖𝑒𝑒 −  𝑚𝑚𝑡𝑡

𝑝𝑝𝑢𝑢𝑡𝑡�Δ𝑡𝑡 
0 ≤ 𝑚𝑚𝑡𝑡

𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 ≤ 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑡𝑡𝑚𝑚 

𝑇𝑇𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑇𝑇𝐿𝐿𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑡𝑡𝑚𝑚𝑇𝑇𝐶𝐶𝐶𝐶
𝑇𝑇

8760 

𝑇𝑇𝑝𝑝𝑜𝑜,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑇𝑇𝐿𝐿𝑝𝑝𝑜𝑜,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
Energy storage model, 

�𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏
𝑝𝑝𝑝𝑝

𝑏𝑏

= 1 

𝜖𝜖𝑦𝑦𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝐸𝐸𝑖𝑖𝑢𝑢𝑏𝑏𝑦𝑦𝑖𝑖 
0 ≤ 𝐸𝐸𝑖𝑖,𝑡𝑡 ≤ 𝑥𝑥𝑖𝑖 
𝐸𝐸𝑖𝑖,𝑡𝑡+1 = 𝐸𝐸𝑖𝑖,𝑡𝑡 − (𝜂𝜂𝑖𝑖,𝑡𝑡𝑆𝑆 𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏=𝑐𝑐

𝑝𝑝𝑝𝑝 +  𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏=𝑝𝑝
𝑝𝑝𝑝𝑝 )𝑃𝑃𝑖𝑖,𝑡𝑡𝑆𝑆 Δ𝑡𝑡 

𝜂𝜂𝑖𝑖,𝑡𝑡𝑆𝑆 = 𝑛𝑛0𝑖𝑖𝑠𝑠𝑖𝑖,𝑡𝑡
𝑡𝑡1𝑖𝑖 

−𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏= 𝑐𝑐
𝑝𝑝𝑝𝑝 𝑃𝑃𝑖𝑖,𝑡𝑡𝑆𝑆 ≤ 𝑃𝑃𝑐𝑐𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚 ≤ 𝑃𝑃𝑖𝑖

𝑐𝑐,𝑢𝑢𝑏𝑏𝑦𝑦𝑖𝑖 
𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏= 𝑝𝑝
𝑝𝑝𝑝𝑝 𝑃𝑃𝑖𝑖,𝑡𝑡𝑆𝑆 ≤ 𝑃𝑃𝑑𝑑𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚 ≤ 𝑃𝑃𝑖𝑖

𝑝𝑝,𝑢𝑢𝑏𝑏𝑦𝑦𝑖𝑖 

�
𝐸𝐸𝑖𝑖,𝑡𝑡=𝑁𝑁𝑁𝑁+1 − 𝐸𝐸𝑖𝑖,𝑡𝑡=1

𝐸𝐸𝑖𝑖,𝑡𝑡=1
� ≤ 𝑐𝑐𝑦𝑦𝑐𝑐𝑡𝑡𝑐𝑐𝐴𝐴 

�(−𝑧𝑧𝑖𝑖,𝑡𝑡+1,𝑏𝑏= 𝑐𝑐
𝑝𝑝𝑝𝑝 + 𝑧𝑧𝑖𝑖,𝑡𝑡+1,𝑏𝑏= 𝑝𝑝

𝑝𝑝𝑝𝑝 )𝑃𝑃𝑖𝑖,𝑡𝑡+1𝑆𝑆 − (−𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏= 𝑐𝑐
𝑝𝑝𝑝𝑝

+ 𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏= 𝑝𝑝
𝑝𝑝𝑝𝑝 )𝑃𝑃𝑖𝑖,𝑡𝑡𝑆𝑆 � ≤ 𝑟𝑟𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 

𝑃𝑃𝑖𝑖,𝑡𝑡𝑆𝑆 = 𝑒𝑒1𝑖𝑖,𝑡𝑡 
𝐸𝐸𝑖𝑖,𝑡𝑡 = 𝑒𝑒2𝑖𝑖,𝑡𝑡 
𝑠𝑠𝑖𝑖𝑒𝑒𝑏𝑏 ≤ 𝑠𝑠𝑖𝑖,𝑡𝑡 ≤ 𝑠𝑠𝑖𝑖𝑢𝑢𝑏𝑏 
𝐴𝐴𝑖𝑖𝑒𝑒𝑏𝑏 ≤ 𝐴𝐴𝑖𝑖,𝑡𝑡 ≤ 𝐴𝐴𝑖𝑖𝑢𝑢𝑏𝑏 
𝑡𝑡𝑟𝑟𝑒𝑒𝑏𝑏 ≤ 𝑡𝑡𝑟𝑟𝑖𝑖 ≤ 𝑡𝑡𝑟𝑟𝑢𝑢𝑏𝑏 

𝑇𝑇𝑖𝑖
𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡

= �𝑐𝑐11𝑖𝑖𝑥𝑥𝑖𝑖
𝛼𝛼11𝑖𝑖

+ 𝑐𝑐12𝑖𝑖𝑃𝑃𝑑𝑑𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚𝛼𝛼12𝑖𝑖  + 𝑐𝑐13𝑖𝑖𝑃𝑃𝑐𝑐𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚𝛼𝛼13𝑖𝑖�𝑇𝑇𝐶𝐶𝐶𝐶𝑖𝑖
𝑇𝑇

8760 

𝑇𝑇𝑖𝑖
𝑝𝑝𝑜𝑜,𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡

= (𝑐𝑐21𝑖𝑖𝑥𝑥𝑖𝑖
𝛼𝛼21𝑖𝑖

+ 𝑐𝑐22𝑖𝑖𝑃𝑃𝑑𝑑𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚𝛼𝛼22𝑖𝑖  + 𝑐𝑐23𝑖𝑖𝑃𝑃𝑐𝑐𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚𝛼𝛼23𝑖𝑖)
𝑇𝑇

8760 

𝑇𝑇𝑖𝑖,𝑡𝑡
𝑝𝑝𝑖𝑖,𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 = (𝑐𝑐31𝑖𝑖𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏=𝑝𝑝

𝑝𝑝𝑝𝑝 −  𝑐𝑐32𝑖𝑖𝑧𝑧𝑖𝑖,𝑡𝑡,𝑏𝑏=𝑐𝑐
𝑝𝑝𝑝𝑝 )𝑃𝑃𝑖𝑖,𝑡𝑡𝑆𝑆 Δ𝑡𝑡 

𝑇𝑇𝑖𝑖
𝑝𝑝𝑖𝑖,𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 =  �𝑇𝑇𝑖𝑖,𝑡𝑡

𝑝𝑝𝑖𝑖,𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡

𝑡𝑡

 

At its core, the model seeks to balance energy pro-
duction and hydrogen generation across temporal and 
spatial dimensions, taking into account the variable na-
ture of renewable energy sources and grid electricity 
prices. The model incorporates decision variables for en-
ergy management, renewable energy farms, energy stor-
age, and hydrogen production and storage. These varia-
bles are optimized within a system of constraints that en-
sure energy balance, hydrogen balance, and operational 
feasibility (see Fig. 2). For example, the power purchased 
from the electricity grid at any given time is matched 
against the power consumed by electrolyzers and com-
pressors, ensuring an overall energy balance. The con-
straints also enforce the physical and operational limita-
tions of the system, such as the maximum hydrogen stor-
age capacity and the power output limits of storage tech-
nologies. This detailed formulation allows for the exami-
nation of the economic and environmental implications of 
the supply chain, with the ultimate goal of minimizing 
costs and emissions while meeting the hydrogen de-
mand. 

 
Figure 2. Green hydrogen production system. 
 

This decomposition into two optimization levels al-
lows for a structured breakdown of the complex supply 
chain problem. The output of level 1, which encapsulates 
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county-wise energy and hydrogen demand forecasts, in-
forms level 2 decisions. This includes detailed cost as-
sessments for hydrogen production at the county level, 
which are then fed back into level 1. The iterative feed-
back loop between the two levels propels the optimiza-
tion process toward convergence, refining the network 
configuration with each iteration. 

Recognizing the variable nature of energy availabil-
ity across counties, our model incorporates a robust 
mechanism for inter-county energy flow. This mechanism 
dynamically channels surplus energy from counties with 
excess to those with deficits, thereby maintaining the 
balance necessary to meet each county's hydrogen pro-
duction demands. This energy management strategy is 
integral to our comprehensive approach, affirming that all 
counties can achieve their hydrogen demand targets 
through cooperative energy sharing and sophisticated 
scheduling.  

RESULTS AND DISCUSSION 
The broader supply chain optimization achieves 

strategic positioning of hydrogen production facilities 
across Texas, with significant concentrations in energy-
rich counties. For instance, the production capacities 
ranged from 0.21 to 21 MT per year, aligning with the var-
iable solar and wind profiles. In Fig. 3, we can see the lo-
cation of the hydrogen production sites and the 

distribution of produced hydrogen to other counties 
based on the given projected energy demand and popu-
lation density of each county. We can observed that not 
every county is producing their H2 rather few counties are 
taking the leverage of economics of scale by collaborat-
ing with the neighbouring counties. This also gives us the 
indication that if management or policy makers decided 
to build up the specific number of hubs for the hydrogen 
for Texas. Our supply chain optimization can find those 
locations with some additional constrains. The optimal 
energy mix was achieved with 35.46% wind, 34.3% solar, 
and 30.23% grid energy, illustrating a significant reliance 
on renewable sources. 

The simulation results, derived from a year-long var-
iability profile for solar irradiance and wind speed, indi-
cate a consistent alignment between the overall power 
flow and the hydrogen production profile, which is crucial 
for maintaining a sustainable energy supply for hydrogen 
production (see Fig. 4). The hydrogen profile, compared 
with the demand, reveals that the production from elec-
trolyzers is well-aligned with the demand pattern, sug-
gesting an efficient design of the electrolyzer capacity 
and operational scheduling. Notably, peak production 
periods do not always coincide with peak demand times, 
indicating the necessity for robust storage solutions 
within the supply chain to balance the temporal discrep-
ancies. In terms of energy supply, the integration of solar 
and wind energy contributes significantly to the overall 

 

Figure 3. Identification of H2 and energy production sites and its distribution. 
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power flow, with grid energy supplementing the shortfall. 
However, the reliance on grid energy varies throughout 
the day, suggesting potential areas for further optimiza-
tion of renewable energy sources or storage solutions to 
minimize grid dependence and enhance sustainability. 
Furthermore, our optimization model has successfully 
identified strategic locations for hydrogen production, 

factoring in county-specific variables such as land area 
and energy profiles. This strategic placement, alongside 
an optimized energy mix, effectively minimizes transport 
costs and maximizes the use of local renewable energy, 
supporting the overarching goal of a resilient and sus-
tainable hydrogen economy. Numerical insights obtained 
from the optimization highlight the potential for a 

Table 1: Selected information on hydrogen production process design. 

County 

Max 
installed 

wind 
capacity 

(MW) 

Max 
installed 

solar 
capacity 

(MW) 

Installed 
electrolyzer 

capacity 
(MW) 

LCOH 
($/kg) 

Penalty on 
unmet H2 
demand 

($) 

Total 
system 

cost 
(MM $) 

Emission 
penalty on 

grid bought 
electricity 

(MM $) 

Austin 528.831 2563.51 1602.3 4.58 - 992 218 

Angelina 1.93 286.06 159.73 4.40 - 92 21.2 

Archer 194.43 0 68.86 3.39 - 31.5 0.5 

Austin 168.38 4.01 61.28 3.51 - 28.8 0.69 

Bailey 0 26.38 14.54 4.10 - 6.32 1.18 

Bastrop 0 182.41 105.68 4.40 - 61 14.7 

Bee 788.58 24.35 290.05 3.73 - 145 8.17 

Bell 915.15 55.73 351.74 3.84 - 181 12.4 

Blanco 57.03 0 20 3.27 - 8.91 0.02 

Borden 0 0 1.80 5.46 - 0.86 0.36 

 
 
Figure 4: Simultaneous design and scheduling model. 
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reduction in carbon footprint through optimized renewa-
ble energy use and strategic site placement. The pro-
posed supply chain configuration promises to meet the 
projected 21 MT hydrogen demand by 2050, with a com-
prehensive cost analysis indicating a favorable compari-
son to current conventional hydrogen production costs. 

The selective overview of Texas counties reveals a 
diversified approach to hydrogen production process de-
sign (see Table 1). For instance, Austin County show-
cases a substantial investment in renewable energy 
sources with impressive wind and solar capacities, facili-
tating a large-scale electrolyzer capacity that could cater 
to future hydrogen demands. However, the associated 
LCOH of $4.58/kg suggests a higher production cost, po-
tentially due to the scale of installed capacities and emis-
sion penalties. Conversely, counties like Archer, with a 
focus on wind energy, and Blanco, with a conservative 
renewable approach, indicate a more cost-effective pro-
duction with their lower LCOH. Borden County's minimal 
figures might reflect an opportunity for growth or a stra-
tegic decision to maintain a small-scale operation. These 
data points indicate that while some counties are posi-
tioning themselves as potential leaders in hydrogen pro-
duction, others may opt for a scaled approach or are in 
the early stages of infrastructure development. The di-
verse strategies underscore the need for a multifaceted, 
tailored approach in optimizing hydrogen production that 
balances cost, demand, and environmental impact. 

CONCLUSION 
In our study, the placement of strategic hydrogen 

production sites was pivotal, with locations selected to 
align local demand with the availability of energy re-
sources. The design of the network integrated insights 
from county-level contributions and renewable sources, 
setting a robust foundation for the configuration and 
scale of these production sites. Our analysis into the en-
ergy mix probed the feasibility of utilizing solar, wind, and 
grid sources to create a flexible energy portfolio for hy-
drogen production. By adopting an iterative, two-level 
optimization approach, we enhanced the supply chain 
model, ensuring economic feasibility and environmental 
sustainability. Our findings point to a future-adapted hy-
drogen supply network, resilient and scalable to meet the 
burgeoning demand and shifts in the energy sector. This 
synthesis of theoretical insights and numerical analysis 
underscores the viability of the proposed supply chain 
configuration, offering a viable pathway to achieving the 
DOE's goal of $1 per kilogram of clean hydrogen within a 
decade. 
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ABSTRACT 
This research is dedicated to designing and economically evaluating the green ammonia supply 
chain, considering the fluctuating nature of renewable energy sources and energy demand across 
both hourly and seasonal variations. It also explores the impact of economies of scale and the 
delays associated with long-distance shipping to meet energy demands in a timely manner. These 
considerations require the formulation of a Mixed-Integer Nonlinear Programming model, further 
complicated by the necessity for a two-stage stochastic programming approach. We introduce a 
hierarchical optimization framework that utilizes a decomposition method to differentiate between 
one-time design decisions and subsequent operational choices. At the upper level, potential de-
sign solutions are identified through the Bayesian Optimization and Hyperband algorithm, which 
effectively navigates the non-linear challenges posed by economies of scale. The lower level then 
addresses a Mixed-Integer Linear Programming problem to independently assess the feasibility of 
each scenario. Our empirical analysis includes case studies of three potential international routes 
for transporting green ammonia to Korea. We contrasted our methodology with a hypothetical 
scenario that presupposes a constant supply of power and a stable demand for energy. Addition-
ally, techno-economic analyses were conducted to evaluate the implications of the minimum op-
erational limits for electrolyzers.  

Keywords: Green ammonia supply chain, Multi-timescale decision-making, Integrated temporal approach, 
MINLP, Decomposition approach 

INTRODUCTION 
Amidst the escalating global demand for the sus-

tainable energy solutions, the quest for efficient energy 
transport materials has taken center stage in research 
and development. Hydrogen and ammonia have emerged 
as particularly promising candidates, with ammonia gain-
ing traction in international supply chains due to its ad-
vantages in long-distance transportation and storage [1]. 

Nevertheless, the deployment of ammonia as an en-
ergy carrier faces challenges associated with the tradi-
tional Harbor-Bosch approach, which exhibits limited 
flexibility and imposes constraints on ramp-up and ramp-
down rates [2]. This lack of adaptability poses a major 

obstacle to planning a green ammonia supply chain ca-
pable of adeptly responding to dynamic renewable en-
ergy fluctuations and ensuring timely transport to meet 
demand. Furthermore, the seasonality and inherent un-
certainty in energy production and demand [3], com-
bined with the extended duration of vessel transporta-
tion, mandate operational decisions that span multiple 
time zones. 

In the face of these challenges, existing research 
lacks a comprehensive integrated temporal approach 
that considers both hourly profiles and weekly shipping 
schedules, hindering the determination of reliable and 
economic capacity design. Addressing this deficiency in 
the literature, our study introduces an innovative meth-

mailto:jlee4140@usc.edu
https://doi.org/10.69997/sct.156355
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odology for bi-level decision-making, combining Bayes-
ian optimization and hyperband (BOHB) with mathemati-
cal programming. The primary objective of this study is 
to analyze the impact of incorporating uncertainty and in-
termittency in the environment, as along with techno-
economic parameters related to hourly operations, on the 
economic viability and design of a green ammonia supply 
chain. By adopting this integrated approach, we signifi-
cantly lower the complexities associated with energy 
management and ship scheduling under multi-timescale 
uncertainties. This, in turn, provides valuable insights into 
fostering efficient decision-making within the burgeoning 
field of green ammonia project. 

PROBLEM DESCRIPTION 
As depicted in Figure 1, the focal problem addressed 

in this paper is to minimize the levelized cost of green 
ammonia (LCOA) by optimizing the capacity sizes of var-
ious components, including turbines, PV panels, batter-
ies, PEM water electrolyzers, Harbor-Bosch plants, hy-
drogen tanks, ammonia tanks, and ammonia ships. The 
optimization process takes into account operations span-
ning multiple timescales. Specifically, ship scheduling is 
determined on a weekly basis, while operational deci-
sions for the energy management of a green ammonia 
production facility are made on an hourly basis. The 
model accommodates time delays arising from long-dis-
tance shipping, and it incorporates uncertainty on both 
the demand and supply sides.  

Weather and demand uncertainties are modeled 
through various scenarios generated based on historical 
weather patterns and energy consumption data. Given 
that capacity decisions must be made independently of 
these scenarios, operational decisions are tailored to re-
spond to specific scenarios, serving as recourse deci-
sions. Thus, the problem is formulated as a two-stage 
stochastic optimization problem, as illustrated in Figure 
2. The first-stage decisions revolve around capacity de-
cisions, while the second-stage decisions focus on oper-
ational decisions. The distinct timescales associated with 
the first- and second-stage decisions contribute to the 
complexity of solving this problem. Furthermore, the dif-
ficulty of solving the problem is compounded by the fact 
that large-scale capacity design necessitates the consid-
eration of economies of scale. Additionally, shipping-re-
lated variables and facility sizes, being discrete entities, 
introduces integer variables into the mix. Consequently, 
the mathematical programming is formulated as mixed-
integer nonlinear programming (MINLP). To address this 
complexity, we introduce a novel bi-level decision-mak-
ing framework, described in the method section. 

SYSTEM DESCRIPTION 
As shown in Figure 3, energy is harnesses from both 

wind turbines and PV panels. Batteries play a role in mit-
igating the inherent volatility of renewable energy, with 
‘curtailment’ denoting the direct release of excess energy 

 
Figure 1. Challenges and multi-timescale decision variables. 
 

 
Figure 2. Illustration of two-stage stochastic programming for the problem of this study. 
 

First stage: capacity design

Realized scenarios

Second stage: 
system operation

Second stage: 
system operation

Second stage: 
system operation

MINLP & stochastic programming
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and the management of operations such as idling tur-
bines. Gaseous hydrogen is produced through a water 
electrolyzer, a process integral to synthesizing ammonia. 
Any surplus hydrogen generated is stored in a dedicated 
hydrogen tank. To achieve the minimum load of electro-
lyzer, the system occasionally relies on the reconversion 
of hydrogen via a fuel cell. The synthesized ammonia is 
then stored in tanks before being transported from the 
exporting country to the importing country via shipping.  

For efficient regulation of various current types gen-
erated and required by diverse equipment, appropriate 
converters and current buses are needed. Given the 
prevalence of DC-type equipment, this study employs a 
DC bus topology to effectively accommodate the distinc-
tive electrical characteristics.  

METHOD 
A bi-level decision-making framework is introduced, 

as illustrated in Figure 4. The initial design decision, facil-
itated by the BOHB, transforms the remaining optimiza-
tion into mixed-integer linear programming (MILP). Thus, 
system operation is addressed through a set of inde-
pendently manageable sub-problems, markedly lowering 

the complexity of the original two-stage stochastic pro-
gramming.  

BOHB, an advanced hyperparameter optimization 
algorithm, blends the strengths of Bayesian optimization 
(BO) and hyperband [4]. Known for its ability to achieve 
both robust and efficient performance in finding the op-
timal configuration, BOHB overcomes the limitations of 
traditional methods.  While hyperband excels at smaller 
sampling budgets, it struggles with larger budgets due to 
its reliance on random sampling. In contrast, BO initially 
progresses slowly but, given enough time, outperforms 
hyperband. Combining these approaches, BOHB delivers 
superior performance and rapid convergence across var-
ying timeframes.   

In BO, a surrogate model, often based on Gaussian 
processes, approximates the distribution of the objective 
function across decision variables. However, the com-
plexity of Gaussian models grows with increasing sam-
ples. BOHB addresses this by using a tree-structured 
Parzen Estimator (TPE) surrogate model. Leveraging ker-
nel density estimation (KDE), TPE models good and bad 
hyperparameters separately, providing probability den-
sity estimates that account for observed performance 
[5].  

 
Figure 3. Supply system description.  
 

 
Figure 4. Bi-level decision-making framework 
 

Electricity

Hydrogen

Ammonia
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Within BO, the acquisition function entails a trade-
off between exploration and exploitation, commonly ad-
dressed by the expected improvement (EI) function. In 
TPE, EI relies on estimated probability densities of good 
and bad performance. Poor-performing configurations 
are actively avoided in favor of those with high probabil-
ities of good performance. BOHB's TPE model employs a 
multivariate KDE for probability density estimation, de-
fined by a smoothing function and bandwidth matrix con-
trolling the smoothness of the resulting density curve [6].  
BOHB efficiently allocates resources to promising config-
urations and discards insufficient ones early in the pro-
cess. Hyperband divides the configuration space into 
brackets, utilizing consecutive halves within each 
bracket. BOHB extends hyperband by incorporating 
model-based search using KDE, guiding searches toward 
promising regions while retaining hyperband's adaptive 
resource allocation. 

The objective function of the MILP is modified from 
the original nonlinear form into a linear term involving 
slack variables, as expressed in the following equation: 

∑ [𝑡𝑡 𝐴𝐴𝐴𝐴𝑡𝑡𝐸𝐸 + 𝐴𝐴𝐴𝐴𝑡𝑡𝐻𝐻 + 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐸𝐸𝐴𝐴] (1) 

Here, A𝐴𝐴𝑡𝑡𝐸𝐸  represents additional electricity power, A𝐴𝐴𝑡𝑡𝐻𝐻 
indicates additional hydrogen, 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴  signifies additional 
ammonia, 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 indicates additional capacity of ammonia 
import tank, and 𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐸𝐸𝐴𝐴 represents additional capacity of 
ammonia export tank. 

It's important to note that a non-zero objective value 
from the Mixed-Integer Linear Programming (MILP) anal-
ysis indicates that the proposed capacity design is not 
viable. In instances of unviable capacity designs, the 
Bayesian Optimization and Hyperband (BOHB) algorithm 
is informed through the integration of the levelized cost 
of ammonia (LCOA) with a substantial penalty cost, de-
noted as M, to direct the search away from such infeasi-
ble design areas. This mechanism is encapsulated in the 
equation below: 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 � 𝐿𝐿𝐴𝐴𝐿𝐿𝐴𝐴       𝑓𝑓𝑓𝑓𝑟𝑟 𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟 𝑑𝑑𝑟𝑟𝑓𝑓𝑟𝑟𝑑𝑑𝑑𝑑
𝐿𝐿𝐴𝐴𝐿𝐿𝐴𝐴 + 𝑀𝑀   𝑓𝑓𝑓𝑓𝑟𝑟 𝑟𝑟𝑑𝑑𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟 𝑑𝑑𝑟𝑟𝑓𝑓𝑟𝑟𝑑𝑑𝑑𝑑(2) 

The IBM CPLEX solver is employed to address the 
MILP problem, which encompasses 122,529 variables 
and 61,311 constraints. 

RESULT 

Three countriesSaudi Arabia, Australia, and 
Chilewere selected as potential international green am-
monia promising trading partners with Korea. A compar-
ative analysis of their economic outcomes are presented 
in Figures 5-7, and their optimal configurations are pre-
sented in Tables 1-3. 

In first case (the idealistic case), supply and demand 
are assumed to remain constant throughout the year (an 

assumption often made in prior studies). Figure 5 reveals 
an overall LCOA ranging between 0.39 and 0.43 $/Am-
monia, with storage costs below 0.01 $/Ammonia. Aus-
tralia emerges as the most economically option, boasting 
the shortest transportation time.  

 In Figure 6, considering seasonality and uncertain 
supply and demand (the base case), the overall LCOA 
fluctuates between 0.59 and 0.68 $/Ammonia, while 
storage costs exceed 0.1 $/Ammonia. Furthermore, the 
conversion cost couples compared to the first case, sug-
gesting an average operating rate of conversion devices 
around 50%, not 100%. Saudi Arabia stands out as the 
most economically promising partner due to its con-
sistent ammonia production capability. 

Lastly, Figure 7 examines the design and economics 
of a scenario where the minimum load constraint of the 
water electrolyzer is relaxed to 3% (considered an opti-
mistic case, compared to 5% for the base case). The 
overall LCOA decreases from the base case, as accom-
panied by a reduction in storage costs.  This reduction is 
attributed to the decrease in battery devices required to 
meet the minimum load of the water electrolyzer. This 
highlights the intricate interaction between various fac-
tors in the supply chain, aspects often overlooked in 
many prior studies.  
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Figure 5. Unrealistic case: constant supply & demand assumption 

 

 
Figure 6. Base case: considering uncertainty & seasonality 

 

 
Figure 7. Optimistic case: reduced minimum operating load (=3%) of water electrolyzer 
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CONCLUSION 
This paper presents a bi-level optimization frame-

work that integrates BOHB with MILP to streamline tem-
poral planning in the design and management of an inter-
national green ammonia supply chain. This method effec-
tively simplifies the complexities found in the original 
MILP and stochastic programming approaches. The re-
search delves into the impacts of uncertainty and 
techno-economic parameters via three case studies, 
highlighting the significance of incorporating fast-time-
scale operations for the development of a reliable and 
cost-efficient supply chain strategy. Additionally, it in-
vestigates the influence of the minimum operating load 
of water electrolyzers on the green ammonia supply 
chain's efficiency and feasibility. 

This study bridges a crucial knowledge gap by re-
vealing the interactions between various supply chain 
components through an integrated temporal planning ap-
proach. It underscores the necessity of considering real-
time operations, which involve making decisions without 
future insights, as crucial for achieving a realistic and 
practical supply chain implementation. This acknowledg-
ment points toward the importance of adaptability and 
responsiveness in managing the intricacies of the green 
ammonia supply chain in the face of operational and mar-
ket uncertainties. 
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Table 1. Idealistic scenario: Optimal configuration of each routes  

 T 
(GW) 

P 
(GW) 

W 
(GW) 

B 
(GWh) 

S HB  
(Mt A/yr) 

H tank 
(kt) 

FC  
( MW) 

Ex A tank  
( kt) 

Im A tank 
( kt) 

Saudi           
Aust           
Chile           

Table 2. Base case: Optimal configuration of each routes. 

 T 
(GW) 

P 
(GW) 

W 
(GW) 

B 
(GWh) 

S HB  
(Mt A/yr) 

H tank 
(kt) 

FC  
( MW) 

Ex A tank  
( kt) 

Im A tank 
( kt) 

Saudi           
Aust           
Chile           

Table 3. Optimistic case: Optimal configuration of each routes. 

 T 
(GW) 

P 
(GW) 

W 
(GW) 

B 
(GWh) 

S HB  
(Mt A/yr) 

H tank 
(kt) 

FC  
( MW) 

Ex A tank  
( kt) 

Im A tank 
( kt) 

Saudi           
Aust           
Chile           
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ABSTRACT 
A novel process system which integrates an isopropanol-based chemical heat pump with a post-
combustion carbon capture unit was proposed, designed, and analyzed. The system uses low-
quality waste heat (~80°C) produced through the CO2 adsorption step of a carbon capture process 
and upgrades that heat to a higher temperature (~150°C) using the chemical heat pump. The 
chemical heat pump is powered mostly by the waste heat and requires only a small amount of 
electricity. The higher temperature heat produced can be used in the desorption stage of the CO2 
capture process, displacing a portion of the existing fossil energy required. The energy and exergy 
performance characteristics of the chemical heat pump were computed using the results of a 
steady state simulation in a systems analysis. Using exergy cost correlations, the profitability of 
the chemical heat pump concept was estimated. It was found that for this particular configuration, 
the fossil energy load of desorption could be reduced by roughly 2.7% with very little parasitic 
electric load. 

Keywords: Energy Efficiency, Exergy Efficiency, Heat integration, Chemical heat pump 

1. INTRODUCTION
Chemical heat pumps convert low temperature

waste heat into high temperature heat through reversible 
chemical reactions. Compared to conventional compres-
sion-based heat pumps, chemical heat pumps consume 
far less electricity. One widely researched organic chem-
ical heat pump is the isopropanol acetone system, mainly 
due to its wide and useful temperature range: 

(𝐶𝐶𝐶𝐶3)2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑙𝑙) → (𝐶𝐶𝐶𝐶3)2𝐶𝐶𝐶𝐶(𝑔𝑔) + 𝐶𝐶2(g) (1) 

(𝐶𝐶𝐶𝐶3)2𝐶𝐶𝐶𝐶(𝑔𝑔) + 𝐶𝐶2(g) → (𝐶𝐶𝐶𝐶3)2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔)                      (2) 

Isopropanol dehydrogenation (Equation 1) is an 
endothermic reaction operating in the temperature range 
80°C—90°C. The reverse (acetone hydrogenation, 
Equation 2) is exothermic and between 150°C—210°C [1]. 
The heat of endothermic reaction is 100.4 kJ/mol of 
isoproponol reacted whereas the heat of exothermic 
reaction is 55 kJ/mol of isoproponal formed [1]. Additional 
heat is needed for the endothermic reaction since it 
involves vaporising the isopropanol to the gas phase for 
the reaction. Previous isopropanol acetone system 
studies looked at individual aspects, such as catalyst 

nuances or the effects of reactor design parameters on 
performance/efficiency. However there have been very 
few studies which look at the integration of isopropanol 
chemical heat pumps with other processes. 

Figure 1. Chemical heat pump integration with adsorption 
based CO2 capture. 

mailto:thomas.a.adams@ntnu.no
https://doi.org/10.69997/sct.128149
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Post-combustion carbon capture involves removing 
carbon dioxide from flue gas generated during combus-
tion of fuel. The most common technology used for this 
type of carbon capture is amine absorption. Sorption 
techniques employing solids materials are in the research 
& development phase. These materials include polyeth-
yleneimine and dry sorbents. We chose a potassium-
based dry sorbent carbon capture processes for this 
study because the temperature of its waste heat pro-
duced and its high-quality heat consumed matches very 
well with an isopropanol based chemical heat pump.  

The carbonation process of the potassium-based 
sorbent is given the following equation. 

𝐾𝐾2𝐶𝐶𝐶𝐶3 + 𝐶𝐶𝐶𝐶2 + 𝐶𝐶2𝐶𝐶 ⇌ 2𝐾𝐾𝐶𝐶𝐶𝐶𝐶𝐶3 + 𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻  (3) 

The reverse reaction is the regeneration process. In the 
real system, the heat required for regeneration is more 
than the heat released during the carbonation process. 
The regeneration heat comprises of the reaction heat of 
regeneration as well as the sensible heat which is re-
quired to heat the sorbent to the regeneration tempera-
ture [5]. 

Park et al. [6] carried out post combustion carbon 
capture using a potassium-based dry sorbent in a 0.5MW 
pilot plant. In their work, flue gas from the coal fired 
power plant was around 80°C, so the carbonation tem-
perature was also maintained the same. The regeneration 
temperature was in the range 150°C – 200°C. Yi et al. [7] 
carried out carbon capture using a potassium-based 
sorbent in a bench scale fluidized bed reactor. They have 
also maintained the carbonation temperature of 80°C 
and regeneration temperature of 150°C – 230°C.   

Here we propose a novel integration of an 
isopropanol heat pump with a post-combustion sorption-
based carbon capture process. In this work we designed 
the chemical heat pump system, simulated it in Aspen 
Plus, and analyzed its performance and suitablility for this 
particular application. 

2. SYSTEM DESCRIPTION 
The integrated system is shown in Figure 1. In the 

carbon capture process, CO2 from flue gas gets 
chemisorbed by the sorbent , which is a mild exothermic 
process (less than 100°C). The regeneration of the 
sorbent is an endothermic process (less than 200°C) [3]. 

 The sorption energy is generally considered waste 
as this is low grade heat and is difficult to recover. In the 
proposed integrated system, the low grade waste heat 
from the adsorber is upgraded to high temperature heat 
used for the desorber. Thus, the chemical heat pump can 
partly supply the energy required for the sorbent regen-
eration. 

There is some literature which reports the simulation 
of isopropanol chemical heat pumps. There are two 

different configurations explored in the literature. The 
first configuration involves an exothermic reactor, a 
distillation column, and an endothermic reactor. Here the 
products (mixture of isopropanol, acetone, and 
hydrogen) from the exothermic reactor gets separated in 
the distillation column. The distillate (acetone and 
hydrogen) goes to the exothermic reactor. The bottoms 
product (majorly isopropanol) goes back to the 
endothermic reactor. The second configuration involves 
the reboiler acting as an endothermic reactor. In this case 
there is no separate endothermic reactor. Both are 
represented in Figures 2 and 3.  

Configuration 1 requires a greater amount of heat 
consmuption per exothermic heat produced compared to 
configuration 2. Configuration 2 takes the advantage of 
the fact that the endothermic reaction temperature and 
the boiling temperature of isopropanol can be very 
similar. By syngerizing both into the same unit, the total 
heat load of the system is reduced, because it avoids 
“boiling the isopropanol twice.”  

In both designs, the pressure of the exothermic 
reactor is a little bit higher (1.3 bar) than than that of the 
distilation column (atmospheric). This is because the 
exothermic reaction equilibrium is more favourable at 
higher pressure. The optimal pressure, however, is 
uncertain because of the parasitic electric load of the 
compressor required. For chemical heat pumps, very low 
electricity consumption is desirable, as the low-electricity 
quality is an intentional feature. Related to this, the 
pressure of the distillation column is atmospheric 
because the boiling point of isopropanol at atmospheric 
pressure closely matches the available waste heat 
temperature.  

3. METHODOLOGY 
A steady state simulation was created for both con-

figurations using the software Aspen Plus. Configuration 
1 was based on the design of [8] but was modified to 
match the temperature ranges of our particular carbon 
capture application. The results were similar to those re-
ported in the previous works. Configuration 2 was based 
on the design of [3] but modified to meet our application-
specific requirements. One particularly important change 
is that we used an equilibrium-based model for the reac-
tion that as will be noted later, results in more conserva-
tive reaction yields than those predicted in the reference 
paper. 

3.1 Modelling Details 
The RADFRAC equilibrium-based model was used for 

the distillation column. The column design parameters 
were chosen using the methodology for pre-economic 
binary distillation column design described in [9]. In this 
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methodology, the reflux ratio is adjusted to match distil-
late purity specifications, and for Configuration 1 the dis-
tillate-to-feed ratio is fixed based on obvious desired 

recoveries. The initial number of stages above and below 
the feed was chosen based on the results of the prior 
work, and then adjusted upward or downward based on 

 
Figure 2: Configuration 1 of isopropanol chemical heat pump 
 

 
Figure 3: Configuration 2 of isopropanol chemical heat pump 
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the separate efficiency of each stage such that unneces-
sary or low-impact stages were eliminated. Finally, the 
distillate purity specification, which is a degree of free-
dom, was modified in a sensitivity analysis to understand 
the impact on the performance of the overall system, re-
peating the above procedure with each modification. The 
trade-offs are that high distillate purities yield higher ex-
othermic reaction yields, but at a higher cost of reboiler 
duty, with diminishing returns. The final selected values 
were chosen heuristically to balance the distillation heat 
load with the resulting Coefficient of Performance (COP) 
of the system as a whole. This method gives very good 
results and is appropriate for this scope of conceptual 
design and analysis. A more rigorous optimization ap-
proach could be taken in the future given more detailed 
economic criteria, but the results are not expected to de-
viate much.  

Table 1: Specification of the simulation for configuration 
1 and 2 

Description Value 
Distillation column pressure Atmospheric pressure 
No of stages  
Feed location  
Isopropanol mol fraction in 
distillate (by varying reflux 
ratio) 

 

Exothermic reactor tempera-
ture 

°C  

Exothermic reactor pressure  bar 
Endothermic reactor pres-
sure for configuration  

Atmospheric pressure 

Endothermic reactor tem-
perature for configuration  

°C 

Distillate to feed ratio for 
configuration  

 

Compressor discharge pres-
sure 

 bar 

Heat exchanger Hot inlet – 
cold outlet temperature dif-
ference 

°C 

 
The RGIBBS reactor model was chosen for the exo-

thermic reactor in both configurations and the endother-
mic reactor in Configuration 1. For Configuration 2, the 
RGIBBS model was used for the reboiler, and the RAD-
FRAC model used no reboiler. All RGIBBS models used as-
sumed isothermal (at a specified temperatures matching 
the integrated carbon capture absorber and desorber) 
and isobaric (no pressure drop) conditions.  

The compressors used the COMP model, assumed 
default isentropic efficiencies of 0.72, and required only 
a single stage. The compressor discharge pressure was 
chosen such that after upstream pressure drop, the 

exothermic reactor pressure was the value recom-
mended in [10] of 1.3 bar. 

The HEATX model was used for the heat exchanger, 
with the specification that the cold outlet / hot inlet tem-
perature difference is 10°C, a common specification for 
pre/post reactor economizers. 

Because this study does not consider economics, 
and all distillation and reaction models are based on equi-
librium assumptions, the scale of the simulation is arbi-
trary, and performance criteria such as efficiency or co-
efficient of performance does not change with scale. 
Therefore, all system analysis results are reported on a 
normalized basis. Furthermore, because phase and reac-
tion equilibrium is assumed, these results are the “best” 
possible outcome for the reported configuration. A sum-
mary of the main specifications are given in Table 1. 

4. RESULTS  
The key results of both simulations are shown in Fig-

ures 2 and 3.  

4.1 Performance Analysis 
The COP and exergy efficiency are used to evaluate 

the performance of the isopropanol chemical heat pump. 
The COP of this chemical heat pump is calculated ac-
cording to the formula: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

     (4) 

where 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 is the rate of high temperature heat produced 
(the exothermic reactor heat duty) in kW and 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the 
rate of low temperature heat consumed (the sum of the 
reboiler and if it exists, the endothermic reactor heat 
duty) in kW. To compare the COP of the chemical heat 
pump with a conventional electric heat pump, the COP of 
the heat pump based on electrical work input is defined:  

𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒
𝑊𝑊𝑖𝑖𝑒𝑒

     (5) 

where Win is the electrical work input in kW. For the iso-
propanol chemical heat pump this is the compressor 
power input.  

The COP considers only the quantity of heat. Exergy 
includes both the quantity and the quality of the heat. 
System exergy input is defined by the below formula: 

𝐸𝐸𝐸𝐸𝐻𝐻𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑒𝑒 = Q𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �1 − 𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� + 𝑊𝑊𝑖𝑖𝑒𝑒  (6) 

where 𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟 is the reference temperature in K and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is 
the endothermic reaction temperature in K. System ex-
ergy output is defined by the below formula: 

𝐸𝐸𝐸𝐸𝐻𝐻𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑜𝑜𝑜𝑜 = Q𝑒𝑒𝑒𝑒𝑒𝑒 �1 − 𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒

�   (7) 

where 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 is the exothermic reaction temperature in K. 
System exergy efficiency is given by the formula: 
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𝜂𝜂 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑟𝑟𝑔𝑔𝐸𝐸𝑒𝑒𝑜𝑜𝑜𝑜
𝐸𝐸𝑒𝑒𝑒𝑒𝑟𝑟𝑔𝑔𝐸𝐸𝑖𝑖𝑒𝑒

     (8) 

The input values required for COP and exergy calcula-
tions are taken from the simulation. The results are pre-
sented in Table 2: 

Table 2: Performance parameters 

Description Config  Config  
COP   
COPW   
Exergy in (ref temp °C)   
Exergy out (ref temp 
°C) 

  

Exergy efficiency   
Net profit $ per GJ low 
temp heat 

  

 
The calculated COP of Configuration 2 is less than 

what is reported in the literature for a similar case [2] 
since the equilibrium conversion of the endothermic re-
action in our simulation is around 4%, whereas in the lit-
erature it is around 7%. Unfortunately, it is unclear 
whether how that number was obtained or if it was as-
sumed as a parameter in that work. Both works used very 
similar temperature, pressure, and reagent stoichiometric 
ratio conditions in the exothermic reactor, so this differ-
ence cannot be explained by differences in feed condi-
tions. It should noted that our model uses an equilibrium 
assumption that in theory should result in the upper 
bound on reactor conversion in a real situation without 
reactor modifications, such as a membrane to remove re-
action products in-situ as the reaction progresses.  

Increasing the isopropanol purity in the distillate or 
changing the distillation column pressure beyond the fi-
nal case reported in Table 1 did not have much effect on 
COP. The main parameter that governs the COP and the 
exergy efficiency of the isopropanol chemical pump is the 
endothermic reaction conversion. The COPW of this 
chemical heat pump is around 16 whereas it is typically 
around 2 for traditional electric heat pumps. The main ad-
vantage of the chemical heat pump is that it utilises sig-
nificantly less electrical power to produce the tempera-
ture lift. Thus chemical heat pumps can play an important 
role for a future low carbon economy. 

4.2 Economic Approximation Using Exergy 
Exergy is used as a key metric to estimate the prof-

itability of the isopropanol chemical heat pump. A recent 
analysis has shown that the price of heating utilities is lin-
early correlated to the exergy of that utility when the ref-
erence temperature chosen is “plant ambient” conditions, 
or about 78°C. In other words, in a typical chemical plant, 
the value of waste heat at 78°C is on average zero, and 
above that is valued at $29.9 (USD2022) per GJ of exergy 

of heat relative to 78°C [4]. Therefore, we can estimate 
the net profit from this chemical heat pump by the below 
formula. 

𝑛𝑛𝐻𝐻𝐻𝐻 𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 = 𝑣𝑣𝐻𝐻𝑣𝑣𝑣𝑣𝐻𝐻 𝑝𝑝𝑝𝑝 𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝐻𝐻 − 𝐻𝐻𝑣𝑣𝐻𝐻𝑝𝑝𝐻𝐻𝐸𝐸𝑝𝑝𝑝𝑝𝐻𝐻𝑣𝑣 𝑝𝑝𝑝𝑝𝑐𝑐𝐻𝐻  (9) 

where net profit is expressed as $/GJ of low temperature 
heat, value of product is $/GJ of low temperature heat 
and electrical cost is $/GJ of low temperature heat. The 
net profit does not include the value of low temperature 
waste heat input as it is currently not recovered at all.  
The value of the high temperature heat product is esti-
mated [4]: 

𝑣𝑣𝐻𝐻𝑣𝑣𝑣𝑣𝐻𝐻 𝑝𝑝𝑝𝑝 𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝐻𝐻 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑟𝑟𝑔𝑔𝐸𝐸𝑒𝑒𝑜𝑜𝑜𝑜
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

× 29.9  (10) 

where the constant 29.9 is in $/GJ of exergy. 𝐸𝐸𝐸𝐸𝐻𝐻𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑜𝑜𝑜𝑜 
is calculated using the reference temperature 78°C. The 
cost associated with the electrical input is calculated as:  

𝐻𝐻𝑣𝑣𝐻𝐻𝑝𝑝𝐻𝐻𝐸𝐸𝑝𝑝𝑝𝑝𝐻𝐻𝑣𝑣 𝑝𝑝𝑝𝑝𝑐𝑐𝐻𝐻 =  𝑊𝑊𝑖𝑖𝑒𝑒

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
× 27.77   (11) 

where the constant 27.77 is in $/GJ of electricity. Substi-
tuting the simulation results in the above equations, we 
get the net profit of this chemical heat pump as shown in 
Table 2. 

4.3 Economic assessment of the integrated 
system 

As illustrated in the system description section, the 
endothermic energy required for the isopropanol chemi-
cal heat pump is given by the carbon capture carbonation 
process. The heat required for the carbon capture regen-
eration process is given by the exothermic heat of the 
isopropanol chemical heat pump. 

Heat generated by the carbonation process of po-
tassium based sorbent is, 𝐶𝐶𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 = 141.16 kJ/mol [5]. The 
exothermic heat generated by the isopropanol chemical 
heat pump is given by the below formula. 

Q𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 × 𝐶𝐶𝐶𝐶𝐶𝐶 ×  𝐹𝐹   (12) 

where 𝐹𝐹 is the carbon capture flow rate in mol/s. The en-
dothermic heat required for carbon capture regeneration 
is given by the following formula. 

Q𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒𝑒𝑒 = (𝐶𝐶𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 × 𝐹𝐹) + (𝑇𝑇𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐)  × 𝐶𝐶𝐶𝐶
1000

×  𝐹𝐹
𝐴𝐴
 (13) 

where Q𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒𝑒𝑒 is the heat required for regeneration of 
sorbent in kW, 𝑇𝑇𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒𝑒𝑒 is the sorbent regeneration temper-
ature in °C, 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 is the sorbent carbonation temperature 
in °C, 𝐶𝐶𝑝𝑝 is the specific heat capacity of sorbent with a 
value of 830 J/kg K [11], 𝐴𝐴 is the absorption capacity of 
sorbent with a value of 0.43 mol CO2/kg sorbent [5].The 
purpose of this integration is to supply part of the regen-
eration energy for the carbon capture process. The per-
centage energy savings resulting from this integration is 
given by the following formula. 
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% 𝐻𝐻𝑛𝑛𝐻𝐻𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝐻𝐻𝑣𝑣𝑝𝑝𝑛𝑛𝐸𝐸𝑐𝑐 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒
𝑄𝑄𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒

 × 100  (14) 

When 𝑇𝑇𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  = 80°C and 𝑇𝑇𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒𝑒𝑒 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 150°C, 
% 𝐻𝐻𝑛𝑛𝐻𝐻𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝐻𝐻𝑣𝑣𝑝𝑝𝑛𝑛𝐸𝐸𝑐𝑐 = 2.68%. Here the temperature differ-
ence between the chemical heat pump and the carbon 
capture is kept zero and the resulting energy savings is 
the theoretical maximum. Altering the chemical heat 
pump’s endothermic and exothermic temperature to 
maintain some temperature difference would result in  re-
duction of energy savings. The estimation of the carbon 
capture rate of the potassium-based sorbent at 80°C and 
the regeneration efficiency at 150°C is beyond the scope 
of this work. 

5 CONCLUSIONS 
The performance of a thermochemical heat pump 

and its integration with potassium-sorbent-based post-
combustion carbon capture was studied. The limiting 
step in the isopropanol chemical heat pump is the isopro-
panol dehydrogenation to acetone and hydrogen. Any 
process improvements to increase the isopropanol con-
version to acetone and hydrogen would increase the COP 
and exergy efficiency. Potassium-sorbent-based carbon 
capture was selected for integration with this chemical 
heat pump due to the matching operating temperature.   
Around 2.7% of thermal regeneration energy savings is 
possible when both the systems are operated in the tem-
perature range 80°C - 150°C. Ultimately, we can recover 
about 10% of the value (exergy) of the low temperature 
heat as high temperature heat. The dollar savings would 
increase when the capacity of the carbon capture unit in-
creases and hence this integration could be economical 
for large scale systems. 

DIGITAL SUPPLEMENTARY MATERIAL 
The Aspen Plus simulation files of the isopropanol 

chemical heat pump is available in LAPSE at 
http://PSEcommunity.org/LAPSE:2023.36832.  
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ABSTRACT 
Modern power grids coordinate electricity production and consumption via multi-scale wholesale 
energy markets. Historically, levelized cost metrics were the de facto standard for techno-eco-
nomic analyses of energy systems and comparison of technology options. However, these metrics 
neglect the complexity of energy infrastructure including the time-varying value of electricity. An 
emerging alternative is multi-period optimization, which considers the locational marginal price of 
electricity as input data (parameters). In this work, we present a general interface for multi-period 
optimization with time-varying energy prices to facilitate rapid analysis and comparison of poten-
tial energy systems models. The PriceTakerModel class is written in the IDAES®-PSE platform and 
allows users to generate a multi-period, price-taker model instance, as well as automatically gen-
erate common operational constraints for their model, such as start-up and shutdown. We show 
this interface successfully generates multi-period price-taker models, facilitates model discrimi-
nation, and aids in analyzing various technologies for deployment in unique energy markets. 

Keywords: Integrated Energy Systems, Software Design, Optimization, Process Operations,  Process Design, 
Electricity Markets 

INTRODUCTION 
Modern power grids coordinate electricity produc-

tion and consumption via multi-scale wholesale energy 
markets. These multi-faceted markets set the time-vary-
ing value of electricity and other products. Mathematical 
programming has been used to varying degrees of suc-
cess depending on model complexity and considerations 
to maximize the profitability of new and existing energy 
systems. Complexity is garnered by a few factors: 

1. the extent to which the grid is impacted by energy
systems behavior,

2. the flexibility of the energy system to respond to
grid/market signals, and

3. the extent to which the energy system considers
grid behavior in design and operation, e.g., produc-
tion cost models to capture energy system/grid in-
teractions

This short paper begins by comparing modeling ap-
proaches to optimize integrated energy systems in the 
context of energy markets. Next, we present a general-
ized interface, the PriceTakerModel class, to streamline 
these analyses in the IDAES-PSE platform. 

Levelized Cost of Electricity 
Levelized cost analysis is the predominant strategy 

for techno-economic analysis (TEA) [1]. In this method, 
levelized cost of electricity (LCOE) is used as a market 
model when determining optimal energy system design 
and operation. Design decisions consider the size of the 
equipment needed to construct a new energy system or 
retrofit an existing one. Operational decisions consider 
the day-to-day production of electricity and other prod-
ucts provided to the grid. Below is the general mathemat-
ical model for TEA using LCOE that simultaneously con-
siders design and operating decisions: 

mailto:adowling@nd.edu
https://doi.org/10.69997/sct.137860
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      min
𝑑𝑑,𝑢𝑢

LCOE = 𝑓𝑓LCOE(𝑑𝑑,𝑢𝑢)   (1) 

s. t.  ℎ𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑) = 0,                ∀ 𝑗𝑗 ∈  𝒥𝒥𝑑𝑑𝑑𝑑𝑑𝑑  (2) 

        𝑔𝑔𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑) ≤ 0,                ∀ 𝑘𝑘 ∈  𝒦𝒦𝑑𝑑𝑑𝑑𝑑𝑑    (3) 

        ℎ𝑗𝑗
𝑜𝑜𝑜𝑜(𝑑𝑑,𝑢𝑢) = 0,              ∀ 𝑗𝑗 ∈  𝒥𝒥𝑜𝑜𝑜𝑜    (4) 

        𝑔𝑔𝑘𝑘
𝑜𝑜𝑜𝑜(𝑑𝑑,𝑢𝑢) ≤ 0,              ∀ 𝑘𝑘 ∈  𝒦𝒦𝑜𝑜𝑜𝑜    (5) 

Where 𝑓𝑓LCOE is the mathematical expression for lev-
elized cost of electricity based on design decisions, 𝑑𝑑, 
and operational decisions, 𝑢𝑢. Equation sets ℎ𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑 and ℎ𝑗𝑗

𝑜𝑜𝑜𝑜 
represent model equations of design and operational 
systems, respectively. Here 𝑗𝑗 is the index of equations in 
set 𝒥𝒥𝑑𝑑𝑑𝑑𝑑𝑑 and 𝒥𝒥𝑜𝑜𝑜𝑜 for design and operational equations, re-
spectively. Inequality constraints 𝑔𝑔𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑔𝑔𝑘𝑘

𝑜𝑜𝑜𝑜 represent 
model and system inequalities for design and operational 
systems, respectively. Similarly, 𝑘𝑘 is the index of inequal-
ity constraints for design and operational systems in sets 
𝒦𝒦𝑑𝑑𝑑𝑑𝑑𝑑  and 𝒦𝒦𝑜𝑜𝑜𝑜, respectively. 

The major drawback of this formulation is that LCOE 
does not consider the time-varying nature of the electric-
ity market. As a result, such analyses often lead to incor-
rect or misleading comparisons of potential energy sys-
tems technologies [2]. 

Price-taker 
Moving beyond LCOE, state-of-the-art TEA uses 

multi-period optimization to determine the best design 
and operating policies while considering dynamic market 
signals (e.g., prices). Multi-period optimization using the 
pseudo steady-state, price-taker, and self-schedule as-
sumptions is the most popular approach [2-6]. First, time 
is discretized based on the market, e.g., 1-hour timesteps 
to match prices from a day-ahead market. During each 
time period, the energy system is modeled as operating 
at steady state with constraints for ramping and energy 
storage, as shown below: 

      max
𝑑𝑑,𝑢𝑢𝑡𝑡,𝑦𝑦𝑡𝑡

NPV =  𝑓𝑓NPV(𝑑𝑑,𝑢𝑢𝑡𝑡 ,𝑦𝑦𝑡𝑡)   (6) 

s. t.  ℎ𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑) = 0,                     ∀ 𝑗𝑗 ∈  𝒥𝒥𝑑𝑑𝑑𝑑𝑑𝑑  (7) 

        𝑔𝑔𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑) ≤ 0,                     ∀ 𝑘𝑘 ∈  𝒦𝒦𝑑𝑑𝑑𝑑𝑑𝑑  (8) 

        ℎ𝑗𝑗
𝑜𝑜𝑜𝑜(𝑑𝑑,𝑢𝑢𝑡𝑡 ,𝑦𝑦𝑡𝑡) = 0,           ∀ 𝑗𝑗 ∈  𝒥𝒥𝑜𝑜𝑜𝑜, 𝑡𝑡 ∈  𝒯𝒯     (9) 

       𝑔𝑔𝑘𝑘
𝑜𝑜𝑜𝑜(𝑑𝑑,𝑢𝑢𝑡𝑡 ,𝑦𝑦𝑡𝑡) ≤ 0,            ∀ 𝑘𝑘 ∈  𝒦𝒦𝑜𝑜𝑜𝑜, 𝑡𝑡 ∈  𝒯𝒯     (10) 

       𝑟𝑟𝑡𝑡(𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑡𝑡−1) ≤ 0,               ∀ 𝑡𝑡 ∈  𝒯𝒯      (11) 

       𝑠𝑠𝑡𝑡(𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡−1) ≤ 0,               ∀ 𝑡𝑡 ∈  𝒯𝒯         (12) 

       𝑦𝑦𝑡𝑡 ∈ {0, 1}    (13) 

Where operational variables, 𝑢𝑢𝑡𝑡, have now been in-
dexed by time along the entire time horizon, 𝑡𝑡 ∈  𝒯𝒯, to ac-
count for operational decisions that take advantage of 
the time-varying market. Note that design and 

operational equations and inequalities (Eqs. (7) through 
(10)) are the same functional form as in the levelized cost 
analysis with the adjustment for time-varying inputs. Ac-
companying these dynamic decisions are binary varia-
bles 𝑦𝑦𝑡𝑡 which dictate startup, shutdown, and technologi-
cal decisions. Since the system is now dynamic, con-
straints 𝑟𝑟𝑡𝑡 enforce ramping rate limitations and con-
straints 𝑠𝑠𝑡𝑡 enforce startup and shutdown of units. Also, 
more sophisticated metrics such as net present value 
(NPV) are used to evaluate the economic viability of an 
optimal design and operating strategy. For example, 
Dowling and colleagues [2] discuss revenue opportuni-
ties from real-time market and ancillary service products. 

The price taker assumption treats the time-varying 
energy prices obtained from historical data or forecasts 
as constant. Likewise, the self-schedule approach ig-
nores the market-clearing processes. Although the price-
taker approach is much more informed than levelized 
cost analysis, the ignorance of the market-clearing pro-
cesses (e.g., scheduling, dispatching, price settling) can 
lead to misleading comparisons and incorrect conclu-
sions. 

Beyond Price-taker 
Recent multiscale optimization frameworks have 

emerged to refine these assumptions. Specifically, Gao 
et al. [7] couple detailed energy system (process) models 
and grid production cost models (PCMs) to simulate re-
source bidding (instead of self-schedule), market clear-
ing (instead of price-taker), and tracking (which general-
izes beyond steady-state). They demonstrate how the 
price-taker and self-schedule assumptions break down. 
This process requires solving multiple optimization prob-
lems sequentially. Recent work has highlighted the draw-
backs of naïve price-taker approaches through methods 
using PCM models for solar power plants [8], analyzing 
IES value in coproduction systems [9], and using PCM for 
wind energy and storage systems [10]. More information 
on utilizing PCMs can be found in references [7-10], 
where methods beyond price taker are shown to perform 
better. 

In the absence of detailed models or to include 
PCMs in an algebraic formulation, market surrogates can 
be used to include market behavior without solving mar-
ket clearing problems [11]. To this end, Jalving et al. [12] 
propose incorporating market interactions directly into 
the energy system design and operation co-optimization 
problem. Jalving et al. [12] use a simple thermal generator 
case study to illustrate the limitations of the price taker 
assumption. Nevertheless, the price taker assumption is 
convenient and has significant advantages over LCOE. It 
is an excellent starting-point for optimization-based TEA. 

 

Need Faster Analysis Workflows 
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Unfortunately, most of the optimization-based en-

ergy system TEA studies are one-off implementations.  
This work presents new generalized capabilities in the 
IDAES®-PSE platform [13] to simplify and standardize op-
timizing energy systems and market interactions. Specif-
ically, a PriceTakerModel class, which utilizes the Multi-
PeriodModel class in IDAES-PSE, facilitates rapid price-
taker and self-schedule analyses using either rigorous 
equation-oriented (EO) process models or surrogates 
trained for data. Also, the price taker model generally can 
be solved quickly to provide quick analysis. A generalized 
interface between process models and a PCM enables 
rigorous verification by modeling energy system and 
market interactions. 

This work generalizes previous analyses in the 
IDAES-PSE ecosystem into a software interface for the 
multi-period price-taker model. Thus, the rest of this 
work is organized to describe: (i) the software interface 
using an example to demonstrate the workflow, and (ii) a 
case study using the software interface and example 
given in a self-name section. 

SOFTWARE INTERFACE 
Typical multi-period price taker models derive com-

plexity from their consideration of time-varying markets. 

For instance, let us consider a simple scenario that re-
quires a power plant to operate at a minimum load with-
out shutting down. 

      max
𝑜𝑜𝑡𝑡

Revenue =  ∑ 𝑓𝑓rev,𝑡𝑡𝑡𝑡𝑡𝑡𝒯𝒯    (14) 

s. t.  𝑓𝑓rev,t =  𝜋𝜋𝑡𝑡𝑑𝑑𝑝𝑝𝑡𝑡 −  𝑓𝑓fuel(𝑝𝑝𝑡𝑡) − 𝑓𝑓var(𝑝𝑝𝑡𝑡) −
                                                        𝑓𝑓fixed(𝑑𝑑)      ∀ 𝑡𝑡 ∈  𝒯𝒯 (15) 

               𝑝𝑝𝑡𝑡 ∈ [𝑝𝑝min, 𝑝𝑝max]   (16) 

Here, 𝑝𝑝𝑡𝑡 is the net power generation at time 𝑡𝑡. Total 
revenue is computed using the locational marginal price 
data (LMP) at time 𝑡𝑡, 𝜋𝜋𝑡𝑡𝑑𝑑, with net power generation at that 
time less the fuel costs, variable costs, and fixed costs of 
the system, or 𝑓𝑓fuel, 𝑓𝑓var, and 𝑓𝑓fixed, respectively. Since the 
plant is always on, net power generation must be be-
tween 𝑝𝑝min and 𝑝𝑝max, or the minimum and maximum load 
of the plant, at all times. 

In the IDAES®-PSE platform, new implementations 
for grid integration have been developed to facilitate 
multiperiod, price-taker models using the PriceTaker-
Model class, which makes use of the MultiPeriodModel 
class for time-varying models. The MultiPeriodModel 
class is used to extend steady state models to dynamic 
models by adding time-varying constraints with appro-
priate model superstructure (defined as Pyomo blocks of 
the steady-state model at each time interval). The 

 
 

Figure 1: Software workflow for the PriceTakerModel class. The user just needs to formulate operational 
constraints for a single time point, design constraints for the system, and read in LMP data. Then, the 
PriceTakerModel can build the multi-period model as well as add common equations such as startup/shutdown 
constraints and build the objective function from operational cost/revenue functions.  



 

Laky et al. / LAPSE:2024.1567 Syst Control Trans 3:490-495 (2024) 493 

PriceTakerModel class encapsulates either a steady 
state model, or a dynamic model as an instance of the 
MultiPeriodModel class, to facilitate price-taker analysis 
of an IES. The PriceTakerModel class also allows auto-
mated conversion of steady state models to time-varying 
multi-period models. 

As shown in Figure 1, the modeler only needs to pro-
vide a function that defines the single time-point models 
to build the time-varying model. Also, the user can easily 
specify the LMP data by providing a .csv, .xls data file, or 
similar data format. As shown, methods for building the 
multi-period model, generating start-up and shutdown 
constraints, and building costing functions to aid in ob-
jective function development are all core functionalities 
of the new software interface. Not all features are re-
quired to be used for each model. For instance, the model 
shown in Eqs. (14) through (16) has no start-up or shut-
down constraints, so the user can skip the development 
of those constraints and other parts of the interface as 
needed. 

Also, more complex objective formulations such as 
evaluation net present value (NPV) with carbon tax, gen-
eral corporate tax, and other common process design 
economic evaluators are readily available while building 
an objective function. Also, algebraic surrogate models 
can easily be implemented in this framework, as will be 
shown in the case study in the following section. 

CASE STUDY 
A case study similar to that shown in Eqs. (14) 

through (16) was analyzed with and without start-
up/shutdown constraints to demonstrate the utility of the 
new software interface. These values are based on a 

solid oxide fuel cell (SOFC) power generation process, as 
described in Eslick et al. [14]. As such, the formulation 
with start-up and shutdown constraints is given below. 

max𝑜𝑜𝑡𝑡,𝑦𝑦𝑡𝑡,𝑣𝑣𝑡𝑡,
𝑤𝑤𝑡𝑡 

Revenue =  ∑ 𝑓𝑓rev,𝑡𝑡 −  ∑ (𝜃𝜃𝑑𝑑𝑤𝑤𝑡𝑡 − 𝜃𝜃𝑢𝑢𝑣𝑣𝑡𝑡)𝑡𝑡𝑡𝑡𝒯𝒯𝑡𝑡𝑡𝑡𝒯𝒯  (17) 

s. t.  𝑓𝑓rev,t =  𝜋𝜋𝑡𝑡𝑑𝑑𝑝𝑝𝑡𝑡 −  𝑓𝑓fuel(𝑝𝑝𝑡𝑡) − 𝑓𝑓var(𝑝𝑝𝑡𝑡) −
                                                        𝑓𝑓fixed(𝑑𝑑)      ∀ 𝑡𝑡 ∈  𝒯𝒯 (18) 

               𝑓𝑓fuel(𝑝𝑝𝑡𝑡) + 𝑓𝑓var(𝑝𝑝𝑡𝑡) = 23.29𝑝𝑝𝑡𝑡 + 49.22, ∀ 𝑡𝑡 ∈  𝒯𝒯 (19) 

               𝑓𝑓fixed(𝑑𝑑) =  13500,               ∀ 𝑡𝑡 ∈  𝒯𝒯      (20) 

    𝑦𝑦𝑡𝑡−1 − 𝑦𝑦𝑡𝑡 ≤ 𝑤𝑤𝑡𝑡 ,                      ∀ 𝑡𝑡 ∈  𝒯𝒯         (21) 

               𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 ≤ 𝑣𝑣𝑡𝑡 ,                      ∀ 𝑡𝑡 ∈  𝒯𝒯      (22) 

∑ 𝑤𝑤𝑡𝑡𝑡𝑡
𝑗𝑗=𝑡𝑡−𝜏𝜏𝑑𝑑+1 ≤ 1 − 𝑦𝑦𝑡𝑡 ,           ∀ (𝑡𝑡 > 𝜏𝜏𝑑𝑑)  ∈  𝒯𝒯           (23) 

           ∑ 𝑣𝑣𝑡𝑡𝑡𝑡
𝑗𝑗=𝑡𝑡−𝜏𝜏𝑢𝑢+1 ≤ 𝑦𝑦𝑡𝑡 ,                  ∀ (𝑡𝑡 > 𝜏𝜏𝑢𝑢)  ∈  𝒯𝒯        (24) 

      𝑦𝑦𝑡𝑡 ∈ {0, 1}    (25) 

      𝑤𝑤𝑡𝑡 ∈ {0, 1}    (26) 

      𝑣𝑣𝑡𝑡 ∈ {0, 1}    (27) 

      𝑝𝑝𝑡𝑡 ∈ [200, 650]    (28) 

The objective function has an additional term to ac-
count for the cost of shutting down and starting up the 
unit, 𝜃𝜃𝑑𝑑 and 𝜃𝜃𝑢𝑢, respectively. Here, fuel and variable costs 
are represented linearly by a surrogate model, as shown 
in Eq. (19). Whether the process is on or off is dictated by 
binary variable 𝑦𝑦𝑡𝑡. Binary variables 𝑣𝑣𝑡𝑡 and 𝑤𝑤𝑡𝑡 represent 
start-up and shutdown indicators, respectively. Subse-
quently, start-up (Eq. (21)) and shutdown (Eq. (22)) con-
straints have been added. Similarly, minimum uptime and 
downtime variables, 𝜏𝜏𝑢𝑢 and 𝜏𝜏𝑑𝑑 , have been added, as well 
as minimum uptime (Eq. (24)), and minimum downtime 

 
 

Figure 2: On the left, power generation from both the simple scenario (plant is always operating) and shutdown 
scenario (plant is allowed to shut down if profitable). On the right, the baseline operating cost in $/MWH versus 
real-time, hourly LMP data for the ERCOT West, 2022 energy market. 
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constraints (Eq. (23)) [15]. All cost values are in U.S. dol-
lars per hour. The surrogate model for fuel and variable 
cost to run the SOFC unit are the truncated linear version 
of those given in Eslick et al. [14]. LMP values, 𝜋𝜋𝑡𝑡𝑑𝑑, for an 
entire year were taken from the ERCOT West, 2022 
hourly price data. Thus, the dimension of time set 𝒯𝒯 is 
8760 for an entire year of hourly data. 

Since the surrogate for cost is linear, the problem is 
a mixed-integer, linear programming formulation. Subse-
quently, these problems were solved using GUROBI [16]. 
Two scenarios were analyzed in the ERCOT West, 2022 
market: (i) a simple scenario where the SOFC unit must 
remain on for all times (Eqs. (17) through (20) and Eq. 
(28)), and (ii) a scenario where the SOFC unit is allowed 
to shut down if it is more profitable (Eqs. (17) through 
(28)). Each MIP instance solves in less than 10 seconds 
on a standard workstation. 

Results indicated that the SOFC in both scenarios 
remains on for almost the entire operating year. However, 
near the end of the year, the second system takes ad-
vantage of low prices that close out the year. Figure 2 
shows that both scenarios follow power generation 
trends until scenario two shuts the SOFC unit off around 
hour 8650. Initially, the cost is large due to the upfront 
shutdown cost, but the system's low and sometimes neg-
ative LMP late in the year (also shown in Figure 2) results 
in a higher negative revenue stream than the shutdown 
cost. It should be noted that since the system never 
turned back on, the second scenario never withstood the 
large startup cost. The total profit difference due to this 
shutdown is about $130,000. Still, the startup cost for 
this scenario was $162,015, indicating that if the system 
must be turned on again after the start of the next year, 
it may not have been economically feasible if the time 
horizon did not end. This may indicate a desire to ensure 
the starting state of the system must match the ending 
state of the system (creating a continuous loop of yearly 
operation) with an additional integer constraint: 

                                    𝑦𝑦1 = 𝑦𝑦8760                           (29) 

To verify this hypothesis, the system was optimized 
again with Eq. (29) included. The solutions were identical 
except that system that included Eq. (29) indeed did not 
turn off because the states need to match at either end 
of operation. Other analyses are possible, comparing var-
ious LMP networks to see which markets are profitable or 
not for certain technologies. For instance, ERCOT West 
2022 indicates a significant profit for operating whereas 
other regions are less profitable. 

CONCLUSIONS 
In this work, we presented a software interface de-

veloped in the IDAES®-PSE platform to facilitate imple-
mentation of the multi-period, price-taker model for 

integrated energy systems. The interface utilizes Pyomo 
and existing IDAES infrastructure to streamline the crea-
tion of time-varying functions. Notably, the interface uti-
lizes a single time point model to build a collection of 
blocks that elicit time-varying functionality. If the user 
desires a comparison between methods that are not 
time-varying, for instance LCOE analysis, the model for 
this single time point is sufficient for the operating con-
straints of the system. 
 Also, rapid comparison of different modeling para-
digms is facilitated by the interface. For instance, utilizing 
other tools in the IDAES platform in conjunction with the 
interface presented in this work can lead to conclusions 
beyond power systems, such as multi-systems analysis 
including water treatment systems [17, 18], co-optimiza-
tion of electricity and H2 coproduction, as well as optimiz-
ing flexible carbon capture systems.  
 We showed how the inclusion of start-up/shutdown 
constraints had little to no impact on the adoption of 
SOFC in the ERCOT West 2022 market. This is a proof-
of-concept comparison but shows modelers can utilize 
this framework to understand the required model fidelity 
to adequately capture the behavior of the system. In the 
future, we plan to integrate more user features that allow 
reformulations or relaxations of revenue terms and more 
formats for revenue inclusion in the objective function. 
We also plan to extend these tools to support beyond 
price taker approaches, such as surrogate models, to 
predict how price distributions change as a function of 
energy system design and operating decisions. This code 
will be released in the following year within the IDAES®-
PSE platform. 
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ABSTRACT 
As the United States continues efforts to decarbonize the power and transportation sectors, sig-
nificant challenges associated with the reliance of clean energy technologies on rare earth ele-
ments (REEs) will have to be overcome. One potential approach for increasing the supply of these 
elements is to extract REEs from end-of-life (EOL) hard disk drives (HDDs). HDDs contain neo-
dymium and praseodymium, which are among the most important REEs for the clean energy tran-
sition, as they are crucial to producing the permanent magnets needed for wind turbines and elec-
tric vehicles. Here, we propose a superstructure-based approach to find the optimal pathway for 
recovering REEs from EOL HDDs. The superstructure was optimized by maximizing the net present 
value (NPV) over 15 years. Projected prices for commercial rare earth oxides and the projected 
amount of EOL HDDs in the U.S. were estimated and used in the model. These projections were 
used to establish the base case optimal result, assuming that the plant recycles 60% of personal 
computers EOL HDDs in the U.S. each year. The model was then expanded to consider the recy-
cling of EOL HDDs generated before the beginning of plant production. Next, a sensitivity analysis 
was conducted to evaluate the impact of different parameters on the venture's profitability and 
the optimal processing pathway. Combined, these results offer both valuable insights into the 
economic viability of REE recycling extraction and a method for performing similar analyses in the 
future. 

Keywords: Recycling, Rare Earth Elements, Process Design and Optimization. 

INTRODUCTION 
The climate crisis presents one of the most signifi-

cant challenges facing humanity in the twenty-first cen-
tury, as the Earth has already exceeded pre-industrial 
temperatures by 1.1°C [1]. It is imperative to take immedi-
ate action to prevent further temperature increases, with 
a preference for staying within 1.5°C above pre-industrial 
levels [1]. This requires giving priority to the decarboniza-
tion of energy and our economy, including a transition to 
clean energy technologies such as solar panels, wind tur-
bines, and electric vehicles to reduce emissions in the 
power and transportation sectors. Notably, in the United 
States, substantial legislative efforts, such as the "Biparti-
san Infrastructure Law," entail an unprecedented invest-
ment of more than $430 billion by 2031, aimed at decar-
bonizing energy among other initiatives [2]. 

Electrification initiatives are heavily dependent on 

rare earth elements (REEs). Presently, the United States 
mines approximately 15% of the world's REEs but exports 
all raw materials for separation and refinement, primarily 
to China, which is responsible for mining around 60% of 
the world's REEs and maintains near-monopoly control 
over the entire supply chain [3]. This dependency repre-
sents a risk to domestic decarbonization efforts, primarily 
in terms of establishing domestic supply chains to pro-
duce clean energy technologies. Therefore, it is vital for 
the United States to strengthen its domestic rare earth 
supply chain as it embarks on the journey toward decar-
bonization. 

The objective of this work is to create an optimiza-
tion-based framework for designing the most efficient 
processing pathway for recovering rare earth elements 
from end-of-life hard disk drives (EOL HDDs). HDDs have 
received increasing attention in the U.S. as a potential 
source for REEs as evidenced by the work of agencies and 
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national laboratories (see for example NREL, EPA, and CMI 
webpages) [4-6]. The paper is organized as follows; first, 
an estimation was made regarding the projected quantity 
of REEs available for recycling from EOL HDDs over a pe-
riod ranging from 2014 through 2038 [7-13], along with a 
projection of rare earth oxide (REO) prices over the plant's 
operational lifetime [14]. Next, a superstructure was for-
mulated containing all potential processing pathways for 
recovering rare earth elements as rare earth oxides from 
the incoming HDD-based feedstock. Finally, optimization 
techniques were employed to find the processing path-
way that maximizes the net present value over a 15-year 
period. 

MODEL ASSUMPTIONS 
Rare earth elements (REEs), which encompass the 

lanthanide elements, scandium, and yttrium, are catego-
rized into two groups based on their atomic weight: light 
rare earths (LREs) and heavy rare earths (HREs). LREs 
comprise Ce, La, Pr, Nd, and Sm, while HREs encompass 
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lt. These elements 
serve various purposes, with magnets (Nd, Pr, Dy, Sm) 
constituting 29% of their usage, catalysts (La, Ce) contrib-
uting to 20%, and polishing agents (La, Ce) making up 13% 
across the top three global end-use sectors [15]. The var-
ying abundance of individual REEs within deposits results 
in some elements being in surplus globally while others 
face shortages. Consequently, their prices exhibit signifi-
cant discrepancies, with Nd/Pr being almost 100 times 
more valuable than La and Ce [15, 16]. HDDs contain rela-
tively large amounts of Nd/Pr.  

Two scenarios were examined in this paper. For the 
first scenario, only EOL HDDs generated during the plant’s 
operational phase were considered. In this scenario, we 
assumed that 60% of all available EOL HDDs in the U.S. 
each year would be recycled and available to the plant [8]. 
In the second scenario, the model was expanded to con-
sider the EOL HDDs generated in the U.S. prior to the start 
of production. In this scenario, it was assumed that 25% 
of all EOL HDDs generated in the U.S. over the period 
ranging from 2014 to 2024 would be recycled by the plant 
in addition to recycling 60% of all EOL HDDs available in 
the U.S. each year. For both scenarios, it was assumed 
that the plant's construction would begin in 2024 and be 
completed by 2025, after which production would start 
and continue for 14 years through 2038. 

Several sources were used to estimate and quantify 
the amount of feedstock available for recycling as detailed 
in the subsequent section [7-13]. To estimate the price of 
the neodymium oxide, the rare earth oxide (REO) product 
of this process, over the operational lifetime of the plant, 
projections were taken from [14] and extrapolated 
through 2038.  

We assumed HDDs to have a lifetime of 8 years [8]. 

The composition by wt. % of the average HDD rare earth 
permanent magnets (REPM) is 30 wt. % Nd/Pr, 66 wt. % 
Fe, and 4 wt. % other (Tb, Dy, Fe, B, Co, or Al) [7]. How-
ever, in this analysis, the ‘other’ category was ignored, and 
the composition of the REPM was assumed to be 30 wt. % 
Nd/Pr and 70 wt. % Fe. Note that following currently avail-
able data, Nd and Pr were considered together; in what 
follows Nd should be read as Nd/Pr.     

QUANTIFICATION OF FEEDSTOCK AND 
PRODUCTS 

To estimate the amount of REPM available for recy-
cling, the number of EOL HDDs in the U.S. was estimated 
based on historic and projected sales of laptop and desk-
top computers in the U.S. and other factors such as HDD 
type. Although the plant is to run from 2024 through 2038, 
we wanted to account for all the previously generated EOL 
HDDs, which we hypothesized some percent of which 
would still be available for recycling. Thus, the sales of 
desktops and laptops in the U.S. were estimated over a 
period of 2006 through 2030.  

Sales data for laptops and desktops in the U.S. from 
2018 through 2022 was taken from [9, 13]. Additionally, 
these sources contained projected sales for notebooks 
and desktops from 2023 through 2028. To estimate sales 
through 2030, a linear model was fit to the projected sales 
from 2023 through 2038 and extrapolated through 2038. 
Estimating sales for years before 2018 proved more diffi-
cult due to a lack of data. Thus, the following methodology 
was employed: First, data for the worldwide sales of per-
sonal computers (PCs) and the worldwide sales of laptops 
from 2006 through 2022 was taken from [10, 11]. Then, 
the worldwide sales for desktops were calculated by sub-
tracting the sales of notebooks from the sales of PCs. 
Next, the average percentage of global sales the U.S. ac-
counts for from 2018 through 2022 was calculated. This 
percentage was assumed to hold from 2006 through 
2018. Finally, the annual sales of laptops and desktops in 
the U.S. from 2006 through 2018 were calculated by mul-
tiplying the global sales of desktops and laptops by this 
percentage. 

After estimating the sales of laptops and desktops in 
the U.S., the next step was to evaluate how many con-
tained HDDs. To accomplish this, we first took data for the 
global sales of HDDs and SSDs from 2015 through 2022 
from [12]. Next, a linear model was fit to the sales data and 
used to extrapolate sales back to 2006 and up to 2030. In 
the case of SSDs, this linear model began predicting neg-
ative sales in 2012. Thus, the sales of SSDs were assumed 
to be zero from 2006 through 2012. Using this sales data, 
the ratio of HDDs to SSDs sold each year was estimated. 
It was then assumed that this ratio was the same in the 
U.S. as globally. Additionally, it was assumed to hold for 
laptops and desktops sold. Thus, the number of HDD-
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containing laptops and desktops in the U.S. was estimated 
by multiplying the sales of laptops and desktops by the 
percentage of total HDD and SSD sales that HDDs make 
up. These estimates can be seen in Figure 1.  

Finally, using this information, the amount of REPM 
available for recycling was estimated. HDDs have two 
sizes: 2.5” and 3.5”. We assumed all desktops used 3.5” 
HDDs and all laptops used 2.5” HDDs.  It was also assumed 
that each 2.5” HDD contains 2.5g of REPM [7]. To estimate 
the amount of REPM per 3.5” HDD in grams, a linear model 
taken from [7] was used and shown in Equation 1. 

17.87 −  0.35𝑡𝑡 (𝑡𝑡 = 0 @ 1990) (1) 

Further, it was assumed that the amount of REPM con-
tained within a 3.5” HDD would stop decreasing once it 
equaled the mass of REPM contained within a 2.5” HDD 
(2.5g). The annual amount of REPM and Nd available for 
recycling from EOL HDDs in the U.S. is in Figure 2. 

PROCESSES FOR RECOVERING REES 
FROM EOL HDDS 

Rare earth recycling comprises four primary pro-
cessing stages: disassembly, demagnetization, leaching, 
and extraction. Each stage contains several potential 

processes, represented as nodes in Figure 3. The naming 
convention for the nodes is <stage number, node num-
ber>, where 1 represents the disassembly stage, 2 the de-
magnetization stage, 3 the leaching stage, and 4 the ex-
traction stage. The superstructure containing all potential 
processing pathways can be seen in Figure 3. 

For the disassembly stage, three processes were 
considered: Manual Disassembly <1,1>, where REPM is re-
moved from EOL HDDs manually [17]; Automatic Disas-
sembly <1,2>, which automates the process with robots 
[18]; and Shredding <1,3>, which involves first heating the 
HDDs to high temperatures to demagnetize them, after 
which they are shredded using an industrial shredder. The 
final node is blank and represents skipping the disassem-
bly stage.  

In the demagnetization stage, three processes were 
explored: Hydrogen Decrepitation <2,1>, which involves 
the reaction of the REPM with hydrogen gas at 170°C for 
3 hours to produce a demagnetized, friable material [19]; 
Heating <2,2>, which involves heating the magnets to 
350°C for 30 minutes followed by milling [20]; and Ex-
treme Heating <2,3>, which involves heating the magnets 
to 950° C for 15 hours to demagnetize and oxidize them 
[21] followed by milling. This extreme heating results in 

 
Figure 1: Annual estimated sales, sales from data, and projected sales of desktops and laptops containing HDDs 
in the U.S. from 2006 through 2030. 

 
Figure 2: REPM and Nd available for recycling from HDDs in the U.S. from 2014 through 2038. 
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iron precipitation during the subsequent selective leach-
ing process. The final node <2,4> is blank and represents 
skipping the demagnetization stage. 

For the leaching stage, two processes were consid-
ered: Selective Leaching <3,1> with hydrochloric acid [21], 
which follows the extreme heating process, and Acid Dis-
solution <3,2> using sulfuric acid [22]. In selective leach-
ing, iron precipitates out of the solution as iron (III) hydrox-
ide. The final two nodes, <3,3> and <3,4> are blank and 
represent skipping the leaching stage. 

Five processes were examined in the extraction 
stage. The first process, Oxalic Acid Precipitation (OAP) 
<5,1>, utilizes oxalic acid to directly precipitate neodym-
ium out of solution [23]. The next process, Hydrometallur-
gical Extraction <5,2>, precipitates neodymium as an Nd-
sodium double salt to separate it from iron. Subsequent 
steps involve reactions with oxalic acid and calcination to 
produce pure Nd2O3, with the iron-containing leachate be-
ing treated with ammonium sulfate to precipitate it out of 
solution as iron jarosite [22]. The third potential process, 
Supercritical Fluid Extraction (SFE) <5,3>, utilizes super-
critical CO2 to separate Nd from iron [24, 25]. 

In the final two processes, Acid-Free Dissolution Ex-
traction 1 <5,4> and 2 <5,5>, REPM powder is dissolved 
in an aqueous copper(II) nitrate solution [26]. Next, oxalic 
acid is added to precipitate neodymium out of solution as 
neodymium oxalate and iron out of solution as iron-ammo-
nium oxalate. The neodymium oxalate precipitate is then 
filtered from the soluble iron-ammonium oxalate. Finally, 
the neodymium oxalate is calcined to produce Nd2O3 [26]. 
These final two processes are identical, except in their fi-
nal product yield (Nd2O3). The yield for this process differs 
depending on whether the incoming feedstock is shred-
ded HDDs or pure REPM. The yield for a pure REPM feed-
stock is 98.5 wt. %, while the yield for a shredded HDD 

feedstock is 73 wt. %. Due to space constraints, details on 
these processes are not shown in the Figure. 

OPTIMIZATION PROBLEM FORMULATION 
Equations (2-8) were formulated to describe the su-

perstructure's configuration. A binary variable 𝑦𝑦𝑖𝑖,𝑗𝑗 is intro-
duced to model the selection of node < 𝑖𝑖, 𝑗𝑗 >. If the node 
is selected, the binary will equal 1; if not, it will equal 0. 
Equation (2) enforces that only one node per stage is se-
lected. Equation (3) enforces that if < 1,1 > or < 1,2 > is 
selected, then either < 2,1 >, < 2,2 > or < 2,3 > must be 
chosen. Equation (4) enforces that if < 1,3 > is selected, 
< 2,4 >, < 3,4 > and < 4,5 > must all be selected. Equation 
(5) ensures that if < 2,1 > or < 2,2 > are selected, then ei-
ther < 3,2 > or < 3,3 > must be selected. Equation (6) en-
sures that if < 2,3 > is selected, then only < 3,1 > or <
4,1 > can be chosen. Equation (7) ensures that if < 3,2 > is 
selected then < 4,2 > is also chosen. Equation (8) en-
forces that either < 4,3 > or < 4,4 > is chosen if < 3,3 > is 
selected. Finally, big-M constraints were added to relate 
the flow through a unit to its selection, as shown in Equa-
tion (9). Here, 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡

𝑖𝑖𝑖𝑖  represents the flow of component 𝑐𝑐 
entering node < 𝑖𝑖, 𝑗𝑗 > in year 𝑡𝑡, 𝑀𝑀𝑖𝑖,𝑗𝑗 represents the maxi-
mum inlet flow rate for node < 𝑖𝑖, 𝑗𝑗 >, 𝐼𝐼 is the set of all 
stages in the superstructure, 𝐽𝐽𝑖𝑖 is the set of all nodes in 
stage 𝑖𝑖, 𝐶𝐶 is the set of tracked components, and 𝑇𝑇 is the 
set of all years the plant is in operation.  The mass balance 
for a generic node is illustrated in Figure 4. 

�𝑦𝑦𝑖𝑖,𝑗𝑗
𝑗𝑗∈𝐽𝐽𝑖𝑖

= 1 ∀𝑖𝑖 ∈ 𝐼𝐼 (2) 

 
Figure 3: Simplified scheme of the superstructure with processing options for EOL HDDs to REOs. 
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𝑦𝑦1,1 + 𝑦𝑦1,2 = 𝑦𝑦2,1 + 𝑦𝑦2,2 + 𝑦𝑦2,3 (3) 

𝑦𝑦1,3 = 𝑦𝑦2,4 = 𝑦𝑦3,4 = 𝑦𝑦4,5 (4) 

𝑦𝑦2,1 + 𝑦𝑦2,2 = 𝑦𝑦3,2 + 𝑦𝑦3,3 (5) 

𝑦𝑦2,3 = 𝑦𝑦3,1 = 𝑦𝑦4,1 (6) 

𝑦𝑦3,2 = 𝑦𝑦4,2 (7) 

𝑦𝑦3,3 = 𝑦𝑦4,3 + 𝑦𝑦4,4 (8) 

𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡
𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖,𝑗𝑗𝑀𝑀𝑖𝑖,𝑗𝑗  𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 , 𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 (9) 

Components in the feedstock, intermediates, and 
products were tracked. The mass balance at each node 
includes three sequential steps: convergence of the inlet 
flows from different upstream nodes, processing, and 
separation of the outlet flows to other downstream nodes. 
The specific equations are defined in Equations (10-12). 

�𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑐𝑐,𝑡𝑡
𝑖𝑖𝑖𝑖

𝐾𝐾𝑖𝑖𝑖𝑖

𝑘𝑘=1

= 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡
𝑖𝑖𝑖𝑖  ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 , 𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 

(10) 

𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡
𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑐𝑐𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡

𝑖𝑖𝑖𝑖  ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 , 𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 (11) 

𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡
𝑜𝑜𝑜𝑜𝑡𝑡 = � 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑐𝑐,𝑡𝑡

𝑜𝑜𝑜𝑜𝑡𝑡
𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜

𝑘𝑘=1

 ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 , 𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 
(12) 

Here, 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡
𝑖𝑖𝑖𝑖  is the flow of component 𝑐𝑐 entering node 

< 𝑖𝑖, 𝑗𝑗 > in time 𝑡𝑡, 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑐𝑐 is the yield of component 𝑐𝑐 for node 
< 𝑖𝑖, 𝑗𝑗 >,  𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡

𝑜𝑜𝑜𝑜𝑡𝑡  is the flow of component 𝑐𝑐 leaving node <
𝑖𝑖, 𝑗𝑗 > in time 𝑡𝑡, and 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡

𝑜𝑜𝑜𝑜𝑡𝑡  is the flow of component 𝑐𝑐 leaving 
node < 𝑖𝑖, 𝑗𝑗 > at time 𝑡𝑡.

 

Figure 4: Mass balance framework for generic node <
𝑖𝑖, 𝑗𝑗 >  ∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇. 

ASPEN FLOWSHEETS AND SIMULATIONS 
The study and simulation of REE recycling production 

pathways is a newer and rapidly evolving area of research. 
Hence, in several cases, process flowsheets with tech-
noeconomic analysis were either not available in the liter-
ature or the data were of insufficient detail to effectively 
leverage for this study. Consequently, process flowsheets 
for several recycling pathways were designed and 
simulated in Aspen Plus. These flowsheets included the 
following unit operations: hydrogen decrepitation, 
heating/high-temperature heating, acid-free dissolution 
extraction, selective leaching, hydrometallurgical 
extraction, solvent extraction, and oxalic acid 
precipitation.   

As an example, Figure 5 depicts the Aspen flowsheet 
designed for the hydrometallurgical extraction process. In 
the first step, the incoming leachate from the acid disso-
lution process is reacted with NaOH and ammonium sul-
fate at a pH of 1.5 to form Nd-sodium double salt precipi-
tates. In the next step, the precipitate is separated from 
the iron-containing leachate and is reacted with oxalic 
acid to form neodymium oxalate. The neodymium oxalate 
is first filtered and then calcined at 750°C in the presence 
of oxygen to form Nd2O3. In the final step, the product is 
cooled to 100°C using cooling water. However, before the 
spent leachate can be disposed of, the iron must first be 

 
Figure 5: Aspen simulation built for the hydrometallurgical process built using reaction yield data from [24]. 
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precipitated out of solution as jarosite. This is accom-
plished by heating the leachate to 90°C for 6 hours and 
reacting it with ammonium sulfate in the presence of an 
oxidizing agent at a pH of 2 [22]. Finally, the spent leach-
ate is neutralized with NaOH. 

The individual operations in these flowsheets were 
modeled using reaction and separation data from litera-
ture. Capital (CAPEX) and operating costs (OPEX) were 
evaluated using the Aspen Process Economics Analyzer. 

OBJECTIVE FUNCTION 
The goal of the optimization problem was to maxim-

ize the NPV over the plant's lifetime, as shown in Equa-
tions (13-14) [27]. Where 𝐶𝐶𝐹𝐹𝑖𝑖 is the cash flow in year 𝑛𝑛, 𝐿𝐿𝑇𝑇 
is the plant’s lifetime in years, and 𝐼𝐼𝐼𝐼 is the interest rate. 

𝑁𝑁𝑁𝑁𝑁𝑁 = �
𝐶𝐶𝐹𝐹𝑖𝑖

(1 + 𝐼𝐼𝐼𝐼)𝑖𝑖

𝐿𝐿𝐿𝐿

𝑖𝑖=1

 
(13) 

𝐶𝐶𝐹𝐹𝑖𝑖 = 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑖𝑖 − (𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝑋𝑋𝑖𝑖 + 𝑂𝑂𝑁𝑁𝐶𝐶𝑋𝑋𝑖𝑖) (14) 

An interest rate of 10% was used as recommended 
by [28]. Tax and depreciation were ignored. It was as-
sumed that all capital investments were made in year 1, 
and that the plant does not begin operation until year 2. 
Therefore, CAPEX was only considered for year 1, after 
which only profit and OPEX were considered. The meth-
odology described by [27] was used for each node to cal-
culate the CAPEX and OPEX. For OPEX, only the cost of 
labor was considered for the disassembly stage, and only 
the cost of raw materials and utilities were considered for 
the later stages. 

Costing information that was available from the 
literature was adjusted for capacity using a piecewise-
linearized approximation of the six-tenths rule [27]. When 
not available from the literature, Aspen Plus simulations 
and the Aspen Process Economic Analyzer were used to 
estimate CAPEX and OPEX costs for a range of flow rates. 
A linear regression model was then fit to obtain the CAPEX 
and OPEX vs incoming flow rates. 

RESULTS 
The optimization problem was coded in Pyomo and 

solved with CPLEX version 22.1.1.0 using the default op-
tions. The decision variables consisted of the operations 
included in the process and their sizing. The formulation 
for the MILP optimization problem is as follows: 

max        𝑧𝑧 = 𝑁𝑁𝑁𝑁𝑁𝑁 

s.t.          𝐶𝐶𝐸𝐸. (2 − 12) 

               𝐹𝐹𝑖𝑖,𝑗𝑗,𝑐𝑐,𝑡𝑡
𝑖𝑖𝑖𝑖 ≥ 0,  𝑦𝑦𝑖𝑖,𝑗𝑗 ∈ {0,1} ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 , 𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 

The base scenario assumed that the plant recycles 

60% of all available EOL HDDs in the U.S. annually [8]. The 
optimal pathway was found to consist of shredding, fol-
lowed by acid-free dissolution extraction, and resulted in 
a negative NPV. The acid-free dissolution extraction pro-
cessing step was found to be the most significant contrib-
utor to CAPEX, accounting for ~90% of the cost. Approxi-
mately 162.5 tonnes of Nd2O3 were recovered. 

Next, we conducted a sensitivity analysis on the per-
centage of EOL HDDs in the U.S. the plant recycles each 
year (collection rate, Fig. 6). We found that the plant re-
mained unprofitable even at a 100% collection rate. The 
NPV breakeven point was found to occur at a collection 
rate of ~360%, and the optimal process never changed. 
This suggests that an insufficient number of HDDs are be-
ing produced for the plant to leverage economies of scale 
to be profitable.  

 
Figure 6: NPV for a varying collection rate. The base case 
is a collection rate of 60% and no recycling of EOL HDDs 
generated prior to plant production. The NPV break-even 
point was found to occur at ~360%. Numerical values are 
not reported to preserve confidentiality. 

Given the results of our first sensitivity analysis, we 
hypothesized that the optimal process may prove to be 
profitable when the recycling of EOL HDDs stockpiled 
from years prior to the beginning of plant production was 
considered. Therefore, we expanded our model to recycle 
25% of all EOL HDDs generated in the U.S. over the period 
ranging from 2006 to 2024 (initial collection rate) in addi-
tion to recycling 60% of all available EOL HDDs each year 
of operation. The optimal process was found to be the 
same as that of the previous scenario, however, the NPV 
was still found to be negative. We then conducted a sen-
sitivity analysis on the initial collection rate and found the 
NPV breakeven point to occur at ~148% (Fig. 7). The opti-
mal process never changed.   

Finally, we conducted a sensitivity analysis on pro-
jected REO prices for the expanded model. To vary the 
projected REO prices, the new projection was assumed to 
be some percentage of the initial estimate. This percent-
age was then varied. The NPV breakeven point was found 
to occur at ~168% of the initial estimate (Fig. 8). Once 
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again, the optimal process never changed. 

 
Figure 7: NPV for a varying initial collection rate. The base 
case has a collection rate of 60% and an initial collection 
rate of 25%. The NPV break-even point was found to 
occur at  ~148%. Numerical values are not reported to 
preserve confidentiality. 

  
Figure 8: NPV for varying percentages of the initial REO 
price projection estimate. The NPV break-even point was 
found to occur at ~168%. Numerical values are not 
reported to preserve confidentiality. 

CONCLUSION 
Superstructure optimization was utilized to design a 

process for the recycling of rare earth elements from EOL 
HDDs, with the objective of maximizing the NPV. The 
study determined that the optimal process for both the 
base case and expanded model consists of shredding, fol-
lowed by acid-free dissolution extraction. Our results 
show that the venture considering HDDs from PCs is likely 
not profitable as a stand-alone plant due to the total 
amount of REPM available for recycling from EOL HDDs 
being insufficient given the projected REO prices. How-
ever, we hypothesize that by expanding the plant to pro-
cess multiple feedstocks, or by introducing multiple 
agents to handle the different processing steps, the opti-
mal pathway may become profitable. Future work will in-
vestigate these options. 
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ABSTRACT 
Solid oxide cells (SOCs) are a promising dual-mode technology that generates hydrogen through 
high-temperature water electrolysis and generates power through a fuel cell reaction that con-
sumes hydrogen. Reversible operation of SOCs requires a transition between these two modes for 
hydrogen production setpoints as the demand and price of electricity fluctuate. Moreover, a well-
functioning control system is important to avoid cell degradation during mode-switching opera-
tion. In this work, we apply nonlinear model predictive control (NMPC) to an SOC module and 
supporting equipment and compare NMPC performance to classical proportional integral (PI) con-
trol strategies, while ramping between the modes of hydrogen and power production. While both 
control methods provide similar performance in many metrics, NMPC significantly reduces cell 
thermal gradients and curvatures (mixed spatial-temporal partial derivatives) during mode switch-
ing. A dynamic process flowsheet of the reversible SOC system was developed in the open-
source, equation-based IDAES modeling framework. Our IDAES dynamic simulation results show 
that NMPC can ramp the SOC system between hydrogen and power production targets within 
short mode-switching times.  Moreover, NMPC can comply with operating limits in the SOC system 
more effectively than PI, and only NMPC can directly enforce user-specified limits for mixed spa-
tial-temporal partial derivatives of temperature.  This allows for management of the trade-off be-
tween operating efficiency and cell degradation, which is dependent on these temperature curva-
tures. 

Keywords: Sustainability, Implementation, Energy & Environment, Process Optimization & Control, NMPC, Solid 
Oxide Cells, SOEC, SOFC 

INTRODUCTION 
In recent years, a growing share of variable renew-

able energy generation and ambitious decarbonization 
targets have spurred a notable shift away from fossil 
fuels, with hydrogen poised to play a crucial role in this 
energy transition. By combining hydrogen production and 
electricity generation, integrated energy systems based 
on reversible SOC technology (rSOC) can be optimized 
to provide the operational flexibility required to meet the 
varying load demand of the modern grid. Hydrogen can 
function as a valuable energy storage medium and as a 

versatile feedstock for other purposes. While most indus-
trial hydrogen today is produced through steam methane 
reforming, which uses a fossil fuel feedstock, water elec-
trolysis is a promising replacement, producing no direct 
greenhouse gas emissions when renewable energy is 
used. 

For hydrogen production through water electrolysis, 
Nernst potential, the minimum potential difference at 
which electrolysis occurs, decreases with increasing re-
action temperature. Because solid oxide electrolysis cells 
(SOECs) and solid oxide fuel cells (SOFCs) operate at 
600oC to 1000oC, much higher temperatures than those 
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of other electrolysis technologies, they are good candi-
dates for efficient water electrolysis. In power production 
mode, high temperature operation allows various fuels, 
including hydrogen, to rapidly undergo oxidation reaction 
on the fuel electrode. However, high temperature opera-
tion comes with significant drawbacks. Besides addi-
tional heat exchange equipment and good thermal insu-
lation requirements, transitions between operating points 
must be carefully controlled to minimize power require-
ments and avoid thermal stress. 

Many SOC systems are reversible and can operate 
as hydrogen fuel cells when grid demand becomes high. 
This flexible operation is necessary to stabilize the grid 
and operate profitably with intermittent renewable en-
ergy. Switching between SOEC and SOFC modes while 
considering both operating performance and equipment 
longevity can be challenging. Ferrari [1] coupled PI con-
trollers with feed-forward approaches to reduce thermal 
gradients and limit the peak anode-cathode differential 
pressure for a tubular SOFC/GT hybrid system. However, 
modeling of the SOFC was based on "lumped volume" 0D 
models, and the chemical reactions were assumed to be 
at equilibrium. Abbaker et al. [2] used a discrete-time 
adaptive terminal sliding-mode control strategy for volt-
age setpoint tracking for an SOFC. A pseudo-partial de-
rivative technique was used to model the SOFC. Botta et 
al. [3] considered an rSOFC system and applied a PI con-
troller to prevent dangerous operating conditions at the 
stack level. They analyzed individual SOFC and SOEC 
modes, as well as switching between these modes during 
reversible operation of the stack. Spivey and Edgar [4] 
developed a dynamic model for a tubular SOFC to cap-
ture the dynamics of critical thermal stress drivers and 
applied it to a MIMO predictive controller. Schotman [5] 
applied an output feedback adaptive NMPC approach to 
an rSOC system to control cell temperature and temper-
ature gradients while maintaining desired level of power 
output. Xing et al. [6] designed a model predictive control 
(MPC) strategy based on a linear parameter varying 
model to improve short-term tracking performance and 
long-term operating efficiency for an rSOC plant. The 
process model for rSOC was a linear state-space model 
of the plant. 

SOC systems are good candidates for nonlinear 
MPC (NMPC) since many manipulated variables (MVs) 
are highly interactive. As mentioned earlier, NMPC [7-8] 
uses a system model to predict system response to a se-
quence of MVs and optimizes it with respect to perfor-
mance metrics. Because the controller can manipulate 
several degrees of freedom, it affords a quicker response 
than that of classical control. 

In this work, NMPC is applied to an SOC module and 
supporting equipment, with its performance compared to 
that of classical PI control strategies for switching be-
tween the modes of hydrogen and power production. 

Switching from maximum hydrogen production to power 
generation and back to hydrogen production is demon-
strated for the SOC system. Performance is judged based 
on the speed of production rate transition, total power 
usage, and whether unsafe thermal levels occur in the 
SOC. 

PROCESS MODELING 
The SOC system flowsheet is built in the IDAES 

modeling framework [9]. The SOC model is publicly avail-
able in the IDAES GitHub repository [10], and a prelimi-
nary version is available in the literature [11]. There is am-
biguity in denoting the cell “anode” and “cathode” in a re-
versible SOC, because the anode in fuel cell mode is the 
cathode in electrolysis mode and vice-versa. Hence, we 
refer to the electrode where hydrogen is produced or 
consumed as the fuel electrode and the electrode where 
oxygen is produced or consumed as the oxygen elec-
trode. Model parameters were fit to data from the two-
cell fuel electrode supported short stack shown in Figure 
1 for the SOC system described in Figure 2.  

The SOC model shown in Figure 1 is one dimensional 
in channels and (potentially) two dimensional in the fuel 
electrode, electrolyte, oxygen electrode, and intercon-
nect. However, because the thickness of the positive 
electrode-electrolyte-negative electrode (PEN) assem-
bly is only approximately one millimeter (with almost all 
of that in the fuel electrode), only one finite element is 
used in the x direction for the fuel electrode, while the 
electrolyte and oxygen electrode are approximated as 
thin-film resistors. The interconnect, which is 5 mm thick, 
also uses one finite element. The length of the cell in the 
z direction is 23.5 cm and ten finite elements are used in 
that direction for all subcomponents. The cell is run in a 
countercurrent configuration. The interconnect is repre-
sented by a periodic boundary condition, with one end 
attached to the top of the fuel channel and one to the 
bottom of the oxygen channel, to represent a cell in the 
center of a large stack. The cell model does not consider 
losses to the environment. 

 
Figure 1. SOC configuration. Note that this diagram is not 
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to scale—the cell is millimeters thick, and the electrolyte 
and oxygen electrode are micrometers thick. 

The SOC system flowsheet in Figure 2 consists of 
supporting equipment for the SOC module. Three cross-
flow heat exchangers heat incoming air and water/hydro-
gen up to the cell’s operating temperature of approxi-
mately 975 K (in electrolysis mode). Two resistive trim 
heaters provide additional heat as well as control the 
temperature of the inlet streams to the stack. The oxygen 
stream is vented to the atmosphere, while the fuel stream 
goes to a condenser. Water is knocked out in a flash ves-
sel. The hydrogen-rich gas exiting the flash is either 
mixed with the fresh fuel inlet to return to the SOC (in 
fuel-cell mode) or is taken out of the system for compres-
sion and further purification (in electrolysis mode). The 
heat exchangers and trim heaters use 1D models, 
whereas the other supporting equipment units use 0D 
models. Because of the short gas phase residence time 
in the system (about four seconds for the fuel side in 
electrolysis mode), gas phase holdups are turned off in 
all units, leaving thermal holdups as the primary source of 
dynamic behavior. For every discretized time step within 
the dynamic model, the SOC system flowsheet consists 
of 900 differential equations, 6955 algebraic equations, 
and 4311 inequalities. 

In electrolysis mode, the hydrogen production rate 
is fixed at 2 kg/s, with the system aiming to minimize total 
power usage. The split fraction to the vent gas recycle 
stream is set to 0.0001 to avoid zero flows, and the cell 

is sized to produce 2 kg/s with an average current density 
of -10,000 A/m2, allowing for a maximum current over-
shoot of 30%. Water conversion is constrained between 
60% and 75% to optimize steam usage. In fuel cell mode, 
the cell operates at an average current density of 4,000 
A/m2, with an upper bound of 5,200 A/m2. Hydrogen con-
version has no specific bound due to recycling uncon-
sumed hydrogen. Trim heaters provide 10 kW each to 
prevent issues with controller setpoints.  

CLASSICAL PROCESS CONTROL 
The SOC control system must enforce a variety of 

process constraints. The fuel-side inlet stream must have 
at least 5% (mole-basis) of hydrogen to avoid oxidation 
of the electrode or interconnect. The fuel-side outlet 
must also have at least 25% hydrogen in fuel cell mode or 
water in electrolysis mode to avoid cell degradation from 
reactant starvation. The oxygen outlet stream can have 
at most 35% oxygen to avoid oxidation of process equip-
ment. The cell voltage is limited between 0.7 and 1.4 V to 
avoid oxidation or reduction of the cell. The maximum 
temperature in the cell must be kept below 1023.15 K 
(750 °C) to avoid degradation, and the temperature dif-
ference between the ends of the cell must be kept below 
75 K to avoid thermal stress on the cell. To accomplish 
these goals, the following manipulated variables are 
used: cell potential, makeup steam/hydrogen feed rate, 
steam/hydrogen ratio in makeup stream, sweep feed 
rate, fuel trim heater duty, sweep gas trim heater duty, 

 
Figure 2. SOC system flowsheet in SOEC mode. 
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fuel stream recycle ratio, sweep stream recycle ratio, and 
vent gas recycle ratio. Classical control uses many P and 
PI control loops, detailed in Table 1. Derivative action was 
not used, because its benefits are severely degraded by 
measurement noise, which cannot be added to the 
PETSc TS integrator used in this study for dynamic sim-
ulations with classical PI control. The PI controller model 
in IDAES supports both variable bounds and anti-windup, 
both of which were used in these simulations. 

Table 1. Variable pairings for classical control. 

Controller 
Type 

Manipulated 
Variable 
(MV) 

Controlled Variable 
(CV) 

PI Cell potential SOC fuel outlet H mole 
fraction 

P Makeup feed 
rate 

Hydrogen production 
rate 

P Sweep feed 
rate 

SOC stack core temper-
ature 

PI (CI) Steam heater 
duty 

Steam heater outlet 
temperature 

PI (CI) Sweep heater 
duty 

Sweep heater outlet 
temperature 

P (CO) Steam heater 
outlet tem-
perature set-
point 

SOC feed outlet tem-
perature 

P (CO) Sweep heater 
outlet tem-
perature set-
point 

SOC sweep outlet tem-
perature 

None Feed & sweep recycle ratios makeup H 
& HO mole fractions vent gas recycle 
ratio (used by NMPC not PI) 

 
The cell potential has an immediate effect on the hy-

drogen composition of the fuel outlet stream; therefore, 
these two variables are paired. The makeup feed rate is 
then paired with the net hydrogen production/consump-
tion rate (which can be calculated from the total current 
flowing through the cell, which is easily measurable). The 
trim heaters have an immediate impact on the stack inlet 
temperatures of their respective streams and are thus 
paired. However, it is desirable that the trim heaters also 
help adjust the SOC module’s temperatures as needed. 
Therefore, a cascade arrangement is used, with another 
controller adjusting the inlet stream’s setpoint based on 
the outlet stream’s temperature. Typically, in cascade 
control, the inner controller is P and the outer controller 
is PI; however, an arrangement with the inner controller 

PI and the outer controller P was chosen to avoid control-
ler conflicts. Finally, because the trim heaters are not en-
gaged in SOFC mode, the sweep blower flow rate is 
paired with stack core temperature (measured via a ther-
mocouple embedded in the stack) to cool the cell as 
needed. 

NONLINEAR MODEL PREDICTIVE 
CONTROL 

To compare the performance of classical control 
and advanced control strategies, an NMPC framework 
was developed for setpoint tracking using eight non-
artificial MVs in Table 1: cell potential, makeup and sweep 
feed rates, feed and sweep recycle ratios, makeup H2 and 
H2O mole fractions, and vent gas recirculation (VGR) ra-
tio. Trim heater duties are not directly tracked to enable 
more freedom of adjustment. 

Because makeup mole fractions are tracked instead 
of being fixed along a linear trajectory as in the classical 
control case, an equality constraint pinning their sum at 
0.999 is introduced to the NMPC formulation. The re-
mainder consisted of inert gases, with fixed mole frac-
tions of 0.0008 N2 and 0.0002 Ar. Feed heater duty is 
bounded between 0 MW and 2 MW and sweep heater 
duty between 0 MW and 4 MW for reasonable capital 
equipment sizing. Condenser vapor outlet temperature is 
fixed at 323.15 K under the ideal condenser assumption 
and thus is not an MV. 
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As shown above, the objective function (eqn. 1) 

contains weighted sum of squared errors (SSE) of the tra-
jectory-tracking of H2 production rate as well as devia-
tions of MVs and CVs from their reference values. A rate-
of-change penalty on trim heater duties is added to at-
tenuate oscillatory trajectories. In addition, to limit cell 
thermal degradation over time, the magnitude of PEN 
temperature curvature along the cell length (z-direction), 
is penalized. The first term in the objective function is the 
SSE of H2 production rate, 𝑦𝑦𝑖𝑖, from its tracking target, 𝑦𝑦𝑅𝑅, 
at time 𝜕𝜕𝑖𝑖. The penalty on the H2 rate tracking term, 𝜌𝜌H2, 
is selected to be 1. The second term involves penalties 
on SSEs of the tracked MVs, 𝑢𝑢𝑖𝑖𝑜𝑜, from their references, 
𝑢𝑢𝑅𝑅 ; 𝐽𝐽  represents the set of tracked MVs. Similarly, the 
third term penalizes deviation of the CVs (represented by 
set 𝐾𝐾) from their reference trajectories. The fourth term 
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is the rate of change penalty on trim heater duties, rep-
resented by 𝜈𝜈. Setpoint tracking and rate of change pen-
alty terms are scaled to be 𝑂𝑂(1), and 0.01 is selected for 
their penalties, 𝜌𝜌𝑖𝑖 , 𝜌𝜌𝑘𝑘 , and 𝜌𝜌′,  to prioritize H2 production 
rate tracking. The final term has a penalty of 𝜌𝜌𝑀𝑀 on the 
sum of squares of PEN temperature curvatures in the 
z-direction. 𝑁𝑁  is the number of steps in the prediction 

horizon. 
For this work, it is assumed that system dynamics is 

unambiguously captured in the controller model; in real-
world application, potential plant-model mismatch can be 
addressed using moving horizon estimation (MHE) with 
an integrating disturbance model. The controller predicts 

 
Figure 3. Comparison of classical control with NMPC in mode-switching operation. 
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system response for a given MV trajectory over the con-
troller horizon with the system model and optimizes the 
MV trajectory for minimum objective function value. The 
first element of the solved trajectory is injected into the 
system, and the MV trajectory is re-optimized at the next 
sampling time over a shifted horizon. The actual decision 
variables in the NMPC problem are time derivatives of the 
MVs so that piecewise linear control profiles (first-order 
hold), instead of step inputs (zero-order hold), can be in-
jected into the system. Placing a first-order hold on MVs, 
as opposed to a zero-order hold, smooths out the transi-
tion of control actions from the previous time step to the 
next and thus reduces spikiness in system response. 

SIMULATION RESULTS 
For performance comparison of classical control and 
NMPC, the SOC system was linearly ramped from maxi-
mum hydrogen production (SOEC mode) to power pro-
duction (SOFC mode) and back to maximum hydrogen 
production in simulation. A parametric sweep on 𝜌𝜌𝑀𝑀 was 
conducted to investigate the trade-off between operat-
ing efficiency and cell degradation, which is dependent 
on PEN temperature curvatures. The ramps were carried 
out over 5 min, with the hydrogen-power ramp followed 
by 5 h settling at the new operating point and the power-
hydrogen ramp followed by 2 h settling. Dynamic simula-
tions using classical process control were conducted via 
the IDAES interface to the PETSc [12] suite of differential 
algebraic equation (DAE) solvers. Because this DAE sys-
tem is stiff, a variable time step implicit Euler method was 
used. The time step was initialized at 0.1 s, after which it 
typically grew to 5 s to 10 s during the initial transient af-
ter ramping started or stopped, and then to 5 min to 
10 min by the end of the integration interval. When anti-
reset windup was turned on or off in the PI controllers, the 
time step decreased to 0.5 s to 1.0 s due to the steep 
transition, between error integrating and not. The fully 
discretized control problem for NMPC had approximately 
47000 equations and variables. The studies were per-
formed on an AMD Ryzen™ 9 processor @ 3.7 GHz with 
16 GB memory. On average, the solution time was 2.4 
CPU s for a prediction horizon of 375 s; the problem was 
solved well within the sampling time of 75 s. 
 Figure 3 compares the performance of the two con-
trol strategies, with 𝜌𝜌𝑀𝑀 set to 10-2 in the NMPC objective 
formulation; 10-2 offers a good balance between settling 
speed of hydrogen production rate, the primary output 
variable, and addressing thermal degradation considera-
tions. Both classical control and NMPC reach the SOFC 
mode production rate of −0.92 kg/s from the SOEC mode 
production rate of 2.00 kg/s by the end of the five-minute 
ramp, with a considerable amount of overshoot observed 
in classical control. In the SOFC-SOEC ramp, both classi-
cal control and NMPC afford similar hydrogen production 

rate tracking performance, with a small amount of over-
shoot in the former. 
 Curbing temperature gradient is critical to long-term 
operating performance of the cell. While PEN tempera-
ture gradients are not explicitly accounted for in either 
classical control or NMPC, both cases are well within the 
safety limit of 1000 K/m, and NMPC has advantages due 
to smoother trajectories and lower peak magnitudes at 
fuel inlet and outlet. 

Moreover, the time derivative of SOC PEN tempera-
ture gradient describes the trend in the gradient’s tem-
poral variation. Here, NMPC affords lower peaks in the 
temperature curvatures at fuel inlet and outlet, as the fi-
nal term in the NMPC objective (eqn. 1) imposes squeez-
ing action on curvatures across all z-nodes. Cell temper-
atures in both control strategies generally take over 2 h 
to settle after the ramps finish. A slightly greater over-
shoot is observed in sweep channel inlet temperature for 
NMPC after the SOFC-SOEC ramp, and the same holds 
for classical control stack core temperature after the 
SOEC-SOFC ramp. While classical control temperatures 
mostly settle faster than the NMPC ones, this difference 
is less pronounced after the SOFC-SOEC ramp. Sweep 
heater duty in classical control saturates at the upper 
bound during the SOEC-SOFC switch, whereas NMPC 
produces smoother profiles well within design limits. Vis-
ible deviation of trim heater duties from setpoints reveals 
that the system has not reached steady state even by the 
time of the switch back from SOFC mode to SOEC mode. 
Despite the different heater duty profiles by classical 
control and NMPC, total power usage in both strategies 
is similar. 

CONCLUSIONS 
In this work, a dynamic system flowsheet of an rSOC 

module and supporting auxiliary equipment was devel-
oped in the open-source, equation-based IDAES model-
ing framework. Control of this system for switching be-
tween maximum hydrogen production (SOEC mode) and 
power production (SOFC mode) was conducted with 
both classical control and NMPC. Dynamic simulation re-
sults show that although both control methods attain 
similar performance in many areas, a sophisticated clas-
sical control system involving non-intuitive cascade con-
trol arrangement was required to match the performance 
of NMPC in mode switching. Moreover, NMPC goes a 
step further by mitigating PEN temperature gradients and 
PEN temperature spatial-temporal derivatives along cell 
length more effectively than classical control does. 

While classical control and NMPC attain similar total 
power usage in mode-switching operation, NMPC formu-
lation in this work does not optimize for efficiency. Future 
work on economic MPC would allow the use of 
non-tracking objectives like efficiency optimization. Such 
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a scheme would be well suited to this rSOC system, since 
the system response time is slow compared to the rate at 
which electricity prices change. System performance 
while tracking more frequently alternating setpoint tra-
jectories from fluctuating locational marginal prices 
(LMPs) is also critical in system economics evaluation. 
Another challenge is managing the trade-off between 
capital cost (cell degradation) and operating cost (set-
point tracking performance) over long-term operations. 
Finally, although the average CPU time in NMPC simula-
tions already occupies only a small fraction of the sam-
pling time, both advanced-step NMPC (asNMPC) and a 
distributed framework consisting of subsystem NMPCs 
can help drive down online computation delay; latency-
free NMPC is a topic for further study. 

ACKNOWLEDGEMENTS 
This work was conducted as part of the Institute for 

the Design of Advanced Energy Systems (IDAES) with 
support from the U.S. Department of Energy’s Office of 
Fossil Energy and Carbon Management through the Sim-
ulation-based Engineering Research Program.  

This project was funded by the Department of En-
ergy, National Energy Technology Laboratory an agency 
of the United States Government, through a support con-
tract. Neither the United States Government nor any 
agency thereof, nor any of its employees, nor the support 
contractor, nor any of their employees, makes any war-
ranty, expressor implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not neces-
sarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those 
of the United States Government or any agency thereof. 

REFERENCES 
1. Ferrari ML. Advanced control approach for hybrid 

systems based on solid oxide fuel cells. Applied 
Energy (145): 364-373 (2015). 

2. Abbaker AM, Wang H, Tian Y. Enhanced Model-
Free Discrete-Time Adaptive Terminal Sliding-
Mode Control for SOFC Power Plant with Input 
Constraints. AJSE 47(3): 2851-2864 (2022). 

3. Botta G, Romeo M, Fernandes A, Trabucchi S, 
Aravind P. Dynamic modeling of reversible solid 
oxide cell stack and control strategy development. 
Energy Convers. Manag. (185): 636-653 (2019). 

4. Spivey BJ, Edgar TF. Dynamic modeling, simulation, 
and MIMO predictive control of a tubular solid 
oxide fuel cell. J Process Control 22(8): 1502-1520 
(2012).  

5. Schotman R. Dynamic modelling and nonlinear 
model predictive control of a reversible solid oxide 
fuel cell: for grid-tied power tracking. Delft 
University of Technology (2021). 

6. Xing X, Lin J, Brandon N, Banerjee A, Song Y. Time 
Varying Model Predictive Control of a Reversible 
SOC Energy-Storage Plant Based on the Linear 
Parameter Varying Method. IEEE Trans on Sustain 
Energy 11(3): 1589-1600 (2020).  

7. Raković SV, Levine WS Handbook of Model 
Predictive Control. Springer International Publishing 
(2019). 

8. Rawlings JB, Mayne DQ, Diehl MM. Model 
Predictive Control: Theory, Computation, and 
Design. Nob Hill Publishing, LLC. (2020). 

9. Lee A., Ghouse JH, Eslick JE, et al., The IDAES 
process modeling framework and model library—
Flexibility for process simulation and optimization. J 
Adv Manuf Process 3(3): e10095(2021).  

10. Allan, D. A. and Eslick, J. 
https://github.com/IDAES/idaes-
pse/blob/main/idaes/models_extra/power_generati
on/unit_models/soc_submodels/solid_oxide_module
_simple.py. 

11. Allan, Douglas, et al. "NMPC for Setpoint Tracking 
Operation of a Solid Oxide Electrolysis Cell 
System." Retrieved from: 
https://www.osti.gov/biblio/1964151 (2023). 

12. Abhyankar S, Brown J, Constantinescu EM, Ghosh 
D, Smith BF, Zhang H. PETSc/TS: A Modern 
Scalable ODE/DAE Solver Library. arXiv: Numer 
Anal (2018).  

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 
 

https://github.com/IDAES/idaes-pse/blob/main/idaes/models_extra/power_generation/unit_models/soc_submodels/solid_oxide_module_simple.py
https://github.com/IDAES/idaes-pse/blob/main/idaes/models_extra/power_generation/unit_models/soc_submodels/solid_oxide_module_simple.py
https://github.com/IDAES/idaes-pse/blob/main/idaes/models_extra/power_generation/unit_models/soc_submodels/solid_oxide_module_simple.py
https://github.com/IDAES/idaes-pse/blob/main/idaes/models_extra/power_generation/unit_models/soc_submodels/solid_oxide_module_simple.py


Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.158610 Syst Control Trans 3:511-518 (2024) 511 

Integrated Design and Scheduling Optimization of Multi-
product processes – case study of Nuclear-Based 
Hydrogen and Electricity Co-Production  
Ruaridh Macdonalda, Dharik S. Mallapragadaa* 
a MIT Energy Initiative, Massachusetts Institute of Technology, Cambridge, MA 
* Corresponding Author: dharik@mit.edu

ABSTRACT 
Increasing wind and solar electricity generation in power systems increases temporal variability in 
electricity prices which incentivizes the development of flexible processes for electricity genera-
tion and electricity-based fuels/chemicals production. Here, we develop a computational frame-
work for the integrated design and optimization of multi-product processes interacting with the 
grid under time-varying electricity prices. Our analysis focuses on the case study of nuclear-based 
hydrogen (H2) and electricity generation, involving nuclear power plants (NPP) producing high 
temperature heat and electricity coupled with a high temperature steam electrolyzers (HTSE) for 
H2 production. The ability to co-produce H2 along with nuclear is widely seen as critical to improv-
ing the economics of nuclear energy technologies. To that end, our model focuses on evaluating 
the least-cost design and operations of the NPP-HTSE system while accounting for: a) power 
consumption variation with current density for the HTSE and the associated capital and operating 
cost trade-off, b) heat integration between NPP and HTSE and c) temporal variability in electricity 
prices and their impact on plant operations to meet a baseload hydrogen demand. Instead of for-
mulating a monolithic optimization model, which would be computationally expensive, we propose 
a decomposition approach that reformulates the original problem into three sub-problems solved 
in an iterative manner to find near-optimal solutions.  Through a numerical case study, we demon-
strate the potential synergies of NPP and HTSE integration under alternative electricity price sce-
narios. This synergy is measured via the metric of relative breakeven H2 selling price that accounts 
for the opportunity cost of reduced electricity sales from H2 co-production. 

Keywords: Hydrogen, Nuclear, Multiscale Modelling, Energy Systems, Electricity & Electrical Devices, 

INTRODUCTION 
Despite its significant share of generation today and 

importance for climate change mitigation, nuclear power 
faces economic hurdles in many U.S. and other regions 
primarily due to depressed wholesale electricity prices 
stemming from increasing electricity generation from 
natural gas and variable renewable energy (VRE). For in-
stance, between 2013 and 2021, 9.4 GW of existing nu-
clear power plants (NPP) have retired in the U.S. with an 
additional 7.2 GW scheduled to retire by 2025, mostly in 
regions with restructured electricity markets [1]. This 
economic outlook for existing U.S. NPPs also makes in-
vestments in new NPPs, based on next-gen small 

modular reactor (SMR) concepts, challenging. However, 
despite their higher capital costs per kW relative to VRE 
generation sources, these NPP designs represent a type 
of low-carbon, dispatchable generation resource which 
has been shown to be critical to minimizing the cost of 
achieving deeply decarbonized power systems [2]. NPPs 
are not fully compensated for this benefit in current mar-
kets, so there is a need for alternative business models 
and revenue streams to support deployment of new 
NPPs to support economy-wide decarbonization goals.  

In this context, the ability to deploy NPPs for simul-
taneously co-producing low-carbon hydrogen (H2) via 
water electrolysis that can be used for industrial applica-
tions is appealing for several reasons. First, industrial H2 
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demand, amounting to ~10 million tonnes per year in the 
U.S. in 2015 [3], tends to be centralized and constant in 
its consumption, both of which match well with least-cost 
NPP designs that tend to favor continuous operation and 
large-scale deployment. Second, H2 demand is antici-
pated to grow, by up to 7X per one estimate [3], as part 
of efforts to decarbonize difficult to electrify end-uses. 
Third, high temperature heat available from next-gener-
ation nuclear reactors can be used to improve the elec-
trical efficiency of H2 production (and by extension, other 
industrial processes) by carrying it out at higher-than-
ambient temperatures, such as high temperature steam 
electrolysis (HTSE) [4]. 

The design of integrated NPP-HTSE systems to co-
produce H2 and electricity needs to consider: a) the tem-
poral dynamics in the economic value of electricity and 
its impact on co-product hydrogen price, b) the hetero-
geneity in design of new NPPs, particularly in terms of the 
maximum temperature of heat supply, c) the design of 
heat integration schemes between NPP and HTSE sys-
tems and d) the operating performance of the HTSE sys-
tem, particularly the current density-dependent effi-
ciency and heat management.   

Previous NPP-HTSE system analyses have generally 
focused on light-water or pressurized water NPPs with 
lower temperatures of heat generation supply [5-7]. 
These analyses address detailed assessment of plant-
level dynamics operations [5] as well as overall economic 
optimization using less-detailed plant-level models and 
soft-linking plant and grid-centric models [6-7]. 

Here, we develop an integrated design and sched-
uling optimization framework to address co-production 
of electricity and H2 under time-varying electricity prices. 
For a given NPP design, electricity price series and exog-
eneous H2 demand, the model can evaluate the cost-ef-
fective sizing of HTSE, on-site H2 storage and other aux-
iliary units (e.g. heat exchangers) as well as operation 
over a representative year, while adhering to a range of 
operational constraints. Crucially, we account for ener-
getic and economic impacts of HTSE operation across a 
range of current densities & NPP-HTSE heat integrations.  

Solving the proposed model in its original form takes 
several hours, even for representative periods as short 
as 12 hours. To include much longer representative peri-
ods, up to a year at hourly resolution, we accelerate so-
lution of the proposed model by applying a decomposi-
tion strategy. This involves iteratively solving an upper-
level investment problem sizing the HTSE using a line 
search algorithm, mid-level problem to size the heat ex-
changer network, and a lower-level operational model 
with fixed HTSE and heat exchangers which is formulated 
as a mixed integer linear program (MILP) and solved via 
Gurobi [19]. In addition, we utilize a Taylor expansion-
based approximation of bilinear terms to speed up com-
putation of the middle and lower-level operational model. 

Finally, we propose a new metric of relative break-even 
price for H2 production, which as opposed to the lev-
elized cost of hydrogen (LCOH), accounts for the oppor-
tunity costs of forgoing electricity outputs in favor of H2. 
While the analytical framework has been developed for 
NPP-HTSE systems, it can be applied to other processes 
involving multiple co-products and dynamic interaction 
with the grid (e.g. electrified chemical production). 

As a case study, we evaluate the integration of a 
high-temperature gas cooled reactor (HTGR) based NPP 
(750 oC) with an HTSE operating at 750 oC, where we 
quantify the value of heat integration between HTSE and 
NPP on the cost of hydrogen produced. We test the eco-
nomics of the proposed system under current-day and 
future electricity prices and show how the relative break-
even price as opposed to the LCOH is the appropriate 
metric for such multi-product systems. 

METHODOLOGY 

Process description 
Figure 1 shows the schematic for the process where 

the HTGR is the primary heat source for the power gen-
eration and electrolysis processes. The HTGR produces 
hot gas leaving the reactor at 750 oC that is fed to steam 
generator producing steam at 565 oC and 16.5 MPa, that 
is used for power generation via a Rankine cycle [8]. A 
similar concept was chosen for a pilot project to provide 
heat and power for a U.S. petrochemical facility [9]. Part 
of the heat available from the HTGR can be used to im-
prove the energy efficiency of HTSE H2 production 
through feed heating. As seen in Figure 1, we allow for 
reactor to provide high temperature heat for steam su-
perheating and low temperature heat for steam genera-
tion.  

Figure 1. Overview of a high-temperature gas cooled 
reactor (HTGR) NPP integrated with HTSE operating at 
750 oC. The black arrows relate to the HTSE flows and 
the red lines the nuclear power plant (NPP) flows. For 
simplicity, we have not shown the return of some steam 
flows back to the NPP steam generator (SG). All of the 
temperature and mass flow rates are free variables 
unless a value is given. The HTSE operating temperature 
is assumed constant and equal to the feed. Temperature 
of exhaust streams from HTSE are model variables but 
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must be within 100 oC of the inlet temperature to avoid 
thermal gradients [14]. 

HTSE modeling 
A key goal of our analysis was to understand how 

NPP and HTSEs might vary their electricity and H2 out-
puts in response to electricity prices to maximize their 
profit. Therefore, it was important that we accurately 
model the dynamic operation of HTSE and how the effi-
ciency varies as a function of the current density.  

We developed a 0-D HTSE model based off the ge-
neric electrolyzer model produced by Orella [10] along 
with overpotential calculations from Buttler et al. [11]. The 
HTSE potential (V) as function of current density (j) at 
each time-step is calculated as sum of thermodynamic 
potential (Vth, Eq. 2), ohmic overpotential (Vohm, Eq. 3), 
concentration overpotential (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, Eq. 4-5), and activa-
tion overpotential for each electrode (𝑉𝑉𝑎𝑎𝑐𝑐𝑎𝑎,𝑘𝑘, Eq. 6). Each 
of these terms are related to SOEC system parameters, 
such as cell temperature (T), exchange current density 
(𝑗𝑗𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑐𝑐𝑎𝑎𝑒𝑒,k), and partial pressures of components. Full de-
tails of the terms are given in [11]. 

𝑉𝑉 = 𝑉𝑉𝑎𝑎ℎ + 𝑉𝑉𝑐𝑐ℎ𝑚𝑚 + 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑎𝑎𝑐𝑐𝑎𝑎,𝑐𝑐 + 𝑉𝑉𝑎𝑎𝑐𝑐𝑎𝑎,𝑎𝑎  (1) 

𝑉𝑉𝑎𝑎ℎ = 𝑉𝑉0 + 𝑅𝑅𝑅𝑅
2𝐹𝐹

ln �𝑝𝑝𝑜𝑜2
0.5𝑝𝑝ℎ2
𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�  (2) 

𝑉𝑉𝑐𝑐ℎ𝑚𝑚 = −2.99 × 10−5𝑗𝑗𝑗𝑗𝑒𝑒−
10300
𝑇𝑇   (3) 

c = −100√2𝑗𝑗𝑅𝑅𝑅𝑅𝑎𝑎𝑐𝑐𝑠𝑠𝑠𝑠ℎ
2𝐹𝐹𝐹𝐹𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (4) 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅
2𝐹𝐹

ln�
1+ 𝑐𝑐

𝑓𝑓ℎ2
1− 𝑐𝑐

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� (5) 

𝑉𝑉𝑎𝑎𝑐𝑐𝑎𝑎,k = 𝑅𝑅𝑅𝑅
𝐹𝐹

sinh−1 � 𝑗𝑗
2𝑗𝑗𝑠𝑠𝑒𝑒𝑐𝑐ℎ𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠,k

�  ∀𝑘𝑘 =  𝑎𝑎, 𝑐𝑐  (6) 

Given the HTSE stack area (A) and time-dependent 
current density jt (which is linearly proportional to the H2 
production rate for a given HTSE area by Faraday’s Law), 
the power required to operate the HTSE at each time step 
t is given by Eq. 7, where the cell voltage (Vt) is calculated 
as per Eq. 1-6 for the given current density. 

  𝑃𝑃(𝑗𝑗,𝐴𝐴, 𝑡𝑡) = 𝑗𝑗𝑎𝑎𝐴𝐴𝑉𝑉𝑎𝑎(𝑗𝑗𝑎𝑎)  (7) 

As shown in Fig. 2A, the power consumption per unit 
HTSE area varies quadratically with the current density, 
meaning that the electrolyzer energy efficiency de-
creases with increasing current density owing to greater 
overpotentials. This creates an incentive to oversize the 
electrolyzer relative to demand, increasing the electro-
lyzer area (A) and CAPEX to reduce the current density 
and hence power consumption required to achieve a 
given hydrogen production rate. Our modelling results 
exhibit this CAPEX - OPEX trade-off as we include a 
piece-wise approximation of the power vs. H2 production 
curve for a fixed HTSE area. 

The energy balance around the HTSE system is 
modeled with the constraint that feed stream and HTSE 

operating temperature are fixed at 750 oC, and the ratio 
of hydrogen to steam at the cathode is held constant. At 
each time step, the heat balance of the HTSE is deter-
mined by the difference between its electric power de-
mand and the enthalpy of the water splitting reaction, 
with high (low) current density operation generally lead-
ing to greater (less) overpotentials and heat generation. 
The HTSE is endothermic when operated below the ther-
moneutral potential (𝑉𝑉𝑎𝑎ℎ). The deficit or excess heat in the 
HTSE is balanced by either cooling or heating, respec-
tively, the outlet streams. Outlet stream temperatures are 
model operational variables along with the HTSE stack 
current density. In this way, the HTSE dynamic operation 
is coupled with the operation of the heat exchanger net-
work associated with feed preheating and product cool-
ing shown in Fig. 1. 

 
Figure 2. A: example piecewise power – current density 
relationship used in the model, for a 100m2 HTSE 
producing up to 0.36 tonne H2 per hour. We used 5 
elements in our piecewise approximation. B: Overview of 
the three-part solution strategy used to optimize our 
model. MIQCP= Mixed integer quadratically constrained 
programme. MILP = Mixed Iinteger linear programme. 

Model description and solution strategy 
As shown in Eq. 8, the overall problem can be de-

fined as a single mixed integer nonlinear program 
(MINLP). The objective function of this model is to mini-
mize the total system cost while meeting a constant 
hourly hydrogen demand and several other operational 
and capacity constraints associated with units in Fig. 1. 

 min
𝑒𝑒,𝑦𝑦,𝑧𝑧

𝑐𝑐1𝑥𝑥 + 𝑐𝑐2𝑅𝑅𝒚𝒚 + 𝑐𝑐3𝑅𝑅𝒛𝒛 

s. t 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 

ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  ≤ 0 

         𝑔𝑔(𝑥𝑥,𝑦𝑦) ≤ 0        

           𝑥𝑥,𝑦𝑦, 𝑧𝑧 ≥ 0   (8) 

In Eq. 8, 𝑥𝑥 is the stack area of the HTSE, 𝒚𝒚 represents 
the vector of variables corresponding to the areas of the 
heat exchangers and boilers in the heat exchanger 
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network, and 𝒛𝒛 is the vector of variables corresponding 
to the capacity of the electricity and H2 storage as well as 
the scheduling decisions for the entire system. Note that 
𝒛𝒛 includes both continuous and binary variables, where 
the latter are associated with NPP start-up/shutdown [8].  

Since we are interested in accounting for plant op-
erational dynamics subject to hourly changes in electric-
ity price over the year, solving the monolithic model of 
Eq. 8 becomes computationally challenging for repre-
sentative periods longer than 12 hours. Therefore, we de-
composed the original problem into three sub-problems 
that are iteratively solved to find the optimal solution. Fig. 
2B shows the sequence of operations, where: a) the up-
per-level problem sizes the HTSE area, b) the middle-
level problem sizes the heat exchanger network for a 
given HTSE area and maximum H2 output for HTSE and 
c) lower-level operational problem evaluates cost-opti-
mal plant operation over the entire year and sizes on-site 
H2 storage capacity for a given HTSE area and heat ex-
changer network (via part a and b).   

The upper-level investment problem is solved using 
Brent’s method [12] to search for the HTSE area which 
minimizes the total system cost (capex + opex, Eq. 8). 
Brent’s method is a gradient-free 1D minima-finding algo-
rithm which combines the inverse quadratic interpolation, 
secant method, and bisection method. At each iteration, 
the ordering and value of function evaluations of the pre-
vious iterates, i.e. the results of solving the intermediate 
the lower problems, are compared to select the best 
methods to calculate the next iterate.  

The middle-level problem optimizes the design of 
the heat exchanger network for a given HTSE area and 
several operating state of the system, corresponding to 
zero H2 output, the mean output, and the maximum H2 
output. The only non-quadratic nonlinear constraints in 
the model pertain to the logarithmic mean temperature 
difference (∆𝑇𝑇𝐿𝐿𝐿𝐿𝑅𝑅𝐷𝐷) in the heat exchanger sizing con-
straint. We approximate this by its first order Taylor ex-
pansion around initial guesses of the temperature differ-
ences (Δ𝑎𝑎,0,Δ𝑏𝑏,0) for the various streams, as shown in Eq. 
9. We set upper and lower bounds on each stream tem-
perature based on the known temperatures (e.g. the 
HTSE operating temperature) and used the mid-point of 
these ranges as the initial temperature guesses. 

Δ𝑎𝑎 = �𝑇𝑇ℎ,𝑖𝑖𝑐𝑐 − 𝑇𝑇𝑐𝑐,𝑐𝑐𝑜𝑜𝑎𝑎�, Δ𝑏𝑏 = �𝑇𝑇ℎ,𝑐𝑐𝑜𝑜𝑎𝑎 − 𝑇𝑇𝑐𝑐,𝑖𝑖𝑐𝑐� (9) 
∆𝑇𝑇𝐿𝐿𝐿𝐿𝑅𝑅𝐷𝐷 = Δ𝑠𝑠−Δ𝑏𝑏

ln(Δ𝑠𝑠/Δ𝑏𝑏)
 (10) 

∆𝑇𝑇𝐿𝐿𝐿𝐿𝑅𝑅𝐷𝐷 ≈
Δ𝑠𝑠,0−Δ𝑏𝑏,0

ln(Δ𝑠𝑠,0/Δ𝑏𝑏,0)
+ ∑ �𝑅𝑅𝑞𝑞−𝑅𝑅𝑞𝑞,0�

ln(Δ𝑠𝑠,0/Δ𝑏𝑏,0)2
�Δ𝑏𝑏,0−Δ𝑠𝑠,0

Δ𝑠𝑠,0
±𝑞𝑞∈[(ℎ,𝑖𝑖𝑐𝑐),(𝑐𝑐,𝑖𝑖𝑐𝑐)]

ln Δ𝑠𝑠,0

Δ𝑏𝑏,0
�  + ∑ �𝑅𝑅𝑞𝑞−𝑅𝑅𝑞𝑞,0�

ln(Δ𝑠𝑠,0/Δ𝑏𝑏,0)2
�Δ𝑠𝑠,0−Δ𝑏𝑏,0

Δ𝑏𝑏,0
± ln Δ𝑠𝑠,0

Δ𝑏𝑏,0
�  𝑞𝑞∈[(ℎ,𝑐𝑐𝑜𝑜𝑎𝑎),(𝑐𝑐,𝑐𝑐𝑜𝑜𝑎𝑎)]  (11) 

This approximation is correct to within a few percent 
for the temperature ranges in our problem and is more 
accurate than using the arithmetic mean of the tempera-
ture differences when calculating heat fluxes. We 

determined the heat exchanger areas by solving this mid-
dle-level problem for one hour of operation assuming the 
HTSE is operating at its mean hydrogen output for the 
given HTSE area. This problem is small, consisting of ap-
proximately 100 variables and 100 constraints with 27 
quadratic constraints, and thus can be solved in under a 
second using Gurobi 10.0. 

The lower-level problem is a mixed-integer quadrat-
ically constrained program (MIQCP) which optimizes the 
capacities of the battery and H2 storage as well as the 
operating decisions of all the components for each of the 
8760 hours of the year. The role of the H2 storage is to 
allow for flexible operation of HTSE while meeting base-
load H2 demand. The battery storage could allow for en-
hancing flexibility of NPP by storing electricity at times of 
low electricity prices and discharging to operate HTSE or 
export to grid during high price periods. 

To speed up solution of lower-level problem, we 
make two further approximations to convert it to a mixed-
integer linear program (MILP): a) we approximate the 
HTSE power demand as a 1D piece-wise linear function 
of the current density using SOS2 constraints (Fig. 2A). 
b) the remaining quadratic constraints are related to the 
energy and mass balances in the heat exchanger network 
and splitters/mixers, respectively. For the bilinear terms, 
we employed a Taylor expansion-based linearization ap-
proach per Eq. 12, similar to the approach undertaken to 
approximate the LMTD in the middle-level problem. 

xy ≈ x0𝑦𝑦0 + (𝑥𝑥 − 𝑥𝑥0)𝑦𝑦0 + (𝑦𝑦 − 𝑦𝑦0)𝑥𝑥0 (12) 

We use the temperatures and mass flow rates from 
the intermediate problem solution to set x0 and y0 . The 
resulting MILP for a full year at hourly resolution has ap-
proximately 400,000 constraints and 400,000 variables 
and 1.5M non-zero terms after presolve. The solution 
time typically requires less than 30 seconds to solve the 
root relaxation followed by about three hours for branch 
and bound using 16 cores and Gurobi 10.0. The overall 
solution procedure of Fig. 2B typically requires 8-10 iter-
ations to converge to the cost-optimal investment and 
operation so the total run time for the overall optimization 
is approximately 24 hours.  

Our decomposition method can be improved in sev-
eral ways. The upper problem could be solved using a 
gradient-based solver, making use of the duals of the 
lower problem. We could also solve more states of the 
system in the intermediate problem to both find Taylor 
expansion values for each time step, improving the accu-
racy of the linearization of the lower problem, and creat-
ing a warm start for the lower problem. This would reduce 
the time required for the branch and bound step. 

Case study 
We model the co-production of electricity and H2 via 

the process in Figure 1 with a NPP with thermal capacity 
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200 MWt (80 MWe), located in Waterford, LA, USA. This 
location has an existing NPP and is close to many existing 
H2 consumers (e.g. petrochemical plants). We assume 
the plant being optimized must supply a constant H2 de-
mand of 20 tonne/day, simulating H2 demand from an in-
dustrial user. This means our optimization does not de-
pend on the price of hydrogen. We do not consider cases 
where a facility can maximize revenue by freely choosing 
between selling electricity and hydrogen as this would 
require hourly timeseries of hydrogen prices. 

Electricity price scenarios 
We evaluate the model outcomes for current grid 

conditions, represented by 2018 wholesale electricity 
prices at the Waterford site, as well as future grid sce-
narios for 2030 and 2050 by NREL for the same region 
[13]. Figure 3 shows the hourly electricity price distribu-
tion of the three price timeseries. The median 2030 price 
is greater than in 2050 but the distribution has shorter 
high and low tails. The mean and median 2050 prices are 
lower than both 2018 and 2030 and there are around 250 
hours where electricity is priced at $0/MWh.  

 
Figure 3. Hourly electricity price distribution for the 3 
scenarios evaluted in the study. 2018 prices are realized 
prices at the Waterford, LA node, while 2030 and 2050 
scenarios are sourced from NREL ReEDS capacity 
expansion model outcomes [13]. Median prices for 2018, 
2030 and 2050 are 29, 30, and 25 $/MWh [13,24]. 

Technology cost and performance assumptions 
The major cost and performance assumptions used 

in the study are summarized in Table 1. We trial cases 
with and without a $10/MWh transmission charges ap-
plied to imports. This charge reflects the difference in 
wholesale and industrial electricity prices [18].  

Relative breakeven price 
We evaluated the cost benefits of co-producing 

electricity and H2 by comparing the minimum selling price 
of H2 produced by a NPP-HTSE co-production facility 
with the minimum selling price for a standalone HTSE 

using grid electricity. The minimum H2 selling price for a 
standalone HTSE is the price at which the project net pre-
sent value is zero, i.e. annualized costs are equal to an-
nualized revenues. This is the LCOH of the facility. How-
ever, computing the minimum H2 selling price for a facility 
selling electricity and H2 is more complicated since pro-
ducing H2 entails not selling the electricity used to pro-
duce the H2. This creates an opportunity cost which must 
also be recovered in the minimum selling price of the H2. 
We call this the relative breakeven price for H2 associated 
with a co-production facility.  

Table 1. Key cost and performance assumptions  

Property Value Property Value 
System HTSE [  ] 
Hourly demand 
(tonne/hour)  Fixed costs 

($/m/yr)  

Discount rate % Temperature (C)  
NPP [   ] Pressure (atm)  
Reactor capacity 
(MWt)  Max current 

density (A/cm)  

Turbine capacity 
(MWe)  H mole fraction  

CAPEX 
($/MWe/yr)  O mole fraction  

Fixed costs 
($/MWe/yr)  Cathode thick-

ness (𝜇𝜇m)  

Variable Cost 
($/MWhe)  Anode thickness 

(𝜇𝜇m)  

Minimum load % Cell gap (𝜇𝜇m)  

Shutdown period 
(hours)  Diffusion coeffi-

cient (cm-s-) 
x-
 

H storage []  Battery []  
Fixed costs 
($/MWe/yr)  Fixed costs 

($/MWe/yr) 

 

Compression en-
ergy (kWhe/kg) 
 

 Duration (hours)  

The relative breakeven price is calculated by finding 
the H2 price which ensures a co-production facility earns 
at least as much profit as the NPP would make if operat-
ing independently and only sold electricity. This is done 
by solving the model in Eq. 8 twice: once as described for 
the full co-production facility and a second time where x 
== 0 (i.e. without a HTSE) and the exogenous hydrogen 
demand is set to zero. In the latter case, the NPP will op-
erate independently selling electricity. 

RESULTS 

Base system design and operation results 
Figure 4A shows the optimal dispatch of the base 

case system over two weeks using 2018 electricity 
prices. Given the high cost of HTSEs (Table 1), it is not 
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surprising to see that HTSE utilization is quite high de-
spite fluctuating electricity prices.  The HTSE output is 
only reduced during periods of very high electricity 
prices, when it is more profitable to reduce H2 production 
and maximize power exports to the grid. This is enabled 
by 3 hours of H2 storage and the HTSE being 8% over-
sized relative to the minimum HTSE area required to meet 
the H2 demand constraint. 

It might be expected that the facility would export 
less power during periods of high prices and use the 
cheaper electricity generated by the on-site NPP to re-
duce its average cost of electricity. However, deferring 
H2 production till grid prices fall is less expensive overall 
– as long as storage is cheap enough – because less val-
uable electricity is used to produce H2, reducing the op-
portunity cost of hydrogen production. 

The relative breakeven price of the co-produced H2 

accounts for the opportunity cost of lost electricity sales 
and should be compared to the LCOH of the independent 
HTSE. These figures are shown in Table 2. In this in-
stance, an independent NPP will be loss-making so the 
opportunity cost of lost electricity sales is negative. This 
makes the relative breakeven price of NPP-HTSE H2 less 
than its LCOH. An existing co-production facility should 
be willing to offer H2 at the relative breakeven price, even 
though it will lose money on each kilo of H2, because it 
will lose less money than if it sold the same electricity.  

Clearly, more revenue must be found to make the 
NPP-HTSE facility profitable overall especially for new fa-
cilities. One option is to sell H2 priced at the LCOH of the 
NPP-HTSE facility. However, the losses being covered 
are from the electricity-side of the co-production facility. 
The relative breakeven price is the price required for the 
H2-side of the co-production facility to be profitable. In a 

scenario with profitable independent NPPs, the relative 
breakeven price of NPP-HTSE H2 is higher than its LCOH 
as the H2 revenue must also recover the lost NPP profit. 

The technical synergies from using NPP heat in the 
HTSE system reduces the cost of H2 by approximately 
$1/kg. We know this because the relative breakeven price 
of an NPP-HTSE which only exchanges electricity and 
where no import tariffs were in place should equal the 
LCOH of an independent HTSE in the same scenario. 
When there is no asymmetry in the price of buying and 
selling electricity, the cost of electricity from an onsite 
NPP is the same as that of purchasing grid power if the 
opportunity costs of lost NPP sales are also accounted 
for in the H2 price. The results in Table 2 show that this is 
not the case. The relative breakeven price of the NPP-
HTSE is $1/kg cheaper than the no-tariff LCOH of the in-
dependent electrolyzer, indicating savings from using 
nuclear heat. This heating is used 5:1 to boil water versus 
superheat it. This could also be done using low-temper-
ature NPPs, which operate at ~300 C. 

H2 produced by NPP-HTSEs is competitive with that 
from an independent HTSE, particularly if the grid has im-
port tariffs. However, H2 produced by both facilities is ex-
pensive, especially compared to the $1/kg target. This is 
due to the relatively high capex of HTSE vs. state-of-art 
proton exchange membrane (PEM) electrolyzers.  In ad-
dition, while HTSEs require less electricity input per kg of 
H2 vs. PEM, they have lower current density limits than 
PEM electrolysers, typically 1A/cm2 vs. 2-3A/cm2. This 
means a large HTSE is required for the same H2 output, 
compounding the cost difference. 

Impact of varying electricity price scenarios 
Fig. 4B shows the optimal dispatch of the co-

Figure 4: Optimal dispatch of NPP and HTSE over two weeks of operation for the 2018 and 2050 electricity price 
scenario and assumptions summarized in Table 1. Left panel shows reactor thermal balance (left axis) overlaid 
with electricity price profile right axis, black line) for 2018 while right panel shows results for 2050.  In all cases, 
system meets 20 tonne/day of baseload H2 demand while adjusting grid electricity exports depending on 
electricity prices. 
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production facility over two weeks under 2050 scenarios, 
for which the average electricity price is $24/MWhe ver-
sus $34/MWhe in 2018. The overall pattern of operation 
is similar to that in Fig. 4A. The HTSE is only 4% over-
sized, so there is little scope to vary its output much from 
the average H2 demand. The NPP reduces its output dur-
ing periods when the wholesale price falls to 
$0.01/MWhe. This period only lasts seven hours so the 
NPP does not shutdown, as then it would have to wait a 
further 17 hours due to the 24-hour minimum shutdown 
constraint. The HTSE operates throughout. 

The LCOH of the co-production facility is higher in 
2050 than in 2018. This is because the price of electricity 
is lower and the NPP earns less revenue. However, the 
2050 relative breakeven price of the NPP-HTSE is lower 
as this only considers the costs of producing H2, which is 
lower as electricity is cheaper. The reduction in prices 
also reduces the LCOH of the independent HTSE. 

Table 2. The levelized cost of hydrogen (LCOH) and rel-
ative breakeven price of hydrogen for the independent 
HTSE and co-production facility in each of the three sce-
narios. The relative breakeven price of the independent 
electrolyzer is equal to its LCOH as it never incurs an op-
portunity cost when it produces H2. 

 Electricity price 
timeseries year [] 

    
Mean electricity price 
($/MWhe)    

Median electricity price 
($/MWhe)    

Co-production LCOH 
($/kg)    

Co-production Relative 
breakeven price ($/kg)    

Independent HTSE no tar-
iff LCOH ($/kg)    

Independent HTSE 
$/MWh tariff LCOH 
($/kg) 

   

H2 produced by the NPP-HTSE facility in 2030 is 
$0.3/kg cheaper than in 2018. While the mean price of 
electricity in the 2018 and 2030 scenaris is almost the 
same, the median price is higher, and the distribution of 
prices is shifted to the left and its right-hand tail is gone. 
This means there are more periods of low prices. By var-
ying its output, both HTSE facilities can reduce their av-
erage price of electricity. In these runs, the effective price 
of electricity was as low as $10/MWh. This trend contin-
ues in 2050, where the price distribution has a bimodal 
peak at $0/MWh (see Fig. 3). However, the relatively high 
cost of H2 storage limits the extent to which these peri-
ods of low prices can be taken advantage of.  

Sensitivity to the HTSE cost and current 
density limit 

The optimized HTSE and NPP-HTSE facilities pro-
duce expensive H2. This is largely a function of the high 
cost of HTSEs and their low current density limit. We per-
form a sensitivity study of these values to see how they 
would affect the cost of H2 and see which would be most 
impactful to improve.  

Table 3 shows the results of the sensitivity study for 
the NPP-HTSE facility. As expected, increasing the cur-
rent density or reducing the cost of the HTSE cause the 
biggest reduction in the H2 LCOH and relative breakeven 
price. In both cases, it is economic to oversize the NPP-
HTSE system significantly and mostly produce H2 during 
periods of low prices. Fig. 5 shows an example of this for 
the 6A/cm2 NPP-HTSE. The NPP exports and NPP-HTSE 
energy balance vary very closely with the price of elec-
tricity. As before, the NPP reduces its power output dur-
ing zero-priced periods.  

The other two changes had smaller impacts on the 
cost of H2. Reducing the cost of the NPP reduces the 
LCOH of H2 as the NPP fixed costs are less, but has no 
impact on the relative breakeven price as the cost of 
electricity is unaffected. 

Table 3. The LCOH and relative breakeven price of the 
four sensitivity study cases. Each was evaluated using 
the 2050 electricity price data. 

 

 
Base-
case 

Low-
cost 

HTSE 
[] 

C 
HTSE 

$ 
/ 

MWh 
NPP 
[] 

A/cm 
HTSE 

HTSE 
oversizing % % % % % 

LCOH 
($/kg)      

Rel break 
price 
($/kg) 

     

Figure 5. Dispatch and energy balance of the NPP over 
two weeks as part of the NPP-HTSE system for the 2050 
system and a 6A/cm2 HTSE. 
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CONCLUSION 
In this paper we have developed an integrated de-

sign and scheduling optimization model to study grid-in-
teractive processes producing multiple products. To 
solve the model, a nonconvex MINLP, we proposed a 
three-level decomposition approach and range of tai-
lored approximations to identify near-optimal solutions. 
We then demonstrated the approach in a short case 
study of electricity and hydrogen co-production using a 
high-temperature nuclear power plant and HTSE. While 
there are opportunities to improve the numerical stability 
and runtime of the method, we have shown that it can be 
used to capture HTSE part load operations and high tem-
poral resolution efficiently. 

In our case study, we demonstrated the cost ad-
vantage of co-producing electricity and hydrogen using 
an NPP and HTSE. We have show that co-production fa-
cilities must consider the opportunity cost of not selling 
electricity when they price their hydrogen. We call this 
combination of the levelized cost of producing H2 and the 
opportunity cost of not selling electricity the relative 
breakeven price. Through our sensitivity analysis, we 
highlighted how electricity prices, HTSE capital costs and 
current density limits, impact the minimum price of H2 

ACKNOWLEDGEMENTS 
The authors acknowledge funding from Shell and 

feedback from Jacopo Buongiorno on the framing and 
approach through the course of the project. 

REFERENCES 
1. CRS. U.S. Nuclear Plant Shutdowns, State 

Interventions, and Policy Concerns (2021) 
2. Sepulveda, N. A., Jenkins, J. D., de Sisternes, F. J. 

& Lester, R. K. The Role of Firm Low-Carbon 
Electricity Resources in Deep Decarbonization of 
Power Generation. Joule 2, 2403–2420 (2018). 

3. Ruth, M. et al. The Technical and Economic 
Potential of the H2@Scale Concept within the 
United States (2020). NREL 

4. Buttler, A,  Spliethoff, H. Current status of water 
electrolysis for energy storage, grid balancing and 
sector coupling via power-to-gas and power-to-
liquids: A review. Renewable and Sustainable 
Energy Reviews 82, 2440–2454 (2018). 

5. Kim, J. S., Boardman, R. D. & Bragg-Sitton, S. M. 
Dynamic performance analysis of a high-
temperature steam electrolysis plant integrated 
within nuclear-renewable hybrid energy systems. 
Applied Energy 228, 2090–2110 (2018). 

6. Frick, K., Wendt, D., Talbot, P., Rabiti, C. & 
Boardman, R. Technoeconomic assessment of 

hydrogen cogeneration via high temperature steam 
electrolysis with a light-water reactor. Applied 
Energy 306, 118044 (2022). 

7. Frew, B., et al. Analysis of multi-output hybrid 
energy systems interacting with the grid: 
Application of improved price-taker and price-
maker approaches to nuclear-hydrogen systems. 
Applied Energy 329, 120184 (2023). 

8. Mulder, Eben. Overview of X-Energy’s 200 MWth 
Xe-100 Reactor, NAS (2021) 

9. Dow, Dow and X-energy advance efforts, 2023 
10. Orella, M. J., et al. A General Technoeconomic 

Model for Evaluating Emerging Electrolytic 
Processes. Energy Technology 8, 1900994 (2020). 

11. Buttler, A., et al. detailed techno-economic analysis 
of heat integration in high temperature electrolysis 
for efficient hydrogen production. International 
Journal of Hydrogen Energy 40, 38–50 (2015). 

12. Brents’ Method. 
https://en.wikipedia.org/wiki/Brent%27s_method  

13. National Renewable Energy Laboratory, 
https://www.nrel.gov/analysis/cambium.html  

14. Petipas, Floriane, et al. "Thermal management of 
solid oxide electrolysis cell systems through air 
flow regulation." Chem Eng Trans 61 (2017) 

15. Wendt, Daniel S., et al. High Temperature Steam 
Electrolysis Process Performance and Cost 
Estimates. No. INL/RPT-22-66117-Rev000. Idaho 
National Lab (2022) 

16. James, Brian D., Prosser, Jacob H., Das, Sujit. HTE 
Stack Manufacturing Cost Analysis (2022) 

17. Expert Finance Working Group. "Economic and 
Finance Working Group: SMR Roadmap." (2018). 

18. EIA. Electric Power Monthly (2023) 
19. Gurobi Optimization, LLC. Gurobi Optimizer 

Reference Manual (2023) 
20. Mulder, Eben, et al. Advanced Operation & 

Maintenance Techniques Implemented in the Xe-
100 Plant Digital Twin to Reduce Fixed O&M (2022) 

21. Davis, Ian, Braudt, Tom, Rackiewicz, David. Xe-100 
Maintenance Staffing Optimization (2021) 

22. NREL. 2023 Annual Technology Baseline 
(2023) https://atb.nrel.gov/. 

23. Houchins, Cassidy, James, Brian D. Hydrogen 
Storage Cost Analysis (2022) 

24. MISO. Real Time Market Report (2022) 

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 

https://en.wikipedia.org/wiki/Brent%27s_method
https://www.nrel.gov/analysis/cambium.html
https://atb.nrel.gov/


Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.107593 Syst Control Trans 3:519-526 (2024) 519 

Stochastic Programming Models for Long-Term Energy 
Transition Planning 
Molly A. McDonalda,b, Christos T. Maraveliasa,b,c* 
a Princeton University, Department of Chemical and Biological Engineering, Princeton, NJ 08540, United States of America 
b DOE Great Lakes Bioenergy Research Center, Princeton University
c Princeton University, Andlinger Center for Energy and the Environment, Princeton, NJ 08540, United States of America  
* Corresponding Author: maravelias@princeton.edu.

ABSTRACT 
With growing concern over the effects of green-house gas emissions, there has been an increase 
in emission-reducing policies by governments around the world, with over 70 countries having set 
net-zero emission goals by 2050-2060. These are ambitious goals that will require large invest-
ments into the expansion of renewable and low-carbon technologies. The decisions about which 
technologies should be invested in can be difficult to make since they are based on information 
about the future, which is uncertain. When considering emerging technologies, a source of uncer-
tainty to consider is how the costs will develop over time. Learning curves are used to model the 
decrease in cost as the total installed capacity of a technology increases. However, the extent to 
which the cost decreases is uncertain. To address the uncertainty present in multiple aspects of 
the energy sector, multistage stochastic programming is employed considering both exogenous 
and endogenous uncertainties. It is observed in scenarios when costs of emerging technologies 
decrease to competitive prices, decisions to invest in these technologies should be made earlier 
to allow for the decrease in costs to be taken advantage of in the future. Noticeably, a wider variety 
of energy and biofuel technologies are invested in when uncertainty is included. Interestingly, it is 
also seen that there are lower carbon emissions when uncertainty is considered. 

Keywords: Stochastic Optimization, Design Under Uncertainty, Energy Systems 

INTRODUCTION 
Due to concerns of global warming, many countries 

are setting goals to reach net-zero emissions sometime 
between the years 2050-2060 [1]. These goals will re-
quire large investments into low-carbon and renewable 
technologies, which will allow for emerging and underde-
veloped technologies to advance. These technologies 
will need to be integrated into our current energy system 
efficiently. Energy system modeling can be used to in-
form decision makers about possible investment path-
ways that can help to reach net-zero emissions.  

Energy system models are used to analyze how we 
can expand and operate a given set of technologies to 
meet specified goals. The model results can be used to 
inform policy makers of possible energy futures and 
show guiding decisions on the best investment choices 
to make today [2]. The results are not meant to be taken 
as the only way to reach the specified goals, but show 

guiding decisions, such as what technologies are often 
invested in, what technologies are rarely invested in, or 
what technologies should be built in which regions. En-
ergy system models tend to be over many years and in-
clude many sources of uncertainty since it is not known 
how parameter values are going to change over time.  

When considering emerging or underdeveloped 
technologies, a source of uncertainty to consider is how 
the costs will develop over time. Learning curves are 
used to model the decrease in cost as the total installed 
capacity of a technology increases. The steepness of this 
curve, or how quickly the cost decrease, is based on a 
learning rate [3]. These learning rates can be estimated 
for any given technology, but ultimately are uncertain.  

In order to address the uncertainty present in an en-
ergy system model, a sensitivity analysis is often com-
pleted to test how the outcomes will change as the input 
parameters are varied [2]. While this method does offer 
insight into how decisions might change as parameters 

mailto:maravelias@princeton.edu
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change, it does not offer a unique decision that can be 
made today to address the different parameter levels. 
The goal of this paper is to develop a multistage stochas-
tic programming (MSSP) model in order to account for 
uncertainty and is applied to a problem for the United 
States using real data, allowing for the distinct parameter 
outcomes to be related today through first-stage deci-
sions.  

METHODS 

Stochastic Programming 
Stochastic programming is used to account for un-

certainty in model parameters through the use of scenar-
ios. In a two-stage stochastic program, the decision var-
iables are partitioned into two sets: first-stage decisions 
and second-stage decisions. First-stage decisions are 
made before any uncertainty is observed and are the 
same for all scenarios, while second-stage decisions are 
made after uncertainty is observed and depend on the 
scenario. In a multistage stochastic program, there are 
more than two stages of decisions because uncertainty 
is observed sequentially throughout the time horizon. A 
multistage stochastic program is shown in equations 1-5 
[4]:  

min 𝑧𝑧 = 𝑐𝑐1𝑥𝑥1 + 𝐸𝐸𝑠𝑠∈𝑺𝑺2[𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞𝑠𝑠2𝑦𝑦𝑠𝑠2] + ⋯+         (1) 

      𝐸𝐸𝑠𝑠∈𝑺𝑺𝐻𝐻[𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞𝑠𝑠𝐻𝐻𝑦𝑦𝑠𝑠𝐻𝐻]                (1) 

s.t. 𝑊𝑊1𝑥𝑥1 = ℎ1                 (2) 

𝑇𝑇𝑠𝑠2𝑥𝑥1 +  𝑊𝑊2𝑦𝑦𝑠𝑠2 = ℎ𝑠𝑠2,∀𝑠𝑠 ∈ 𝑺𝑺          (3) 

… 

𝑇𝑇𝑠𝑠𝐻𝐻𝑥𝑥𝐻𝐻−1 +  𝑊𝑊𝐻𝐻𝑦𝑦𝑠𝑠𝐻𝐻 = ℎ𝑠𝑠𝐻𝐻,∀𝑠𝑠 ∈ 𝑺𝑺          (4) 

𝑥𝑥1,𝑦𝑦𝑠𝑠𝑡𝑡 ≥ 0,    𝑡𝑡 = 2, … ,𝐻𝐻;         (5) 

There are H stages that the following vectors and 
matrices relate to. 𝐸𝐸𝑠𝑠∈𝑺𝑺𝐻𝐻  is the expectation of the costs 
across the scenarios in a given stage, 𝑐𝑐 is the first-stage 
cost vector, 𝑞𝑞𝑠𝑠𝐻𝐻 is the cost vector related to stage H, 𝑊𝑊𝐻𝐻 
is a recourse matrix, ℎ𝑠𝑠𝐻𝐻 is the right-hand side, and 𝑇𝑇𝑠𝑠𝐻𝐻 is 
a technology matrix that is used to relate the current and 
previous stage decisions together. First-stage decisions 
are shown as 𝑥𝑥1 and 𝑦𝑦𝑠𝑠𝐻𝐻 refer to the decisions at stage H 
and scenario 𝑠𝑠.  

Uncertainty is classified into two types: exogenous 
and endogenous. If the uncertainty is exogenous, it is 
known when in time the uncertainty will be observed and 
scenarios will become distinguishable. In the case of en-
dogenous uncertainty, it is not known when uncertainty 
will be observed and, thus, in a MSSP setting when sce-
narios will become distinguishable; rather, the timing de-
pends on decisions [5]. For example, a cost reduction for 
a technology will only be observed if that technology is 

chosen to be invested in; otherwise, it will remain un-
known. Nonanticipativity constraints are used to group 
together scenarios that have not yet become distinguish-
able. For the case of exogenous uncertainty, a variable 𝑦𝑦 
must have the same value across scenario pairs until a 
certain time period when the uncertainty is observed, 
seen in equation 6.  

𝑦𝑦𝑡𝑡,𝑠𝑠 = 𝑦𝑦𝑡𝑡,𝑠𝑠′ ,  ∀ (𝑠𝑠, 𝑠𝑠′, 𝑡𝑡) ∈ 𝜴𝜴𝒕𝒕         (6) 

Where 𝜴𝜴𝒕𝒕 is the set of scenario pairs that are indis-
tinguishable at time period t. 

For endogenous uncertainty, when the uncertainty 
will be observed depends on which decisions are made. 
Equation 7 is the nonanticipativity constraint for endoge-
nous uncertainty. The variable 𝑦𝑦 is now bounded by an-
other variable 𝑧𝑧, which is the decision variable that re-
lates to when the observation of uncertainty will occur. 
The timing of when this decision will be made is unknown.  

−𝑧𝑧𝑡𝑡,𝑠𝑠,𝑠𝑠′ ≤ 𝑦𝑦𝑡𝑡,𝑠𝑠 − 𝑦𝑦𝑡𝑡,𝑠𝑠′ ≤ 𝑧𝑧𝑡𝑡,𝑠𝑠,𝑠𝑠′ ,∀  ( 𝑠𝑠, 𝑠𝑠′) ∈ 𝜳𝜳       (7) 

Where 𝜳𝜳 is the set of scenario pairs that are indis-
tinguishable until uncertainty is observed. 

Value of the Stochastic Solution 
The value of the stochastic solution (VSS) is used to 

measure the possible benefit of using stochastic pro-
gramming. The calculation of the VSS is shown in equa-
tion 8.  

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐸𝐸𝐸𝐸𝑉𝑉 − OBJ_𝑀𝑀𝑉𝑉𝑉𝑉𝑀𝑀          (8) 

Where EEV is the expected result of using the solu-
tion of the deterministic model and OBJ_MSSP is the op-
timal objective function value of the MSSP model. EEV is 
calculated by solving the deterministic model along each 
scenario path of the stochastic model and finding the ex-
pected value at the end of the time horizon using the 
same probabilities as the stochastic model [6]. The EEV 
is used in calculating the VSS rather than the optimal ob-
jective function value of the deterministic model because 
the deterministic model only considers one outcome of 
all parameters that is within the range of the scenarios 
that the stochastic model considers. By calculating the 
EEV, the deterministic model is exposed to the same un-
certainty that the stochastic model is accounting for. This 
is a fairer comparison between accounting for uncer-
tainty through stochastic programming and using a per-
fect foresight (deterministic) model when uncertainty is 
present.   

MODEL FORMULATION 
The developed model is an energy system model 

similar to Rathi et al. with the addition of constraints on 
transportation and trade between regions and is applied 
to a problem for the entire United States [7]. The model 
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is a capacity expansion model that considers ten liquid 
fuel producing technologies, nine electricity generating 
technologies, and two intermediate technologies and 
must meet the expected demand in the United States 
over a 30-year time horizon that is divided into six 5-year 
time periods. For this problem, the United States is rep-
resented by 7 regions: Alaska, Hawaii, and 5 regions for 
the continental United States that follow the Petroleum 
Administration for Defense Districts (PADDs) as defined 
by the EIA [8]. Alaska and Hawaii are considered separate 
regions since they are disconnected from the continental 
United States. Trade between and within the different re-
gions is also considered. The regions for the United 
States as well as an example of how one region is con-
nected to the rest of the country is illustrated in Figure 1. 

A deterministic and stochastic mixed integer linear 
model are developed that include constraints on capacity 
expansion, demand and supply, mass/energy flows 
through technologies, and conversion of components in 

each technology. The models also include constraints on 
transportation between and within the regions, the mate-
rial allowed to be transported by different transportation 
modes, and the direction material is allowed to flow be-
tween the regions. The objective function, shown in 
equation 9 for the deterministic model, is to minimize the 
cost of the system. The costs considered are the capital 
costs (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), purchasing cost of raw material and final 
products (𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃), operating costs (𝐶𝐶𝑂𝑂𝐶𝐶), transportation 
costs (𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶𝑇𝑇𝑇𝑇), and a penalty for unmet demand (𝐶𝐶𝐶𝐶𝑃𝑃𝑇𝑇). 
The costs can be reduced through credits for carbon 
capture (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃) and production of electricity from re-
newable sources (𝐶𝐶𝑃𝑃𝑃𝑃𝑇𝑇). 

min𝐶𝐶𝐶𝐶𝑉𝑉𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 + 𝐶𝐶𝑂𝑂𝐶𝐶 + 𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶𝑇𝑇𝑇𝑇 + 𝐶𝐶𝐶𝐶𝑃𝑃𝑇𝑇 −
                   𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐶𝐶𝑃𝑃𝑃𝑃𝑇𝑇               (9) 

The stochastic model has the same costs in the ob-
jective function, but the objective is to minimize the 

 
Figure 1: Map of the United States and example of how PADD5 is connected to the rest of the country. The color 
of the arcs indicate different transportation modes that are allowed between the different regions. Trade can occur 
in both direction of arcs with double sided arrows, while trade is restricted to one direction along arcs with single 
sided arrows. 

 
Figure 2: Scenario trees for (A) the demand of electricity, (B) the credit for carbon capture, and (C) the learning 
curve for a corn ethanol plant.  
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expected cost across all the scenarios. 
The system we study includes 24 scenarios repre-

senting the observation of two exogenous random pa-
rameters (demand and credits related to carbon emission 
reduction) and one endogenous random parameter 
(learning rate of biofuel technologies). The scenario trees 
for some of the random parameters can be seen in Figure 
2. The outcome of the demand and credits related to car-
bon emission reduction are denoted as OD and OI in Fig-
ure 2A and 2B respectively. The total energy demand is 
assumed to be known, but what fraction that will be met 
by electricity or liquid fuels is unknown. The potential de-
mand for electricity is presented in Figure 2A. There are 
six possible outcomes that relate to different levels of 
electrification with the highest electrification denoted as 
OD1 and the lowest level of electrification (or highest liq-
uid fuel demand) denoted as OD6.  

It is assumed that all biofuel technologies will learn 
together, meaning the capacity that will indicate a de-
crease in the capital cost along the x-axis of the learning 
curve, as shown in Figure 2C, will be based on the cumu-
lative capacity of all biofuel technologies. For example, if 
an investment is made to expand corn ethanol plants, and 
the total installed capacity is increased from 5 quads to 
10 quads, the cost will now decrease for all biofuel 

technologies. For instance, bioenergy with carbon cap-
ture and storage (BECCS) plants will also have a de-
crease in cost even though the total capacity of BECCS 
plants in the system has not changed. The decrease in 
cost will depend on the learning rate of the individual 
technology. 

RESULTS 

Energy Transition Pathway of the 
Deterministic and Stochastic Models 

The initial investment decisions of the solution to the 
stochastic model are different than the initial investment 
decisions of the solution to the deterministic model. The 
energy transition pathway for the deterministic model 
and three scenarios of the stochastic model are pre-
sented in Figure 3A and Figure 3B-D respectively. The 
initial investment decisions of the stochastic model are 
the first stage decisions, meaning that they are the same 
across all scenarios. These decisions are seen in the sec-
ond time period of Figure 3B-D. The capacity is not avail-
able until the second time period because we consider a 
5-year lag between the time an investment decision is 

 
Figure 3: (A) Energy transition pathway for the deterministic model. Only three scenarios of the stochastic model 
are shown. (B) Energy transition pahtway of a scenario with high-level electrification. (C) Energy transition 
pahtway of a scenario with mid-level electrification. (D) Energy transition pahtway of a scenario with low-level 
electrification. Only technologies with a non-zero level of capacity are shown.  
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made and when the capacity is available for use. When 
the first-stage decisions of the stochastic model are 
compared with the initial investment decisions of the de-
terministic model, it is observed that the stochastic 
model has more investment into onshore wind, solar, re-
verse water-gas shift combined with Fischer-Tropsch 
(RWGSFTS), soybean diesel, and cellulosic ethanol with 
carbon capture. This is because the stochastic model 
considers scenarios with both higher electricity and liquid 
fuel demand along with the possibility of lower capital 
costs in biofuel technologies.  

The displayed scenarios have the same level of 
credits related to carbon emission reduction and learning 
rate but differ in the outcome of the demand. In the sce-
nario with high and mid electrification there is an increase 
in electricity generating technologies by the end of the 
time horizon compared to both the pathway of the deter-
ministic model and the low electrification scenario. The 
low electrification scenario has more liquid fuel produc-
tion capacity and less electricity generating capacity by 
the end of the time horizon compared to the pathway of 
the deterministic model and the other electrification sce-
narios.  

Comparison of Accounting for Endogenous 
and Exogenous Uncertainty  

The previous results were for a stochastic model 
that accounts for endogenous uncertainty. A stochastic 
model that considers only exogenous uncertainty was 
also considered. For the remainder of the paper, the sto-
chastic model that accounts for endogenous uncertainty 

will be referenced as 𝑉𝑉𝑃𝑃𝑇𝑇 and the stochastic model that 
accounts for exogenous uncertainty will be referenced as 
𝑉𝑉𝑃𝑃𝐸𝐸.  

In 𝑉𝑉𝑃𝑃𝐸𝐸, there is uncertainty in the fraction of the de-
mand that will be met by liquid fuels or electricity and un-
certainty in policy related to the reduction of carbon 
emissions. The uncertain parameters have the same sce-
nario trees used in the 𝑉𝑉𝑃𝑃𝑇𝑇 shown in Figure 2. There is still 
a learning curve for each biofuel technologies that is 
based on the cumulative installed capacity of all biofuel 
technologies, but the learning rate is now assumed to be 
certain. The energy transition pathway for three scenar-
ios of 𝑉𝑉𝑃𝑃𝐸𝐸 are shown in Figure 4. The scenarios shown in 
Figure 4A-C have the same level of demand and credits 
related to carbon emission reduction as Figure 3B-D. 
When only exogenous uncertainty is considered, there is 
less investment into the different biofuel technologies 
since there is not an opportunity for higher learning rates 
to be observed. Notably, there is less investment into 
corn ethanol and soybean diesel plants. This is because 
the initial capital cost of these technologies is less than 
other biofuel technologies; therefore, when endogenous 
uncertainty is considered through uncertain learning 
rates based on cumulative installed capacity, there are 
large investments into corn ethanol and soybean diesel 
plants in order to reach a cumulative installed capacity 
that is large enough for the other biofuel technologies to 
have competitive prices. Also, there is less total installed 
capacity compared to 𝑉𝑉𝑃𝑃𝑇𝑇. The optimal objective function 
value of 𝑉𝑉𝑃𝑃𝑇𝑇 is less than 1% higher than the optimal ob-
jective function value of 𝑉𝑉𝑃𝑃𝐸𝐸. This demonstrates that 

 
Figure 4: Energy transition pathways for three scenarios of 𝑉𝑉𝑃𝑃𝐸𝐸 (A) Energy transition pahtway of a scenario with 
high-level electrification. (B) Energy transition pahtway of a scenario with mid-level electrification. (D) Energy 
transition pahtway of a scenario with low-level electrification. Only technologies with a non-zero level of capacity 
are shown. 



 

McDonald et al. / LAPSE:2024.1571 Syst Control Trans 3:519-526 (2024) 524 

while the objective value obtained considering endoge-
nous uncertainty is only slightly higher than considering 
purely exogenous uncertainty, the investment decisions 
can be different, which was seen with higher investment 
into low-carbon technologies in  𝑉𝑉𝑃𝑃𝑇𝑇.  

The stochastic models are larger than their deter-
ministic counterparts since there are additional variables 
and equations, defined for all scenarios, as can be seen 
in the formulation shown in equations 1-7. All models 
were implemented in GAMS 42.1.0 and solved using 
Gurobi 10.0.0 to a 1% optimality gap on 2.6 GHz Intel clus-
ter machines. The deterministic model has 26,637 equa-
tions, 108,971 continuous variables, 1,773 binary varia-
bles and is solved in 2 seconds. 𝑉𝑉𝑃𝑃𝐸𝐸 has 345,277 equa-
tions, 1.3 million continuous variables, 21,276 binary var-
iables and is solved in 1.5 hours. Lastly, 𝑉𝑉𝑃𝑃𝑇𝑇 has 739,021 
equations, 2.6 million continuous variables, 42,552 binary 
variables and is solved in about 48 hours.  Although the 
stochastic models are significantly more expensive, con-
sidering uncertainty can lead to significant cost savings 
compared to the perfect foresight approach. 

Benefit of Accounting for Uncertainty  
In order to test the benefit of using stochastic pro-

gramming, the VSS was calculated. The optimal objective 
function value of the deterministic model is $11.28 trillion 
and the optimal objective function value of 𝑉𝑉𝑃𝑃𝑇𝑇 is $12.93 
trillion. As explained earlier, the VSS is calculated with the 
EEV in order to have a fairer comparison between a model 
that is accounting for uncertainty and a model with per-
fect foresight. The EEV is $17.07 trillion. This leads to a 
VSS of $4.15 trillion, showing that there is a benefit to 
accounting for uncertainty through the use of stochastic 
programming. 

It was also desired to test the sensitivity of the in-
vestment decisions of the deterministic and stochastic 
models to varying parameter values. To do this, the in-
vestment decisions of the deterministic model found 
when calculating the EEV and the investment decisions 
of the stochastic models were used as input parameters 
and the models were run 100 times with different param-
eter values. The parameter values that are varied are the 
random parameters considered in the stochastic models.  

Sensitivity of the results of the deterministic 
model and the stochastic model that considers 
endogenous uncertainty 

Figure 5 shows the results when the parameter val-
ues were varied 100 times for the deterministic model 
and 𝑉𝑉𝑃𝑃𝑇𝑇. The optimal objective function values (costs) for 
the deterministic model and 𝑉𝑉𝑃𝑃𝑇𝑇 as well as the EEV are 
shown as D, S, and E respectively along the top of Figure 
5A. The average cost for 𝑉𝑉𝑃𝑃𝑇𝑇  and the average cost of the 
deterministic model are denoted as 𝑉𝑉𝑃𝑃𝑇𝑇�  and 𝐷𝐷� respec-
tively. 𝑉𝑉𝑃𝑃𝑇𝑇�  is lower than 𝐷𝐷�, and the difference is larger 

than the VSS calculated earlier. This shows that consid-
ering uncertainty with stochastic programming leads to a 
system that is more robust to changes in the input pa-
rameters.  

 
Figure 5. (A) Distribution of the cost of the deterministic 
model (red) and 𝑉𝑉𝑃𝑃𝑇𝑇 (green) for 100 varied parameter 
values. (B) Carbon emissions over time for the 
deterministic model and 𝑉𝑉𝑃𝑃𝑇𝑇.    

Figure 5B shows carbon emissions over time for the 
deterministic model and 𝑉𝑉𝑃𝑃𝑇𝑇. The carbon emissions of 𝑉𝑉𝑃𝑃𝑇𝑇 
are lower for most of the time horizon, due to higher in-
vestments into renewable and low-carbon technologies. 
There is an increase in emissions in the last time period 
because there is a finite horizon. Since there is no infor-
mation past the last period on demand or credits to re-
duce carbon emissions, the model will increase emissions 
in order to meet the highest level of demands at the 
cheapest cost. 
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Sensitivity of the results of the stochastic model 
that considers endogenous uncertainty the 
stochastic model that considers exogenous 
uncertainty 

The sensitivity of 𝑉𝑉𝑃𝑃𝐸𝐸 and 𝑉𝑉𝑃𝑃𝑇𝑇 are shown in Figure 6. 
The parameter values were varied for 100 simulations 
with the same values used in the simulations to compare 
the investment decisions of the deterministic model and 
𝑉𝑉𝑃𝑃𝑇𝑇. The results of 𝑉𝑉𝑃𝑃𝑇𝑇 are the same in Figure 5 and Figure 
6.  

 
Figure 6. (A) Distribution of the cost of 𝑉𝑉𝑃𝑃𝐸𝐸 (blue) and 𝑉𝑉𝑃𝑃𝑇𝑇 
(green) for 100 varied parameter values. (B) Carbon 
emissions over time for 𝑉𝑉𝑃𝑃𝐸𝐸 and 𝑉𝑉𝑃𝑃𝑇𝑇.   

The costs for 𝑉𝑉𝑃𝑃𝑇𝑇 and 𝑉𝑉𝑃𝑃𝐸𝐸 are shown along the top 
of Figure 6A and are similar, where the cost of 𝑉𝑉𝑃𝑃𝑇𝑇 is less 
than 1% higher than the cost of 𝑉𝑉𝑃𝑃𝐸𝐸. The average cost of 
𝑉𝑉𝑃𝑃𝑇𝑇 and 𝑉𝑉𝑃𝑃𝐸𝐸 are denoted as 𝑉𝑉𝑃𝑃𝑇𝑇�  and 𝑉𝑉𝑃𝑃𝐸𝐸�  respectively. The 
average costs are similar but 𝑉𝑉𝑃𝑃𝑇𝑇�  is slightly higher. The 
carbon emissions over time (Figure 6B) are also similar, 

but 𝑉𝑉𝑃𝑃𝑇𝑇 has slightly lower emissions than 𝑉𝑉𝑃𝑃𝐸𝐸. Although 
the costs are not significantly different, it is important to 
note that the technology mix can be different, as seen in 
the differences in capacities of Figure 3B-D and Figure 
4A-C. 

CONCLUSIONS 
An energy system model that considers capacity 

expansion of liquid fuel producing technologies and en-
ergy generating technologies to meet the energy demand 
was developed and applied to a problem for the United 
States using real data. As most literature energy system 
models, it was assumed that there is a single decision 
maker for the entire system, which, obviously, is not the 
case. Nevertheless, the results of the proposed models 
allow us to better understand the energy sector by iden-
tifying what levels and types of investments are neces-
sary to meet certain goals and constraints, such as net 
zero emissions. A multistage stochastic programming 
model was developed to consider both exogenous and 
endogenous uncertainty. The exogenous parameters 
considered were the demand in electricity and liquid 
fuels, and credits related to reducing carbon emissions. 
Endogenous uncertainty was introduced through uncer-
tain learning rates of biofuel technologies. When uncer-
tainty is considered through stochastic programming 
there are higher initial investments into renewable and 
low-carbon technologies, which will be required in order 
to meet net-zero emission goals. With the calculation of 
the VSS, it was seen that there is a cost benefit when we 
consider uncertainty rather than assuming perfect fore-
sight. Also, it was shown that the results of the stochastic 
model led to solution with additional desired characteris-
tics, such as lower carbon emissions and a technology 
mix that is more robust to varying input parameter values. 
Lastly, it was seen that introducing endogenous uncer-
tainty does not increase the cost of the system signifi-
cantly compared to considering only exogenous uncer-
tainty, but there can be a difference in the investment 
decisions.  
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ABSTRACT 
Thermal separation processes, such as distillation, play a pivotal role in the chemical and petro-
chemical sectors, constituting a substantial portion of the industrial energy consumption. Conse-
quently, owing to their huge application scales, these processes contribute significantly to green-
house gas (GHG) emissions. Decarbonizing distillation units could mitigate carbon emissions sub-
stantially. Heat Pumps (HP), that recycle lower quality heat from the condenser to the reboiler by 
electric work present a unique opportunity to electrify distillation systems. In this research we try 
to answer the following question in the context of multi-component distillation – Do HPs actually 
reduce the effective fuel consumption or just merely shift the fuel demand from chemical industry 
to the power plant? If they do, what strategies consume minimum energy? To address these in-
quiries, we construct various simplified surrogate and shortcut models designed to effectively en-
capsulate the fundamental physics of the system. These models are integrated into a superstruc-
ture-based Mixed-Integer Nonlinear Programming (MINLP) formulation, which is amenable to 
global optimization algorithms aimed at minimizing the effective fuel consumption of the system. 
Moreover, through the examination of a toy 4-component alcohol separation example, we demon-
strate how HPs can notably reduce carbon emissions, even when the consumed electricity is gen-
erated by burning fossil fuels.       

Keywords: Distillation, Optimization, Energy Efficiency, Process Design

INTRODUCTION 
With more than 40,000 operational columns in the 

USA alone, distillation accounts for 90-95% of all fluid 
separations [9]. Distillation is a thermal method that uses 
differences in component volatilities to achieve separa-
tion. In the current economy, thermal energy is generally 
provided as heat by the combustion of fossil fuels. Given 
the immense scale at which distillation is deployed, its 
cumulative energy consumption constitutes a substantial 
2.5% of the overall energy consumption within the United 
States [6]. Consequently, distillation is also responsible 
for a significant fraction of GHG emissions. 

One of the solutions to minimize this significant car-
bon footprint of distillation systems is to electrify them. 
Two predominant advantages of electrification are as fol-
lows:  

1. Even within the current economic framework,

which includes a portion of electricity generation 
sourced from non-renewables, electrification 
can potentially curtail fuel consumption. 

2. Additionally, it steers the chemical industry
toward the imminent shift of energy sources to
renewable electricity [2].

In this study, we delve into the application of heat inte-
gration (HI) and heat pumps (HP) for electrifying distilla-
tion systems. Heat Integration involves the transfer of 
energy from a heat source with a higher temperature to 
a lower temperature level where heat is needed [13]. In 
contrast, heat pumps are devices that can upgrade the 
heat from a lower temperature source to a higher tem-
perature sink using mechanical work [15]. They are par-
ticularly useful in binary and multi-component distillation 
systems because the condenser’s heat at lower temper-
atures can be upgraded effectively to meet the reboiler 
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heat demands [3]. 

 

 We demonstrate the synergistic use of the two 
technologies using an equimolar 4-component feed 
(Benzene, Toluene, p-Xylene and o-Xylene) separation. 
For a 100 kmol/hr feed, the configuration in Figure 1 (a) 
consumes about 130% more energy than the HI-HPAD 
version of the same configuration in Figure 1 (b).  
 Figure 1 (a) shows one of the many possible se-
quences for a 4-component separation. It's important to 
note that in the first column, the feed ‘ABCD’ undergoes 
a sloppy split i.e. one or more of its components are dis-
tributed in the distillate and the residue. Considering 
these splits is crucial during the design of a distillation 
sequence. By modifying the distribution of components, 
it becomes possible to influence the temperature of the 
condenser and reboiler. This, in turn, facilitates the es-
tablishment of heat integration links between condensers 
and reboilers. For example, by altering the split of com-
ponent ‘B’, the temperature of the first column’s reboiler 
is brought down such that vapor from the third column 
can heat the reboiler of the first column (see Figure 1(b)). 
Further, in this research, we focus on a specific type of 
heat pump called as – ‘Mechanical Vapor Recompression’ 
(MVR) due to its widespread applicability in the literature 
and industry. In this setup, the vapors from the overhead 
are compressed to a higher pressure and then con-
densed against the boiling liquid in the reboiler as in the 
third column in Figure 1 (b). Note that the reboiler of the 
third column is partly powered by steam (not shown in 
the diagram). The potentially high coefficient of perfor-
mance (COP) and versatile applicability make the tech-
nology an appealing option for the electrification process. 
       The decisions pertaining to the number of configura-
tions, their operating conditions, and HI-HP links for mul-
ticomponent separations increase combinatorially, pro-
hibiting industrial practitioners from evaluating every 
possibility in commercial process simulators [3,17]. This 
can result in suboptimal configurations being employed 
and a higher energy penalty. The goal of this research is 
to develop a method that generates a rank list of config-
urations exploring all HI-HP possibilities that help 

industrial practitioners in decision making.  
 Towards that goal, in the following section ‘Model 
Development’, we propose equations that capture the es-
sential thermodynamics with high fidelity while still being 
tractable by global optimization solvers like Gurobi and 
BARON. Further, the developed equations are organized 
in a superstructure based MINLP formulation that em-
beds all possible distillation sequences (including sloppy 
splits), heat integration links and heat pump connections. 
Subsequently, we validate the proposed model by apply-
ing it to a binary alcohol separation system using the 
commercial process simulator ASPEN Plus V11. Addition-
ally, through a demonstration involving a toy 4-compo-
nent alcohol separation problem, we showcase the mod-
el's efficacy in identifying configurations that significantly 
reduce effective fuel consumption. 

MODEL DEVELOPMENT 
Developing such a framework presents three chal-

lenges – determining the energy consumption of a split 
given the component distribution, estimating tempera-
ture of multi-component phase changing streams and the 
electricity consumption of compressor in the heat pump. 
We solve the three problems systematically in this sec-
tion -  

Heat Duty Estimation in Multicomponent 
Distillation Sequencing 

The distillation sequencing problem has received 
extensive attention in the literature [1,4,5,17,18]. A com-
parative analysis among different configurations is pos-
sible when each configuration operates at its global min-
imum energy. Hence, we use state of the art superstruc-
ture based global optimization model relying on the Un-
derwood’s method to compute minimum energy con-
sumption of a given split [7]. 

State-of-the-art methods directly using Under-
wood’s equations minimize vapor consumption and em-
ploy the Constant Molar Overflow (CMO) assumption. We 
relax this assumption using the CHT (Constant Heat 
Transport) model [12]which employs a simple variable 
transformation for the flow variables –  

FiLH = Fiλi 

ziLH =
ziλi

∑ zjλjn
j=1

 
(1) 

FiLH is the latent heat variable defining heat flow, Fi 
is the molar flow and λi is the molar enthalpy of vaporiza-
tion of component ‘i’ in the feed. This straightforward 
transformation allows the computation of the needed 
heat duties for the heat pump calculations. 

Figure 1. (a) One of the many possible configurations (b) 
HI-HPAD version of (a) (The part in yellow represents 
heat integration, the part in blue represents heat pump) 
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Multi-component Phase Change Temperature 
Estimation 

In multi-component distillation systems, we fre-
quently encounter streams that undergo non-constant 
temperature phase changes. To guarantee a positive 
driving force in the heat exchanger, involving the con-
densation of compressed vapor and boiling liquid, we 
have developed an easy-to-use surrogate model [14] – 

T =
Bmix

Amix + ln(ρ) − Cmix;  ρ =
Pref

P
�αixi

i
 (2) 

The parameters Amix, Bmix and Cmix are specific to a 
mixture and are trained using data from experiments or 
detailed thermodynamic models. The variable 𝜌𝜌 is called 
the ‘pressure scaled pseudo relative volatility’. It captures 
the thermodynamic state (liquid fraction) of the stream 
by changing liquid mole fraction variables. In our recent 
article [14], the model underwent testing across various 
non-azeotropic multi-component systems, yielding a 
high coefficient of determination (R²) of approximately 
0.99 for all the cases. An expedient and accurate estima-
tion of the temperatures of fluids involved in heat pump-
ing is essential. 

Heat Pump Electricity Consumption 
Similar to the temperature model, the electricity 

consumption of the compressor is modeled by making a 
‘reversible heat pump’ approximation –  

W = FLH � �
T(P2)
T(P1)  −  1�dqLH

1

0
 

qLH =
LLH

FLH
 

(3) 

P2 is the pressure of the compressed overhead va-
por in the heat pump while P1 is the pressure of the col-
umn. The integral factorizes the effect of changing tem-
perature as the stream undergoes phase transition.  

Leveraging temperature and work consumption 
models, in the next section, we construct a superstruc-
ture atop the MINLP model by Tumbalam Gooty et al. 
(2022) incorporating heat pump links between various 
condensing and boiling streams.  

MINLP SUPERSTRUCTURE 
The components in the MINLP formulation are rep-

resented by alphabets, with their order corresponding to 
decreasing relative volatility. Each stream is represented 
by a sequence of alphabets, where each alphabet corre-
sponds to a distinct component present in the stream 
(see Figure 2). 

 
Figure 2. MINLP Superstructure for HI-HP integrated 
distillation column sequencing. Streams (Squares), 
Condensers (filled circles), Reboilers (empty circles) for 
the separation of a 4-component mixture. The dotted 
green paths respresent the heat-work network. 
 

To establish a heat-work network within the existing 
sequencing superstructure, we connect all condensers to 
all reboilers and assign a binary variable representing the 
presence or absence of a connection between each pair. 
The state of these binary variables, activated or deac-
tivated, is determined by the driving force for heat ex-
change. 

This superstructure accommodates both heat 
pumps and steam utility to power the reboilers. Our ob-
jective is to minimize the effective fuel consumption for 
generating the required electricity and steam, assuming 
a boiler efficiency of 85% and a power plant efficiency of 
50%. 

MODEL VALIDATION: 
The effectiveness of the MINLP model for multi-

component heat duty prediction has been thoroughly es-
tablished through extensive testing on a variety of mix-
tures [12,16]. Additionally, the temperature model's accu-
racy has been verified by comparing it to detailed ther-
modynamic calculations [14]. In this study, we focus 
solely on validating the performance of the 'reversible 
heat pump model'. 

We validate the model using two test cases – Meth-
anol & Ethanol, Methanol & Propanol. These cases are 
specifically chosen to evaluate the model performance 
with increasing boiling point differences in the feed com-
ponents. The flowsheet simulated in ASPEN Plus V11 is 
shown in Figure 3. 
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Figure 3. HPAD for binary distillation simulated in 
ASPEN Plus V11 

Table 1: Effective fuel consumption for Steam driven and 
HPAD distillation. The saturated liquid feed mixture is set 
to be equimolar. The energy consumption values are ex-
pressed in the unit MJ/kmol feed. 

Binary 
Mixture 

ASPEN Shortcut Model 
Steam 
Driven HPAD Steam 

Driven HPAD 

Methanol -
Ethanol     

Methanol-
Propanol     

 
The feed to the distillation column is configured to 

be equimolar, and the target product purity is set at 99%. 
As the research primarily centers around a comparative 
analysis of various strategies, the number of stages' de-
grees of freedom (DOF) is excluded from the analysis. In 
ASPEN simulation, a uniform number of stages, specifi-
cally 200, is applied for all simulations. Additionally, the 
minimum approach temperature in the heat pump sys-
tems is standardized to be 5°C. Note that the shortcut 
model performs calculations for a pinched column, there-
fore, a lower energy demand than the corresponding AS-
PEN simulation is not unexpected. 

The data presented in Table 1 clearly indicates that 
the shortcut model demonstrates commendable perfor-
mance for both mixtures. This suggests that the model is 
proficient in simulating the separation of components 
with moderate temperature differences. However, based 
on our experience, as the boiling points of the mixture 
components diverge significantly, the difference be-
tween the calculated energy consumption values from 
the proposed model and the ASPEN simulation tends to 
increase. Nevertheless, when comparing different con-
figurations, the model accurately preserves the relative 
benefits in them. 

In the next section, we demonstrate the efficacy of 
the model using a toy 4-component alcohol separation 
problem.   

 

CASE STUDY – ALCOHOL SEPARATION 
We proceed to evaluate the framework on a toy 

multi-component (ABCD) alcohol mixture separation 
problem. The saturated liquid feed comprises 35% meth-
anol (A), 35% ethanol (B), 20% propanol (C), and 10% bu-
tanol (D). The problem is reformulated as a Mixed-Integer 
Quadratically Constrained Programming (MIQCP) prob-
lem and solved using Gurobi 9.1.  

Figure 4 illustrates the configuration with the lowest 
effective fuel consumption, achieved without employing 
heat integration or a heat pump (HI/HP). This configura-
tion is referred to as a fully thermally coupled system 
(FTC). The calculated effective fuel consumption using 
the shortcut model for this configuration is 56.7 MJ/kmol 
feed. 

 
Figure 4. Lowest energy consuming configuration that 
doesn't involve heat integration or heat pumps. This 
configuration is the dividing wall column version of fully 
thermally coupled (FTC) system. 

Subsequently, we introduce heat integration (HI) 
links in the model, allowing for varying column pressures 
while still utilizing steam as the energy source. Figure 5 
depicts the optimal heat-integrated configuration, result-
ing in a reduced effective fuel consumption of approxi-
mately 17.5% to 46.7 MJ/kmol feed. The dividing wall col-
umn versions of multi-component configurations can be 
drawn using the method proposed by Ramapriya et al. 
[10,11]. Similar to the fully thermally coupled system 
(FTC), the proposed optimal configuration employs 
steam at the highest temperature, specifically in reboiler 
D. The divided wall column beneath operates at a higher 
pressure, facilitating heat transfer to the column above. 
It is noteworthy that the condensation of stream AB at a 
higher pressure provides heat to reboiler C at a lower 
pressure. Such integrations remain unexplored if column 
pressure variation is not considered and demonstrates 
the efficacy of our model.  
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Figure 5. Lowest energy consuming configuration 
involving heat integration but not heat pumps. 

Furthermore, the problem is constrained to include 
only one heat pump compressor. Figure 6 illustrates one 
of the top configurations that minimizes effective fuel 
consumption to 21.4 MJ/kmol feed. The fuel consumption 
of this is approximately 63% less compared to FTC and 
54% lower as compared to the heat integrated configu-
ration. Two notable features of the presented configura-
tion are: (a) The configuration does not rely on any steam 
utility, and (b) The entire separation unit operates using 
only a single compressor. Given that compressors con-
tribute significantly to the capital expenditures (CAPEX) 
of the system, the use of a single compressor results in 
reduced capital costs. 

 
 

Figure 6. One of the optimal configurations to separate 
the 4-comp alcohol mixture involving heat integration 
and heat pumps. The configuration involves a single 
compressor as the energy input. 
 

CONCLUSIONS 
In the era of decarbonization, it is crucial to evaluate 

whether the proposed electrification of unit operations 
genuinely reduces fuel consumption or merely shifts the 
demand for fuel from the chemical industry to power 
plants. In this article, we develop a systematic framework 
to evaluate the aforementioned metric for multi-compo-
nent distillation systems. 

The framework relies on different shortcut and sur-
rogate models which capture the thermodynamics of the 
system efficiently. Through a couple of binary distillation 
examples, we establish the accuracy of the model in 
comparing different alternatives and reduction in fuel 
consumption. Finally, using a toy multicomponent prob-
lem, we demonstrate the efficacy of the proposed frame-
work to identify configurations consuming significantly 
lower fuel than traditional steam heated distillation units. 

For most cases, HP assisted configurations can help 
mitigate carbon emissions in the current economy. A fur-
ther reduction in energy consumption can be brought 
about by using intermediate reboilers/condensers, Multi-
effect distillation etc which can be explored in the con-
text of multi-component distillation systems. 

TABLE OF ACRONYMS 

Acronym Full Form 
HI Heat Integration 
HP Heat Pump 
HPAD Heat Pump Assisted Distillation 
CAPEX Capital Expenditure 
FTC Fully Thermally Coupled Column 
MINLP Mixed Integer Non-Linear Programming 
CMO Constant molar Overflow 
CHT Constant Heat Transport 
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ABSTRACT 
As a low-carbon fuel, feedstock, and energy source, hydrogen is expected to play a vital role in 
the decarbonization of high-temperature process heat during the pyroprocessing steps of clinker 
production in cement manufacturing. However, to accurately assess its potential for reducing CO2 
emissions and the associated costs in clinker production applications, a techno-economic analysis 
and a study of facility-level CO2 emissions are necessary. Assuming that up to 20% hydrogen can 
be blended in clinker fuel mix without significant changes in equipment configuration, this study 
evaluates the potential reduction in CO2 emissions (scopes 1 and 2) and cost implications when 
replacing current carbon-intensive fuels with hydrogen. Using the direct energy substitution 
method, we developed an Excel-based model of clinker production, considering different hydro-
gen–blend scenarios. Hydrogen from steam methane reformer (gray) and renewable-based elec-
trolysis (green) are considered as sources of hydrogen fuel for blend scenarios of 5%–20%. Metrics 
such as the cost of cement production, facility-level CO2 emissions, and cost of CO2 avoided were 
computed. Results show that for hydrogen blends (gray or green) between 5% and 20%, the cost 
of cement increases by 0.6% to 16%, with only a 0.4% to 6% reduction in CO2 emissions. When the 
cost of CO2 avoided was computed, the extra cost required to reduce CO2 emissions is $229 to 
$358/ metric ton CO2. In summary, although green hydrogen shows promise as a low-carbon fuel, 
its adoption for decarbonizing clinker production is currently impeded by costs. 

Keywords: Cement, Clinker, Hydrogen, Decarbonization, CO2. 

INTRODUCTION 
In the United States, cement (and lime) production 

in 2022 is responsible for 31 million metric tons (MMT) 
CO2 emissions of the industry sector’s total CO2 emis-
sions [1]. These GHG emissions attributed to the cement 
sector are directly associated with clinker manufacturing, 
which constitutes 70%–90% of conventional cement 
blends. With clinker production volume of 79 MMT in 
2022 [2], if the status quo is maintained, reduction of 
these emissions is vital if we intend to achieve the 1.5°C 
target. 

Because clinker manufacturing involves the break-
down of limestone to lime and the concurrent production 
of byproduct CO2 in a high-temperature pyroprocessing 

step, the generation of process- and combustion-related 
CO2 emissions is currently inevitable. Owing to the chem-
istry of the reaction, process-related CO2 emissions ac-
count for up to 60% of total clinker production CO2 emis-
sions with the remaining associated with energy use. 
Given the twofold sources of CO2 emissions in cement 
production, efforts are channeled toward decarbonizing 
one or both.  

To decarbonize the cement industry, implementa-
tion of the crosscutting decarbonization pillars—namely 
energy efficiency; low-carbon fuels, feedstocks, and en-
ergy sources (LCFFES); industrial electrification; and car-
bon capture, utilization, and storage (CCUS)—are neces-
sary conditions to attain a low-carbon cement industry. 
Hence, over the years, different research efforts have 
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been focused on these carbon-reducing strategies, tech-
nologies, and practices. 

For example, Worrell et al. [3] conducted an energy 
efficiency analysis using 30 energy-efficient technolo-
gies and measures in the US cement sector. Results of 
the analysis showed energy and CO2 savings of 11% and 
5%, respectively. Nevertheless, current typical energy 
use in the cement sector still revolves between 3.5 and 
4.1 GJ/MT [4–6] and with emissions intensity as high as 
900 kgCO2/MT cement [7]. Advanced waste heat recov-
ery and process intensification are still needed for the 
contribution of energy efficiency pillars to be significant. 
For LCFFES applications, the use of supplementary ce-
mentitious materials such as blast furnace slag, volcanic 
ash, pozzolans, fly ash, and calcined clay can reduce the 
clinker-to-cement ratio to about 65%–75% with the inno-
vative limestone calcined clay allowing higher clinker 
substitution up to 50% [8]—thereby reducing energy use 
and emissions typically associated with clinker produc-
tion. However, a drawback to using slag and fly ash is the 
transition from blast furnace and coal power plants to 
more sustainable alternatives [9]. Industrial electrifica-
tion research has focused on the electricity-driven cal-
ciner or calciner/kiln system [4–5]—offsetting on-site 
scope 1 CO2 emissions emanating from fuel combustion 
and enabling a CO2-rich flue gas (pyroprocessing step), 
which minimizes the energy requirement for carbon cap-
ture (CC). An innovative electrified cement production in 
progress is the Leilac project designed to indirectly heat 
raw meal in a shell and tube system, efficiently separating 
the process CO2 for direct capture or use [10]. Finally, 
CCUS is primed as the sole decarbonization pillar that 
can significantly reduce CO2 intensity of the cement sec-
tor, depending on the technology implemented. How-
ever, the most feasible cement CC technologies are still 
at a low technology readiness level (TRL), and the high 
TRL technologies are very energy intensive [11], which 
the current cement facility is not equipped to support.  

Figure 1. Average cement fuel mix [12]. 

Among all decarbonization pillars, fuel switching has 
received little or no attention. Traditionally, US cement 

facilities use a range of fuel mix, as depicted in Figure 1. 
Coal and petroleum coke with high-carbon content ac-
count for 65% of this fuel mix, dominating the energy-re-
lated emissions. In practice, cement facilities usually 
combust any cheap fuel in the market or even receive a 
tipping fee to dispose of industrial wastes in the kiln [13]. 
To decarbonize the cement sector, broad commitment 
toward clean or low-carbon fuels is needed. 

Within the hydrogen economy, hydrogen as a car-
bon-free energy carrier is being pushed as a fuel that can 
decarbonize the cement industry sector. For instance, 
CEMEX has announced the use of hydrogen as a share in 
cement fuel mix for all cement facilities in Europe to attain 
zero CO2 combustion emissions and improve energy ef-
ficiency [14]. Nevertheless, whereas hydrogen seems to 
be a viable means to decarbonize cement production, the 
technical challenges, costs, and potential emissions re-
duction that could impede the full adoption of hydrogen 
as a fuel need to be evaluated.  

Hence, in this study, we assessed the cost and po-
tential CO2 emissions reduction of blending hydrogen as 
a fuel in cement production. This analysis explored the 
use of hydrogen from both conventional steam methane 
reformer (SMR) hydrogen (gray) and renewable-powered 
electrolysis hydrogen (green). In this context, scope 2 
emissions of hydrogen production were considered. In 
addition, discussions on the near-term technical chal-
lenges currently impeding hydrogen use in the industry 
sector are highlighted. Performance metrics, such as fa-
cility-level CO2 emissions, minimum cement selling price 
(MCSP), and cost of CO2 avoided (CCA), were computed. 
Overall, insights on the current state of hydrogen adop-
tion as a fuel in the cement sector are elucidated.  

METHODOLOGY 

Process modeling and assumptions 
This work employs a brown-field cement facility 

with a five-stage cyclone preheater with precalciner sys-
tem for dry portland cement manufacturing. Clinker pro-
duction is sized to be about 1.2 MMT (clinker to cement 
ratio = 81%) corresponding to an average US cement fa-
cility. In this proposed facility, hydrogen is assumed to 
substitute 5%–20% of the primary energy demand. At the 
time of this analysis, it is assumed that a hydrogen blend 
of up to 20% would not necessitate any significant mod-
ification of the equipment [24] used in the cement facility. 
The authors developed an Excel-based model for the en-
ergy demand of hydrogen-fired cement production using 
a direct energy substation method. Hydrogen supply to 
the cement facility is assumed to be met via SMR hydro-
gen (gray) and electrolysis hydrogen (green)—with asso-
ciated scope 2 emissions included. For comparison, the 
conventional cement (based on traditional fuel mix) was 
also modeled. Intrinsically, it is assumed that the cement 
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produced in each scenario meets the portland cement 
standard. Key parameters and assumptions used in the 
model are shown in Table 1.  

Figure 2 shows the proposed cement production fa-
cility. As a decarbonization strategy, different hydrogen 
blend ratios are designed to substitute carbon-intensive 
fuels such as coal and petroleum coke while keeping nat-
ural gas and biomass fuels constant. Overall, the perfor-
mance of the cement facility with different hydrogen 
sources at different blend ratios was assessed in terms 
of MCSP, facility-level CO2 emissions (scopes 1 and 2), 
and CCA. 

Table 1: Parameters used in the model. 

Parameter Value Ref 
Energy demand (GJ/t) 
Feed preparation  [] 
Fuel preparation  [] 
Pyroprocessing (with cooling)  [] 
Finish grinding  [] 
Primary thermal energy  [] 
Electricity (site)  [] 
Raw meal to clinker ratio  [] 

Process description 
Portland cement manufacturing involves the general 

steps of mining or extraction of feedstock, feedstock 
preparation via crushing and grinding operations, fuels 
preparation, the pyroprocessing operation (preheater/ 
precalciner), kiln with cooling system, and final grinding 
with additives, as shown in Figure 2.  

Raw materials for cement production such as lime-
stone, clay, shale, marl, and iron ore are mined or ex-
tracted at quarries typically located near the cement fa-
cility. Additional raw material such as gypsum needed in 
the finishing grind operation is also sourced. Cement 

facilities currently use waste materials such as fly ash 
and blast furnace slag, etc. as raw materials [16].  

To ensure the homogeneity of the mixture and that 
the appropriate chemical and physical properties are 
achieved, these raw materials are crushed into smaller 
particles using hammer or jaw crushers [6]. The crushed 
particles are further processed by grinding to form raw 
meal, which is sent to the preheater [6]. This raw material 
processing takes place in the feed preparation unit which 
is powered primarily by electricity.  

Owing to the diverse nature of fuel mixes (solids, liq-
uids, and gases) used in cement production, fuel prepa-
ration is a standard process. Conventional fuels like coal, 
petroleum coke, and waste tire are crushed, creating fine 
particles that improve combustion. These fuels are then 
combusted in the calciner and kiln to drive the calcination 
and sintering reactions. 

Raw meal from the grinder is sent to the pyropro-
cessing step, where the moisture content is reduced in 
the cyclone preheater system before the meal is sent to 
the precalciner. In the precalciner, the initial calcination 
reaction takes place at about 900°C, driving off CO2 from 
the raw meal and improving the overall thermal efficiency 
of the process. Clinker formation occurs in the rotary kiln, 
which operates at 1,450°C to produce hot solid clinker 
products. 

The final cement production step involves air cool-
ing and subsequent grinding of the clinker into a fine 
powder, which is mixed with gypsum and other additives 
to form cement. 

Facility-level CO2 emissions assessment 
In this analysis, the facility-level CO2 emissions are 

based on scopes 1 and 2 emissions emanating from on-
site (process and combustion) and upstream (electricity 
and hydrogen) emissions. Other on-site CO2 emissions 
such as mobile equipment use are not considered. The 

 
Figure 2: Proposed cement facility with hydrogen blend in fuel mix. 
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facility-level CO2 emissions are computed as:  

𝐶𝐶𝐶𝐶2𝑡𝑡 = 𝐶𝐶𝐶𝐶2𝑝𝑝 + 𝐶𝐶𝐶𝐶2𝑓𝑓 + 𝐶𝐶𝐶𝐶2𝑒𝑒      (1) 

  𝐶𝐶𝐶𝐶2𝑓𝑓 = ∑ 𝐶𝐶𝐶𝐶2𝑖𝑖𝑖𝑖               (2) 
where 𝐶𝐶𝐶𝐶2𝑡𝑡 is the total facility-level CO2 emissions, 𝐶𝐶𝐶𝐶2𝑝𝑝 
is the process-related CO2 emissions, 𝐶𝐶𝐶𝐶2𝑓𝑓 is the fuel 
combustion CO2 emissions, 𝐶𝐶𝐶𝐶2𝑖𝑖 accounts for the com-
bustion-related CO2 emissions of 𝑖𝑖𝑡𝑡ℎ fuel, and 𝐶𝐶𝐶𝐶2𝑒𝑒 is the 
electricity CO2 intensity.  

For the fuel-related emissions, the waste biomass 
used as fuel is assumed to be sustainable; hence, bio-
mass combustion CO2 equals zero. Whereas the fuel 
emissions intensity is obtained from EPA’s emission fac-
tors for GHG inventories [17], we used the following emis-
sions factors: for electricity, 0.4 kg/kWh; for conventional 
SMR hydrogen, 10 kgCO2e/kg H2; and for electrolysis 
green hydrogen, 0.97 kgCO2e/kg H2 [18].  

Cost assessment 
Cost performance of the proposed cement manu-

facturing is conducted to assess the economic viability of 
this decarbonization strategy when compared with the 
conventional cement pathway. The direct equipment 
cost (DEC) of the cement facility is estimated based on 
[4] using the sixth-tenth rule to adjust for plant capacity.  

The equipment cost is presented in $US2020 using 
the Chemical Engineering Plant Cost Index [19]. Based on 
the computed DEC, the total capital investment is calcu-
lated using correlations from [20,21]. The operating costs 
(variable and fixed) were estimated as a function of 
plant-size consumables (feedstock, fuel, electricity), la-
bor, maintenance, operating overhead, and property in-
surance costs [4,21]. The MCSP is computed by conduct-
ing a discounted cash flow rate of return over the as-
sumed lifetime of the plant using the economic parame-
ters presented in Table 2.  

 

Table 2: Economic parameters and assumptions. 

Parameter Value Parameter Value 
Plant life (years)  Tax rate (%)  
Plant avail (%)  Rate of return (%)  
Plant loan (years)  Depreciation MACRS 
Loan interest (%)  Working capital  % 
Debit/equity (%)  Operating hours  
Fuel costs ($/GJ) 
Coal  Distillate fuel oils  
Petroleum coke  Biomass  
Natural gas  SMR H  
Waste oils/tars  Electrolysis H  
Coke and breeze    

 

Cost of CO2 avoided 
We computed the CCA to ascertain the additional 

cost incurred to offset a unit amount of CO2 in cement 
manufacturing. The CCA formulation is given in Eq. (2) 
based on [22,23]: 

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐
𝑀𝑀𝐶𝐶2,𝑐𝑐−𝑀𝑀𝐶𝐶2,𝑠𝑠

         (2) 

where 𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑐𝑐 and 𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑠𝑠 are the minimum cement selling 
price of the conventional and scenario hydrogen fuel 
fired cement in $/MT cement, respectively; and 𝐶𝐶𝐶𝐶2,𝑐𝑐 and 
𝐶𝐶𝐶𝐶2,𝑠𝑠 are the CO2 emissions of both the conventional ce-
ment and scenario hydrogen fuel blended cement in 
kgCO2eq/MT cement, respectively.  

RESULTS  

Systems performance: Gray hydrogen blend 
Table 3 shows the MCSP, facility-level CO2 emis-

sions, and CCA for different blends of gray hydrogen ra-
tios when compared with the conventional clinker. The 
MCSP for conventional cement is $106.9/MT, whereas a 
blend of hydrogen between 5% and 20% changes the 

Table 3: Costs and performance analysis of SMR hydrogen blend ratios with conventional fuels  
Metric Unit Conventional % H % H % H % H 
Cost 
Fuel M$/year      
Electricity M$/year      
Capital M$      
Fixed O&M M$/year      
Variable O&M M$/year      
MCSP  $/MT       
Emissions 
Combustion CO kgCO/MT      
Process CO kgCO/MT      
Total CO kgCO/MT      
Cost of CO avoided $/MT CO –     
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MCSP to $107.6–$109.6/MT. This represents an increase 
of up to $2.8/MT cement. As can be observed (Table 1), 
the change in cement cost affects only the fuel cost ow-
ing to hydrogen use. Other cost components such as 
electricity (power), capital, fixed operating & mainte-
nance (O&M), and variable O&M were assumed to remain 
the same. This assumption is feasible because hydrogen 
blends up to 20% are currently stipulated as the maxi-
mum limit before major infrastructure change is required 
[24]. 

In terms of emissions reduction, whereas the pro-
cess emissions remain unchanged when hydrogen is 
blended in the fuel mix (Table 1), energy-related CO2 
emissions change depending on the amount of hydrogen 
blended. Hence, the total scopes 1 and 2 CO2 emissions 
for the 5%–20% H2 blends ranged between 736.4 and 
745.5 kgCO2/MT cement. If only the energy-related CO2 
emissions are considered, a 5% maximum CO2 emissions 
reduction is achieved. This extent of emissions reduction 
is due to the scope 2 emissions associated with hydrogen 
production. Hypothetically, only when the scope 2 emis-
sions of SMR hydrogen are zero can a significant reduc-
tion (as high as 23%) in energy-related CO2 emission be 
achieved.  

The CCA—a function of the additional cost incurred 

to avoid CO2 emission—ranged between $228.9 and 
$246.9/MT CO2. An interesting observation in the com-
puted CCA is the increase in CCA from $228.9/MT (for 
5% H2) to $246.9/MT (for 10% H2), followed by a decrease 
back to $228.9/MT (for 15% and 20% H2 blends, respec-
tively). This phenomenon is linked to the extent of emis-
sions offset when compared with the extra cost incurred 
to achieve such an extent of reduction.  

Figure 3 depicts the comparative emissions savings 
of an H2 blend with the corresponding change in MCSP 
necessary to achieve the CO2 reduction. Blending 5% H2 
in the clinker fuel mix had only a 0.4% reduction in total 
facility-level CO2 emissions while increasing the cost by 
0.6%. When 10% H2 is blended, only 0.8% reduction in 
CO2 emissions is achieved—increasing the cost of ce-
ment by 1.3%. At 20% H2 blend, emissions reduction is 
still below 2%, whereas the clinker cost increases by 
2.6%. One might wonder why the emissions reduction is 
not significant for a zero-carbon fuel like hydrogen. We 
considered indirect CO2 emissions (scope 2) associated 
with hydrogen production, which, on a mass basis, are 
higher than the fossil fuels for which they substitute.  

Systems performance: Green hydrogen blend 
When green hydrogen is considered as the source 

 
Figure 3: Percentage change in cost and emissions of cement for SMR hydrogen blends. 

 
Figure 4: Percentage change in cost and emissions of cement for green hydrogen blends. 
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of hydrogen in the fuel mix, cost and emissions perfor-
mance differs, as shown in Table 4. In terms of cost, H2 
blends between 5% and 20% yield an MCSP of $111.1–
$123.9/MT with corresponding CO2 emissions of 700–
736 kgCO2/MT cement. Comparing the emission reduc-
tion achieved using green hydrogen to that of gray hy-
drogen, additional 5% and 16% improvements in facility-
level and energy-related CO2 emissions are achieved, re-
spectively. For a 5% reduction in facility-level emissions, 
up to a 13% increase in MCSP is observed for green hy-
drogen-fired cement compared with the gray hydrogen 
counterpart. Clearly, this premium for decarbonized ce-
ment might be difficult for cement manufacturers to com-
pete in the market, given the extent of reduction.  

It is not surprising that the CCA for the use of green 
hydrogen ranges between $351.7 and $358.3/MT CO2. 
Again, this computed CCA is more expensive than the 
cost of carbon capture reported for the cement industry 
($50–$60/MT) [25]. This implies that it is economically 
and even environmentally competitive to adopt and use 
CC in cement rather than use hydrogen as a fuel for de-
carbonization purposes. 

Finally, Figure 4 directly compares the emissions re-
ductions achieved and the associated costs for different 
H2 blend ratios relative to conventional cement. For a 2% 
reduction in CO2 emissions, a 4% increase in MCSP was 
observed for a 5% H2 blend. A maximum of 6% reduction 
in facility-level CO2 can be achieved when 20% H2 is 
blended in a clinker fuel mix—at the expense of a 16% 
increase in MCSP. Given the minimal reduction in emis-
sions at a high cost, at present it does not make eco-
nomic sense to use hydrogen as a decarbonization lever 
in the cement industry.  

Sensitivity analysis 
Because green hydrogen blend in cement fuel mix 

offers more CO2 emissions reduction when compared 
with gray hydrogen, the effect of green hydrogen’s cost 
on MSCP is assessed via sensitivity analysis. Figure 5 

shows the effect of green hydrogen’s cost on MCSP for 
different hydrogen blend ratios.  

 
Figure 5: Sensitivity analysis of the effect of green hy-
drogen cost on cement price. 

At a green hydrogen price of $1/kg owing to the fed-
eral Infrastructure Reduction Act 45 V tax credit that in-
centivizes green hydrogen products, the MCSP is be-
tween $107.6 and $109.7/MT for 5%–20% hydrogen 
blend ratios. Even at $1/kg for green hydrogen, the selling 
price of cement is still $0.70/MT higher than that of con-
ventional cement. The CCA of the cement at this hydro-
gen price is between $57.6 and $58.7/MT CO2 avoided, 
which is competitive with that achieved via CCS. To a 
greater extent, because CCS implementation at a specific 
cement facility can be impeded by a lack of CO2 trans-
portation and sequestration sites, use of green hydrogen 
proves to be more suitable. Nevertheless, on an emis-
sions intensity basis, a CCS-enabled cement facility at 
85% capture (112.3 kgCO2/MT) outperforms the green 
hydrogen-fired (700 kgCO2/MT) cement facility.  

At a $7/kg green hydrogen price, the cost of cement 
increases between $113.7 and $134/MT with a corre-
sponding CCA of $562–$572/kgCO2eq avoided. Overall, 
the high cost of hydrogen when compared with the ex-
tent of emissions reduction limits its use as a 
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Table 4: Costs and performance analysis of green hydrogen blend ratios with conventional fuels  

Metric Unit Conventional % H % H % H % H 
Cost 
Fuel M$/year      
Electricity M$/year      
Capital M$      
Fixed O&M M$/year      
Variable O&M M$/year      
MCSP  $/MT      
Emissions 
Combustion CO kgCO/MT      
Process CO kgCO/MT      
Total CO kgCO/MT      
Cost of CO avoided $/MT CO –     
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decarbonization strategy in cement production. 

DISCUSSIONS 
Decarbonizing cement production is vital to attain-

ing US economy-wide GHG reduction goals. With an in-
terest in decarbonizing industrial process heat, cement 
manufacturers are beginning to propose the adoption of 
hydrogen as fuel. Argos and CEMEX are pushing toward 
a hydrogen share in their cement fuel mix for facilities in 
Honduras [28] and Europe [14], respectively. However, 
this analysis shows that pursuing this route as a decar-
bonization strategy is highly limited by cost when com-
pared with the amount of reduction attained. At best, 
when green hydrogen (with zero emissions) constitutes 
100% of fuel used in cement production (not shown in this 
analysis), only a 29% reduction in scope 1 emissions is 
achieved. Nevertheless, when scope 2 emissions of hy-
drogen and electricity are considered, the reduction 
amount drops to 26%. Therefore, it is evident that hydro-
gen should be channeled to other industrial applications. 

Despite the emissions- and cost-related challenges, 
supply chain and other technical barriers still impede the 
widespread adoption of hydrogen as fuel (blend mix or 
100% H2). At 100% use of hydrogen in the cement sector, 
the demand for hydrogen per annum will be about 2 MMT 
(based on 2022 clinker production of 78 MMT). Because 
the current annual US hydrogen production is about 10 
MMT, a supply-demand issue might arise. In addition, 
significant reconfiguration of existing cement facilities 
with high CAPEX will be required [26]. 

Technical challenges associated with hydrogen in-
clude storage owing to low volumetric energy density, in-
creasing tendency of fire or explosion because of its wide 
flammability range in air, burning challenges linked to its 
burning velocity that will require complex control sys-
tems, high NOx formation because it has a high adiabatic 
flame temperature (burner modification required, with 
associated costs), and low thermal radiative heat transfer 
owing to the absence of soot exhibited by hydrogen 
flames [27] that affect clinker quality. Other technical 
challenges include hydrogen leakage and equip-
ment/pipeline embrittlement, etc. Hydrogen leaks appear 
to be very detrimental because hydrogen tends to react 
with hydroxyl radicals, reducing the amount of OH 
needed to break down methane in the atmosphere [29].  

Overall, more research and development are 
needed in the efforts to adopt hydrogen as fuel in the ce-
ment industry and other sectors in which hydrogen has 
the potential to contribute to decarbonization goals. In 
addition, government funding and policies will play a key 
role in reducing the cost of hydrogen (green) for indus-
tries to begin this much-needed shift. 

CONCLUSION 

Clean hydrogen is a low-carbon fuel, feedstock, and 
energy source that can play a key role in the decarboni-
zation goals of the US economy. Nevertheless, the use of 
hydrogen as a fuel has inherent supply chain technical 
challenges that must be overcome before it can safely 
and easily be adopted as a fuel mix. Even though these 
challenges are addressed, the cost implications could 
prove to be prohibitive for industry—particularly, the ce-
ment industry, with low margins—to adopt hydrogen as 
fuel. At 20% green H2 blend, a CO2 emissions reduction 
of 6% can be achieved at a significant 16% increase in 
cement cost. Therefore, it might not be economically vi-
able for the cement industry to adopt hydrogen as a fuel 
in clinker manufacturing.  

As observed, the CCA did not change for the hydro-
gen blend ratios except for 10%. The obvious explanation 
for this impact is that blending hydrogen as fuel (within 
this ratio) in clinker production does not really affect car-
bon emissions reduction, given the significant contribu-
tion to the overall emissions by the pyroprocessing step. 
Because there is an additional 8% increase in CCA for the 
10% hydrogen blend, any cement facility considering 
blending hydrogen in the fuel mix is better off with any of 
the other blend scenarios because the cost increment is 
commensurate with the emissions offset.  
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ABSTRACT 
Hydrogen, as a clean and versatile energy carrier, holds immense promise for addressing the 
world’s growing energy and environmental challenges. However, hydrogen-based energy systems 
face challenges related to efficient storage methods, energy-intensive production, refueling pro-
cesses, and overall cost-effectiveness. To solve this problem, a superstructure was developed 
that integrates overall technologies related to hydrogen energy transportation. This study synthe-
sizes process pathways for hydrogen energy transportation method including energy carrier pro-
duction, storage, and refueling, based on the developed superstructure. The techno-economic 
analysis was conducted to evaluate the performance of each transportation pathway and compare 
it with conventional fossil fuel transportation system. Process performance criteria, including unit 
production cost (UPC), energy efficiency (EEF), and net CO2 equivalent emissions (NCE), serve as 
indicators for process performance. By comparing technological pathways, we can propose the 
most economically and environmentally optimal energy refueling route. Additionally, sensitivity 
analyses were performed on various external factors, identifying influential variables in the deci-
sion-making process for hydrogen production, storage, and refueling strategies, while also eluci-
dating technological limitations.  

Keywords: Hydrogen, Process synthesis, Environment, Techno-economic analysis, Energy refueling 

1. INTRODUCTION
One of the most important global environmental is-

sues is the depletion of conventional energy sources and 
the climate change caused by greenhouse gas (GHG) 
emissions. Hydrogen is flexible energy carrier that can be 
converted into usable forms of energy and is an environ-
mentally clean energy source. The concept of hydrogen 
economy, characterized by the production, distribution, 
and utilization of hydrogen as a primary energy carrier, 
has gained significant traction. The transformative vision 
envisions a departure from conventional fossil fuel de-
pendency toward a circular and interconnected energy 
system where hydrogen acts as a linchpin for integration, 
storage, and efficient utilization of renewable energy 
sources.  

To establish a hydrogen energy system, various 
preliminary studies are being conducted on developing 
hydrogen production, storage, and transportation sys-
tems. Li Lin et al. conducted the process development 

and cost analysis of an ammonia-based hydrogen refuel-
ing station process [1]. A.D. Korberg et al. developed and 
evaluated a transport process for renewable energy re-
sources [2]. Jack Shepherd et al. developed a green am-
monia value chain and proposed the pathway with the 
highest economic feasibility [3]. Ayodeji Okunlola et al. 
proposed an optimal hydrogen transportation method 
through analysis of inter-country hydrogen transporta-
tion and supply [4]. 

In preliminary research, the development of tech-
nologies for the production, storage, and transportation 
of hydrogen is progressing, and research on establishing 
hydrogen energy system is also being conducted. How-
ever, the previous study has not determined and evalu-
ated compared conventional fossil fuel transportation 
system. We compared and analyzed the energy system, 
including hydrogen production, storage, and transporta-
tion, with the conventional fossil fuel-based energy sys-
tem to determine the possibility of hydrogen replacing 
conventional energy resources. This study focused on 
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various hydrogen storage and transportation method 
such as high-pressure compression, liquefaction, ammo-
nia, liquid organic hydrogen carriers (LOHC). Each devel-
oped hydrogen storage and transportation method is 
synthesized with a process for production hydrogen form 
various energy sources. 
 This study developed the superstructure of the en-
tire energy transfer based on hydrogen and fossil fuels. 
An energy transport pathway was developed by model-
ing various unit processes within the superstructure. 
Then, a techno-economic analysis is performed for each 
pathway to derive energy efficiency (EEF), levelized cost 
of energy (LOCE), and net CO2 equivalent emissions 
(NCE), which are quantitative indicators of process per-
formance. Through the results of techno-economic anal-
ysis, a process pathway with optimal economic or envi-
ronmental feasibility for hydrogen energy transportation 
was derived. In addition, we identified technical limita-
tions for establishing a hydrogen energy system and pro-
posed technical and political strategies.   

2. RESEARCH OVERVIEW AND 
METHODOLOGY  

Research Overview 
The goals of this work are: i) to propose optimal eco-

nomic or environmental hydrogen energy transportation 
pathway, ii) to determine technical limitation of hydrogen 
energy transportation system, iii) to propose technical 
and political strategies for hydrogen energy system. Fig-
ure 1 provides procedures for energy transportation sys-
tem development. First, we set problem by investigating 
energy sources, conversion technologies, and energy 
carriers and making a database of the technical and so-
cial data. To identify the overall structure of the hydrogen 
energy transportation system, a superstructure connect-
ing transportation technologies was developed based on 
technical data. Then, a unit process model on the energy 
transportation system superstructure was developed 
and the mass and energy balance for each energy 

transport pathway was derived through process synthe-
sis. Through a techno-economic analysis of each devel-
oped process model, process efficiency, cost, and CO2 
emissions are calculated. 

Primary energy source considered in this study in-
clude conventional fossil fuels such as coal, crude oil, and 
natural gas, as well as renewable energy sources such as 
wind energy, solar energy, and biomass. These energy 
sources can be transported as is or converted into other 
forms of energy carriers. Table 1 shows information on 
the energy carriers considered in this study. The energy 
carriers considered in this study of fossil fuels trans-
ported as primary energy sources, hydrogen for trans-
porting renewable energy, and hydrogen carriers for ef-
ficient transport of hydrogen. Among them, hydrogen is 
the most important material and serves as an intermedi-
ate for transportation with high energy density. However, 
hydrogen has a low density, making it difficult to 
transport. Therefore, convertible materials were consid-
ered to facilitate transportation of hydrogen from energy 
resources: ammonia, methanol, methyl cyclohexane 
(MCH), perhydro dibenzyl toluene (H18-DBT).  

Table 1: Energy carrier for hydrogen transportation sys-
tem. 

Transportable primary energy source 
Coal  
Crude oil  
Natural gas  
Biomass  
Converted energy carrier Description 
Hydrogen H 
Methanol CHOH 
Ammonia NH 
Methyl cyclohexane CH 
H-Dibenzyl toluene CH 

Process Analysis Method 
In this study, the techno-economic and environmen-

tal feasibility was evaluated using the process 

 
Figure 1: Research overview of hydrogen energy transportation system development 
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performance indicators such as EEF, LCOE and NCE.  
To determine technical aspects of hydrogen energy 

transportation pathways, EEF serves as an assessment 
indicator. EEF is expressed as the ratio of transported en-
ergy to the total of primary energy and utility consump-
tion for conversion, as shown in Eq (1). 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 
𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝑠𝑠𝑇𝑇+𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

 × 100 (%) (1) 

To compare economic performance of the hydrogen 
energy transportation pathways, the LCOE was used as 
an indicator. The LCOE is calculated using annualized 
capital investment (ACI) and total operating cost (TOC) 
and transported energy as shown in Eq (2).  

𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸( $
𝑘𝑘𝑘𝑘ℎ

) = 𝐴𝐴𝐴𝐴𝐴𝐴+𝑇𝑇𝑇𝑇𝐴𝐴  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸

   (2) 

ACI is an amortized cost of the capital expenditure 
(CAPEX), which is specified using a straightforward de-
preciation method, as shown in Eq. (3). The TOC consists 
of the primary energy source and utility cost which is 
specified Eq. (4). 

 

𝐴𝐴𝐿𝐿𝐴𝐴 = 𝐿𝐿𝐴𝐴𝐶𝐶𝐸𝐸𝐶𝐶 × 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (1+𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)𝑢𝑢𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑢𝑢

(1+𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)𝑢𝑢𝑢𝑢𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑢𝑢−1
 (3) 

𝑇𝑇𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚 + 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚 (4) 

To assess the environmental performance of the 

 
Figure 2: Superstructure of fossil fuel-based and renewable energy transportaton system, NG: natural gas, MCH: 
methyl cyclohexane, H18-DBT: perhydro dibenzyl toluene, SYN.: synthesis process, DEHYD.: dehydrogenation 
process [5-10]. 
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hydrogen energy transportation pathways, the NCE was 
calculated by including two different indicators to CO2 
emissions. First, the direct emission was GHGs (CO2, CH4) 
that are emitted directly through the exhaust and tail gas 
during process operation. The second is indirect emis-
sions from the usage of utilities, during the process. Thus, 
the NCE as an environmental indicator is expressed as 
the total CO2 emission per transported energy, as shown 
in Eq. (5). 

𝑁𝑁𝐿𝐿𝐸𝐸 = 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇  𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇+𝐴𝐴𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇 𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇 (𝑘𝑘𝐸𝐸 𝐴𝐴𝑇𝑇2−𝑢𝑢𝑒𝑒 )
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸

 (5) 

3. RESULT AND DISCUSSION 

Superstructure Development 
As mentioned above, this study developed super-

structure for energy transportation method. We devel-
oped two hydrogen energy transportation systems, illus-
trated in Fig 2: fossil fuel-based energy transportation 
system, renewable energy transportation system. In the 
case of fossil fuel-based hydrogen transportation sys-
tems, both direct transportation primary energy source 
and transportation via hydrogen are viable options. The 
pathway that converts fossil fuels into hydrogen and 
transport will benefit in terms of transport mass due to 
the high energy density of hydrogen and is expected to 
have better environmental performance by using the CO2 
capture process. Hydrogen-based energy carriers are 
essential to transport renewable energy. There are two 
reasons for this: the form of energy generated from wind 
or solar energy is electricity, and the low energy density 
of biomass. 

In this study, a technical information investigation 
was conducted based on the developed superstructure 
to build a database. It is used for process simulation and 
techno-economic analysis through investigation of the 
operating conditions, raw material prices, and energy 
consumption of each unit process.  

Process Development 
In this study, we developed hydrogen production, 

storage and refueling process models were developed 
using Aspen Plus V12.0 according to hydrogen transpor-
tation superstructure. The information of each unit pro-
cess is summarized in Table 2. It was assumed that each 
pathway feeds the same amount of energy based on the 
primary energy source.  

The hydrogen transport pathway was modeled 
through synthesis between each unit process, mass and 
energy balance were derived. In addition, a techno-eco-
nomic analysis is performed using process equipment 
sizing and costing data within Aspen Economic Analyzer 
based on mass and energy balance. In the separation and 
purification technologies, the pressure swing adsorption 
(PSA) amine-based CO2 capture process, distillation 

column and air separation unit (ASU) are mainly adopted 
for efficient each hydrogen transportation pathway.  

Table 2: Unit process information for hydrogen energy 
transportation pathways [5-11]. 

Unit process Operating conditions 
(℃ bar) 

Coal gasification -  
Natural gas reforming -  
Water gas shift  -  
CO capture process   
H liquefaction -  
Liquid H vaporization   
NH synthesis - - 
NH dehydrogenation   
Methanol synthesis -  
Methanol dehydrogenation   
MCH synthesis -  
MCH dehydrogenation    
H-DBT synthesis -  
H-DBT dehydrogenation   
Biomass gasification -  

Comparative Analysis  
Based on the technical, economic, and environmental parame-
ters derived from the previous process simulation part, a 
techno-economic analysis was performed to compare and eval-
uate each hydrogen transportation pathway. As expected, the 
conventional system for directly transporting fossil fuels has the 
best efficiency and economic performance for obtaining elec-
tricity and thermal energy. The pathway with the economic fea-
sibility compared to these direct fossil fuel transportation meth-
ods is natural gas-based hydrogen production and transporta-
tion through MCH (0.15 $/GJ). Hydrogen production using natu-
ral gas is currently a representative method of producing hydro-
gen at the lowest cost, and the MCH hydrogen storage process 
also shows the best indicator for cost-effective hydrogen trans-
portation with low energy consumption. Additionally, the path-
way from an environmental perspective is to produce hydrogen 
from solar and wind electricity and then transport the hydrogen 
using H18-DBT. Although this has low economic feasibility due to 
the price of raw materials, it has the best performance among 
hydrogen transportation methods in terms of energy consump-
tion, showing the lowest value in terms of NCE due to less use 
of additional utilities. 

4. CONCLUSIONS 
In this study, we proposed of most economic or en-

vironmental pathways in hydrogen energy transportation 
systems using it for process performance criteria: LCOE 
and NCE. This was achieved through process synthesis 
and evaluation based on hydrogen energy transportation 
superstructure, and the effect on the application of the 
hydrogen energy system was shown. The major findings 
from this study as follows: 

 To derive the optimal hydrogen energy 
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transportation pathway according to evaluation 
standard, process synthesis for energy transport is 
performed to derive mass and energy balance. 

 We conducted techno-economic analysis and 
derived cost-effective hydrogen transportation 
method as natural gas-based hydrogen transport 
to MCH.   

 The environmentally best transportation pathway 
was found to be transporting renewable 
electricity-based hydrogen as H18-DBT. 

In summary, we identified the hydrogen transporta-
tion pathway using organic compound is promising en-
ergy transportation pathways. As future work, we will ex-
pand the scope of energy transportation technologically, 
geographically, and policy-wise. In addition, we will de-
rive major cost drivers of energy transportation through 
sensitivity analysis after the development of the energy 
transportation system and propose energy transporta-
tion system strategies through various scenario-based 
analysis. 
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ABSTRACT 
Post-combustion carbon capture technologies have the potential to contribute significantly to 
achieving the environmental goals of reducing CO2 emissions in the short term. However, these 
technologies are energy and cost-intensive, and the variability of flue gas represents important 
challenges. The optimal design and optimization of such systems are critical to reaching the net 
zero and net negative goals, in this context, the use of computer-aided process design can be 
very effective in overcoming these issues. In this study, we explore the implementation of carbon 
capture technologies within an industrial complex, by considering the pooling of CO2 streams. We 
present an optimization formulation to design carbon capture plants with the goal of enhancing 
efficiency and minimizing the capture costs. Capital and operating costs are represented via sur-
rogate models (SMs) that are trained using rigorous process models in Aspen Plus, each data point 
is obtained by solving an optimization problem in Aspen Plus equation-oriented approach. Since 
selecting the functional form of the surrogate model is crucial for the solution performance; we 
study different SM approaches (i.e., ALAMO, kriging, radial basis function, polynomials, and artifi-
cial neural networks) and analyze their impact on solver performance.  Numerical results show the 
computational advantage of using ALAMO while highlighting the increased complexity of using 
ANN and kriging to formulate optimization problems. Regarding the pooling of CO2 streams, the 
optimal designs for the network are not trivial, thus showing the importance of addressing the 
problem systematically. 

Keywords: Carbon Capture, Pyomo, Surrogate Model, Process Design, Optimization 

INTRODUCTION 
Climate change and global warming are relevant is-

sues that we need to face as a society. In particular, the 
mitigation of CO2 emissions is crucial to reduce its high 
atmospheric concentration, which exceeds 50% of pre-
industrial era levels and has recently reached a historical 
maximum concentration of 424 ppm [1]. 

Carbon capture strategies play a crucial role in most 
decarbonization pathways, which seek a net-zero emis-
sion future to limit the global average temperature rise to 
below 1.5 °C [2]. These approaches allow retrofitting of 
power generation and industrial plants in the short and 

medium term. Therefore, carbon capture plants can be 
installed in industrial complexes to reduce CO2 emissions 
of the existing facilities, with minor structural modifica-
tions in the production process. Currently, CO2 absorp-
tion using amine solvents is the most developed and re-
liable technology and it has been tested at an industrial 
scale for post-combustion processes [3]. However, in-
dustrial complexes can include several CO2 streams to be 
captured (with different CO2 flowrates and concentra-
tions), and the implementation of post-combustion tech-
nologies for each point source in an industrial pole is 
challenging due to investment costs and operational 
complexity. Moreover, even one production process can 

mailto:
https://doi.org/10.69997/sct.193976


 

Pedrozo et al. / LAPSE:2024.1575 Syst Control Trans 3:546-553 (2024) 547 

include several CO2 point sources, where their mass 
flowrates and CO2 concentrations can differ significantly. 

An alternative approach involves the pooling of CO2 
streams from various point sources to optimize the dis-
tribution and mixture of CO2 streams within a specific in-
dustrial complex. In this way, the total capture cost for 
the industries can be reduced, while the application of 
carbon capture is promoted. When engineering this ap-
proach, the problem of mixing the streams and designing 
carbon capture plants must be addressed systematically, 
using current knowledge and advances in optimization 
techniques [4,5]. 

In order to assist decision-making in the design of 
the carbon capture plants for a given set of point sources, 
pooling optimization problems could be formulated. The 
main decision variables are associated with capture plant 
capacities, CO2 concentrations of their flue gas streams, 
and their CO2 recoveries. Regarding the calculation of 
economic and performance metrics of the plants based 
on these variables, rigorous models are generally re-
quired to obtain accurate estimations [6], but including 
such rigorous models in the problem formulation repre-
sents numerical challenges. 

Surrogate models (SMs) can help to overcome the 
numerical issues. In this case, SMs can be used to esti-
mate capital and operating costs for carbon capture 
plants from the main decision variables, replacing the 
need for the rigorous CCS model. SMs are simplified ap-
proximations capable of estimating output data from a 
set of input variables, demanding negligible CPU re-
sources. In addition, the mathematical expressions of rel-
evant SMs are compatible with an equation-oriented op-
timization environment, which enables the use of ad-
vanced optimization solvers.  

However, the accuracy of the RMs could affect the 
quality of the optimal solution, and their algebraic forms 
influence the efficiency of the solution algorithm. 

Each surrogate model class offers unique ad-
vantages and may be chosen based on the specific re-
quirements of the problem, such as the available data, 
computational resources, target accuracy, computational 
efficiency, and the complexity of the studied system. Pol-
ynomials are commonly used as reduced models that 
provide a straightforward and interpretable approach. 
Radial Basis Functions (RBFs), characterized by their re-
liance on distance from a central point, can represent 
complex nonlinear relationships in data, particularly in 
systems with localized behavior patterns [7]. Kriging is a 
geostatistical technique used for spatial interpolation and 
prediction [8,9]. It stands out as a robust prediction 
method, estimating system responses while considering 
spatial correlations in scattered or noisy data. Automated 
Learning and Advanced Modeling for Optimization (AL-
AMO) facilitates the creation of surrogate models, relying 
on techniques like linear regression and decision trees 

[10]. Finally, Artificial Neural Networks (ANNs) show effi-
cacy in capturing complex data relationships, making 
them useful for function approximation and pattern 
recognition [11]. 

This study considers the impact of using different 
SMs for the formulation of the CO2 stream pooling prob-
lem. In particular, we use the IDAES computational plat-
form [5,12] to test: i) ALAMO-based SMs, ii) Kriging SMs 
(PySMO), iii) Radial basis function SMs (PySMO), iv) Pol-
ynomials (PySMO), and artificial neural networks (ANN) 
SMs (Keras).  

We compare the surrogate model performances for 
prediction and for the formulation of optimization prob-
lems. This analysis provides insights into efficient ways 
of including SMs to formulate optimization problems and 
to elucidate the advantages and limitations of using spe-
cific SMs. 

METHODOLOGY 

Formulation of the pooling problem 
In this section, we address the mathematical formu-

lation of CO2 stream pooling problems for carbon capture 
plant design in industrial complexes with various CO2 
point sources. This problem can be tackled by formulat-
ing a nonlinear programming (NLP) approach, as shown 
in problem (1). We are given a set of point sources 𝑠𝑠 ∈ 𝑆𝑆, 
with their respective CO2 mass flowrates (𝐹𝐹𝑠𝑠𝑖𝑖𝑖𝑖) and molar 
fractions (𝑥𝑥𝑠𝑠

𝑖𝑖𝑖𝑖,𝐶𝐶𝑂𝑂2), and we can design a set of carbon cap-
ture plants 𝑝𝑝 ∈ 𝑃𝑃, to achieve a global CO2 recovery of 
90 %. In this problem, we need to design a network to 
blend CO2 streams for further treatment. So, important 
decision variables for the network are the mass flowrates 
(𝐹𝐹𝑠𝑠,𝑝𝑝) from a CO2 point source 𝑠𝑠 to the carbon capture 
plant 𝑝𝑝. The capture plants are designed by considering 
three key decision variables, which are the plant capacity 
(𝐶𝐶𝑝𝑝), the CO2 molar fraction of their input stream (𝑥𝑥𝑝𝑝

𝐶𝐶𝑂𝑂2), 
and the number of transfer units (𝑁𝑁𝑁𝑁𝑈𝑈𝑝𝑝). 
The objective is to minimize the cost of capture (1.1), and 
we calculate this metric from the total annualized capital 
cost (which is obtained from the product between the to-
tal capital cost, 𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑋𝑋𝑡𝑡, and the annualization factor, 𝜙𝜙), 
the total operating cost (𝑂𝑂𝑃𝑃𝐶𝐶𝑋𝑋𝑡𝑡), and the total captured 
carbon dioxide (𝐶𝐶𝑂𝑂2𝑡𝑡). In Eq. (1.2), we set constraints for 
the maximum amount of CO2 (𝐹𝐹𝑠𝑠𝑖𝑖𝑖𝑖) from source 𝑠𝑠. In Eq. 
(1.3), we include mass balances for the streams fed to 
plant 𝑝𝑝. In Eq. (1.4), we calculate the CO2 molar fraction 
(𝑥𝑥𝑝𝑝

𝐶𝐶𝑂𝑂2) of the input stream to plant 𝑝𝑝, from the features of 
the blended streams. Eqs. (1.5) and (1.6) represent the 
surrogate model function correlating operating (𝑂𝑂𝑃𝑃𝐶𝐶𝑋𝑋𝑝𝑝) 
and capital cost (𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑋𝑋𝑝𝑝) for each plant with the control 
variables, which are the plant capacity, CO2 molar flow, 
and number of transfer units. This last variable is directly 
related to the CO2 recovery (𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝), and it is shown in Eq. 
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(1.7). Using this transformation, we reduce the complex-
ity associated with collinearity in parametric surrogate 
models [13]. In Eq. (1.8) and (1.9), we calculate the total 
operating (𝑂𝑂𝑃𝑃𝐶𝐶𝑋𝑋𝑡𝑡) and capital costs (𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑋𝑋𝑡𝑡) by the 
summation of individual plant costs, and the cost related 
to the gas distribution. In this context, the functions 𝑓𝑓𝑂𝑂𝑂𝑂 
and 𝑓𝑓𝐶𝐶𝑂𝑂 determine the operating and capital costs asso-
ciated with the utilization of blowers to send the flue 
gases from point sources to the capture plants. 𝑓𝑓𝑂𝑂𝑂𝑂 and 
𝑓𝑓𝐶𝐶𝑂𝑂 are based on unit models for pressure changes, 
which are described in the literature [14]. In Eq. (1.10), we 
calculate the total captured carbon dioxide (𝐶𝐶𝑂𝑂2𝑡𝑡) consid-
ering all plants, and we add a constraint to ensure a min-
imum global CO2 recovery of 90 % in Eq. (1.11). Finally, 
Eqs. (1.12)-(1.14) are the bounds on the main decision 
variables for designing the plants. 

  min𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋𝑡𝑡+𝑂𝑂𝐶𝐶𝐶𝐶𝑋𝑋𝑡𝑡

𝐶𝐶𝑂𝑂2𝑡𝑡
  (1.1) 

  𝑠𝑠. 𝑡𝑡.  𝐹𝐹𝑠𝑠𝑖𝑖𝑖𝑖 ≥ ∑ 𝐹𝐹𝑠𝑠,𝑝𝑝𝑝𝑝∈𝐶𝐶   𝑠𝑠 ∈ 𝑆𝑆  (1.2) 

  ∑ 𝐹𝐹𝑠𝑠,𝑝𝑝 𝑠𝑠∈𝑆𝑆 = 𝐶𝐶𝑝𝑝   𝑝𝑝 ∈ 𝑃𝑃 (1.3) 

  𝑥𝑥𝑝𝑝
𝐶𝐶𝑂𝑂2 ∑ 𝐹𝐹𝑠𝑠,𝑝𝑝

𝑥𝑥𝑠𝑠
𝑖𝑖𝑖𝑖,𝐶𝐶𝑂𝑂2𝑠𝑠 = 𝐶𝐶𝑝𝑝    𝑝𝑝 ∈ 𝑃𝑃 (1.4) 

𝑂𝑂𝑃𝑃𝐶𝐶𝑋𝑋𝑝𝑝 = 𝑓𝑓𝑂𝑂�𝐶𝐶𝑝𝑝, 𝑥𝑥𝑝𝑝
𝐶𝐶𝑂𝑂2 ,𝑁𝑁𝑁𝑁𝑈𝑈𝑝𝑝�   𝑝𝑝 ∈ 𝑃𝑃 (1.5) 

𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑋𝑋𝑝𝑝 = 𝑓𝑓𝐶𝐶�𝐶𝐶𝑝𝑝, 𝑥𝑥𝑝𝑝
𝐶𝐶𝑂𝑂2 ,𝑁𝑁𝑁𝑁𝑈𝑈𝑝𝑝�  𝑝𝑝 ∈ 𝑃𝑃 (1.6) 

  𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 = (1 − 𝑟𝑟−𝑁𝑁𝑁𝑁𝑈𝑈𝑝𝑝)  𝑝𝑝 ∈ 𝑃𝑃   (1.7) 

∑ 𝑂𝑂𝑃𝑃𝐶𝐶𝑋𝑋𝑝𝑝𝑝𝑝∈𝐶𝐶 + ∑ 𝑓𝑓𝑂𝑂𝑂𝑂(𝐹𝐹𝑠𝑠,𝑝𝑝)𝑠𝑠,𝑝𝑝 = 𝑂𝑂𝑃𝑃𝐶𝐶𝑋𝑋𝑡𝑡  (1.8) 

∑ 𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑋𝑋𝑝𝑝𝑝𝑝∈𝐶𝐶 + ∑ 𝑓𝑓𝐶𝐶𝑂𝑂(𝐹𝐹𝑠𝑠,𝑝𝑝)𝑠𝑠,𝑝𝑝 = 𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑋𝑋𝑡𝑡 (1.9) 

  𝐶𝐶𝑂𝑂2𝑡𝑡 = ∑ 𝐶𝐶𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝∈𝐶𝐶  (1.10) 

  𝐶𝐶𝑂𝑂2𝑡𝑡 ≥ 0.9∑ 𝐹𝐹𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖   (1.11) 

𝐶𝐶𝑝𝑝 ≤ 1   𝑝𝑝 ∈ 𝑃𝑃  (1.12) 

0.03 ≤ 𝑥𝑥𝑝𝑝
𝐶𝐶𝑂𝑂2 ≤ 0.4   𝑝𝑝 ∈ 𝑃𝑃 (1.13) 

0.8 ≤ 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 ≤ 0.99   𝑝𝑝 ∈ 𝑃𝑃 (1.14) 

 

Carbon capture process 
In this study, we consider the conventional absorp-

tion-based process with intercooling using mono-ethan-
olamine (MEA) solvent, which is a well-established tech-
nology that serves as a baseline for comparison pur-
poses. We developed a rigorous model for the MEA-
based carbon capture process using templates from the 
Carbon Capture Simulation Initiative (CCSI), as discussed 
in [6]. The model is implemented in Aspen Plus, employ-
ing the electrolyte NRTL thermodynamic framework and 
incorporating specific interaction parameters derived 
from experimental data. The process flowsheet, see Fig-
ure 1, features a blower and direct contact cooler for flue 

gas preconditioning, an absorber with a pump-around 
system, and a stripping column for solvent regeneration. 
The “Rich” amine stream from the absorber undergoes 
heating in a heat exchanger before entering the stripping 
column, where CO2 separation from the solvent occurs. 
The resulting CO2 product stream and regenerated sol-
vent are obtained from the top and bottom of the strip-
ping column, respectively. The Aspen Plus model is 
solved using the equation-oriented (EO) mode, in order 
to leverage the EO optimization features that are availa-
ble in the software. In this way, the convergence proper-
ties of the model improve significantly [6]. Therefore, 
data generated to train the surrogate models with this 
method correspond to optimization runs. 

 
Figure 1: Aspen Plus® flowsheet for the carbon capture 
process 

Surrogate modeling approaches 
We build surrogate models generated from optimi-

zation runs using the Aspen Plus® rigorous model de-
scribed earlier. Constructing surrogate models requires a 
substantial amount of high-quality data points from rig-
orous models, and running each sample point manually is 
an inefficient method due to the time-consuming nature 
of data generation. Therefore, we developed a frame-
work for automated optimization and simulation using the 
rigorous model [13], and integrating various computa-
tional platforms, as shown in Fig. 2. In this work, we em-
ploy three input variables (inlet CO2 mass flowrate in the 
flue gas, inlet CO2 mole fraction, and number of transfer 
units) to generate SMs for the calculation of logarithmic 
transformations of CAPEX and OPEX. In this case, using 
log-transformed output variables improves the residual 
patterns for the parametric SMs [15]. 

The IDAES computational platform [12] is employed 
for surrogate model generation, exploiting its capabilities 
for efficient data splitting (training and validation), differ-
ent surrogate modeling approaches, and straightforward 
post-processing analysis (including the generation of 2D 
scatter plots and calculating fitting metrics). 
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Figure 2: Software workflow between Aspen, Python 
environments (SciPy, IDAES), and ALAMO in Jupyter 
Notebook 

In order to assess the effect of the functional form 
of the surrogate model on the solution performance, we 
examine various surrogate models (SMs) ideas. This work 
includes surrogate models based on ALAMO (Automatic 
Learning of Algebraic Models for Optimization), PySMO 
(Python Surrogate Modeling Toolbox), and Tensorflow 
Keras. 

ALAMO is a powerful tool for surrogate modeling 
[10]. ALAMO specializes in employing advanced algo-
rithms to select appropriate basis functions and model 
parameters simultaneously. In this way, it identifies es-
sential features and relationships within datasets. Addi-
tionally, ALAMO takes advantage of advanced optimiza-
tion techniques to perform automated sampling. The 
AlamoPy application enables the use of this tool through 
Python code, facilitating post-processing tasks, like gen-
erating 2D scatter plots and calculating fitting metrics. 

PySMO is a versatile and powerful tool to aid in the 
creation of surrogate models, offering a range of func-
tionalities for efficient data analysis. The toolbox facili-
tates the integration of these surrogate models into opti-
mization frameworks, enhancing the overall efficiency of 
computational processes. It supports the generation of 
surrogate models using various techniques, including 
kriging, Radial basis functions (RBF), and polynomials. In 
this work, we generate kriging and radial basis functions 
considering the regularization option to handle noise in 
data and to improve the smoothness of the curve. For 
RBF, we consider cubic basis transformation. For polyno-
mials, we set a maximum polynomial order of four, includ-
ing bilinear terms. 

Tensorflow Keras is a user-friendly tool designed to 
simplify the implementation of artificial neural networks 
(ANNs). As an integral component of the Python ecosys-
tem, Keras provides an intuitive interface for 

constructing, training, and deploying neural networks. Its 
flexibility and modularity make it suitable for various ap-
plications, including surrogate modeling. We leverage 
Keras to develop ANN-based surrogate models, benefit-
ing from its capabilities for efficient data analysis and op-
timization. We consider one hidden layer and hyperbolic 
tangent activation functions. The integration of the Keras 
ANN into the optimization formulation is done by using 
the toolkit OMLT (Optimization and Machine Learning 
Toolkit) [16]. 

CASE STUDY 
In this work, we consider the application of carbon 

capture to an iron and steel complex, which includes sev-
eral point sources. The manufacturing process includes 
three main sectors: iron production, steel production, and 
a mini mill; producing 5 million tons of steel annually [17].  

Table 1: CO2 streams for iron and steel production [17,18] 
 

Notation Flowrate of 
CO (Mt/y) 

CO content 
(mol%) 

Iron production 
Power plant 
stack S   

Coke  
ovens gas S   

Blast  
furnace S   

Sinter plant 
stack S   

Steel production 
BOF stack S   
Hot strip 
mill stack S   

Plate mill 
stack S   

Lime kiln 
stack S   

Mini mill 
Electric arc 
furnace  
off gas 

S   

 
The blast furnace, fueled by coke from the coke 

oven, facilitates the reduction of iron ore to molten iron. 
CO2 emissions originate from various sources, including 
coke oven gas generated during coal heating, ore prepa-
ration, and the basic oxygen steelmaking unit responsible 
for reducing carbon in pig iron. The plant is highly inte-
grated, utilizing most blast furnaces and coke oven gases 
as low-grade fuel for the sinter plant, blast furnace 
stoves, and lime kiln. Table 1 shows detailed information 
on CO2 emission sources within the process. 
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OPTIMIZATION RESULTS 
In this section, we discuss the results associated 

with surrogate model fitting and their efficiency within 
optimization formulation. The problems were imple-
mented in Pyomo [19] and run with IPOPT [20], using the 
multistart strategy.  

Table 2: CAPEX surrogate model fitting metrics. 

 CAPEX R 
Mean 

squared 
error 

Mean 
rel error 

(%) 

Max rel 
error 
(%) 

ALAMO 
Training 
data 

 ·-   

ALAMO 
Valida-
tion data 

 ·-   

Polyno-
mials 
Training 
data 

 ·-   

Polyno-
mials 
Valida-
tion data 

 ·-   

RBF 
Training 
data 

 ·-   

RBF Vali-
dation 
data 

 ·-   

Kriging 
Training 
data 

 ·-   

Kriging 
Valida-
tion data 

 ·-   

ANN 
Training 
data 

 ·-   

ANN Val-
idation 
data 

 ·-   

 
The computational experiments were performed on 

an Intel(R) Core(TM) i5-8250U CPU @1.80 GHz and 12 
GB RAM. It should be mentioned that the problems were 
solved using the option “limited-memory” to approximate 
the Hessian of the Lagrangian using a quasi-Newton 
method; we observe that this enhances the convergence 
of the multistart strategy. Approximating the Hessian by 
this quasi-Newton approach ensures positive definite 
matrices, thus avoiding potential issues related to the use 

of highly nonlinear functions and random initial guesses 
in the domain. 

Table 3: OPEX surrogate model fitting metrics 

 OPEX R 
Mean 

squared 
error 

Mean 
rel error 

(%) 

Max rel 
error 
(%) 

ALAMO 
Training 
data 

 ·-   

ALAMO 
Valida-
tion data 

 ·-   

Polyno-
mials 
Training 
data 

 ·-   

Polyno-
mials 
Valida-
tion data 

 ·-   

RBF 
Training 
data 

 ·-   

RBF Vali-
dation 
data 

 ·-   

Kriging 
Training 
data 

 ·-   

Kriging 
Valida-
tion data 

 ·-   

ANN 
Training 
data 

 ·-   

ANN Val-
idation 
data 

 ·-   

 
Tables 2 and 3 show key statistical metrics for the 

CAPEX and OPEX surrogate models, respectively. In par-
ticular, the R2 coefficients surpass 0.995, and the mean 
squared errors and mean relative errors exhibit con-
sistency between training and validation data, for all sur-
rogate modeling approaches. Only RBF-based SMs show 
important differences between the training and the vali-
dation data, however, the errors for the validation sets 
are still quite low, as compared to the other approaches. 
These results show that the selected approaches can fit 
the target set of data points accurately, to predict the log 
transformations of CAPEX and OPEX from the main input 
variables (CO2 mass flowrate in the flue gas, CO2 mole 
fraction, and NTU). It is highlighted that the ALAMO and 
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Polynomials approaches could present important errors 
(>50 %) when data is not transformed; in contrast, RBF, 
kriging, and ANN exhibit superior fitting capacity across 
diverse datasets. As observed in Tables 2 and 3, polyno-
mial surrogate models yield the highest maximum relative 
errors (approximately 1.2% and 0.8% for CAPEX and 
OPEX, respectively). ALAMO and ANN models present 
relatively similar accuracy, with ANN exhibiting slightly 
superior indicators compared to ALAMO. In particular, the 
RBF approach has the best accuracy metrics, closely fol-
lowed by Kriging surrogate models, indicating the fit ca-
pacity of these approaches. 

Regarding optimization results using the different 
surrogate modeling approaches, Table 4 shows the main 
results. These results correspond to solving the optimi-
zation problem by considering 50 different initial guesses 
to increase the possibility of finding the global optimum. 

The problem size of the NLP formulation is the same 
for the different cases, except when using ANN. We ob-
serve that the number of variables increases by 336 % 
for this case due to the additional variables in the hidden 
layer. On the other hand, no additional variables are re-
quired for the other surrogate model approaches. 

CPU times show that ALAMO-based SM formulation 
is the most efficient strategy, requiring only 47 s to solve 
the problem with the multistart strategy. Using polynomi-
als is the second most efficient approach, but it increases 
CPU time by 78 % with respect to the case of using AL-
AMO. On the other hand, the Kriging-based SM is the one 
that demands the highest CPU time, indicating the effect 
of using this highly nonlinear approach. Although the NLP 
formulation using ANNs has the most equations, it de-
mands 30% lower CPU time, as compared to the use of 
Kriging. 

The objective function values are also shown in Ta-
ble 4. The lowest objective function is found when using 
RBF-based SM, and the highest value corresponds to the 
case of using ALAMO. However, the differences in the 
objective functions are lower than 3.7 %, suggesting no 
significant differences in the carbon capture cost ob-
tained when using different surrogate modeling ap-
proaches. 

In terms of the specific configurations resulting from 
the optimization process across different approaches, di-
verse pooling strategies result, based on the surrogate 
models. It is important to note that the pooling problem 
exhibits multiple optimal solutions, and in some in-
stances, differences between them may not be substan-
tial. Nevertheless, there are key ideas that are consistent 
in the solutions, and one of them is the use of a percent-
age of the point sources to achieve the 90 % target re-
covery, as detailed in Table 4. Point sources S0-S2, S4, 
and S8 are fully utilized in all cases due to their high CO2 
concentration. As S3 also presents a relatively high con-
centration of CO2, it is nearly fully employed across all 

cases except in the scenario involving polynomial-based 
SMs, where it is completely used. On the other hand, 
given the relatively low CO2 concentration in S5, S6, and 
S7, they are generally excluded from the CO2 stream 
pooling, except when formulating the problem using pol-
ynomials, where 50% of S6 is utilized. We note that the 
constraint of achieving a minimum CO2 recovery of 90% 
is active in all cases. 

Table 4: Main results from the NLP optimization using dif-
ferent surrogate approaches 

 Alamo Polyno-
mials RBF Kriging ANN 

N° de 
vars      

N° de 
Eqs      

CPU 
time      

Obj 
func-
tion 

     

Use S % % % % % 
Use S % % % % % 
Use S % % % % % 
Use S % % % % % 
Use S % % % % % 
Use S % % % % % 
Use S % % % % % 
Use S % % % % % 
Use S % % % % % 

ALAMO solution 
Given the efficiency of ALAMO surrogate models, 

we have selected this approach to present the optimiza-
tion results. The optimal pooling of CO2 streams for car-
bon capture purposes is shown in Fig. 3. We observe that 
some point sources are higher than the maximum plant 
capacity (see Eq. (1.12)); therefore, they could be sent to 
more than one plant. In Fig. 3, we also show the percent-
age distribution of each point source. In particular, point 
sources S2 and S3 are fed to 5 and 4 plants, respectively. 
Although each point source could be treated in two 
plants, numerical results suggest that these arrange-
ments allow an improved capture cost. These could be 
associated with avoiding the design of plants operating 
with low CO2 concentrations. 

We also show the input variables associated with 
the design of each plant in Fig. 3. It is observed that two 
kinds of designs are selected to achieve the recovery tar-
get. On the one hand, p0, p3, p5, and p9 operate with CO2 
concentrations of 0.095-0.102, CO2 mass flowrates of 
0.6Mt/y, and recoveries around 94 %. On the other hand, 
the remaining plants are designed to function with high 
CO2 concentrations (0.21-0.28), while the resulting CO2 
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mass flowrate and CO2 recovery are at their respective 
upper bounds (1 Mt/y and 99 %). 

 
Figure 3: Optimal solution of the CO2 streams pooling 
problem using ALAMO-based surrogate models. p and S 
correspond to the carbon capture plants and point 
sources (see references in Table 4), respectively.  

CONCLUSIONS 
In this work, we evaluate different surrogate models 

(SMs) for formulating CO2 stream pooling problems using 
the IDAES computational platform. We explore ALAMO-
based SMs, Kriging SMs, Radial Basis Function SMs, Pol-
ynomials, and Artificial Neural Networks. ALAMO-based 
SMs prove the most efficient, with significantly lower 
CPU time. Despite differences in process configurations 
among the SMs, the impact on capture cost is minimal 
(below 3.7%). The optimal results associated with pooling 
configuration change with the surrogate modeling ap-
proach, but key ideas, like using high CO2 concentration 
sources and maintaining a 90% recovery target, remain 
consistent across all cases. 
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ABSTRACT 
An important measure to achieve global reduction in CO2 emissions is CO2 capture, transport, and 
storage. The deployment of CO2 capture requires the development of a shared CO2 transport in-
frastructure, where CO2 can be transported with different transport modes. Furthermore, the cost 
of CO2 transport can be subject to significant economies of scale effects with respect to the 
amount of CO2 transported, also mentioned as clustering effects. Therefore, optimizing the shared 
infrastructure of multiple CO2 sources can lead to significant reductions in infrastructure costs. 
This paper presents a novel formulation of the clustered CO2 transport network. The Markov De-
cision Process formulation defined here allows for more detailed modeling of non-linear, discrete 
transport costs and increased geographical resolution. The clustering effects are modeled through 
cooperative multi-agent interactions. A multi-agent, reinforcement learning-based algorithm is 
proposed to optimize the shared transportation network, with examples illustrating the results of 
the method.  

Keywords: Carbon Capture, Energy Systems, Artificial Intelligence, Technoeconomic Analysis, Supply Chain. 

INTRODUCTION  
Reducing CO2 emissions is crucial to limit the tem-

perature increase due to global warming [1]. One im-
portant measure for reducing CO2 emissions is CO2 cap-
ture, transport, and storage (CCS). CCS can be coupled 
with various individual emission sources [2]. Among the 
most important considered emissions sources are ther-
mal power generation, industrial facilities (e.g. cement 
plants or iron and steel mills [3]), as well as bioenergy 
production facilities [4] or direct air capture [5] to 
achieve net removal of CO2 from the atmosphere. The 
rollout of CO2 capture, independent of the source of the 
CO2, requires the concurrent development of a CO2 
transport infrastructure to the targeted CO2 storage lo-
cations. CO2 can typically be transported via pipelines, 
barges, ships, trains, and trucks; or combinations of 
these. The cost of CO2 transport can experience signifi-
cant economies of scale with respect to the amount of 
transported CO2 [6]. Hence, developing a common CO2 
infrastructure with clustering of CO2 from different 
sources can reduce the cost for each individual actor. 
This is especially important for industries in which smaller 

amounts of CO2 are captured and/or that are located far 
from the desired storage location. 

The implementation of CCS in the different sectors 
is frequently analyzed using large-scale (mixed integer) 
linear optimization problem, both individually [7], focus-
ing on a single sector [8], or combined with the analysis 
of the decarbonization of the complete energy sys-
tem [9]. These models face in general however two prob-
lems; First, it is difficult to include economies of scale due 
to the linear description of transport cost. Second, all ge-
ographical nodes must be defined before the optimiza-
tion. The latter is especially important when considering 
the clustering of individual CO2 sources to utilize econo-
mies of scale. In these models, transport of CO2 and 
change of transport mode is only possible in predefined 
geographical nodes. One approach to solving the prob-
lem is utilized by Sunny et al. [8], where a regular grid is 
superimposed on the investigated region. Correspond-
ingly, the model includes the whole region, allowing for 
both utilization of economies of scale and change of 
transport mode. However, the inclusion of a regular grid 
and binary investments in technologies to include econ-
omies of scale complicates the problem, resulting in a 
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reduced geographic resolution. 
This study presents a reinforcement learning ap-

proach to determining optimal multi-modal transport net-
works. The novelty of this work is threefold. First, while 
most of the literature on CCUS for network deployment 
focuses on onshore CO2 pipelines as a mean of transport 
[10][11], the present work includes tanked-based CO2 
transport options (such as trucks, trains, and barges), 
which are now expected to play a more significant in 
CCUS deployment than a few years ago [12]. Secondly, 
as the costs of pipeline- and tanked-based transport are 
significantly non-linear despite most of the literature lin-
earizing it, at least by part, a new methodology is pro-
posed to reduce the computational complexity of the 
large-scale MINLP transportation problem. Thirdly, as 
such network developments are unlikely to involve only 
one agent, the methodology incorporates a multi-agent 
perspective for cooperative agents that minimizes the 
overall transportation network costs to account for the 
economies of scale effects. The method utilizes the con-
cept of regular grids on a geographic region but allows 
for a higher geographical resolution as it focuses exclu-
sively on the potential CO2 transport network without 
considering time. It can be utilized for identifying geo-
graphical nodes that should be included in large-scale 
optimization problems. 

METHOD 

Problem Description 
Multi-modality and accommodating for detailed ge-

ographical resolution increase the solution space signifi-
cantly and may affect the numerical tractability of the al-
gorithm. Furthermore, transport costs are, in general, not 
linear with respect to the transport distance and volume. 
Therefore, non-linear, and discrete costs should be con-
sidered in the method. Finally, CO2 transported from a 
capture site to a storage location in limited amounts, 
while only considering a single source and single sink, will 
result in a high unit transportation cost. Assuming that 
there will be a significant amount of CO2 to be trans-
ported from future capture sites, clustering multiple CO2 
sources, and designing a shared infrastructure may re-
duce transport costs drastically. Table 1 summarizes the 
CO2 transport network problem addressed in the meth-
odology proposed.  

The multi-modality, the discrete, non-linear costs of 
the formulated transport problem, and the clustering po-
tential will lead to a large-scale MINLP problem, which 
may lack numerical tractability and be difficult to solve. 
This paper proposes a multi-agent reinforcement learn-
ing-based approach to determine a minimum-cost CO2 
transportation network to circumvent the problem. 
Truck-based and pipeline-based transports are consid-
ered in this paper, though the method can be extended 

to more transport modes. Furthermore, information about 
the amount and location of the transported CO2 and the 
location of storage sites is needed. Detailed knowledge 
of geographical data on existing road networks and ter-
rain can be easily incorporated into the method. 

Table 1: CO2 transport network problem description 

Problem Background Effect 
Multi- 
modality 

Consideration of 
multiple transport 
modes 

Large solution 
space  

Detailed 
cost model-
ing 

Non-linear and dis-
crete costs for 
transport and re-
conditioning 

Complex objec-
tive function 

Clustering Considering multi-
ple capture sites 
with a shared net-
work to lower 
transport costs 

Multi-agent 
approach 

  

Environment 
The environment is modeled as a graph 𝐺𝐺  =  (𝑁𝑁,  𝐸𝐸), 

where each node 𝑛𝑛 ∈ 𝑁𝑁 represents some geographic lo-
cation and edges 𝑒𝑒 ∈ 𝐸𝐸 connect pairs of distinct nodes in 
the graph. This formulation allows for extendibility in en-
vironment representation, as geographical information 
can be added to each corresponding edge. When an 
edge connects two nodes corresponding to two different 
geographic locations, the edge represents some 
transport mode between them. The edges have data 
necessary to infer transportation costs, such as distance 
between nodes, and can incorporate information about 
terrain. When nodes connected by an edge are at the 
same location, however, the edge represents the condi-
tioning of CO2. Conditioning of CO2 is needed when a unit 
of CO2 transitions from one transport mode to another. 
Furthermore, a conditioning cost is also applied to a unit 
of CO2 when transitioning from a source node to a 
transport mode or from a transport mode to a sink node.  

The nodes and edges in the graph are ordered in 
different layers. Each layer represents a single transport 
mode, and the layers are connected by directed edges 
for conditioning needed to change the transport mode. 
However, the used algorithm works for a general graph 
and is not dependent on a layer-structured environment. 

Optimal CO2 Transport Network as an MDP 
This paper proposes to frame the network optimiza-

tion problem as a Dynamic Programming (DP) problem. 
DP refers to both a modeling framework and a solution 
method for sequential decision-making processes. The 
fundamental DP problem is a Markov Decision Process 
(MDP), which is described by discrete state transition 
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dynamics: 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘), 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1,  (1) 

for a state 𝑥𝑥𝑘𝑘 at time step 𝑘𝑘 to transition to the sub-
sequent state 𝑥𝑥𝑘𝑘+1  given an input 𝑢𝑢𝑘𝑘 . Each state corre-
sponds to a specific node 𝑛𝑛 in the network, indicating the 
agent’s current location. The action 𝑢𝑢𝑘𝑘 corresponds to an 
edge 𝑒𝑒 that the agent chooses to traverse, representing 
either CO2 transport or conditioning modeled as move-
ment from one node to the other. The general MDP for-
mulation allows for stochastic state transition dynamics. 
This study, however, neglects state transition stochas-
ticity in the transport investment problem.  

For every state transition, the agent incurs a stage 
cost: 

𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘), 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1,   (2) 

and a terminal cost at the terminal state 𝑔𝑔𝑁𝑁(𝑥𝑥𝑁𝑁) . The 
stage cost is given as feedback from the environment. As 
inputs 𝑢𝑢𝑘𝑘  are applied and stage costs 𝑔𝑔𝑘𝑘  are observed, 
the goal of DP is to minimize the cumulative costs over all 
time steps. These cumulative costs are expressed in the 
value function, subject to Bellman’s principle of optimality 
[13]: 

𝑉𝑉 = 𝑔𝑔𝑁𝑁(𝑥𝑥𝑁𝑁) + ∑ 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘)𝑁𝑁−1
𝑘𝑘=0 .   (3) 

The current problem is solved as steady-state prob-
lem. Each agent represents some total annual volume of 
transported CO2 moving through the environment de-
scribing all possible transport paths from source (capture 
site) to multiple possible sinks (storage sites), but it is as-
sumed that CO2 is transported continuously over the 
year. DP provides a flexible mathematical framework to 
model sequential decision-making processes under rela-
tively weak assumptions. 

While DP algorithms can find the global optimum so-
lution given non-linear and discrete costs, it often strug-
gles with numerically tractability in large state-spaces 
(so-called “curse of dimensionality”). Approximate Dy-
namic Programming (ADP) is a family of algorithms de-
rived from DP, which trade off global optimality for nu-
merical tractability. ADP algorithms include reinforce-
ment learning (RL) [14], the A*-Algorithm [15], Model 
Predictive Control [16], and Stochastic Program-
ming [17]. 

Understanding the problem posed in this paper as a 
DP problem allows for drawing on the rich methodologi-
cal background to solve such problems. The DP frame-
work can explicitly address modeling a higher geograph-
ical resolution, the multi-modality of CO2 transport, and 
representing more complex investment costs. 

Multi-agent Approximate Dynamic 
Programming 

The DP framework also offers a solution to model 

volume-specific transportation cost decrease when the 
amount of CO2 transported increases. These economies 
of scale effect is often shown in pipeline investments, 
where building a pipeline with an increased diameter is 
less costly than building two separate pipelines with 
smaller diameters to transport the same flow. This effect 
is also described in minimum concave cost network flow 
problems which are solved as a network flow optimiza-
tion [18]. Minimum concave cost network flow problems 
are shown to be equivalent to the DP problem formulation 
and can be solved with a DP algorithm known as the 
send-and-split method [19]. 

This paper utilizes the MDP formulation and models 
the economies of scale as multi-agent interactions. The 
agents are multiple units of CO2 traversing the graph. 
When agents invest in pipeline transportation at the same 
location, the total costs are modelled according to a con-
cave cost function and distributed among the agents 
contributing to the investment decision. A clustering in-
teraction is therefore defined as multiple agents transi-
tioning over the same transport edge.  

Modelling the clustering of CO2 transport poses an-
other complexity in the transport network investment 
problem, which increases the computational burden on 
the solution. The paper explicitly does not consider time-
dependency and the rollout of investments. Therefore, 
agents do not have to traverse the same edge within the 
same time step. 

In an ADP framework, the clustering of agents is in-
centivized directly through reductions of stage costs to 
single agents, leading to an overall reduction in system 
costs (total cost incurred by all agents). The proposed 
algorithm should be able to utilize discrete and non-linear 
CO2 transport network costs and converge to a feasible 
overall system cost in the transport value chain. We de-
fine the pipeline investment problem as a cooperative 
game with transferable utility, for which the Shapely 
value [20] is included to distribute the costs fairly among 
agents [21].  

Algorithm 
This paper proposes a modified actor-critic RL algo-

rithm. The critic is formulated as a central evaluator, 
whose role is to evaluate the current policy followed by 
the actor [22]. In the multi-agent context, the critic ob-
serves the actions of all actors and apply a temporal dif-
ference (TD) update [23]. 

Each actor samples a stochastic policy to determine 
the next action in a discrete action space, due to the dis-
crete graph structure of the environment. The stochastic 
policy is a mapping of state-action pair to a real number 
𝑝𝑝 indicating the preference: 

Π(𝑥𝑥,𝑢𝑢) → 𝑝𝑝.      (4) 

The preference 𝑝𝑝  is scaled to represent a viable 
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probability distribution for the stochastic policy with 
Boltzmann scaling. Each actor will sample a path from 
their source node to a sink node with their current policy 
and observe the stage cost feedback from the environ-
ment. Because there is no time step dependency defining 
actor collaboration, the policy update is only applied after 
each agent completes their path from source to sink.  

The centralized critic updates and maintains a value 
function mapping each state to an expected cost by fol-
lowing the current policy 𝑉𝑉(𝑥𝑥) . The critic observes the 
stage costs of a path incurred by all agents and calcu-
lates the TD update for the centralized value function.  

The actors receive the TD error 𝛿𝛿 to update the ac-
tor policy. The TD error is calculated as: 

𝛿𝛿(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘 , 𝑥𝑥𝑘𝑘+1) = 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝑉𝑉(𝑥𝑥𝑘𝑘+1) −  𝑉𝑉(𝑥𝑥𝑘𝑘). (5) 

The value function is tabular, the actor policy is 
Boltzmann-sampled. The optimal path of an agent is de-
fined as the trained greedy policy, which maximizes the 
preference 𝑝𝑝 over all actions 𝑢𝑢. 

 

Algorithm 1: Modified Actor-Critic Algorithm 

1. Critic: initialize V(x) ← 0, "x 
2. For each agent a 
3.   Actor: Initialize Πα(x,u) ← 0, "x,u 
4. For each episode 
5.   For each agent a  
6.     Initialize x ← xasource 
7.     Initialize path pa as empty list 
8.     While x is not xsink do 
9.       Actor: u ← Π(x) get action dictated 

             by policy in current state x 

10.       Actor: observe state transition x → x’ 
11.       Actor: append state-action-state tuple 

             (x,u,x’) to path 
12.       Update state: x ← x’ 
13.   Critic: collect all paths p from agents 
14.   Critic: determine common state-action-state 

          tuples between agents 
15.   For each agent a 
16.     For each step (x,u,x’) in pa  
17.       Critic: calculate stage cost g 

              considering common state-action- 
              state tuples  

18.       Critic: δ ←  g + V(x’)- V(x) 
19.       Critic: V(x) ←   V(x) + αδ 
20.       Actor: Πα(x,u) ←   V(x) - αδ 

EXAMPLES 
This paper presents a demonstration of the algo-

rithm methodology in simplified examples. As this paper 
focuses on presenting the CO2 transport problem formu-
lation and a methodology, geographical data is not used 
in the examples presented here; however, the method 
can be extended to incorporate geographical knowledge 
in the stage costs observed by the agents. The 

environment is represented as an equidistant 6-by-6 
grid. The graph has two layers representing the two 
transport modes in the example, truck-based and pipe-
line-based transports. Every location on the graph is 
reachable by either transport mode. In total, the graph 
has 36 transport nodes with additional source and sink 
nodes. 

The transportation costs are dependent on the 
transport mode, the distance associated with the edges 
of the environment, and the total transported volume of 
CO2 over the edge. For edges representing conditioning 
of CO2, the cost function only depends on the total vol-
ume of CO2 transported over the edge, and what 
transport modes are available at each of the nodes con-
nected by the edge. 

The annualized transport cost (M€/y), including 
conditioning, is used as a key performance indicator. In 
order to use representative costs for both truck- and 
pipeline-based transports, multiple evaluations were car-
ried out with the iCCS tool, an integrated techno-eco-
nomic and environmental assessment tool for CCS value 
chains developed by SINTEF Energy Research [24–26]. 
Based on these evaluations, cost functions of pipeline- 
and truck-based transports depending on the annual vol-
ume and transport distances were regressed for the 
ranges relevant to the examples.  

The Shapley value is computed for the pipeline 
costs to incentivize agent cooperation. The costs of both 
truck transport and pipeline transport are plotted in Fig-
ure 1 for a set distance of 100 km. Figure 1 shows that 
pipelines are cheaper than trucks for volumes above 
0.16 Mt of CO2 transported per year. 

Figure 1: Transport investment cost per volume of CO2 
for pipeline and truck. 

Example 1 
In this example, five agents with relatively large vol-

umes traverse the graph to one sink node located at node 
(6,4) (shown as a small, light gray circle in the figures, 
row 6, column 4). The source node locations and volume 
of each agent are listed in Table 2. The agents are visu-
alized as blue circles with their corresponding numbers in 
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the figures. Pipeline transport, the preferred transport 
mode with and without cooperation between the agents, 
is represented as a solid arrow in the figures. 

The example is solved in 23.8 s for 4,000 episodes 
with a learning rate 𝛼𝛼 = 10−4. Figure 2 shows the optimal 
paths of each agent traversing the graph without cluster-
ing effects. The algorithm identifies three possible clus-
tering points shown as a larger, grey circle. The total sys-
tem costs are reduced by 32 % by considering clustering 
of the agents. Figure 3 shows the results of the calcu-
lated path of the agents considering that agents travers-
ing the same pipeline transport edge will reduce costs 
according to Shapley values. 

Table 2: Agents in example 1 

Agent Volume Source node 
  Mt ()  
  Mt () 
  Mt () 
  Mt () 
  Mt () 

 

 
Figure 2: Results of the algorithm for agents from 
Example 1 without agent interactions through clustering. 
Due to the large volumes being transported in Example 1, 
pipelines are still preferred compared to trucks. 

 
Figure 3: Results of the algorithm for agents from Table 
2 traversing the grid when clustering is incentivized with 
cost reduction. Possible clustering points are identified 
as dark grey, larger circles. The solid arrows represent 
pipeline investments. Thicker arrows indicate a larger 
amount of CO2 transported through the pipeline.  

The example is solved in 23.8 s for 4,000 episodes 
with a learning rate 𝛼𝛼 = 10−4. Figure 2 shows the results 
of the calculated path of the agents considering that 
agents traversing the same pipeline transport edge will 
reduce costs according to Shapley values. Figure 3 
shows the optimal paths of each agent traversing the 
graph without clustering effects. The algorithm identifies 
three possible clustering points shown as a larger, grey 
circle. The total system costs are reduced by 32% by 
considering the clustering of the agents. 

Example 2 
This example models nine agents traversing the 

graph to two possible sink nodes located at (6,2) and 
(6,5). Source location and volume of each agent are listed 
in Table 3.  

Table 3: Agents in example 2. 

Agent Volume Source node 
  Mt ()  
  Mt () 
  Mt () 
  Mt () 
  Mt () 
  Mt () 
  Mt () 
  Mt () 
  Mt () 

 

1

3

2 4

5

1

3

2 4

5

31 2
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Figure 4: Results for Example 2 without clustering 
effects. Due to the small volume of agents, truck 
transport, represented in dashed arrows, is preferred. 

Example 2 is solved in 57.2 s for 8000 episodes and 
a learning rate of 𝛼𝛼 = 10−4. Figure 4 shows that the vol-
ume of each agent causes truck transport (represented 
in dashed arrows) to be preferred if agent interactions, 
i.e., clustering effects, are not considered.  

In Figure 5, the paths for each agent considering 
clustering effects are shown. All agents choose to forego 
truck transport, as pipeline transport in larger volumes 
seems to be preferred. Agents 1 and 9 traverse the graph 
through pipelines from source to sink without clustering 
with other agents, even though truck transport would 
yield lesser costs. Pipeline transport exhibits a high vari-
ance in costs. Specifically, in the case of cooperation be-
tween agents, these costs are shared, which leads the 
agents to prefer pipeline transport in the multi-agent sce-
nario even though the greedy policy does not present 
clustering effects. Nonetheless, total system costs are 
reduced by 28% with cooperative behavior.  

DISCUSSION 
The method proposed in this paper is formulated to 

be able to incorporate detailed geographical data. The 
DP framework is chosen as a flexible modelling tool which 
can be extended for multi-modal and geographical rep-
resentation. 

The drawback of DP is the scalability of the solution 
methods, as they need to accommodate a large search 
space. Furthermore, the search space may grow rapidly 
with the number of agents, the complexity of possible 
agent policies, and the possible interactions between 
agents. This is especially exacerbated as not only agent 
interactions within one time step but across all time steps 

in a path are considered. The complexity of the algorithm 
is also increased due to the tabular representation of pol-
icy and value function. 

  
Figure 5: Results of the algorithm for agents from Table 
3 traversing the grid, where clustering is incentivized 
with cost reduction. The agents traverse the graph to two 
possible sinks, represented as small light grey circles. 
Two possible clustering points are identified. 

Investments in the CO2 transport network are the 
trained polices of agents corresponding to edges of the 
environment graph. These edges are defined as a “fixed 
transportation route”, starting in one node and ending in 
another. This representation is sufficient for geograph-
ically fixed investments such as pipelines, flexible re-
sources in the transport network, such as trucks, are not 
accurately captured. 

While the multi-agent approach allows clustering ef-
fects as agent interactions to be captured in the first 
place, convergence to optimality remains an issue. The 
multi-agent formulation inherently results in learning a 
policy in a non-stationary environment, where the behav-
ior of other agents constantly influences the learning goal 
of one agent. These dynamics between agent behavior 
lead to unclear convergence to a global optimality [27]. 
In the method proposed, agents communicate indirectly 
through the centralized critic and the calculated TD error. 
However, each agent does not consider other agents’ be-
havior when sampling their policies. Some multi-agent al-
gorithms, therefore, include either an approximation of 
other agents’ policies in the decision-making of one 
agent or a communication term [28].  

CONCLUSION AND FURTHER WORK 
This paper presents a formulation of the CO2 
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transport network investment as a MDP. The algorithm is 
formulated to accommodate incorporating detailed geo-
graphical modelling and acknowledging the so-called 
clustering effects or economies of scale in pipeline in-
vestments. The transport network investment problem is 
formulated as a DP problem. This paper focuses on a de-
scription of the proposed methodology while presenting 
simple examples to illustrate the results of such an algo-
rithm.  

DP is known to be inhibited with exponentially grow-
ing state-action-space complexity and the resulting 
computational intractability also known as the curse of 
dimensionality. A multi-agent reinforcement learning-
based algorithm proposed to address the state space 
complexity of DP. While the multi-agent perspective of-
fers a framework where agents make decisions autono-
mously and collaborate to achieve lower costs which are 
in turn distributed fairly onto the agents, multi-agent re-
inforcement learning is subject to rapidly increasing input 
complexity as the input space grows in dimension with 
the number of agents and nonstationarity leading to con-
vergence issues [29] which needs to be addressed in fur-
ther works. 

While the illustrative examples presented in this pa-
per are solved quickly, the computational time is ex-
pected to grow rapidly with the number of agents, which 
may make the application of such an algorithm to truly 
large-scale systems difficult (infeasible). However, the 
proposed methodology retains its novelty by considering 
the economies of scale effects that are commonly ne-
glected in single-agent systems. Further work should, 
therefore, focus on integrating a sequential rollout ap-
proach [30], which would cause the computational time 
to increase linearly with the number of agents while re-
taining the fundamental cost improvement property for 
convergence. One issue in this approach is that the econ-
omies of scale effects, which are represented in the in-
teractions between the agents, require the agents to act 
concurrently to calculate the Shapley values for the co-
operating agents. Therefore, the convergence under 
such system properties needs to be addressed.  
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ABSTRACT 
As a promising electricity storage system, Liquid Air Energy Storage (LAES) has the main ad-
vantage of being geographically unconstrained. LAES has a considerable potential in energy effi-
ciency improvement by utilizing compression heat and integrating with other systems. In this work, 
the Stirling Engine (SE) is introduced to improve the energy efficiency of the LAES system. Three 
LAES-SE systems are modelled in Aspen HYSYS and optimized by the Particle Swarm Optimization 
(PSO) algorithm. The studied systems include (i) the LAES system with 3 compressors and 3 ex-
panders (3C+3E) using an SE to recover the compression heat, (ii) the 3C+3E LAES system with 
LNG regasification and SE, and (iii) the 3C+3E LAES system with solar energy and SE. The optimi-
zation results show that the Round-Trip Efficiencies (RTEs) of the LAES-SE system and the LNG-
LAES-SE systems are 68.2% and 73.7%, which are 3.2% and 8.7% points higher than the basic 
3C+3E LAES-ORC system with an RTE of 65.0%. For the Solar-LAES-SE system, a revised RTE 
and the economic performance with solar energy input are optimized. The traditional RTE for the 
Solar-LAES-SE system, which only accounts for power produced and consumed in the discharging 
and charging sections, is 189% and 173% respectively, when optimized with respect to energy and 
economic performances. The revised RTE accounts for the integrated external sources, avoiding 
the confusing result that the RTE becomes larger than 100%. The energy and economic perfor-
mances of the Solar-LAES-SE system are proved to be the best compared with the Solar-LAES-
ORC and Solar energy directly heated-LAES systems. 

Keywords: Modeling and Simulation., Optimization, Solar Energy, Energy Efficiency, Liquid Air Energy Storage, 
Stirling Engine 

1 INTRODUCTION 
The transition from fossil fuels to renewable energy 

forms requires substantial investments in energy storage 
due to the intermittent nature of renewables and fluctua-
tions on the demand side. There is a considerable num-
ber of storage technologies, from mature to emerging, all 
with their inherent advantages and disadvantages. Fo-
cusing on storing electricity, the dominating technology 
is Pumped Hydro Electrical Storage (PHES) with 96% of 
the world capacity. Another mature, but still developing, 
technology for storing electricity is different forms of bat-
teries. Emerging energy storage technologies include 
Compressed Air Energy Storage (CAES) and Liquid Air 
Energy Storage (LAES). 

While PHES and CAES have geographical con-
straints, standalone LAES can be located wherever it is 
suitable. When considering integration with external 
sources of heating and cooling, as the present work will 
discuss, even LAES has some constraints regarding loca-
tion. The main disadvantage of LAES has been its rela-
tively low Round-Trip Efficiency (RTE). From the first 
published concepts with an RTE of 54.4% [1], recent 
studies ([2], [3] and [4]) were able to improve the RTE for 
standalone LAES to 68.2% by optimizing the number of 
compressor and expander stages as well as the cold 
thermal energy recovery cycles. 

In contrast to PHES and CAES, LAES also has sub-
stantial improvement potential by utilizing opportunities 
for integration with external sources of heating and 

https://doi.org/10.69997/sct.100950
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cooling. Obvious candidates are waste heat streams from 
neighboring industrial plants and utilization of the cold 
energy that is released when regasifying LNG. At existing 
LNG terminals, LNG is regasified using sea water or air; in 
fact, even combustion of natural gas has been used. This 
considerable waste of cold energy can easily be con-
verted into power using different types of heat engines 
such as Organic Rankine Cycle (ORC) and Stirling Engine 
(SE). In our work, we have even considered solar energy 
as a heat source for the LAES. These alternatives have 
been evaluated in the framework of an LAES that oper-
ates in three distinct modes: charging, storage and dis-
charging. 

Table 1 shows the systems studied and compared in 
this work. The 3C+3E LAES-ORC system in reference [4] 
with an RTE of 65.0% is taken as a base case. In the 
LAES-SE system, the ORC is replaced by a Stirling en-
gine. In the LNG-LAES-SE system, the heat sink of the 
LAES-SE system, cooling water, is replaced by the LNG 
regasification process. In the Solar-LAES-SE system, the 
heat source and sink of the Stirling engine are solar ener-
gy and air in the discharging section, respectively. In this 
case, all the surplus compression heat is used to drive an 
ORC. 

The energy and economic performances of the So-
lar-LAES-SE system are compared with the Solar-LAES-
ORC system [5] and the Solar directly heated-LAES sys-
tem [6]. In the first three systems, only the traditional RTE 
is studied while in the solar energy integrated systems, 
both the traditional and the revised RTE as well as the net 
income are studied. In the Solar-LAES-SE system and So-
lar directly heated-LAES system, the charging and dis-
charging sections are decoupled. 

The serial numbers for the systems in Table 1 refer 
to: (1) LAES-ORC system, (2) LAES-SE system, (3) LNG-
LAES-SE system, (4) Solar-LAES-SE system, (5) Solar-
LAES-ORC system, and (6) Solar directly heated-LAES 
system. 

Table 1: Different LAES systems studied. 

Sys- 
tems 

Reference RTELAES RTESolar-LAES Net 
income 

1 [4] √ × × 
2 This study √ × × 
3 This study √ × × 
4 This study √ √ √ 
5 [5] √ √ √ 
6 [6] and this 

study 
√ √ √ 

2 METHODS 
Aspen HYSYS has been used to model the different 

processes while the Particle Swarm Optimization (PSO) 
algorithm in MATLAB has been used to find the optimal 

RTE for standalone LAES as well as LAES integrated with 
ORC, SE and Solar energy. The economic performance of 
the combined Solar-LAES-SE system has also been opti-
mized. Equations (1) and (2) show the traditional and re-
vised RTE, respectively. 

𝑅𝑅𝑅𝑅𝑅𝑅LAES = 𝑊𝑊out𝑡𝑡dc
𝑊𝑊in𝑡𝑡cc

= (𝑊𝑊AT−𝑊𝑊CP)𝑡𝑡dc
𝑊𝑊AC𝑡𝑡ch

  (1) 

𝑅𝑅𝑅𝑅𝑅𝑅Solar−LAES = 𝑊𝑊el,out𝑡𝑡dc
(𝑊𝑊el,in+𝜂𝜂𝜂𝜂th,in)𝑡𝑡ch

  (2) 

In these equations, w is specific work, t is time, dc 
and ch are for discharging and charging, respectively, η 
is the power generation efficiency for converting solar 
heat into power, and Qth,in is the solar heat to the system. 

3 SIMULATION MODEL 

3.1 Basic LAES System 
According to reference [4], the LAES system with 2 

compressor stages and 3 expander stages (2C+3E) has 
the highest RTE. Their study also revealed that surplus 
compression heat will only be produced when the num-
ber of compressor stages is equal to or larger than the 
number of expansion stages. Unfortunately, the power 
produced from such surplus compression heat is not 
enough to compensate for the reduced power production 
in the discharging section. In summary, they found that 
(2C+3E) is better than (3C+3E), (3C+4E) is better than 
(4C+4E), and (4C+5E) is better than (5C+5E). Of these 
three systems, (2C+3E) has the highest RTE. However, 
when the number of compressor stages in the charging 
section is only 2, the compression ratio will be 13.11 [4], 
leading to a high investment cost and some concern 
about lack of maturity. Taking into consideration both en-
ergy efficiency and a more practical compression ratio in 
the charging section, an LAES system with 3 compressor 
and 3 expander stages is adopted as the base case for 
the study in this paper. An Organic Rankine Cycle (ORC) 
is used to recover the surplus compression heat of the 
3C+3E LAES system. The optimized RTE of the base case 
is 65.0% according to reference [4]. Based on this, differ-
ent thermal energy recovery systems and external heat 
sources and sinks are integrated to improve the RTE of 
the LAES system. 

3.2 LAES-Stirling Engine System 
The Stirling engine is an efficient heat recovery 

technology, whose ideal efficiency is as high as the Car-
not cycle, which theoretically has the highest possible 
thermal efficiency [7]. The Stirling engine is proved to be 
a promising method to improve the RTE of the LAES sys-
tem as an alternative to other compression heat recovery 
cycles including the ORC, Kalina Cycle and Absorption 
Refrigeration Cycle. Figure 1 shows the flowsheet of the 
LAES-SE system simulated in Aspen HYSYS. The heat 
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sink of the Stirling engine is cooling water at ambient 
conditions. 

The Malmo relation [8] is used to model the Stirling 
engine in the LAES-SE system because the temperature 
difference between the heat source (thermal oil from the 
charging part) and sink (cooling water) of the Stirling en-
gine is low. The Malmo relation is shown by Equations 
(3)-(4). 

𝑃𝑃Stirling = (𝜂𝜂H × 𝜂𝜂Mech × 𝜂𝜂Thermo) × 𝐾𝐾C × 𝑄𝑄in   (3) 

𝜂𝜂Thermo = 1−𝜏𝜏
1+(1−𝑒𝑒)×(1−𝜏𝜏)/[(𝑘𝑘−1)×𝑙𝑙𝑙𝑙𝑉𝑉1𝑉𝑉2

]
  (4) 

𝜏𝜏 = 𝑇𝑇L,S

𝑇𝑇Heater,wall
,  𝑅𝑅𝐿𝐿,𝑆𝑆 = 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑒𝑒𝑐𝑐 𝑤𝑤𝑤𝑤𝑙𝑙𝑙𝑙 + ∆𝑅𝑅𝑙𝑙𝑐𝑐𝑤𝑤,  

𝑘𝑘 = 𝐶𝐶P
𝐶𝐶V

   

where ηH is the heat source efficiency, which is in 
the range of 0.85–0.95; ηMech is the mechanical efficiency, 
which is in the range of 0.75–0.90; KC is the Stirling coef-
ficient, which is in the range of 0.55–0.88; these param-
eters are taken as 0.9, 0.83 and 0.71 [9]. e refers to the 
regenerative effectiveness; V1=VD+VP is the volume at 
state 1 and V2=VD is the volume at state 2 of the com-
pression process; VD is displacer swept volume in m3 and 
VP is power piston swept volume in m3; τ is the tempera-
ture ratio between the heat source and heat sink. TH,S re-
fers to the high-temperature source and TL,S refers to the 
low-temperature source of the Stirling engine. k is the ra-
tio between specific heat capacity at constant pressure 
and specific heat capacity at constant volume, and is 
considered to have a constant value (1.667 for Helium). 

 
Figure 1. Flowsheet of the LAES-SE system. 

3.3 LAES-SE System with LNG regasification 
In order to further improve the heat recovery effi-

ciency of the LAES system and thereby improve the RTE 
of the entire system, the LNG regasification process is 
adopted as a heat sink of the Stirling engine with the 
compression heat as a heat source. Figure 1 is used to 

illustrate both the LAES-SE system where cooling water 
is used as heat sink for the Stirling engine and the LNG-
LAES-SE system where LNG regasification replaces cool-
ing water as heat sink. 

In the LNG-LAES-SE system, the Pseudo Stirling 
model [10] is used to simulate the Stirling engine because 
in this case, the temperature difference between the heat 
source and heat sink is large. The Pseudo Stirling model 
is shown in Equations (5)-(10). 

          𝑃𝑃Stirling = 𝜂𝜂pcy(𝑄𝑄high − 𝑄𝑄loss)      (5) 

where PStirling refers to the power produced by the Stirling 
engine, ηpcy refers to the polytropic efficiency as shown 
in Equation (7), Qhigh is the heat provided by the heat 
source, and Qloss is the heat released to the heat sink by 
the Stirling engine as shown in Equation (6). 

             𝑄𝑄loss = 𝑄𝑄high(1 − 𝜂𝜂mech)                (6) 

where ηmech refers to the mechanical efficiency of the 
Stirling engine. 

       𝜂𝜂𝑝𝑝𝑐𝑐𝑝𝑝 = [ �1−𝑅𝑅𝑅𝑅
1−𝑘𝑘�−𝜁𝜁(𝑅𝑅𝑅𝑅1−𝑘𝑘−1)

(1−𝑅𝑅𝑅𝑅1−𝑘𝑘)+(1−𝜁𝜁)(1−𝜀𝜀𝑆𝑆𝑆𝑆)
]  (7) 

where 𝜀𝜀𝑆𝑆𝑇𝑇  refers to the efficiency of the Stirling engine 
regenerator (0.94), RV refers to the piston compression 
ratio (1.23), and 𝜁𝜁  refers to the ratio between minimum 
and maximum temperature inside the Stirling cycle as 
shown in Equation (8): 

                              𝜁𝜁 = 𝑇𝑇LS
𝑇𝑇HS

                     (8) 

              𝑅𝑅HS = 𝑅𝑅heater,wall − Δ𝑅𝑅high               (9) 

                𝑅𝑅LS = 𝑅𝑅cooler,wall + Δ𝑅𝑅low                      (10) 

where ΔThigh refers to the temperature change of the heat 
source and ΔTlow refers to the temperature change of the 
heat sink. 

3.4 Solar Energy Integrated LAES-SE System 
In addition to the case where surplus compression 

heat is used as a heat source for the Stirling engine, solar 
energy can also be integrated as a heat source to in-
crease the power generated in the Stirling engine. As 
shown in Figure 2, solar energy is integrated with the dis-
charging section of the LAES system. The solar heat car-
ried by molten salt is taken as heat source and the air 
before expanders is taken as heat sink for the Stirling en-
gine. All compression heat from the charging section is 
used to drive an ORC to generate more electricity. As a 
result, the charging and discharging sections are decou-
pled, resulting in improved flexibility and operability of 
the LAES system compared with previous cases. 

The solar energy utilization model is represented by 
Equations (11)-(13). The efficiency of the collector is de-
fined as the ratio of the energy absorbed by the working 
fluid in the collector (Qc) to the available energy from the 
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sun (Qs), as shown by Equation (11). The efficiency of the 
collector is given by Equation (12), as suggested by 
Blanco et al. [11] 

                          𝜂𝜂𝑐𝑐 ≡
𝜂𝜂c
𝜂𝜂s

                           (11)                            

𝜂𝜂c = 0.75 − 0.000045∆𝑅𝑅 − 0.039 ∆𝑇𝑇
𝐺𝐺𝑏𝑏
− 0.0003𝐺𝐺𝑏𝑏(∆𝑇𝑇

𝐺𝐺𝑏𝑏
)2    (12) 

where  ∆𝑅𝑅 is the difference between the mean tempera-
ture in the solar collector and ambient temperature, as 
shown by Equation (13). 

                            ∆𝑅𝑅 = (𝑅𝑅hot + 𝑅𝑅cold)/2 − 𝑅𝑅amb                           (13) 

where Tamb is the ambient temperature, which also has an 
impact on the system. 

 
Figure 2. Flowsheet of the Solar-LAES-SE system. 

4 OPTIMIZATION OF DIFFERENT LAES 
SYSTEMS 

Based on the simulation model of different LAES 
systems, the Particle Swarm Optimization (PSO) algo-
rithm is used to obtain the optimal RTE of these systems. 
The minimum temperature difference of the heat ex-
changers in the discharging section is fixed as 10°C while 
that of the heat exchangers in the charging section is set 
as a variable changing from 10°C to 40°C. The tempera-
ture difference of the heat exchangers in the cold box is 
taken as constraint with a minimum value of 1°C. Figure 
3 shows the framework for the optimization. Besides, for 
the Solar-LAES-SE system, the RTE will increase mono-
tonically with the increased input of solar thermal energy, 
since this heat comes at no expense. Therefore, there is 
no optimal value for the traditional RTE given by Equation 
(1) for the Solar-LAES-SE system. There are two ways to 
find an optimal condition for this system: (1) consider the 
solar energy as a heat input in the RTE calculation, as 
shown in Equation (2) for the revised RTE, and (2) con-
sider the economic profit of the solar energy storage 

system. Though the energy efficiency could be improved 
by a large amount of solar energy input, the investment 
cost of the molten salt and the storage tank would also 
be increased. Therefore, there will be an optimal value for 
the investment cost.  

 
Figure 3. Optimization framework for the LAES systems. 

5 RESULTS AND DISCUSSION 

5.1 Energy Efficiency Optimization of the 
LAES-Stirling Engine System 

The optimal RTE of the LAES-SE system is obtained 
with compression ratio, expansion ratio, and temperature, 
pressure and flowrate values for the hot and cold thermal 
energy recovery sections as decision variables. Accord-
ing to reference [12], the power generation efficiency of 
the Stirling engine is decreasing with increased outlet 
temperature of the heat sink. Therefore, the outlet tem-
perature of the heat sink (C2' in Figure 1) is fixed at 29°C 
in order to ensure a reasonable temperature change of 
the heat sink. The outlet temperature of the heat source 
(H31 in Figure 1) is fixed at 30°C, which is the lowest tem-
perature when the minimum temperature difference be-
tween the heat source and sink is taken as 10°C. 

For the Stirling engine based compression heat re-
covery section, the inlet and outlet temperatures of the 
heat sink and the outlet temperature of the heat source 
are fixed. Therefore, the power generated in the Stirling 
engine will mainly be impacted by the inlet temperature 
and flowrate of the heat source (H3 in Figure 1). These 
two variables are determined by the compression ratio of 
the compressors, while the flowrate of the heat source 
will indirectly be affected by the expansion ratio of the 
expanders. 

The optimization results show that the RTE of the 
LAES-SE system will be 68.2%, which is 3.2% points 
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higher than the LAES-ORC system in reference [4]. This 
means that the heat recovery efficiency of the Stirling en-
gine is slightly higher than the ORC. 

5.2 Energy Efficiency Optimization of the 
LNG-LAES-Stirling Engine System 

For the LNG-LAES-SE system, the decision varia-
bles are the same as those in the LAES-SE system. For 
the Stirling engine based compression heat recovery 
section, the temperature of the heat sink is set to -162°C 
since only latent heat from LNG is utilized in this case. 
The outlet temperature of the heat source is fixed at 30°C. 
In this case, one part of the thermal oil is used to preheat 
air before expanders and the other part is used to drive 
the Stirling engine. Minimum temperature difference of 
the air preheater is fixed at 10°C. The flowrate of thermal 
oil to the air preheating part will be determined by (i) the 
air temperature after evaporation and expansion (D3 and 
D4 in Figure 1) and (ii) the thermal oil temperature from 
the charging section. These temperatures depend on (i) 
the cold storage section and the expansion ratio and (ii) 
the compression ratio. This means that the flowrate of 
thermal oil to the Stirling engine also depends on the cold 
storage section and the expansion and compression ra-
tios, since the total flowrate of thermal oil is fixed by the 
compression ratio. The optimized RTE is 73.7%, which is 
8.7% points higher than the basic LAES-ORC system. 

5.3 Energy Efficiency Optimization of the 
Solar-LAES-Stirling Engine System 

For the Solar-LAES-SE system, as mentioned earlier, 
there is no optimal RTE value for the traditional definition 
in Equation (1). The RTE will be monotonically increasing 
with the solar energy input since this heat is not included 
in the traditional RTE definition. However, with the solar 
energy input increasing, the investment cost of the mol-
ten salt and the heat storage tank will increase. Therefore, 
there will be an optimal economic performance for the 
Solar-LAES-SE system. In addition, when solar energy is 
included in the RTE calculation, there will also be an op-
timal RTE value. Optimal results with respect to economic 
performance and revised RTE value are both studied. 

(1) Optimal revised RTE of the Solar-LAES-SE 
system 

In the optimization of the revised RTE shown in 
Equation (2), the power generation efficiency of a Con-
centrated Solar Power plant (CSP) is taken as η = 0.214 
[13]. The solar energy input is determined by the cold en-
ergy needed in the charging section and the power gen-
eration efficiency of the Stirling engine, which is related 
to the temperature difference between the heat source 
and sink in the Stirling engine. The revised RTE value of 
the entire LAES-SE system is taken as the optimization 
objective. The compression and expansion ratios, the 

temperature, pressure and flowrate of the hot and cold 
thermal energy recovery sections, and the molten salt 
flowrate and outlet temperature from the Stirling engine 
are taken as decision variables. 

The optimization results show that the revised RTE 
will be 76.0% with a molten salt outlet temperature in the 
Stirling engine of 500°C and the inlet temperature fixed 
at 550°C. Combined with the density and specific heat 
capacity of the molten salt represented in Equations (14) 
and (15) [14], the optimized molten salt mass and volume 
rates are 2.83×106 kg/h and 1160 m3/h. In this optimized 
condition, the traditional RTE is 189%. The optimized con-
dition is related to the power generation efficiency value 
adopted for the CSP system. A larger power generation 
efficiency value of CSP will obviously increase the opti-
mal RTE value. 

   𝜌𝜌(kg/m3) = 0.636 · 𝑅𝑅(°C) + 2089.905               (14) 

 𝑐𝑐𝑐𝑐(kJ/kg · K) = 1.723 · 10−4 · 𝑅𝑅(°C) + 1.443        (15) 

where ρ refers to the density of the molten salt, cp 
refers to the specific heat capacity of the molten salt, and 
T refers to the temperature of the molten salt. 

(2) Optimal economic performance 
In this case, the profit of the discharging section is 

taken as the optimization objective. In addition to the de-
cision variables in the LAES-SE and LNG-LAES-SE sys-
tems, the flowrate and temperature of the molten salt are 
also taken as decision variables. The income from the 
power generated in the air expanders and Stirling engine 
and expenses related to the solar heat storage are con-
sidered in the profit of the discharging process. The cost 
of the binary molten salt is 0.8 €/kg and the specific cost 
of the storage tank is 510 €/m3 [15]. The price of power is 
taken as 0.284 €/kWh [16], which was the average elec-
tricity price of Europe in 2022. The electricity price will 
have an obvious impact on the optimization results. 

The optimization results show that the traditional 
and revised RTE of the Solar-LAES-SE system will be 
173.0% and 72.8% respectively when the economic per-
formance is optimal. In this condition, the outlet temper-
ature of the molten salt in the Stirling engine is 484°C 
with the inlet temperature fixed at 550°C. The optimal 
mass and volume flowrates of the molten salt are ob-
tained as 2.42×106 kg/h and 990 m3/h. 

(3) Comparison of optimal revised RTE and 
economic performance 

In order to further clarify the difference between the 
Solar-LAES-SE system under the optimal revised RTE 
and optimal economic performance, the optimal parame-
ters of the corresponding systems are compared, as 
shown in Table 2. The lower and upper bounds of the air 
temperature before expanders in the two systems are 
170°C and 270°C. The optimization results show that the 
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optimal air temperature before expanders for the revised 
RTE and economic performance is 180.2°C and 180.0°C, 
respectively. This indicates that a high temperature be-
fore the air expanders is not necessary to reach optimal 
efficiency or economic performance. As the heat sink of 
the Stirling engine, a higher air temperature before the 
expander will decrease the power generation efficiency 
in the Stirling engine due to the reduced temperature dif-
ference between the heat source and sink. 

Table 2 also shows RTE values for the Solar-LAES-
SE system (both traditional and revised RTE). The tradi-
tional RTE (RTELAES) of the entire Solar-LAES-SE system 
is higher than 100% because the solar energy input is not 
reflected in the calculation of the traditional RTE. The op-
timal revised RTE (RTESolar-LAES) of the Solar-LAES-SE sys-
tem is 3.2% points higher than that of the system with 
optimal economic performance. 

Table 2: Optimized parameters for the Solar-LAES-SE 
system. 

Items Optimal 
economic 
performance 

Optimal 
revised 
RTE 

Units 

wc 1.55×104 1.31×104 kW 
Qsolar 1.00×105 9.04×104 kW 
TAir 180.2 180.0 °C 
mMolten salt  2.42×106 2.83×106 kg/h 
VMolten salt 9.90×102 1.16×103 m3/h 
TMolten salt  484 500 °C 
Molten salt cost 2.71×106 3.18×106 $/h 
PLAES 1.02×104 9.43×103 kW 
PStirling 1.42×104 1.32×104 kW 
PORC (compres-
sion heat) 

2.41×103 1.98×103 kW 

RTELAES 173.0 189.0 % 
RTESolar-LAES 72.8 76.0 % 
Profits  3.02×107 2.77×107 $/h 
Net income 2.75×107 2.45×107 $/h 

5.4 RTE comparison of Different LAES 
Systems 

Figure 4 shows the RTE comparison of different 
LAES systems including (i) stand-alone LAES system with 
ORC or Stirling engine as the surplus compression heat 
recovery cycles, (ii) LNG integrated LAES system with 
compression heat and the LNG regasification process as 
heat source and sink for the Stirling engine, and (iii) Solar 
energy integrated LAES system with Solar heat and the 
air discharging process as heat source and sink for the 
Stirling engine. For the solar energy based LAES system, 
there are two optimal RTE values. One for the optimal re-
vised RTE and another for economic performance. 

For the solar energy integrated systems, the tradi-
tional and revised RTEs provide different points of view 
to evaluate the energy efficiency. In the traditional RTE, 
the solar energy is taken as a free resource. For the re-
vised RTE, the value of the solar energy is accounted for 
in the RTE according to the adopted power generation 
efficiency of the solar energy. In this way, the RTE value 
is adjusted to be lower than 100%. However, the defini-
tion of the RTE should be uniform when comparison with 
other LAES systems is performed, which is why the tra-
ditional RTE is also taken as a comparison index. 

For the traditional RTE, the Solar-LAES-SE system 
optimizing on energy efficiency has the highest RTE value, 
followed by the Solar-LAES-SE system focusing on opti-
mal economic performance, and the LNG-LAES-SE sys-
tem focusing on energetic performance. This clearly indi-
cates the high efficiency of the solar energy integrated 
systems. As shown in Table 2, using an economic objec-
tive, the net income (27.5 million $) is 12.2% higher than 
when using an energetic objective (24.5 million $). 

 

Figure 4. Comparison of RTE values in LAES systems. 

5.5 Comparison between Solar-LAES-ORC 
and Direct Solar Heating 

The performance of the proposed Solar-LAES-SE 
system is compared with the Solar-LAES-ORC [5] and So-
lar directly heated-LAES [6] systems (with decoupled 
charging and discharging sections) shown in Figures 5 
and 6. In the Solar-LAES-ORC system, both solar heat 
and compression heat are used to heat the discharging 
section and drive ORCs. In the Solar directly heated-LAES 
system, compression heat is used to drive the ORC while 
solar heat is used to preheat air in the discharging section. 

Table 3 shows the economic and energy efficiency 
optimization results for the Solar-LAES-ORC system. The 
revised RTEs of the Solar-LAES-ORC system with optimal 
economic and energetic efficiency are 58.0% and 61.3% 
respectively, which are considerably lower than those of 
the Solar-LAES-SE system. A similar result (i.e. lower val-
ues) is obtained for the net income of the Solar-LAES-
ORC system. Therefore, the Solar-LAES-SE system is su-
perior to the Solar-LAES-ORC system in terms of both 
energy and economy. 
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Table 3: Optimized parameters for the Solar-LAES-ORC 
system. 

Items Optimal 
economic 
performance 

Optimal 
revised 
RTE 

Units 

wc 1.26×104 1.26×104 kW 
Qsolar 4.16×104 2.55×104 kW 
TAir 183.0 183.0 °C 
MThermal oil  1.82×105 1.12×105 kg/h 
VThermal oil 2.01×102 1.24×102 m3/h 
Thermal oil cost 5.66×105 3.48×105 $/h 
PLAES 8.61×103 8.58×103 kW 
PORC (solar heat) 2.71×103 1.35×103 kW 
PORC (compres-
sion heat) 1.14×103 1.14×103 kW 

RTELAES 98.9 87.9 % 
RTESolar-LAES 58.0 61.3 % 
Profits 1.40×107 1.24×107 $/h 
Net income 1.34×107 1.21×107 $/h 

Table 4: Optimized parameters for the Solar directly 
heated ORC system. 

Items Optimal 
economic 
performance 

Optimal 
revised 
RTE 

Units 

wc 1.52×104 1.22×104 kW 
Qsolar 1.31×104 1.21×104 kW 
TAir 183.0 183.0 °C 
MThermal oil 5.47×104 5.06×104 kg/h 
VThermal oil 60.4 55.8 m3/h 
Thermal oil 
cost 

1.70×105 1.57×105 $/h 

PLAES 9.26×103 8.39×103 kW 
PORC (compres-
sion heat) 

1.72×103 1.71×103 kW 

RTELAES 72.1 82.6 % 
RTESolar-LAES 60.9 68.2 % 
Profits 1.23×107 1.14×107 $/h 
Net income 1.22×107 1.12×107 $/h 

 
Table 4 shows the optimal results for the solar en-

ergy directly heated LAES system. The revised RTEs of 
the system with respect to optimal economy and energy 
efficiency are 60.9% and 68.2%, which are lower than 
those of the Solar-LAES-SE system but higher than those 
of the Solar-LAES-ORC system. As for the economic per-
formance, the net income of the Solar energy directly 
heated-LAES system is the lowest among all solar energy 
integrated LAES systems. 

As a conclusion, for the solar energy integrated 

LAES systems, the Solar-LAES-SE system is the best 
both from the energy efficiency and economic perfor-
mance point of view. The energy efficiency ranking of the 
solar energy integrated LAES systems from high to low is 
Solar-LAES-SE>Solar directly heated LAES>Solar-LAES-
ORC, while the economic performance ranking is Solar-
LAES-SE>Solar-LAES-ORC>Solar directly heated LAES. 

 

Figure 5. Flowsheet of the Solar-LAES-ORC system. 

 
Figure 6. Flowsheet of the Solar energy directly heated-
LAES system. 

6 CONCLUSIONS 
Different LAES systems integrated with a Stirling en-

gine are modelled and optimized from an energy effi-
ciency and an economic point of view. The following con-
clusions have been obtained. 

(1) The optimized RTE of the LAES-SE system is 
68.2%, 3.2% points higher than the basic LAES-ORC sys-
tem. This means that the Stirling engine is more efficient 
than the ORC in recovering surplus compression heat in 
the 3C+3E LAES system. 
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(2) When cooling water is replaced by LNG regasifi-
cation as a heat sink for the Stirling engine, the optimized 
RTE increases from 68.2% to 73.7%. 

(3) For the solar energy integrated system, the tra-
ditional RTE will be 189% when optimizing with respect to 
the revised RTE and 173% when optimizing with respect 
to economic performance of the discharging section. 
Having efficiencies larger than 100% comes as a result of 
the fact that the basic LAES system (for which the tradi-
tional RTE is defined) benefits from "free" energy input.  

(4) Among the Stirling engine based systems, the 
Solar-LAES-SE system under the optimal revised RTE has 
the highest energy efficiency, while the LAES-SE system 
has the lowest energy efficiency. All the studied systems 
have higher RTEs than the basic LAES-ORC system. 

(5) For the solar energy integrated LAES systems, 
Solar-LAES-SE has the highest optimal revised RTE, fol-
lowed by the Solar directly heated LAES-system, while 
Solar-LAES-ORC has the lowest optimal revised RTE. In 
the case of economic performance, the ranking is Solar-
LAES-SE > Solar-LAES-ORC > Solar directly heated LAES. 

ACKNOWLEDGEMENTS 
Financial support from the China Scholarship Coun-

cil (No. 202206280152) and the Research Council of Nor-
way and user partners of HighEFF, an 8-years Research 
Centre under the FME-scheme (Centre for Environment-
friendly Energy Research, 257632), are greatly acknowl-
edged. 

REFERENCES 
1. Guizzi GL, Manno M, Tolomei LM, Vitali RM. 

Thermodynamic analysis of a liquid air energy 
storage system. Energy, 93:1639-1647(2015). 

2. Liu Z, Kim D, Gundersen T. Optimal recovery of 
thermal energy in liquid air energy storage. Energy, 
240:122810(2022). 

3. Liu Z, Gundersen T. Liquid Air Energy Storage - 
Optimization opportunities. AIChE Annual Meeting, 
Arizona, 13-18 November 2022. 

4. Liu Z, Kim D, Gundersen T. Optimization and 
analysis of different liquid air energy storage 
configurations. Computers & Chemical Engineering, 
169:108087(2023). 

5. Ding X, Duan L, Zhou Y, Gao C, Bao Y. Energy, 
exergy, and economic analyses of a new liquid air 
energy storage system coupled with solar heat and 
organic Rankine cycle. Energy Conversion and 
Management, 266(2022). 

6. Yang M, Duan L, Tong Y, Jiang Y. Study on design 
optimization of new liquified air energy storage 
(LAES) system coupled with solar energy. Journal 
of Energy Storage, 51(2022). 

7. Ding H, Li J, Heydarian D. Energy, exergy, 
exergoeconomic, and environmental analysis of a 
new biomass-driven cogeneration system. 
Sustainable Energy Technologies and 
Assessments, 45:101044(2021). 

8. Kongtragool B, Wongwises S. Investigation on 
power output of the gamma-configuration low 
temperature differential Stirling engines. 
Renewable Energy, 30(3):465-476(2005). 

9. Mehrpooya M, Sayyad S, Zonouz MJ. Energy, 
exergy and sensitivity analyses of a hybrid 
combined cooling, heating and power (CCHP) plant 
with molten carbonate fuel cell (MCFC) and Stirling 
engine. Journal of Cleaner Production, 148: 283-
294 (2017). 

10. Ansarinasab H, Hajabdollahi H. Multi-objective 
optimization of a geothermal-based 
multigeneration system for heating, power and 
purified water production purpose using 
evolutionary algorithm. Energy Conversion and 
Management, 223:113476(2020). 

11. Blanco J, Alarcón D, Sánchez B, Malato S, 
Maldonado MI. Technical comparison of different 
solar-assisted heat supply systems for a multi-
effect seawater distillation unit. Solar Energy for a 
Sustainable Future:14-19(2003). 

12. Ren S, Gundersen T, Liu Z, Feng X. Performance 
improvement of liquid air energy storage: 
Introducing Stirling engine and solar energy. 
Energy Conversion and Management, 296(2023). 

13. Awan AB, Zubair M, Memon ZA, Ghalleb N, Tlili I. 
Comparative analysis of dish Stirling engine and 
photovoltaic technologies: Energy and economic 
perspective. Sustainable Energy Technologies and 
Assessments, 44(2021). 

14. Peiró G, Gasia J, Miró L, Prieto C, Cabeza LF. 
Influence of the heat transfer fluid in a CSP plant 
molten salts charging process. Renewable Energy, 
113:148-158(2017). 

15. Sau S, Corsaro N, Crescenzi T, D’Ottavi C, 
Liberatore R, Licoccia S, et al. Techno-economic 
comparison between CSP plants presenting two 
different heat transfer fluids. Applied Energy, 
168:96-109(2016). 
Electricity prices for household consumers. In: 
Eurostat, 2022. 

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 



Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.134037 Syst Control Trans 3:570-577 (2024) 570 

The Impact of Electrified Process Heating on Process 
Design, Control and Operations 

Jong Hyun Rhoa, Michael Baldeaa,b*, Elizabeth E. Endlerc , Monica A. Herediac , Vesna Bojovicc and 
Pejman Pajandc 

a The University of Texas at Austin, McKetta Department of Chemical Engineering, Austin, TX, USA 
b The University of Texas at Austin, Oden Institute for Computational Engineering and Sciences, Austin, TX, USA 
c Shell International Exploration and Production, Houston, TX, USA 
* Corresponding Author: mbaldea@che.utexas.edu.

ABSTRACT 

We study the impact of switching from combustion heating to electric heating in processes com-
prising high temperature reaction/separation sequences, where the heat supporting the reac-
tion(s) is substantially provided by combusting a reaction byproduct (fuel gas). A canonical pro-
cess structure is defined. It is shown that the conventional combustion- based process presents 
significant interactions. An asymptotic analysis is utilized to investigate and compare the dynamic 
responses of the conventional and electric process configurations. It is demonstrated that the 
dynamic behavior of the two processes exhibits two timescales, with the faster corresponding to 
the evolution of the temperatures of the units with high heat duty, and the slow time scale captur-
ing the variables involved in the material balance. A simplified ethylene cracking process example 
is used to demonstrate these findings. 

Keywords: Energy Systems, Process Design, Process Electrification

INTRODUCTION 

Process electrification using electricity generated 
by renewable sources has emerged as one of the routes 
for decarbonizing manufacturing processes [1,2]. Elec-
trification may involve a complete change of processing 
technology (e.g., utilizing electrochemical reactions) [3] 
or upgrades and modifications of existing technology. Of 
particular interest in the latter area is the electrification of 
process heating, whereby existing combustion heaters 
are replaced with electric heating technologies [1,2]. 

Electrification can in principle eliminate combustion-
heating-related CO2 emissions and has the potential co-
benefits of affording more precise/localized heating and 
providing additional degrees of freedom for operation 
and control [4]. Nevertheless, it presents several chal-
lenges. From a design perspective, electric heating may 
disrupt existing process integration structures, which rely 
on, e.g., combusting process-generated waste streams 
(“tail gas” or “fuel gas”) to generate heat [5]. From an op-
eration and control perspective, electric heating must ac-
count for the availability of renewable electricity, which 

may fluctuate during the day [6]. Motivated by the above, 
in this work, we provide a rigorous analysis of the design 
and process dynamics implications of electrified process 
heating in the context of integrated process systems. We 
note that there are other sources of CO2 emissions in 
chemical/petrochemical processing (including scope 2) 
emissions, that are not accounted for in this work.  

A prototype process structure with reaction, sepa-
ration, and recycle is defined. It is shown that the con-
ventional combustion-based process presents signifi-
cant interactions due to the impact of the downstream 
units (via the heating value of the fuel gas) on the up-
stream units.  An asymptotic analysis is utilized to inves-
tigate and compare the dynamic responses of the two 
process configurations. It is demonstrated that the dy-
namic behavior of the two processes exhibits two time 
scales, with the faster corresponding to the evolution of 
the temperatures of the units with high heat duty, and the 
slow time scale capturing the variables involved in the 
material balance. A simplified ethylene cracking process 
example is used to demonstrate these findings. 

https://doi.org/10.69997/sct.134037
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PROTOTYPE PROCESS 

A system of 𝑁 process units, each with mass holdup 
𝑀, mass fraction 𝑥, and mass specific enthalpy 𝐻, con-
nected in series is considered. The feed stream, of mass 
flow rate 𝐹 has mass specific enthalpy 𝐻 and contains a 
reactant with mass fraction 𝑥. The reactant undergoes a 
high-temperature, endothermic transformation in the 
first unit. Processing units 2, … , i - 1 follow, and heat is 
eventually removed/recovered from the resulting pro-
cess stream in unit i. Finally, the product stream is ob-
tained in unit 𝑁, along with a waste stream of flow rate 
𝐹ோ.  The waste (“off gas”, “tail gas” or “fuel gas”) stream 
can be used as a fuel but does not have any economic 
value. Two process configurations are considered: 

 A conventional, integrated design (Figure 1), 
whereby the majority of the heat required for the 
endothermic transformation occurring in Unit 1 is 
provided by combusting the fuel stream (possibly 
combined with a fresh fuel stream of mass flow rate 
𝐹). The rate of heat generation by combustion is 
given by 

𝑄  ൌ  𝜆𝐹  𝜆ோ𝐹ோ            (1) 

where 𝜆 and 𝜆ோ refer to the heating values of the 
fresh fuel and the fuel gas, respectively. 
Combustion of fuel gas occurs in air, and a flue gas 
stream is generated (not shown in the figure). 

 An electrified process configuration (Figure 2), 
whereby the heat required for the endothermic 
transformation in Unit 1 is provided by electric 

heating. In this case, other means to process the 
waste gas stream must be identified. 

The structure of the two process configurations 
shown in Figures 1 and 2 is the same as far as material 
processing is concerned. From a steady state design 
point of view, it is important to ensure that the product 
streams resulting from the two configurations are the 
same (in terms of composition 𝑥  and enthalpy 𝐻 ), and 
that the amount of heat recovered 𝑄௨௧ is the same. To 
this end, the rates of energy input to both processes 
must be the same, and the following condition must be 
met: 

𝑄ത  ൌ  𝑄ത     (2) 

where the overbar denotes steady-state values. Note 
that the above condition assumes that heating is 100% 
efficient, that is, all the heat generated by combustion (as 
defined in equation (1)) or by electricity is transferred to 
the process. Heat transfer efficiency is lower in practice. 

DYNAMIC ANALYSIS AND TIME SCALE 
DECOMPOSITION 

The dynamic model of the process is based on the 
following assumptions: each unit is well-mixed, has con-
stant holdups, constant physical properties, and has no 
heat loss. With these assumptions, the model of the con-
ventional process shown in Figure 1 can be written as: 

Unit 1 :  

ௗ௫భ
ௗ௧

 ൌ  
ଵ

ெభ
ሾ𝐹𝑥 െ 𝐹ଵ𝑥ଵ  𝑓ଵሺ𝑥ଵ,𝐻ଵሻሿ   

 
Figure 1: Structure of integrated process using combustion of fuel gas as the heat source. Black lines denote 
material streams connecting process units, grey lines denote streams of material used as fuel, red lines denote 
energy flow. 

 
Figure 2: Structure of process with electric heating. 
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ௗுభ
ௗ௧

 ൌ  
ଵ

ெభ
ሾ𝐹𝐻 െ 𝐹ଵ𝐻ଵ  𝜆𝐹  𝜆ோ𝐹ோ  𝑔ଵሺ𝑥ଵ,𝐻ଵሻሿ 

Unit 2 :  

ௗ௫మ
ௗ௧

 ൌ  
ଵ

ெమ
ሾ𝐹ଵ𝑥ଵ െ 𝐹ଶ𝑥ଶ  𝑓ଶሺ𝑥ଶ,𝐻ଶሻሿ   

ௗுమ
ௗ௧

 ൌ  
ଵ

ெమ
ሾ𝐹ଵ𝐻ଵ െ 𝐹ଶ𝐻ଶ  𝑔ଶሺ𝑥ଶ,𝐻ଶሻሿ   

⁝          (3) 

Unit i :  

ௗ௫
ௗ௧

 ൌ  
ଵ

ெ
ሾ𝐹ିଵ𝑥ିଵ െ 𝐹𝑥  𝑓ሺ𝑥 ,𝐻ሻሿ   

ௗு
ௗ௧

 ൌ  
ଵ

ெ
ሾ𝐹ିଵ𝐻ିଵ െ 𝐹𝐻 െ 𝑄௨௧  𝑔ሺ𝑥 ,𝐻ሻሿ  

Unit 𝑁 :  

ௗ௫ಿ
ௗ௧

 ൌ  
ଵ

ெಿ
ሾ𝐹ேିଵ𝑥ேିଵ െ 𝐹ே𝑥ே െ 𝐹ோ𝑥ோ  𝑓ேሺ𝑥ே ,𝐻ேሻሿ

          ௗுಿ
ௗ௧

 ൌ  
ଵ

ெಿ
ሾ𝐹ேିଵ𝐻ேିଵ െ 𝐹ே𝐻ே െ 𝐹ோ𝐻ோ  𝑔ேሺ𝑥ே,𝐻ேሻሿ 

The model of the electrified process in Figure 2 can 
be written in a similar fashion, replacing the sum 𝜆𝐹 
𝜆ோ𝐹ோ  (which represents 𝑄 ) in the energy balance of 
Unit 1 in equation (3) with 𝑄. 

In order to proceed with the analysis, the following 

scaled entities are defined: 𝑢 ൌ
ிೕுೕ
ிതೕுഥೕ

, 𝑗 ൌ 1, … ,𝑁, 𝑢 ൌ
ிೃுೃ
ிതೃఒഥೃ

, 

𝑢 ൌ
ொೠ
ொതೠ

. 

Then, the following assumptions are made, that per-
tain to steady state operation (the overbar denotes again 
steady state values): 

 Let 𝑘ଵ ൌ
ிതభுഥభ
ிതೃఒഥೃ

 , and assume that 𝑘ଵ ൌ 𝒪ሺ1ሻ , meaning 

that the amount of energy leaving unit 1 via flow is 
of comparable magnitude to the energy provided 
by combusting the waste gas. 

 Let 𝑘 ൌ
ிതఒഥ
ிതబுഥబ

 , and assume that 𝑘 ൌ 𝒪ሺ1ሻ , meaning 

that the amount of heat provided by combusting 
fresh fuel is small and comparable with the amount 
of heat provided by convection by the feed stream. 

 Let 𝜀 ൌ ிതబுഥబ
ிതೃఒഥೃ

≪ 1, meaning that the energy input from 

the feed stream is small compared with the amount 
of energy provided by combusting the fuel gas. 

 Let 𝑘 ൌ
ிതೕுഥೕ
ிതೃఒഥೃ

, 𝑗 ൌ 1, … , 𝑖 െ 1 , and assume that 𝑘 ൌ

𝒪ሺ1ሻ, meaning that the amount energy leaving unit 
𝑗 ൌ 1, … , 𝑖 െ 1 via flow is of comparable magnitude to 
the energy provided by combusting the waste gas 
stream. 

 Let 𝐼 ൌ
ிതೕுഥೕ
ிതఒഥ

, 𝑗 ൌ 𝑖, … ,𝑁 , and assume that 𝐼 ൌ 𝒪ሺ1ሻ , 

meaning that the amount energy leaving unit 𝑗 ൌ
𝑖, … ,𝑁 via flow is of comparable magnitude to the 

energy provided by combusting fresh fuel feed. 

 Let 𝐼ఘ ൌ
ிതೃுഥಿ
ிതఒഥ

 , and assume that 𝐼ఘ ൌ 𝒪ሺ1ሻ , meaning 

that the amount of energy contained in the waste 
stream is of comparable magnitude to the amount 
of heat provided by combusting fresh fuel feed. 

With these definitions and assumptions, the model 
becomes: 

Unit 1 :  

   
ௗ௫భ
ௗ௧

 ൌ  
ଵ

ெభ
ሾ𝐹𝑥 െ 𝐹ଵ𝑥ଵ  𝑓ଵሺ𝑥ଵ,𝐻ଵሻሿ   

 
ெభ

ிതబுഥబ

ௗுభ
ௗ௧

 ൌ  𝑢  𝑢𝑘 
భሺ௫భ,ுభሻ

ிതబுഥబ


ଵ

ఌ
ሺ𝑢୰ െ 𝑘ଵ𝑢ଵሻ  

Unit 2 :  

   
ௗ௫మ
ௗ௧

 ൌ  
ଵ

ெమ
ሾ𝐹ଵ𝑥ଵ െ 𝐹ଶ𝑥ଶ  𝑓ଶሺ𝑥ଶ,𝐻ଶሻሿ   

 
ெమ

ிതబுഥబ

ௗுమ
ௗ௧

 ൌ  
మሺ௫మ,ுమሻ

ிതబுഥబ


ଵ

ఌ
ሺ𝑘ଵ𝑢ଵ െ 𝑘ଶ𝑢ଶሻ   

⁝           (4) 

Unit i :  

   
ௗ௫
ௗ௧

 ൌ  
ଵ

ெ
ሾ𝐹ିଵ𝑥ିଵ െ 𝐹𝑥  𝑓ሺ𝑥 ,𝐻ሻሿ  

 
ெ

ிതబுഥబ

ௗு
ௗ௧

 ൌ െ𝐼𝑘𝑢   
ሺ௫,ுሻ

ிതబுഥబ


ଵ

ఌ
ሺ𝑘ିଵ𝑢ିଵ െ 𝑘𝑢ሻ 

Unit 𝑁 :  

  ௗ௫ಿ
ௗ௧

 ൌ  
ଵ

ெಿ
ሾ𝐹ேିଵ𝑥ேିଵ െ 𝐹ே𝑥ே െ 𝐹ோ𝑥ோ  𝑓ேሺ𝑥ே ,𝐻ேሻሿ 

ெಿ

ிതబுഥబ

ௗுಿ
ௗ௧

 ൌ  𝐼ேିଵ𝑘𝑢ேିଵ െ 𝐼ே𝑘𝑢ே െ 𝐼ఘ𝑘𝑢ఘ 
ಿሺ௫ಿ,ுಿሻ

ிതబுഥబ
 

This model is a singularly perturbed system of ordi-
nary differential equations in standard form, and it is ex-
pected to have a dynamic behavior featuring two time-
scales7. The framework presented by Baldea and 
Daoutidis [7] is employed to study the dynamic behavior 
via an asymptotic analysis using singular perturbation ar-
guments. 

Its dynamic behavior is analyzed below, starting 
from the fast timescale. To this end, a new “stretched” 
time variable is defined as: 

τ ൌ
ଵ

ఌ
     (5) 

With this, the model (4) becomes: 

Unit 1 :  

   
ௗ௫భ
ௗఛ

 ൌ  ε
ଵ

ெభ
ሾ𝐹𝑥 െ 𝐹ଵ𝑥ଵ  𝑓ଵሺ𝑥ଵ,𝐻ଵሻሿ   

 
ெభ

ிതబுഥబ

ௗுభ
ௗఛ

 ൌ ε ሾ𝑢  𝑢𝑘 
భሺ௫భ,ுభሻ

ிതబுഥబ
ሿ  𝑢୰ െ 𝑘ଵ𝑢ଵ  

Unit 2 :  

   
ௗ௫మ
ௗఛ

 ൌ  ε
ଵ

ெమ
ሾ𝐹ଵ𝑥ଵ െ 𝐹ଶ𝑥ଶ  𝑓ଶሺ𝑥ଶ,𝐻ଶሻሿ  
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ெమ

ிതబுഥబ

ௗுమ
ௗఛ

 ൌ  ε 
మሺ௫మ,ுమሻ

ிതబுഥబ
 𝑘ଵ𝑢ଵ െ 𝑘ଶ𝑢ଶ   

⁝           (6) 

Unit i :  

   
ௗ௫
ௗఛ

 ൌ  ε
ଵ

ெ
ሾ𝐹ିଵ𝑥ିଵ െ 𝐹𝑥  𝑓ሺ𝑥 ,𝐻ሻሿ  

 
ெ

ிതబுഥబ

ௗு
ௗఛ

 ൌ ε ሾെ𝐼𝑘𝑢   
ሺ௫,ுሻ

ிതబுഥబ
ሿ  𝑘ିଵ𝑢ିଵ െ 𝑘𝑢 

Unit 𝑁 :  

  ௗ௫ಿ
ௗ௧

 ൌ  ε
ଵ

ெಿ
ሾ𝐹ேିଵ𝑥ேିଵ െ 𝐹ே𝑥ே െ 𝐹ோ𝑥ோ  𝑓ேሺ𝑥ே,𝐻ேሻሿ 

ெಿ

ிതబுഥబ

ௗுಿ
ௗ௧

 ൌ ε ሾ𝐼ேିଵ𝑘𝑢ேିଵ െ 𝐼ே𝑘𝑢ே െ 𝐼ఘ𝑘𝑢ఘ 
ಿሺ௫ಿ,ுಿሻ

ிതబுഥబ
ሿ 

An expression of the dynamics in the fast time scale 
can be obtained by considering the limit case 𝜀 → 0 , 
which corresponds to the limit where the amount of heat 
obtained from combusting the tail gas is infinitely higher 
than the amount of heat derived from the combustion of 
fresh fuel. The fast dynamics thus take the form: 

Unit 1 :   
ௗ௫భ
ௗఛ

 ൌ  0    

      ெభ

ிതబுഥబ

ௗுభ
ௗఛ

 ൌ 𝑢୰ െ 𝑘ଵ𝑢ଵ    

Unit 2 :   
ௗ௫మ
ௗఛ

 ൌ  0  

   
ெమ

ிതబுഥబ

ௗுమ
ௗఛ

 ൌ  𝑘ଵ𝑢ଵ െ 𝑘ଶ𝑢ଶ   

⁝           (7) 

Unit i :   
ௗ௫
ௗఛ

 ൌ  0  

   
ெ

ிതబுഥబ

ௗு
ௗఛ

 ൌ 𝑘ିଵ𝑢ିଵ െ 𝑘𝑢   

Unit 𝑁 :  ௗ௫ಿ
ௗఛ

 ൌ 0   

          ெಿ

ிതబுഥబ

ௗுಿ
ௗఛ

 ൌ 0  

The system of equations in (7) suggests that the 
variables whose dynamic response exhibits a fast com-
ponent are the mass specific enthalpies (equivalently, 
temperatures) 𝐻ଵ ,…, 𝐻  of units 1, … , 𝑖 . Based on the as-
sumptions made above, Unit 1 has a significant rate of 
heat input (via either combustion or electric heating). 
Heat is then conveyed to units 2, … , 𝑖 until it is removed 
from Unit i at a rate 𝑄௨௧ . Thus, units 1, … , 𝑖  represent a 
high energy throughput path through the process (Figure 
3) [8]. 

 
Figure 3 The fast component of the dynamics captures 
the energy balance of the units located in the high energy 

throughput pathway of the process. 𝑄 represents either 
𝑄 or 𝑄 

The above arguments suggest that 𝑄ത௨௧ is of com-
parable magnitude to 𝑄ത; in the case where endothermic 
reactions occur in units 1, … , 𝑖, the overall energy balance 
of the process suggests that the two quantities would 
differ by the heat consumed by the reactions (as 
reflected in the terms 𝑔ሺ𝑥 ,𝐻ሻ). 

The dynamics in the fast time scale are influenced 
by the rate of energy input to the process (as reflected 
by the term 𝑢୰ in equation (7)), the rate of energy removal 
(term 𝑘𝑢 in equation (7)), and are not influenced by the 
rate of raw material input, the production rate and the 
rate at which fuel is provided from external sources. 

It is of note that, even though the dynamics of the 
variables in the energy balance of units 1, … , 𝑖  are fast, 
the dynamic response of the individual units may be dif-

ferent; in other words, the time constants  
ெೕ

ிതబுഥబ
, 𝑗 ൌ 1, … , 𝑖 

in equations (7) may be quite different. 
The slow component of the dynamics evolves in 

time scale t. Considering the same limit 𝜀 → 0 in the orig-
inal (slow) time scale t gives rise to the following con-
straints: 

0 ൌ 𝑢୰ െ 𝑘ଵ𝑢ଵ  (8a) 

0 ൌ 𝑘ଵ𝑢ଵ െ 𝑘ଶ𝑢ଶ  (8b) 

   ⁝ 

0 ൌ 𝑘ିଵ𝑢ିଵ െ 𝑘𝑢  (8c) 

These constraints correspond to a quasi-steady 
state of the fast dynamics and describe a manifold/sub-
space where the slow dynamics of the process evolve. 
By considering these constraints and substituting (8) in 
equation (6), the slow component of the dynamics can be 
described as: 

Unit 1 :  

   
ௗ௫భ
ௗ௧

 ൌ  
ଵ

ெభ
ሾ𝐹𝑥 െ 𝐹ଵ𝑥ଵ  𝑓ଵሺ𝑥ଵ,𝐻ଵሻሿ   

 
ெభ

ிതబுഥబ

ௗுభ
ௗ௧

 ൌ  𝑢  𝑢𝑘 
భሺ௫భ,ுభሻ

ிതబுഥబ
    

Unit 2 :  

   
ௗ௫మ
ௗ௧

 ൌ  
ଵ

ெమ
ሾ𝐹ଵ𝑥ଵ െ 𝐹ଶ𝑥ଶ  𝑓ଶሺ𝑥ଶ,𝐻ଶሻሿ   

 
ெమ

ிതబுഥబ

ௗுమ
ௗ௧

 ൌ  
మሺ௫మ,ுమሻ

ிതబுഥబ
     

⁝           (9) 

Unit i :  

   
ௗ௫
ௗ௧

 ൌ  
ଵ

ெ
ሾ𝐹ିଵ𝑥ିଵ െ 𝐹𝑥  𝑓ሺ𝑥 ,𝐻ሻሿ  

 
ெ

ிതబுഥబ

ௗு
ௗ௧

 ൌ െ𝐼𝑘𝑢   
ሺ௫,ுሻ

ிതబுഥబ
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Unit 𝑁 :  

  ௗ௫ಿ
ௗ௧

 ൌ  
ଵ

ெಿ
ሾ𝐹ேିଵ𝑥ேିଵ െ 𝐹ே𝑥ே െ 𝐹ோ𝑥ே  𝑓ேሺ𝑥ே ,𝐻ேሻሿ 

ெಿ

ிതబுഥబ

ௗுಿ
ௗ௧

 ൌ  𝐼ேିଵ𝑘𝑢ேିଵ െ 𝐼ே𝑘𝑢ே െ 𝐼ఘ𝑘𝑢ఘ 
ಿሺ௫ಿ,ுಿሻ

ிതబுഥబ
 

The model of the slow dynamics describes the evo-
lution of the variables in the material balance (notably the 
product composition 𝑥ே, influenced by the product flow 
rate 𝐹), as well as the evolution of the slow component 
of the energy balance of the process. 

 
Figure 4 Directed graph of the dynamic model of the 
prototype process. Nodes and edges specific to the 
integrated process using combustion of fuel gas as the 
heat source are shown in blue. Nodes and edges specific 
to electric heating are shown in red. The green and black 
nodes/edges are common to the two digraphs. 
 

OPERATIONAL IMPLICATIONS OF 
ELECTRIFICATION 

The implications of the analysis presented earlier 
are discussed in this section. The presence of a two time 
scale behavior suggests that these processes lend them-
selves quite naturally to a two-tiered control and opera-
tional decision-making structure.7 The management of 
energy use (including temperature control of Units 1, … , 𝑖) 
should be pursued in the fast time scale, while the control 
and management of production (in terms of production 
rate, product purity) should be pursued in the slow time 
scale [7]. The latter can also involve production schedul-
ing.  

The fast dynamics (7) of Units 1, … , 𝑖  means that 
changes in the rate of heat input to Unit 1 will be quickly 
reflected in the temperatures and compositions of units 
2, … , 𝑖 . The impact on units 𝑖  1, … ,𝑁  will be apparent 
more slowly. In addition to deliberate operator (or control 
intervention), changes in the heat rate to Unit 1 can be 
caused by disturbances and constraints. The origin of 
these may be exogenous (from outside the process) or 
endogenous (from within).  

To further investigate the impact of these disturb-
ances and constraints on the heat rate, the structure of 
the two prototype processes is considered. Figure 4 

shows the directed graph (digraph) of the system model 
(3). The fundamental difference between the conven-
tional and electrified processes lies in the presence of a 
cycle in the graph of the conventional process, reflecting 
the fact that the heat rate provided to the Unit 1 depends 
on the composition 𝑥ே  of the waste stream. Consider 
equation (7), and specifically the term 𝑢୰, that reflects the 
energy input due to combustion of the tail gas.  The 

definition of 𝑢୰, i.e., 𝑢 ൌ
ிೃுೃ
ிതೃఒഥೃ

, indicates that  rate of en-

ergy input is a function of 𝜆ோ, the lower heating value of 
the waste gas. The lower heating value is a function of 
the composition of the waste gas, and hence of the vari-
able 𝑥ோ. 𝑥ோ is, in turn, affected by (effectively any and all) 
disturbances affecting the process, from Unit 1 to Unit N. 
Thus, a feedback effect is present, whereby variables in 
the downstream sections of the process impact the up-
stream units. Additionally, the dynamics of 𝑥ோ evolve ex-
clusively in the slow time scale, meaning that this feed-
back effect will occur over a long-time horizon. 

In the process with electric heating, the heat rate to 
Unit 1 is completely independent of the downstream units 
of the process and constitutes an additional degree of 
freedom for controlling/optimizing the process operation. 
On the other hand, given the goal of using renewable 
electricity for process heating implies that the rate of 
heat input may be subject to upper bounds that are lower 
than the nominal steady state value. 

CASE STUDY: ETHYLENE CRACKER 

Thermal cracking of hydrocarbon feedstock to ob-
tain ethylene is one of the most energy-intensive chemi-
cal processes and one of the largest carbon emitters in 
the chemical industry. Its decarbonization potential lies in 
replacing the conventional combustion-based furnace 
with an electric furnace [9]. Relevant research efforts are 
underway in both industry and academia [10,11]. 

Ethylene crackers are highly integrated, and the by-
products of the cracking reactions (methane, hydrogen) 
constitute an important fraction of the fuel used to heat 
the cracking reactor (which operates at high tempera-
tures, of around 900°C) [5,12], and the heating value of 
the fuel gas stream depends on its composition (and ul-
timately on the operation of the reactor, as argued 
above). 

Ethylene plants are complex and comprise exten-
sive separation sections. We use a simplified representa-
tion for the purpose of investigating the dynamic implica-
tions of electrified process heating. The model consists 
of three units: reactor, intermediate unit, and separator, 
with the latter two serving as a proxy for the separation 
section. The dynamics of each unit are represented by 
the material and energy balances, under similar assump-
tions as listed in developing the model (3), with the ex-
ception that holdups are not constant. 
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The reactor unit is fed with pure ethane. The com-
plex reactions occurring in industrial furnaces are ap-
proximated using a simplified two reaction scheme, a re-
versible reaction emulating the cracking transformation, 
and the degradation of product ethylene; we utilize me-
thane as a proxy of the hydrocarbon degradation prod-
ucts: 

𝐶ଶ𝐻 ↔ 𝐶ଶ𝐻ସ  𝐻ଶ       

𝑟ଵ ൌ 𝑘,ଵ𝐶మுల exp ൬
െ𝐸𝑎ଵ
𝑅𝑇

൰ , 𝑟 ଵ ൌ 𝑘,ିଵ𝐶మுర𝐶ுమ exp ൬
െ𝐸𝑎ିଵ
𝑅𝑇

൰ 

𝐶ଶ𝐻ସ → 𝐶௫𝐻௬       

𝑟ଶ ൌ 𝑘,ଶ𝐶మுర exp ቀ
ିாమ
ோ்

ቁ    (10) 

with 𝑟 referring to reaction m = 1,2 and -1. 
 

 
(a) Conventional Plant Configuration 

 
(b) Electrified plant configuration 

Figure 5. Structure of the ethylene cracker prototype 
model 

The product stream consists of unreacted ethane, 
product ethylene, and by-products methane and hydro-
gen. The reactor is modeled as a CSTR with the appro-
priate material and energy balances. 

The intermediate units (I.U.) are intended to capture 
the (largely physical) transformations occurring post 
cracking, including the product quench step (repre-
sented as heat exiting the block 𝑄 ). The material and 
energy balances follow first order dynamics. A signifi-
cantly larger holdup is used in the unit compared to that 
of the reactor, to reflect the large time constant of the 
separation section of an ethylene plant. 

In the separation block, by-products hydrogen and 
methane are separated from the product (in this case, 
ethane and ethylene) and recovered to use as fuel. The 
unit is modeled as a rate-based separation with vapor 
and liquid holdups, with by-product fuel gas exiting as 
the vapor stream and ethylene and unreacted ethane ex-
iting as the liquid product stream. 

In the conventional system, the fuel gas is recycled 
to be combusted in the furnace, providing heat for the 

cracking reaction. The fuel gas composition, which de-
termines the lower heating value (computed as a linear 
combination of individual heat values multiplied by their 
compositions in the fuel gas, 𝐿𝐻𝑉 ൌ ∑ 𝑋௩, 𝐿𝐻𝑉 ), and 
the corresponding energy input to the reactor, depends 
on the performance of the reactor and separator. On the 
other hand, in the electrified system case, the energy is 
supplied to the reactor from a source outside the process 
and thus independent of the performance of the process 
itself. 

 
Structure of matrix A for the integrated process 

 
Structure of matrix A for the electrified process 
 
Figure 6. Structure of system matrix A of the linearized 
process model 

Holdup and temperature controllers were imple-
mented in each unit to stabilize holdups and tempera-
tures. Simple P controllers that manipulate outlet 
flowrates were implemented for holdup control. For tem-
perature control, PI controllers were implemented to ma-
nipulate the heat supply to the units. An additional purity 
controller is implemented in the liquid phase of the 
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separator to control the mass fraction of the product eth-
ylene in the product stream by manipulating the temper-
ature setpoint in the intermediate units. 

An initial analysis focused on model  structure;  the 
two models (for the conventional and electrified pro-
cesses) were linearized around their nominal steady 
states. The structure of the system matrices A in both 
cases is shown in Figures 6. As shown in Figure 6a, the 
matrix for the linearized model of the integrated process 
features additional non-zero entries that correspond to 
the impact of the states related to the composition of the 
fuel gas on the heat input rate to the reactor, as dis-
cussed above and confirming the findings of the graph-
theoretical analysis and the structure of the graph in Fig-
ure 4. 

Subsequent simulations focused on process dy-
namics. As an example, a 5°C increase in the reactor tem-
perature setpoint, imposed at t = 1 h is shown and dis-
cussed.  

Figure 7 shows the behavior of reactor temperature 
in the two systems. In both systems, the controller set-
tings and the tuning parameters are identical, and the dif-
ference in the behaviors would arise solely due to the 
process structure. The reactor corresponds to Unit 1 in 
the theoretical analysis and is therefore a unit in the high 
energy-throughput path. Two-time scale behavior is ex-
pected in the integrated model with high energy recycle 
throughput via combustion of by-product fuel gas. In the 
electrified case, the setpoint is tracked accurately and 
quickly, corresponding to the fast dynamics of the tem-
perature variable. On the other hand, in the conventional 
case, the dynamic behavior is more complex, with the 
fast dynamics being followed by a slower evolution of the 
temperature towards the set-point, which, as explained 
earlier, is due to the (slow) feedback effect linking the 
composition changes in the reactor and separator to the 
heating value of the fuel gas. 

 
Figure 7. Reactor temperature profile subject to reactor 
temperature setpoint increase of 5 °C.  

CONCLUSIONS 

In conclusion, the effects of electric heating on pro-
cess structures and dynamics were studied theoretically 
and were demonstrated using simulation results. 
Through singular perturbation analysis, the multiple time-
scale behavior was predicted in conventional systems 
with mass- energy recycling via combustion of waste 
products, whereas such behavior was expected to dis-
appear in new electrified heating systems. The theoreti-
cal results were proven via simulations depicting a con-
ventional ethylene cracker model with tail gas recycle 
and an electric cracker model. 

DIGITAL SUPPLEMENTARY MATERIAL 

The Matlab implementation of the model is freely 
available on GitHub at https://github.com/Baldea-
Group/EthylenePlant/ .  
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NOMENCLATURE 

Acronym 
LHV  Lower heating value [kJ/kg] 

Uppercase 
A  Linearized system matrix 
𝐶  Concentration [mol/m3] 
𝐸  Activation Energy [kJ/mol] 
𝐹  Mass flowrate [kg/s] 
𝐻  Mass enthalpies [kJ/kg] 
𝐼  Scaled variable 
𝑀  Mass holdup [kg] 
𝑁  Total number of units in the prototype process 

model 
𝑄  Heating / cooling rate [kW] 
𝑇  Temperature [oC] 

Lowercase 
𝑓  Transformation in mass fraction in each unit 
𝑔  Transformation in mass enthalpy in each unit 
𝑖  Unit at which cooling occurs 
𝑢  Scaled input 
𝑘  Scaled energy flow 
𝑘  Rate constant 
𝑥  Mass fraction 

Greek Letter 
ε  Singular perturbation parameter 
𝜆  Heating value [kJ/kg] 
τ  Stretched time variable for the fast dynamics [s] 
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Subscript 
𝑐𝑜𝑚𝑏 Combustion 
𝑒𝑙𝑒𝑐  Electric heating 
𝑓  Fresh fuel stream 
𝑗  Units, streams [1,2,… 𝑖,… 𝑁] 
𝑚   Reactions [1,2,-1] 
𝑞  Heating / cooling flow 
𝑅  Recycle fuel gas flow 

Superscript 
⬚ഥ  Steady state  
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ABSTRACT 
Biogas is often considered as a source of renewable energy, for heat and power production. How-
ever, biogas has greater promise as a source of concentrated CO2 in addition to methane, making 
it a rich supply of carbon and hydrogen for the generation of fuel and chemicals. In this work, we 
use the concept of attainable region in the enthalpy-Gibbs free energy space to identify opportu-
nities for effective biogas valorization that maximizes the conversion of CO2. The AR concept al-
lows us to study a chemical process without knowing the exact reaction mechanism that the spe-
cies in the process use. Deriving Material Balance equations that relate a reactive process's output 
species to its input species is sufficient to identify process limits and explore opportunities to op-
timize its performance in terms of material, energy, and work. The conversion of biogas to valuable 
products is currently done in two steps; the high temperature and endothermic reformer step, 
followed by the low temperature exothermic synthesis step. We demonstrate, using Aspen Simu-
lation, that energy integration, both heat and work, between the two steps is crucial to achieving 
a substantial amount of CO2 conversion. We also show how a heat pump configuration can be 
utilized to integrate energy between the reformer and synthesis steps against the temperature 
gradient by integrating external renewable energy. 

Keywords: Carbon Dioxide, Process Synthesis, Energy, Optimization, Methane Reforming, Target Material Bal-
ance, Minimizing CO2 Emissions, Work Analysis, Entropy Analysis 

INTRODUCTION 
Biogas is not only a source of green energy [1] but 

also a source of concentrated green CO2. The composi-
tion of CO2 in biogas typically ranges between 25-50% by 
volume, with the balance primarily consisting of methane, 
varying depending on the feedstock [2,3]. This charac-
teristic makes biogas a suitable feed for CO2 conversion 
processes. Several authors have shown different ways of 
upgrading and valorizing biogas by either extracting the 
energy by direct combustion or converting it to chemicals 
such as methanol [1,4-6]. Several authors have also 
demonstrated different techniques to converting the CO2 
in biogas along with methane to chemicals, including dry 
reforming where CO2 and CH4 are converted to synthesis 
gas followed by methanol synthesis [4]. Another tech-
nique starts by removing the CO2 from CH4 before con-
verting to hydrogen via steam reforming and water gas 
shift reaction followed by CO2 hydrogenation to methanol 

[6]. While these studies have shown these conversion 
techniques to be feasible, one major drawback is the in-
tense energy demand of the reforming step which could 
result in substantially lower net CO2 conversion depend-
ing on where the energy is sourced from. For instance, if 
the energy is supplied by burning a carbon-based fuel, 
which is commonly practiced, then one needs to consider 
the CO2 emitted during the combustion of the fuel. Ide-
ally, the energy for reforming should come from a renew-
able source in the form of electricity to achieve a net neg-
ative CO2 emission. Another drawback is the inability to 
integrate the energy between the synthesis and reformer 
sections due to temperature gradients. Ncube et. al. 
(2023) [7] have shown that heat integration between the 
reformer and synthesis section is essential to achieving 
higher energy efficiency and increased CO2 conversion 
and they suggested that this can be done by integrating 
a heat pump that runs on renewable energy to the sys-
tem.  In this work, we use the attainable region concept 

mailto:dh985@soe.rutgers.edu
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to identify more effective ways for converting biogas 
from a material, energy, and work balance perspective. 
To optimize the conversion of CO2, we place a strong em-
phasis on the product selection and energy integration. 

THE APPROACH 
In this section we would like to determine the attain-

able region for biogas conversion into various products. 
The attainable region will provide information on the per-
formance limits of the process from the material and en-
ergy perspectives. The limits of performance can be un-
derstood as the extreme points that any biogas conver-
sion process can achieve for a given feed composition. 
Thus, for the given feed composition and a given set of 
species involved in the process, we can determine the 
attainable region of the process by finding all possible 
composition states that can result from the chemical con-
version of the biogas into the specified species. We will 
explore how this is done by using the notation and termi-
nology found in Smith & Missen (1982) [8]. 

For a chemical system containing 𝑁𝑁 species and 𝑀𝑀 
elements,denoted as: 
{(𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑖𝑖 , … ,𝐴𝐴𝑁𝑁), (𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑘𝑘, … ,𝐸𝐸𝑀𝑀)} where 𝐴𝐴𝑖𝑖 is the 
elemental formula of species 𝑖𝑖 and 𝐸𝐸𝑘𝑘 is the kth element 
in the system. The order in which the species and ele-
ments are presented in the system is not important for 
the attainable region, however, once decided upon, it 
must be kept consistent during the derivation as most 
the equations are written in matrix form. Thus for the bi-
ogas conversion chemical system with 9 species (𝑁𝑁 = 9) 
and 3 elements (𝑀𝑀 = 3) we have   
{(𝐶𝐶𝐶𝐶4,𝐶𝐶𝐶𝐶2,𝐶𝐶2𝐶𝐶,𝐶𝐶2,𝐶𝐶2,𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐶𝐶2,𝐶𝐶𝐶𝐶3𝐶𝐶𝐶𝐶,𝐶𝐶), (𝐶𝐶,𝐶𝐶,𝐶𝐶)}. 

The element-abundance constraint is one of the 
constraints that must always be satisfied as it constitutes 
the basis for the material conservation within the system. 

𝐀𝐀𝐀𝐀 = 𝐛𝐛     (1) 

- A is the formula matrix an 𝑀𝑀 × 𝑁𝑁 matrix containing 
the amount of each element in each species where 𝑀𝑀 is 
the number of elements and 𝑁𝑁 is the number of species 
in the system.  

- 𝐀𝐀 is the species-abundance vector (𝑁𝑁 × 1)contain-
ing the number of moles of each species in the system. 

- 𝐛𝐛 is the element-abundance vector containing the 
total amount of each element available in the system. 
Thus 𝐛𝐛 is fixed for a given feed composition. 

Given the initial number of moles of all the species 
(or the initial species-abundance vector) 𝐀𝐀𝒐𝒐, the element-
abundance vector 𝐛𝐛 is fixed and is given by 𝐛𝐛 = 𝐀𝐀𝐀𝐀𝐨𝐨. 
Therefore, the element-abundance constraint can also 
be written as follows: 

𝐀𝐀𝐀𝐀 = 𝐀𝐀𝐀𝐀𝒐𝒐     (2) 

The compositional state 𝐀𝐀 of a system can be 

expressed in terms of an initial compositional state 𝐀𝐀𝒐𝒐 as 
follows: 

𝐀𝐀 =  𝐀𝐀𝒐𝒐 + ∑ 𝝂𝝂𝒋𝒋𝜉𝜉𝑗𝑗𝑅𝑅
𝑗𝑗=1     (3) 

where 𝝂𝝂𝒋𝒋 is the stochiometric vector such that:  

𝐀𝐀𝝂𝝂𝒋𝒋 = 𝟎𝟎 ; (𝝂𝝂𝒋𝒋 ≠ 0) ;     𝑗𝑗 =  1, 2, … ,𝑅𝑅  (4) 

Thus 𝝂𝝂𝒋𝒋 is any set of R independent solutions that 
satisfies eq.4. Therefore, R is the maximum number of lin-
early independent solutions for eq.4. It is given by: 

𝑅𝑅 = 𝑁𝑁 − 𝐶𝐶     (5) 

𝐶𝐶 = rank (𝐀𝐀)    (6) 

For the biogas system the formula matrix A is de-
rived from the elemental composition of the species as 
shown in the table below 
Table 1: Derivation of the formula matrix from the ele-
mental composition of the species 

𝑁𝑁\𝑀𝑀 𝐶𝐶 𝐶𝐶 𝐶𝐶 
𝐶𝐶𝐶𝐶4 1 4 0 
𝐶𝐶𝐶𝐶2  1 0 2 
𝐶𝐶2𝐶𝐶 0 2 1 
𝐶𝐶2 0 0 2 
𝐶𝐶2 0 2 0 
𝐶𝐶𝐶𝐶 1 0 1 
𝐶𝐶8𝐶𝐶18 8 18 0 
𝐶𝐶𝐶𝐶3𝐶𝐶𝐶𝐶 1 4 1 

𝐶𝐶 1 0 0 
 
Therefore 𝑨𝑨(𝑀𝑀𝑀𝑀𝑁𝑁) is:  

𝑨𝑨 = �
𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟖𝟖 𝟏𝟏 𝟏𝟏
𝟒𝟒 𝟎𝟎 𝟐𝟐 𝟎𝟎 𝟐𝟐 𝟎𝟎 𝟏𝟏𝟖𝟖 𝟒𝟒 𝟎𝟎
𝟎𝟎 𝟐𝟐 𝟏𝟏 𝟐𝟐 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎

�  (7) 

It follows that 𝐶𝐶 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑨𝑨) = 3; therefore 𝑅𝑅 = 𝑁𝑁 −
𝐶𝐶 = 9 − 3 = 6, where 𝑅𝑅 is the maximum number of inde-
pendent chemical equations that can be derived from the 
system. 

We therefore define the matrix 𝐍𝐍, an 𝑁𝑁 × 𝑅𝑅 matrix, 
as the complete stoichiometric matrix whose 𝑅𝑅 columns 
are linearly independent vectors 𝝂𝝂𝒋𝒋. And therefore eq. 4 
can be written as a single matrix as follows: 

𝐀𝐀𝐍𝐍 = 𝟎𝟎     (8) 

where 𝐍𝐍 = (𝝂𝝂𝟏𝟏,𝝂𝝂𝟐𝟐, …, 𝝂𝝂𝑹𝑹). 
The vector 𝝂𝝂𝒋𝒋 contains the stoichiometric coeffi-

cients of the 𝒋𝒋th chemical equation. Therefore, for any 
chemical system there are only 𝑅𝑅 independent chemical 
equations that represents all possible compositional 
states of the system.  

For the biogas conversion process, we adopt the 
method described in Smith & Missen (1982) [8] and use 
Matlab® to derive the stochiometric matrix 𝑵𝑵(𝑁𝑁𝑀𝑀𝑅𝑅). In 
this case we derive a set of the 6 non-unique independ-
ent chemical equations for this system, where negative 
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values stand for the coefficient on the left side (reactant) 
and positive are those on the right side (product) of the 
equation. 

𝐍𝐍 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝟎𝟎.𝟓𝟓𝟎𝟎 −𝟎𝟎.𝟐𝟐𝟓𝟓 −𝟎𝟎.𝟐𝟐𝟓𝟓 −𝟔𝟔.𝟐𝟐𝟓𝟓 −𝟎𝟎.𝟕𝟕𝟓𝟓 −𝟎𝟎.𝟓𝟓
−𝟎𝟎.𝟓𝟓𝟎𝟎 𝟎𝟎.𝟐𝟐𝟓𝟓 −𝟎𝟎.𝟕𝟕𝟓𝟓 −𝟏𝟏.𝟕𝟕𝟓𝟓 −𝟎𝟎.𝟐𝟐𝟓𝟓 −𝟎𝟎.𝟓𝟓
−𝟏𝟏.𝟎𝟎𝟎𝟎 −𝟎𝟎.𝟓𝟓𝟎𝟎 𝟎𝟎.𝟓𝟓𝟎𝟎 𝟑𝟑.𝟓𝟓𝟎𝟎 −𝟎𝟎.𝟓𝟓 𝟏𝟏
𝟏𝟏.𝟎𝟎𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟏𝟏.𝟎𝟎𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏.𝟎𝟎𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏.𝟎𝟎𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏.𝟎𝟎𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 
From eq.4, a complete set of 𝝂𝝂𝒋𝒋 (also written as 𝐍𝐍) is 

not unique but can be any set that satisfies eq.4 (or eq.8). 
Therefore, the set of independent chemical equations 
derived from the stochiometric vectors do not represent 
any chemical reactions occurring in the system but are 
simply algebraic solutions of all possible composition 
states that any chemical reactions path can achieve. 
Thus, to distinguish a chemical equation from a chemical 
reaction, we use the equal sign (=) instead of an arrow 
(→). 

The quantities 𝜉𝜉𝑗𝑗 in eq.3 are a set of parameters, 
which determine the linear combination of the coefficient 
vectors 𝝂𝝂𝒋𝒋 required to achieve a particular compositional 
state 𝐀𝐀. Thus, the number of moles of each species at a 
compositional state is given by: 

𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑜𝑜 + ∑ 𝜈𝜈𝑖𝑖𝑗𝑗𝑅𝑅
𝑗𝑗 𝜉𝜉𝑗𝑗    (9) 

where 𝜈𝜈𝑖𝑖𝑗𝑗 is the stoichiometric coefficient of 𝑖𝑖th spe-
cies in the 𝑗𝑗th stoichiometric vector, and 𝜉𝜉𝑗𝑗 is the param-
eter for the 𝑗𝑗th stoichiometric vector. 

The Attainable Region (AR) for the chemical system 
is defined by the sets of 𝜉𝜉𝑗𝑗 ’s for which the number of 
moles of each species is positive. Thus, the AR is ob-
tained by using eq 9 as an additional constraint when 
written as an inequality equation as follows: 

𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑜𝑜 + ∑ 𝜈𝜈𝑖𝑖𝑗𝑗𝑅𝑅
𝑗𝑗 𝜉𝜉𝑗𝑗 ≥ 0   (10) 

One can also formulate a linear programming prob-
lem to determine the attainable region as follows: 

find all 𝜉𝜉𝑗𝑗     , subject to �𝐀𝐀 =  𝐀𝐀𝒐𝒐 + ∑ 𝝂𝝂𝒋𝒋𝜉𝜉𝑗𝑗𝑅𝑅
𝑗𝑗=1 ≥ 0

𝐀𝐀𝐀𝐀 = 𝐀𝐀𝐀𝐀𝒐𝒐
 (11) 

Eq.11 is a linear programming problem whose verti-
ces constitute a convex connected region in the 𝜉𝜉 space 
of dimension 𝑅𝑅. It can also be transformed into the 𝑟𝑟𝑖𝑖 
space of dimension 𝑁𝑁.  

If there are 𝐾𝐾 extreme points in the attainable region, 
we can denote the set of these vertices in the 𝜉𝜉 space as 
𝛏𝛏𝑽𝑽 (𝛏𝛏𝑽𝑽𝟏𝟏 , 𝛏𝛏𝑽𝑽𝟐𝟐 , … , 𝛏𝛏𝑽𝑽𝒌𝒌), where 𝝃𝝃𝑽𝑽𝒌𝒌 is the parameter vector at 
the 𝐤𝐤th vertex. Similarly, in the  𝑟𝑟𝑖𝑖 space as we denote 
𝐀𝐀𝑽𝑽 (𝐀𝐀𝑽𝑽𝟏𝟏 ,𝐀𝐀𝑽𝑽𝟐𝟐 , … ,𝐀𝐀𝑽𝑽𝒌𝒌), where 𝐀𝐀𝑽𝑽𝒌𝒌 is the composition vector at 
the 𝐤𝐤th vertex of the AR. 

Another way of visualizing the AR is to transform its 
vertices into a two-dimensional space of Gibbs Free En-
ergy and enthalpy as follows: 

Δ𝐺𝐺𝑉𝑉𝑘𝑘 = ∑ 𝜉𝜉𝑗𝑗𝑉𝑉𝑘𝑘𝝂𝝂𝒋𝒋𝑮𝑮�
𝑻𝑻𝑅𝑅

𝑗𝑗=1

ΔH𝑉𝑉𝑘𝑘 = ∑ 𝜉𝜉𝑗𝑗𝑉𝑉𝑘𝑘𝝂𝝂𝒋𝒋𝑯𝑯�
𝑻𝑻𝑹𝑹

𝒋𝒋=𝟏𝟏
�   (12) 

Where 𝑮𝑮� and 𝑯𝑯�  are the molar Gibbs free energy and 
molar enthalpy vector for the species. 

Figure 1 is the attainable region of biogas conversion 
in the Gibbs Free Energy and enthalpy space (GH-AR) 
with a feed composition of CH4, CO2 and H2O at a ratio of 
4:4:1. It shows the theoretical limits of all possible prod-
uct compositions that can be obtained from the given 
feed composition, while simultaneously showing the min-
imum energy requirement (∆H) and minimum work (or en-
ergy quality) requirement (∆G), both taken at reference 
temperature TO = 25° and reference pressure PO = 1bar, 
associated with the conversion of the given feed to prod-
ucts. Each point of the GH-AR can be considered as an 
overall process target for energy, exergy (here repre-
sented by ∆G since the change in exergy at TO and PO is 
equal to ∆G at TO and PO), and material conversion, and 
as such can serve as a benchmark for real processes. A 
more elaborate discussion on the GH-AR can be found in 
Fernandez-Torres et al. (2023) [9], however, we will dis-
cuss a few important insights into the process. Using the 
GH-AR in Figure 1. The vertices in the GH-AR represent 
the points where one or more of the species is zero thus 
represent the limits for biogas conversion. Thus, points 
of complete and incomplete overall conversion of CH4 
and CO2 can be seen on GH-AR where either s1 or s2, 
representing CH4 and CO2 respectively, or both appear. 
Some of the points contain undesirable products such as 
carbon C (s9), CO (s6) and H2 (s5) as final products. 

Another important insight from the GH-AR is regard-
ing biogas conversion to methanol. The observation in 
Figure 1 is that every point in the GH-AR representing 
methanol (s8) as a product is accompanied by other less 
desirable products. An example of such a point is point M 
(s2,s8,s9) representing a process target that produces 
methanol and the less desirable products CO2 and C. 
Since CO2 is one of the feed components, the production 
of CO2 at M can be thought of as incomplete overall con-
version of CO2. Another example is at point N(s4,s6,s8) 
representing O2, CO and methanol as final product. While 
O2 is not necessarily an undesirable product but CO is 
less desirable as a final product. This observation sug-
gests that undesirable by-products may be inevitable 
when converting biogas to methanol. Thus, the process 
seems to be less optimal although it receives increasing 
interest among several authors [4-6].  

On the other hand, Fisher Tropsch fuels (FT-fuels) 
production can be more effective in the conversion of 
CO2 without producing undesired by-products. This can 
be seen at point F (s4,s8) in Figure 1 representing a 
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process target to produce octane (s8) and oxygen (s4) 
only as final products. furthermore, point F represents a 
100% carbon and hydrogen conversion efficiency where 
all the carbon and hydrogen in the feed report to the de-
sired product, octane. As such, this point must be con-
sidered the ultimate target for biogas conversion for the 
given feed composition. We will explore with the aid of an 
Aspen Plus simulation how the target at F can be 
achieved by integrating both the material and energy 
within the process. 

 The GH-AR not only provides information regarding 
the material conversion limit but also the energy (∆H) and 
the work (∆G) requirements to achieve a specific product 
composition [8]. One important observation is that for bi-
ogas conversion almost all targets are in the Region A and 
B with positive ∆H and ∆G, which shows that external en-
ergy supply is necessary to achieve the targets where 
CO2 is consumed. Points located at the bottom section of 
the GH-AR have less CO2 conversion thus need less en-
ergy compared to those in the upper part where more 
CO2 is consumed and therefore need more energy at 
higher quality as ∆G is higher.  
Furthermore, the 45° line represents processes that re-
quire the highest energy quality (pure work, or electric-
ity). The processes in Region A, below the 45° line, are 
relatively easy to achieve in one step by utilizing a source 
of thermal energy at an appropriate temperature. How-
ever, those in region B, above the 45° line, are not feasi-
ble if done in one step from feed to final product but re-
quire several intermediate steps that are fully integrated 
in terms of energy and materials and would require a sup-
ply of high-quality energy. This is the case to produce FT-
fuels, with its ultimate target located in region B. Thus, to 
achieve this target, one must run the process in at least 
2 steps, notably, the reforming step where biogas is con-
verted to synthesis gas followed by the FT synthesis sec-
tion where syngas is converted to liquid fuels. 
One of the major challenges in achieving this target is the 
inability to integrate energy between the reforming sec-
tion, an endothermic process that runs at higher temper-
atures, and the synthesis section, an exothermic section 
that runs at lower temperature. Ncube et. al. (2023) [7] 
have also shown that a heat pump is needed to integrate 
the energy between these two sections. In this work we 
explore how a heat engine configuration can be used to 
achieve both the material and energy integration within 
the system, by means of water electrolysis as shown in 
the Aspen Plus simulation in Figure 2. 
The feed to the process flowsheet denoted as Biogas en-
ters the process at a ratio of 4:4:1 of CH4: CO2: H2O. The 
feed is preheated before entering the reformer where the 
feed is converted to syngas, a mixture of mainly CO and 
H2. The reformer is modelled using a Gibbs reactor block 
(RGibbs), which uses Gibbs free energy minimization to 
determine the equilibrium composition of specified 

components in the reactor at given conditions of temper-
ature and pressure. The components that were consid-
ered are CH4, CO2, H2O, O2, H2, CO, and C (as pure solid). 
A temperature of 950°C in the reformer was used to 
achieve a high conversion of CH4 and CO2 at 1 bar. The 
syngas from the reformer is cooled down using the in-
coming stream to the reformer, and then goes to the 
Fischer Tropsch (FT) synthesis reactor (FT-RCT) where 
CO and H2 are converted FT-fuels (represented by C8H18) 
and H2O. The FT-synthesis reactor is modelled using a 
stoichiometric reactor block (RStoic) which is used when 
the reactions and conversions are known. In this simula-
tion we consider only one reaction in the FT-RCT to 
model the production of FT-fuels and we assume com-
plete conversion of CO to C8H18 via the reaction; 8𝐶𝐶𝐶𝐶 +
17𝐶𝐶2 → 8𝐶𝐶2𝐶𝐶 + 𝐶𝐶8𝐶𝐶18 at 250°C and 1 bar. The product 
stream from the FT-RCT is cooled down and separated 
using a Sep block (PR-SEP1) which assumes perfect sep-
aration based on split fractions or mole flows of pure 
components. The PR-SEP1 produces a pure stream of 
FT-fuel, water and a gas stream containing unreacted H2, 
CO, CO2 and CH4.  The water is sent to the electrolyzer 
reactor (ELECT-RC) modelled using the RStoic block to 
produce H2 and O2 at 250°C. The temperature of the 
electrolyzer was chosen to allow heat integration with the 
FT-RCT. The product from the electrolyzer is separated 
using the Sep block to achieve a perfect separation of H2 
and O2. Part of the H2 produced is used to supply the en-
ergy needed at the reformer using a portion of the O2 pro-
duced from the electrolyser, and the remaining H2 is fed 
to the reformer to enhance the conversion of CO2. On the 
hand the remaining O2 from the electrolyser is taken out 
of the process as a product. The combustion of H2 with 
O2 is modelled using the RStoic block with the combus-
tion temperature set at 955°C to allow for at least a tem-
perature approach of 5°C for heat exchanged between 
the combustion unit at the reformer. 

SIMULATION RESULTS 
The electrolyzer and H2 combustion configuration 

enables achieving three main goals: 
1) Heat transfer from the synthesis reactor at 250°C to 
the reformer at 950°C is achieved by using the energy 
released from the FT-synthesis to provide heat to the 
electrolyzer and thus lowering the electrical require-
ments of the electrolyzer. This energy is chemically 
stored in H2 part of which is converted to high tempera-
ture heat required by the reformer. 
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Figure 1 : The Attainable region of biogas conversion for a feed ratio of 4:4:1 of CH4:CO2:H2O, plotted on the GH-
diagram, to show the material balance and the energy and work balances limits. 
 

W_electricity = 135 kW

@ 950C
@ 250C

 
Figure 2: Aspen Plus simulation of biogas conversion to FT-fuels and oxygen. Integration with water electrolysis 
to supply high quality energy in the form of electricity and to enable integration of heat from the FT-synthesis 
section to the reformer, resulting in high CO2 conversion. 
 
 

Heat pump 
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2) The recycled hydrogen to the reformer provides a 
hydrogen rich environment that enhances the conversion 
of CO2 via the reverse water gas shift reaction to produce 
CO and H2O, carbon formation is also eliminated at tem-
peratures above 750°C. The reformer temperature is set 
at 950°C leading to a CO2 conversion across the reactor 
of approximately 94% and a CH4 conversion of 99% (See 
Table 2). Similar results were also obtained by Rosha 
et.al. (2021) with slight deviations due to the differences 
in CH4 and CO2 ratios in the feed and in the operating 
pressure. The ratio H2/CO obtained in approximately 2.16. 
3) The overall hydrogen and carbon efficiency 
(𝜂𝜂𝐻𝐻2𝑟𝑟𝑟𝑟𝑎𝑎 𝜂𝜂𝐶𝐶) in Eq. 13, 

𝜂𝜂𝑖𝑖 = 𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑜𝑜𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑖𝑖 𝑐𝑐𝑜𝑜𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐 𝑖𝑖𝑐𝑐𝑎𝑎𝑜𝑜 𝑎𝑎ℎ𝑚𝑚 𝑝𝑝𝑝𝑝𝑜𝑜𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑜𝑜𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑖𝑖 𝑖𝑖𝑐𝑐 𝑎𝑎ℎ𝑚𝑚 𝑑𝑑𝑚𝑚𝑚𝑚𝑖𝑖𝑝𝑝𝑚𝑚𝑑𝑑 𝑝𝑝𝑝𝑝𝑜𝑜𝑑𝑑𝑝𝑝𝑐𝑐𝑎𝑎

× 100 (13) 

is the fraction of the total hydrogen and carbon atoms in 
the feed that reports to the desired product. Assuming a 
high CO conversion in the FT-reactor, a 97% hydrogen 
efficiency and a 99% carbon efficiency were obtained. 
This results in almost no tail gas, leading to FT-fuels and 
O2 as the main products across the process. 
4) The energy efficiency is evaluated in terms thermal 
efficiency expressed as 

𝜂𝜂𝑎𝑎ℎ𝑚𝑚𝑝𝑝𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝐹𝐹𝐹𝐹−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐻𝐻𝐻𝐻𝑉𝑉𝐹𝐹𝐹𝐹−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑚𝑚𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝐻𝐻𝐻𝐻𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓+𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝐵𝐵𝑒𝑒𝐵𝐵𝑒𝑒𝑒𝑒

  (14) 

where HHV is the is the higher heating value, m is the 
molar flowrate and Welectricity is the electrical power input 
to the process. The electrical power supplied to the elec-
trolyzer is the only point of entry of high-quality energy 
across the process. This meets the target set out in the 
attainable region  as needed by the overall process as 
discussed in the previous section. The process requires 
135kW of electrical energy. This translates to a thermal 
efficiency of 96%, a significant improvement compared 
to other reported results such as those by Guares et al. 
(2021) [10] who reported 41-46% thermal efficiency in a 
biogas to power process. Rosha et al. (2021) [4] reported 
63.7% thermal efficiency in a biogas to methanol process. 
 
Table 2: Material flows in selected major streams of the 
Aspen Plus simulation in Figure 2. 

Kmol/h Biogas Syn-
gas-1 

FT-Fuel Oxy-
gen 

Tail 
Gas 

𝐶𝐶𝐶𝐶4 1 0.005 0 0 0.005 
𝐶𝐶𝐶𝐶2 1 0.062 0 0 0.062 
𝐶𝐶2𝐶𝐶 0.25 0.193 0 0 0 
𝐶𝐶2 0 0 0 1.06 0 
𝐶𝐶2 0 4.174 0 0 0.065 
𝐶𝐶𝐶𝐶 0 1.933 0 0 0 
𝐶𝐶8𝐶𝐶18 0 0 0.242 0 0 
𝐶𝐶𝐶𝐶3𝐶𝐶𝐶𝐶 0 0 0 0 0 

𝐶𝐶 0  0 0 0 
 

 

CONCLUSION 
The efficiency of biogas conversion to valuable 

products depends on the choice of the products and the 
efficacy of the material and energy integration within the 
process. The GH attainable region is a useful tool in iden-
tifying the process material balance targets with high CO2 
conversion and with less or no undesirable by products. 
Conversion of biogas to FT-fuel is one such a process 
with an ultimate target of 100% CO2 and CH4 conversion 
to produce FT-fuels and oxygen. This, however, requires 
the supply of high-quality energy, such as electricity or 
high temperature heat, from an external source, coupled 
with adequate material and energy integration within the 
process. We have shown, using an Aspen plus simulation, 
that electrical power supply to the overall process via wa-
ter electrolysis not only enables supplying high quality 
energy to the process but also facilitates the integration 
of energy from the synthesis section to the reformer sec-
tion against the temperature gradient hence acting as 
heat pump. The Aspen Plus simulation shows that with 
this process configuration 97% carbon and 99% hydro-
gen conversion is possible. 

The present work is based on a specific feed com-
position. Changing this parameter will change the results 
observed in the attainable region in Figure 1 which could 
lead to a different ultimate process target and would re-
quire a different process configuration to achieve the tar-
get. For instance, a higher ratio of CH4 to CO2 in the feed 
could lead to the production of FT-fuels and Carbon as 
the ultimate process target rather than the production of 
FT-fuels and oxygen. To avoid this one may require mod-
ifying the amount of water to be fed to the process to 
ensure that a target for the production of FT-fuels and O2 
is maintained. This suggests that the ratios of carbon, hy-
drogen and oxygen in the feed is a significant factor that 
needs to investigated. 
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ABSTRACT 
The transition to net-zero greenhouse gas emissions requires a rapid redesign of energy systems. 
However, the redesign may shift environmental impacts to other categories than climate change. 
To assess the sustainability of the resulting impacts, the planetary boundaries framework provides 
absolute limits for environmental sustainability. This study uses the planetary boundaries frame-
work to assess net-zero sector-coupled energy system designs for absolute environmental sus-
tainability. Considering Germany as a case study, we extend the common focus on climate change 
in sustainable energy system design to seven additional Earth-system processes crucial for main-
taining conditions favorable to human well-being. Our assessment reveals that transitioning to 
net-zero greenhouse gas emissions reduces many environmental impacts but is not equivalent to 
sustainability, as all net-zero designs transgress at least one planetary boundary. However, the 
environmental impacts vary substantially between net-zero designs, highlighting that design 
choices exist to address transgressions of planetary boundaries. 

Keywords: Energy Systems, Life Cycle Assessment, Modelling, Optimization, Carbon Capture, Environment, 
Sector-coupling 

INTRODUCTION 
The energy system needs to be redesigned to re-

duce greenhouse gas emissions to net-zero. The rede-
sign is commonly guided by energy systems models in 
optimization studies [1]. A common finding in energy sys-
tem optimization studies is the rise of sector coupling to 
integrate low-carbon electricity into sectors such as mo-
bility and heating [2–5]. Combined with environmental 
life-cycle assessment (LCA) [6], energy system modeling 
and optimization can account for climate change and ad-
ditional environmental impacts. 

In LCAs of the energy system transition, reducing 
the climate change impact of energy systems has been 
shown to result in burden-shifting, i.e., environmental im-
pacts shift from climate change to other categories, such 
as in land use, resource depletion, toxicity, and ecosys-
tem diversity [7, 2]. However, traditional LCA commonly 
adopts a comparative approach, where the 

environmental impacts of systems are assessed in rela-
tion to a reference system [8]. While such traditional 
LCAs show relative differences in impacts, they do not 
quantify the severity of shifting environmental impacts.  

Recently, metrics were introduced to assess en-
vironmental trade-offs and provide critical limits by so-
called absolute environmental sustainability assessment 
[8]. Such methods connect life-cycle assessment with 
absolute environmental sustainability assessment (for a 
review, see [8]). A popular example is the application of 
the planetary boundary framework [9–11] to life-cycle as-
sessment [12, 13]. The planetary boundaries framework 
defines safe operating spaces for climate change and 8 
additional Earth-system processes critical to maintaining 
an Earth-system state that is beneficial for humans. A re-
cent assessment [11] finds that the planetary boundaries 
are transgressed for 6 Earth-system processes: climate 
change, change in biosphere integrity, biogeochemical 
flows of phosphate and nitrogen, land-system change, 
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freshwater change, and novel entities. Only 3 processes 
remain within boundaries: stratospheric ozone depletion, 
ocean acidification, and atmospheric aerosol loading. 
Hence, it is crucial to consider planetary boundaries in 
the sustainable design of future energy systems.  

In pioneering work, absolute environmental sustain-
ability assessments going beyond climate change have 
been applied to energy systems [14] but typically con-
sider only one sector, such as power [15–17] or building 
heat systems [18]. Hence, the impact of sector coupling 
on absolute sustainability is poorly understood. Here, we 
conduct an absolute environmental sustainability assess-
ment for net-zero sector-coupled energy systems via the 
planetary boundaries framework. 

PLANETARY BOUNDARIES  
IN ENERGY SYSTEM MODELING 

Energy system modeling and optimization frame-
works vary in model complexity depending on the appli-
cation. For (inter)national sector-coupled energy system 
models, linear or mixed-integer linear programming for-
mulations are commonly selected to represent techno-
economic constraints [19]. 

In addition to techno-economic constraints, envi-
ronmental impacts are included via LCA in models of sec-
tor-coupled energy systems from international [3, 4] to 
national scale [5, 2]. Previous LCA studies [2–5] found 
environmental burden-shifting resulting from the energy 
transition, e.g., increasing the use of land, water, and re-
sources. 

In previous work, we considered the environmental 
impacts of the German sector-coupled energy transition 
to net-zero operational greenhouse gas emissions [20]. 
Our work revealed increases in up to 7 of 16 impact cat-
egories compared to the status quo, e.g., resource de-
pletion of minerals and metals may increase up to four 
times. However, the degree of burden-shifting can be re-
duced by design choices: Carbon capture and storage is 
found to be a lever to steer environmental impacts. 

While the identified burden-shifting highlights po-
tential areas of concern, the relative increase in impacts 
does not reveal if the increase contributes to a transgres-
sion of limits of absolute sustainability. Absolute assess-
ments via planetary boundaries aim to overcome this lim-
itation and have been conducted for a single sector of the 
energy system [14–17]. As these studies are limited to a 
sector or geographical region and the safe operating 
space applies to all human activities, downscaling is re-
quired, where a share of the safe operating space is allo-
cated to the assessed system [21]. Typically, the safe op-
erating space is allocated by one or a combination of the 
following principles: egalitarian, utilitarian, or acquired 

 
1 git-ce.rwth-aachen.de/secmod 

rights. All of the energy-related studies [15–18] apply 
downscaling by population to account for the geograph-
ical scope, and some further apply downscaling by eco-
nomic principles or acquired rights.  

METHODS 

Absolute environmental sustainability 
assessment via planetary boundaries 

Here, we assess the absolute sustainability of the 
net-zero designs for the German sector-coupled energy 
system identified in previous work [20]. We apply the 
planetary boundaries framework using the impact as-
sessment method provided in [13]. Note that novel enti-
ties are excluded from our assessment, as they are not 
quantified in [13]. However, in [11], the planetary bound-
ary for novel entities is considered transgressed if any 
synthetic chemical is released into the environment with-
out adequate safety testing. Hence, the boundary is likely 
transgressed for the energy system. 

As the geographical and sectorial scope is limited in 
the case study, we allocate a share of the global safe op-
erating space to the German energy system. We first ap-
ply downscaling by population based on egalitarian prin-
ciples to account for the geographical scope. Thus, a 
share of the total safe operating space is allocated to 
Germany based on its share of the global population in 
2021 [22]. We subsequently apply downscaling by grand-
fathering to account for the sectorial scope. For the 
grandfathering, we limit the share of the German safe op-
erating space that the energy system can occupy to the 
share of environmental impacts caused by the energy 
system in the reference year (2016). The share of envi-
ronmental impacts in the reference year is estimated 
compared to the total German impacts determined using 
a global input-output database [23]. As an additional ref-
erence, we include the share of safe operating space 
based on gross domestic product in 2021 [24] instead of 
population. We thus identify environmental impacts ex-
ceeding absolute limits for sustainability. 

Energy system model description 
The net-zero sector-coupled energy systems are 

designed via a modeling and optimization framework with 
integrated LCA1 [25] based on the life-cycle inventory 
database ecoinvent 3.5 (APOS) [26]. 

The system boundary of the energy system includes 
the electricity sector, the private mobility sector, and the 
heating sector for buildings and for industry on three 
temperature levels. In addition, we include CCS technol-
ogies and a direct air capture technology to enable CO2 
emission avoidance and CO2 removal (Table 1).  

As the functional unit, we select the supply of all 
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exogenous end-use demands for electricity, mobility, 
and heat. Additionally, we constrain operational green-
house gas emissions to reach net-negative emissions 
of -29 Mt CO2-eq. in 2045, assuming that the energy 
system contributes to balancing hard-to-abate emis-
sions, e.g., in agriculture. A detailed description is availa-
ble in [20].  

Table 1: Technologies considered in the energy system 
case study based on [2, 20]. 

electricity  heating 
biogas-to-power building 
geothermal natural gas boiler (district) 
hard coal natural gas boiler 
hydrogen fuel cell electrode boiler 
lignite energetic rehabilitation 
natural gas combined 
cycle (NGCC) 

heat pump 

natural gas turbine oil boiler 
nuclear industry low-temp 
  
oil natural gas boiler (district) 
photovoltaics natural gas boiler 
run-of-river electrode boiler 
waste-incineration heat pump 
wind offshore industry medium-temp 
wind onshore natural gas boiler (district) 
other non-renewables natural gas boiler 
lithium-ion battery electrode boiler 
pumped hydro storage industry high-temp 
 natural gas boiler (district) 
 natural gas boiler 
private mobility carbon capture & storage 
battery electric direct air capture 
compressed natural gas cement industry 
diesel CO pipeline 
gasoline NGCC 
hydrogen fuel cell steel industry 
plug-in hybrid geological storage CO  
power-to-X transmission 
power-to-diesel  kV power line 
power-to-hydrogen  kV power line 
power-to-methane upgrade  to  kV 

 
The multi-period investment decisions are deter-

mined in a rolling-horizon optimization, minimizing total 
annualized cost with investments every 5 years for a 
foresight horizon of 10 years. We apply a linear program-
ming formulation for the design problem, assuming linear 
input-output relationships in energy conversion, continu-
ous equipment sizing, and linear investment and operat-
ing costs. 

CASE STUDY RESULTS 
Transition pathways depend on key technology op-

tions, such as the availability of green electricity imports 
or DAC as a carbon dioxide removal technology. DAC 
opens a design space with solutions spanning between 
the cost-optimal and the minimally-required deployment 
of CO2 sequestration that still meets greenhouse gas 
emission targets. 

Here, we assess the absolute environmental sus-
tainability assessment of a conservative scenario from 
[20] that excludes electricity imports into the energy sys-
tem. Further, we consider 3 sub-scenarios where CO2 
storage is 1) unconstrained (min-TAC), 2) constrained to 
a minimum (min-storage), and 3) constrained to an inter-
mediate value (compromise).  

The net-zero energy systems outperform the fossil 
system from the initial year of the transition horizon in at 
least 6 of 9 impact categories (Figure 1). Only for the ni-
trogen cycle, impacts increase beyond the level of 2016 
in all net-zero designs. Additional burden-shifting occurs 
only in scenarios with minimal CO2 sequestration, where 
the impacts increase in atmospheric aerosol loading and 
in freshwater use compared to the reference in 2016. 
However, the absolute sustainability assessment reveals 
that the burden-shifting for freshwater use does not re-
sult in a transgression of the safe operating space.  

In the other Earth system processes, the net-zero 
designs reduce impacts, sometimes substantially, e.g., in 
ocean acidification (-91 %), climate change (-90 %), the 
phosphorus cycle (-86 %), change in biosphere integrity 
(-82 %), and land system change (-57 %). 

However, no net-zero energy system stays within all 
planetary boundaries when downscaling is applied based 
on population. In particular, all energy systems trans-
gress boundaries for the nitrogen cycle and atmospheric 
aerosol loading, while some further exceed boundaries 
for climate change, change of biosphere integrity, and 
ocean acidification. The designs obtained for the com-
promise scenario and the scenario with minimal CO2 se-
questration exceed boundaries for climate change de-
spite reaching net-zero operational greenhouse gas 
emissions due to greater infrastructure intensity with em-
bedded emissions.  

The transgression is particularly large for the nitro-
gen cycle, where the boundaries are exceeded by a fac-
tor of 4.2 on average across the three net-zero designs 
due to massive investments in battery electric vehicles, 
power-to-methane, and insulation material for energetic 
rehabilitation.  

While all three net-zero designs transgress at least 
2 planetary boundaries and are therefore unsustainable, 
the designs differ substantially in their environmental im-
pact (Figure 1): On average, the energy system occupies 
77 % of the safe operating space for the case minimizing 
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total annualized cost with unconstrained CO2 sequestra-
tion (min-TAC) but by up to 190 % for the case with min-
imal CO2 sequestration (min-stor). The results indicate 
that design choices, such as the availability of flexible 
negative emission technologies, can reduce transgres-
sions.  

The results vary depending on the choice of 
downscaling methods, which involves distributive justice 
considerations and introduces subjectivity into the as-
sessment [21]. Therefore, we include downscaling by 
gross domestic product instead of population as an ad-
ditional reference.  

Downscaling by gross domestic product instead of 
population quadruples the safe operating space due to 
Germany’s large per-capita gross domestic product. For 
downscaling by gross domestic product, an energy sys-
tem design within the modeled planetary boundaries 
seems possible if CO2 sequestration is unconstrained 
(Figure 1, min-TAC). However, downscaling by economic 
indicators is controversial [21]. In general, the 

downscaling method requires careful consideration in the 
interpretation of results.  

CONCLUSIONS AND OUTLOOK 
Global greenhouse gas emissions must decline rap-

idly to limit human-induced climate change. In addition to 
climate change, other sustainability challenges must be 
addressed simultaneously. 

The planetary boundaries framework defines a safe 
operating space for human activities for 8 Earth-system 
processes in addition to climate change. The planetary 
boundaries thus impose additional constraints on the de-
sign space of sustainable energy systems that are com-
monly neglected.  

Here, we evaluate the environmental impacts of net-
zero energy system designs considering the planetary 
boundaries. In particular, we consider net-zero designs 
of the sector-coupled energy system of Germany, a rep-
resentative industrial economy. Our case study reveals a 

 
Figure 1. Share of safe operating space occupied by sector-coupled energy system designs with net-zero 
operational greenhouse gas emissions for the German energy transition in 2045 aiming for minimal cost (min-TAC) 
or minimal CO2 sequestered (min-storage), and an intermediate solution (compromise). Downscaling of the global 
safe operating space to the share of safe operating space allocated to the German energy system is based on 1) 
the population of Germany in 2021 and 2) on the energy system’s share of the total environmental impacts in 
Germany in the original year of the transition horizon (2016) (population). As a reference, downscaling based on 
gross domestic product in 2021 instead of population is indicated as well (GDP). 
The share of safe operating space occupied by the energy system in the reference year (2016) is marked (♦) for 
comparison with the energy systems in 2045. 
abbreviations: nitrogen cycle (N), atmospheric aerosol loading (AAL), climate change (CC), change in biosphere 
integrity (BIO), land-system change (LSC), freshwater use (FW), stratospheric ozone depletion (OD) , ocean 
acidification (OA), phosphorous cycle (P) 
Novel entities are excluded, as they are not quantified in [13]. However, in [11] the planetary boundary for novel 
entities is considered transgressed if any synthetic chemical is released to the environment without adequate 
safety testing. Hence, the boundary is likely transgressed for the energy system. 
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transgression of at least 2 planetary boundaries for all 
net-zero designs. At the same time, the transgressions 
vary substantially across designs, indicating opportuni-
ties to address transgressions via design choices. 

The present work demonstrates the need to include 
all planetary boundaries in the design of sustainable en-
ergy systems. This perspective leads to multiobjective 
optimization for design space exploration to determine 
technological barriers and supply chain contributions to 
environmental impacts. We thus aim to identify enablers 
of energy systems within planetary boundaries, which 
will be presented in future work. 
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ABSTRACT 
In view of achieving the decarbonization target, green hydrogen is commonly regarded as the 
alternative capable of reducing the share of fossil fuels. Despite its wide application as a chemical 
on industrial scale, hydrogen utilization as an energy vector still suffers from unfavorable econom-
ics, mainly due to its high cost of production, storage and transportation. To overcome the last 
two of these issues, different hydrogen carriers have been proposed. Hydrogen storage and trans-
portation through these carriers involve: 1. the carrier hydrogenation, exploiting green hydrogen 
produced at the loading terminal, where renewable sources are easily accessible, 2. the storage 
and transportation of the hydrogenated species and 3. its subsequent dehydrogenation at the 
unloading terminal, to favour H2 release. Although there is a number of studies in literature on the 
economic feasibility of hydrogen transport through different H2 vectors, very few of them delve 
into the technical evaluation of the hydrogen value chain. From the process design point of view, 
the hydrogenation and dehydrogenation stages are of paramount importance, considering that 
they are the cost drivers of the whole system. This work aims to address this gap by presenting a 
systematic methodology to technically analyse different hydrogen vectors. For the sake of exam-
ple, ammonia and dibenzyltoluene are considered. Weaknesses of the overall value chain are 
pointed out, to understand where to focus research efforts for future process intensification. 

Keywords: H2 transport, H2 carriers, sustainable energy, techno-economic assessment, computer-aided pro-
cess design. 

INTRODUCTION 
In the transition towards sustainable energy, green 

hydrogen has emerged as a promising low-emission al-
ternative. Nonetheless, its transportation is hampered by 
its low volumetric density. To address this problem, dif-
ferent H2 carriers have been proposed as a reliable solu-
tion. The typical H2 value chain is depicted in Figure 1, 
considering ammonia (NH3) and liquid organic hydrogen 
carriers (LOHCs) as hydrogen vectors. NH3 and LOHCs 
are commonly perceived as the most encouraging 
choices, due to the easiness adaptability to the existing 
infrastructures. These hydrogen-bearing molecules can 
be hydrogenated at the loading terminal, exploiting green 
hydrogen produced through renewable sources, more 
easily stored, transported and, upon arrival, dehydrogen-
ated for H2 release. The released hydrogen can serve ei-
ther the mobility or the industrial sectors [1].  

NH3 is a global commodity, already produced in 
large scale facilities and distributed worldwide. On the 
other hand, a variety of LOHCs have been considered in 
literature [2-3]. While some chemical structures are more 
susceptible to hydrogenation/dehydrogenation than oth-
ers, certain rules have been identified for selecting fa-
vourable compounds. The optimal LOHC has to show low 
melting point and high boiling point, to avoid solidification 
and volatilization issues; high H2 storage capacity; low 

mailto:elvira.spatolisano@polimi.it
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dehydrogenation enthalpy; low toxicity and low cost [2]. 
Selected the best candidate as hydrogen carrier, the es-
sential starting point for the feasibility study of the hy-
drogen value chain is the identification of the basis of the 
design, including: 

1. production rate of green H2, to be fed to the 
system. Specifically, tuning the plant size 
according to the land footprint of renewables is 
crucial for the assessment of realistic scenarios. 
Renewable sources are characterized by a power 
density several orders of magnitude lower than 
fossil fuels. The transition pathways towards 
sustainability must consider both the limitations of 
available land and the specific geophysical 
conditions [4]. Understanding the extent of land 
needs can put the feasible scale of green 
hydrogen production into perspective [5]. In this 
analysis, flat H2 production of 20000 Nm3/h is 
supposed via 100 MW alkaline electrolysers, 
available at 20 bar and 25°C. 

2. Loading and unloading terminal location and, 
consequently, distance to be covered for H2 
transport. Different scenarios can be inferred, as 
the long-distance harbour-to-harbour hydrogen 
transport, which involves the H2 seaborne 
transport or the short distance hydrogen transport, 
that implies the road or pipeline hydrogen 
transport. In the hydrogen value chain of Figure 1, 
the seaborne H2 transport is considered. 

3. H2 utilization and its centralized or decentralized 
application. According to the centralized scenario, 
the H2 produced is conveyed into a power plant for 
green electricity production. In this case, less 
stringent specifications on H2 purity are needed, 
likely. On the other hand, for the decentralized H2 
utilization, H2 has to be distributed to several 
hydrogen refuelling stations, to serve the mobility 

sector. Thus, high H2 purity is necessary. The 
selection of the centralized/decentralized scenario 
also affects the process design of the whole value 
chain and, consequently, the operating conditions 
of the delivered hydrogen (i.e., temperature and 
pressure of discharge at the end user, together 
with required purity). In the present study, H2 
centralized application at a H2 valley is considered, 
such that the hydrogen product is released at 30 
bar and with a purity of 99.9 mol%. 

Defined the basis of design, both technical and eco-
nomic assessments can be carried out. However, it is 
worth noticing that the economic evaluations are, gener-
ally, strongly dependent on the hypotheses introduced 
and on the methodology adopted. Variable results can be 
obtained, such that it is difficult to draw general conclu-
sions. For this reason, from the process engineering point 
of view, it is more relevant to focus on the design of the 
whole value chain and its technical assessment, with a 
particular attention to the cost-driving stages, rather 
than demonstrating the economic viability of hydrogen 
transport. In this respect, this work aims at presenting a 
systematic methodology to analyse different hydrogen 
value chains. Ammonia and dibenzyltoluene (H0-DBT) 
are selected as the representative carriers, due to their 
promising features. Hydrogenation and dehydrogenation 
stages have been designed in Aspen Plus V11®. Based on 
the simulations presented, a detailed technical analysis is 
discussed, to pave the way for future process intensifi-
cation. 

SIMULATION OF THE COST-DRIVING 
PROCESSES 

Ammonia (NH3) 
Ammonia is a global commodity, already distributed 

worldwide and used in the chemical industry. Recently, it 

 
Figure 1: Hydrogen value chain exploiting LOHCs and NH3 as H2 carriers.  
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has been regarded as a promising hydrogen vector due 
to its high hydrogen content (about 17.8 wt.%) and well-
established global infrastructure for transportation and 
storage. Moreover, the hydrogenation stage for NH3 as 
H2 carrier, i.e., ammonia synthesis from hydrogen, is al-
ready a well-established process, extensively optimized 
over the last years. For this reason, the hydrogenation 
section of NH3 as H2 carrier will be not discussed in this 
work. For the technical analysis of NH3 synthesis within 
the H2 value chain framework, reference can be made to 
Restelli et al. [6]. On the other hand, the NH3 decomposi-
tion through cracking (reaction (1)) is not as mature as 
the ammonia synthesis. While different strategies are 
available to accommodate ammonia decomposition [7,8], 
the thermochemical ammonia decomposition shows the 
highest technology readiness level (TRL) for industrial 
application.  

2𝑁𝑁𝑁𝑁3 → 3𝑁𝑁2 + 𝑁𝑁2     (1) 

The typical process scheme is shown in Figure 2. 
Liquid NH3 is pumped, heated in a train of process-

process heat exchangers (HX-1, HX-2, HX-3 in Figure 2) 
and fed to the cracking unit (FURN-1 in Figure 1). This unit 
is modelled through the RGibbs module of Aspen Plus, 
where thermodynamic equilibrium conditions are 
reached at the specified temperature and pressure of 
900°C and 30 bar, respectively [6]. Downstream the re-
action section, the uncracked NH3 is adsorbed in an acti-
vated carbon bed (ADS-1 in Figure 2), while hydrogen is 
separated from the coproduced N2 through pressure 
swing adsorption onto a zeolite bed (PSA in Figure 2).  

The heat necessary for the cracking is provided 
burning a NH3 and H2 mixture in the furnace combustion 
section. The hydrogen fed to this section is the PSA 
blowdown stream, while NH3 fresh flowrate fed to the 
combustion section is regulated in such a way that the 
heat necessary for the cracking to occur is equal to the 
one generated by the combustion reaction. Inlet air to the 
combustion section is slightly above the stoichiometry, to 

minimise the concentration of unburned fuel. 

Liquid Organic Hydrogen Carriers (LOHCs) 
As opposite to NH3, LOHCs are not as well-estab-

lished. Among the most promising candidates as organic 
carriers, nitrogen and oxygen substituted heterocycles 
are getting attention because of their reduced dehydro-
genation enthalpy. Moreover, oxygen-based organic 
molecules which can be produced from biomasses show 
the advantage of increasing the sustainability of the 
overall hydrogen value chain. When these complex mol-
ecules are selected as the potential H2 carriers, the pro-
cess design of the overall system becomes challenging 
because these species are usually not available in com-
mercial engineering simulators. For this reason, a signifi-
cant effort is required to include them in the software 
databank. To do so, accurate thermophysical and ther-
mochemical properties of the pseudo-components are 
needed for a detailed simulation. 

In the following, a systematic methodology for the 
simulation software set-up is discussed, considering 
dibenzyltoluene (H0-DBT)/perhydro-dibenzyltoluene 
(H18-DBT) pair as the hydrogen vector.  

H0/H18 DBT properties  
The H0-DBT/H18-DBT pair has seen a surge of in-

terest from researchers since 2014, when it was pro-
posed as a potential LOHC by Hydrogenious LOHC Tech-
nologies GmbH [9]. With a relatively high hydrogen stor-
age capacity of 6.2 wt.%, H0-DBT/H18-DBT offers sev-
eral advantages over other LOHC systems, as good ther-
mal stability, high boiling point (390°C at atmospheric 
pressure), low toxicity and low melting point, ranging be-
tween -39°C to -34°C.  

Müller et al. [10] performed a comprehensive exper-
imental characterization of dibenzyltoluene and perhy-
dro-dibenzyltoluene, including boiling point, enthalpy of 
formation, density, specific heat capacity, and vapour 
pressure. This data, reported in Table 1, was useful for 

 
Figure 2: NH3 dehydrogenation section. Simulation in Aspen Plus V11®.  
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including the new pseudo-components in Aspen Plus 
simulation software. Once these properties are intro-
duced, the compounds physical-chemical characteriza-
tion occurs in Aspen Plus® with the aid of NIST TDE (Ther-
moData Engine) tool and the Aspen property estimation 
system.  

Table 1: Dibenzyltoluene (DBT) and perhydrodibenzyltol-
uene (H18-DBT) properties [10]. 

Property 
Value 

DBT H-DBT 

TB [°C]   

MW [kg/kmol]   

SG* @ °F [-]   

∆Hform [kJ/kmol]  - 
*SG: Specific Gravity. 
 

a)  

b)  

Figure 3: Comparison between experimental and 
predicted density values for: a) H0-DBT and b) H18-DBT. 

In addition to what provided in Table 1, supplying 
experimental molar volume and ideal gas heat capacity 
can enable the development of a more robust model. Im-
plemented all the available experimental datasets, in view 

of assessing the reliability of the models, the predicted 
physical properties can be compared with the experi-
mental ones. Results are reported in Figure 3 considering 
the density of the hydrogenated and dehydrogenated 
species for the sake of example. A satisfactory agree-
ment is obtained between the experimental and calcu-
lated values. 

H0/H18 DBT hydrogenation and dehydrogenation 
Once the process simulator has been set up, both 

hydrogenation and dehydrogenation stages have been 
designed in Aspen Plus V11®. 

The hydrogenation section is represented in Figure 
4. The process receives at its battery limits the hydrogen 
produced via the alkaline electrolysers, at 50°C and 20 
bar. This stream undergoes compression up to 35 bar 
and is fed to the reactor (B2 in Figure 4), together with a 
nitrogen stream that acts as a thermal diluent. Also 
dibenzyltoluene coming both from the make up stream 
and the dehydrogenation process is fed to the hydro-
genation reactor, after preheating in a process-process 
heat exchanger (PREHEAT in Figure 4). The reactor op-
erates at a pressure of 35 bara and a temperature of 
210°C for the catalytic hydrogenation reaction (2) to oc-
cur. While the exothermic nature of the hydrogenation re-
action would suggest lower temperatures for enhanced 
reaction equilibrium, the operating temperature also con-
siders the catalytic activity requirements [11]. Based on 
what available in literature [12], the reactor is simulated 
through the RStoic module of Aspen Plus at quantitative 
conversion and selectivity. 

+ 9 H2  + 558 kJ/mol  (2) 

Downstream the reaction section, the outlet stream, 
which contains the perhydro-dibenzyltoluene along with 
unreacted hydrogen and nitrogen, is cooled and ex-
panded to favour the separation of light gases from the 
heavier H18-DBT, which can be sent for storage and then 
transported to the spot of hydrogen delivery. 

 

Figure 4: H0-DBT hydrogenation section. Simulation in 
Aspen Plus V11®. 
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The hydrogenated species thus produced is fed to 
the dehydrogenation section, reported in Figure 5.  

The H18-DBT is pumped, preheated in a process-
process heat exchanger and fed to the reactor (REAC-
TOR in Figure 5), operating at 320 °C and 1.1 bara. Also 
in this case, the unit is modeled through the RStoic mod-
ule of Aspen Plus according to the experimental data col-
lected by Modisha et al. [13]. The findings demonstrated 
that a 96% conversion rate could be achieved at 320°C 
using a 0.5 wt.% Pt/Al2O3 catalyst. Downstream the reac-
tor, the outlet stream is directed to a gas-liquid separator 
(FLASH1 in Figure 5). The top vapour phase, a hydrogen-
rich stream, is recycled back to the reactor via the com-
pressor COMP-R. This recycled hydrogen plays a crucial 
role in averting undesired coking phenomena, thus en-
suring the activity of the catalyst. 

The remainder of the hydrogen stream undergoes 
cooling in COOL1 before being sent to a second gas-liq-
uid separator. The separator facilitates the extraction of 
another liquid stream, rich in H0-DBT, while a vapor 
phase stream, enriched with hydrogen, exits from the top 
of the unit. The produced H2 is compressed up to 30 bar 
by means of a three inter-refrigerated compression 
stages (COMP-1, COMP-2, and COMP-3 in Figure 5). In 
this way, high pressure and high purity hydrogen is ob-
tained, whose specifications meet the requirements at 
the value chain battery limits. 

The liquid stream coming from the series of gas-liq-
uid separators is H0-DBT, to be recycled back to the hy-
drogenation section.  

In order to cope with the endothermic nature of the 
reaction, a portion of the transported hydrogen is burnt, 
thus lowering the H2 flow rate exiting the battery limits. 
The combustion section has been simulated in Aspen 
Plus with a similar rationale of the NH3 one, already dis-
closed in the previous section. Here, the fuel flow rate is 
selected in such a way that the heat produced in the 
combustion section equals to the one necessary for the 
dehydrogenation reaction to occur, while the air flow rate 

is slightly above the stoichiometric value.  

TECHNICAL ASSESSMENT 
The process simulations discussed allow to point 

out weaknesses of the two carriers and to understand 
where to focus research efforts for process intensifica-
tion. 

As regards NH3, it has the intrinsic advantage of be-
ing a well-known chemical, already used worldwide. De-
spite NH3 synthesis has been extensively optimized, 
when dealing with green ammonia produced by renewa-
ble hydrogen, the plant must be likely downscaled [14]. 
To favour the operability of this reduced NH3 plant, lower 
pressures than the traditional Haber-Bosch could be 
needed. Different strategies are under consideration by 
researchers in this respect, namely: the identification of 
more active and selective catalysts at milder operating 
conditions [15] or the NH3 removal downstream the reac-
tion stage, either with solid-state species (i.e., metal hal-
ides or borohydrides [16]) or liquid solvents (water, aque-
ous acids or NH4H2PO4 [5]). 

Concerning ammonia cracking, the process simula-
tion performed pointed out that the only external utility 
needed is electricity, used to drive the pump P-1 in Figure 
2, with an associated consumption of 23.72 kW. Despite 
the low utility consumption, the designed process 
scheme has the drawback of a reduced H2 flowrate exit-
ing the battery limits. For 592.33 kmol/h of NH3 entering 
the process, 698.07 kmol/h of H2 are produced. This ev-
idence is due to the consumption of part of the inlet NH3 
in the combustion section, on the one hand, and to the 
low H2 recovery rate from the PSA unit on the other hand, 
set at 85% to be consistent with literature values [17]. 
Process intensification for ammonia cracking should fo-
cus on the identification of catalysts capable of operating 
at milder operating conditions, together with on the opti-
mization of the N2-H2 separation section downstream the 
reactor, to maximize H2 recovery. 

 
Figure 5: H18-DBT dehydrogenation section. Simulation in Aspen Plus V11®.  
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As for the pair H0-DBT/H18-DBT, the process simu-
lation suffers from the not detailed reactor modeling, 
such that fundamental research is needed to identify a 
well-established kinetic expression to be included in the 
Aspen Plus scheme. Despite the drawback of low ma-
turity, the dibenzyltoluene shows the intrinsic advantage 
of a reduced volatility, which allows the production of 
high purity hydrogen after dehydrogenation, facilitating 
the H2 separation from unconverted gases downstream 
the reaction section. 

The hydrogenation section electricity consumption 
amounts to 615.96 kW, for the compression and pumping 
of reactants at the battery limits, while only cooling water 
is needed as external utility, to provide a cooling duty of 
482.3 kW. The high endothermicity of the hydrogenation 
reaction (16462.3 kW) could represent a plus point in the 
overall energy balance. When designing the whole value 
chain, strategies for heat integration have to be figured 
out to understand how to maximise revenues.  

Concerning the dehydrogenation section, 3758.97 
kW of electricity consumption are registered for the H18-
DBT dehydrogenation process. Despite this number 
could seem high at a first glance, most of the electric en-
ergy required by the process is due to the hydrogen com-
pression up to the delivery pressure, which cannot be re-
duced. Thermal energy consumption of the process is re-
lated to the cooling duty by means of cooling water, 
which accounts for a total of 4822 kW, together with the 
heat necessary for the hydrogenation reaction to occur. 
Despite no external utility is required, the high reaction 
endothermicity (19887.3 kW) is responsible for a dra-
matic reduction of the hydrogen flow rate exiting the bat-
tery limits. For 103.83 kmol/h of H18-DBT entering the 
process, 575.65 kmol/h of hydrogen are produced. The 
choice of coping the reaction endothermicity by burning 
part of the hydrogen produced is for sustainability pur-
poses. It is true that H2 is a high value-added product, 
probably too valuable to be burnt in a combustion cham-
ber, but, on the other hand, the utilization of any fossil-
based fuels does not make sense environmentally, if CO2 
is emitted upon combustion. Research efforts for process 
intensification should focus, primarily, on the identifica-
tion of a suitable organic molecule to be used as H2 vec-
tor, to reduce the heat requirements of the dehydrogena-
tion section as much as possible. Selected the best can-
didate as LOHC, heat integration in the whole hydrogen 
value chain, together with the selection of a suitable 
clean burning fuel, compliant with plant location and 
needs, could be strategies for energy savings and, ulti-
mately, operating cost reduction.  

CONCLUSIONS 
Green hydrogen transport through different H2 car-

riers still suffers from unfavourable economics. With the 

aim of understanding where to focus research efforts for 
process intensification, this work offers a systematic 
methodology for the analysis of the value chain cost driv-
ers, i.e., hydrogenation and dehydrogenation stages. 
Ammonia and the pair dibenzyltoluene/perhydrodiben-
zyltoluene are selected as representative carriers.  

For ammonia value chain, focal points of research to 
be investigated for cost reductions are: 

• the NH3 synthesis process intensification on small 
scale, to enable green ammonia production at 
milder operating conditions; 

• the NH3 thermocatalytic cracking process intensifi-
cation, to enable the reaction to occur at milder op-
erating conditions and to optimize the N2-H2 sepa-
ration downstream the reactor as much as possible. 

For LOHC value chain, active and fundamental re-
search is still needed to identify the most promising can-
didate to be used as the hydrogen carrier, to assess its 
physical-chemical properties and to investigate the hy-
drogenation and dehydrogenation reaction kinetics at the 
laboratory scale. Furthermore, points to be investigated 
are: 

• for the hydrogenation section, the maximisation of 
the heat integration, taking into account the reac-
tion exothermicity; 

• for the dehydrogenation section, the identification 
of alternative methods for heat supply to cope the 
reaction endothermicity. 

REFERENCES 
1. Roland Berger. Hydrogen transportation. The key 

to unlocking the clean hydrogen economy (2021). 
2. Aakko-Saksa PT, Cook C, Kiviaho J, Repo T. Liquid 

organic hydrogen carriers for transportation and 
storing of renewable energy – Review and 
discussion. J Power Sources 396: 803-823 (2018). 

3. Díaz E, Rapado-Gallego P, Ordóñez S. Systematic 
evaluation of physicochemical properties for the 
selection of alternative liquid organic hydrogen 
carriers. J Energy Storage 59: 106511 (2023). 

4. Tran TH, Egermann M. Land-use implications of 
energy transition pathways towards 
decarbonisation – Comparing the footprints of 
Vietnam, New Zealand and Finland. Energy Policy 
166: 112951 (2022). 

5. Spatolisano E, Pellegrini LA. Haber-Bosch process 
intensification: a first step towards small-scale 
distributed ammonia production. Chem Eng Res 
Des 195: 651-661 (2023). 

6. Restelli F, Spatolisano E, Pellegrini LA, de Angelis 
AR, Cattaneo S, Roccaro E. Detailed techno-
economic assessment of ammonia as green H2 



 

Spatolisano et al. / LAPSE:2024.1581 Syst Control Trans 3:591-597 (2024) 597 

carrier. Int J Hydrogen Energy 52: 532-547 (2024).  
7. Lucentini I, Garcia X, Vendrell X, Llorca J. Review of 

the decomposition of ammonia to generate 
hydrogen. Ind Eng Chem Res 60: 18560-18611 
(2021). 

8. Spatolisano E, Pellegrini LA, De Angelis AR, 
Cattaneo S, Roccaro E. Ammonia as a carbon-free 
energy carrier: NH3 cracking to H2. Ind Eng Chem 
Res 62: 10813-10827 (2023). 

9. Hydrogenious LOHC Technologies. 
https://hydrogenious.net/ 

10. Müller K, Stark K, Emel’yanenko VN, Varfolomeev 
MA, Zaitsau DH, Shoifet E, et al. Liquid Organic 
Hydrogen Carriers: Thermophysical and 
Thermochemical Studies of Benzyl- and Dibenzyl-
toluene Derivatives. Ind Eng Chem Res 54: 7967-
7976 (2015). 

11. Spatolisano E, Restelli F, Matichecchia A, Pellegrini 
LA, de Angelis AR, Cattaneo S, Roccaro E. 
Assessing opportunities and weaknesses of green 
hydrogen transport via LOHC through a detailed 
techno-economic analysis. Int J Hydrogen Energy 
52: 703-717 (2024).  

12. Shi L, Qi S, Qu J, Che T, Yi C, Yang B. Integration of 
hydrogenation and dehydrogenation based on 
dibenzyltoluene as liquid organic hydrogen energy 
carrier. Int J Hydrogen Energy 44: 5345-5354 
(2019). 

13. Modisha P, Gqogqa P, Garidzirai R, Ouma CNM, 
Bessarabov D. Evaluation of catalyst activity for 
release of hydrogen from liquid organic hydrogen 
carriers. Int J Hydrogen Energy 44: 21926–21935 
(2019). 

14. Palys MJ, Daoutidis P. Using hydrogen and 
ammonia for renewable energy storage: A 
geographically comprehensive techno-economic 
study. Comput Chem Eng 136: 106785 (2020). 

15. Humphreys J., Lan R, Tao S. Development and 
Recent Progress on Ammonia Synthesis Catalysts 
for Haber–Bosch Process. Adv Energy Sus Res 2: 
2000043 (2021). 

16. Kale MJ, Ojha DK, Biswas S, Militti JI, McCormick 
AV, Schott JH, Dauenhauer PJ, Cussler EL. 
Optimizing Ammonia Separation via Reactive 
Absorption for Sustainable Ammonia Synthesis. 
ACS Appl Energy Mater 3: 2576-2584 (2020). 

17. International Energy Agency. The Future of 
Hydrogen. Seizing today’s opportunities. Report 
prepared by the IEA for the G20, Japan (2019).  

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 
 



Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.176167 Syst Control Trans 3:598-603 (2024) 598 

A mathematical programming optimization framework for 
wind farm design considering multi-directional wake 
effect 
Javiera Vergara-Zambranoa, Styliani Avraamidoua* 
a University of Wisconsin-Madison, Department of Chemical and Biological Engineering, Madison, Wisconsin, USA 
* Corresponding Author: avraamidou@wisc.edu.

ABSTRACT 
The placement of wind turbines is a crucial design element in wind farms, given the energy losses 
resulting from the wake effect. Despite numerous studies addressing the Wind Farm Layout Opti-
mization (WFLO) problem, considering multiple directions to determine wind turbine spacing and 
layout remains limited. However, relying solely on one predominant direction may lead to overes-
timating energy production, and loss of energy generation. This work introduces a novel mathe-
matical programming optimization framework to solve the WFLO problem, emphasizing the wind 
energy's nonlinear characteristics and wake effect losses. Comparisons with traditional layout ap-
proaches demonstrate the importance of optimizing wind farm layouts during the design phase. 
By providing valuable insights into the renewable energy sector, this research aims to guide future 
wind farm projects towards layouts that balance economic considerations with maximizing energy 
production. 

Keywords: Wind, Turbines, Energy Systems, Renewable and Sustainable Energy, Optimization 

INTRODUCTION 
Due to the escalating energy crisis, there has been 

a growing inclination towards generating more energy 
from renewable sources. Consequently, aside from con-
structing new power generation facilities such as wind or 
solar plants, studying how to optimize these installations 
is crucial [1]. Among the various renewable energy op-
tions available, wind energy stands out due to its efficient 
power generation capacity and the ability to produce en-
ergy on a large scale, making it an attractive option for 
expanding electricity generation capacity [2-5]. 

Wind power is produced by converting the kinetic 
energy of air in motion using a turbine. Usually, wind tur-
bines are arranged in groups known as wind farms to in-
crease power production and minimize costs. Several 
factors influence the energy production of a wind farm, 
including wind speed and direction, and various meteor-
ological conditions. Specifically, energy losses occur due 
to the wake effect. As wind turbines extract energy from 
the wind, a wake forms downstream, reducing the wind 
speed. Consequently, the placement of wind turbines 

significantly impacts the efficiency of a wind farm [6]. 
Traditionally, wind farms have followed a rule of 

thumb of placing wind turbines in rows with 8–12 rotor 
diameters of spacing parallel to the prevailing wind direc-
tion and columns spaced 3–5 rotor diameters apart per-
pendicular to the wind direction [7]. More recently, sev-
eral studies have been conducted to determine the opti-
mal positioning of wind turbines within a designated land 
area [8-11]. The primary objective of these studies has 
been to minimize wake effects and, consequently, max-
imize expected power production. These studies con-
sider dividing the domain into a grid that defines possible 
turbine locations. However, only a limited number of 
studies have extended their focus to include determining 
the optimal inter-turbine distance. This problem, known 
as the wind farm layout optimization (WFLO) problem, 
has garnered substantial research interest.  

Given the nonlinearity inherent in wind energy's 
characteristics, addressing this issue poses a noteworthy 
difficulty. Proposed approaches to tackle the WFLO 
problem predominantly involve using data-driven or me-
taheuristic algorithms such as genetic algorithms, 
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random search, and particle swarm optimization. While 
these algorithms are practical for providing near-optimal 
solutions, they often do not supply guarantees of opti-
mality [12]. Furthermore, to our knowledge, none of the 
studies have considered more than one dominant wind 
direction to determine the spacing and layout of wind tur-
bines, even though promising locations for wind farm in-
stallations, such as the Texas Panhandle, have at least 
two dominant wind directions, and some studies have 
suggested that ignoring wind direction could lead to an 
overestimation of the wind energy production [13].  

This study introduces a novel mathematical pro-
gramming optimization framework designed to determine 
the optimal position and spacing of wind turbines. It ex-
plores various design objective criteria, including costs 
and energy production. The study considers the intrinsic 
nonlinear attributes of wind energy, incorporates model-
ing of wake effect losses, and, for the first time, consid-
ers both single and multiple dominant wind directions. To 
illustrate its efficacy, the proposed model is applied in a 
case study focusing on the energy transition of the Uni-
versity of Wisconsin-Madison campus.  

PROBLEM FORMULATION 

Wake effect model 
The wind losses due to the wake effect are model 

using the Jensen model, which is one of the most widely 
used wake model [14-15]. It assumes that the diameter 
of the wake increases linearly in proportion to the down-
stream distance, z. The speed downstream can be calcu-
lated as  

𝑣𝑣(𝑧𝑧) =  𝑣𝑣0  ⋅ [1 − (1 − √1 − Ct) � 𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷+2𝑘𝑘𝑘𝑘

�
2

]  (1) 

, where 𝑣𝑣0 is the undisturbed incoming velocity, 𝑘𝑘 is 
the rate of the wake expansion and have a value of 0.075 
for onshore wind, 𝐷𝐷𝐷𝐷 is the diameter of the rotor of the 
wind turbine and 𝐶𝐶𝐶𝐶 is the trust coefficient, which as a 
value of 0.8 [16-17]. 

In this study, the wake effect model was adapted to 
consider multiple wind directions. For each wind direction 
𝑤𝑤𝑑𝑑𝑗𝑗 the velocity is calculated considering in characteris-
tic distance 𝑧𝑧𝑗𝑗. The calculation of the wind velocity for the 
two directions 𝑤𝑤𝑑𝑑1 and 𝑤𝑤𝑑𝑑2 is presented below, while an 
illustration of the two chosen directions is presented in 
Figure 1. The main assumption is that the wind velocity 
reaching the turbines (𝑣𝑣𝑤𝑤𝑑𝑑𝑗𝑗,𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑) that are in the same row 
(𝑟𝑟) or column (𝑐𝑐) are not affected by each other. The 

Abbreviations Variables 
D one wind direction 𝐴𝐴  land area used (𝑚𝑚2) 
D two wind directions 𝐴𝐴𝐶𝐶  annual costs (USD/year) 
WFLO wind farm layout optimization 𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖  annual investment costs (USD/year) 
Indices 𝐶𝐶𝑂𝑂𝑂𝑂  annual operation & maintenance costs  
𝑐𝑐  columns  (USD/year) 
𝑑𝑑  day 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡  total number of turbines (-) 
𝑗𝑗  wind direction number 𝑃𝑃𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑  energy produced at row 𝑟𝑟 column 𝑐𝑐 at  
𝑟𝑟  rows  time 𝐶𝐶 of day 𝑑𝑑 (MWh) 
𝐶𝐶  hour time step 𝑃𝑃𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑

𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐  energy produced according to power  
Parameters  curve (MWh) 
𝛼𝛼  shift coefficient (-) 𝑃𝑃𝑖𝑖𝑡𝑡𝑛𝑛  nominal capacity of a wind turbine (MW) 
𝐴𝐴𝑛𝑛𝑚𝑚𝑚𝑚  land area available (𝑚𝑚2) 𝑣𝑣  wind velocity considering wake effect  
𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖
𝑐𝑐𝑚𝑚𝑐𝑐  Investment costs per capacity   (m/s) 

 (USD/MW) 𝑣𝑣𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑
𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐  wind velocity at row 𝑟𝑟 column 𝑐𝑐 at time 𝐶𝐶 

𝐶𝐶𝑂𝑂𝑂𝑂
𝑐𝑐𝑚𝑚𝑐𝑐  operation & maintenance costs per    of day 𝑑𝑑 (m/s) 

 capacity (USD/MW) 𝑣𝑣𝑤𝑤𝑑𝑑𝑗𝑗,𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑  wind velocity in direction 𝑤𝑤𝑑𝑑𝑗𝑗 at row 𝑟𝑟  
𝐶𝐶𝐶𝐶𝐶𝐶  capital recovery factor (%)  column 𝑐𝑐 at time 𝐶𝐶 of day 𝑑𝑑 (m/s) 
𝐶𝐶𝐶𝐶  trusted coefficient (-) 𝑣𝑣0  undisturbed velocity at hub height (m/s) 
𝐷𝐷𝐷𝐷  rotor diameter (m) 𝑣𝑣𝑡𝑡,𝑑𝑑

0   undisturbed velocity at hub height time 𝐶𝐶  
𝑓𝑓𝑑𝑑   frequency of representative day 𝑑𝑑 (-)  of day 𝑑𝑑 (m/s) 
𝐻𝐻  hub height (m) 𝑤𝑤𝑤𝑤𝑑𝑑𝑗𝑗,𝑡𝑡,𝑑𝑑  wind direction 
𝐻𝐻𝐷𝐷  altimeter height (m) 𝑊𝑊𝑊𝑊  wake effect losses (-) 
𝐷𝐷  interest rate (%) 𝑥𝑥  x-axis distance (m) 
𝑘𝑘  rate of wake expansion (-) 𝑦𝑦  y-axis distance (m) 
𝑊𝑊  wind turbines lifetime (years) 𝑦𝑦𝑟𝑟,𝑐𝑐

𝑏𝑏   wind turbine purchase at row 𝑟𝑟 column 𝑐𝑐 
𝑀𝑀  big M (-) 𝑧𝑧  characteristic distance (m) 
𝑣𝑣𝑡𝑡,𝑑𝑑
𝑛𝑛   wind velocity at altimeter height at time 𝐶𝐶    

 of day 𝑑𝑑 (m/s)   
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losses due to the wake effect will be denoted as 𝑊𝑊𝑊𝑊, re-
writing equation (1) as the following: 

𝑣𝑣(𝑧𝑧) = 𝑣𝑣0 ⋅ [1 − W𝑊𝑊(𝑧𝑧)]   (2) 

For wind direction 𝑤𝑤𝑑𝑑1, the velocity at each position 
at time 𝐶𝐶 of day 𝑑𝑑 (𝑣𝑣𝑤𝑤𝑑𝑑1,𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑) can be calculated as: 

 For the first row (𝑟𝑟 = 1) 

𝑣𝑣𝑤𝑤𝑑𝑑1,1,c,𝑡𝑡,𝑑𝑑 = 𝑣𝑣𝑡𝑡,𝑑𝑑
0   ∀ 𝑐𝑐 , 𝐶𝐶,𝑑𝑑    (3) 

 For any other row (∀ 𝑟𝑟 ≠ 1, 𝑐𝑐 , 𝐶𝐶,𝑑𝑑) 

𝑣𝑣𝑤𝑤d1,𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑 = 𝑣𝑣𝑤𝑤𝑑𝑑1,𝑟𝑟,𝑐𝑐−1,𝑡𝑡,𝑑𝑑 ⋅ �1 − 𝑦𝑦𝑟𝑟,𝑐𝑐
𝑏𝑏 ⋅ W𝑊𝑊(𝑦𝑦)�  (4) 

Similarly, for wind direction 𝑤𝑤𝑑𝑑2, the velocity 
(𝑣𝑣𝑤𝑤𝑑𝑑2,𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑) is calculated as: 

 For the first column (𝑐𝑐 = 1) 

𝑣𝑣𝑤𝑤𝑑𝑑2,𝑟𝑟,1,𝑡𝑡,𝑑𝑑 = 𝑣𝑣𝑡𝑡,𝑑𝑑
0   ∀ 𝑟𝑟 , 𝐶𝐶,𝑑𝑑    (5) 

 For any other column (∀ 𝑟𝑟, 𝑐𝑐≠1 , 𝐶𝐶,𝑑𝑑) 

𝑣𝑣𝑤𝑤d2,𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑 = 𝑣𝑣𝑤𝑤𝑑𝑑2,𝑟𝑟,𝑐𝑐−1,𝑡𝑡,𝑑𝑑 ⋅ �1 − 𝑦𝑦𝑟𝑟,𝑐𝑐
𝑏𝑏 ⋅ W𝑊𝑊(𝑥𝑥)�     (6) 

The binary variable 𝑦𝑦𝑟𝑟,𝑐𝑐
𝑏𝑏  denotes if the turbine in row 

𝑟𝑟, and column 𝑐𝑐 is installed (1 if it is installed, 0 if not). 
Lastly, it is assumed that the wind only blows in one di-
rection at each time step, given by equation (6). We de-
note the parameter 𝑤𝑤𝑤𝑤𝑑𝑑,𝑡𝑡,𝑑𝑑 which has a value of 1 if the 
wind blows in direction 𝑤𝑤𝑑𝑑 at time 𝐶𝐶 of day 𝑑𝑑, and 0 if not.  

𝑣𝑣𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑
𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐 =  ∑ 𝑣𝑣𝑤𝑤𝑑𝑑,𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑𝑤𝑤𝑑𝑑 ⋅ 𝑤𝑤𝑤𝑤𝑑𝑑,𝑡𝑡,𝑑𝑑  (7) 

 
Figure 1. Wind farm layout and turbine spacing. 

Wind farm layout optimization model 
The power output of the wind turbines (𝑃𝑃𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑) was 

calculated using piecewise linear approximation of the 
power curve of a wind turbine Vestas V112-3.08, se-
lected considering the average size of wind turbine used 
in the market [18]. Figure 2 shows the results of the line-
arization done. Regarding the operation of the wind farm, 
the turbines only produce energy if they are installed. 

𝑃𝑃𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑 ≤ 𝑀𝑀 ⋅ 𝑦𝑦𝑟𝑟,𝑐𝑐
𝑏𝑏  ∀ 𝑟𝑟, 𝑐𝑐 , 𝐶𝐶,𝑑𝑑   (8) 

𝑃𝑃𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑 ≤ 𝑃𝑃𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑
𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐�𝑣𝑣𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑

𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐�  ∀ 𝑟𝑟, 𝑐𝑐 , 𝐶𝐶,𝑑𝑑  (9) 

The area used by each turbine is considered to be a 
rectangle corresponding to the shaded area in Figure 1, 
and the total area available is limited (Equation 10 and 11).  

𝐴𝐴 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 ⋅ 𝑥𝑥 ⋅ 𝑦𝑦    (10) 

𝐴𝐴 ≤ 𝐴𝐴𝑛𝑛𝑚𝑚𝑚𝑚     (11) 

Two objective functions are considered in this 
study: minimization of annual costs, and maximization of 
the annual energy produced. The annual costs (𝐴𝐴𝐶𝐶) in-
clude the annual investment costs (𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖) and the annual 
operation and maintenance costs (𝐶𝐶𝑂𝑂𝑂𝑂), as expressed by 
equations (12).  

𝐴𝐴𝐶𝐶 = 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑂𝑂𝑂𝑂     (12) 

The initial investment costs (𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖
𝑐𝑐𝑚𝑚𝑐𝑐) are converted into 

annual investment cost per capacity using the Capital Re-
covery Factor (CRF) [19], defined as 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐷𝐷
1−(1+𝐷𝐷)−𝐿𝐿

     (13) 

, where 𝐷𝐷 in the interest rate and 𝑊𝑊 the lifetime of the 
wind turbines. In this study, an interest rate of 7% and a 
lifetime of 30 years were assumed [20]. The annual in-
vestment and operation and maintenance costs can be 
expressed by equations (14) and (15), respectively. 

𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖 = Ntot ⋅ 𝑃𝑃𝑖𝑖𝑡𝑡𝑛𝑛 ⋅ 𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖
𝑐𝑐𝑚𝑚𝑐𝑐 ⋅ CRF    (14) 

𝐶𝐶𝑂𝑂𝑂𝑂 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 ⋅  𝑃𝑃𝑖𝑖𝑡𝑡𝑛𝑛 ⋅ 𝐶𝐶𝑂𝑂𝑂𝑂
𝑐𝑐𝑚𝑚𝑐𝑐   (15) 

The annual energy produced (𝐴𝐴𝐴𝐴𝑃𝑃) is calculated as 
the sum of the energy produced at each hour and day 
represented by equation (16). 

𝐴𝐴𝐴𝐴𝑃𝑃 =  ∑ 𝑃𝑃𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑 ⋅ 𝑓𝑓𝑑𝑑𝑟𝑟,𝑐𝑐,𝑡𝑡,𝑑𝑑    (16) 

 , where 𝑓𝑓𝑑𝑑 is the frequency of the representative day 
𝑑𝑑. 
 

Figure 2. Power curve of the turbine Vestas V112-3.08 
[21]. 
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CASE OF STUDY 
To demonstrate the applicability of the developed 

model formulation and framework, a case study was con-
ducted to design a wind farm in Madison, Wisconsin as 
an option for energy transition in the University of Wis-
consin-Madison. The wind data used were obtained from 
the AOSS Tower located at the University of Wisconsin-
Madison [22]. A typical meteorological year was con-
structed using data from 2013 to 2023. The annual wind 
source distribution can be observed in Figure 3. There 
are two predominant wind directions: SW and NW, with 
an average wind speed of 4.8 m/s at 30 m (altimeter 
height). It is noteworthy that the wind speed is below 3 
m/s only 1% of the year (yellow label), indicating an area 
with potential for the installation of a wind farm. 

 
Figure 3. Wind speed and direction distribution in  
Madison, Wisconsin. 

The proposed model is classified as a mixed integer 
nonlinear problem (MINLP) problem, where the nonlinear 
terms are associated with the wake effect. To account 
for the variability and intermittency of the wind resource, 
and at the same time make the problem tractable, the 
year wind data was reduced to three representative days 
using hierarchical clustering. Hierarchical clustering is a 
machine learning algorithm that groups similar data 
points into nested clusters based on their proximity, 
forming a tree-like structure [23]. The three representa-
tive days selected are presented in Figure 4. Before using 
the data in the model, the wind speed inputs were ad-
justed from the measured height (𝐻𝐻𝐷𝐷) to the hub height of 
the turbine (𝐻𝐻) using equation (17) and considering a shift 
coefficient (𝛼𝛼) of 0.14 [21]. The model was implemented 
in GAMS [24] and solved using the BARON solver [25].  

𝑣𝑣𝑡𝑡,𝑑𝑑
o = 𝑣𝑣𝑡𝑡,𝑑𝑑

𝑛𝑛 ⋅ �𝐻𝐻
𝐻𝐻𝑖𝑖
�
𝛼𝛼

 ∀ 𝐶𝐶,𝑑𝑑   (17) 

Figure 4. Representative days for wind speed using 
hierarchical clustering. 

RESULTS & DISCUSSION 
In this study, we approached the problem by exam-

ining one and two wind directions (𝑤𝑤𝑑𝑑1and 𝑤𝑤𝑑𝑑2) for up to 
nine wind turbines. Figure 5 presents the results for min-
imizing annual costs and maximizing yearly energy pro-
duction. Utilizing costs as the primary design criterion for 
a wind farm may not be ideal, as it does not optimize tur-
bine placement and overall area utilization, consequently 
reducing the energy output. The findings reveal a poten-
tial reduction in energy production of up to 13% for iden-
tical-capacity wind farms when costs are minimized com-
pared to the maximization of energy production. Maxim-
izing energy output appears more effective in optimizing 
the wind farm layout, as it reduces energy losses. How-
ever, it is essential to evaluate the land area used. The 
model tends to position turbines further apart to maxim-
ize energy, which might require a more extensive area. 
Figure 6 illustrates different arrangements leading to var-
ying energy production for the installation of six turbines 
for reference. In both cases, the annual costs are the 
same, but the configurations differ. Minimizing costs re-
sults in layouts with more closely spaced rows and a 
higher number of rows, increasing wake effect energy 
losses. On the other hand, maximizing energy production 
leads to a larger distance between turbines, utilizing 
more land. 

Figure 5. Annual energy produced considering the mini-
mization of annual costs and maximization of energy pro-
duced. 
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Figure 6. Layout of installing 6 wind turbines considering 
a) minimization of annual costs b) maximization of annual 
energy production. 

 Figure 7 compares energy production when con-
sidering the model with one or two wind directions and 
using Patel’s rule of thumb. The findings indicate that ad-
hering to the rule of thumb for turbine placement could 
lead to lower energy production; therefore, optimizing 
the layout is a crucial aspect of wind farms and should be 
evaluated during design. Considering only the predomi-
nant wind direction, i.e., one direction, could lead to over-
estimating energy production, which can affect the pro-
ject’s financial aspects. Taking into consideration multiple 
wind directions represents the system more accurately, 
as the wind blows in multiple directions in many locations.  

A sensitivity analysis was conducted regarding the 
land area available. The results, depicted in Figure 8, in-
dicate that the model is sensitive to this value. It is im-
portant to note, that in practical scenarios, the land avail-
ability will be either already bought or modifying the ex-
isting land may involve associated costs or logistical con-
straints, imposing limitation for its modification. Consid-
ering an unlimited area can lead to an overestimated en-
ergy production by up to 15%, according to the model de-
veloped. Moreover, assuming an unlimited or vast area 
suggests a linear relationship between capacity and en-
ergy produced, neglecting wake effects and energy 
losses. As the number of turbines increases, so does the 
wake effect, resulting in a nonlinear increase in energy 
production. 

 
Figure 7. Annual energy production considering different 
number of wind speed directions and distances between 
turbines. 

 
Figure 8. Annual energy produced considering different 
values for land area available. 

CONCLUSION  
This study introduced a comprehensive optimiza-

tion framework to design an optimal layout for a wind 
farm, accounting for the wake effect in various directions. 
The energy system was formulated as a MINLP problem 
with two objective functions: minimizing annual costs and 
maximizing energy production, showing a difference of 
up to 13% in the energy produced between both criteria. 
The results indicate that considering only the predomi-
nant wind direction could lead to an overestimation of the 
energy produced. The model was solved using up to two 
wind directions, but future work should extend this to 
evaluate the ideal number of wind directions to consider 
when designing wind farms in different locations, consid-
ering solving time and model accuracy. Additionally, cop-
ing with the uncertainties associated with wind farm pa-
rameters is an important area for future work. The follow-
ing steps for this work will also focus on extending the 
analysis to higher wind farm capacities and evaluate ex-
treme weather scenarios to refine the model's accuracy 
and applicability. 
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ABSTRACT 
The synthesis of energy systems necessitates simultaneous optimization of both design and op-
eration across all components within the energy system. In real-world applications, this synthesis 
poses a mixed-integer nonlinear programming (MINLP) problem, considering nonlinear behaviours 
such as investment cost curves and part-load performance. The complexity increases further 
when seasonal energy storage is involved, as it requires temporal coupling of the full time series. 
Although numerous solution approaches exist to solve the synthesis problems simplified by line-
arization, methods for solving a full-scale problem are currently missing. In this work, we introduce 
a rigorous method, RiNSES4, to manage the nonlinear aspects of energy system synthesis, partic-
ularly focusing on long-term time-coupling constraints. RiNSES4 calculates the upper and lower 
bounds of the initial synthesis problem in two separate branches. The proposed method yields 
feasible solutions through upper bounds, while evaluating the solution quality via lower bounds. 
The solution quality is iteratively enhanced by increasing the resolution for calculating upper 
bounds and tightening the relaxations for computing lower bounds. Both branches work simulta-
neously and independently, with their outcomes compared after each iteration within each branch. 
The iterations continue until a predefined optimality gap is reached. We apply RiNSES4 to design 
a photovoltaic and battery energy system, considering the seasonality of both energy supply and 
demand sides. In comparison with a state-of-the-art commercial solver, RiNSES4 enables to solve 
the MINLP synthesis problem with great temporal detail and shows high potential. 

Keywords: Mixed-integer nonlinear programming, time series aggregation, linearization, decomposition, re-
laxation

1. INTRODUCTION
Mathematical modeling and optimization can aid in

identifying the optimal design and operation of energy 
systems, spanning from industrial to international scale. 
The synthesis problem of an energy system necessitates 
simultaneous optimization of both design and operation, 
across all components within the energy system [1]. At 
the design level, the types and sizes of energy system 
components are determined. At the operation level, de-
cisions are made regarding the on/off status and load al-
locations for each time step. In general, the synthesis 
poses a mixed-integer nonlinear programming (MINLP) 
problem, taking into account nonlinear behaviors such as 
investment cost curves at the design level and part-load 

performance at the operation level [2]. However, solving 
an MINLP problem is generally challenging due to its in-
trinsic complexity. The complexity increases further 
when incorporating seasonal energy supply and storage, 
as it requires extensive temporal data input as well as 
temporal coupling of the full time series [3].  

In the literature, energy system modelers adopt var-
ious approaches to address synthesis problems, aiming 
to achieve computationally tractable results. Kotzur et al. 
[4] applied time series aggregation methods to efficiently
reduce the size of synthesis problems. Gabrielli et al. [5]
and Kotzur et al. [6] further proposed alternative model-
ing approaches to reduce the complexity of synthesis
problems from the temporal coupling aspects. However,
such approaches only yield solutions for a simplified

https://doi.org/10.69997/sct.105466
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version of the synthesis problem. 
To tackle the synthesis problem employing the full 

time series, Baumgärtner et al. [7] developed the RiSES4 
method. The method is designed to solve the linear syn-
thesis of energy systems with seasonal storage, ensuring 
a solution with known quality. RiSES4 integrates time se-
ries aggregation [8] with superposition seasonal storage 
modeling [6] in the synthesis problem, and subsequently 
solve an operational optimization problem with full time 
series directly through commercial solvers. RiSES4 em-
ploys a rigorous method [9] for measuring the quality of 
the resulting solutions. In cases where the resulting op-
erational optimization problems remain computationally 
challenging, a decomposition-based method, DeLoop, 
proposed by Baumgärtner et al. [10], could be potentially 
incorporated to more effectively address the long-term 
operational optimization of energy systems. RiSES4 has 
been applied to design an industrial energy system using 
a mixed-integer linear programming (MILP) formulation, 
as well as a national energy system using a linear pro-
gramming (LP) formulation, demonstrating promising 
performance [7].   

Nevertheless, the application of RiSES4 is limited to 
linear synthesis problems. The nonlinear nature of an en-
ergy system’s synthesis is neglected in advance. As a re-
sult, the solution obtained for the linearized problem 
might be infeasible for the initial nonlinear synthesis 
problem.  

1.1. Contribution of this work 

In this work, we propose the RiNSES4 method, an 
extension of the RiSES4 method, specifically designed to 
address the nonlinear aspects of energy system synthe-
sis. 

Similar to the RiSES4 method, RiNSES4 inde-
pendently computes the upper and lower bounds of a 
synthesis problem, but with an MINLP formulation. For 
calculating the upper bounds, building upon RiSES4, we 
use a linearized problem with aggregated time series to 
find design candidates. These design candidates are 
then fixed, and the initial MINLP problem is solved as an 
operational optimization problem to obtain a feasible so-
lution, thereby establishing an upper bound for the initial 
problem. For computing the lower bounds, we relax vari-
ous constraints within the synthesis problem to acceler-
ate computation. We iteratively improve the solution 
quality by increasing the resolution for calculating upper 
bounds and tightening the relaxation for computing lower 
bounds. To assess the performance of the proposed 
method, we apply RiNSES4 to design an energy system 
including photovoltaic panels and a battery for seasonal 
energy supply and storage. 

The structure of this paper is as follows: Section 2 
explicates the problem statement and the RiNSES4 
method. In Section 3, the proposed method is applied to 
a case study. Section 4 concludes the work. 

2. METHOD

2.1. General MINLP formulation

min
�̇�𝐸𝑘𝑘
N,𝐸𝐸𝑘𝑘

N,�̇�𝐸𝑒𝑒�,𝑡𝑡
buy,�̇�𝐸𝑒𝑒�,𝑡𝑡

sell,�̇�𝐸𝑘𝑘,𝑒𝑒,𝑡𝑡
iṅ ,�̇�𝐸𝑘𝑘,𝑒𝑒,𝑡𝑡

out ,𝐸𝐸𝑘𝑘,𝑒𝑒,𝑡𝑡,𝐲𝐲,𝐳𝐳
𝑇𝑇𝑇𝑇𝑇𝑇 =

1
APVF  𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶X + 𝑂𝑂𝐶𝐶𝐶𝐶X (1a) 

Problem 1 

with 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 = � 𝐼𝐼𝑘𝑘
𝑘𝑘∈𝒦𝒦

= � 𝐼𝐼𝑘𝑘ref �
�̇�𝐶𝑘𝑘N

�̇�𝐶𝑘𝑘
N,ref�

𝑀𝑀𝑘𝑘

𝑘𝑘∈𝒦𝒦\𝒦𝒦stor

+ � 𝐼𝐼𝑘𝑘ref �
𝐶𝐶𝑘𝑘N

𝐶𝐶𝑘𝑘
N,ref�

𝑀𝑀𝑘𝑘

𝑘𝑘∈𝒦𝒦stor

(1b) 

𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶 =  � 𝑐𝑐𝑘𝑘𝑚𝑚𝐼𝐼𝑘𝑘
𝑘𝑘∈𝒦𝒦

+ �Δ𝑡𝑡𝑡𝑡
𝑡𝑡∈𝒯𝒯

� �𝑐𝑐�̃�𝑒,𝑡𝑡
buy�̇�𝐶�̃�𝑒,𝑡𝑡

buy − 𝑐𝑐�̃�𝑒,𝑡𝑡
sell�̇�𝐶�̃�𝑒,𝑡𝑡

sell�
�̃�𝑒∈ℰext

 (1c) 

s.t.
���̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡

out − �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
in �

𝑘𝑘∈𝒦𝒦

+ �̇�𝐶𝑒𝑒,𝑡𝑡
buy − �̇�𝐶𝑒𝑒,𝑡𝑡

sell = �̇�𝐶𝑒𝑒,𝑡𝑡
D

∀𝑒𝑒 ∈ ℰ,∀𝑡𝑡 ∈ 𝒯𝒯 
(1d) 

𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡�1 − 𝜂𝜂𝑘𝑘,𝑒𝑒
selfΔ𝑡𝑡𝑡𝑡� + Δ𝑡𝑡𝑡𝑡 �𝜂𝜂𝑘𝑘,𝑒𝑒

in �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
in −

�̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
out

𝜂𝜂𝑘𝑘,𝑒𝑒
out � = 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡+1 ∀𝑘𝑘 ∈ 𝒦𝒦sto,∀𝑡𝑡 ∈ 𝒯𝒯 

(1e) 

𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡=1 = 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡=|𝒯𝒯|+1  ∀𝑘𝑘 ∈ 𝒦𝒦sto (1f) 

𝐠𝐠��̇�𝐶𝑘𝑘𝑁𝑁 ,𝐶𝐶𝑘𝑘𝑁𝑁 ,𝐲𝐲, 𝐳𝐳� ≤ 0 ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑒𝑒 ∈ ℰ (1g) 

𝐡𝐡 ��̇�𝐶𝑘𝑘𝑁𝑁,𝐶𝐶𝑘𝑘𝑁𝑁 , �̇�𝐶𝑒𝑒,𝑡𝑡
buy, �̇�𝐶𝑒𝑒,𝑡𝑡

sell, �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
in , �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡

out ,𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡 , 𝐲𝐲, 𝐳𝐳� ≤ 0 ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑒𝑒 ∈ ℰ,∀𝑡𝑡 ∈ 𝒯𝒯 (1h) 

�̇�𝐶𝑘𝑘𝑁𝑁 ,𝐶𝐶𝑘𝑘𝑁𝑁 , �̇�𝐶𝑒𝑒,𝑡𝑡
buy, �̇�𝐶𝑒𝑒,𝑡𝑡

sell, �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
in , �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡

out ,𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡 ∈ ℝ+ ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑒𝑒 ∈ ℰ,∀𝑡𝑡 ∈ 𝒯𝒯 (1i) 

𝐲𝐲 ∈ 𝑅𝑅𝑁𝑁𝑦𝑦 , 𝐳𝐳 ∈ {0,1}𝑁𝑁𝑧𝑧 ∀𝑘𝑘 ∈ 𝒦𝒦,∀𝑒𝑒 ∈ ℰ,∀𝑡𝑡 ∈ 𝒯𝒯 (1j) 
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In Problem 1, we state the generic synthesis prob-
lem of an energy system using an MINLP formulation. To 
start with, we assign all components inside the energy 
system (𝑘𝑘 ∈ 𝒦𝒦) to two categories: storage components 
(𝑘𝑘 ∈ 𝒦𝒦sto) and conversion components (𝑘𝑘 ∈ 𝒦𝒦\𝒦𝒦stor). 
Storage components transport products (𝑒𝑒 ∈ ℰ) from one 
time step to other time steps (𝑡𝑡 ∈ 𝒯𝒯), while conversion 
components convert one product to any other prod-
uct(s). Additionally, the category “exogenous inputs” in-
dicates that the energy system is connected with exog-
enous energy supply (�̃�𝑒 ∈ ℰext ⊆ ℰ) and demand (�̇�𝐶𝑒𝑒,𝑡𝑡

D ).  
We minimize the total annualized costs 𝑇𝑇𝑇𝑇𝑇𝑇 that 

consists of the capital and operational expenditures, 
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶 (Equation (1a)). The annualized present 
value factor is defined as APVF = (1+i)n−1

(1+i)n⋅i
 with the interest 

rate 𝑖𝑖 and the number of periods 𝑛𝑛. 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 is the sum of 
the investment costs of all energy system components, 
which follow the capacity power law (Equation (1b)). The 
investment costs 𝐼𝐼𝑘𝑘 of the component 𝑘𝑘 are defined as 
the reference cost 𝐼𝐼𝑘𝑘ref multiplied by the ratio of the nom-
inal size �̇�𝐶𝑘𝑘N or 𝐶𝐶𝑘𝑘N and a reference value �̇�𝐶𝑘𝑘

N,ref or 𝐶𝐶𝑘𝑘
N,ref to 

the power of 𝑀𝑀𝑘𝑘 ≤ 1. Please note that the indicators for 
conversion and storage components differ in their re-
spective units. 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶 are defined as the sum of mainte-
nance costs and external energy costs of each time step, 
where 𝑐𝑐𝑘𝑘𝑚𝑚, 𝑐𝑐�̃�𝑒,𝑡𝑡

buy and 𝑐𝑐�̃�𝑒,𝑡𝑡
sell indicate a maintenance factor, and 

external energy buying and selling prices, respectively 
(Equation (1c)). Δ𝑡𝑡𝑡𝑡 represents the length of time step 𝑡𝑡. 

Given the input time series, the designed energy 
system needs to fulfill the energy demands for each time 
step through energy conversion or by purchasing energy 
from external energy supplies (Equation (1d)). Here, �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡

in  

and �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
out  denote the input and output flows, respectively, 

of product 𝑒𝑒 at time step 𝑡𝑡 for component 𝑘𝑘. The state of 
charge 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡+1 of a storage component 𝑘𝑘 at the time step 
𝑡𝑡 + 1 depends on its’ state of charge 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡 at time step 𝑡𝑡 
and the product input and output flow at the time step 𝑡𝑡, 
considering the efficiencies of self-discharge 𝜂𝜂𝑘𝑘,𝑒𝑒

self, charg-
ing 𝜂𝜂𝑘𝑘,𝑒𝑒

in  and discharging 𝜂𝜂𝑘𝑘,𝑒𝑒
out (Equation (1e)). The so-

called cycling constraint ensures that the product is con-
served (Equation (1f)).  All other constraints are concisely 
encapsulated in Equations (1g) and (1h), including the 
part-load performance of each conversion component. 
All decision variables and their respective bounds are 
summarized in Equations (1i) and (1j). The surrogate vec-
tors 𝒚𝒚 and 𝒛𝒛 represent other decision variables that are 
not specified here, encompassing investment decisions 
and on/off decisions for each energy system component. 

In addressing both the design and operation levels 
of an energy system synthesis problem, we utilize the in-
dex 𝑡𝑡 to differentiate between design variables (without 
the index 𝑡𝑡) and operation variables (with the index 𝑡𝑡). 
This distinction also extends to constraints: design con-
straints, which are independent of the number of time 
steps, and operation constraints, which recur at each 
time step. This distinction is crucial for the method we 
propose in the following section.  

2.2. RiNSES4 Method 
The proposed RiNSES4 method solves Problem 1 

with the full time series. As depicted in Figure 1, RiNSES4 
handles the initial MINLP problem in two separate 
branches to compute the upper (illustrated as the green 
segment in Figure 1) and lower bounds (shown as the 
blue segment in Figure 1) of the MINLP probem, 

Figure 1: RiNSES4 - Rigorous Nonlinear Synthesis of Energy Systems for Seasonal Energy Supply and Storage. 
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respectively. Both branches incorporate independent 
iterations (represented by the red segment in Figure 1) to 
improve the solution quality. 
 The upper bounds (UBs) are feasible solutions to the 
MINLP Problem. To calculate an upper bound for Problem 
1, we use four distinct techniques: linearizaton (L), time-
series aggregation (A), superposition storage modeling 
(S) and decomposition (D). The tetrad of techniques is 
collectively referred to as the LASD branch. A detailed 
description of the LASD branch is provided in Section 
2.2.1. The quality of the optimal solution derived from the 
LASD branch is evaluated using lower bounds (LBs). The 
lower bounds for Problem 1 are computed via a two-
stage relaxation (R) process, named as the RR branch. A 
detailed discussion of the RR branch is provided in 
Section 2.2.2. After each iteration, RiNSES4 compares the 
current UB and LB to calculate the current optimality gap 
𝜀𝜀, as described in detail in Section 2.2.3. We iteratively 
improve the solution quality by increasing the resolution 
for calculating UBs and tightening the relaxations for 
computing LBs. The two branches work simultaneously 
and individually from each other. The RiNSES4 method 
terminates if a predefined optimality gap 𝜀𝜀𝑅𝑅 is reached.  

2.2.1. Calculating the upper bounds in LASD 
branch  

In the LASD branch, feasible solutions (upper 
bounds) of the initial synthesis, Problem 1, are calculated 
based on four steps, as represented in the green seg-
ment in Figure 1: We first simplify the synthesis problem 
in steps (a) and (b) to obtain values for the design varia-
bles in step (c). Then, we validate the feasibility of the 
design variables in an operational optimization problem 
with the full time series and all nonlinearities in step (d). 
To efficiently solve the resulting MINLP operational prob-
lem, a decomposition approach can be applied in step (d). 
If there is a feasible solution to the operational optimiza-
tion problem, the solution is also a feasible solution to 
Problem 1 and, thus, an upper bound (UB) for Problem 1. 

In step (a), we first linearize nonlinearities of the in-
itial MINLP problem to obtain an MILP formulation. The 
nonlinearities include investment cost curves, as shown 
in Equation (1b), and nonlinear part-load performance, as 
outlined in Equation (1h). The linearization is based on the 
non-separable piecewise-linear optimization approach 
proposed by Vielma et al. [11], which can be readily inte-
grated using a Python package [12]. Through lineariza-
tion, we simplify the complexity of the nonlinear con-
straints. However, the linearization results in an increase 
in the number of the binary decision variables in the re-
sulting MILP problem, potentially leading to longer com-
puting time. 

Therefore, in step (b), we further simplify the syn-
thesis problem through time series aggregation to reduce 
the size of exogenous inputs. As explained in [8] and in 

[9], the initial input time series 𝒯𝒯, consisting of 𝑁𝑁𝑡𝑡 time 
steps, is divided into 𝑁𝑁𝑘𝑘 periods 𝒫𝒫 with 𝑁𝑁𝑗𝑗 time steps in 
each period, where 𝑁𝑁𝑘𝑘  =  𝑁𝑁𝑡𝑡/𝑁𝑁𝑗𝑗. Through time series ag-
gregation, 𝑁𝑁𝑘𝑘 and 𝑁𝑁𝑗𝑗 are aggregated to 𝑁𝑁𝑘𝑘′  typical periods 
𝐶𝐶′ with 𝑁𝑁𝑗𝑗′ segments in each typical period, i.e., the num-
ber of time steps is reduced to 𝑁𝑁𝑘𝑘′  ×  𝑁𝑁𝑗𝑗′, which is signifi-
cantly smaller than 𝑁𝑁𝑡𝑡. In this work, we employ the tsam 
Python package [13] for aggregating time-series data, 
taking advantage of its various available aggregation ap-
proaches. Kotzur et. al [4] analyzed the impact of various 
aggregation approaches on their optimization results, re-
vealing that the choice of the aggregation approach had 
only minor impacts. In our study, we hence adopt the k-
mean aggregation, a prevalent approach in energy sys-
tem optimization, for time series aggregation.  

 
Figure 2: Overview of the superposition storage 
modeling. The figure is adapted from Kotzur et al. [6]. 

Upon completing steps (a) and (b), we derive a sim-
plified synthesis problem in step (c). Here, to consider 
product transport on a seasonal scale, we adopt the su-
perposition storage modeling approach, initially intro-
duced by Kotzur et al. [6] and also implemented in RiSES4 
[7]. In our work, we extend the model by incorporating 
typical segments. Figure 2 illustrates the basic principles 
of this superposition modeling approach.  

In step (c), the state of charge associated with the 
initial input time series 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡 (𝑡𝑡 ∈ 𝒯𝒯), illustrated in the top 
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part of Figure 2, is replaced with the state of charge for 
the aggregated time series 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡′ (𝑡𝑡′ ∈ 𝒯𝒯′), shown in the 
middle part of Figure 2. The superposition modeling ap-
proach decomposes 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡′ (in green) into two parts: the 
intra-period state of charge 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑗𝑗

intra (𝑗𝑗 ∈ {1, … , Nj
′}, colored 

in blue) and inter-period state of charge 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑔𝑔
inter (𝑔𝑔 ∈

{1, … , Ng
′ }, colored in orange), depicted in the bottom part 

of Figure 2. 𝐶𝐶𝑘𝑘,𝑒𝑒,j
intra describes the storage behavior within 

the typical periods, whereas 𝐶𝐶𝑘𝑘,𝑒𝑒,g
inter represents the storage 

behavior between these periods. The relationships 𝑗𝑗 =
j(𝑡𝑡′) and 𝑔𝑔 = g(𝑡𝑡′) denote the corresponding values of 𝑗𝑗 
and 𝑔𝑔 associated with the time step 𝑡𝑡′.  

Please note that in superposition storage modeling, 
the sequence of time steps is of paramount importance. 
Therefore, we use the symbol 𝑁𝑁𝑔𝑔′  to denote the typical 
periods, rather than 𝑁𝑁𝑘𝑘′  mentioned earlier. The key differ-
ence between 𝑁𝑁𝑔𝑔′  and 𝑁𝑁𝑘𝑘′  is that  𝑁𝑁𝑔𝑔′  encompasses the se-
quence of occurrence of typical periods, and, thus, has 
the same size as the periods 𝒫𝒫 previously described. For 
an in-depth explanation of superposition storage model-
ing approach, please refer to references [6, 7]. 
 As a consequence, for the exogenous inputs, the in-
itial full time series 𝒯𝒯 with 𝑁𝑁𝑡𝑡 time steps is reduced to the 
aggregated time series 𝒯𝒯′ with 𝑁𝑁𝑔𝑔′ × 𝑁𝑁𝑗𝑗′ time steps. In the 
following, we refer to the linearized and aggregated syn-
thesis problem with superposition storage modeling as 
Problem 2. In Problem 2, Equations (2a) to (2d) are ap-
plied as operation constraints for all storage components, 
replacing the constraints (1e) and (1f). 
𝐶𝐶𝑘𝑘,𝑒𝑒,j+1
intra − 𝐶𝐶𝑘𝑘,𝑒𝑒,j

intra

∆𝑡𝑡𝑗𝑗
=  −𝜂𝜂𝑘𝑘,𝑒𝑒

self𝐶𝐶𝑘𝑘,𝑒𝑒,j
intra

+  Δ𝑡𝑡𝑗𝑗 �𝜂𝜂𝑘𝑘,𝑒𝑒
in �̇�𝐶𝑘𝑘,𝑒𝑒,𝑗𝑗

in −
�̇�𝐶𝑘𝑘,𝑒𝑒,𝑗𝑗

out

𝜂𝜂𝑘𝑘,𝑒𝑒
out � 

(a) 

𝐶𝐶𝑘𝑘,𝑒𝑒,𝑔𝑔+1
inter =  𝐶𝐶𝑘𝑘,𝑒𝑒,𝑔𝑔

inter�1 − 𝜂𝜂𝑘𝑘,𝑒𝑒
selfΔ𝑡𝑡𝑡𝑡�

𝑁𝑁𝑗𝑗+𝐶𝐶𝑘𝑘,𝑒𝑒,𝑁𝑁𝑗𝑗
′+1 

intra   (b) 

𝐶𝐶𝑘𝑘,𝑒𝑒,1
inter = 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑁𝑁𝑔𝑔′+1

inter  (c) 

𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡′ =  𝐶𝐶𝑘𝑘,𝑒𝑒,𝑗𝑗=j(𝑡𝑡′)
intra + 𝐶𝐶𝑘𝑘,𝑒𝑒,𝑔𝑔=g(𝑡𝑡′)

inter  (d) 
Problem 2, formulated as an MILP problem with a 

small-scale input time series 𝒯𝒯′, facilitates an efficient 
solution process in step (c). Based on the results of Prob-
lem 2, we fix the design variables of the original MINLP 
synthesis problem to the solution of Problem 2, receiving 
an MINLP operational optimization problem. The resulting 
operational optimization problem with the full time series 
is a large-scale MINLP problem (Problem 3).  

In step (d), we solve the resulting Problem 3. De-
pending on its size, we first try to solve Problem 3 using 
a commercial MINLP solver. If Problem 3 cannot be 
solved within a predetermined computing time frame, we 
employ the DeLoop method, developed by Baumgärtner 
et al. [10]. DeLoop handles time-coupled long-term oper-
ational optimization problems via decomposition and par-
allel computing, and it systematically reduces the number 

of decomposed subproblems in an iterative manner. In 
the worst-case scenario, the original MINLP operational 
problem is tackled.  

If Problem 2 provides feasible design decisions for 
Problem 3, where the full time series and nonlinearities at 
the operation level is addressed, we yield an upper bound 
(UB) to the initial synthesis problem by combining the de-
sign decisions of Problem 2 and the operation decisions 
of Problem 3. However, we cannot guarantee that the de-
sign decisions identified in Problem 2 allows feasible op-
eration in Problem 3. If an infeasibility occurs, we itera-
tively repeat steps (b)-(d) with enhanced time series res-
olutions, until a feasible solution is found, or the original 
size of the input time series is applied in step (b). If no 
feasible solution could be found during aggregation, the 
resulting superposition storage modeling in step (c) are 
equivalent to Equations 1(e) and 1(f) in the original syn-
thesis problem. If all attempted steps still result in infea-
sibility, the final move is to increase the number of break-
points during linearization. As the number of breakpoints 
increases, so does the accuracy of the linearization. In 
the case of infinitely many breakpoints, the linearized 
problem closely approximates the original MINLP synthe-
sis problem. Should this scenario arise, the LASD branch 
addresses the original MINLP synthesis problem.  

With increasing time series resolution and accuracy 
of linearization, the whole LASD branch converges to the 
original MINLP synthesis problem in the worst-case sce-
nario. In practice, we observed that the iterative ap-
proach consistently identified a feasible solution before 
necessitating the use of the full-scale time series in Prob-
lem 2. Thus, this work has not yet explored the aspect of 
infinite number of breakpoints. During implementation, 
we define a maximum number of breakpoints, for exam-
ple, four. When the LASD branch reaches this maximum, 
it forcibly transitions to tackling the original MINLP syn-
thesis problem.  

2.2.2. Computing the lower bounds in RR branch 
In the RR branch, we underestimate Problem 1 using 

two-stage relaxations and obtain a relaxed synthesis 
problem. Solving the relaxed synthesis problem provides 
a lower bound, which serves as the lower bound for Prob-
lem 1, as visually represented by the blue segment in Fig-
ure 1. 

In stage (a), we employ the same time series aggre-
gation methods as those in the LASD branch, which leads 
to typical periods 𝐶𝐶′ with aggregated segments 𝑆𝑆 within 
each typical period. In each segment, we identify the 
maximal and minimal external energy demands �̇�𝐶𝑒𝑒,𝑡𝑡

D, max and 
�̇�𝐶𝑒𝑒,𝑡𝑡

D, min for each energy form (∀𝑒𝑒 ∈ ℰ). Subsequently, we 
relax the constraints by replacing Equation (1d) with 
Equations (3a) and (3b). Please note that, unlike the 
LASD branch, we maintain the initial size and sequence 
of the input time series 𝒯𝒯 in this stage. The number of 
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decision variables of the synthesis problem therefore re-
mains unchanged, only the solution space is larger. 

���̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
out − �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡

in �
𝑘𝑘∈𝒦𝒦

+ �̇�𝐶𝑒𝑒,𝑡𝑡
buy − �̇�𝐶𝑒𝑒,𝑡𝑡

sell ≤ �̇�𝐶𝑒𝑒,𝑡𝑡
D,max (a) 

���̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
out − �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡

in �
𝑘𝑘∈𝒦𝒦

+ �̇�𝐶𝑒𝑒,𝑡𝑡
buy − �̇�𝐶𝑒𝑒,𝑡𝑡

sell ≥ �̇�𝐶𝑒𝑒,𝑡𝑡
D,min (b) 

In stage (b), we further underestimate Problem 1 by 
relaxing the constraints associated with the storage 
components. We replace Equations (1e) and (1f) with 
Equations (4a) and (4b) for each time step (∀𝑡𝑡 ∈ 𝒯𝒯), which 
effectively decouples the constraints between two adja-
cent time steps. We refer to the resulting large-scale 
MINLP problem as Problem 4, which we solve directly us-
ing an MINLP solver. Upon solving Problem 4, its lower 
bound is a lower bound to the initial synthesis problem 
(Problem 1). 

𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡�1 − 𝜂𝜂𝑘𝑘,𝑒𝑒
selfΔ𝑡𝑡𝑡𝑡� + Δ𝑡𝑡𝑡𝑡 �𝜂𝜂𝑘𝑘,𝑒𝑒

in �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
in −

�̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
out

𝜂𝜂𝑘𝑘,𝑒𝑒
out � ≥ 0 (a) 

𝐶𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡�1 − 𝜂𝜂𝑘𝑘,𝑒𝑒
selfΔ𝑡𝑡𝑡𝑡� + Δ𝑡𝑡𝑡𝑡 �𝜂𝜂𝑘𝑘,𝑒𝑒

in �̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
in −

�̇�𝐶𝑘𝑘,𝑒𝑒,𝑡𝑡
out

𝜂𝜂𝑘𝑘,𝑒𝑒
out � ≤ 𝐶𝐶𝑘𝑘𝑁𝑁 (b) 

In the RR branch, we expand the solution space by 
relaxing different constraints of Problem 1, potentially re-
sulting in an increased computing time for Problem 4. 
Consequently, we employ computing time as an addi-
tional termination criterion, and adopt the lower bound of 
Problem 4 as the lower bound for Problem 1. If Problem 4 
is infeasible, the RR branch proceeds to the next iteration. 

For new iterations, we gradually revert the relaxa-
tions: starting with step (b) for each storage component, 
followed by step (a) for each energy balance equation. 
This sequential tightening of underestimation continues 
until, in the worst-case scenario, the original synthesis 
problem is fully addressed. 

2.2.3. Optimality gap and Iteration  
Finally, as marked by the red segment in Figure 1, 

we compare the best resulting lower and upper bounds 
obtained using Equation (5) and verify whether the pre-
defined optimality gap 𝜀𝜀R is satisfied: 

𝜀𝜀 =
𝑇𝑇𝑇𝑇𝑇𝑇UB − 𝑇𝑇𝑇𝑇𝑇𝑇LB

𝑇𝑇𝑇𝑇𝑇𝑇UB ≤ 𝜀𝜀R 
() 

 RiNSES4 identifies global optimal solutions for the 
initial MINLP synthesis problem (Problem 1), 𝑇𝑇𝑇𝑇𝑇𝑇UB, with 
a known quality 𝑇𝑇𝑇𝑇𝑇𝑇LB. It assesses the progress by com-
paring the current optimality gap 𝜀𝜀 against the required 
optimality gap 𝜀𝜀R. RiNSES4 solves Problem 1 in the LASD 

branch and the RR branch with different levels of simpli-
fication. If the achieved optimality gap 𝜀𝜀 fails to meet the 
required optimality gap 𝜀𝜀R, new iterations are triggered in 
both branches.  
 In the LASD branch, we enhance the time step res-
olution for time series aggregation in step (b) and, poten-
tially, the number of breakpoints for linearization in step 
(a). Should Problem 2 or Problem 3 exhibit infeasibility, 
the computing process proceeds directly to the next it-
eration. In the RR branch, we undo the relaxations grad-
ually, first for storage components in step (b), then for 
energy balance equations in step (a). Should Problem 4 
encounter infeasibility, the computing process proceeds 
directly to the next iteration.  
 The iterations stop as soon as the required optimal-
ity gap 𝜀𝜀𝑅𝑅 is reached. The current best upper bound is a 
feasible solution to the initial nonlinear synthesis prob-
lem, Problem 1, with known quality. Since both the LASD 
and RR branches converge to the original MINLP problem 
in the worst-case scenario, the RiNSES4 method guaran-
tees the convergence to the initial MINLP synthesis prob-
lem (Problem 1). 

3. CASE STUDY 

3.1. Set-up  

 
Figure 3: Structure of a PV-BAT energy system. 

To evaluate the effectiveness of the proposed 
method, we apply RiNSES4 to design a small energy sys-
tem for seasonal energy supply and storage. We compare 
the method to an MINLP commercial solver. Thus, we 
choose a system small enough to be solvable by the 
MINLP commercial solver as well. As depicted in Figure 
3, the energy system includes a conversion component 
(photovoltaic panels, PV), a storage component (battery, 
BAT), and three exogenous data inputs (weather, elec-
tricity selling price and demand). The renewable electric-
ity generated by photovoltaic panels can be directly used 

Table 1: Model parameters of the case study for the energy system components at the design level. The energy 
system components include photovoltaic panels (PVs) and a battery (BAT). 

𝒌𝒌 ∈ 𝓚𝓚 𝑰𝑰𝒌𝒌𝐫𝐫𝐫𝐫𝐫𝐫 �̇�𝑬𝒌𝒌
𝐍𝐍,𝐫𝐫𝐫𝐫𝐫𝐫 𝑴𝑴𝒌𝒌 𝒄𝒄𝒌𝒌𝒎𝒎 �̇�𝑬𝒌𝒌𝑵𝑵 

PVs   𝑘𝑘𝑊𝑊el   [100, 20000] in 𝑘𝑘𝑊𝑊el 
 𝑰𝑰𝒌𝒌𝐫𝐫𝐫𝐫𝐫𝐫 𝑬𝑬𝒌𝒌

𝐍𝐍,𝐫𝐫𝐫𝐫𝐫𝐫   𝑬𝑬𝒌𝒌𝑵𝑵 
BAT   𝑘𝑘𝑊𝑊ℎel   [40, 600000] in 𝑘𝑘𝑊𝑊ℎel 
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to fulfill the electricity demand, stored in a battery, or fed 
into the electricity grid. 

In the case study, we assume an interest rate 𝑖𝑖 =
 8% and an investment period 𝑛𝑛 of 10 years to calculate 
the annualized present value factor. The model parame-
ters and the nominal size bounds at the design level are 
from the literature [14] and summarized in Table 1. For 
details on the model at the operation level and input time 
series, please refer to our previous work [15]. Please note 
that this work adopts a 4-hour resolution, representing 
the average values derived from every four time steps of 
the input time series used in our previous research [15]. 
Additionally, electricity selling prices here are based on 
the electricity buying prices cited in literature [15] .  

We set the predefined optimality gap 𝜀𝜀R to 5%. All 
resulting MILP problems are solved by the commercial 
solver Gurobi [16] with an optimality gap of 1%, whereas 
all MINLP problems are handled using the commercial 
solver BARON 22.11.3 [17] with an optimality gap of 0.2%. 
We model the energy system on the COMANDO platform 
[12] using Python 3.8. All computational tasks are carried 
out on Intel® Xeon® W-2155 processors with 3.3GHz and 
128 GB RAM.   

3.2. Results and discussion 
The initial synthesis problem of the energy system 

contains 26,284 constraints and 17,524 decision varia-
bles. We address this synthesis problem with two solu-
tion approaches:  

• Using the state-of-the-art MINLP global solver, 
BARON 22.11.3 [17], and 

• Implementing our proposed method RiNSES4. 
Figure 4 shows the results, illustrating the compu-

ting times for the upper and lower bounds of both, 
RiNSES4 (blue lines) and BARON (green lines). The black 
dotted line represents the global optimal solution to the 
MINLP problem. Additionally, as explained in Section 2, 
the RiNSES4 method independently calculates the upper 
and lower bounds, resulting in varying computing times 
for each. 

In our case study, RiNSES4 finds the first feasible so-
lution within 150 seconds, which is nearly 20 times faster 
than BARON (2844 seconds). In addition, the initial feasi-
ble solution of RiNSES4 is of high quality, closely ap-
proaching the optimal solution, in contrast to that of 
BARON. When comparing the upper bounds with the op-
timal solution, the relative error of the first feasible solu-
tion of RiNSES4 is already within the predefined optimality 
gap 𝜀𝜀R 5%. 
 In terms of the lower bounds, RiNSES4 calculates the 
initial lower bound in 1444 seconds, which is twice as fast 
as BARON (2844 seconds). However, the initial lower 
bounds of both methods are significantly distant from the 
optimal solution. While BARON improves its lower bound 
in 2885 seconds, RiNSES4 requires considerably more 

time, achieving a better lower bound in 6649 seconds. 
The solver BARON achieves the predefined solution 

quality in 6518s, with an optimality gap of 2.59%, whereas 
RiNSES4 needs a slightly longer computing time of 6649s 
to reach an optimality gap of 4.97%. This is due to the 
slower improvement of lower bounds in the RR branch. 
All in all, RiNSES4 can find good feasible solutions to 
MINLP energy system synthesis problems faster than the 
state-of-the-art solver BARON, even if the proof of opti-
mality takes longer for the regarded case study.  

 
Figure 4: Lower and upper bounds of RiNSES4 and 
BARON as function of the computing time for designing a 
PV-BAT energy system. 

4. CONCLUSION  
The synthesis of energy systems for seasonal en-

ergy supply and storage initially results in large-scale 
MINLP problems, which are computationally challenging 
and often simplified and reformulated as (MI)LP problems 
to enhance computational tractability.  

This work introduces the RiNSES4 method, specifi-
cally designed to address nonlinearity in energy system 
synthesis. RiNSES4 features two separate branches to 
under- and overestimate the initial MINLP problem simul-
taneously and independently. The method provides fea-
sible solutions by upper bounds, which involve lineariza-
tion, aggregation, superposition storage modeling and 
decomposition. For computing lower bounds, which are 
crucial for assessing solution quality, two-stage relaxa-
tions are utilized.  

RiNSES4 is applied to design a photovoltaic and bat-
tery energy system, with the results evaluated in compu-
tational studies. In comparison to the commercial solver 
BARON, the proposed RiNSES4 method finds the initial 
optimal solution very quickly, albeit with a higher optimal-
ity gap.  
 The RiNSES4 method is generally applicable to two-
stage, time-dependent synthesis problems with coupling 
decision variables and constraints in complex energy 
systems. However, the method’s approach for computing 
lower bounds, which relies on two-stage relaxations, 
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requires further enhancement. One potential enhance-
ment could involve integrating nonlinear relaxation into 
the RR branch. This integration could help to effectively 
underestimate the nonlinear constraints and reduce 
computing time by solving MILP formulations within the 
RR branch. Overall, the foundational design and adapta-
bility of RiNSES4 render it a promising tool for advancing 
the field of nonlinear synthesis of energy systems for 
seasonal energy supply and storage. 

DIGITAL SUPPLEMENTARY MATERIAL 
 The digital supplementary material of this work can 
be found in a Git repository: https://git-ce.rwth-aa-
chen.de/ltt/ptg-es4.  
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ABSTRACT 
This study delves into the development and examination of various mathematical models for con-
ventional steam-methane reforming (SMR) reactors, establishing a foundational basis for an elec-
trified SMR reactor design. Distinct mathematical models with different scales and dimensions are 
derived. A basic 1D-fluid, 0D-catalyst (1D-0D) pseudo-homogeneous model is validated with plant 
data, and progressively advanced to a 2D-0D model considering radial transfer, then further ex-
tended to a rigorous 2D-1D model considering transfer phenomena between catalyst particle and 
fluid. Simulation cases are conducted under uniform design parameters, heat source and operation 
conditions. Comparative analyses focus on several key performance aspects, including tempera-
ture, reaction rate distribution, and outlet characteristics such as temperature, pressure, flow rate, 
composition and CH4 conversion. The models effectively describe the industrial SMR reactor be-
havior. Influences of scale and dimension of mathematical model on reactor performance are high-
lighted. The rigorous 2D-1D model is identified as the most suitable model for adapting to electri-
fied reactor configurations due to its precise capture of transfer phenomena and detailed illustra-
tion of both fluid and catalyst behaviors. 

Keywords: Steam Methane Reforming, Reactor Design, Multi-Scale Modeling, Decarbonization, Hydrogen Pro-
duction. 

1 INTRODUCTION 
Hydrogen (H2) is a crucial industrial chemical with a 

reported demand of approximately 90 million tonnes in 
the year 2020 and a projected increase in demand rang-
ing from 28% to 45% by 2030 [1]. H2 plays a vital role in 
various sectors including oil refining, and ammonia pro-
duction among others [2]. About 62% of H2 is produced 
from natural gas especially through steam-methane re-
forming (SMR) [1]. However, conventional SMR has dis-
advantages including: consumption of fossil fuels, emis-
sions of carbon dioxide, heat transfer limitation of tube-
furnace design. Electrification through induction heating 
as a substitute of heat source presents a noteworthy al-
ternative [3]. To numerically assess an electrically-
heated SMR (E-SMR), an electromagnetic model for in-
duction heating is required. Concurrently, a comprehen-
sive SMR model that can correlate the heat generation at 

catalyst sites with the overall behavior of the reactor is 
essential. 

There has been abundant research about modeling 
of SMR reactor. Latham et al. [4] developed a mathemat-
ical model of the reformer by segments which were dis-
cretized axially. Constant effectiveness factors were im-
plemented with intrinsic kinetic model for reaction rate 
calculation. The model can predict temperature profiles 
for the outer-tube wall, inner-tube wall, furnace gas and 
process gas. Kuncharam, B. V. R et al. [5] employed a 
multi-scale modeling approach, integrating a steady 
state two-dimensional model for fluid-phase with a one-
dimensional model for the pellet-phase. The effective-
ness factor assumption was avoided. Their findings as-
sert that the application of the Ergun equation to calcu-
late the pressure drop in SMR reformer yields satisfactory 
results. Furthermore, the incorporation of molar change 
is necessary. Tacchino et al. [6] presented a validated 
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steady state multi-scale model of an industrial SMR reac-
tor comprised of the furnace and reformer. A significant 
variability in effectiveness factor was observed, indicat-
ing the necessity of including catalyst particle simulation. 
The model proved its robustness by showing no sensitive 
reliance on adjustable parameter, the flame length. 

Current advances in SMR modeling reveal a notable 
discrepancy in the approaches across different scales 
and dimensions. Models have been developed based on 
distinct parameters, operating conditions, and empirical 
expressions. Key factors such as fluid mechanics, heat 
input, temperature and reaction rate distributions, show-
ing significant influence on the overall behavior including 
outlet condition, CH4 conversion and efficiency of the re-
former, have dependencies on scale and dimensionality. 
There lacks a comprehensive comparative analysis 
rooted in a uniform basis. In order to lay a foundation for 
E-SMR model development, and to quantify the key fac-
tors and the influence of varied-scale and varied-dimen-
sion on reactor behavior, numerical simulation of differ-
ent models and analysis are required [7].  

In this paper, for fluid-catalyst dimensions, 1D-0D, 
2D-0D, 2D-1D mathematical models of conventional SMR 
are developed based on the same design parameters and 
operation conditions. Temperature and reaction rate dis-
tributions corresponding to different scenarios are illus-
trated. SMR reactor properties are recognized. Outlet be-
haviors, including temperature, pressure, flow rate, com-
position and CH4 conversion are observed. Sensitivity 
analysis is conducted for the radial conductivity. Differ-
ences of the modeling schemes are recognized and ana-
lyzed. 

2 MODEL DEVELOPMENT 

Table 1: Characteristics of reactor tube and catalyst par-
ticles. 

Parameters Value Unit 
Length of tube  m 
Radius of tube  m 
Diameter of catalyst  m 
Conductivity of catalyst  W/m/K 
Density of catalyst  kg/m 
Heat capacity of catalyst  J/kg/K 

 
Industrial SMR reactors contain parallel tubes ar-

ranged in rows and columns inside the furnace, each 
packed with catalyst. This paper sets up a mathematical 
model of an industrial-scale single tube to observe the 
overall behavior of the reactor. Ni/MgAl2O4 catalyzes the 
reaction. Characteristics of reactor tube and catalyst par-
ticles are listed in Table.1. 

The following assumptions have been made for es-
tablishing the models:  

2.1 Assumptions  
1. Operational conditions and performance data can 

be linearly extrapolated from a single tube to the overall 
reactor; 

2. The fluid phase follows ideal gas behaviors; 
3. Spherical catalyst particle and cylindrical tube 

have constant porosity respectively; 
4. 3 main reactions occur: 
CH4 + H2O ↔ CO + 3H2   Δ𝐻𝐻1298𝐾𝐾 = 206.1𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚      (1) 
CO + 𝐻𝐻2O ↔ 𝐶𝐶𝑂𝑂2 + 𝐻𝐻2   Δ𝐻𝐻2298𝐾𝐾 = −41.15𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚     (2) 
C𝐻𝐻4 + 2𝐻𝐻2O ↔ 𝐶𝐶𝑂𝑂2 + 4𝐻𝐻2   Δ𝐻𝐻3298𝐾𝐾 = 164.95𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚 (3) 
5. Inner tube wall temperature is a polynomial func-

tion of axial space position fitted from industrial data. 

Figure 1. Abbreviated diagram of industrial SMR reactor 
(reproduced from Ref. [4]) and illustration of three 
models regarding scale and dimension. 

Three models covering different scales and dimen-
sions are shown in Figure 1, along with industrial SMR re-
actor diagram. Tube expressions are derived in cylindri-
cal coordinate, while catalyst particle expressions in 
spherical coordinate. Considering geometric symmetry, 
the most rigorous scenario is a multi-scale model consid-
ering multi-dimension including axial and radial domains 
for the fluid phase in tube, and radial domain for catalyst 
particle (2D-1D). Additional assumptions may be included 
owing to the distinct characteristics in each model. In the 
2D-0D model, reactor tube is assumed to be pseudo-ho-
mogeneous simplifying the heterogeneity. For 1D-0D 
model, plug flow behavior is additionally assumed. 
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Table 2: Nomenclature. 

Symbol Unit Name 
C mol/m concentration 
u m/s Interstitial velocity 
U m/s Superficial velocity 
D m/s diffusivity 
y  Composition 
f Hz Frequency of alternat-

ing magnetic field 
ap m/m surface area per unit 

volume of catalyst 
dp m diameter of catalyst  
Rtube m Radius of reactor tube 
km m/s solid-fluid mass transfer 

coefficient 
kh W/m/K solid-fluid heat transfer 

coefficient 
ρf kg/m density of fluid 
ρp kg/m density of catalyst par-

ticle 
cp J/kg/K heat capacity 
T K temperature 
λ W/m/K conductivity 
R mol/kgcat/s reaction rate 
L m length of reactor tube 
∆H J/mol reaction enthalpy 
ε  porosity 
ν  stoichiometry of reac-

tions 
h W/m/K Tube-fluid heat transfer 

coefficient 
Ahys J/kg Hysteresis area 
Pr μcp/λ Prandtl number 
Pe ud/Di Peclet number 
Re ρud/μ Reynolds number 
Sh kmd/Di Sherwood number 
Sc μ/Di/ρ Schmidt number 
Subscript   
ij  component or reaction 

index 
z  fluid axial domain 
r  fluid radial domain 
ρ  catalyst radial domain 
s  catalyst surface 
b  catalyst bed 
f  Fluid phase 
p  Catalyst phase 
Superscript   
e  effective coefficient 
eo  quiescent bed effective 

coefficient 

2.2 Mathematical Expressions 
The mathematical models encompass mass, heat 

and momentum conservations under steady state for 
fluid mechanics description, and kinetic model for reac-
tion description. Mass diffusion and convection, and heat 
conduction and convection, are considered for transfers. 
Pressure drop expression is derived from momentum 
conservation with friction factor calculated by the Ergun 
equation.  

For the purpose of elucidating the expressions, the 
rigorous 2D-1D model is shown below as a representative 
example since it is the most detailed.  

2.2.3 Fluid Phase 

2.2.3.1 Mass Conservation 

∂𝐶𝐶𝑖𝑖
∂𝑧𝑧 𝑢𝑢𝑧𝑧 + 𝐶𝐶𝑖𝑖

∂𝑢𝑢𝑧𝑧
∂𝑧𝑧 =

1
𝑟𝑟 𝐷𝐷𝑖𝑖,𝑟𝑟

𝑒𝑒 ∂𝐶𝐶𝑖𝑖
∂r +

∂𝐷𝐷𝑖𝑖,𝑟𝑟𝑒𝑒

∂r
∂𝐶𝐶𝑖𝑖
∂r + 𝐷𝐷𝑖𝑖,𝑟𝑟𝑒𝑒

∂2𝐶𝐶𝑖𝑖
∂𝑟𝑟2 + 

          𝜕𝜕𝐷𝐷𝑖𝑖,𝑧𝑧
𝑒𝑒

𝜕𝜕𝑧𝑧
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧

+ 𝐷𝐷𝑖𝑖,𝑧𝑧𝑒𝑒
𝜕𝜕2𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧2

+ (1−𝜀𝜀𝑏𝑏)
𝜀𝜀𝑏𝑏

𝑎𝑎𝑝𝑝𝑘𝑘𝑖𝑖,𝑚𝑚�𝐶𝐶𝑖𝑖,𝑠𝑠 − 𝐶𝐶𝑖𝑖�  (1) 

Boundary conditions: 

𝐶𝐶𝑖𝑖|𝑧𝑧=0 = 𝑐𝑐𝑖𝑖0;  
∂𝐶𝐶𝑖𝑖
∂z

|𝑧𝑧=𝐿𝐿 = 0;   

               ∂𝐶𝐶𝑖𝑖
∂r

|𝑟𝑟=0 = 0;   ∂𝐶𝐶𝑖𝑖
∂r

|𝑟𝑟=𝑅𝑅𝑡𝑡𝑡𝑡𝑏𝑏𝑒𝑒 = 0                     (2) 

2.2.3.2 Heat Conservation 

εbρfuzcp
∂T
∂z =

1
r λr

e ∂T
∂r +

∂λre

∂r
∂T
∂r + λre

∂2T
∂r2 + 

       ∂λz
e

∂z
∂T
∂z

+ λze
∂2T
∂z2

+ (1 − εb)apkh(Ts − T)     (3) 

Boundary conditions: 

−λ𝑟𝑟𝑒𝑒
∂T
∂r

|𝑟𝑟=𝑅𝑅𝑡𝑡𝑡𝑡𝑏𝑏𝑒𝑒 = h(𝑇𝑇𝑤𝑤 − 𝑇𝑇);  
∂T
∂r

|𝑟𝑟=0 = 0; 

                    𝑇𝑇|𝑧𝑧=0 = 𝑇𝑇0;  𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

|𝑧𝑧=𝐿𝐿 = 0    (4) 

2.2.4 Catalyst Phase 

2.2.4.1 Mass Conservation 

0 = 2
𝜌𝜌
𝐷𝐷𝑖𝑖,𝑝𝑝,𝜌𝜌

𝜕𝜕𝐶𝐶𝑖𝑖,𝑝𝑝
𝜕𝜕𝜌𝜌

+ 𝜕𝜕𝐷𝐷𝑖𝑖,𝑝𝑝,𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝐶𝐶𝑖𝑖,𝑝𝑝
𝜕𝜕𝜌𝜌

+ 𝐷𝐷𝑖𝑖,𝑝𝑝,𝜌𝜌
𝜕𝜕2𝐶𝐶𝑖𝑖,𝑝𝑝
𝜕𝜕𝜌𝜌2

+ 1
𝜀𝜀𝑝𝑝
𝜌𝜌𝑝𝑝 ∑ 𝜈𝜈𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖3

𝑖𝑖=1   (5) 

Boundary conditions: 
∂ Ci,p
∂𝜌𝜌

|ρ=0 = 0; −ε𝑝𝑝𝐷𝐷𝑖𝑖,𝑝𝑝𝜌𝜌
∂𝐶𝐶𝑖𝑖,𝑝𝑝
∂𝜌𝜌

|𝜌𝜌=𝑅𝑅𝑝𝑝 = 𝑘𝑘𝑖𝑖,𝑚𝑚�𝐶𝐶𝑖𝑖,𝑠𝑠 − 𝐶𝐶𝑖𝑖�      (6) 

2.2.4.2 Heat Conservation 

��1 − ε𝑝𝑝�ρ𝑝𝑝𝑐𝑐𝑝𝑝,𝑝𝑝 + ε𝑝𝑝ρ𝑓𝑓𝑐𝑐𝑝𝑝.𝑓𝑓�
∂𝜕𝜕𝑝𝑝
∂𝑡𝑡

= 2
ρ
λ𝑝𝑝,ρ
𝑒𝑒 ∂𝜕𝜕𝑝𝑝

∂ρ
+ ∂λ𝑝𝑝,ρ

𝑒𝑒

∂ρ
∂𝜕𝜕𝑝𝑝
∂ρ

+

                       λ𝑝𝑝,ρ
𝑒𝑒 ∂2𝜕𝜕𝑝𝑝

∂ρ2
− �1 − ε𝑝𝑝�ρ𝑝𝑝 ∑ 𝑅𝑅𝑖𝑖3

𝑖𝑖=1 Δ𝐻𝐻𝑖𝑖                            (7) 

Boundary conditions: 

          ∂𝜕𝜕𝑝𝑝
∂𝜌𝜌

|𝜌𝜌=0 = 0; −λ𝑝𝑝,𝜌𝜌
𝑒𝑒 ∂𝜕𝜕𝑝𝑝

∂𝜌𝜌
|𝜌𝜌=𝑅𝑅𝑝𝑝 = 𝑘𝑘ℎ(𝑇𝑇𝑠𝑠 − 𝑇𝑇)               

(8) 

2.2.5 Coefficients 
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2.2.5.1 Diffusivity 
Axial and radial effective diffusivity are expressed 

as following: 

                   1
𝑃𝑃𝑒𝑒𝑧𝑧

= 0.72
𝑅𝑅𝑒𝑒𝑝𝑝𝑆𝑆𝑆𝑆

+ 0.52

�1+ 9.0
𝑅𝑅𝑒𝑒𝑝𝑝𝑆𝑆𝑆𝑆

�
                              (9) 

               1
𝑃𝑃𝑒𝑒𝑟𝑟

= 0.34
(𝑅𝑅𝑒𝑒𝑜𝑜𝑆𝑆𝑆𝑆)0.80 + 0.08

�1+ 10.8
𝑅𝑅𝑒𝑒𝑜𝑜𝑆𝑆𝑆𝑆

�
                          (10) 

2.2.5.2 Conductivity 

                Λr
e

λf
= λeo

λf
+ 0.1PrRe                                   (11) 

                 𝜆𝜆𝑧𝑧
𝑒𝑒

𝜆𝜆𝑓𝑓
= 𝜆𝜆𝑒𝑒𝑜𝑜

𝜆𝜆𝑓𝑓
+ 0.5𝑃𝑃𝑟𝑟𝑅𝑅𝑃𝑃                                  (12) 

2.2.5.3 Solid-fluid transfer coefficient 

                      𝑆𝑆ℎ = 𝑘𝑘𝑖𝑖,𝑚𝑚𝑑𝑑𝑝𝑝
𝐷𝐷𝑖𝑖,𝑚𝑚

= 2 + 1.1𝑆𝑆𝑐𝑐1/3𝑅𝑅𝑃𝑃𝑜𝑜0.6                         

(13) 

       𝑁𝑁𝑢𝑢 = 𝑘𝑘ℎ𝑑𝑑𝑝𝑝
𝜆𝜆𝑚𝑚

= 2 + 1.1𝑃𝑃𝑟𝑟1/3𝑅𝑅𝑃𝑃𝑜𝑜0.6                          
(14) 

2.2.5.4 Tube-fluid heat transfer coefficient 

  H = 𝛼𝛼 λ
𝑑𝑑𝑝𝑝
�2.58Re

1
3Pr

1
3 + 0.094Re0.8Pr0.4�              (15) 

2.2.6 Kinetics 
An intrinsic Langmuir-Hinshelwood-Hougen-Watson ki-
netic model developed by Xu and Froment [8] is applied.  

3 RESULTS 
The equation-based mathematical models com-

posed of PDEs are coded in FORTRAN and solved in As-
pen Custom Modeler V12.1. Physical properties are cal-
culated by calling Aspen properties bank. Finite differ-
ence methods are used for discretization. Newton 
Method solves the system of nonlinear equations. 

3.1 1D-0D Model Validation 
This model describes homogeneous reactor tube 

with only axial domain transfer. The simulation has 9,887 
equations after decomposition. Operating conditions of 
the three cases implemented are listed in Table 3. 

The model validation focuses on temperature profile 
along the tube, CH4 conversion of methane and outlet 
pressure. Root mean standard error (RMSE) and Pearson 
correlation Coefficient (PCC) defined in Equation 16 are 
calculated to measure deviation and correspondence of 
change tendency of profile. The smaller RMSE is, and the 
closer CF is to 1, the better consistency the simulated 
profile shows to industrial case. Relative error (RE) is cal-
culated for evaluating CH4 conversion and pressure. Fig-
ure 2 shows comparative results between temperature 
profile derived from our model and those documented in 

literature under Case 3 operation conditions as an exam-
ple. Modeled composition profiles are plotted in Figure 3, 
along with industrial outlet values. Table 4 shows the 
evaluation coefficients quantifying the comparison of 
temperature profile. The developed 1D-0D model has 
lowest PCC of 0.9979, highest RE of 3.61%, highest RMSE 
of 14.28 compared with 800-1150K range, showing a 
consistency with literature reported. The outlet behaviors 
are listed in Table 5. The results are aligned with plant 
data. 

𝐶𝐶𝐶𝐶 = ∑(𝑥𝑥−�̅�𝑥)(𝑦𝑦−𝑦𝑦�)
�∑(𝑥𝑥−�̅�𝑥)2(𝑦𝑦−𝑦𝑦�)2

  (16) 

Heat is input into a discretized plug flow segment for 
1D-0D model. The profile is plotted in Figure 4 along with 
reaction rate. The maximum heat input is reached at 
about L=3-5m, which is the length of a combustion flame. 
The majority of reactions happen near the entrance of the 
tube length area, leading to a temperature drop to mini-
mum at about L=0.625m. 

Table 3: Inlet operation conditions of 3 industrial cases 
[4]. 

 Case Case Case 
T [K]    
P [bar]    
Velocity [m/s]    
yCH     
yHO    
yCO    
yCO     
yH     

 
Table 4: Evaluation coefficients of 3 cases compared 
with literature documented [4]. 

 Case Case Case 
RMSE    
PCC    

 

 
Figure 2. Simulated (solid), literature (dashed) tempera-
ture profile along the tube of Case 3 with RMSE of 10.4.  
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Figure 3. Simulated industrial composition profile along 
the tube, and CH4 conversion of case 3. 
 

 
Figure 4. Simulated reaction heat (solid) and input heat 
(dashed) profile along the tube. 

3.2 2D-0D Model 
Radial transfer is introduced in 2D-0D homogenous 

model based on 1D-0D model. The simulation has 43,035 

equations after decomposition. Case 3 is implemented 
for comparison. 

Figure 5 shows simulated temperature distribution. 
Axially lowest temperature appeared at L=0.3125-
0.625m, which is at similar position compared with 1D-
0D. Radial temperature difference is observed, with a 
highest of 126.31K at L=4.0625m, which is slightly de-
layed compared with the maximum heat input at 
L=3.75m. Radial temperature difference follows the same 
trend as heat input as shown in Figure 6 (top). Radial tem-
perature difference indicating heat loss is inevitable con-
sidering the relatively low radial heat transfer efficiency. 
However, the average temperature along axial direction 
still shares a similar trend compared with 1D-0D. 2D-0D 
case has a lower average temperature of 49.4K, leading 
to a CH4 conversion decrease from 75% to 64%.  

 

Figure 5. Simulated temperature distribution in 2D-0D 
case.  

Figure 7 illustrates the distribution of the reaction 
rate, using Reaction 3 as a representative case. 99.5% of 
the overall reaction occurs with the length L=0.9375m. 
For the rest of the tube length, 69%-83% of the reaction 
occurs near the reactor tube wall where temperature is 
highest radially, indicating the reactor being heat transfer 
limited. 

The different behaviors between 2D-0D and 1D-0D 
are resulted from with or without plug-flow assumption. 
Radial transfer coefficient is assumed to be infinitely 
large to reach uniform distribution. This tendency is illus-
trated in Figure 8 that the larger the radial conductivity is, 
the closer the average outlet temperature is to 1D-0D 
model. 

Table 5:  Modelled outlet behaviors compared with industrial data [4].  

  Case  Plant  Case  Plant  Case  Plant  

Temperature [K]       
Pressure [bar]       
Flow Rate [mol/s]       
CH Conversion 
[%]       

yCH       
yHO       
yH       
yCO       
yCO       
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Figure 6. (top) Heat input profile (left) and radial 
temperatue difference (right) profile along the reactor 
tube; (bottom) 1D-0D temperature profile, untuned and 
tuned 2D-0D average temperature profile. 

               

Figure 7. Reaction rate distribution in reactor tube with 
as a function of a specific length. 
 
 

 
 
Figure 8. 2D-0D average outlet temeprature versus radial 
conductivity. 

To ensure that the 2D model has better accordance 
with industrial data regarding the CH4 conversion, the 
amount of heat input is recalculated by parameter tuning 
of the tube-fluid heat transfer coefficient α. The tuned-
conversion reaches less than 5e-4% RE compared with 
industrial data. Heat input after tuning has an average of 
1.7e5 W/m3 more in amount compared with untuned case. 
Outlet average temperature has 1.03% RE, while pressure 
has 0.15% RE. The tuned temperature distribution has an 
average temperature of 14.3K lower than 1D-0D due to 
the radial temperature distribution, but 35.1K higher than 
untuned 2D-0D shown in Figure 6 (bottom). The outlet 
behaviors are listed in Table 6. The tuned case ap-
proaches the plant data more than untuned case.  

Table 6. Comparison of tuned, untuned 2D-0D cases and 
industrial case. 

Outlet Tuned Untuned Plant 
Temperature [K]    
Pressure [bar]    
Flow Rate [mol/s]    
CH Conversion 
[%] 

   

yCH    
yHO    
yH    
yCO    
yCO    

3.3 2D-1D Model 
Solid catalyst particle phase is taken into consider-

ation for 2D-1D heterogenous model. External transfer 
between catalyst surface and fluid phase, and internal 
transfer in catalyst particle are introduced. The simula-
tion has 205,389 equations after decomposition. Case 3 
is implemented for comparison. 

Temperature difference exists between the fluid, 
the catalyst surface, and catalyst center, leading to 

(   
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additional heat loss. Figure 9 (a) shows the temperature 
distribution of fluid. Temperature differences from cata-
lyst center to catalyst surface is less than 0.5 K. Temper-
ature difference from catalyst surface to fluid distribution 
is shown in Figure 9 (b), the average is 3.69 K. The max-
imum difference axially is at entrance, while radially is at 
tube wall, where the majority of reactions occur, which is 
consistent with 2D-0D observation. A drop in CH4 con-
version of 24% is observed under the same condition as 
2D-0D.  

Reaction rate distributions of catalyst particle at 
specific positions are shown in Figure 10. The majority of 
reactions occur near the surface, which indicates that the 
catalytic reactions are diffusion-limited.  

The outlet behaviors are shown in Table 7. The 2D-
1D outlet behaviors show good consistency with 2D-0D 
case, except temperature and CH4 conversion.  

 
 

  

 
Figure  (a) Temperature dfistribution of D-D fluid 
phase (b) Temperature difference between fluid and 
catalyst surface distribution of D-D 

 
.  

 

 
 

Figure 10. Reaction rate distitbution of catalyst particle 
at position (a) L/Ltube=0; (b) L/Ltube=0.20; (c) L/Ltube=0.47; 
(d) L/Ltube=0.73; (e) L/Ltube=1.  

Table 7. Comparison of 2D-1D with tuned 2D-0D cases. 

Outlet D-D D-D 
Temperature [K]   
Pressure [bar]   
Flow Rate [mol/s]   
CH Conversion 
[%] 

  

yCH   
yHO   
yH   
yCO   
yCO   

3.4 E-SMR Model 
The development of conventional SMR model lays 

foundation for heat electrification that E-SMR model is 
developed by incorporation of induction heat model. 
Hysteresis heat is regarded as dominant induction heat 
source, which is estimated by the following expression: 

   𝑃𝑃ℎ𝑦𝑦𝑠𝑠 = 𝐴𝐴ℎ𝑦𝑦𝑠𝑠𝑓𝑓𝜌𝜌  (17) 

where hysteresis area Ahys is dependent on material elec-
tromagnetic property, magnetic field strength and tem-
perature.  

In conventional SMR reactors, the heat flux source 
is introduced as a boundary condition for the fluid phase 
boundary at tube layer. While for induction-heated E-
SMR reactor which utilizes dual-function catalysts, heat 
is directly generated at the catalyst sites. The heat flux is 
introduced internally from the catalyst phase in the way 
that the Phys term is included as a source term in the en-
ergy conservation equation of the catalyst/fluid phase. 

4 CONCLUSIONS 
Mathematical models covering varied scales and di-

mensions of SMR Reactor tube have been developed. 
Comparative analyses have been carried out focusing on 

(b) 

(c) 

(a) 

(a) (b) 

(d) 

(e) 
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temperature, reaction rate distribution and outlet behav-
iors, including temperature, pressure, flow rate, compo-
sition and CH4 conversion.  

Validation with industrial data shows that the 1D-0D 
numerical simulation can precisely describe the SMR re-
actor behavior. When developed on the same basis, the 
2D-0D shows a radial temperature distribution. When re-
sistance of radial transfer is set to infinitely small, the be-
havior of 2D-0D is approaching 1D-0D, which is a valida-
tion of the developed 2D-0D model. Higher reaction rates 
are mainly distributed near entrance and near tube wall 
positions, indicating a heat transfer limited property. 2D-
0D shows a lower CH4 conversion than 1D-0D consider-
ing the heat resistance behavior in the way of radial tem-
perature distribution. A heat transfer coefficient corre-
sponding to industrial plant CH4 conversion can be ob-
tained by parameter fitting. The fitted 2D-0D case shows 
a high correlation with plant data. 2D-1D model was fur-
ther developed with the results showing additional heat 
resistance in the way of temperature difference between 
the fluid, catalyst surface, and catalyst center. A further 
decrease of CH4 conversion compared with 2D-0D is ob-
served. On catalyst sites, the majority of reactions occur 
at position close to the catalyst surface, indicating the 
diffusion-limited property.  

Simplification of model in terms of scale and dimen-
sion neglects some of the heat resistances. Due to the 
fixed tube wall assumption for all three cases, and same 
initial conditions, the neglected heat resistance manifests 
in the way of decreased CH4 conversion. However, dis-
tinct models are suitable for different tasks. When an es-
timation of effectiveness factor is unavailable and cata-
lyst behaviors are required, rigorous 2D-1D is more suit-
able. 
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ABSTRACT 
Initial design stages are inherently complex and often lack comprehensive information, posing 
challenges in evaluating sustainability metrics. Machine Learning (ML) emerges as a valuable so-
lution to address these challenges. ML algorithms, particularly effective in predicting environmen-
tal impacts of new chemicals with limited data, enable more informed decisions in sustainable 
design. This study focuses on employing ML for predicting the environmental impacts related to 
human health, ecosystem quality, climate change, and resource utilization to aid in early-stage 
environmental impact assessment of chemical processes. The effectiveness of the ML algorithm, 
eXtreme Gradient Boosting (XGBoost) tested using a dataset of 350 points, divided into training, 
testing, and validation sets. The study also includes a practical application of the model in a cradle-
to-cradle LCA of N-Methylpyrrolidone (NMP), demonstrating its utility in sustainable chemical pro-
cess design. This approach signifies a significant advancement in the early stages of process de-
sign, highlighting the potential of ML in enhancing environmental sustainability in the chemical 
industry. 

Keywords: Machine Learning, Life Cycle Analysis, Process Design, Modelling, Process Synthesis

INTRODUCTION 
Amidst growing climate change concerns and 

heightened environmental awareness, industries are in-
creasingly scrutinized for their environmental impact [1]. 
This scenario underscores the importance of environ-
mental impact assessment at early-stage process syn-
thesis [2], [3], where operational processes are initially 
formulated and assessed. Decisions made at this stage 
have significant implications for the environmental foot-
print of the entire operation. In this context, Machine 
Learning (ML) [4], [5] presents a transformative solution. 
By integrating ML in the early stages, industries can effi-
ciently utilize its potential for rapid, accurate, and com-
prehensive assessments of sustainability.  

ML offers a significant advantage in systems with 
non-obvious relationships in that, once trained, ML mod-
els can be used to predict such environmental metrics, 
facilitating prompt design modifications and improve-
ments. Its adaptability also allows for easy integration 
with optimization strategies, aiding industries in 

developing processes during early-stages that balance 
environmental and economic factors. Financially, ML is 
invaluable; addressing sustainability issues early on helps 
industries avoid costly later-stage modifications, leading 
to substantial cost savings. In essence, incorporating ML 
into early-stage process synthesis represents a forward-
thinking move for industries striving towards sustainabil-
ity.  

Thermodynamic properties such as enthalpy, en-
tropy, Gibbs free energy [6], [7], among others provide 
crucial insights into the energy requirements of a pro-
cess, operational efficiency, and overall feasibility. These 
attributes significantly influence the energy consumption 
of the process, impacting essential sustainability metrics 
such as GWP and total carbon footprint. On the other 
hand, molecular characteristics [8], [9], including molec-
ular weight, bond energies, and functional groups, among 
others offer valuable information about the inherent qual-
ities of chemical substances such as reactivity [10], po-
tential toxicity [11], and environmental impacts [12], [13]. 
Often times, data on both thermodynamic and molecular 

https://doi.org/10.69997/sct.141240
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properties are available during the initial stages of pro-
cess design. Therefore, by developing a ML model that 
incorporates thermodynamic and molecular descriptors 
as input and sustainability metrics as outputs, it is possi-
ble to predict sustainability metrics for both new and ex-
isting chemicals that lack established sustainability data. 
This approach enables a more holistic and informed eval-
uation of sustainability at the early stages of chemical 
process synthesis. 

Previous research has shown that ML can be utilized 
to effectively enhance energy efficiency [14] and fore-
cast corporate carbon footprints [15], among others [16], 
[17]. Building on this, the current study applies ML, spe-
cifically, eXtreme Gradient Boosting (XGBoost) [18], [19], 
to predict endpoint impact metrics for chemicals, partic-
ularly new molecules. This approach can lead to the de-
velopment of safer and more sustainable chemical alter-
natives and circular process designs. Subsequently, the 
developed ML model is used together with other meth-
ods to predict the entire cradle-to-cradle environmental 
impact of NMP.  

METHODOLOGY  
In this section, we discuss the data gathering pro-

cess, preprocessing, ML model building, and evaluation 
metrics.  

Data Acquisition 
 A comprehensive dataset of 350 common solvents, 
including alcohols, esters, hydrocarbons, and ethers, was 
compiled for this study. The dataset is divided into two 
parts: the feature set and the label set. The feature set 
consists of thermodynamic and molecular descriptor 
data, encompassing the chemical properties used for 
model training. The label set, on the other hand, repre-
sents the data that the model aims to predict. For each 
chemical, 15 thermodynamic properties are gathered, 
such as critical temperature, pressure, volume, heat ca-
pacity, boiling point, and standard Gibbs-free energy. 
The data collection process begins with extracting the 
SMILES string [20] and chemical formula for each sol-
vent.  
 These SMILES strings are used to extract the corre-
sponding thermodynamic properties. This is achieved 
through two Python libraries: “chemicals” [21] and 
“thermo”, which host extensive databases of pure and 
calculated chemical properties. The local databank in 
these libraries includes over 20,000 chemicals and their 
properties, compiled from sources like the National Insti-
tute of Standards and Technology (NIST), Design Insti-
tute for Physical Properties (DIPPR), PubChem, CRC 
Handbook, Perry’s Chemical Engineers’ Handbook, and 
various scientific papers and publications. 
 The molecular descriptor properties for each 

chemical were obtained using RDKit [22] (version 
2023.3.3), an open-source Python library renowned in 
cheminformatics. For this study, RDKit was employed to 
acquire 200 molecular descriptors for each chemical, 
covering various properties. These include molecular 
weight, carbon count, maximum partial charge, functional 
group, number of heterogeneous atoms, number of radi-
cal atoms, and the number of aliphatic rings, among oth-
ers.  
 For the label data, SimaPro® [23] (version 9.4.0.2) is 
used to gather the cradle-to-gate metrics for each chem-
ical. The metrics include human health impact (HHI), eco-
system quality impact (EQI), global warming potential 
(GWP), and resource utilization impact (RUI). These four 
endpoint metrics are chosen due to decision-making rel-
evance, ease of communication, and depth of analysis.  

Data Preprocessing 
 The initial step is to address the issue of missing 
data in the label set. While removing rows with missing 
data is a typical solution, ML models benefit from larger 
datasets. Therefore, the k-Nearest Neighbors (kNN) 
method, a well-established technique in data imputation, 
was employed for this analysis. Upon completion, the 
feature dataset was scaled to be in a range of 0 and 5.  
 Given the large number of features available in the 
dataset, it was necessary to identify and select those 
features that contribute most significantly to the model. 
This process of feature selection not only reduces com-
putational time but also eliminates redundant features, 
thereby enhancing model accuracy. A balanced ap-
proach was adopted, choosing a total of 10 features with 
an equal number (5) from both the thermodynamic and 
molecular feature sets. This equal representation ensures 
that each feature set contributes fairly to the model. The 
streamlined selection of just 10 features also adds prac-
tical value for users, simplifying the prediction process 
for specific chemicals by requiring only a limited set of 
properties. Additionally, the model was tailored to each 
of the four metrics it predicts, with a unique set of fea-
tures for each metric. This customization ensures that 
only the most relevant and impactful features are used 
for predictions in each specific case, optimizing the ef-
fectiveness and precision of the model. The Sequential 
Backward Feature Selection (SBFS) methodology, with 
linear regression and Mean-Squared-Error (MSE) crite-
rion, was used to achieve this aim.  

Model Training and Hyperparameter Tuning 
 Once the feature set for each label is finalized, the 
next step is to build the ML model for the prediction. Two 
models were developed, XGBoost and Artificial Neural 
Network (ANN), but in this paper, we present the 
XGBoost model.  
 XGBoost, an advanced ensemble ML model, is an 
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efficient implementation of the gradient boosting frame-
work, particularly suitable for optimizing large-scale ML 
problems. It functions by iteratively building and refining 
models, each new model correcting the inaccuracies of 
its predecessors. This refinement is guided by the gradi-
ent descent method, which addresses the weaknesses in 
the existing ensemble by adding new decision trees, con-
tinuing until a predetermined error limit is reached or a 
specified number of trees is included.  
 In this study, the data was divided into training, val-
idation, and testing sets. This split was not fix but was 
determined based on the label being predicted. To en-
hance the performance of the model, key hyperparame-
ters of XGBoost (version 1.7.6) were optimized. This op-
timization involved selecting and tuning four to six hy-
perparameters that most significantly affect the model. 
This process was facilitated by the “hyperopt” [24] (ver-
sion 0.2.7) library, which employs a Bayesian optimization 
framework [25]. The hyperparameters adjusted include 
the maximum depth of a tree, learning rate, number of 
trees, minimum child weight in a node, subsample frac-
tion for growing trees, and the fraction of features cho-
sen for tree development. The optimal hyperparameters 
were determined using the validation set, with an objec-
tive function designed to minimize the MSE between the 
actual and predicted values after training on the training 
set. The test set, crucially, was reserved exclusively for 
evaluating the generalizability and overall performance of 
the model. 
  For model evaluation, two key metrics were used: 
R-squared (R2) value and the Root-Mean-Squared-Error 
(RMSE). The R², also known as the coefficient of deter-
mination, indicates the proportion of the variance in the 
dependent variable that the independent variables in the 
model can explain. On the other hand, the RMSE 
measures the average magnitude of the errors between 
the predicted and actual outcomes, providing a direct as-
sessment of the accuracy of the model. This metric gives 
an absolute measure of the fit of the model, quantifying 
the average deviation in the predictions.  

RESULTS AND DISCUSSION 
 In this section we discuss the results from the fea-
ture selection, the developed XGboost model and an 
NMP case study.  

Feature Selection Result 
Table 1 outlines the chosen features for evaluating 

various sustainability metrics, following the application of 
SBFS. The selected features underscore the importance 
of both thermodynamic properties and molecular de-
scriptors in providing a comprehensive assessment of 
sustainability. Notably, critical temperature and heat ca-
pacity emerge as common thermodynamic features 

across all metrics, highlighting their universal applicability 
in sustainability evaluations. These properties are funda-
mental in understanding the energy dynamics and effi-
ciency of chemical processes. Furthermore, the inclusion 
of XLogP and boiling point in three out of the four metrics 
signifies their relevance in assessing different environ-
mental impacts. Molecular descriptors, particularly HallK-
ierAlpha, have been selected for their ability to represent 
the three-dimensionality of molecules, a factor crucial in 
understanding the environmental behavior and impact of 
chemicals. HallKierAlpha, selected for three of the four 
metrics, specifically captures shape representation and 
molecular branching, aspects essential for evaluating the 
environmental compatibility of chemical substances. 

Table 1: Selected features for each endpoint metric 

Metric Thermodynamic 
Feature 

Molecular De-
scriptor Fea-
ture 

HHI heat of vaporiza-
tion heat capacity 
XLogP acentric 
factor critical tem-
perature 

Chi HallKi-
erAlpha 
SMR_VSA 
VSA_EState 
NumVa-
lenceElectrons 

EQI heat capacity 
standard formation 
enthalpy (gas) boil-
ing Point critical 
temperature critical 
volume 

Chiv BertzCT 
HallKierAlpha 
qed fr_halogen 

GWP heat capacity boil-
ing point XLogP 
critical temperature 
critical molar vol-
ume 

BertzCT Exact-
MolWt HallKi-
erAlpha 
PEOE_VSA 
NOCount 

RUI heat capacity boil-
ing point XLogP 
critical pressure 
critical temperature 

ExactMolWt 
MaxAbsPartial-
Charge Max-
PartialCharge 
NumRotatable-
Bonds  
SMR_VSA 

Model Result 
 Figure 1 presents a parity plot of the predictive ac-
curacy of the XGBoost model across the various environ-
mental metrics. This parity plot offers a comprehensive 
view of the model’s performance, highlighting its 
strengths and areas for further improvement.  
 Starting with the Human Health Impact (HHI) metric, 
as depicted in Figure 1 (a), the model demonstrates re-
markable accuracy. The test set notably outperforms 
both the training and validation sets, achieving an R2 of 
0.997. This high score indicates a strong correlation 
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between the predicted and actual values, signifying the 
efficacy of the model in predicting HHI metric. Addition-
ally, the RMSE values across the train-validation-test 
sets are closely aligned, further underscoring the reliabil-
ity of the predictions. The range of HHI predictions, span-
ning 0.63 – 12 (x 10-6) DALY/kgchem with a 95% confidence 
interval, reflects the model's comprehensive coverage of 
potential human health impacts.  
 The Ecosystem Quality Impact (EQI) metric, illus-
trated in Figure 1 (b), presents a slightly different picture. 
Although the RMSE values remain within acceptable lim-
its, suggesting general reliability, the model exhibits a 
significant discrepancy in the R² value for train-validation 
sets bur performs wells on the test set. This variance in-
dicates a need for refinement in the model to achieve a 
more dependable R² value for EQI predictions. The pre-
dictions for EQI range from 0.022 – 3.0 PDF.m².yr/ kgchem. 
 In the case of the Global Warming Potential (GWP) 
metric, the model shows good predictive performance, 
though it is not without its challenges. The GWP model 
displays a tendency to generalize to a good degree on 
the validation set but performs less efficient on the test-
ing set based on the R² however, the RMSE for both val-
idation and training set are similar in magnitude and or-
der. The predicted values for GWP, ranging from 0.81 to 
9.0 kgCO2-eq/kgchem within a 95% confidence interval, 
demonstrate capability of the model in this domain. 

 Lastly, the Resource Utilization Impact (RUI) 
metric, which can be interpreted as the Cumulative En-
ergy Demand (CED) for chemical production, performs 
less in terms of prediction on the test set. The predictions 
for RUI, ranging from 4.5 to 15 (x10¹) MJ-primary/kgchem 
with a 95% confidence interval, indicate a high degree of 
accuracy and reliability, showcasing the model’s 
strengths in this area. In this study, the 95% confidence 
intervals were derived through a bootstrapping tech-
nique. This resampling approach enables us to assess the 
variability in the predictions made by our models. Specif-
ically, for each model (HHI, EQI, GWP, RUI), we generated 
1,000 bootstrap samples. This was achieved by randomly 
selecting 50% of the dataset with replacement in each it-
eration. Subsequently, we utilized the models to make 
predictions for each bootstrap sample. The construction 
of the 95% confidence intervals involved determining the 
2.5th and 97.5th percentiles from the distribution of 
these bootstrap predictions. It is important to note that 
these intervals reflect the variability associated with the 
model predictions themselves, rather than the uncer-
tainty in the hyperparameters of the XGBoost model or 
the variability inherent in the dataset. Table 2 also shows 
the comparison of the 95% confidence intervals for the 
actual data and the developed XGBoost model indicating 
a good agreement with the original data.  

 

Table 2: Comparison of confidence interval for actual 
data and XGBoost model 

Metric Actual Data XGBoost Model  
HHI (x-)  –   –  
EQI  –   –  
GWP  –   –  
RUI (x)  –   –  

Case Study: Cradle-to-cradle Life Cycle 
Assessment (LCA) of N-Methylpyrrolidone 
(NMP) 

(NMP) is a polar aprotic solvent, notable for its high 
boiling point, and is widely used in the chemical industry, 
particularly in the production of polymers. Its role in pol-
ymer manufacturing is significant, but it also raises envi-
ronmental concerns. The issue with NMP lies in its non-
consumptive use in synthesis and processing, leading to 
its release as waste, a common occurrence in the fine and 
specialty chemical industries. The environmental and 
health risks associated with the disposal of NMP are well-
recognized. However, the lack of suitable and safer alter-
natives to NMP and similar dipolar aprotic solvents has 
resulted in its continued widespread use in specialty 
chemical applications. Given these circumstances, the 
importance of solvent recovery after its usage becomes 
paramount. Recovering NMP not only mitigates the envi-
ronmental and health risks but also addresses waste 
management concerns in the chemical industry, empha-
sizing the need for sustainable and responsible solvent 
usage practices.  

Process Description 
We consider a specific case where fresh solvents 

(n-methyl-2-pyrolidone (NMP)) and reagents (trifluoroa-
cetic acid (TFA), hydroxyethyl methacrylate (HEMA), hy-
drochloric acid (HCl)) are initially sent to a reactor to-
gether with monomers (oxydianiline (ODA), pyromellitic 
dianhydride (PMDA)) for making a resin (polyimide (PI)) 
precursor. The role of the NMP is to dissolve the ODA 
while the reagents are added to the reaction medium to 
improve the photosensitivity of the PI produced. Once 
the reaction is complete, the product stream flows to the 
washing stage where ultrapure water is used to wash the 
produced resin resulting in three main streams: 1) the 
resin precursor stream which is sent to a filter press for 
further processing, 2) a hazardous waste stream contain-
ing NMP, and 3) a wastewater stream. We look at three 
main stages in the impact assessment: 1) the cradle-to-
gate (production phase) impact which entails the feed 
stream containing the solvents, reagents and monomers, 
2) gate-to-gate (usage phase) impact which entails the  
energy and water usage from the reaction and washing 
stages, and 3) gate-to-cradle (end-of-life phase) which 
entails the recovery of NMP from the hazardous waste 
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stream. Here, the XGboost model is used to predict the 
cradle-to-gate impact metrics, which represent the pro-
duction phase. Additionally, we use the predicted values 
in the gate-to-cradle phase which represent the end-of-
life phase of the waste solvent. Table 3 highlights the 
specifications for the case study.  

Equations (1) – (3) gives the environmental impacts 
of each phase of the Life Cycle Assessment (LCA). 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 =  ∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑗𝑗,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝
𝑝𝑝
𝑗𝑗    (1) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝𝑢𝑢𝑢𝑢−𝑝𝑝ℎ𝑎𝑎𝑢𝑢𝑢𝑢 =  ∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑘𝑘,𝑝𝑝𝑢𝑢𝑢𝑢−𝑝𝑝ℎ𝑎𝑎𝑢𝑢𝑢𝑢
𝑚𝑚
𝑗𝑗 + 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑤𝑤𝑎𝑎𝑝𝑝𝑢𝑢𝑝𝑝,𝑝𝑝𝑢𝑢𝑢𝑢−𝑝𝑝ℎ𝑎𝑎𝑢𝑢𝑢𝑢

       (2) 

 
Figure 1: Parity plot for each metric from the XGBoost model. (a) HHI, (b) EQI, (c) GWP, (d) RUI 

Table 3: NMP case study specification 

 Component Inlet mass flowrate to 
Reactor (kg/y)  

Ultrapure water for washing 
(kg/y) 

Hazardous waste solvent 
stream composition (%wt) 

NMP  -  
ODA  - - 
PMDA  - - 
HEMA  -  
TFA  -  
HCl  -  
HO -   

Table 4: Impact metric prediction for each chemical for the production phase from XGboost model  

 Component HHI  
(x-DALY/kgChem) 

EQI  
(PDFmyr/kgChem) 

GWP 
(kgCOeq/kgChem) 

RUI  
(xMJ/kgChem) 

NMP     
ODA     
PMDA     
HEMA     
TFA     
HCl     
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𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝐸𝐸𝑝𝑝𝐸𝐸 =  �1 − 𝑅𝑅𝑝𝑝𝑢𝑢𝑝𝑝,𝑁𝑁𝑁𝑁𝑁𝑁�𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑁𝑁𝑁𝑁𝑁𝑁,𝐸𝐸𝑝𝑝𝐸𝐸 + ∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑘𝑘,𝐸𝐸𝑝𝑝𝐸𝐸
𝑝𝑝
𝑗𝑗−1 +

∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑘𝑘,𝐸𝐸𝑝𝑝𝐸𝐸
𝑚𝑚
𝑗𝑗      (3) 

Here, 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑗𝑗,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 is the environment impact met-
ric 𝑖𝑖 for the production of chemical 𝑗𝑗, and 𝑛𝑛 is the total 
number of chemicals. 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑘𝑘,𝑝𝑝𝑢𝑢𝑢𝑢−𝑝𝑝ℎ𝑎𝑎𝑢𝑢𝑢𝑢 is the environmental 
metric 𝑖𝑖 for the energy demand of technology 𝑘𝑘, 𝑚𝑚 is the 
total number of technologies in the process, 
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑤𝑤𝑎𝑎𝑝𝑝𝑢𝑢𝑝𝑝,𝑝𝑝𝑢𝑢𝑢𝑢−𝑝𝑝ℎ𝑎𝑎𝑢𝑢𝑢𝑢 is the impact metric for the total 
amount of water used in the process. 𝑅𝑅𝑝𝑝𝑢𝑢𝑝𝑝,𝑁𝑁𝑁𝑁𝑁𝑁 is the 
amount of NMP recovered for reuse, 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑁𝑁𝑁𝑁𝑁𝑁,𝐸𝐸𝑝𝑝𝐸𝐸 is the 
environmental impact metric for NMP, 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑗𝑗,𝐸𝐸𝑝𝑝𝐸𝐸 is the en-
vironmental impact of the remaining chemicals not being 
recovered, and is the environmental impact due to the 
energy demand of the technologies (pervaporation in this 
case) for the solvent recovery process. The total cradle-
to-cradle impact assessment per kg of NMP is given by 
Equation (4).  

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑐𝑐𝑢𝑢−𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑐𝑐𝑢𝑢 =  𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 + 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝𝑢𝑢𝑢𝑢−𝑝𝑝ℎ𝑎𝑎𝑢𝑢𝑢𝑢 +
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝐸𝐸𝑝𝑝𝐸𝐸      (4) 

Here, 𝑖𝑖 is the environmental impact indicator (HHI, 
EQI, GWP, RUI), 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 is the impact metric for the 
production phase of the chemicals (cradle-to-gate), 
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝𝑢𝑢𝑢𝑢−𝑝𝑝ℎ𝑎𝑎𝑢𝑢𝑢𝑢 is the impact metric for the use-phase of 
the chemicals – in this case the energy demand and wa-
ter usage in the reaction and washing stages (gate-to-
gate) and 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝐸𝐸𝑝𝑝𝐸𝐸 is the impact metric for the EoL phase 
(gate-to-cradle) for the chemicals in the hazardous 
waste stream. NMP is the functional unit for the analysis 
hence the impact metric analysis is per kg of NMP basis. 
Figure 2 shows the LCA scope and the associated stages 
of the cradle-to-cradle assessment.  

 
Figure 2: LCA scope and the various aspects of the 
cradle-to-cradle assessment 

Case Study Results & Discussion 
Table 4 shows the predictions for each chemical for 

the production phase assessment from the developed 
XGBoost model. To give a perspective of how the predic-
tions compare with actual data from the SimaPro® soft-
ware, the HHI, EQI, GWP, and RUI are 7.6 x 10-6, 1.93, 7.7, 

and 168.9, respectively for NMP. It should be noted that 
for water, we used SimaPro® values for the analysis since 
we did not consider it to be a chemical.  

Figure 3 shows the comprehensive impact of the 
NMP lifecycle.  

 
Figure 3: Endpoint impacts of NMP across its lifecycle. 
C2G:Cradle-to-Gate; G2G:Gate-to-Gate; G2C:Gate-to-
Cradle  

In the HHI, the results indicate a markedly higher im-
pact in the C2G phase, illustrating the significant health-
related implications during the initial stages of NMP pro-
duction. This could be attributed to the extraction and 
processing of raw materials, underscoring the need for 
stringent health and safety measures during these pro-
cesses. The EQI shows similar trend with the highest im-
pact also observed in the C2G phase. However, the G2G 
is higher in this case signifying a higher impact contribu-
tion from the use-phase. For GWP, the difference be-
tween the C2G and G2G is 71.5%, whiles that between 
the G2G and G2C is 52.7%. Similar trend is observed with 
the RUI metric.  

CONCLUSION 
In this work, an XGBoost model is developed to pre-

dict four endpoint impact metrics of chemicals based on 
thermodynamic properties and molecular descriptors. 
The developed model was subsequently used in a case 
study where a cradle-to-cradle life cycle assessment is 
performed with NMP as the functional unit. The model is 
used to predict the production phase of the various 
chemicals used, and subsequently used in solvent recov-
ery which is the considered route for the end-of-life 
phase. The use-phase is analysed using the utilities from 
the reaction and washing processes. The model results 
indicate that the human health impact has the best accu-
racy. While the remaining three metrics had significant 
improvements on the validation set, the models could be 
improved to enhance the predictions on the test set. Re-
garding the life cycle assessment, it is observed that the 
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cradle-to-gate stage has the significant impact on the 
lifecycle followed by gate-to-gate, and finally, gate-to-
cradle for all four metrics. Additionally, this case study 
shows that ML model predictions can be used to substi-
tute unknows data for cradle-to-gate, and even gate-to-
cradle life cycle assessment. Furthermore, the developed 
model can be incorporated during the early-design stage 
to provide initial estimates of impact metrics for better 
decision-making.     
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ABSTRACT 
Circular systems design is an emerging approach for promoting sustainable development. Despite 
its perceived advantages, the characterization of circular systems remains loosely defined and 
ambiguous. This work proposes a network optimization framework that evaluates three objective 
functions related to economic and environmental domains and employs a Pareto analysis to illu-
minate the trade-offs between objectives. The US polyethylene terephthalate (PET) value chain is 
selected as a case study and represented via a superstructure containing various recycling path-
ways. The superstructure optimization problems are modeled as a mixed integer linear program 
(MILP) and linear programs (LPs), implemented in Pyomo, and solved with CPLEX for a one-year 
assessment horizon. Solutions to the circular economy models are then compared to the corre-
sponding solutions of linear economy models. Preliminary results show that the optimal circular 
network is advantageous over the optimal linear network for all objectives subject to the current 
market supply of raw materials and the total cost of production. However, when considering the 
present chemical processing infrastructure of the US economy and unrestricted biomass feed-
stock availability, a linear economy is favorable as an outcome of low operating cost and carbon 
sequestration. 

Keywords: Circular Economy, Supply Chain Optimization, Sustainability, Plastic Recycling 

INTRODUCTION 

With the growth of modern societies, waste management 
and finite resource depletion have become problematic. 
A primary facilitator of this phenomenon is the extensive 
employment of linear systems where materials are 
extracted, used, and discarded. Due to heightened 
concerns regarding finite resource depletion and the 
environmental effects of mismanaged waste, there is 
growing interest in adopting circular economies. A 
circular economy (CE) strives to eliminate waste and 
pollution, circulate products and materials at their highest 
level, and regenerate nature [1]. Applications of a CE 
have been present, to some extent, at the micro-level of 
some organizations. However, what remains elusive is 
effective representation at the macro-level and well-
defined metrics and methodologies for achieving and 
quantifying circularity. 

Figure 1. High-level superstructure representation. 

Each year, plastics constitute roughly 400 million 
tonnes of generated waste, of which approximately 80% 
enters landfills or is emitted into the environment [2]. Of 
all produced plastics, polyethylene terephthalate (PET) is 
one of the most widely consumed, with applications of 
PET ranging from consumer packaging to films and tex-
tiles (polyester). In the US, historical demands for poly-
ester and bottle-grade PET comprise over 85% of all PET 
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products [3]. However, recycling rates for bottles and 
general textiles are approximately 30% and 15%, respec-
tively [4,5]. For these reasons, we consider the PET 
economy as an application case study for assessment. 

A holistic representation of the PET value chain 
(product life cycle) and potential circular processing 
pathways is depicted in Figure 1. The analysis is posed as 
a superstructure optimization problem. The superstruc-
ture includes fossil and biomass feedstocks for PET pre-
cursors, production routes from these precursors to vir-
gin PET (vPET), manufacturing and use phases for PET-
based products, and end-of-life (EoL) processing tech-
nologies. EoL processes include traditional and novel 
processing of the following grouping: landfilling, incinera-
tion, mechanical recycling (MR), chemical recycling (CR), 
and thermochemical recycling. 

The application of various recycling processes al-
lows for material retention within the value chain. How-
ever, it remains unclear how favorable these processes 
are over a dominantly linear PET economy. To enhance 
this understanding, we formulate a mixed integer linear 
programming problem (MILP) where we assess an eco-
nomic, environmental, and material utilization objective. 
The optimization problems are solved to determine the 
optimal selection of processing technologies and mate-
rial flows that satisfy demand and are then compared to 
the optimal solutions of a linear economy reference 
model. The linear reference model is obtained by impos-
ing flow restriction constraints, which void recycle flows. 
A Pareto analysis is then performed using the epsilon-
constrained method defined in [6] to identify the trade-
offs between the objectives. 

METHODS 
Modeling Framework 

For modeling purposes, a State Task Network (STN) 
formulation where processes (tasks) consume and pro-
duce materials (states) is followed. Two types of nodes 
are defined, one constituting key chemical components 
and the other technologies that convert components. 
Technology nodes ( 𝑗𝑗) accept flows from component 
nodes, performing composition transformations and act-
ing as the influx to other component nodes. Component 
nodes (𝑖𝑖) combine fluxes from different technology 
nodes and are also connected to the external market, al-
lowing purchases and sales of material. The characteri-
zation of the nodes is depicted in Figure 2. A technology 
matrix (𝐴𝐴) is defined to contain process conversion infor-
mation representing transformations across technology 
nodes. The technology matrix is informed by industrial 
data and process simulations from the literature.  

 
Figure 2. Network node characterization. 

The generalized model equations for the given 
framework are defined by equations (1-7). Eqs. (1) and (2) 
define the generation and consumption of component 𝑖𝑖 
in technology 𝑗𝑗. Where 𝛾𝛾𝑖𝑖𝑖𝑖, a conversion factor, is positive 
for generative transformations and negative for con-
sumption. Parameter 𝛾𝛾𝑖𝑖𝑖𝑖 constitutes the members of ma-
trix (𝐴𝐴) and is defined by industrial data aggregated by 
Franklin Associates [7], the US EIA [8], the US EPA [9], 
and Aspen simulations documented in the literature [10-
17]. Variable 𝑙𝑙𝑖𝑖 represents the total flow through a tech-
nology node. Sets 𝐽𝐽𝐺𝐺 and 𝐽𝐽𝐶𝐶 designate producing and 
consuming technology nodes, respectively. 

 𝑔𝑔𝑖𝑖𝑖𝑖  =  𝛾𝛾𝑖𝑖𝑖𝑖  𝑙𝑙𝑖𝑖                         ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈  𝐽𝐽𝐺𝐺               (1) 

𝑐𝑐𝑖𝑖𝑖𝑖  =  −𝛾𝛾𝑖𝑖𝑖𝑖  𝑙𝑙𝑖𝑖                        ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈  𝐽𝐽𝐶𝐶  (2) 

∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖∈𝐽𝐽 + 𝑝𝑝𝑖𝑖 = 𝑠𝑠𝑖𝑖              ∀𝑖𝑖 ∈ 𝐼𝐼   (3) 

Eq. (3) represents the general material balance for 
all components in the set 𝐼𝐼, stating that the purchase plus 
the total generation and consumption of 𝑖𝑖 across the set 
of technologies ( 𝐽𝐽) is equal to the market sales or excess 
of 𝑖𝑖. Furthermore, component purchases (𝑝𝑝𝑖𝑖) are 
bounded by an upper limit (𝑝𝑝𝑖𝑖𝐿𝐿), which in this analysis is 
the five-year historical average supply for all raw materi-
als. Eq. (5) states that the demand for end products must 
be satisfied for all 𝐼𝐼 belonging to a subset 𝐼𝐼𝐷𝐷. Table 1 rep-
resents the annual rate of PET consumption (megaton) in 
the US in 2018 [3,18]. 

𝑝𝑝𝑖𝑖  ≤ 𝑝𝑝𝑖𝑖𝐿𝐿                                   ∀𝑖𝑖 ∈ 𝐼𝐼  (4) 

∑ 𝑔𝑔𝑖𝑖𝑖𝑖  𝑖𝑖∈𝐽𝐽𝐺𝐺 ≥ di                       ∀𝑖𝑖 ∈ 𝐼𝐼𝐷𝐷  (5) 

𝑔𝑔𝑖𝑖𝑖𝑖′  ≤ η𝑖𝑖 ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝐽𝐽𝐺𝐺               ∀𝑖𝑖 ∈ 𝐼𝐼𝐺𝐺  (6) 

𝑐𝑐𝑖𝑖𝑖𝑖′  ≤ η𝑖𝑖 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝐽𝐽𝐶𝐶                 ∀𝑖𝑖 ∈ 𝐼𝐼𝐶𝐶  (7) 

Lastly, Eqs. (6-7) generalizes the process con-
straints imposed on network flows to satisfy select tech-
nical requirements. These equations state that the 



 

Ahmed et al. / LAPSE:2024.1586 Syst Control Trans 3:629-634 (2024) 631 

production or consumption of component 𝑖𝑖 by 𝑗𝑗 is limited 
by the net generation or consumption of 𝑖𝑖 multiplied by a 
scalar 𝜂𝜂𝑖𝑖. The parameter 𝜂𝜂𝑖𝑖 represents flow ratios and 
corresponds to current process capabilities detailed in 
the literature. 𝐼𝐼𝐺𝐺 and 𝐼𝐼𝐶𝐶, are subsets of 𝐼𝐼. And 𝑗𝑗′ is a refer-
enced technology node corresponding to 𝜂𝜂𝑖𝑖. For exam-
ple, one such constraint is the allowable composition of 
mixed virgin PET resin and recycled PET (rPET) resin pro-
duced by mechanical recycling that satisfies intrinsic vis-
cosity requirements for processing into new bottles. 
Here, 𝜂𝜂𝑖𝑖 is 0.35 [19] and 𝑗𝑗’ is the mechanical recycling of 
post-use bottles. Additional technical constraints include 
an upper bound on the fraction of end-of-life textiles 
(EoL) to be downcycled to satisfy a portion of demand. 
Secondly, there is an upper bound on the amount of non-
bottle/non-polyester EoL materials that can be recycled, 
which discounts products that generally cannot be recy-
cled, such as food containers. 

Table 1: Case study demand specification. 

Product Type Demand (Mt/year) 
Bottles  
Polyester  
Films/sheets/others  

Design Objectives 
Three design objectives are assessed to explore 

economic and environmental domains. These include to-
tal annualized cost of production, process greenhouse 
gas emissions (GHGs), total virgin raw material utilization.  

Total Annualized Cost 

𝑇𝑇𝐴𝐴𝑇𝑇 =  ∑ (𝑜𝑜𝑝𝑝𝑜𝑜𝑥𝑥𝑖𝑖𝑙𝑙𝑖𝑖 + 𝐴𝐴𝑇𝑇𝑇𝑇𝐴𝐴∑ 𝑐𝑐𝑐𝑐𝑝𝑝𝑜𝑜𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗∈𝑇𝑇 )𝑖𝑖∈𝐽𝐽𝐸𝐸       (8) 

The economic dimension is evaluated with Eq. (8) 
which states that the total annualized cost of production 
is equal to the sum of operational costs and annualized 
capital expenses (ACC) for the technologies. Operating 
cost (𝑜𝑜𝑝𝑝𝑜𝑜𝑥𝑥𝑖𝑖) equals the sum of feed, utility, and labor mi-
nus the sale of by-products for each 𝑗𝑗. We assume a ten-
year amortization period and an interest rate of 15%, 
which correlates to an annual capital charge ratio (ACCR) 
of 0.199 [20]. Investment costs (𝑐𝑐𝑐𝑐𝑝𝑝𝑜𝑜𝑥𝑥𝑖𝑖𝑗𝑗) are indexed by 
plant (𝑡𝑡) belonging to the set of plants (𝑇𝑇). Set 𝐽𝐽𝐸𝐸 is a sub-
set of economically evaluated technologies.  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟

�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟�

0.6 �𝑐𝑐0.6 + 𝑏𝑏0.6−𝑐𝑐0.6

𝑏𝑏−𝑐𝑐
�𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖𝑗𝑗 − 𝑐𝑐𝑧𝑧𝑖𝑖𝑗𝑗��  (9) 

𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖𝑗𝑗 ≤ 𝑀𝑀𝑧𝑧𝑖𝑖𝑗𝑗                 ∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇   (10) 

𝑙𝑙𝑖𝑖 ≤ ∑ 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖𝑗𝑗𝑗𝑗∈𝑇𝑇             ∀𝑗𝑗 ∈ 𝐽𝐽   (11) 

To account for economies of scale, the six-tenths 
rule is applied to estimate 𝑐𝑐𝑐𝑐𝑝𝑝𝑜𝑜𝑥𝑥𝑖𝑖𝑗𝑗. This rule leads to a 
non-linear non-convex equality. Thus, a secant 

linearization [21] as presented in Eq. (9) is applied, where 
𝑐𝑐 and 𝑏𝑏 are lower and upper bounds of the approximating 
function. 𝑐𝑐𝑐𝑐𝑝𝑝𝑜𝑜𝑥𝑥𝑖𝑖

𝑟𝑟𝑐𝑐𝑟𝑟 and 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖
𝑟𝑟𝑐𝑐𝑟𝑟 are reference parame-

ters taken from the literature. And the capacity of plant 𝑡𝑡 
for process 𝑗𝑗 is represented by 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖𝑗𝑗 . Furthermore, 
the binary variable 𝑧𝑧𝑖𝑖𝑗𝑗 indicates whether a plant 𝑡𝑡 is se-
lected for the process 𝑗𝑗. Eq. (10) ensures that capacity is 
zero if plant 𝑡𝑡 of process 𝑗𝑗 is not selected, with 𝑀𝑀 equal 
to the maximum plant capacity. Lastly, Eq. (11) bounds 
net flow through 𝑗𝑗 by the total capacity of 𝑗𝑗. 

GHG Emissions 

𝐺𝐺𝐺𝐺𝐺𝐺 =  ∑ 𝜙𝜙𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖∈𝐽𝐽𝐸𝐸                    ∀𝑖𝑖 ∈ 𝐼𝐼𝑅𝑅  (12) 

The environmental objective presented by Eq. (12) 
represents raw material extraction, processing, and man-
ufacturing emissions. It states that the net greenhouse 
gas (GHG) emissions are equal to the total generation of 
components 𝑖𝑖 in the set of reference products 𝐼𝐼𝑅𝑅 multi-
plied by the emission factor 𝜙𝜙𝑖𝑖 which measures carbon 
equivalents (𝑇𝑇𝑂𝑂2𝑜𝑜). Set 𝐼𝐼𝑅𝑅 is defined such that emission 
parameters are normalized per reference product be-
longing to each evaluated technology node. The consid-
ered GHGs are carbon dioxide, methane, and nitrous ox-
ide. Parameter 𝜙𝜙𝑖𝑖 is determined with process data avail-
able in the literature. 

Virgin Raw Material Utilization 

𝑉𝑉𝑉𝑉 =  ∑ 𝑝𝑝𝑖𝑖𝑖𝑖∈IF     (13) 

The final design goal considers raw material use and 
measures network material efficiency. This objective 
serves as a proxy for quantifying circularity. The objec-
tive function is defined by Eq. (13) and represents the 
sum of market purchases of virgin feedstock, where 
𝐼𝐼𝐹𝐹describes feedstock components. 

Optimization Problem 
The analysis involves solving the optimization prob-

lem defined in Eq. (14). Here,  𝑍𝑍 represents each objective 
function, where Eq. (14) is a MILP for the annualized cost 
objective but an LP for both environmental and material 
use objectives as Eq. (9-11) pertain only to the economic 
problem. 

min𝑍𝑍                                                                                      
           𝑠𝑠. 𝑡𝑡.𝐸𝐸𝐸𝐸. (1 − 7),𝐸𝐸𝐸𝐸(9 − 11)                            (14) 

𝑙𝑙𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑝𝑝𝑖𝑖 , 𝑐𝑐𝑐𝑐𝑝𝑝𝑜𝑜𝑥𝑥𝑖𝑖𝑗𝑗 , 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖𝑗𝑗 ≥ 0, 𝑧𝑧𝑖𝑖𝑗𝑗 ∈ {0,1}              
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RESULTS 
Single-Objective Solutions 

The optimization problem is solved using CPLEX 
version 22.1.1 and Pyomo, a Python optimization model-
ing language [22]. The results and comparisons for the 
single objective problems are presented in Figure 3. Con-
sidering the economic objective, the optimal network 
configuration of the design model is circular, employing 
both mechanical recycling and glycolysis. Final products 
from recycling include rPET that is sent directly to the 
manufacturing stage to create final PET end products. 
Comparing this optimal network to the solution of the 
corresponding linear reference model shows that a circu-
lar network offers a 46% cost reduction over the linear 
counterpart. 

Likewise, for the GHG emission objective, the solu-
tion of the design model leads to a circular network 
achieved with mechanical recycling and glycolysis. How-
ever, contrary to the network configuration of the eco-
nomic objective, more biomass feedstock is used over 
fossil feedstock. Additionally, comparing the solution of 
the GHG objective to the corresponding linear reference 
gives a 21% reduction in supply chain process emissions. 
This reduction is lower relative to that achieved by the 
economic objective. 

Lastly, the solution of the circular design model for 
the virgin raw material objective is a circular network with 
a 59% reduction in raw material consumption. However, 
compared to the previous design solutions, this network 
consists of a much higher application of chemical recy-
cling via glycolysis and enzymatic hydrolysis and the rest 

of the downcycling of polyester. In addition to rPET pro-
duction, monomers are produced and sent upstream for 
polymerization into PET. 

In addition to the base cases, additional considera-
tions are evaluated for the economic and environmental 
objectives. The first assigns zero Capex to developed US 
processes to account for existing infrastructure. The re-
sultant networks for both linear and circular models con-
verge to an equivalent linear network. The selected net-
work utilizes a purely fossil-based pathway employing 
steam cracking of natural gas and cracking of crude oil. 
The second consideration is unrestricted access to all 
feedstock, where unlimited is defined by altering market 
bounds to allow one gigatonne for all feed components. 
Like the first consideration, solving the reference and cir-
cular model leads to an equivalent linear network. How-
ever, contrary to the previous network, the obtained net-
work follows a purely biomass-based pathway via bio-
mass-to-ethylene conversion and acid hydrolysis of bio-
mass to produce paraxylene. 

Pareto Assessment 
 The Pareto fronts for the design and linear models 

are shown in Figure 4. The linear model exhibits a linear 
trade-off between all objectives, where reducing emis-
sions leads to higher-cost networks that consume more 
virgin feedstock. This trend occurs as increasing biomass 
feed consumption leads to reduced emissions. Yet, be-
cause process conversions of biomass processes are rel-
atively low compared to fossil processes, higher raw ma-
terial input is required to satisfy demand. These observa-
tions are further validated via the change in configuration 
of the selected optimal networks numbered in Figure 4. 

 
Figure 3. Comparison of single objective solutions of linear reference model and design model with the 
resultant dominant network configurations. MR represent mechanical recycling of bottles and downcycling of 
polyester. 
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In Figure 4(a), network one corresponds to the solution 
of the GHG emission objective presented in Figure 3 
without selections for recycling. Likewise, network three 
is consistent with the cost objective network in Figure 3, 
without recycling. Network two corresponds to an inter-
mediary of network one with steam cracking of natural 
gas without recycling, supporting the observable transi-
tion from biomass pathways to better conversion fossil 
pathways. 

For the circular model, the Pareto front is piecewise 
linear. As shown in Figure 4(a), the leftmost trend line 
abides by the reasoning discussed for the linear model. 
However, after some threshold, attaining increased ma-
terial circularity (lesser virgin feedstock consumption) 
leads to more emissions and higher annualized costs. The 
rationale for this behavior is that further reductions in ma-
terial consumption demand a reasonably material-effi-
cient network. Such a network is achievable by selecting 
more chemical recycling processes, contributing to in-
creased capital investment and GHG emissions. Like the 
linear model, these trends are supported by the network 
configurations spanning the Pareto front. Looking at Fig-
ure 4(b), network three corresponds to the solution of the 
virgin raw material objective presented in Figure 3, plus 
the mechanical recycling of bottles. Network one corre-
sponds to the GHG emission objective in Figure 3. And 
network two, an intermediary of network one with steam 

cracking of natural gas. 

CONCLUSIONS 
This work formulates a superstructure optimization 

problem for the US polyethylene terephthalate value 
chain to determine an optimal network selection consist-
ing of processing technologies and material flow path-
ways satisfying each design goal for a one-year assess-
ment period. The three assessed design goals are total 
annualized cost, GHG process emissions, and virgin 
feedstock consumption, which served as a proxy for 
measuring material circularity. Finally, a multi-objective 
Pareto assessment was performed to illuminate existing 
trade-offs between competing objectives for the linear 
and circular design models.  

The results of the single-objective analysis indicate 
that circular PET supply chains offer lower GHG process 
emissions, water consumption, and virgin feedstock us-
age. Additionally, under current market conditions, a cir-
cular PET network is a better investment than a linear 
network when constructed from a zero-infrastructure 
ground state. Next, the results of the Pareto assessment 
portray a linear trade-off between objectives for the lin-
ear model, with a correlation between total annualized 
cost and virgin feedstock consumption, which vary in-
versely with GHG process emissions. The same observa-
tion is initially present for the circular model. However, 
attaining better material circulation increases the carbon 
intensity and cost for the selected networks, chiefly due 
to the additional processing technologies required to re-
alize greater network efficiency. 
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ABSTRACT 
Recent advances in process design for solvent-based, post-combustion capture (PCC) processes, 
such as the Piperazine/Advanced Flash Stripper (PZ/AFS) process, have led to a reduction in the 
energy required for capture. Even though PCC processes are progressively improving in Technol-
ogy Readiness Levels (TRL), with a few commercial installations, incorporating carbon capture 
adds cost to any operation. Hence, cost reduction will be instrumental for proliferation. The aim of 
this work is to improve process economics through optimization and to identify the parameters in 
our economic model that have the greatest impact on total cost to build and operate these sys-
tems. To that end, we investigated changes to the optimal solution and the corresponding cost of 
capture considering changes in the price of utilities and solvent. We found that changes in solvent 
price had the most effect on the cost of capture. However, re-optimizing the designs in the event 
of price changes did not lead to significant improvements in the case of piperazine, cooling water 
and electricity, whereas re-optimizing for changes in steam prices lead to yearly saving of 3.8%. 
These findings show that the design choices obtained at the nominal optimal solution are insensi-
tive to utility price changes except for the case of steam and that there is a need for altered de-
signs for locations where the steam prices are different. 

Keywords: post-combustion carbon capture, rate-based model, optimization, nonlinear programming, sensi-
tivity analysis.  

INTRODUCTION 

Solvent-Based Carbon Capture Process 
Modeling 

Solvent-based post-combustion carbon capture 
(PCC) processes are the most promising way to mitigate 
the increasing CO2 emissions. There has been significant 
focus on trying to reduce the energy and cost required 
for capture, one prominent example being the Pipera-
zine/Advanced Flash Stripper (PZ/AFS) process [1], 
shown in Fig 1. This novel process uses PZ as the solvent 
and the AFS process design, as shown. Flue gas contain-
ing CO2 is contacted with the CO2-lean solvent in a 
packed absorber column. An intercooler in the middle of 
the column, as well as a cooler at the top, are used to 
drive down the solvent temperature to improve absorp-
tion. After leaving the absorber, the CO2-rich solvent 
passes through a heat exchanger network that has two 

split streams; one of which is pumped directly to the top 
of a stripper column, while the other is pumped to a 
steam heater as shown in Fig 1. After the solvent is fur-
ther heated in a steam heater, it gets flashed inside of a 
flash tank where the resulting vapor then enters the strip-
per column. After stripping, a vapor phase containing a 
CO2 - water mixture exits the column from the top. It is 
then cooled down in a heat exchanger and finally sepa-
rated out in a condenser drum. The lean solvent recov-
ered in the flash tank is pumped back to the absorber 
column with the addition of make-up PZ and water. 

The economics of PCC processes can be improved 
by optimization, which requires a mathematical model of 
the process. Hence, a detailed model of the PZ/AFS pro-
cess was built using an equation-oriented approach in 
the IDAES framework, an open source, Python-based 
modeling medium [2]. In addition to the absorber and 
stripper columns, our model also includes the flash tank, 
all heat exchangers, and a recycle stream with solvent 

mailto:iakkor@andrew.cmu.edu
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Akkor et al. / LAPSE:2024.1587 Syst Control Trans 3:635-640 (2024) 636 

make-up. For the columns, a rate-based modeling ap-
proach was used (as opposed to equilibrium-based), and 
a finite-difference scheme was used for discretization of 
the system of differential algebraic equations (DAE). This 
led to a highly nonlinear programming (NLP) model with 
over 8600 variables and constraints. The solution strat-
egy includes a tailored, multi-level initialization cascade 
for reliable model convergence [3]. Once the model re-
sults were validated with pilot plant data [4], economic 
optimization was performed, which resulted in identifying 
the design and operating conditions that led to a consid-
erable reduction in the capital and operational costs com-
pared to the baseline, at the pilot scale [3]. To test the 
robustness of the model and to aid the commercialization 
of this process, optimization was performed for varying 
plant capacities (processing up to 1500 times more flue 
gas than the pilot scale) and for feed gases with different 
CO2 concentrations to represent different flue gas 
sources that may arise in practice [3]. 

Parameter Uncertainty and Variability 
In chemical process models, there are many param-

eters that are uncertain or subject to variability which, if 
disregarded by the model, lead to solutions that may not 
be truly optimal or even feasible in real life. Hence, it is 
crucial to account for these during the design phase. Un-
certainty in a parameter stems from a lack of knowledge 
of its exact value, whereas variability is concerned with a 
parameter that may take on a different value, for example 
at a different point in time or at another location [5]. In 
the context of process models, these parameters can be 
categorized into three groups: (1) epistemic parameters, 
which are inherent in any process model, and which stem 

from the approximating nature of correlations used to 
evaluate properties (kinetic, thermodynamic, transport) 
and the overall assumptions made therein; (2) operational 
parameters, which pertain to the upstream conditions 
and may be subject to temporal variations, e.g., compo-
sition, flowrate and/or temperature of the flue gas; and 
(3) economic parameters, such as the applicable prices 
for utilities and the solvent. 

To identify which of the above are most impactful 
and to quantify the extra costs necessary for designs to 
insure against them, a series of sensitivity analyses were 
conducted. More specifically, the aim of this work was to 
leverage the equation-oriented model that we had previ-
ously built to gather insight on the impact of the eco-
nomic parameters on the optimal process designs. In our 
previous study it was seen that, at the commercial scale, 
along with the purchase cost of the absorber column, the 
operating expenses for cooling water, steam, electricity, 
and solvent renewal were the dominating costs [3]. 
Therefore, this study further investigated the sensitivity 
of the plant design and its total cost to the prices of said 
utilities and to the piperazine solvent. 

METHODOLOGY 
For this study, we chose to perform sensitivity anal-

yses on the commercial scale, natural gas combined cy-
cle (NGCC) flue gas processing plant. The feed gas 
flowrate was 30,000 mol/s, and the parallel train config-
uration was used as it was done in the Mustang Station 
plant, presented in the work of Clossmann et al. [6]. The 
optimization problem was structured to minimize the total 
annualized cost (TAC), subject to some performance 

 
Figure 1: PZ/AFS process flowsheet; the prices of the highlighted utilities are considered for sensitivity analysis 
(Adapted from [3]) 
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constraints, such as a 96% capture target and flooding 
constraints for the columns [3]. Thirteen degrees of free-
dom were the packed length and the inner diameter of 
the absorber and stripper columns, the areas of the three 
heat exchangers, the two coolers and the steam heater, 
two bypass ratios, and solvent circulation rate. The first 
ten were the decision variables related to design, which 
must be committed before building the plant, whereas 
the bypass ratios and the solvent amount were opera-
tional decisions that can be adjusted.  

The parameters that we focused on were the prices 
of the utilities (e.g., steam, cooling water and electricity) 
and piperazine, which were nominally assumed to be at 
the values given in Table 1. Cooling water was used for 
the two coolers, as shown in Fig 1. It must be noted that 
the optimal solution for the nominal case for the commer-
cial-scale natural gas combined cycle (NGCC) flue gas 
processing plant does not use the intercooler. Hence, in 
the nominal solution, cooling water is only needed for the 
lean cooler at the top of the absorber column. However, 
the optimal solution for the cases that consider price var-
iation, the inclusion of intercooler is allowed as a degree 
of freedom. Steam is used to heat up the rich solvent in a 
heater before it enters the flash tank. Electricity is 
needed for pumping the lean and rich solvents between 
columns. Our economic model considers operational ex-
penses for these utilities as a fixed per unit price. To com-
pensate for any losses, make-up of water and piperazine 
is needed to close the recycle loop. However, in a real-
world plant operation, the lost piperazine is mostly 

recovered in a water wash section above the absorber 
column. Therefore, cost of make-up is not additionally 
considered in our economic model. Instead, the cost of 
the solvent initially used in loading up the system is in-
cluded in the capital costs at the design stage. Thereaf-
ter, it is assumed that the entirety of the solvent will be 
renewed every three years to make up for losses and 
degradation. This cost is included in the operational 
costs. 

Table 1: Fixed prices assumed for utilities and piperazine. 

Utility Price 
Piperazine  $/ton 

Steam  $/ton 
Cooling water  $/ton 

Electricity  $/kWh 
 
Optimal designs and corresponding operating con-

ditions are obtained for cases for which the prices of se-
lected parameters are changed stepwise up to a range of 
±50. CONOPT was used as the solver for solving this 
nonlinear optimization problem [7]. By reoptimizing the 
system for each case with respect to all degrees of free-
dom (both design and operational), we can see how de-
signs change and how the overall cost changes with the 
utility prices. The insights gained from this study are par-
ticularly useful when designing plants for geographies or 
markets with different applicable utility prices. Addition-
ally, the parameter that has the greatest impact on total 

 
Figure 2: Sensitivity of the optimal cost of capture to changes in utility and solvent prices 
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cost can be identified along with design optimizations 
that can mitigate the impact of its price change. 

SENSITIVITY OF OPTIMAL DESIGN TO 
ECONOMIC PARAMETERS 

The corresponding changes in the optimal cost of 
capture with changing utility and solvent prices is shown 
in Fig 2. It is observed that the change in the price of pi-
perazine has the most significant effect on the cost. This 
is due to the way solvent renewal is accounted for in our 
economic model, where it is a part of both capital and 
operational expenditures. Moreover, while there is flexi-
bility in the usage amounts of utilities, a certain base 
amount of solvent needs to be used to achieve a given 
capture target no matter what. It is observed that elec-
tricity has the least impact on the cost of capture. This 
could be because our model does not consider a com-
pressor train, so electricity is only used for running the 
pumps. The column pressures are not allowed to vary, 
therefore the only decision variable that would affect the 
electricity consumption is the amount of solvent circu-
lated. While all cost curves are mostly linear, the curve 
representing steam becomes non-linear at lower prices, 
with the cost of capture becoming more sensitive to 
steam for price decreases beyond 20%.  

To further investigate the sensitivities to price 
changes, the optimal solutions were compared to results 
from the baseline case, where price changes were imple-
mented on the nominal solutions but without any optimi-
zation. For steam, reoptimizing the process design for 
price changes can lead to savings up to 3.8% (around 
$1.6M yearly) compared to the baseline solution. The 
most significant difference is observed in the case of 
steam as compared to other parameters. Reoptimizing 
for different prices of piperazine leads to savings up to 
0.2% (around $100k yearly). However, for cooling water 
and electricity, reoptimizing did not lead to significant 
changes. The new solutions did not deviate from the orig-
inal solution significantly. The nominal optimal solution is 
therefore robust for the changes in the price of electricity 
and cooling water. However, it must be noted that these 
are local optimal solutions, which can be dependent on 
initialization. Since each problem is initialized from the 
nominal solution, a better solution further away from the 
nominal case can not be ruled out. 

Sensitivity to Steam 
The effect of changes in steam price on the optimal 

solution along with the percent reduction in the optimal 
Total Annualized Cost (TAC) were further investigated. 
Fig 3 shows the change in the steam consumption with 
price changes. When the price is increased by 50%, very 
little steam is used, with a steam heater area that is al-
most 1/6th of its original size. When the price is decreased 

by 50%, the change in steam consumption is much more 
pronounced. This also reflects in the reduction of TAC as 
seen in Fig 3. For price changes between -50% and -30%, 
we can see a significant reduction in TAC. The steam 
consumption also changes sharply after the -30% price 
change point. This is also evident in Fig 2, where the 
curve representing steam shows nonlinear behavior.  

 

 
Figure 3: Percentage reduction in TAC by redesigning for 
different steam prices 

The change in the values of the other decision vari-
ables given the steam price changes are shown in Fig 4. 
Once again, we observe the jump to a better solution at 
the -30% price change point. The cooler area and the 
stripper diameter have a similar trend with the steam 
consumption where they decrease with increasing steam 
prices. Using more steam increases the temperature of 
the lean solvent being pumped back to the absorber. 
Therefore, a bigger cooler and a higher cooling water 
consumption is needed when more steam is used as the 
system would now need more cooling. Usage of more 
steam also decreases the lean loading since more CO2 is 
flashed from the rich solvent at a higher temperature. 
Moreover, since more water and CO2 are flashed with in-
creased steam usage, the gas flowrate within the stripper 
column increases, leading to a need for larger diameter. 
However, its change from the nominal solution is around 
10%.  

The packed absorber length, solvent flowrate and 
the total heat exchanger area show an opposite trend 
with steam consumption. Since more steam and cooling 
water are used, there is less of a need for the heat ex-
changers. Thus, at low steam prices, there is a significant 
(reaching up to 40%) reduction in the total heat ex-
changer area needed. Cooling improves the absorber 
performance since absorption is exothermic. As dis-
cussed above, using more steam leads to more cooling 
water consumption therefore, we can use a shorter col-
umn when steam prices are low. However, the change in 
absorber packing height is less significant. Similarly, 
since increased cooling water improves absorption and 
more steam improves stripping, less solvent may be used 
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to achieve the same capture target. Indeed, we can see 
that 20% less solvent is used for the cheapest steam 
price case. 

CONCLUSIONS 
We leveraged the optimization capabilities of the 

equation-oriented model of a novel solvent-based PCC 
process that we had previously developed to find cost-
optimal solutions considering variation in economic pa-
rameters. This was done through a series of parameter 
sweeps on the price of cooling water, steam, electricity, 
and the solvent. The prices were perturbed in steps up to 
a range of ±50%. Piperazine had the most significant ef-
fect on the change of cost of capture while electricity had 
the least effect. Upon comparing the nominal solutions 
obtained for each price change from the baseline with 
those solutions obtained on re-optimizing for each price 
change, it was observed that only changes in steam price 
had a significant impact. Thus, we infer that the optimal 
solution for the nominal case is robust to changes in the 
price of cooling water, electricity and piperazine. In con-
trast, for steam, an optimal value with significant differ-
ences from that of the nominal solution was obtained for 
different prices. This change was significant for cheaper 
steam prices, where yearly savings of 3.8% were ob-
tained when reoptimizing for 50% cheaper steam. For this 
case, a bigger cooler and a larger stripper diameter was 
chosen, while savings were achieved through using a 
shorter absorber column, lesser solvent amount, and 
smaller heat exchangers. So, if this plant was to be 

implemented at different locations where different steam 
prices apply, it is worth changing the design accordingly, 
whereas for the other utilities this may not be a concern. 

There are many more parameters in this model that 
could be considered uncertain. When transitioning into an 
optimization under uncertainty framework, it is important 
to pre-screen the parameters with the highest impact 
through sensitivity analyses as shown in this work. In the 
future, more parameters relating to epistemic and opera-
tional uncertainty should be investigated and the sensi-
tivity of the total cost to said parameters should be 
ranked in a systematic way. Another future direction 
could be to assess the flexibility of a design by optimizing 
solely over the decision variables related to operation. 
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ABSTRACT 
The overarching goal of limiting the increase in global temperature to ≤ 2.0˚ C likely requires both 
decarbonization and defossilization efforts. Direct air capture (DAC) and CO2 electrolysis stand 
out as promising technologies for capturing and utilizing atmospheric CO2. In this effort, we explore 
the details of designing and operating an integrated DAC-electrolysis process by examining some 
key parameters for economic feasibility. We evaluate the gross profit and net income to find the 
most appropriate capacity factor, average electricity price, syngas sale price, and CO2 taxes. Ad-
ditionally, we study an optimistic scenario of CO2 electrolysis and perform a sensitivity analysis of 
the CO2 capture price to elucidate the impact of design decisions on the economic feasibility. Our 
findings underscore the necessity of design improvements of the CO2 electrolysis and DAC pro-
cesses to achieve reasonable capacity factor and average electricity price limits. Notably, CO2 
taxes and tax credits in the order of $400 per t-CO2 or greater are essential for the economic 
viability of the optimistic DAC-electrolysis route, especially at competitive syngas sale prices. This 
study serves as a foundation for further work on designing appropriate power system models that 
integrate well with the presented air-to-syngas route. 

Keywords: Carbon Dioxide Capture, Technoeconomic Analysis, Syngas, Aspen Plus, Modelling and Simula-
tions.

1. INTRODUCTION
Suppressing the increase in global temperature to ≤

2.0˚ C likely necessitates the combination of decarboni-
zation and defossilization technologies, including point-
source CO2 capture (PSCC), carbon dioxide removal 
(CDR), CO2 storage, and CO2 utilization [1–7]. The path to 
carbon neutrality implies using defossilized carbon 
sources, such as biomass, sea/oceanwater, and air. 
There has been a significant effort on using biomass as a 
nature-based carbon source [8–10]. However, concerns 
have been raised about the effects of biomass-based 
technologies on crop prices, human rights, and their 

competition with food lands [3,11–15]. 
Alternatively, one could leverage sea/oceanwater 

and air as defossilized carbon sources. Indeed, a key CDR 
method that has been gaining significant attention in the 
recent years is direct ocean capture (DOC) [16–20], 
which benefits from the CO2 equilibrium between the at-
mosphere and the ocean as a capture step and focuses 
on the extraction of CO2 from carbonized oceanwater. 
Although this technology can be promising, it is still nas-
cent and further research is underway to understand its 
potential in the broader scope of defossilization efforts.  

Another key CDR technology is direct air capture 
(DAC), which captures CO2 from the atmosphere using a 

mailto:BriMathias.Hodge@colorado.edu
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chemical or a physical sorbent/solvent. DAC offers sev-
eral advantages including smaller land requirements 
compared to nature-based CDR technologies, modular 
contactors, and almost no competition with food crop 
lands [7,21–23]. One of the advanced DAC designs uti-
lizes a two-cycle process to capture CO2 using a hydrox-
ide-based solvent (generally, KOH) in the form of (bi)car-
bonates [24–27]. This technology is currently being de-
veloped and commercialized by a collaboration between 
Carbon Engineering and Oxy companies. However, one 
of the major challenges of hydroxide-based DAC is its 
high cost, with estimates ranging from $94 to $1,000 per 
t-CO2, and high energy consumption, which ranges from 
5.50 to 8.81 GJ per t-CO2 [21,24,28–30]. Most of this high 
energy cost originates from the elevated temperature 
needed (900˚ C) to regenerate the captured CO2 via cal-
cination [30]. Nevertheless, hydroxide-based DAC is 
thought to be the most scalable and cost-effective DAC 
technology today [21,22], making it an attractive option 
for obtaining defossilized carbon from air. 

To utilize this captured CO2 in a way that achieves 
circularity, both thermochemical and electrochemical 
methods can be used to convert it to more valuable prod-
ucts such as syngas (i.e., a mixture of H2 and CO), which 
is a key intermediate product that can be used in the pro-
duction of methanol, ethylene, jet fuel, and other high-
value products [31,32]. One of the most technologically 
mature methods for producing syngas from a feed of CO2 
is reverse water gas shift (RWGS), which takes in H2 as a 
second reactant and produces syngas at a H2:CO molar 
ratio of 1-2 [33,34]. The main downside of this technol-
ogy is the high temperature (1,000˚ C) requirement that 

likely necessitates the use of traditional heat sources 
(e.g., natural gas).  

An alternative technology is low-temperature CO2 
electrolysis, which directly utilizes electricity to reduce 
CO2 to CO at ambient conditions over a silver electrocat-
alyst in the cathode of an electrochemical cell. Although 
still a nascent technology, low-temperature CO2 electrol-
ysis allows the direct utilization of renewable electrons, 
enabling the design of a fully renewable CO2 utilization 
method. It is worth noting that several start-up and es-
tablished companies are trying to develop and upscale 
this technology, including Twelve [35], GIGKarasek [36], 
Siemens [37], Evonik [37], and Dioxide Materials [38]. 

The integration of DAC with low-temperature CO2 
electrolysis (DAC-CO2ER) can provide a promising defos-
silized air-to-syngas production pathway. We evaluated 
the techno-economics of this pathway against that of an 
integrated DAC-RWGS route in a previous effort [21], in 
which we found a potential route for DAC-CO2ER to be 
economically competent with more conventional routes 
in a future scenario. One of the main takeaways was to 
operate CO2 electrolysis at a current density of 1,500 mA 
per cm2 and a cell voltage of ≤ 2.00 V to enable the com-
petition between DAC-CO2ER with DAC-RWGS and con-
ventional methods for 2:1 syngas production.  

In this work, we especially focus on the economic 
feasibility of the DAC-CO2ER route that will allow it to be 
continuously operated at a large scale. We study the in-
fluence of capacity factor, average electricity price, syn-
gas sale price, CO2 taxes, and CO2 tax credits on the pro-
cess economics. We first estimate the design and opera-
tional limits of a baseline CO2 electrolysis system by 

 
Figure 1. A block flow diagram of the process integration of DACC and CO2 electrolysis. The blue blocks represent 
the units of the DACC plant, the green-colored electrolyzer is the CO2 electrolyzer, and the yellow-colored 
electrolyzer is the proton exchange membrane water electrolyzer (PEMWE). We denote the pressure swing 
adsorption (PSA) unit as a separator in this figure. 
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varying the capacity factor, average electricity price, and 
syngas sale price. We then look at an optimistic case of 
CO2 electrolysis to understand the effect of cell voltage 
and current density optimization on the design and oper-
ational limits. To expand on this, we perform a sensitivity 
analysis of the CO2 capture cost on the optimistic-sce-
nario limits to also consider further improvements of the 
DAC design. We then estimate the natural gas (NG) 
based market syngas sale price with CO2 taxes, enabling 
a comparison with potential future conventional syngas 
prices. Finally, we add CO2 tax credits to the DAC-elec-
trolysis system to search for economically feasible re-
gions of this defossilized syngas production pathway for 
design and operating conditions. 

2. METHODOLOGY 

2.1. Process description 
Figure 1 envisions a block flow diagram of the pre-

sented defossilized syngas production pathway. The 
DAC technology considered here uses KOH to capture 
CO2 from the atmosphere in the form of K2CO3 and 
KHCO3 in an air contactor. The captured liquid solution is 
then sent to a set of pellet reactors along with a Ca(OH)2 
slurry to regenerate the liquid KOH solvent and produce 
CaCO3 pellets. The pellets are then sent to calciners 
where they are dissociated into CaO and CO2 at a tem-
perature of 900˚ C. The CaO is then mixed with H2O in a 
set of slakers to re-produce a Ca(OH)2 slurry, whereas 
the gaseous product is dehydrated to produce a purified 
CO2 stream. This whole process is continuous, allowing 
for the capture of CO2 in the form of potassium (bi)car-
bonates as well as the regeneration of liquid KOH and 
gaseous CO2.  

The concentrated gaseous CO2 can then be sent to 
a CO2 electrolyzer where it is electrochemically reduced 
to CO using two electrons and two protons, Eq. (1). It is 
worth noting that the local pH near the catalyst surface 
determines the proton source, which also determines the 
reaction by-product (i.e., OH– for neutral-to-alkaline local 
pH or H2O for acidic local pH) [39]. In this work, we as-
sume a high local pH, which corresponds to H2O being 
used as the proton source. On the other side, the anode 
electrochemical reaction is assumed to be the oxygen 
evolution reaction (OER), Eq. (2), which commonly occurs 
on a Nickel-based or an Iridium-based electrocatalyst.  

 𝐶𝐶𝑂𝑂2 + 2𝑒𝑒− + 𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝑂𝑂 + 2𝑂𝑂𝐻𝐻−  (1) 

2𝑂𝑂𝐻𝐻− → 1
2
𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 + 2𝑒𝑒−   (2) 

The CO2 electrolyzer is not only producing CO, but 
also H2 via the competing hydrogen evolution reaction 
(HER), Eq. (3). However, the CO2 electrolyzer is generally 
optimized to increase the CO selectivity and decrease 
the H2 selectivity in the product stream. Thus, we supply 
additional H2 from a proton exchange membrane water 

electrolyzer (PEMWE) that oxidizes H2O to produce O2 
and protons (H+), Eq. (4). The protons then pass a cation 
exchange membrane (CEM) as they travel to the cathode 
side to be electrochemically reduced to H2 via HER, Eq. 
(3).  

  2𝐻𝐻+ + 2𝑒𝑒− → 𝐻𝐻2    (3) 

  𝐻𝐻2𝑂𝑂 → 2𝑒𝑒− + 1
2
𝑂𝑂2 + 2𝐻𝐻+   (4) 

2.2. Process models 
A hydroxide-based DAC plant was modeled in As-

pen Plus based off of Keith et al.’s design [24]. This model 
provides the mass and energy balances required to esti-
mate the equipment and operational costs of the plant. In 
addition, we use our own CO2 electrolysis model that cal-
culates the mass and energy balances of a specified 
electrolysis system. For further details about the process 
models, we refer the reader to our previous publication 
[21]. 

We design the CO2 electrolysis system based off of 
Wen and Ren et al.’s experimental results that achieved 
90% Faradaic efficiency of CO (FECO) at 612 mA per cm2 
and 3.3 V (energy efficiency (EE) ≈ 40%) in a 400-cm2, 
4-cell electrolyzer stack [40]. These performance values 
are used in our baseline scenario (Table 1). We addition-
ally consider an optimistic scenario in which we assume 
achievement of a current density and a cell voltage of 
1,500 mA per cm2 and 2.0 V (EE ≈ 67%), respectively. Ta-
ble 1 summarizes these assumptions. 

Table 1. Key baseline and optimistic assumptions of CO2 
electrolysis. 

Metric Baseline Optimistic 

Symbol 
  

Total Current Density 
(mA per cm)   

Cell Voltage (V)   
FECO % % 

Single-Pass Conversion % % 

2.3. Techno-economic model 
Our techno-economic model was developed to take 

the results of our process models as inputs and estimate 
the equipment and operational costs according to Towler 
and Sinnot’s methodology [41]. In addition, we estimate 
the gross profit, Eq. (5), and the net income, Eq. (6), while 
varying the capacity factor and average electricity price 
at a constant syngas price. The gross profit is used as an 
indicator of the system operations whereas the net in-
come is used as an indicator of both the design and op-
eration of the system. In Eq. (5) and (6), OPEX, CAPEX, 
and CRF refer to operational cost, capital cost, and capi-
tal recovery factor, respectively. The CRF, Eq. (7), is used 
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to annualize the capital cost of the system, where 𝑖𝑖 is the 
interest rate and 𝑁𝑁 is the plant lifetime. For key assump-
tions and further details about our techno-economic 
model, we refer the reader to the SI.  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑖𝑖𝑃𝑃 = 𝑅𝑅𝑒𝑒𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑒𝑒 − 𝑂𝑂𝑃𝑃𝑂𝑂𝑂𝑂  (5) 

𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 𝑁𝑁𝑒𝑒𝑃𝑃 𝐼𝐼𝑅𝑅𝐼𝐼𝐺𝐺𝐼𝐼𝑒𝑒 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑖𝑖𝑃𝑃 − 𝐶𝐶𝐴𝐴𝑃𝑃𝑂𝑂𝑂𝑂 • 𝐶𝐶𝑅𝑅𝐶𝐶 (6) 

   𝐶𝐶𝑅𝑅𝐶𝐶 = �𝑖𝑖(1+𝑖𝑖)𝑁𝑁�
[(1+𝑖𝑖)𝑁𝑁−1]

   (7) 

We use the techno-economic model outputs to de-
fine realistic targets for future renewably powered CO2 
electrolysis designs and techno-economic evaluations, 
especially in the context of renewably driven defossilized 
air-to-syngas pathways. 

3. RESULTS & DISCUSSION 
Two of the key assumed parameters in techno-eco-

nomic assessment (TEA) calculations in electrolysis are 
the capacity factor and the average electricity price. In 
the past, a capacity factor of ≥ 90% and an average elec-
tricity price in the range of $20-60 per MWh have been 
used in the CO2 electrolysis field [21,42–47]. Such values 
are highly optimistic for interactions with a highly renew-
able decarbonized power system and might unrealisti-
cally benefit the economics of CO2 electrolysis. To pro-
vide more realistic assumptions, a more-detailed power 
system model is needed to fill this gap. However, before 
this is pursued, it is important to understand the combi-
nations of the capacity factor, average electricity price, 
syngas sale price, and CO2 taxes that would allow the 
whole route to generate positive gross profit and positive 
net income.  

We consider two cases in this effort. In the first 

case, we focus on the operational limits of the presented 
DAC-electrolysis route (Fig. 1) by estimating the gross 
profit while varying the capacity factor and the average 
electricity price at syngas sale prices of $0.3-1.0 per kg-
syngas. We then identify the minimum capacity factor 
and average electricity price at each syngas price that 
allow the gross profit to stay positive. In the second case, 
we take the plant’s design into consideration as well, 
meaning that we not only focus on the short-term eco-
nomic decisions but the long-term ones as well. To ac-
complish this, we estimate the same parameters that en-
able the net income to stay positive at the different syn-
gas sale prices. We conduct the same analysis for four 
scenarios: 1) Baseline without CO2 tax credits (Fig. 2a and 
2b), 2) Optimistic without CO2 tax credits (Fig. 3a and 3b), 
3) Baseline with a CO2 tax credit of $130 per t-CO2 (Fig. 
5a and 5b), and 4) Optimistic with a CO2 tax credit of 
$130 per t-CO2 (Fig. 5c and 5d). 

3.1. Design and operational economic limits of the 
baseline DAC-CO2ER route without CO2 tax 
credits 
Figures 2a and 2b show the relationship between 

the capacity factor and the average electricity price at 
different syngas prices that would allow the gross profit 
and net income to be positive, respectively. We observe 
that a positive gross profit (Fig. 2a) at lower syngas 
prices requires a high-capacity factor and a low average 
electricity price. As the assumed syngas sale price in-
creases from $0.3 to $1.0 per kg-syngas, more flexibility 
in the capacity factor and the average electricity price 
can be obtained, while remaining economically viable. For 
instance, at an assumed syngas sale price of $0.7 per kg-

 
Figure 2. Capacity factor and average electricity price limits for (a) positive gross profit and (b) positive net income 
at different syngas prices of the baseline case (cell voltage = 3.3 V, current density = 612 mA per cm2, FECO = 90%, 
CO2 single-pass conversion = 27%). 
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syngas, a capacity factor of ≥ 95% is required at an av-
erage electricity price of $23 per MWh to generate a pos-
itive gross profit. However, at a higher assumed syngas 
sale price of $1.0 per kg-syngas, more operational flexi-
bility can be provided (e.g., capacity factor of 50%) at the 
same average electricity price ($23 per MWh), while still 
generating a positive gross profit. This finding demon-
strates the importance of capacity factor and average 
electricity price assumptions in determining the short-
term operational economic feasibility of the investigated 
DAC-electrolysis route.  

At longer timescales, the cost associated with the 
design of the plant (e.g., equipment, instrumentations) 
must be considered. We observe a red shift of the color-
map that requires higher syngas prices at higher capacity 
factors and lower average electricity prices (Fig. 2b). This 
is caused by the addition of the annualized capital costs, 
which adds an economic restriction on the design and 
operations of the plant that must be considered and min-
imized at an early stage. However, it is worth noting that, 
in practice, this restriction does not impact the opera-
tional decisions but rather the design decisions. 

Indeed, reducing the capital cost could significantly 
help achieve more flexible operations of the electrolysis 
unit such that the DAC-electrolysis route stays econom-
ically feasible throughout the broad range of dynamic 
electricity prices anticipated in the future [48]. Addition-
ally, benefitting from incentives [49] that partially or fully 
pay off the capital cost of the plant could significantly 
hasten the deployment of these defossilized pathways, 
especially when considering the current average syngas 
market price ($0.40 per kg-syngas, see the discussion in 
section 3.4 and calculation in the SI). However, it is 
worthwhile to re-iterate that this restriction does not 

influence the operational decisions of the plant. 

3.2. Design and operational economic limits of the 
optimistic DAC-CO2ER route without CO2 tax 
credits 
Improving the design of CO2 electrolyzers such that 

they achieve high current densities (≥ 1,500 mA per cm2) 
at low cell voltages (≤ 2.0 V; EE ≥ 67%) is still in progress 
[21,50]. Defining research targets that consider the eco-
nomics of such pathways would be helpful to CO2 elec-
trolysis researchers at this developmental stage. Figure 
3 shows the same relationships from Figure 2, however 
considering an optimistic CO2 electrolysis performance 
that achieves 1,500 mA per cm2 at 2.0 V (EE ≈ 67%).  

We find the average electricity price to gain more 
flexibility when considering the optimistic CO2 electroly-
sis performance in our gross profit calculations (Fig. 3a). 
For instance, at an assumed syngas sale price of $1.0 per 
kg-syngas, the maximum average electricity prices for 
the baseline and optimistic scenarios that enable positive 
gross profits at a capacity factor of 70% are approxi-
mately $37 and $46 per MWh, respectively. This finding 
is mainly due to the large influence of electricity costs on 
the economics of DAC-electrolysis routes, as driven by 
the cell voltage (or energy efficiency) [21,50].  

In addition, we find the capacity factor limits of 
maintaining a positive gross profit to also change as the 
cell voltage and current density are optimized (Fig. 3a). 
At an average electricity price of $30 per MWh and an 
assumed syngas sale price of $1.0 per kg-syngas, the ca-
pacity factor limits of the baseline and optimistic scenar-
ios that allow positive gross profits are estimated to be 
60% and 52%, respectively. The higher flexibility with op-
erating at lower capacity factors while still generating a 

 
Figure 3. Capacity factor and average electricity price limits for (a) positive gross profit and (b) positive net income 
at different syngas prices of the optimistic case (cell voltage = 2.0 V, current density = 1,500 mA per cm2, FECO = 
90%, CO2 single-pass conversion = 27%). 



 

Almajed et al. / LAPSE:2024.1588 Syst Control Trans 3:641-651 (2024) 646 

positive gross profit in the optimistic scenario is also 
driven by the lower electricity costs, which originate from 
achieving a lower cell voltage of 2.0 V.  

Similarly, Figure 3b shows the same general results–
i.e., higher flexibility of the average electricity price and 
the capacity factor limits to generating a positive net in-
come. However, we observe a slightly higher flexibility in 
the capacity factor, resulting from the reduction of the 
cell voltage that reduces the power of the electrolyzer; 
and thus, the electrolyzer’s capital cost. Therefore, 
higher flexibility in the capacity factor can be obtained in 
the optimistic scenario for operating with a positive net 
income.  

Although assuming an optimistic scenario provides 
more flexibility in the average electricity price and capac-
ity factor, high syngas prices of ≥ $0.6 per kg-syngas are 
still needed to generate positive gross profit and net in-
come (Fig. 3). In the following sections, we will explore 
the effect of CO2 capture costs, CO2 taxation on emitting 
technologies, and CO2 tax credits for capture technolo-
gies in order for the current projections of the integrated 
process to make economic sense.  

  

3.3. Design limits at different CO2 capture costs 
without CO2 tax credits 
Sourcing the CO2 from flue gases or from other non-

fossil sources could have a significant influence on the 

economic feasibility of the presented syngas production 
route. Thus, we estimated the long-run design limits at 
different capture costs ranging from $0 to $250 per t-
CO2, as shown in Figure 4.  

In general, as the CO2 capture cost increases, the 
plot shifts to the red region. At a CO2 capture cost of $100 
per t-CO2, consistent with the U.S. department of energy 
(DOE) carbon shot goals, we find the average electricity 
price to be $19 per MWh at a capacity factor of 80% and 
a syngas sale price of $0.7 per kg-syngas. Reducing the 
CO2 capture cost to $50 per t-CO2, consistent with 
sourcing CO2 from PSCC, allows more flexibility in the av-
erage electricity price (≤ $25 per MWh) at the same ca-
pacity factor and syngas sale price. This result demon-
strates the importance of reducing the CO2 capture cost 
to less than $100 per t-CO2 or sourcing the CO2 from an 
alternative source that would provide the carbon at a 
cheaper price. However, herein, we continue to focus on 
DAC to present an environmental process that allows the 
production of 2:1 syngas from air. 

3.4. Conventional syngas market price with CO2 
taxation 
The market syngas price is an important metric to 

compare against when evaluating emerging syngas pro-
duction pathways. Previous literature have cited or esti-
mated different syngas prices from natural gas (NG) 
feedstock processes, ranging from $0.03 to $0.74 per 

 
Figure 4. (a-f) Capacity factor and average electricity price limits for positive net income at different syngas prices 
of the optimistic case (cell voltage = 2.0 V, current density = 1,500 mA per cm2, FECO = 90%, CO2 single-pass 
conversion = 27%) and at various CO2 capture prices ranging from $0 to $250 per t-CO2. 
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kg-syngas [21,33,44,51,52]. We use the average NG-
based syngas price of these estimates as the market 
price in our analysis. We assume a NG-based plant that 
is composed of dry methane reforming (DMR) for 1:1 syn-
gas production and steam methane reforming (SMR) for 
additional H2 supply to produce 2:1 H2:CO syngas, ac-
cording to the design of Rezaei and Dzuryk [33]. Figure 5 
shows the re-calculated NG-based syngas price with 
CO2 taxes of $0-550 per t-CO2. We assume a 90% ca-
pacity factor to estimate the process and energy-associ-
ated CO2 emissions from the SMR-DMR pathway. Note 
that we are not accounting for any emissions outside the 
scope of the SMR-DMR process (e.g., natural gas pro-
cessing). 

 
Figure 5. NG-based syngas price as a function of CO2 
taxes. The color codes from blue ($) to orange ($$$$) 
correspond to the ranges ≤$0.5, ≤$0.6, ≤0.7, and ≤$0.8 
per kg-syngas cases, respectively. Note that we are not 
performing a full life-cycle assessment here; we are only 
accounting for the emissions from the DMR-SMR 
process, ignoring the emissions associated with raw 
materials’ processing. 

The linear relationship shows that the syngas price 
would increase to $0.79 per kg-syngas with a CO2 tax of 
$500 per t-CO2. Although this would give the DAC-elec-
trolysis pathway more flexibility in the capacity factor and 
average electricity price choices, it suggests a CO2 tax 
that is three times higher than the highest CO2 tax imple-
mented today ($155 per t-CO2 in Uruguay [53]). Thus, it 
is likely not realistic to consider reaching a CO2 tax rate 
of $500 per t-CO2 by mid-century.  

 However, considering a CO2 tax rate of $155 per 
t-CO2, the re-calculated NG-based syngas price in-
creases from $0.40 to approximately $0.53 per kg-syn-
gas (Fig. 5). At this price, the gross profit of the baseline 
and optimistic cases can be positive, although at restric-
tive capacity factor and average electricity price values, 
whereas the net income can only be negative. The only 

exception to this conclusion is if the CO2 capture costs 
dropped to ≤ $100 per t-CO2, assuming no tax credits are 
provided to CO2 capture (note that we will explore CO2 
tax credits in the next section). This finding, along with 
our previous results [21], suggest that a capital cost re-
duction of electrolyzers and air contactors would be nec-
essary to make the economics of DAC-electrolysis viable. 
In addition, deployment incentives that partially or fully 
pay the capital expenses of building DAC-electrolysis 
plants could make a difference in deploying such emerg-
ing technologies and allowing them to compete with ex-
isting NG-based syngas production methods. In parallel, 
CO2 tax credits could enormously help the net income to 
become positive by paying off some of the annual capital 
cost payments. 

3.5. Design and operational economic limits of the 
baseline and optimistic DAC-CO2ER route 
with a CO2 tax credit of $130 per t-CO2 
CO2 tax credits can be paid to CO2 capture plants 

whether they capture the gas from point sources or from 
air. In the U.S., the 45Q tax credit code [49] pays DAC 
plants a tax credit of $180 per tonne of captured and ge-
ologically stored CO2, and $130 per tonne of captured 
and used CO2. In our analysis, we therefore use a CO2 tax 
credit of $130 per t-CO2 for the captured CO2 by DAC to 
be used in the production of 2:1 syngas.  

Figure 6 shows the capacity factor and average 
electricity price limits of the baseline (Fig. 6a and 6b) and 
optimistic (Fig. 6c and 6d) CO2 electrolyzer cases with a 
CO2 tax credit of $130 per t-CO2. The optimistic case en-
ables more flexibility in the capacity factor and average 
electricity price at all syngas prices. For example, a price 
of $0.70 per kg-syngas at a capacity factor of 80% can 
generate a positive gross profit at average electricity 
prices of ≤ $32 and ≤ $40 per MWh for the baseline and 
optimistic cases, respectively. For the same case and 
same conditions, the maximum average electricity price 
lowers to $7 and $13 per MWh for the two cases, respec-
tively, to generate a positive net income. These results 
clarify that a CO2 tax of $155 per t-CO2 and a CO2 tax 
credit of $130 per t-CO2 are insufficient for the consid-
ered DAC-electrolysis route to be economically feasible, 
especially when considering annual capital cost pay-
ments. 

For the optimistic case to generate positive gross 
profit and net income at a reasonable average electricity 
price and competitive syngas sale price, two conditions 
must be met. First, a higher tax rate implemented on NG-
based syngas production is necessary. For instance, a 
CO2 tax rate of $383 per t-CO2 would increase the syn-
gas market sale price to $0.70 per kg-syngas, as shown 
in Figure 5. This rate is more than double the highest CO2 
tax rate today–$155 per t-CO2–but is necessary from a 
business standpoint to strengthen the economic 
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competition of the presented syngas production path-
way.  

Second, the CO2 tax credits must be increased. As-
suming an equal CO2 tax credit of $383 per t-CO2, the 
average electricity price limit of the optimistic scenario at 
a syngas price of $0.70 per kg can increase from $4 to 
$47 per MWh to generate a positive net income, while 
staying at a 90% capacity factor limit (Fig. S.1b). At this 
average electricity price and scenario, there will be more 
freedom in the operational decisions because the gross 
profit can stay positive even at a low-capacity factor of 
60%, albeit at an average electricity price of $18 per MWh 
(Fig. S.1a). Although discouraged from a design perspec-
tive, this scenario would allow the continued and eco-
nomic operation of the plant.  

To put these results into context, NREL’s annual 
technology baseline (ATB) analysis predicts a levelized 
cost of energy (LCOE) of utility-scale solar PV with bat-
tery storage in the range of $35-90 per MWh in 2050 
[54]. The analysis presented in this section highlights the 
economic and policy challenges faced by the presented 
DAC-electrolysis pathway. In other words, it will be diffi-
cult for the DAC-electrolysis system to compete with 
conventional syngas production methods without a CO2 
emission tax rate and a CO2 capture tax credit on the or-
der of $400 per t-CO2. Even in this scenario, the plant 
must operate most of the year at a capacity factor of ≥ 
80% and the average electricity price must be in the 
lower range of the NREL ATB’s LCOE predictions (i.e., ≤ 
$40 per MWh). Thus, further design and energy effi-
ciency improvements as well as policy incentives are 
necessary before this pathway can be commercialized at 
scale.  

4. SUMMARY AND FUTURE TARGETS 
In this work, we focused on the capacity factor and 

average electricity price limits at several syngas prices 
that enable the gross profit and net income of a DAC-
electrolysis route to be positive. We considered hydrox-
ide-based DAC as well as gaseous CO2 and liquid PEM 
H2O electrolysis systems to produce 2:1 H2:CO syngas. 
We additionally considered an SMR-DMR conventional 
route to re-calculate the syngas price after the addition 
of CO2 taxes. We analyzed baseline and optimistic sce-
narios of CO2 electrolysis and accounted for a tax credit 
payment of $130 per t-CO2. 

Our findings suggest that deploying the presented 
DAC-electrolysis route for syngas production will be eco-
nomically challenging, even after considering current CO2 
taxes and tax credits. Indeed, our results show that the 
very best-case scenario–which considers improved CO2 
electrolysis performance, a CO2 tax rate and tax credit of 
$383 per t-CO2, and a capacity factor of ≥ 80%–still re-
quires an average electricity price of $40 per MWh to 
generate both positive gross profit and net income. This 

price is in the lower range of the 2050 LCOE predicted 
average electricity prices by NREL’s ATB analysis for a 
utility-scale solar PV with battery storage, and it is about 
33% lower than the average 2023 wholesale electricity 
prices in U.S. markets [55]. Thus, several targets must be 
pursued before this pathway can be deployed as a defos-
silized syngas production route. 

For CO2 electrolysis, the main challenge is to 
achieve high current densities (≥ 1,500 mA per cm2) at 
low cell voltages (≤ 2.00 V) to lower the capital cost while 
improving the energy efficiency of the process. However, 
special attention must be paid to the durability and sta-
bility of the electrolysis system as achieving the perfor-
mance metric without stability would not allow industrial 
deployment at the high capacity factors required for 
profitability [56]. In addition, flexible operation is still an 
open problem in the low-temperature CO2 electrolysis 
field, requiring experimental tests of interrupted electrol-
ysis operations for long durations.  

Hydroxide-based DAC plant designs must also be 
optimized to lower the energy consumption and capital 
costs. Specifically, the air contactor capital cost needs to 
be reduced to maximize the net income of the entire in-
tegrated route. Alternative low-temperature regeneration 
methods could help reduce the capital cost as there 
would not be any need to using heat exchanger net-
works, which accounts for approximately 21% of the total 
capital cost of the presented route [21].  

Outside of technology development, high carbon 
taxes on CO2-emitting technologies and high carbon tax 
credits for CO2-capturing technologies would likely be 
necessary. Our results highlighted the importance of 
these policies in the shift from fossil-based to fossil-free 
production of syngas. For the defossilized air-to-syngas 
route presented here to be economically viable, CO2 
taxes and tax credit on the order of $400 per t-CO2 are 
required. These numbers are unquestionably too high. 
However, early and fast deployment is necessary to en-
able learning-by-doing and economies-of-scale to help 
reduce the total cost of these emerging defossilized 
pathways; and thus, their required CO2 taxes and tax 
credits. 

Future work should explore several avenues, one of 
which is the integration of a detailed power system model 
that considers the dynamics of renewable electricity 
generation and prices as well as energy storage. In this 
avenue, a comparison with wholesale electricity supply 
should be considered to understand the best-case sce-
nario for the DAC-electrolysis route to be economically 
feasible. In addition, alternative air-to-syngas routes 
should be explored with a similar methodology as pre-
sented here. Indeed, the most feasible integrated air-to-
syngas design is still unknown, motivating future works 
to further explore this research path.  

Finally, it is worthwhile to note that the present 
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study particularly considered sourcing CO2 from air. 
However, there are other sources of CO2, such as the 
ocean, flue gases, and CO2 process emissions, which 
were not explored here. Specifically, the latter two 
sources are likely to enhance the process economics of 
the whole integrated pathway, potentially allowing 
stronger competition with conventional NG-based syn-
gas production methods. However, one should be careful 
with environmental concerns of upstream processes that 
generate these point-source gases to assure the design 
of a sustainable, circular, and environmental process for 
syngas production.  
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The supplementary information file includes details 

about the techno-economic assessment calculations and 
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Figure 6. Capacity factor and average electricity price limits for (a) positive gross profit and (b) positive net income 
at different syngas prices with a CO2 tax credit of $130 per t-CO2 of the baseline case. (c) and (d) are the same 
limits with the same CO2 tax credit but for the optimistic case (cell voltage = 2.0 V, current density = 1,500 mA per 
cm2, FECO = 90%, CO2 single-pass conversion = 27%). 
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ABSTRACT 
Sustainable and economically viable plastic recycling methodologies are vital for addressing the 
increasing environmental consequences of single-use plastics. In this study, we evaluate the plas-
tic waste management value for the state of Georgia, US and investigate the potential of introduc-
ing novel depolymerization methods within the network. An equation-based formulation is devel-
oped to identify the optimum supply-chain design given the geographic location of existing facili-
ties. Chemical recycling technologies that have received increasing attention are evaluated as 
candidate technologies to be integrated within the network. The optimum supply-chain design is 
selected based on environmental and economic objectives. The designed network of pathways 
uses a mix of different technologies (chemical and mechanical recycling) in a way that are both 
economically environmentally sound.  

Keywords: recycling, supply chain, plastics, waste management, optimization 

1. INTRODUCTION
Plastic materials have revolutionized our daily lives

gradually replacing materials used for centuries such as 
wood, glass, or steel. Unfortunately, a significant amount 
of the plastics used ends up in landfills or marine envi-
ronments with a very small percentage of them currently 
being recycled. For context, 35.7 MT of plastics were 
generated in the US in 2018 while approximately 26.9 MT 
ended up to landfill (75.6%) [1]. Consequently, the transi-
tion to circular economies (CE) in which waste materials 
will be effectively re-used stands as one of the most 
prevalent challenges of our times particularly in context 
of waste plastics [2].  

The plastic waste management routes can be cate-
gorized into four categories: pre-consumer, mechanical 
recycling, chemical recycling, and energy recovery path-
ways. Currently, mechanical recycling is the primary 
method for recycling due to its low cost and simplicity, 
however, the material properties of the plastic degrade 
during processing (each plastic can be recycled 2-6 
times during each lifetime) [3, 4]. As a result, solely de-
pending on mechanical recycling impedes the realization 
of a closed-loop recycling economy [4, 5].   

Chemical recycling of polymers through depolymer-
ization pathways has garnered increased attention in the 
last decade as a promising alternative strategy. This is 
because chemical recycling enables the breakdown of 
polymers to constituent monomers thus, bypassing ma-
terial degradation issues [3, 6]. A wide variety of meth-
odologies have been proposed to chemically recycle 
waste plastics that differ considerably in terms of effi-
ciencies, reaction pathways and maturity levels thus, 
ranking technologies and making decisions is nontrivial 
[7].  

In combination to the already complex network of 
waste management options (e.g., landfilling, energy re-
covery, recycling etc.), design of economic and sustain-
able solutions that would maximize circularity is an open 
challenge. Previous studies have evaluated how to effec-
tively manage waste systems though integrated supply-
chains [8-11]. Ma et al. [4] developed a mixed integer lin-
ear program (MILP) approach to study the performance 
of thermochemical technologies at a regional-scale for 
low-density polyethylene (LDPE) and polypropylene (PP) 
waste. Recently, Badejo et al. [12] examined multiple 
technologies for managing high-density polyethylene 
(HDPE) waste using an MILP framework focusing on the 
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United States East Coast.  
In this work, we model the supply chain of two types 

of waste plastics (i.e., polyethylene terephthalate (PET) 
and HDPE) through an equation-based framework using 
geospatial data for the state of Georgia, US. Geographic 
locations of the existing waste processing facilities (e.g., 
landfilling, mechanical recycling, etc.) are integrated 
within the network. Subsequently, we assess the poten-
tial of integrating novel chemical recycling methodolo-
gies into the superstructure for processing PET and 
HDPE waste. Literature data are incorporated into the 
formulation, to enable capturing the economic and emis-
sions trade-offs between alternative technologies. Fur-
ther, we employ multi-objective optimization to identify 
the Pareto-optimal solutions. In summary, our study pre-
sents a computational framework based on a realistic 
system representation that can be utilized to compare al-
ternative pathways and enable the design of cost-effec-
tive supply-chains for PET and HDPE waste plastics.  

 
Figure 1. Overview of our analysis including data 
collection, formulation and optimization of the supply 
chain model.  

2. MODEL DESCRIPTION 

2.1. Model overview and problem statement 
An equation-based formulation is established to 

systematically model the value chain of plastics. The pri-
mary objectives are: (a) to determine the most efficient 
path for plastic waste from various points of collections 
ultimately to the end-user; and (b) the mix of transfor-
mation technologies that would maximize circularity. The 
model is constructed as a graph where its nodes repre-
sent the source, transformation, and demand facilities. 
Each node is characterized by the geographic coordi-
nates of each facility in Georgia, US (GA). The edges of 
the graph represent the material flowing between the 
nodes. This manuscript specifically studies the plastic 
waste management in the state of Georgia; however, the 
framework is generalizable and can be adapted for use in 
other regions that can vary in size. 

The supply network in Georgia consists of distinct 
operations: (a) the plastic waste (HDPE and PET) is col-
lected locally at transfer stations; (b) transported to land-
fills or recycling facilities; (c) transformed to usable forms 
through mechanical or chemical recycling; (d) mixed with 
virgin plastics to meet the market demands; and (e) 

transferred to the end-users. A simplistic graph of the 
route that plastics follows through the designed network 
is depicted in Figure 2.  

Data sourced by the state of Georgia and the Envi-
ronmental Protection Agency (EPA) [1, 13] are used as in-
puts to the model. Figure 3 visually presents the geo-
graphic locations of the system’s nodes. The databases 
were further refined to include only those locations that 
process or utilize PET and HDPE. A total of 201 collection 
sites, 44 landfills, 29 recycling facilities (with 15 pro-
cessing HDPE and 14 PET), and 30 market sites (11 and 
19 sites that demand HDPE and PET, respectively) are 
considered.  

  
Figure 2: Overview of the potential routes for plastic 
waste upcycling. 
 

 
Figure 3: Map of the state of Georgia, US including all 
nodes of the PET and HDPE supply chain. 

Figure 4 (a) and (b) depicts the spatial distribution 
of plastic waste generation for PET and HDPE in Georgia, 
respectively sourced from EPA database[1]. The amounts 
of HDPE and PET waste generated at each zip-code, are 
assigned as input rates to the closest collection site. It is 
assumed that the waste is already separated to HDPE 
and PET at each collection. The demand capacities for 
the each of the market locations is also assumed to be 
equal to the required amount of plastic at the closest zip-
code [1].  
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At the existing geographic locations of mechanical 
recycling nodes, hypothetical chemical recycling facili-
ties are introduced. It is assumed that each recycling 
node can process plastic waste either chemically or me-
chanically, provided that the capacity constraints are not 
exceeded. Various candidate technologies are compared 
for PET, including dissolution, enzymatic hydrolysis, gly-
colysis and methanolysis based on literature data [7]. For 
HDPE the investigation is focused only on dissolution as 
the primary chemical recycling technology. 

 
Figure 4: Heatmap of annual (a) PET (b) HDPE waste 
generated in Georgia, US as extracted by the EPA 
database. 

2.2. Model formulation 
As mentioned earlier, the supply chain model adopts 

a graph network representation. The set of all nodes is 
denoted as N. Collection sites (T), landfill (L), mechanical 
recycling (MR), chemical recycling (CR), and market (M) 
sets are introduced to describe the sets of distinct type 
of facility. Therefore, the entire network is described as 
N = T ∪ L ∪ MR ∪ CR ∪ M. Furthermore, for each of the 
sets introduced, a subset for PET and HDPE nodes are 
also established such that for example MR = MRPET ∪ 
MRHDPE. The same holds for each of the sets introduced 
apart from L that can accept both HDPE and PET waste. 
Each chemical recycling node is characterized by the 
candidate depolymerization technology. A binary varia-
ble yi,j,tech is introduced to specify the type of chemical 
recycling technology implemented at each CR node. Fi-
nally, every node is characterized by the material flow mij, 
from the starting node i to the destination node j.  

The model is formulated as a MILP with the objective 
of minimizing the economic or environmental impact. The 
environmental (Equation (1)) and economic (Equation (2)) 
objectives are defined as follows:  

E = ∑ ∑ dijmijEmileij + ∑ ∑ mijEi,j
N
i=1

N
j=1

N
j=1

N
i=1   (1) 

C = ∑ ∑ dijmijCmileij + ∑ ∑ mijCi,j
N
i=1

N
j=1

N
j=1

N
i=1  (2) 

Here, dij represents the distance between node i 
and j, while mij signifies the material flow between the 
nodes. Eij and Cij denote the CO2-eq emitted and the cost 

of production at the specific node with an input flow of 
mij, while Cmile and Emile the cost and the emissions of 
transporting plastic through the edges of the network. 
The first term in Equations (1) and (2) represents the im-
pact of the transportation to the objectives while the sec-
ond term the impact of processing the plastic within each 
node. The material balances of flows entering and exiting 
each node are given by Equation (3) with αij representing 
the conversion factors. Different conversion factors are 
assigned based on the technology selected, processing 
node and material type. Equation (3) should be satisfied 
for all nodes. 

∑ ∑ mi,jj=Nin αij =  ∑ ∑ mij j=Nouti=Nouti =Nin  (3) 

Furthermore, demand and source constraints are 
imposed through Equations (4)-(5). Equation (4) guaran-
tees that the market needs are fulfilled. The demands are 
satisfied by mixing recycled with virgin, petroleum-de-
rived plastic denoted as vPET and vHDPE, respectively. 
This is included because the current market requirements 
cannot be exclusively satisfied through recycling, even if 
all collected plastic is recycled. Equation (5) ensures that 
all waste gathered is effectively managed either through 
recycling or disposed at the landfills. Moreover, Equation 
(6) introduces a capacity constraint within the formula-
tion, to prevent material flows from exceeding the maxi-
mum processing capacity of each facility. 

∑ ∑ mi,jj=M + vPlastic =  ∑ Demandii=Mi=CR ∪MR       (4) 

∑ ∑ mi,jj=L ∪CR ∪MR =  ∑ Sourceii=Ti=T        (5) 

∑ ∑ mi,jj=M ≤  ∑ Capacityii=IMi=CR ∪MR        (6) 

Equations (7) and (8) set a quality constraint for the 
final product. This ensures that mechanically recycled 
plastic can be used in the production of new materials 
only if blended at a maximum threshold of 50% with virgin 
or chemically recycled plastic. Finally, Equation (9) guar-
antees that at each CR node, only one technology can be 
active. 

∑ ∑ mi,j ≤ 0.5�∑ ∑ mijj=Mi=CR + ∑ vPETii=M �j=Mi=R       (7) 

∑ ∑ mi,j ≤ 0.5�∑ ∑ mijj=Mi=CR + ∑ vHDPEii=M �j=Mi=R     (8) 

∑ ∑ ∑ yi,j,techj=Mi=CRtech ≤ 1        (9) 

 
The emission and cost factors utilized in Equations 

(1)-(2) are depicted in Table 1. All the environmental fac-
tors apart from the chemical recycling steps were ob-
tained from the ecoinvent database v3.10, following the 
ReCiPe 2016 methodology [14, 15]. The emissions and 
cost factors for the investigated chemical recycling tech-
nologies are taken from a recent study conducted by 
Uekert et al. [7] in which the authors performed rigorous 
simulations of various chemical recycling processes. The 
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cost factors for the rest of the steps are taken from the 
literature and published industry data [7, 16, 17].  

Table 1: Emissions and cost factors of processing, feed, 
and mechanical recycling nodes 

Process Price 
($/kg) 

Emissions  
(kg CO-eq/kg) 

Landfill HDPE   
Landfill PET   
MR HDPE   
MR PET   

Virgin HDPE   
Virgin PET   

Transportation /km /metric ton km 

Table 2: Emissions and cost factors for chemical recy-
cling technologies investigated 

Process Price 
($/kg) 

Emissions  
(kg CO-eq/kg) 

Dissolution PET   
Enzymatic Hydrol-

ysis PET   

Glycolysis PET   
Methanolysis PET   
Dissolution HDPE   

 

2.3. Solution Strategy 
The problem defined by Equations (1)-(9) is formu-

lated as an MILP problem. The mathematical problem is 
solved in Pyomo with CPLEX v22.2. First, the two single-
objective problems are solved independently, and the 
optimal network configurations and technologies of 
choice are obtained. In the case that the single-objective 
configurations are different, it indicates a conflict be-
tween the two solutions. This implies that there are 
trade-offs between economically sound and environ-
mentally friendly solutions. Next, to analyze the trade-
offs between the two solutions, the multi-objective opti-
mization problem is formulated and solved using the ε-
constraint methodology (Equation 10). The mathematical 
problem is transformed to a single-objective, bounded by 
an additional constraint that corresponds to the other ob-
jective [18, 19]. Cmin and Cmax correspond to the minimum 
and maximum values of the cost objectives as identified 
by the single-objective problems. 

min E     (10a) 

s. t. C < ε , where Cmin ≤ ε ≤ Cmax (10b) 

3. RESULTS AND DISCUSSION  
To evaluate the potential of integrating chemical re-

cycling within the existing network we analyze: (a) the 

environmental impacts (Section 3.1), (b) the economic 
implications (Section 3.2), and (c) both objectives simul-
taneously (Section 3.3).  

3.1. Environmental considerations of the GA 
recycling network 

The spatial solution considering the environmental 
objective is depicted in Figure 5 (a). This solution is 
representative of the Business-As-Usual (BAU) scenario, 
where 10% of the plastic waste is recycled. A very small 
portion of the generated waste plastic are directed to 
recycling facilities. For PET, mechanical recycling nodes 
remain inactive and all of plastics are processed through 
chemical recycling. This is because of the higher 
conversion rates and relatively similar emissions rates 
between mechanical recycling and glycolysis (e.g., 
candidate technology with lower emission factor). Strictly 
only considering emissions, chemical recycling is favored 
in the BAU case (e.g., 90% landfill). The opposite is true 
for HDPE, where all plastics that is not landfilled are 
mechanically processed. This is attributed to the 
relatively lower emissions of MR as compared to CR for 
HDPE. It is worth acknowledging that the emission data 
for chemical recycling processes are based on 
experiments and simulations hence, the results may 
change as closed loop depolymerization recycling 
methods are further explored and optimized at larger 
scales. 

 
Figure 5: Solution for (a) 90% landfill scenario; (b) 0% 
landfill scenario under the environemntal objective. 

To further explore the potential of recycling, sensi-
tivity analyses are carried out to investigate the scenarios 
in which more plastic waste is recycled. The percentage 
of waste directed to landfills is changed to represent hy-
pothetical scenarios. As landfilling is increasingly banned 
across Europe and some US states, those scenarios are 
important to consider. The network configuration for the 
zero-waste scenario is depicted in Figure 5 (b). The so-
lution showcases an interconnected network of nodes 
with both chemical and mechanical recycling facilities ac-
tivated. 
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The total CO2-eq emissions of the different scenar-
ios are highlighted in Figure 6. It is observed that as land-
fill is reduced, the total emitted CO2-eq are also reduced, 
even though the emissions of landfilling are minimal. This 
is outweighed by the fact that plastics diverted from 
landfills are transformed into usable forms which, conse-
quently, reduces the virgin plastic amount required to 
satisfy the market demands. Moreover, this is supported 
by the relatively small emission factors of glycolysis as 
compared to fossil production. The total emissions re-
ported for HDPE are far lower than those of PET only be-
cause the input waste amount of PET is approximately 
double that of HDPE waste. 

Figure 6: Emmited CO2-eq for different landfilling 
scenarios categorized by distinct operations 

Furthermore, more recycling nodes are activated as 
landfilling is reduced since more waste needs to be pro-
cessed while virgin requirements are reduced. The mix of 
technologies utilized to fulfill the market demands are 
visually represented in Figure 7 for the BAU and zero-
waste scenarios. In the BAU scenario, the demand of new 
plastic is fulfilled mainly through the production of virgin 
materials while, in the zero-waste case, mainly through 
the transformation of waste to useful products. The dif-
ferent solutions can be attributed to quality requirements 
set by Equations (7) and (8), the capacity constraints set 
for recycling as well as the amount of plastic diverted 
from the landfills to processing nodes. 

In terms of the investigated technologies, glycolysis 
outperforms all the other candidate methods and is cho-
sen as the most promising recycling solution in all the in-
vestigated scenarios. This is highly correlated with the 
fact that emissions of glycolysis are considerably lower 
compared to all others and very similar to those of me-
chanical recycling. The trade-off is that glycolysis has 
lower conversion than some of the other candidate tech-
nologies, however, this does not outweigh the higher en-
vironmental impact. Moreover, the use of plastic sourced 
from fossil resources is reduced in all those hypothetical 
cases, as highlighted in Figure 7. As more plastic waste 
is available for re-processing, the market demands do 

not have to be met with virgin quantities and the emis-
sions are reduced. However, even under the zero-waste 
scenario, some virgin plastic is still required to meet the 
demands due to material losses occurring at intermediate 
nodes within the value-chain. 

 
Figure 7: Amount of plastic processed through chemical 
and mechanical recycling compared with virgin 
requirements for 0% and 90% landfill scenarios.  

3.2. Economic considerations of the GA recycling 
network 
The spatial solution when considering the economic 

implications of the network are highlighted for the BAU 
and the zero-waste cases in Figure 8 (a)-(b). The effect 
of the same circularity scenarios to the economic objec-
tive are depicted in Figure 9.  

 
Figure 8: Optimal network configuration under the (a) 
BAU; and (b) zero-waste scenario considering the 
economic objective. 

It is observed that the evaluated cost objective is 
relatively constant throughout the different scenarios be-
cause of the similar cost factors in the competing scenar-
ios (e.g., fossil production compared to recycling). The 
use of recycling technologies in the zero-waste scenar-
ios does not reduce the cost relatively to the BAU that 
needs fossil – derived plastic to meet the market de-
mands. More specifically, the cost of virgin PET is set at 
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$1.19/kg compared to $0.87/kg for the dissolution that 
has the lowest cost factors amongst the competing tech-
nologies, while the cost of landfill is minimal. These two 
relatively close values in conjunction with the zero-waste 
constraint, drive the cost of recycling up, and even 
though recycling is selected, the cost is not substantially 
reduced. Moreover, the HDPE operation costs increase 
as the share of landfilling is reduced due to the higher 
costs of chemical recycling when compared to virgin or 
MR production. This trend is influenced by the quality 
constraints set by Equation (8) which enforces a certain 
amount of HDPE waste to be processed through CR, be-
cause otherwise the quality of the final product will be 
inadequate. 

Figure 9: Cost objective for different landfilling scenarios 
as identified for the different technologies. 

In terms of the competing technologies for PET, dis-
solution outperforms all the other options, being different 
from the environmentally favorable recycling methodol-
ogy (i.e., glycolysis). This result is attributed to the rela-
tively low-cost factors used for dissolution. In addition, 
the virgin requirements follow similar trends with the en-
vironmentally friendly solution discussed earlier with less 
fossil-derived plastic required, as landfilling is reduced. 
All in all, the solution identified for the cost minimization 
scenario corresponds to a different network with differ-
ent chemical recycling technologies activated compared 
to the green-house gas (GHG) minimization scenario, as 
depicted in Figure 10. This shows that the solutions are 
in fact in contrast.  

3.3. Identifying trade-offs between 
environmentally friendly and cost-effective 
solutions. 
In this section, we investigate the trade-offs be-

tween the economically friendly and environmentally 
sound solutions. The values of the two objectives are de-
picted in Table 3 for the two distinct landfilling scenarios 
(0%, 90%). This, along with the recommended technolo-
gies (e.g., glycolysis is chosen as the best environmental 

case, dissolution for the most economical solution) indi-
cates that the two objectives are in conflict meaning that 
different value chain networks are optimal. Moreover, the 
amounts of PET processed through chemical and me-
chanical recycling are very different for the two single-
objective problems as illustrated in Figure 10. 

 
Figure 10: vPET required for different landfilling 
scenarios and technologies to meet the market demands. 

The BAU solution is an exception since the identified 
configuration is very similar for the two problems. This is 
because very small amounts of plastic waste are recycled 
and almost all of it is diverted to landfills. The difference 
between the two cases is how the 10% of waste will be 
processed. For the zero-waste case studied, the spatial 
solution and the selected technologies are different, as 
highlighted in Table (3). Therefore, the trade-offs be-
tween the two objectives for this scenario are evaluated 
by following the procedure outlined in the Solution Strat-
egy section.  

Table 3: Values of the environmental and economic for 
the two extreme landfilling scenarios 

Objectives Economics 
(M$/day) 

Emissions (ton-
CO-eq/ day) 

% Landfill   
min Env   
min Ecn   

% Landfill   
min Env   
min Ecn   

 
The Pareto front is depicted in Figure 11 for the case 

of 0% landfilling.  Point A represents the optimal configu-
ration corresponding to the minimum cost objective, re-
gardless of the environmental impact. Similarly, point B 
represents the optimal configuration from an environ-
mental perspective. The exact values of the objectives 
are presented in Table 3. All other Pareto solutions that 
lie in between points A and B signify the trade-offs be-
tween the two objectives based on the level of 
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importance between the values.  

 
Figure 11: Pareto front and utopia point for the multi-
obejctive optimization problem for the zero-waste case. 

Point U, also referred to as Utopia point, reflects an 
ideal solution, in which the values obtained from the two 
single-objective problems are plotted. This is a hypothet-
ical scenario that can never be reached for those two 
conflicting scenarios. The different solutions observed as 
we move along the Pareto-front stem from changes in 
the configuration of the optimal waste management net-
work in the studied region and the technology chosen. 
The most significant difference between the two config-
urations is that the economically friendly solution only 
dissolution is chosen as a candidate technology, while in 
the environmentally sound value chain glycolysis is fa-
vored. Glycolysis and dissolution technologies are acti-
vated with different quantities processed as we move 
between points A and C. After point C, the cost objective 
increases at a different rate than the environmental ob-
jective. This is attributed to fact that after this point, only 
glycolysis is the active CR technology with some 
amounts processed through MR. As we move between 
point C to B, waste is diverted from MR to CR which in-
creases the processing costs but has minimal impact to 
the emissions. This is because the emissions of MR and 
glycolysis for PET are very similar, while the opposite is 
true for the cost factors. 

4. CONCLUSIONS 
In this work, we discuss the design of optimal value 

chains of plastic recycling for a specific set of collection 
sites, transformation facilities and market. A superstruc-
ture network model was formulated to describe the ex-
isting recycling chain in the state of Georgia in the US. 
Our analysis evaluates the potential of integrating differ-
ent depolymerization recycling technologies for PET and 
HDPE waste within the existing network. Different spatial 
arrangements and technologies are selected and de-
signed for environmentally and economically friendly so-
lutions. This contribution focuses only on the comparison 
of different depolymerization methods. However, to 

holistically evaluate the supply-chain of plastic recycling, 
it is essential to compare other technologies not solely 
based on depolymerization, such as energy recovery or 
feedstock recycling. The landscape of plastic waste 
management is highly dynamic and as new technologies 
are advanced and new research is conducted, the emis-
sion and cost factors used in this analysis may change. In 
terms of the HDPE feedstock, this assessment only ac-
counted for the use of dissolution as a chemical recycling 
technology. Future work will delve deeper into the inte-
gration of additional chemical recycling technologies be-
yond PET and HDPE.  We anticipate that this approach 
will allow for the evaluation and comparison of multiple 
waste management pathways along with more realistic 
feedstocks.  
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ABSTRACT 
2,3 butanediol (BDO) has garnered recent interest due to the high titer concentrations that can be 
obtained through biochemical routes and its potential for efficient conversion into long-chain hy-
drocarbons. BDO separation, however, is challenging given its low volatility and high affinity to-
wards water. In this study, two BDO separation pathways were compared, single distillation and 
combined simulated moving bed (SMB) adsorption with distillation. The separations were incor-
porated into a 2018 biorefinery design developed by the National Renewable Energy Laboratory 
(NREL) to produce renewable fuels from corn stover, with BDO as an intermediate and adipic acid 
as the co-product. The comparison was performed on the basis of sustainability, using lifecycle 
greenhouse gas (GHG) emissions as the metric. It was found that using a single distillation column 
gives GHG emissions of 48 gCO2e/MJ for the renewable fuel. This is lower than 93 gCO2e/MJ for 
petroleum fuel but is higher compared to the SMB-based process which achieves 21 gCO2e/MJ. 
Additionally, the minimum fuel selling price (MFSP) of each pathway was computed. Single distil-
lation gave a minimum MFSP of $2.54/GGE (gallon of gasoline equivalent) of fuel, while SMB 
reached $2.45/GGE. The SMB’s MFSP is lower than the Department of Energy’s (DOE) target of 
$2.50/GGE, demonstrating this pathway is both an economic and sustainable alternative and a 
sound separation candidate that can enable the viability of the entire biorefinery. The effect of 
BDO fermentation titer was also considered through a sensitivity analysis. 

Keywords: Adsorption, Biofuels, Distillation, Life Cycle Analysis, Technoeconomic Analysis.

INTRODUCTION 
2,3 butanediol (BDO) is a molecule of high interest 

in the chemical and energy industries that is commonly 
used as an intermediate for added-value products. BDO 
is commonly produced by the catalytic conversion of C4 
components from hydrocarbon mixtures [1]. Although 
high conversions can be achieved, these pathways have 
expensive operating costs and still rely on fossil fuels. 
This has kept BDO from becoming a sustainable and 
widespread chemical. Recent advances in the biochemi-
cal production of BDO from biomass-derived sugars, and 
high fermentation titers (50-110g/L), have led to an in-
creased attention to this molecule [2]. 

BDO is seen as a platform to help decarbonize hard-
to-abate sectors, such as heavy transportation (trucking 

and aviation). It has a higher heating value and is less vol-
atile than more commonly produced compounds like eth-
anol or butanol. Thus, at high purity values it can be used 
as blendstock or even directly as a drop-in fuel. BDO can 
also be an intermediate to produce renewable hydrocar-
bons. Its four carbons and two hydroxyl groups allow the 
dehydration into high carbon alkenes, which could facili-
tate subsequent oligomerization and hydrotreating steps. 
Most notably, in 2018 the National Renewable Energy La-
boratory (NREL) [2] developed a process design that de-
tails the production of a renewable 50/50 diesel+naphtha 
fuel product from corn stover. BDO obtained from fer-
mentation is the key intermediate of this process and 
adipic acid is the main co-product. This design will be re-
ferred to as the state-of-technology (SOT). Figure 1 
shows a high-level diagram of the SOT. The inside-
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battery limit (ISBL) includes alkaline pretreatment, hy-
drolysis, fermentation, upgrading to fuels and co-product 
trains. This is an integrated biorefinery, where utilities 
and other services are provided internally, including com-
bined heat and power (CHP), cooling and wastewater fa-
cilities in the outside-battery limit (OSBL). 

Pretreatment + 
Hydrolysis Fermentation

Corn Stover

Whole 
Slurry

(sugars) BDO

Lignin

Utilities
Combined Heat 

and Power (CHP) 
and Cooling

Lignin 
Valorization
(Co-product)

Solids

Adipic Acid 
(AA)

BDO
Upgrading

Renewable 
Hydrocarbon

Pretreatment
Liquor

Wastewater 
Treatment

Sodium SulfateSolids

Wastewater

Wastewater

 
Figure 1. High level diagram of the NREL SOT process. 
Adapted from Davis et al, 2018 [2] 

As seen, the ISBL in the SOT lacks a separation step 
that recovers BDO post-fermentation. This dilute broth 
(~100g/L BDO titer) is directly sent to the to the dehydra-
tion reaction. In reality, however, is unlikely for the reac-
tor to efficiently upgrade BDO at dilute conditions, mak-
ing the separation a required step in the plant. Figure 2 
shows a more detailed diagram of the modified upgrad-
ing portion of the SOT, with the proposed separation lo-
cated between fermentation and dehydration to concen-
trate BDO. 

Fermentation Proposed BDO 
Separation

Whole 
Slurry

(sugars)
Dilute BDO
(<10wt%)

Concentrated 
BDO

Dehydration 
Reactor

Preheated
BDOWater

Hydrogen

Alkenes
+

WaterAlkenes/Water 
Distillation

Oligomerization 
+ Hydrotreating

Water

AlkenesFuel 
Product

  
Figure 2. Block diagram based on NREL SOT’s [2] main 
processes downstream of the fermentation 

Rejecting water reduces stream size, which directly 
affects other units. This includes the preheater before 
dehydration, the dehydration reactor itself and the post-
dehydration separation (alkenes/water distillation). The 
decrease in stream size reduces equipment size, leading 
to lower capital costs. Most importantly, the BDO pre-
heating energy is also reduced, significantly decreasing 
operating costs and fuel usage. This leads to much 
smaller CO2e emissions that can make the fuel product a 
sustainable substitute of fossil hydrocarbons. 

Nevertheless, BDO separation from a dilute aqueous 
mixture is challenging. BDO’s high boiling point (177oC) 
and affinity towards water make distillation highly energy 

intensive. Simulated moving bed (SMB) adsorption is pro-
posed as an alternative. Adsorption is a material-based 
separation, and SMB can enrich BDO to the required pu-
rity levels, without incurring in large operating expenses. 

The main objective of this study is to compare the 
lifecycle of two pathways that recover BDO from a fer-
mentation broth: 1) simple distillation and 2) SMB + distil-
lation. Greenhouse gas (GHG) emissions was chosen as 
the sustainability metric, which is minimized for each 
pathway through deterministic optimization. To ensure 
the biorefinery is viable, the resulting design is subject to 
a minimum economic performance.  

PROCESS DESCRIPTION 

Single Column Distillation 
Figure 3 shows the possible separation alternatives 

to recover BDO. Single distillation bypasses the SMB and 
sends the broth directly to the column. This process op-
erates under mild vacuum (0.1-0.5 bar) to prevent high 
temperatures that could lead to side reactions and sugar 
degradation. A tray efficiency of 80% was assumed and 
the number of theoretical stages was fixed at 20. This 
number was found to offer an optimal balance between 
capital and operating costs through a sensitivity analysis 
of the total annualized cost. 

SMB

BDO-Dist.

EtOH-Dist.

Water

BDO

Ethanol

Water (90wt%)
BDO (9%)

Others (1%)

a

b

 
Figure 3. High level process diagram of the proposed 
BDO separation alternatives: a) single distillation colum 
and b) SMB + distillation 
 
 Water primarily exits the condenser as distillate, 
while BDO is recovered from the bottoms. The broth 
impurities leave the column through either the distillate 
or bottoms, depending on the volatility. Organic acids 
(malic, lactic and acetic) and inorganic ions (Cl- and SO42-

) are recovered from the distillate. Acetoin, glycerol, 
xylitol and residual sugars (arabinose, xylose and 
maltose) are retreived from the bottoms. The 
concentration of these impurities is very small (<1%) in all 
streams and their presence is not expected to 
considerably affect the cost. 

Simulated Moving Bed + Distillation 
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The core of the proposed novel separation is the 
simulated moving bed (SMB) adsorption unit. SMB ad-
sorption is a technology that mimics movement of solid 
throughout the bed by fixing the adsorbent and rotating 
instead the inlet and outlet ports. A 4-4-4-4 SMB is con-
sidered, where each column is packed with pure silica 
MFI-type zeolite, a highly hydrophobic material that is 
very selective towards BDO. Ethanol was chosen as the 
SMB desorbent. It has enough affinity with the adsorbent 
to efficiently displace the adsorbed BDO, and is highly 
volatile, facilitating its recovery via distillation. Following 
the SMB are two distillation columns, one to recover BDO 
from the extract  and the other to recover ethanol from 
the raffinate. 

A case study for PAREX [3], a well-known industry-
scale SMB process, was used to guide column size 
(length and diameter), maximum column velocity, Peclet 
number and other high level operating decisions. Both 
distillation columns were modelled with the same ap-
proach as the single column. A tray efficiency of 50% was 
assumed for ethanol/water. Through a total annualized 
cost sensitivity analysis , 30 theoretical stages were 
found to offer the optimal trade-off between capital and 
operating costs for both columns. 

METHODOLOGY 

Physical Parameters 
Figure 4 shows the stepwise approach that was fol-

lowed to perform the comparative study. For either case, 
the first step was obtaining the key physical parameters 
needed to model either separation unit. For distillation, 
UNIQUAC was used to compute activity coefficients. The 
ASPEN Plus V.12. database [4] was used to retrieve the 
interaction parameters of the binary pairs. These coeffi-
cients are based on experimental vapor liquid equilibrium 
(VLE) data. This database was also used to retrieve the 
coefficients needed to calculate vapor pressure, heat ca-
pacity and reference enthalpy of each component. 

For adsorption, a linear driving force (LDF) assump-
tion was used to model the mass transfer from the bulk 
liquid into the solid adsorbent. The equilibrium in the ad-
sorbent was represented with a Mixed Linear + Langmuir 
(MLL) isotherm. The relevant parameters are then the ap-
parent mass transfer coefficient, kapp,i, Henry’s linear con-
stant, Hi, saturation capacity, qm,i, and Langmuir’s affinity, 
Ki, where i represents each component. These parame-
ters were obtained by fitting experimental data of a lab-
scale SMB pilot plant. 

Mathematical Models 
Next, the obtained parameters were used to solve 

the mathematical equations that represent each system. 
Distillation was rigorously modeled, meaning mass and 
energy balances were performed in each stage, while 

enforcing phase equilibrium for each component. For ad-
sorption, the mass balance, the convection-diffusion 
equation was used with axial dispersion values estimates 
from the Peclet number. It was assumed that the SMB 
stayed constant at 50oC, as this was the temperature of 
the pilot-plant experiments. The boundary conditions, 
flow balances at each node and enforcement of cyclic 
steady state (CSS) conditions constitute the remainder 
of the SMB equations. 

This  led to a system of partial differential algebraic 
equations (PDAEs) that were modelled as a non-linear 
programming (NLP) problem. Pyomo.DAE 6.5. [5] was 
used to discretize the PDAEs and the system was solved 
using Ipopt 3.12.13 [6]. 

 

Start

Obtain VLE and 
Adsorption Data

Set up the mathematical 
models for both

separation pathway

Physical Parameters

Systems of PDAEs

Solve and optimize the
single distillation by 
minimizing MFSP

MFSPdist < $2.50/GGE?

MFSPdist

YES

Solve and optimize both 
separation pathways by 

minimizing GHG subject to 
MFSPSMB,dist <$2.50/GGE

No

Solve and optimize the
SMB + distillation pathway by 

minimizing GHG subject to 
MFSPSMB < MFSPdist

Final MFSP and GHG values

End

Perform GHG 
comparison

 
Figure 4. Proposed stepwise approach to develop the 
comparative study between separation pathways 

Economic Analysis 

Separation Scheme 
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After solving the PDAEs, the resulting mass and en-
ergy balances were used to size the equipment and esti-
mate operating expenses. The distillation columns were 
sized as tray towers under vacuum conditions. The col-
umns had constant diameter, which was estimated using 
a correlation based on internal vapor flow. A stage spac-
ing of 1.5 ft was assumed. For SMB, each adsorption col-
umn had the same fixed diameter of 4m. This value is in 
accordance with other large-scale SMB designs found in 
literature [7,8]. The length of the columns was set as a 
free variable to be determined from the optimization. Af-
ter sizing, the columns of distillation and SMB were both 
costed as empty vertical vessels [9]. 

The condensers and reboilers were sized as shell-
and-tube heat exchangers. The area was estimated as-
suming counter-current operation and a constant overall 
heat transfer coefficient. A single stage liquid-ring pump 
was used to generate vacuum in the distillation columns 
and centrifugal pumps were used for pressure rise. All 
aforementioned correlations for purchased and installed 
costs were obtained from Seider et al. [9], except for the 
rotary valve, which was obtained from a case study of a 
large-scale petrochemical plant [10]. 

Besides utilities, which are mostly satisfied inter-
nally, the main operating expenses are related to the pur-
chase of make-up ethanol and adsorbent. The unit cost 
of adsorbent was based on the cost of its synthesis raw 
materials. This cost was scaled to the biorefinery level 
using the six-tenths factor rule. The obtained price was 
$20/kg and a replacement time of 5 years was assumed. 
Given the discrepancy in size between the lab bench and 
the biorefinery, there is an inherent degree of uncertainty 
in these values that could be addressed through sensi-
tivity analysis. However, this was considered outside of 
the scope of this work. 

Next, the “Discounted Cash Flow Analysis” model 
from NREL [11] was implemented in the NLP problem. 
This model is based on U.S. Department of Energy (DOE) 
recommendations for renewable energy systems. It in-
cludes values for interest rate, equity, depreciation, plant 
lifetime and taxes. The most important metric from the 
model is the minimum fuel selling price (MFSP) of the fuel. 
This is a key metric used to assess the viability of biofu-
els. DOE has set a MFSP target of $2.50/GGE (gallon of 
gasoline equivalent) or less to be reached by 2030. With 
the current assumptions, the SOT reaches a MFSP value 
of $2.47/GGE. 

Utilities of the Biorefinery 
As mentioned, the main effect of BDO separation is 

reducing operating expenses of the biorefinery. Most no-
tably, the broth is raised to 250oC and 60 atm prior to the 
dehydration reactor, and by removing water and reduc-
ing the BDO stream size, the energy load also signifi-
cantly decreases. This saves around 90% of the high-

pressure steam (HPS) internally produced, which can in-
stead be used to generate additional power in the turbine 
and reduce imported electricity. Altogether, this leads to 
a power output of 32.9 MW and a ~50% import reduction 
from the grid compared to the SOT. This value was cor-
roborated by Liu et al. [12] in a previous study. 

Next, heat duties associated with the separation 
scheme were considered. The distillation reboilers are 
the main consumers of energy in either pathway. These 
columns use low-pressure steam (LPS), which requires 
withdrawal from the turbine system. Without changes to 
the existing design, this withdrawal would reduce the tur-
bine’s power output. Thus, as a simplification, natural gas 
is imported in order to generate additional steam needed 
to meet these duties and still maintain the turbine output 
of 32.9 MW. 

Greenhouse Gas Emissions System Boundary 
The fuel’s lifecycle analysis was then considered, 

with GHG emissions (in gCO2e/MJfuel) as the key metric. A 
technical report in 2020 was developed by the Argonne 
National Lab (ANL) [13], where the SOT’s well-to-wheel 
emissions were calculated. The system boundary in this 
report encompasses all processes between the corn 
stover collection in the field and the production of fuel 
and co-product from the biorefinery. The functional unit 
of the system is a GGE of fuel. 

For this study GHGs were estimated using the dis-
placement method. Through this method lifecycle emis-
sions are attributed entirely to the fuel and none to the 
co-product. The fuel, however, receives credit for the 
emissions associated with the co-product’s conventional 
fossil pathway. This remains consistent with the eco-
nomic model of the SOT, where adipic acid production 
revenue is credited to the fuel’s MFSP. The ANL 2020 re-
port was used as a guideline and the GREET tool [14] was 
used to develop expressions for GHG emissions. The 
reader is encouraged to read this report for more details 
regarding the lifecycle assumptions. 

Optimization 
Below are the expressions of the NLP problem. 

Pyomo and Ipopt were also used for the optimization. 
min
𝒙𝒙
𝒚𝒚 

𝑠𝑠. 𝑡𝑡.𝒇𝒇(𝒖𝒖,𝒙𝒙 ; ) = 𝟎𝟎 
𝒈𝒈(𝒖𝒖,𝒙𝒙 ; ) ≥ 𝟎𝟎 
𝒚𝒚 = 𝒉𝒉(𝒖𝒖,𝒙𝒙 ;  𝜃𝜃) 
𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝒎𝒎𝒎𝒎𝒙𝒙 

The objective function y can be either MFSP or GHG 
minimization. The equality constraints, f, are represented 
by the system of PDAEs and the discounted cash flow 
model. The only inequality constraints, g, in this problem 
are the maximum allowable MFSP and minimum BDO pu-
rity post-distillation. The main decision variables, x, of the 
SMB are the length of each adsorption column, the 
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velocity in each zone and step time. For distillation varia-
bles are pressure, reflux ratio and reboiler duty. With ap-
propriate initialization, the stage location of each feed 
stream can also be determined without resorting to 
MINLP. The state variables are represented by u and the 
physical parameters by θ. 

RESULTS 

Baseline GHG Emissions 
Using GREET and the displacement method, it was 

found that the lifecycle GHG of the SOT’s fuel product is 
23.0 gCO2e/MJ. From this value 121.4 gCO2e/MJ is attributed 
to the fuel and 98.4 gCO2e/MJ is credit from producing 
adipic acid. This represents a significant decrease from 
93.0 gCO2e/MJ for petroleum-derived diesel [14]. It should 
be noted that we assumed a carbon footprint of adipic 
acid (AA) of 4.3 kgCO2e/kgAA. This does not consider GHG-
100 emissions from nitrous oxide (N2O) and is a more 
conservative estimate than the ANL 2020 report, which 
assumed 11.6 kgCO2e/kgAA and led to net emissions of -148 
gCO2e/MJ for the SOT. 

Next, an expression was developed to relate GHG 
with the relevant mass and energy flows (natural gas im-
port and make-up ethanol). First, GHG emissions were 
re-calculated based on the updated grid electricity im-
port. As mentioned, turbine output increases from 11.8 
MW to 32.9 MW, reducing import from 41.5 MW to 20.4 
MW. This resulted in 103.3 gCO2e/MJ attributed to fuel and 
after considering adipic acid credit, a net value of 4.9 
gCO2e/MJ was obtained. Then, natural gas (NG) and make-
up ethanol (EtOH) import were varied in GREET to esti-
mate how GHG changes, resulting in the following linear 
expression: 

𝐺𝐺𝐺𝐺𝐺𝐺 = 4.9 × 1
𝑅𝑅

+ 0.1362 × 𝑁𝑁𝐺𝐺 + 0.0023 × 𝐸𝐸𝑡𝑡𝐸𝐸𝐺𝐺 (1) 

R represents BDO recovery. This ranges from 0 to 1 
and serves as a scaling factor to make-up for BDO lost 
during separation. GHG is expressed in gCO2e/MJ, NG in 
MMBTU/hr and EtOH in kg/hr. This was the expression 
used in the objective function for minimizing GHG. It 
should be clarified that NG and EtOH are the added im-
ports that result from incorporating the separation to the 
biorefinery. Natural gas (58 MMBTU/hr) and ethanol (37 
kg/hr) are both imported in the SOT, but those are al-
ready accounted in the 4.9 gCO2e/MJ calculation. 

Approach Implementation 
The proposed approach was implemented and for 

both pathways, the binary feed is 10wt% BDO (~100g/L 
titer), while the minimum purity requirement of the exit 
stream is 85 wt% BDO. Figure 5a shows the mass bal-
ances of the optimal configuration of the single distilla-
tion pathway. This configuration achieved a MFSPdist of 
$2.54/GGE. Figure 5b shows the obtained optimal 

configuration for the SMB pathway. This configuration 
was obtained with a MFSPSMB<=$2.54/GGE constraint.  
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BDO (84.6wt%)

BDO
22,899 kg/hr

Water (>99.9wt%)
BDO (<0.1wt%)
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Figure 5. Resulting optimal process designs of: a) the 
single distillation column and b) SMB + distillation 

The optimization problems were solved using the 
true moving bed (TMB) approximation model for the SMB 
and an IPOPT convergence tolerance of 1x10-3. It should 
also be noted that the distillate of the EtOH-dist column 
is ~92 wt% ethanol. Thus, the ethanol/water azeotrope at 
this vacuum pressure (~96 wt%) is not expected to be 
encountered. 

Comparison of the Proposed Pathways 
Table 1 shows the comparison between the distilla-

tion columns for both pathways. As seen the most signif-
icant difference is the duty of the reboiler and condenser 
units for each pathway. Most notably, it is shown that the 
combined reboiler duty from the two columns in the SMB 
pathway is much lower than single distillation. This fur-
ther establishes adsorption as a far more effective sepa-
ration alternative in this context. 

In all cases a lower boundary of 0.10 bar was im-
posed to the column pressure. For single distillation, the 
optimal pressure was slightly higher at 0.22 bar, since 
this raises the temperature of the wastewater from the 
tops, which was used for heat integration with the feed. 

Table 1. Results operating conditions of the single distil-
lation, and BDO and EtOH recovery columns 
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Distillation Column 
Single 
Dist 

BDO 
Dist 

EtOH 
Dist 

Number of Stages     
Feed Stage(s)   / 
Pressure (bar)    
Reflux Ratio (mole)     
Reboiler Duty (MW)     
Condenser Duty (MW)    

 
Table 2 shows the comparison between the alterna-

tives evaluated in this study. The ideal separation repre-
sents the SOT with BDO recovery, but without incurring 
in capital or operating costs yet (i.e., the maximum po-
tential of BDO separation [12]). 

Table 2. Results operating conditions of the single distil-
lation, and BDO and EtOH recovery columns 

Process SOT 
Ideal 
Sep 

Single 
Dist 

SMB+ 
Dist 

Natural Gas Im-
port (MMBTU/hr) 

    

Grid Import (MW)     
MFSP ($/GGE)      
GHG (gCOe/MJ)      

 
Single distillation, as expected, had poor economic 

and sustainability performance. Its large MFSP and GHG 
values render the entire process unfeasible, and thus, 
simple distillation cannot be considered a viable alterna-
tive to recover BDO in this biorefinery. In comparison, 
SMB+distillation gave lower GHG, demonstrating the ef-
fectiveness of the proposed hybrid separation and its po-
tential to be incorporated in the biorefinery.  

Sensitivity Analyses 
In the proposed approach, either MFSP or GHG is 

minimized, but not both simultaneously. This does not 
provide a complete outlook and Pareto fronts were build 
to allow a more thorough comparison. Figure 6 shows the 
Pareto optimal curves for the single distillation and SMB 
processes. In the case of single distillation, the leftmost 
point represents the result from minimizing MFSP without 
GHG restriction, while the rightmost point is the minimi-
zation of GHG without MFSP restrictions. 

For the SMB process, the leftmost point is also 
MFSP minimization without GHG constraint. However, 
the rightmost end is not bounded, given that the SMB can 
be as large as needed. This indefinitely increases the 
quantity of adsorbent, decreasing desorbent use and en-
ergy load. Thus, GHG also decrease indefinitely but at the 
expense of a prohibitive adsorbent purchasing cost. 

 
Figure 6. Pareto Fronts of the Separation Alternatives  

It should be noted, that for either front, GHG is not 
very sensitive to the MFSP. The most important observa-
tion, however, is that the SMB-process can improve the 
SOT’s economic and sustainability performance. As 
shown, for any MFSP under $2.47/GGE, GHG remains be-
low 23 gCO2e/MJ, proving again the viability of this sepa-
ration alternative. 

Finally, a sensitivity analysis was developed by var-
ying BDO titer. The fermentation in the SOT is an ongoing 
research topic and is not clear that a titer of 100g/L is 
optimal for the overall flowsheet. Figure 7 shows the ef-
fect of BDO titer on GHG and MFSP by applying the pro-
posed approach. As seen, GHG emissions of single distil-
lation considerably increase with decrease in titer. This is 
an expected result, given that a large and dilute stream 
leads to a higher energy demand that increases both 
GHG and MFSP. 

 
Figure 7. Effect of BDO titer concentration on the GHG 
emissions for both separation pathways (the annotated 
values represent the MFSP at each point in $/GGE) 

Remarkably, however, the change of GHG emissions 
in SMB is almost negligible. To understand this better we 
can further explore the 75 g/L titer point. After optimizing 
the NLP problem with GHG as the objective function, the 
obtained MFSP is $2.69/GGE, and the quantity of adsor-
bent is 1392 tonnes. However, the at this titer level MFSP 
minimization gives $2.46/GGE, and a much lower 
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adsorbent quantity of 342 tonnes. Implementing a very 
large quantity of adsorbent is clearly a suboptimal eco-
nomic decision, but it greatly reduces desorbent use and 
energy duties, all of which help improve GHG. Thus, SMB 
size is allowed to increase almost indefinitely in order to 
accommodate varying titers, and only marginal changes 
in GHG are observed. 

CONCLUSIONS 
A comparative study was performed between two 

separation technologies to recover BDO from a fermen-
tation broth. Single distillation was compared to a novel 
SMB+distillation separation scheme on the basis of GHG 
emissions. Both separations were incorporated in a bio-
refinery design developed by NREL that produces renew-
able fuels with corn stover as feedstock and dilute 
(10wt%) BDO as an intermediate. 

The comparison was done by following a stepwise 
optimization approach where GHG is minimized. The re-
sulting design achieved GHG emissions of 20 gCO2e/MJ for 
SMB+distillation, lower than 48 gCO2e/MJ for single distil-
lation and 93 gCO2e/MJ for petroleum fuel. 

The effect of BDO fermentation titer was also con-
sidered. As expected, for single distillation, decreasing ti-
ter significantly increased energy consumption and, thus, 
worsened MFSP and GHG emissions. However, for SMB, 
the GHG emissions were not sensitive to titer. 
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ABSTRACT 
In this paper, we study the design optimization of methanol production with the goal of minimizing 
methanol production cost. One challenge of methanol production via carbon dioxide (CO2) hydro-
genation is the reduction of operating costs. The simulation of methanol production is imple-
mented within the Aspen HYSYS simulator. The feeds are pure hydrogen and captured CO2. The 
process simulation involves a single reactor and incorporates recycling at a ratio of 0.995. The 
methanol production cost is determined using an economic analysis. The cost includes capital and 
operating costs, which are determined through the equations and data from the capital equipment-
costing program. The decision variables are the pressure and temperature of the reactor contents. 
The optimization problem is solved using a derivative-free algorithm, pyBOUND, a Python-based 
black-box model optimization algorithm that uses random forests (RFs) and multivariate adaptive 
regression splines (MARS). The predicted minimum methanol production cost by pyBOUND is 
$1396.56 per tonne of methanol, which corresponds to the pressure of 68.82 bar and temperature 
of 192.23°C while the actual cost is $1393.95 per tonne of methanol at these conditions. The cost 
breakdown of methanol production is 75% hydrogen price, 11% utility cost, 8% capital cost, 5% 
carbon dioxide price, and 1% operating cost. 

Keywords: Methanol, Carbon Dioxide, Process Synthesis, Process Design, Simulation, Optimization, pyBOUND 

INTRODUCTION 
Methanol is utilized as a feedstock for power gener-

ation, transportation fuel, and wastewater treatment, as 
well as for producing various value-added chemicals [1]. 
Methanol is environmentally friendly, and the use of 
methanol has lower risks, lower emissions, and higher 
performance than gasoline [2]. The data from the meth-
anol market indicate that the methanol market is ex-
pected to be worth $38.0 billion by 2028, growing at a 
compound annual growth rate of 4.2% during the fore-
cast period [3]. Formaldehyde production from methanol 
is expected to be the largest demand in the forecasted 
period [3].  

Methanol can be produced by two main processes: 
methanol from syngas and methanol from CO2 hydro-
genation. Traditionally, methanol is produced from syn-
gas. The first commercial methanol plant was established 
in 1923 by BASF. Conventionally, methanol is produced 

from petroleum products via hydrogenation of CO and 
CO2 and reverse water gas shift reaction. In the commer-
cial production of methanol from syngas, a catalyst 
known as CuO/ZnO/Al2O3 is widely employed [4-5]. The 
choice of copper-based catalysts for converting CO2 to 
methanol is primarily driven by their affordability and high 
catalyst activity [6]. Nowadays, 80% of worldwide meth-
anol is produced from natural gas [7].  

Finding new and more sustainable energy sources is 
crucial to address the environmental crisis caused by the 
widespread use of fossil fuels. The largest source of CO2 
emissions among human activities that contribute to 
greenhouse gases (GHGs) is burning fuels for power and 
heat, accounting for more than 42% of the estimated an-
thropogenic CO2 emissions [8]. Carbon capture utilization 
and storage is the most common technique to reduce an-
thropogenic CO2 emissions. Methanol production from 
CO2 hydrogenation (using CO2 captured and pure hydro-
gen) is considered an important route to reduce CO2 
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emissions [9]. The impact of direct CO2 hydrogenation to 
methanol on the environment is lower than production of 
methanol from syngas [10]. Many studies focuses on the 
optimization of CO2 hydrogenation process and present 
various heat integration within the methanol conversion 
unit [11-12]. Yousaf et al. summarized computational 
studies on techno-economic analysis of CO2 hydrogena-
tion [13]. Most studies on the methanol production design 
using capture CO2 and pure hydrogen attempt to reduce 
the production cost due to the high hydrogen price.  

We optimize methanol production via CO2 hydro-
genation in this work. The goal is to minimize the metha-
nol production cost by adjusting the pressure and tem-
perature of the reactor contents. The hydrogenation pro-
cess is in Aspen HYSYS, and the optimization problem is 
solved using pyBOUND, a Python-based black-box opti-
mization algorithm using random forests [14]. The paper 
is organized as follows: The next section provides an 
overview of the general pyBOUND framework. The Case 
study section provides information on the simulation and 
economic analysis of the CO2 hydrogenation process. 
The optimization formulation section describes an objec-
tive function and constraints of the case study. The Re-
sults and Discussion section presents the optimum oper-
ating conditions and costs. Our concluding remarks and 
future directions are summarized in the last section. 

 
A PYTHON-BASED BLACK-BOX 
OPTIMIZATION USING RANDOM 
FORESTS, PYBOUND [14] 

pyBOUND is a two-stage algorithm. The first stage 
employs random forests (RFs) and generates better de-
cision variable bounds, shrinking the search space. The 
second stage refines the solution using multivariate 
adaptive regression splines (MARS). A general pyBOUND 
framework is depicted in Figure 1. 

pyBOUND Stage 1: Shrinking the Search 
space using RFs 

For the first stage, the algorithm reduces the size of 
the original search space by solving a series of global de-
terministic subproblems using RF models. This stage 
consists of sampling, construction of an RF model, global 
optimization of the constrained approximation problem, 
and collection of new sampling points. The initial data set 
is generated using a Sobol sequence design. The overall 
constrained approximation model, which consists of the 
RFs model objective equation, the RF model constraints, 
and variable bounds, is solved to optimality using deter-
ministic global optimization methods. The decision varia-
ble bounds are generated from the solution of the con-
strained approximation optimization problem. The con-
strained approximation models with the RF models are 

MILPs, which are solved with CPLEX (version 22.1.1).  

Figure 1. General pyBOUND framework [14]. 

The algorithm determines a single set of bounds 
based on the threshold bounds given by every RF tree. 
The three methods for reducing variable bounds called 
the cutting methods were studied for bounds reduction. 
The methods are selecting the widest set of bounds 
(Wide), selecting the bounds where at least two trees in-
tersect each other (Intersection), and averaging the 
bounds given by each tree for a single set of bounds (Av-
erage). The “Intersection” cutting method is selected for 
optimization problems with less than ten decision varia-
bles, and the “Average” cutting method is selected and 
implemented for problems with ten or more decision var-
iables. 

The ODIN sampling method [15] is selected to up-
date the RF model training set with a termination criterion 
that depends on the size of the decision variable vector 
and maximum reduction in the search space. 

pyBOUND Stage 2: Refinement of Solution 
using MARS Models 

This stage refines the solution with a local search in 
the reduced search space, constructs the model, and im-
proves the model with adaptive sampling. Based on the 
final form of the trained MARS surrogate model, a deter-
ministic optimization problem is formulated and solved to 
refine the solution. MARS models result in MINLP optimi-
zation models, which are solved with ANTIGONE [16]. 
New sample points are added in the second stage using 
adaptive sampling on a hybrid of the ODIN sampling 
method and Mixed Adaptive Sampling (MAS) [17], re-
ferred to as ODIN-MAS [15].  
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CASE STUDY: METHANOL PRODUCTION  

Process Simulation 
The process flow diagram for methanol production 

implemented within the Aspen HYSYS simulator (version 
14) is depicted in Figure 2. The feeds of the process are 
pure hydrogen and captured CO2 with a molar flow rate 
of 3000 kmoles per hour and 1000 kmoles per hour, re-
spectively. Pure hydrogen is fed at 30 bar and 25°C and 
then compressed to the desired pressure. Captured CO2 
is fed at 2 bar and 28°C through the three-stage com-
pressors to increase pressure before being combined 
with pure hydrogen. The mixed feed is heated up and en-
ters the reactor, which is modeled as a plug flow reactor 
and catalytic reaction. The reactions of methanol produc-
tion via CO2 hydrogenation follows Equations (1) – (3). 
The reactor is simulated using a kinetic model [18]. After 
that, the stream of produced methanol and unreacted 
feed enters the cooler before it is separated. The vapor 
stream is recycled and purged with a 0.995 recycle ratio. 
The liquid phase stream is sent to the distillation column 
after cooling. The specifications of the distillation column 
are a 1.52 reflux ratio and 40°C of distillate temperature. 
The methanol product purity is specified at 99.1% by 
weight.  

CO2 + H2 ↔ CO + H2O   (1) 

CO + 2H2  ↔ CH3OH   (2) 

CO2 + 3H2 ↔ CH3OH + H2O   (3) 

Figure 2. Methanol production via CO2 hydrogenation. 

Economic Evaluation 
The methanol production cost is determined using 

an economic analysis. The cost includes both capital and 
operating costs. These costs are determined through the 
equations and data from the capital equipment-costing 
program [19]. The data was adjusted for inflation from the 
year 2001-2023 by using values of the Chemical Engi-
neering Plant Cost Index, CEPCI. The value of CEPCI in 
2001 and 2023 is 297 and 799.1, respectively [20]. The 
capital cost is calculated using the costing technique. 
This technique depends on the specific equipment type, 
the specific system pressure, and the specific material of 

construction. In this work, the equipment costs are esti-
mated based on grass root cost (𝐶𝐶𝐺𝐺𝐺𝐺), which involves to-
tal module cost (𝐶𝐶𝑇𝑇𝑇𝑇), Equations (4)-(5), where 𝑛𝑛 repre-
sents the total number of equipment, and bare module 
cost (𝐶𝐶𝐵𝐵𝑇𝑇), Equation (6). 𝐹𝐹𝑇𝑇 and 𝐹𝐹𝑃𝑃 are the material factor 
and pressure factor, respectively.  

𝐶𝐶𝐺𝐺𝐺𝐺 = 𝐶𝐶𝑇𝑇𝑇𝑇 + 0.50∑ 𝐶𝐶𝐵𝐵𝑇𝑇,𝑖𝑖
0𝑛𝑛

𝑖𝑖=1    (4) 

𝐶𝐶𝑇𝑇𝑇𝑇 = ∑ 𝐶𝐶𝑇𝑇𝑇𝑇,𝑖𝑖
𝑛𝑛
𝑖𝑖=1 + 1.18∑ 𝐶𝐶𝐵𝐵𝑇𝑇,𝑖𝑖

𝑛𝑛
𝑖𝑖=1   (5) 

𝐶𝐶𝐵𝐵𝑇𝑇 = 𝐶𝐶𝑝𝑝0𝐹𝐹𝐵𝐵𝑇𝑇 =  𝐶𝐶𝑝𝑝0[𝐵𝐵1 + 𝐵𝐵2𝐹𝐹𝑃𝑃𝐹𝐹𝑇𝑇]  (6)
  

where 𝐶𝐶𝑝𝑝0 is the purchased cost for a base condition 
which can be calculated following Equation (7). 

log10 𝐶𝐶𝑝𝑝0 = 𝐾𝐾1 + 𝐾𝐾2 log10(𝐴𝐴) + 𝐶𝐶3(log10(𝐴𝐴))2 (7) 

𝐴𝐴 is the capacity or size parameter for the equip-
ment. The overall assumptions used for the cost estima-
tion are as follows: 

 The plant operates for 8400 hours per year. 

 The plant is expected to have 20 years of plant 
operation and a 10% interest rate. 

 Direct supervisory and clerical labor are taken 18% 
of labor cost. 

 Maintenance and repairs are taken 6% of the fixed 
capital investment. 

 Operating supplies are taken 0.9% of the fixed 
capital investment. 

 Laboratory charges are taken 15% of labor cost. 

 Local taxes and insurance are taken at 3.2% of the 
fixed capital investment. 

 Plant overhead cost is the summation of 70.8% of 
labor cost and 3.6% of the fixed capital 
investment. 

 Administration cost is the summation of 17.7% of 
labor cost and 0.9% of the fixed capital cost. 

OPTIMIZATION FORMULATION 
We consider the methanol production via CO2 hy-

drogenation as a black-box optimization problem of the 
form given in Equations (8)-(9), 

min
𝑥𝑥
𝑓𝑓(𝑥𝑥)    (8) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑥𝑥𝑖𝑖 ∈ �𝑥𝑥𝑖𝑖𝐿𝐿, 𝑥𝑥𝑖𝑖𝑈𝑈�        ∀ 𝑖𝑖 ∈ {1,2} (9) 

The objective of the optimization problem is to min-
imize the methanol production cost where 𝑓𝑓(𝑥𝑥) repre-
sents the methanol production cost with the decision 
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variables of the process with finite bounds �𝑥𝑥𝑖𝑖𝐿𝐿, 𝑥𝑥𝑖𝑖𝑈𝑈�, 𝑥𝑥𝑖𝑖 rep-
resents the decision variables: 𝑥𝑥1 is the pressure and 𝑥𝑥2 
is the temperature of the reactor contents. The range of 
each decision variable is given in Table 1. 

Table 1: Initial range of decision variables.  

Decision variables Lower 
bound 

Upper 
bound 

Pressure (bar)   
Temperature (°C)   

RESULTS AND DISCUSSION 
The goal is to minimize methanol production cost by 

applying a derivative-free optimization algorithm, py-
BOUND. From the results of the RF stage, the “Intersec-
tion” cutting method is used to shrink the search space 
of the optimization problem. The results at each iteration 
of the RF stage are shown in Table 2. 

Table 2: The reduction of search space.  

Iteration    
Volume of re-
duction (%) 

   

Number of 
sample points 

   

Lower bound    
 

 
 

Upper bound  
 

 
 

 
 

 
The criterion for the termination of the RF stage I 

specified as the maximum volume reduction of search 
space of 0.75. The bound of the pressure is reduced to 
the range 62.66 – 80 bar and the bound for temperature 
is reduced to the range 190 – 196.88°C. Eighty percent of 
the search space is reduced compared to the original 
search space. The third row of Table 2 shows the number 
of sample points. Originally, the number of sample points 
was generated with ten times the number of decision var-
iables (20 sample points). After applying pyBOUND, the 
final number of sample points in the RF stage is 15, while 
the number of function evaluations is 30, which is due to 
some sample points being cut during the RF stage itera-
tions. Fifteen sample points are then used as the initial 
sample set for the MARS stage. 

The results of the MARS stage at each iteration are 
shown in Table 3. Figure 3 also shows the results of the 
predicted, actual, and best methanol production cost at 
each iteration. The best methanol production cost is the 
lowest cost in the training data set. In the MARS stage, 
the sample points are added at each iteration using 
ODIN-MAS algorithm. The pyBOUND algorithm stopped 
at 144 sample points while the R-squared value of the 

model increased after increasing the number of sample 
points. For the first iteration, the model can not fit well 
with only twenty sample points. The value of R-squared 
at the first iteration shows a negative value. At the sec-
ond iteration, the total number of sample points used to 
construct the MARS model increased to 37, and the value 
of R-squared is a positive value.  

Table 3: MARS model and optimal results 

Itera-
tion 

Function 
evalua-

tion 

R-
squared 

Predicted optimum 
location (bar °C) 

  -   
    
     
     
     

Figure 3. The values of minimum methanol production 
cost at each iteration. 

The predicted methanol production costs at each it-
eration are close to the actual methanol production costs. 
Finally, the pyBOUND algorithm stopped with the criteria 
of R-squared value more than 0.6 and the Euclidean dis-
tance between the best objective values of the last three 
iterations less than 0.0004. The error between predicted 
and actual methanol production costs is 0.19%. The opti-
mum methanol production cost is $1396.56per tonne of 
methanol, corresponding to a pressure of 68.82 bar and 
a temperature of 190.23°C, while the actual methanol 
production cost at these conditions is $1393.95 per 
tonne of methanol. We found that the best objective 
value is $1393.80 per tonne of methanol. This value is 
close to the actual objective value and the best location 
is similar to the predicted optimal location. The Euclidean 
distance between the best and actual objective values is 
0.02 at the last iteration. The algorithm run time is 458.5 
min, which is divided into 79.92 min for the RF stage and 
378.58 min for the MARS stage. From the total run time, 
the time for pyBOUND is 17.32 min, with the remaining 
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time spent by Aspen HYSYS process simulation. 
At the optimum, the contribution of various factors 

to the cost is illustrated in Figure 4. The contribution of 
raw materials, including CO2 and H2 prices, are 5% and 
75%, respectively. The utilities make up 11% of the overall 
cost. The capital and other operating expenses are 7% 
and 1%, respectively. The H2 price is identified to be the 
major cost of this process. 

 
Figure 4. Cost breakdown. 

CONCLUSION AND FUTURE WORK 
The pyBOUND algorithm has been successfully ap-

plied to the optimization of methanol production via CO2 
hydrogenation process. The minimum cost of methanol 
production is determined. The algorithm, pyBOUND, 
demonstrates that the algorithm can estimate the opti-
mum value of the methanol production cost with a small 
number of sample points. Future work on pyBOUND will 
focus on applying the algorithm to problems with high 
number of decision variables and several chemical engi-
neering problems. The optimum value obtained by py-
BOUND is comparable to other optimization methods. py-
BOUND might exhibit improvements when compared to 
existing algorithms for both high dimensionality problems 
and for locating the true optimal decision variable values.  
We will consider the hyperparameters of the RF stage for 
consistency of generating variable bounds and investi-
gate the impact of the stopping criteria of the pyBOUND 
algorithm. 
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ABSTRACT 
One of the main challenges to support life in space is the development of sustainable, circular 
processes that reduce the high cost of resupply missions. Space biomanufacturing is an emerging 
paradigm that aims to reduce the need for resources, enabling on-demand manufacture of prod-
ucts. The cost of installing biomanufacturing systems in space depends on the cost of transporting 
the system components, which is directly proportional to their mass/weight. From this perspective, 
the system mass is a critical factor that dictates process design, and this has important implica-
tions in how we can approach such design. For instance, mass constraints require circular use of 
resources and tight process integration (to minimize resupply) and restricts the type of resources 
and equipment needed. In this work, we evaluate the lactic acid bioproduction design using Esch-
erichia coli, Saccharomyces cerevisiae, and Pichia pastoris. We use the Equivalent System Mass 
(ESM) metric as a key design measure. ESM allows the quantification of different physical proper-
ties of the system in a common mass basis. Our analysis reveals that 97.7 kg/year of lactic acid 
can be produced using Saccharomyces cerevisiae in a 10 L stainless steel fermenter. Furthermore, 
considering that stainless steel is the design material and quantifying the mass of 1 g/cm2 of shield-
ing material, the total system mass was 19 kg. This modeling framework also identified the critical 
system elements responsible for the highest system mass and launch cost. Overall, our analysis 
reveals how focusing on system mass can bring new design perspectives that can aid the design 
of traditional manufacturing systems.  

Keywords: Space manufacturing, Equivalent System Mass, Process Design, Circularity, Sustainability 

INTRODUCTION 
Since 2000, the International Space Station (ISS) 

has served as a research laboratory in low Earth orbit, 
supporting several research studies in different scientific 
fields [1]. During these years, space-based research that 
study systems under unique, non-terrestrial conditions 
have produced strong impacts and diverse technological 
and social benefits. However, the cost of supporting the 
ISS is still an important factor that influences the devel-
opment of new projects. The ISS Program’s annual 
budget is about $3 billion, of which, $1.8 billion is related 
to the transportation of crew and cargo services making 
this the most expensive element of the program [2]. This 
is mainly because fuel is the dominant cost of space mis-
sions [3], and although lower launch costs have been 

achieved in recent years, the current price for delivering 
one kilogram of cargo to low Earth orbit is approximately 
$10,000, which is a high transportation cost [4]. There-
fore, one of the main challenges in current space re-
search is to create sustainable, closed-loop (circular) 
systems for future long-space duration missions to re-
duce the need for resupply missions.  

Water, oxygen, energy, and food are some essential 
resources to sustain life in space but launch capacity for 
the ISS is approximately 1 ton of water [5]. Consequently, 
there is a need for flexible and low-cost space manufac-
turing processes that enable on-site production of es-
sential chemicals and resources [6]. Over the past few 
years, research has been carried out to develop ad-
vanced technologies that convert human waste and local 
resources into pure consumables to satisfy the capacity 

mailto:zavalatejeda@wisc.edu
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launch limitations and reduce the high cost of resupply 
missions. In this regard, in-situ resource utilization has 
offered new possibilities to develop circular processes 
that allow for the on-demand production of value-added 
chemicals and materials for the construction, mainte-
nance, and repair of mission systems [7]. This is crucial 
in space exploration, because long-duration space mis-
sions require circular systems that are capable of manu-
facturing their essential items [8]. Furthermore, bioman-
ufacturing is a promising approach to support sustainable 
and circular systems for space exploration [9]. This relies 
on the use of biological systems that are engineered to 
produce and manufacture value-added products and ob-
jects on demand. Hence, biomanufacturing is a conven-
ient alternative to design systems in remote locations or 
where supply chains for consumables cannot operate re-
liably [10].  

The use of biomanufacturing in space has diverse 
applications. Significant research has focused on regen-
erative medicine applications (e.g., tissue engineering 
and disease modeling) [11]. Lately, the production of nu-
trients and food through biomanufacturing has been cru-
cial to support life in space. These studies have focused 
solely on technical and operational features, without con-
sidering transportation cost restrictions (which are criti-
cal to implement systems in space).  

The traditional paradigm for process design is ob-
jective-driven, in the sense that the system is engineered 
to maximize/minimize specific performance goals. When 
designing a system in space, however, the mass/size of 
the system is a critical factor that takes priority due to 
strict limitations of transportation and resources. As 
such, the design of space systems is constraint-driven. 
Moreover, space systems are subject to disturb-
ances/externalities (e.g., gravity and cosmic radiation) 
that pose non-obvious and often unknown constraints. 
For instance, the fermentation reactor (a key component 
of a biomanufacturing system), is strongly affected by 
storage conditions, gravity, and radiation, which can af-
fect the performance and survival of microorganisms em-
ployed to produce value-added products. 

Considering this, new approaches are needed to 
support the design of biomanufacturing systems that 
consider both operational restrictions and mass re-
strictions. One approach to solve this problem involves 
the use of the Equivalent Systems Mass (ESM) analysis. 
ESM is a metric that allows the consideration of different 
physical resources such as power, cooling, and equip-
ment using mass as a common unifying metric [12]. The 
focus on mass can reveal interesting/hidden aspects of 
process components; for instance, mass constraints can 
limit the type of energy vectors used. In this work, we 
present a computational design framework to evaluate 
the design of space biomanufacturing systems to pro-
duce lactic acid (one of the most valuable platform 

chemicals) based on the mass of the system using Esch-
erichia coli, Saccharomyces cerevisiae and Pichia pas-
toris as microorganisms. Our case study aims to evaluate 
different configurations for the design of biomanufactur-
ing systems in space to identify the specific components 
of the system that are responsible for the highest impacts 
in terms of mass. 

METHODOLOGY 
This work evaluates system design scenarios by 

quantifying system mass using different engineered or-
ganisms (Escherichia coli, Saccharomyces cerevisiae, 
and Pichia pastoris) to produce lactic acid. Lactic acid bi-
oproduction has been widely studied on Earth because it 
serves as a platform chemical with diverse applications 
(i.e., chemical, pharmaceutical, food, cosmetics, and 
plastic industries) [13]. Recently, lactic acid has gained 
interest due to its capacity to be transformed into pol-
ylactic acid (PLA), a biodegradable polymer with applica-
tions in the production of packaging and new compo-
nents through 3D printing, which is very convenient in 
space missions [14].  

Because the performance of the biomanufacturing 
production may be impacted due to the high radiation 
levels that exist in the space environment, the addition of 
a shielding material could be necessary to maintain ge-
netic stability in space fermentation systems. Therefore, 
these factors are considered to propose different biopro-
cess designs which can be coupled with the equipment 
of the life support system of the ISS to take advantage of 
the in-situ resource utilization. 

 
Figure 1: Daily mass balance per crewmember in the ISS. 

The life support system involves various chemical 
and biological processes, allowing the recycling of waste 
into valuable resources. In this way, the system operates 
in a closed-loop life support system. However, some 
waste resources that are not recovered (i.e., urine, fecal 
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feces) or are commonly vented into space (i.e., CH4, CO2) 
can serve as inputs in the bioproduction of lactic acid. For 
instance, nutrients that are required in the fermentation 
process can be obtained from human waste and urine. 
Figure 1 shows the daily mass balance per crewmember 
in the ISS. Commonly, there are 6 astronauts aboard the 
ISS, and based on this, the resources required to satisfy 
their basic living needs and the wastes generated can be 
quantified from the daily mass balance in the ISS. In this 
case, the available water that can be supplied to the bi-
omanufacturing system is approximately 5 L per day. 
Therefore, fermentation volumes less than 5 L can use 
the available resources in the Life Support System to cre-
ate a more circular system. Otherwise, for fermentation 
volumes greater than 5 L, the system will require external 
resources from resupply missions to be able to carry out 
the fermentation process. In this work, different fermen-
tation volumes are evaluated to estimate their required 
mass, which is linked to the launch cost. 

Equivalent System Mass Analysis 
The evaluation of a system by means of the ESM al-

lows for the reduction of several physical quantities to a 
single parameter expressed in the units of mass (kilo-
grams) for direct comparison. ESM has been employed 
as a transportation cost measure in studies to avoid the 
technical and political complications of using dollar costs 
for comparisons. In space missions, the cost of transport-
ing a payload is proportional to the mass of that payload; 
therefore, a mass-based measure such as ESM is appro-
priate to quantify the launch cost of the system. In this 
regard, through ESM analysis, it is possible to identify 
which of several options can meet all specified require-
ments and have the lowest launch cost in relation to 
mass, volume, power, and cooling (Equation 1). 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸 + �𝑃𝑃 × 𝑃𝑃𝑒𝑒𝑒𝑒� + �𝐶𝐶 × 𝐶𝐶𝑒𝑒𝑒𝑒�     (1) 

ESM can be calculated using Equation 1, where 𝑃𝑃𝑒𝑒𝑒𝑒 
and 𝐶𝐶𝑒𝑒𝑒𝑒 are the power and cooling conversion factors (87 
kg/kW and 146 kg/KW, respectively) to transform the 
non-mass quantities to their mass equivalent. These fac-
tors were derived by the NASA Life Support Baseline and 
Assumptions Document (BVAD) [15] and relates the 
quantity of mass and cost of installation and components 
per rate of power delivered. The term 𝐸𝐸 refers to the 
mass of components that compose the system (e.g., 
chemicals, glass, stainless steel, polyethylene), 𝑃𝑃 repre-
sents the power consumption (i.e., electrical power de-
mand) and 𝐶𝐶 is the thermal demand for rejecting from the 
system (Figure 2). 

 

 
Figure 2: Equivalent System Mass framework. 

In this work, the biomanufacturing system design is 
evaluated to compare the mass of different system de-
signs considering the following assumptions: 

 The system is composed of a spherical fermenter 
for the production of lactic acid. 

 The materials employed for the fermenter are 
glass and stainless steel. The density of the 
stainless steel and glass are 2500 and 7500 kg/m3, 
respectively. 

 The shielding material is polyethylene, which has a 
density of 930 kg/m3. 

 The concentration of glucose is 200 g/L. 

 In agreement with Rojdev et al. (2009) [16], the 
typical values for spacecraft structures have areal 
density thicknesses of approximately 1 to 20 
g/cm2. In this work, we compared systems with 1 
and 5 g/cm2 areal density thicknesses.  

Based on these specifications, the mass of the sys-
tem involves the mass of the materials or chemicals em-
ployed in the lactic acid fermentation, the mass of the 
equipment and the mass of the shielding needs. The sce-
narios proposed for the different bioprocess design con-
figurations labeled using the following format: 

PX_A_B 

Where X represents the volume of the fermenter in Liters, 
A represents the material design, which can be glass or 
stainless steel (G is used for glass and S represents stain-
less steel), and B indicates the polyethylene shielding 
thickness employed in the system. In this sense, some of 
the scenarios generated are: 

 Standard scenario where shielding is not included 
(P10). 

 Scenario with fermentation volume of 10 L using 
glass as the system design material and including 
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shielding with 1 cm of thickness (P10_G_1). 

 Scenario with fermentation volume of 10 L using 
glass as system design material and including 
shielding with 5 cm of thickness (P10_G_5). 

 Scenario with fermentation volume of 10 L using 
stainless steel as system design material and 
including shielding with 1 cm of thickness 
(P10_S_1). 

 Scenario with a fermentation volume of 10 L using 
stainless steel as the system design material and 
including shielding with a 5 cm of thickness 
(P10_S_5). 

In this work, fermentation volumes of 5, 10, 15 and 
20 L were evaluated for the production of lactic acid. It is 
worth mentioning that the scenarios evaluated corre-
spond to systems that are not exposed to radiation 
doses. However, for future work, we will evaluate how 
the growth of organisms is affected by different radiation 
doses. This can provide information on how fermentation 
time is impacted and how this may modify the amount of 
input resources needed in biomanufacturing processes. 

RESULTS 
ESM analysis was performed for the production of 

lactic acid from glucose using Escherichia coli, Saccha-
romyces cerevisiae and Pichia pastoris. The analysis was 
carried out for various design configurations and produc-
tion capacities. 

Equivalent System Mass 
The system mass considers both the mass of the 

design and protection materials and the production of 
lactic acid, which in turn is restricted by the fermentation 
volume. As a result, the system mass among the different 
organisms is similar. Figure 3 shows the results of ESM 
analysis using Escherichia coli as the host organism for 
lactic acid production. The results obtained indicate that 
for a fermentation volume of 10 liters, the system mass is 
approximately 12.4 kg for a standard scenario (P10). 
When shielding is added to the system (P10_G_1), its 
mass increases to 14.5 kg. At a shielding of 5 cm thick-
ness, the mass increases further to 22.8 kg (P10_G_5). 
Furthermore, it can be seen that the equipment material 
design plays an important role in the system mass as a 
three-fold increase in equipment mass is obtained when 
stainless steel is used. 

On the other hand, if the volume of the fermenter 
increases to 20 L, the system mass increases to 24 kg for 
a standard scenario. For the scenarios P20_S_1 and 
P20_S_5 the mass of the system is 34 kg and 48 kg, re-
spectively.  

 
Figure 3: Equivalent System Mass Analysis for different 
scenarios per batch. 

Results show that the mass of the system does not 
change significantly in terms of the organism selected for 
each batch fermentation system; however, the produc-
tion of lactic acid is favored when Escherichia coli is em-
ployed as better yield is achieved. However, as can be 
seen in Figure 4, in a 10 L fermenter with a glucose con-
centration of 200 g/L, the total mass of the system using 
Escherichia coli is about 1425 kg/year. The mass of the 
Saccharomyces cerevisiae system is approximately 900 
kg/year, 37% less mass than the mass required to oper-
ate a system using Escherichia coli. For both cases, the 
mass related to the equipment and shielding is negligible 
since represents less than 1% of the mass of the system. 

Energy 
The energy required to maintain the temperature of 

the fermentation process to produce lactic acid in one 
year was evaluated. Considering that the temperature in-
side the ISS is approximately 23 °C, the energy require-
ments in terms of mass were evaluated for different fer-
mentation volumes (1 L – 20 L) and operation tempera-
tures (24 °C – 37 °C) (Figure 5). Once we evaluated the 
energy required to maintain the temperature in the biore-
actor, it was multiplied by the factor 87 kg/kW to convert 
the units of energy into units of mass. The energy re-
quired in terms of mass is equal to the factor 0.053 kg 
per liter per °C for Escherichia coli, 0.021 for Saccharo-
myces cerevisiae and 0.01 kg per liter per °C for Pichia 
pastoris. Our findings show that for a temperature equal 
to 36 °C and a volume fermenter equal to 1 L, the mass 
per year related to the energy required in the fermenta-
tion system is equal to 0.68 kg for Escherichia coli; how-
ever, the mass increases to 8.48 kg for a volume equal to 
20 L.  
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Figure 5: Energy in terms of mass required for the lactic 
acid fermentation in one year.

 

Figure 6: Annual lactic acid production projections using different organisms 

.

 

 

Figure 4: Equivalent System Mass Analysis for different 
scenarios per year. 

 

Table 1: L-lactic acid production of different microbial 

hosts using glucose as a substrate. 

Organism Produc-
tion rate 

(g/l/h) 

Yield (g/g) Reference 

Escherichia 
coli 

  [] 

Saccharo-
myces 
cerevisiae 

  [] 

Pichia Pas-
toris 

  [] 

Lactic acid Production 
A sensitivity analysis was performed to evaluate the 

impact of productivity on the production of lactic acid us-
ing each of the organisms. Results show that according 
to the productivity reported for the studied organisms 
(Table 1), the production of lactic acid per year with Esch-
erichia coli in a fermenter volume of 10 L is about 258 kg, 
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and it is higher than the other organisms evaluated. In the 
case of Saccharomyces cerevisiae, the production of lac-
tic acid is 97.7 kg per year, and using Pichia pastoris the 
production is about 37.1 kg per year. Figure 6 shows the 
production of lactic acid that can be achieved assuming 
different yield and fermentation volumes.  

Challenges and Open Questions 
Addressing the design of systems under space con-

ditions requires different perspectives and considera-
tions that are difficult to evaluate and reproduce in ter-
restrial conditions. ESM is a promising tool to evaluate 
new systems. As a cost metric, ESM may not be capable 
of capturing how biological performance is impacted by 
different radiation levels, but it allows us to evaluate the 
mass of resources involved in the process at different 
operating conditions. Because of this, research must be 
carried out to understand how to optimally engineer or-
ganisms for space environments. On the other hand, ad-
ditional analyses are required to identify the trade-offs 
between engineering hosts to have better performance 
in high radiation environments compared to the addition 
of more radiation shielding material. Moreover, other 
mechanisms to reduce the shielding requirements and 
organisms’ protection against radiation (e.g., different 
preservation modalities) should be evaluated in the de-
sign of space bioprocess. In this regard, immobilized cell 
methods such as lyophilization and hydrogel systems are 
good alternatives to suspend cell cultures and sustain 
long-term metabolic processes. Therefore, for future 
work, this modeling framework may be complemented 
with biomanufacturing design alternatives that could re-
duce the impact of radiation. Such a study could help to 
better assess trade-offs between strain resistance, 
preservation modalities, and overall process economics.  

CONCLUSIONS 
This study presented a computational design frame-

work for the design of biomanufacturing systems in 
space using a mass perspective to get an estimate of the 
launch cost of the system. ESM has been used as a trans-
portation cost metric that involves the principal factors 
that affect the performance of the biomanufacturing sys-
tems such as the mass of the equipment, and all these 
elements are expressed in units of mass to allow for com-
parisons among the different design configurations of bi-
omanufacturing systems. 

In this work, the bioproduction of lactic acid using 
Escherichia coli, Saccharomyces cerevisiae and Pichia 
pastoris were evaluated by considering different fer-
menter materials and volumes to identify the bottlenecks 
in the design configurations in terms of mass and yield. 
Our analysis reveals that lactic acid is favored when 
Escherichia coli is employed. About 258 kg of lactic acid 

per year can be produced using Escherichia coli in a 10 L 
stainless steel fermenter. At a shielding material density 
of 1 g/cm2 the total mass of the system obtained from the 
ESM analysis is about 19 kg. Our findings show that most 
of the mass of the system is related to the water required 
to produce lactic acid. In this regard, ESM analysis helps 
to identify the system components that contains greater 
mass and would result in high launch costs. For future 
work, we are interested in studying other alternatives to 
create closed-loop systems involving the available re-
sources inside the ISS. 
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ABSTRACT 
Aiming to mitigate the environmental impact derived from fossil fuels, we propose an integrated 
carbon capture-biomass gasification process is proposed to produce low-carbon hydrogen as an 
alternative energy carrier. The process begins with the pre-treatment of empty fruit bunches 
(EFB), involving grinding, drying, torrefaction, and pelletization. The resulting EFB pellet is then fed 
into a dual gasifier, followed by a catalytic cracking of tar and water gas shift reaction to produce 
syngas, aiming to increase its H2 to CO ratio. Subsequently, we explore two alternatives (DEPG 
and MEA) for syngas upgrading by removing CO2. Finally, a PSA system is modeled to obtain H2 at 
99.9% purity. The pre-treatment stage densifies the biomass from an initial composition (%C 
46.47, %H 6.22, %O 42.25) to (%C 54.10, %H 6.09, %O 28.67). The dual gasifier operates at 800°C, 
using steam as a gasifying agent. The resulting syngas has a volume concentration (%CO 20.0, 
%CO2 28.2, %H2 42.2, %CH4 5.9). Next stages of the process focus on removing the CO2 and in-
creased H2 through catalytic reactions from the syngas. Thus, the DEPG carbon capture process 
can decrease the CO2 concentration to 2.9%, increasing the hydrogen to 95.6% in volume. In con-
trast, the MEA process reduces the concentration of CO2 to 5.2% and increases the concentration 
of H2 to 93.1%. Moreover, we estimate a levelized costs of hydrogen (LCOH) and carbon capture 
cost for each method (DEPG and MEA) (LCOC) and CO2 avoided (LCCA). LCOH: 3.05 USD/kg H2, 
LCOC: 92 and 59 USD/t CO2 and 183 and 119 USD/t CO2, for DEPG and MEA respectively. 

Keywords: Empty fruit bunch, Gasification, Carbon capture, Torrefaction, Pre-treatment. 

INTRODUCTION 
In recent years, processes that generate clean en-

ergy have gained relevance in academia and industry. 
Due to the growing energy demand, supplied by the oil 
industry, there has been a constant increase in green-
house gas emissions. It is estimated that 𝐶𝐶𝑂𝑂2 emissions 
generated by industries are in the order of 8 billion tons 
per year, it is estimated that emissions will reach 10 billion 
tons per year [1]. 

For this reason, several countries such as Japan, 
Australia, Germany, and most of the countries of the 

European Union have committed to initiating decarboni-
zation processes, in addition to encouraging processes 
that lead to a circular economy. One of the energy tran-
sition strategies consists of the use of hydrogen as an 
energy carrier  [2]. Currently, the demand for hydrogen 
has undergone a significant increase from 20 𝑀𝑀𝑀𝑀 (million 
tons) in 1970 to more than 70 𝑀𝑀𝑀𝑀 by 2018 globally. Most 
of the hydrogen produced, comes from fossil sources 
with a commercial value of 1 to 3 𝑈𝑈𝑈𝑈𝑈𝑈 per kg [3]. 

In the Colombian context, there is a commitment to 
reduce 𝐶𝐶𝑂𝑂2 emissions by 51% by 2030 by promoting the 
production of hydrogen from sustainable sources  [4]. 

The thermochemical processes are one of the most 

https://doi.org/10.69997/sct.153241
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attractive alternatives in the short term to transform bio-
mass or carbonaceous fuel, into energy and chemical 
products or their building blocks such as syngas. De-
pending on the oxygen requirements, the operating tem-
perature and the syngas composition, the thermochemi-
cal processes can be classified into pyrolysis, gasifica-
tion, and combustion [5].  

Currently, the predominant transformation process 
for the biomass is the combustion, which accounts for 
approximately 90% of its worldwide utilization, generat-
ing energy ranging from a few megawatts to 100 mega-
watts [6]. Nevertheless, nowadays, there is a growing in-
terest in the gasification process due to the flexibility to 
produce syngas, hydrogen, and biogenic carbon dioxide. 
As reported by the International Energy Agency (IEA) Bi-
oenergy, as of 2020, there are 686 operational gasifiers 
worldwide, where 272 plants are producing syngas on a 
large scale, boasting an energy capacity of approxi-
mately 200 𝐺𝐺𝐺𝐺𝐺𝐺ℎ—equivalent to around 200 𝑀𝑀𝐺𝐺𝐺𝐺ℎ per in-
stalled gasifier[7]. 

Biomass gasification is challenging due to its high 
moisture content, high 𝑂𝑂/𝐶𝐶 ratio, low bulk density, lower 
grindability, and heterogeneous nature, these features 
make it difficult to use biomass as fuel, for that reason is 
necessary to carry out a pre-treatment. Furthermore, 
higher tar formation during the gasification of raw bio-
mass increases the downstream cost of gas separation. 
Pre-treatment of biomass through torrefaction could re-
move some of these limitations, making biomass a more 
suitable feedstock for gasification[8].  

Carbon capture stands out as a promising technol-
ogy to mitigate climate change. The integration of bio-
mass gasification and carbon capture lead to negative 
net carbon emissions and may therefore provide an im-
portant technological alternative for meeting current 
greenhouse gas stabilization targets. To this end, syngas 
from biomass gasification combined with pre-combus-
tion carbon capture can be used to produce either biofu-
els or electricity [9]. 

It is expected that the technological development of 
biomass gasification processes coupled with 𝐶𝐶𝑂𝑂2 capture 
might satisfy the energy demand in such a way that they 
can be considered as a technical, economic and environ-
mental feasible alternative. It is hoped that research such 
as the one presented here could contribute to the devel-
opment of these processes. 

PROCESS DESCRIPTION 

Feedstock 
The palm oil is a well-established industry in Colom-

bia, this level of industrialization is providing a reliable 
source of raw material for further transformation into bi-
oenergy, biofuels and biohydrogen among others. We se-
lect the empty fruit bunch (EFB), which is a residual 

biomass from the palm oil extraction as raw material for 
the gasification process.  The EFB characterization given 
by the ultimate and proximal analysis is shown in Table 1. 
In additionally, we consider that the EFB has a moisture 
content of 48% by weight, with a particle size distribution 
of 40 𝑐𝑐𝑐𝑐 in diameter, following a normal distribution with 
a mean of 8.3 𝑐𝑐𝑐𝑐. The EFB gasification plant has a design 
capacity of 80 𝐺𝐺/ℎ.  The biomass was modeled as no-con-
ventional solid, using Aspen plus V12, for enthalpy and 
density are applied HCOALGEN and DCOALIGT correla-
tions respectively, which are taken by the simulation. The 
HHV value of biomass moisture provided by simulation is 
compared to literature data [10]. 

Table 1: Ultimate and proximal analysis. 

Ultimate Value% Proximate Value% 
C  Fixed carbon  
H  Volatile  
O  Moisture  
S  Ash  
N  HHV  

MJ/Kg 
Ash    

PRE-TREATMENT 
This stage encompasses biomass grinding, drying, 

torrefaction, and pelletization processes. We select two 
fluid packages: SOLIDS for processes related to biomass, 
and Redlich-Kwong-Soave-Boston-Mathias for gases 
generated from the burning of gases and liquids resulting 
from torrefaction reactions.  

The main objective of the pre-treatment is to in-
crease the energy density of the biomass. Thus, the par-
ticle size distribution, 𝑂𝑂/𝐶𝐶 and 𝐻𝐻/𝐶𝐶 ratios can be consid-
ered as key performance targets of this stage (Figure 1). 
At the end of the process, 35.7 𝑀𝑀/ℎ torrefied pellets of 
EFB are produced, with a mass yield of 0.44 𝐾𝐾𝐾𝐾 pellet tor-
refied EFB/𝐾𝐾𝐾𝐾 moisture biomass and ratio of energy con-
sumption of 0.16 𝐾𝐾𝐺𝐺/𝐾𝐾𝐾𝐾 pellet torrefied EFB. 

Grinding 
We simulate this process using the correlations pro-

vided by Rosin Rammler and Sperling Bennet, which are 
retrieved from the Aspen plus database.  

We define a target of 5 𝑐𝑐𝑐𝑐 as the particle size, 
which is predicted as a function of the specific power and 
Bond work index or Hardgrove grindability index (HGI). 
The first parameter is given by Ruksathamcharoen with a 
value of 14 𝐾𝐾𝐾𝐾𝐺𝐺/𝐺𝐺 [11], and the second one is provided by 
Montealegre with a value of 12.6 HGI [12]. See the oper-
ation unit CRUSHER in the Figure 1. 

Dying 
 We adapt correlations proposed by Han [13] 
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through a CALCULATOR block to predict air demand and 
sizing for dried  This operation unit is represented by the 
DRYLER, which was set up to operate in co-current. See 
details in the Table 2. 

Table 2: Operations condition and dimensions of 
DRYLER. 

Parameter value Units 
Length  m 
Cross area  m 

Residence time  min 
Ratio air biomass  Kg air/Kg EFB 
Input air temperature  °C 
Outlet moisture  Weight (%)  

Torrefaction 
This process seeks to improve 𝑂𝑂/𝐶𝐶 and 𝐻𝐻/𝐶𝐶 ratios. 

Thus, the residual biomass can be considered as a vege-
tal coal, with a performance alike the mineral coal. We 
represent this operation unit by TORRE and the block cal-
culator TORPELE. We predict yields of solid, liquid and 
gas and the composition of each phase based on Azir’s 
work [8] [14]. According to the author, the optimum tem-
perature and residence time for the torrefaction process 
are  250 º𝐶𝐶 and 40 minutes respectively, which are 

considered in this work (see results in the Table 3). The 
gas and liquid streams of this process are used to provide 
the energy requirements for the torrefaction (see red line 
in Figure 1). 

Pelletization 
The resulting torrefied EFB is cooled at 100 º𝐶𝐶 be-

fore it is fed to the pelletization stage, which is modeled 
by the GRANULADOR block called PELLE, defining the 
calculator TORPELLE. It was set up an energy require-
ment of 30 𝐾𝐾𝐾𝐾𝐺𝐺/𝐺𝐺 of EFB to achieve a particle size of 
10 𝑐𝑐𝑐𝑐 [15]. Note: The effects of pelletization on the 
chemical properties of torrefied EFB are not considered. 

GASIFICATION 
We model a dual gasifier for EFB pellets following 

the methodology proposed by Puig [16] and Bach [17]. 
This process operates at atmospheric pressure and using 
steam as gasification agent. It is selected Peng Robison 
Boston- Mathias as fluid package for the simulation. In 
the Figure 2, we represent the gasification process using 
five blocks (GDES, DEVOL, GH2S-NH3, GOXIR and 
GREDUCR). The decomposition of torrefied pellets of EFB 
is modeled by the blocks GDES and DEVOL, using the 

Table 3: Comparison raw EFB with torrefied pellets of EFB (PTEFB) 

Ultimate analysis Raw EFB  PTEFB Proximate Raw EFB  PTEFB 

C   Fixed car-
bon 

  

H   Volatile   
O   Moisture   
S   Ash   
N   HHV[MJ/Kg

]   

Ash      
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correlations proposed by Neves [18], which are repre-
sented by the equations (1-11). As result, we predict the 
yield for each component (𝐶𝐶𝑂𝑂,𝐶𝐶𝑂𝑂2,𝐻𝐻2,𝐻𝐻2𝑂𝑂, 
𝐶𝐶𝐻𝐻4,𝐶𝐶2𝐻𝐻4,Tar,𝐶𝐶, Ash). Note: The operating temperature is 
the independent variable. According to Lee, the tar frac-
tion is represented as 𝐶𝐶6𝐻𝐻6 allowing this assumption to be 
made[19].  

�∑ 𝑌𝑌𝑗𝑗,𝐹𝐹𝑗𝑗 − 𝑌𝑌𝑐𝑐ℎ,𝐹𝐹 ∑ 𝑌𝑌𝑗𝑗,𝑐𝑐ℎ𝑗𝑗 � ∗  𝐿𝐿𝐻𝐻𝐿𝐿𝐺𝐺 = �𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡,𝐹𝐹 ∗ 𝑌𝑌𝐻𝐻2𝑂𝑂,𝐹𝐹� ∗ 𝐿𝐿𝐻𝐻𝐿𝐿𝐺𝐺 +
𝑌𝑌𝐶𝐶2𝐻𝐻4,𝐹𝐹 ∗ 𝐿𝐿𝐻𝐻𝐿𝐿𝐶𝐶2𝐻𝐻4 + 𝑌𝑌𝐶𝐶𝐻𝐻4,𝐹𝐹 ∗ 𝐿𝐿𝐻𝐻𝐿𝐿𝐶𝐶𝐻𝐻4 + 𝑌𝑌𝐶𝐶𝑂𝑂,𝐹𝐹 ∗ 𝐿𝐿𝐻𝐻𝐿𝐿𝐶𝐶𝑂𝑂 +

𝑌𝑌𝐻𝐻2,𝐹𝐹  𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻2                                                                          
 (1) 

𝑌𝑌𝑐𝑐ℎ,𝐹𝐹 = 0,106 +  2,43 ∗ 𝑒𝑒(−0,66∗10−2∗𝑇𝑇)                         (2) 

𝑌𝑌𝐶𝐶,𝑐𝑐ℎ = 0,93 +  0,92 ∗ 𝑒𝑒(−0,42∗10−2∗𝑇𝑇)                           (3) 

𝑌𝑌𝑂𝑂,𝑐𝑐ℎ = 0,07 +  0,85 ∗ 𝑒𝑒(−0,48∗10−2∗𝑇𝑇)                           (4) 

𝑌𝑌𝐻𝐻,𝑐𝑐ℎ = −0,41 ∗ 10−2 + 0,10 ∗ 𝑒𝑒(−0,24∗10−2∗𝑇𝑇)              (5) 

𝑌𝑌𝐻𝐻2,𝐹𝐹 = 1,145 ∗ (1 − 𝑒𝑒(−0,11∗10−2∗𝑇𝑇))9,384                     (6) 

𝑌𝑌𝐶𝐶𝐻𝐻4,𝐹𝐹 = −2,18 ∗ 10−4 + 0,146 ∗ 𝑌𝑌𝐶𝐶𝑂𝑂,𝐹𝐹                         (7) 

𝑌𝑌𝐶𝐶𝑂𝑂,𝐹𝐹 = �(3 ∗ 10−4 + 0,0429

1+� 𝑇𝑇
632

�
−7,23)�

−1

∗ 𝑌𝑌𝐻𝐻2,𝐹𝐹                  (8) 

𝑌𝑌𝐶𝐶,𝑡𝑡𝑡𝑡𝑡𝑡 = 1,14 ∗ 𝑌𝑌𝐶𝐶,𝑏𝑏𝑏𝑏𝑏𝑏                                                   (9) 

𝑌𝑌𝑂𝑂,𝑡𝑡𝑡𝑡𝑡𝑡 = 0,8 ∗ 𝑌𝑌𝑂𝑂,𝑏𝑏𝑏𝑏𝑏𝑏                                                   (10) 

𝑌𝑌𝐻𝐻,𝑡𝑡𝑡𝑡𝑡𝑡 = 1,13 ∗ 𝑌𝑌𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏                                                 (11) 

 

Table 4: Mass fractions for each part of the gasification process 

 Component Decompositions  Gasification  Combustion 
chamber 

C    
O    
CO    
CO    
H    
N    
CH    
CH    
NH (𝐾𝐾𝐾𝐾/ℎ)     
HS (𝐾𝐾𝐾𝐾/ℎ)    
CH    
HO    
S    
Ash    
Flow rate (T/h)    
Stream name GASCHAR GAS  FLUEG 
Ratio steam/Biomass    

 
Figure 2. Simulation of dual gasifier. 
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The carbon and ashes generated in the decomposi-
tion stage are send to a combustion chamber called 
GCOMBUS, the remaining gas products from decompo-
sition are directed to the stoichiometric reactor called 
GH2S-NH3, where impurities such as 𝑁𝑁𝐻𝐻3 and 𝐻𝐻2𝑈𝑈 are 
formed. These impurities are temporarily separated from 
the gas, with the aim of excluding them from the gasifi-
cation reactions and thus maintaining equilibrium. Subse-
quently, the gas, free of impurities are mixed with steam 
and enters the gasification stage conducted in the gas 
reactor, in this case there is not oxygen in the mix, for 
that reason only the reduced reactions occur, producing 
a reduced gas. This reduced gas is then mixed with the 
impurities to obtain synthesis gas. The equations 11-23 
represented the reduction reactions. 

The red stream in Figure 2 illustrates the energy ex-
change between the gases generated by the combustion 
of the solid phase (carbon and ashes) and the chamber 
of the bubbling bed gasifier. Table 3 displays the mass 
composition of different stages of the process.  

𝐶𝐶(𝑠𝑠)  + 𝐻𝐻2𝑂𝑂 ⟶ 𝐶𝐶𝑂𝑂 + 𝐻𝐻2                                        (12) 

𝐶𝐶𝑂𝑂 +  𝐻𝐻2 ⟶ 𝐶𝐶(𝑠𝑠)  +  𝐻𝐻2𝑂𝑂                                         (13) 

𝐶𝐶(𝑠𝑠)  + 𝐶𝐶𝑂𝑂2   ⟶ 2𝐶𝐶𝑂𝑂                                                (14) 

2𝐶𝐶𝑂𝑂 ⟶ 𝐶𝐶(𝑠𝑠)  + 𝐶𝐶𝑂𝑂2                                                (15) 

0,5𝐶𝐶(𝑠𝑠) + 𝐻𝐻2  ⟶ 0,5𝐶𝐶𝐻𝐻4                                          (16) 

0,5𝐶𝐶𝐻𝐻4  ⟶ 0,5𝐶𝐶(𝑠𝑠) + 𝐻𝐻2                                          (17) 

𝐶𝐶𝑂𝑂  +  𝐻𝐻2𝑂𝑂 ⟶ 𝐶𝐶𝑂𝑂2  +  𝐻𝐻2                                            
(18) 

𝐶𝐶𝑂𝑂2  +  𝐻𝐻2 ⟶  𝐶𝐶𝑂𝑂  +  𝐻𝐻2𝑂𝑂                                           
(19) 

𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 ⟶ 𝐶𝐶𝑂𝑂 + 3𝐻𝐻2                                             
(20) 

𝐶𝐶𝑂𝑂 + 3𝐻𝐻2  ⟶ 𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂                                             
(21) 

𝐶𝐶6𝐻𝐻6 + 5𝐻𝐻2𝑂𝑂 ⟶ 𝐶𝐶𝐻𝐻4 + 6𝐻𝐻2 + 5𝐶𝐶𝑂𝑂                         (22) 

𝐶𝐶2𝐻𝐻4   +  2𝐻𝐻2𝑂𝑂 ⟶ 2𝐶𝐶𝑂𝑂 +  4𝐻𝐻2                                  
(23) 

Table 5: Operations condition and dimensions of dual 
gasifier. 

Parameter value Units 
Temperature gasifier  °C 
Temperature flue gas  °C 
Diameter  m 
Length  m 
Ratio steam biomass  Kg steam/Kg EFB 
Outlet moisture  Weight (%) 

 
The proposed model suggests that unreactive char 

and ash interchange heat with the flue gas as well as syn-
gas thus, temperature of flue gas and solids should be 
the same. The temperatures of syngas and flue gas are 
compared with the experimental case. Table 5 shows the 
operations conditions of gasifier.   

The results obtain in the gasification simulation are 
compared with the experimental data [20]. When com-
paring the results, errors of less than 15% are observed 
with respect to the volumetric composition of the prod-
ucts, except for tar, where the error is 20%. These dis-
crepancies arise from differences in the raw materials 
used, as well as the absence of torrefaction processes in 
the evaluation performed by Smich. Another significant 
factor affecting result accuracy is the presence of trans-
fer phenomena, which are not accounted for in the gasi-
fier. 

GAS CLEANING AND UPGRATING 

Catalytic cracking tar (CCT) 
The resulting gas contain quantities of tar (𝐶𝐶6𝐻𝐻6)  

that can cause tube plugging. However, this tar can also 
be utilized to enhance the process yield. Therefore, it is 
crucial to eliminate tar through the catalytic cracking pro-
cess, as depicted in Figure 3.  

The diagram illustrates the necessity to raise the 
outlet gas temperature to 900 º𝐶𝐶 to achieve tar destruc-
tion using dolomite catalyst (see equation 24), Subse-
quently gas goes into other catalytic reactor to eliminate 
methane and transform into 𝐶𝐶𝑂𝑂 and 𝐻𝐻2 (see equation 25), 
the final gas contains high concentration of 𝐶𝐶𝑂𝑂, see Table 
6. Both reactions follow the Arrhenius model. The kinectic 
model is provided by Srinivas who investigates [21]. 

𝐶𝐶6𝐻𝐻6 + 2𝐻𝐻2𝑂𝑂 ⟶ 2.5𝐶𝐶𝐻𝐻4 + 1.5CO + 1.5𝐶𝐶                         (24) 
𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 ⟶ 𝐶𝐶𝑂𝑂 + 3𝐻𝐻2                                                      

(25) 

Water gas shift reaction (WGSR) 
 Water gas shift reaction usually occurs in a cat-

alytic environment and high pressures, the reactor oper-
ates at 28 bar and the process subdivided into two parts. 
Hight temperature shift catalytic (HTSC) and Low tem-
perature shift catalytic (LTSC) see the equation (26-27). 
According to Reza [22]  “if high purity of hydrogen is 
needed, the most common configuration for doing WGSR 
consist in two consecutive adiabatic fixed bed reactors”.  

The motive of this arrangement due to the reaction 
is kinetically favorable at high temperatures while it is 
thermodynamically at low temperatures. The first reactor 
used an iron-based catalyst and the second used cop-
per-based catalyst, the Figure 3 shows simulation of 
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each reactor. In the Table 6 shows upgrading gas com-
position at the end of process.  

𝐶𝐶𝑂𝑂  +  𝐻𝐻2𝑂𝑂 ↔ 𝐶𝐶𝑂𝑂2  +  𝐻𝐻2                                        (26) 
𝑅𝑅𝐻𝐻𝑇𝑇𝐻𝐻𝐶𝐶 = 𝐴𝐴𝐶𝐶 × 102.845exp (−111

𝑅𝑅𝑇𝑇
)𝑃𝑃𝐶𝐶𝑂𝑂𝑃𝑃𝐶𝐶𝑂𝑂2

−0.36𝑃𝑃𝐻𝐻2
−0.09(1 −

𝑃𝑃𝐶𝐶𝐶𝐶2𝑃𝑃𝐻𝐻2
𝐾𝐾𝑒𝑒𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝐻𝐻2𝐶𝐶

 )                                                                        (27) 

𝑅𝑅𝐿𝐿𝑇𝑇𝐻𝐻𝐶𝐶 = 𝐴𝐴𝐶𝐶 × 2.96 × 105 exp �−47400
𝑅𝑅𝑇𝑇

� �𝑃𝑃𝐶𝐶𝑂𝑂𝑃𝑃𝐻𝐻2𝑂𝑂 −
𝑃𝑃𝐶𝐶𝐶𝐶2𝑃𝑃𝐻𝐻2

𝐾𝐾𝑒𝑒
�(28) 

𝐾𝐾𝑒𝑒 = exp �−4577.8
𝑇𝑇

− 4.33�                                                 (29)                                                                     

CARBON CAPTURE 
Subsequently, the purified gas, with a high concen-

tration of 𝐶𝐶𝑂𝑂2 (see Table 6) is directed towards the car-
bon capture process. In this phase, two alternatives are 
evaluated based on simulation examples provided by As-
pen Plus. Both alternatives employ amines as solvents 
with the aim of reducing the concentration of 

components such as 𝐶𝐶𝑂𝑂2 and 𝐻𝐻2𝑈𝑈 present in the gas 
stream. For both options, a PSA unit must be installed to 
achieve hydrogen purity of 99.9%. The simulations pre-
sented below correspond to examples extracted from the 
Aspen Plus V12 database, which were modified for the 
purified stream in this case [23] [24] . 

 

Physical adsorption 
 In the first case, DEPG (Dimethyl Ether of Poly-

ethylene Glycol) is employed as the solvent, which elimi-
nates 𝐶𝐶𝑂𝑂2 through a physisorption mechanism. This sys-
tem requires high pressure and low temperature. Figure 
4 depicts the simulation of the process using DEPG. Ta-
ble 8 shows the operations conditions. 

 

Table 6: Volumetric composition at 0 °C of dry syngas for each process 

 Component Gasifica-
tion  Tar cracking Methane cracking HTC LTC 

CO      
CO      
H      
N      
CH      
CH      
NH (Kg/h)           
HS (Kg/h)      
Pressure (bar)      
Temperature (°C)      
Dry flow rate (T/h)      

Stream name GAS  GAS  GAS  GAS  GAS 
 

Reactor volume (m)      

 
Figure 3. Gas cleaning and upgrading. 
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Figure 4. Carbon capture using DEPG as sovent. 

Chemical adsorption  
For the second case, MEA is used as the solvent. In 

this system, the interaction occurs through a chemisorp-
tion mechanism. Therefore, it is necessary to specify the 
equilibrium reaction between the solvent and the gas. 
Figure 5 illustrates the adsorption with MEA. Table 7 
shows the results of adsorption for both cases. 

 

 
Figure 5. Carbon capture using MEA as sovent. 

Table 7: Volume concentration of gas after capture car-
bon. 

Component DEPG MEA 
CO   
CO   
H   
N   

Table 8: Operations condition and dimensions of capture 
processes. 

Parameter DEPG MEA 
Operation temperature 
(°C) 

  

Operation pressure (bar)   
Diameter (𝑐𝑐)   
Length (𝑐𝑐)   
Hydrogen flow rate (𝑀𝑀/ℎ)   
Fluid package PC-SAFT ENRTL-RK 

 
It is necessary to mention that although adsorption 

using MEA results in a higher concentration of hydrogen 
compared to DEPG (refer to Table 7), there is a loss of 

hydrogen of 8.9% by weight when using DEPG, while the 
loss of hydrogen with MEA adsorption is only 1.24%. Sub-
sequently, the gas proceeds to the PSA unit. For DEPG 
adsorption, it achieves a throughput of 58,75 𝑇𝑇𝑇𝑇

𝐷𝐷𝑡𝑡𝐷𝐷
 whereas 

for MEA, it is 63,72 𝑇𝑇𝑇𝑇
𝐷𝐷𝑡𝑡𝐷𝐷

. The mass yield of MEA and DEPG 
processes with PSA corresponds to 0.059 and 
0.054 𝐾𝐾𝐾𝐾 ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝐾𝐾𝑒𝑒𝑦𝑦/𝑘𝑘𝐾𝐾 𝐾𝐾𝑔𝑔𝑠𝑠. Additionally, the energy yield 
is 0.15 and 3.14 𝐾𝐾𝐺𝐺 /𝐾𝐾𝐾𝐾 ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝐾𝐾𝑒𝑒𝑦𝑦 respectively. 

ECONOMICAL ASSESSMENT 
According to the simulation results, economic pa-

rameters such as CAPEX and OPEX are calculated using 
different correlations. For the pre-treatment stage, the 
methodology proposed by Guthrie [25] is employed. The 
cost and installation of the dual gasifier are calculated us-
ing the correlations presented by Gunnarsson [26]. Two-
phase separators are assessed using the methodology 
proposed by Turton [27], while for the combustion reac-
tor in the pre-treatment and the equipment involved 
(PSA), the methodology presented by Hoffman [28] is 
followed. 

An interest rate of 11% over a duration of 20 years is 
assumed, with an estimated construction period of 3 
years for the plant. 

The economic assessment is conducted separately 
for each stage of the process (pre-treatment, gasifica-
tion, and carbon capture). 

Pre-treatment 
For economic assessment of pre-treatment. We 

evaluate the LCOE pellets as parameter in the Table 9 
shows the results of assessment. 

Table 9: Economic assessment of pre-treatment  

Parameter value Units 

CAPEX $ 
’ 𝑈𝑈𝑈𝑈𝑈𝑈 

OPEX $ 
’ 𝑈𝑈𝑈𝑈𝑈𝑈 

LCOE pellet  𝑈𝑈𝑈𝑈𝑈𝑈/𝑀𝑀 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝐺𝐺 
Energy consumption  𝑀𝑀𝐺𝐺/𝑀𝑀 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝐺𝐺 

Gasification and gas upgrading 
In the gasification process, we utilize the correlation 

presented in Gunnarsson [26] for cost estimation. Em-
ploying the six-rule method, we estimate the equipment 
cost and operational expenses using the Lower Heating 
Value (LHV) of syngas. For the stage of gas cleaning and 
upgrading, the correlations provided by Warren [25] are 
applied. The results of the assessment are presented in 
Tables 10 and 11. 

The Levelized Cost of Hydrogen (LCOH) includes 
costs related to gas cleaning and upgrading. According 
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to GEP company, the LCOH ranges between 2,8 a 3,5 
𝑈𝑈𝑈𝑈𝑈𝑈/𝐾𝐾𝐾𝐾 𝐻𝐻2[29]. 

Table 10: Economic assessment of gasification 

Parameter value Units 

CAPEX $ 
’ 𝑈𝑈𝑈𝑈𝑈𝑈 

OPEX $ 
’ 𝑈𝑈𝑈𝑈𝑈𝑈 

LCOH  𝑈𝑈𝑈𝑈𝑈𝑈/𝐾𝐾𝐾𝐾 𝐻𝐻2 

Table 11: Economic assessment of gas cleaning and up-
grading. 

Parameter value Units 

CAPEX $ 
 𝑈𝑈𝑈𝑈𝑈𝑈 

OPEX $ 
’ 𝑈𝑈𝑈𝑈𝑈𝑈 

Carbon capture 
For the economic assessment, we evaluated both 

methods of carbon capture. The MEA system was chosen 
due to its high selectivity to hydrogen compared to the 
DEPG system. Tables 12 and 13 show the results of the 
assessment for carbon capture using MEA and DEPG, re-
spectively. In both carbon capture systems, PSA is em-
ployed.  

The results suggest that the method using DEPG is 
appropriate, despite its high electricity consumption and 
low hydrogen production compared to using MEA. 

Table 12: Economic assessment of carbon capture using 
MEA with PSA 

Parameter value Units 
CAPEX $’ 𝑈𝑈𝑈𝑈𝑈𝑈 
OPEX $ ’ 𝑈𝑈𝑈𝑈𝑈𝑈 

CAPEX/𝐶𝐶𝑂𝑂2 𝑀𝑀/ℎ $ ’ 𝑈𝑈𝑈𝑈𝑈𝑈 
LCOC  𝑈𝑈𝑈𝑈𝑈𝑈/𝑀𝑀 𝐶𝐶𝑂𝑂2 
LCOA  𝑈𝑈𝑈𝑈𝑈𝑈/𝑀𝑀 𝐶𝐶𝑂𝑂2 

Table 13: Economic assessment of carbon capture using 
DEPG with PSA 

Parameter value Units 
CAPEX $ ’ 𝑈𝑈𝑈𝑈𝑈𝑈 
OPEX $ ’ 𝑈𝑈𝑈𝑈𝑈𝑈 

CAPEX/𝐶𝐶𝑂𝑂2 𝑀𝑀/ℎ $ ’ 𝑈𝑈𝑈𝑈𝑈𝑈 
LCOC  𝑈𝑈𝑈𝑈𝑈𝑈/𝑀𝑀 𝐶𝐶𝑂𝑂2 
LCOA  𝑈𝑈𝑈𝑈𝑈𝑈/𝑀𝑀 𝐶𝐶𝑂𝑂2 

CONCLUSION  
Based on the process results, it can be affirmed that 

the proposed model for torrefaction is valid, as it can 

indirectly estimate the higher calorific value of the torre-
fied EFB. 

It is necessary to clarify that the proposed design 
does not correspond to the optimum. In the cases of gas-
ification, tar cracking, methane cracking, and water gas 
shift reaction reactors, sensitivity analysis was con-
ducted to estimate the size of equipment for the base 
case of carbon capture systems. The simulation ex-
tracted from the Aspen Plus examples was modified to 
consider the resulting flow of the plant proposed in this 
project. 

Regarding gasification, the combination of the mod-
els proposed by Puig and Bach, along with the energy in-
tegration implemented and Neves' model for the decom-
position of the EFB, allows for generating a simulation 
that emulates the experimental results presented by 
Schmid, including the formation of tar. In the future, it is 
considered to consider the reactivity of the ashes. 

It is observed that the gas upgrading eliminates 
most of the problems related to the presence of tar, mon-
oxide, and methane. Additionally, increasing the concen-
tration of hydrogen eliminates problems related to sub-
sequent adsorption, as the presence of tar in the stream 
can affect the efficiency of adsorption. 

The cost of this low-carbon hydrogen is close to the 
market price. The reasons are related to the high quanti-
ties of hydrogen produced in gas upgrading processes 
WGSR and CCT. 
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ABSTRACT 
Plastics are widely used for their affordability and versatility across many consumer and industrial 
applications. However, the end-of-life (EoL) management stage can often lead to releasing haz-
ardous chemical additives and degradation products into the environment. The increasing demand 
for plastics is expected to increase the frequency of material releases throughout the plastic EoL 
management activities, creating a challenge for policymakers, including ensuring proper material 
segregation and disposal management and increasing recycling efficiency and material reuse. This 
research designed a Python-based EoL plastic management tool to support decision-makers in 
analyzing the holistic impacts of potential plastic waste management policies. The constructed 
tool was developed to reduce the complexity of material flow analysis calculations, estimating 
material releases, and environmental impacts. The utility of the tool was tested through the hypo-
thetical nationwide adoption of an extended producer responsibility (EPR) program. The decision-
making capability of the tool can facilitate the prediction of long-term outcomes, offering technical 
knowledge and insight for policymakers seeking to mitigate the environmental and health impacts 
of plastic pollution. 

Keywords: Polymers, Supply Chain, Modelling 

INTRODUCTION 
Plastics are used in many modern applications 

due to their versatility [1]. Despite their benefits, 
managing end-of-life (EoL) plastics can release po-
tentially hazardous materials, such as chemical addi-
tives, micro- and nano-plastics, and degradation by-
products, into the environment [2], [3], [4]. In most 
cases, chemical additives used during plastic pro-
duction are not chemically linked to the polymer 
chain and may migrate to the surrounding environ-
ment based on the molecular weight, temperature, 
compatibility, and solubility in the surrounding me-
dium [5]. These migration mechanisms continue to 
pose challenges during end-of-life management. The 
unpredictable nature of plastic waste behavior and 
the uncertain pathways of chemical additive releases 

necessitate a deeper analysis of their impact on the 
environment, human health, and safety. To minimize 
the complexities of EoL plastic management analysis, 
this research introduces a Python-based modeling 
tool for conducting a holistic analysis of the entire 
plastic life cycle, simplifying the material flow analy-
sis and scenario-testing process to support deci-
sion-making by policymakers and manufacturers. 
This tool features a holistic overview of plastics and 
chemical additives released to the environmental 
compartment (land, water, and air) associated with 
common EoL management scenarios. 

The increasing demand for plastics is expected 
to double the production rate between 2019 and 
2040. Without significant change, the ocean can 
contain more plastics by weight than fish by 2050 [6]. 
Reducing plastic pollution requires understanding 

mailto:yenkie@rowan.edu
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the challenges involving all aspects of plastic man-
agement before implementing pollution prevention 
strategies [7].  

Chea et al. previously analyzed the existing 
management of plastics with a material flow analysis 
to identify potential impacts of releases and expo-
sure scenarios on safety, human health, and the en-
vironment [8]. A Python-based modeling tool was in-
itially developed to decrease the complexity of the 
material flow analysis calculations for decision-mak-
ing and estimating chemical additive releases and 
environmental impact [9]. However, the tool was not 
optimized to model plastics and additives releases 
under realistic scenarios. This research extended the 
initial version of the tool by including sensitivity anal-
yses centering on assisting with forecasting the im-
pacts of policies on EoL plastic management effi-
ciency, material releases, and environmental implica-
tions. In addition, scenario visualization and graphic 
user interface (GUI) were improved to streamline the 
ease of analysis for potential stakeholders. The utility 

of the constructed tool was tested in the theoretical 
implementation of the Extended Producer Responsi-
bility (EPR) program. As a multi-stakeholder problem, 
the relationships between the potential recycling 
rate increase and material releases and cost were 
analyzed. Therefore, the forecasting capability of the 
tool can assist users with predicting the effects of 
parameter changes to EoL management practices, 
ensuring that alterations to the existing designs of 
EoL management infrastructure are justifiable. 

MATERIALS AND METHODS 

Tool Design and Objectives 
The constructed tool is intended to provide a 

holistic insight into the impacts of policy implemen-
tations by using a material flow analysis to estimate 
relative mass flow intensity and material releases 
into the environmental compartments (land, water, 
and air) at various stages throughout EoL manage-
ment.  

 

Figure 1. Overview of the methodology and the design of the Python-based graphic-user interface tool for as-
sessing impacts on end-of-life plastic management 
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(Chemical Additives, Plastics)
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The GUI component was constructed in Python 
using Tkinter and PySimpleGUI modules. Data han-
dling and analysis within this tool utilized NumPy and 
Pandas. Visualization of the analysis is handled using 
Matplotlib and Schemdraw. All calculated values 
from the material flow analysis are transferred 
through the xlsxwriter module. This method allows 
for ease of data collection that can be conveniently 
processed by users unfamiliar with coding. The 
methodology used to develop a comprehensive as-
sessment tool for evaluating the impacts of policy 
implementations on EoL plastics management is vis-
ually summarized in Figure 1. 

Data Collection and Algorithm 
The tool user may customize input data as 

needed to model their community closely. Default 
values from government reports are available as a 
starting point without data. The algorithm for com-
pleting the material flow analysis is based on a bot-
tom-up approach, which combines and processes 
the data collected from individual studies to illustrate 
the complexity of plastic EoL management [8]. 

Table 1. Common Chemical Additives Found in Plastics 
(Adapted from [2], [10]) 

Type Composition Range (%) 
Plasticizers  –  
Flame Retardants  –  
Antioxidants  –  
UV Stabilizers   –  
Heat Stabilizers  –  
Slip Agents  –  
Lubricants  -  
Antistatics   –  
Curing agents  –  
Blowing agents  –  
Biocides  –   
Colorants  –  
Pigments  –   
Fillers  –  
Reinforcements  -  

 
The data used for the algorithm development 

was sourced primarily through published research 
data and government reports [2], [11], [12], [13], [14], 
[15]. The US Environmental Protection Agency (EPA) 
reported 35.7 million tons of EoL plastic during 2018, 
which included 14.8% polyethylene terephthalate 
(PET), 17.6% high-density polyethylene (HDPE), 2.4% 
polyvinyl chloride (PVC), 24.1% low-density polyeth-
ylene (LDPE), 0.3% polylactic acid (PLA), 22.8% pol-
ypropylene (PP), 6.3% polystyrene (PS), and 11.7% 
categorized as other plastics [14]. The chemical ad-
ditive content of these plastics may vary based on 

the intended applications. Table 1 provides common 
chemical additives found in plastics and the associ-
ated range of usage concentration, demonstrating 
the uncertainties inherently caused by the 
knowledge gap between manufacturing and EoL 
management. These data were converted into usa-
ble formats, serving as the basis for conducting the 
material flow analysis and scenario testing within the 
tool. 

Case Study Formulation 
The utility of the constructed tool was demon-

strated through a case study involving adopting a na-
tionwide Extended Producer Responsibility (EPR) 
program. This program has been widely adopted by 
the European Union (EU) to enhance plastic waste 
management strategies, in which producers are ex-
pected to design products with the eventual inten-
tion of recovery in the EoL management stage and 
finance the recovery efforts through fees. Plastic 
packaging waste, in particular, constitutes up to 
40.7% of the total plastic waste generated in 2018, 
13.6% of which was successfully recycled [14].  

The variation in packaging types, collection 
methods, and existing recycling infrastructure 
throughout the US attests to the low recycling rate 
observed. Decision-makers may use the constructed 
tool to test the effects of implementing the EPR pro-
gram, which is mandatory to meet specific recycling 
goals before adopting the regulations.  

As of April 2023, six US states (CA, CO, ME, NJ, 
OR, and WA) have implemented packaging EPR law 
[16]. Although the focus varies between states, these 
laws require producers to make packaging recycla-
ble or compostable, achieve higher recycling rates 
for single-use plastics, reduce plastic packaging vol-
umes, and incorporate post-consumer recycled con-
tent into various products. The existing EPR infra-
structure within the US includes (1) having a pro-
ducer responsibility organization collect waste, pro-
cess, and move waste as needed and (2) allowing 
municipalities to manage waste then be reimbursed 
by the producer responsibility organization [17]. 

These efforts aim to promote a circular econ-
omy, reduce landfill waste, encourage sustainable 
packaging practices, and upgrade recycling systems 
within each state. 

This assessment primarily targeted the en-
hancement of plastic packaging recycling, the pro-
jected increase in recyclable volumes, and estimated 
potential reductions in releases to environmental 
compartments (land, water, and air). These releases 
include EoL plastics, chemical additives, and other 
byproducts created because of conventional plastic 
EoL management. An estimation of the economic 
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recovery from material reclamation from nationwide 
EPR implementation was also completed. It should be 
noted that the calculated values are based on plastic 
EoL management performance from 2018 and do not 
necessarily represent management trends from 
other years.  

RESULTS & DISCUSSIONS 

Recycling Rate Projections and 
Envirionmental Implications 

The previous study on EoL plastic management in 
the United States, based on 2018 MSW data, identified 
that over 35.7 million tons of plastic waste were gener-
ated, with only approximately 8.4% successfully recycled 
[8]. Their material flow analysis highlighted primary plas-
tic types and their allocation in recycling, landfilling, and 
incineration, emphasizing the limited recycling efforts 
and substantial landfilling of EoL plastics. Moreover, the 
potential range of chemical additives in plastic products 
and the potential environmental implications were re-
ported, emphasizing the need for enhanced processing 
infrastructure to mitigate environmental releases.  

This analysis sets the stage for a comparative anal-
ysis between existing EoL plastic management practices 
and the potential effects of EPR programs, specifically fo-
cusing on the EoL plastic packaging component. There is 
a positive correlation between the recycling rate of pack-
aging plastics and the effective adoption of EPR pro-
grams nationwide. This program can effectively reduce 
the number of plastics sent to the traditional EoL man-
agement by requiring manufacturers to take responsibil-
ity for their products throughout the material life cycle. 
Therefore, increased plastic collection and recovery 
rates and decreased plastic mass in landfills or incinera-
tion can be observed.  

The effectiveness of EPR programs worldwide has 
been reported to achieve a packaging recycling rate as 
high as 75%, while the statistics within the US may theo-
retically reach a maximum of 48% due to the lack of sus-
tainable funding in various communities throughout the 
country [18]. Based on the material flow analysis in 2018, 
over 17 million tons (54.8% of generated EoL plastics) can 
be removed from the conventional management process. 
Consequently, material releases to land, water, and air 
decreases with increasing recovery rate, as illustrated in 
Figure 2A. The recycling rates (%) include practices such 
as plastic exports and conventional management of non-
packaging plastics, which are unaffected by the EPR pro-
grams. The inversely proportional relationship observed 
is expected because the conventional EoL plastic man-
agement process can subject the collected materials to 
many generic steps (reprocessing, incineration, land-
filling, composting, transport) because of the knowledge 
gap between the manufacturer and EoL plastic 

management workers. Additional processing steps can 
lead to the propagation of efficiency issues and material 
releases into the environment. The EPR program mini-
mizes processing steps by involving the producers with 
EoL management, reducing the frequency of material re-
leases into the environment. 

 
Figure 2. Extended producer responsibility scenario-
specific plot generated from the python-based modeling 
tool. (A) The potential reduction in environmental 
releases based on the effectiveness of Extended 
Producer Responsibility (EPR) program. (B) The potential 
chemical additive releases to the environment as a 
function of material reprocessing.  

The producers are expected to possess the most in-
formation regarding the composition and processability 
of the EoL plastics they created. However, concerns may 
be raised regarding the presence of chemical additives 
used. If subjected to physical processing, such as extru-
sion, chemical additives may migrate from the polymer 
matrix and be released into the surrounding environment. 
The extrusion process also can release VOCs, monomers, 
and other degradation products because of the heat gen-
erated from friction [2]. Figure 2B illustrates the direct 
relationship between the plastic recycling rate and the 
release of chemical additives to the environmental com-
partments. The recycling rate (%) was varied between 
the 2018 plastic recycling rate (8.4% wt.) [13] to the max-
imum recycling rate anticipated by EPR programs in the 
US (54.8% wt.) [18] to demonstrate the differences be-
tween maintaining the existing material management 
paradigm or implementing EPR programs nationwide. Alt-
hough EoL management steps have been reduced 
through the EPR program, reprocessing EoL plastics can 

A

B



 

Chea et al. / LAPSE:2024.1594 Syst Control Trans 3:691-697 (2024) 695 

cause unintentional releases and contamination, leading 
to hazardous workplace exposure [8]. The chemical ad-
ditive releases occur as a result of the reliance on addi-
tives as processing aids in the physical recycling prac-
tices. This process subjects plastics to high friction-in-
duced heat, increasing the likelihood of chemical migra-
tion to the surrounding environment, especially because 
chemical additives are generally not linked chemically 
with the plastic products [2]. The release of chemical ad-
ditives may be minimized if the EoL plastic structural in-
tegrity remains intact and reuse is possible with minimal 
cleaning. However, additional treatment steps may be re-
quired to remove potentially toxic or unknown contami-
nants. Such an endeavor can be cost-intensive and re-
quire case-specific economic analysis. 

Designing Economical Plastic Recyclin 
Infrastructure 

Material value reclamation is one of the most crucial 
economic factors to consider before adopting the EPR 
program as part of the conventional plastic management 
processes. Figure 3 illustrates a proportional relationship 
between the effective recycling rate of packaging waste 
and the reclaimed value. Similar to Figure 2, the recycling 
rate (%) was varied between the 2018 recycling rate and 
the maximum recycling potentials due to implementing 
the EPR programs in the US (54.8% wt.) The high recov-
ery rate can reduce the raw material requirement for cre-
ating new plastic packaging products. This event can in-
centivize producers to design more recyclable products, 
promoting the circular economy concept [1]. 

 
Figure 3. The effects of increasing EoL plastic recycling 
rate on the potential reclaimed material values following 
Extended Producer Responsibility (EPR) program 

A comprehensive economic analysis at the national 
level is presently beyond the scope of the holistic assess-
ment tool. Additionally, market variations throughout the 
US can make a comprehensive economic analysis chal-
lenging. Manufacturers may encounter different invest-
ment costs for EPR programs ranging between 0 – 1% of 
their gross revenue, depending on the specific demands 

of their markets [19]. Notably, the federal government as-
sumes no financial burden in adopting EPR programs, 
with all associated costs shifted onto producers and con-
sumers [20]. It is also crucial to recognize that the suc-
cess of the EPR framework is dependent on effective col-
laboration between stakeholders, robust regulatory 
frameworks, and continuous monitoring and adaptation 
to evolving market conditions. Such measures are essen-
tial to ensure that the program remains economically vi-
able and sustainable and contributes meaningfully to the 
circular economy.  

Since EPR inherently subtracts gross revenue from 
producers, incentives should be offered to encourage 
participation. Maine has taken the initiative to pass the 
EPR program for packaging in July 2021, providing reim-
bursement to municipalities that choose to participate in 
improving the recycling infrastructure. Exemption to the 
law was offered for producers that made less than $2 
million in gross revenue threshold or used less than 1 ton 
of packaging materials. Oregon shortly passed the same 
law, which gave rise to the Producer Responsibility Or-
ganization (PRO), designed to improve and expand recy-
cling service, including funding waste prevention grants 
and studies related to recycling systems. Other states 
that have adopted EPR programs have adopted distinct 
approaches to determining producer fees and recycling 
goals [21]. However, it can generally be said that incen-
tives and exemptions have demonstrated their useful-
ness in pioneering EPR programs by encouraging partici-
pation from producers, driving behavioral change 
throughout the plastic life cycle, and offering a competi-
tive advantage regarding sustainability claims.  

Data Limitations 
It should be noted that the current version of the 

tool utilizes public plastic management data in 2018 
[13]. Therefore, the calculated values from the anal-
ysis are not entirely representative of data from the 
previous year. However, this approach remains valid 
if the tool user aims to discover the potential trends 
from potential policy implementation. Future im-
provements to the tool may include data from other 
years to increase the model accuracy and account 
for variation over time. Learning from the data ap-
proach can also be included to determine potential 
correlations for future projections. Policymakers 
should consider the complexities of plastic manage-
ment, releases, and costs while drafting strategies 
for enhancing plastic waste management. 

CONCLUSIONS 
Addressing EoL plastic management challenges 

requires strategic approaches to ensure maximum 
material recovery and minimize environmental 
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releases and reduce cost. The Python-based tool 
developed herein automates the material flow analy-
sis process, describing plastic flow allocation 
throughout the life cycle and possible releases to the 
environmental compartments to aid decision-mak-
ing. 

This tool was used to simulate the implementa-
tion of EPR programs within the US from a holistic 
perspective, which correlated increasing recycling 
rates to reducing EoL plastics amount within tradi-
tional EoL management processes. Therefore, the US 
recycling infrastructure can shift toward the circular 
economy state, emphasizing the importance of re-
claiming material value to encourage producers to 
design products with improved inherent recyclability. 
Ultimately, raw material costs during manufacturing 
can be reduced.  However, there is an inversely pro-
portional relationship between the recycling rate 
(8.4% base case to 54.8% maximum) and environ-
mental releases because the chemical releases that 
occur during conventional plastic recycling are un-
mitigated. Alternative strategies for reducing chemi-
cal additive releases and exposure risks are required 
before the recycled plastics can safely be reused in 
the subsequent life cycle.  

Improving the EoL plastic management is a multi-
stakeholder problem. Unexplored factors, such as market 
variations and diverse manufacturer investment costs 
between regions, could impede the nationwide imple-
mentation of the EPR program. It should be noted that the 
EPR program case study serves as an example of the ap-
plication of the tool to improve the management of EoL 
plastic packaging. Policies affecting the management of 
other plastic groups and types may also be tested to en-
sure a feasible EoL plastic management infrastructure 
design and foster a circular economy.  
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ABSTRACT 
To mitigate the effects of catastrophic failure while maintaining resource and production efficien-
cies, energy systems need to be designed for resilience and sustainability. Conventional ap-
proaches such as redundancies through backup processes or inventory stockpiles demand high 
capital investment and resource allocation. In addition, responding to unexpected “black swan” 
events requires that systems have the agility to transform and adapt rapidly. To develop targeted 
solutions that protect the system efficiently, the supply chain network needs to be considered as 
an integrated multi-scale system incorporating every component from individual process units all 
the way to the whole network. This approach can be readily integrated with analogous multiscale 
approaches for sustainability, safety, and intensification. In this work, we bring together classical 
supply chain resilience with process systems engineering to leverage the multi-scale nature of 
energy systems for developing resilience enhancement strategies that are resource-efficient. In 
particular, we adapt qualitative risk analysis methods to uncover critical system components and 
major vulnerabilities to guide resource allocation decisions. To account for these vulnerabilities, 
we explore the feasible region of operation around each node of the supply chain. An optimization 
formulation is devised to generate multiscale alternative. The approach is demonstrated through 
a case study involving the production of biofuels, demonstrating the range of adaptation strategies 
possible when process-level strategies are incorporated into overall supply chain design. 

Keywords: Supply Chain, Multiscale Modelling, Planning & Scheduling, Renewable and Sustainable Energy, 
Energy Systems 

INTRODUCTION 
The study of energy system resilience, which is typ-

ically defined as the ability of systems to manage possi-
ble disturbances and recover from them, has increased 
in importance over the last decade as energy systems 
become more complex and disturbances become more 
frequent and severe [1, 2]. The integration of multiple en-
ergy sources, including intermittent and geographically-
dispersed renewables, facilitates the transition to a more 
sustainable energy system, but also introduces complex-
ity and vulnerability [2]. Therefore, energy systems need 
to be designed and operated in such a way that they are 
prepared to adapt and recover from future disturbances 
whether or not these disturbances are expected. 

In minimizing the impact that a particular 

disturbance has on energy system infrastructure, resili-
ence contributes to the sustainability of the energy sys-
tem in that less waste in the form of broken equipment 
and unused raw material or product is generated [3, 4, 
5]. Additionally, systems that are better able to withstand 
disturbances are also able to continue operating for a 
longer period of time, maximizing their useful lifetimes. 
However, commonly-deployed resilience strategies cen-
ter around reserving resources (either raw materials or 
finished products) as safety inventory to maintain high 
production output for as long as possible [6]. This strat-
egy is useful, but relying solely on storing large amounts 
of unused inventory also raises its own sustainability and 
safety concerns [3]. For example, large-scale storage of 
hydrogen for energy currently relies on artificially-built 
salt caverns or depleted natural gas reservoirs, but there 
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may be possible reactions between the stored hydrogen 
with the microorganisms and mineral constituents of the 
reservoir, leading to deterioration of the hydrogen stor-
age or unwanted deposits of reaction products [7]. Fur-
thermore, long-term backup inventory storage can rep-
resent a financial drain on companies, which may make it 
economically unattractive. Therefore, cost-effective tar-
geted resilience enhancement strategies need to be con-
sidered to balance the issues of resilience, sustainability, 
and economic cost. 

Consideration of energy system resilience (and ad-
jacent concepts) independently and alongside sustaina-
bility has been demonstrated in the open literature. Pan-
teli et al. [8] proposed that power system resilience con-
sists of two separate characteristics: operational resili-
ence, which corresponds to the ability to ensure uninter-
rupted power supply, and infrastructure resilience, which 
refers to the physical strength of the power system to 
mitigate faulty portions of the system. Moreno-Sader et 
al. [9] proposed the use of a modified return-on-invest-
ment (ROI) metric that includes safety, sustainability, re-
silience, and reliability weights to screen process alter-
natives early in the design process. The weights are cal-
culated based on whether a proposed design reaches a 
desired target value for each of the four desired objec-
tives. Hosseini-Motlagh et al. [10] designed a power sup-
ply chain to minimize unmet electricity demand as well as 
pollution emission under uncertainty. 

The complexities within an energy system not only 
come from supply chain dynamics such as material flow, 
customer energy demand, and transportation linkages, 
but also in the chemical reactions that occur within man-
ufacturing facilities. Harnessing the physical and chemi-
cal synergies in energy systems through multi-scale sys-
tems engineering could be key to unlocking a variety of 
targeted resilience strategies that do not require signifi-
cant resource or capital investments [11]. With a multi-
scale approach, tools and methods built for supply chain, 
process, unit operations, and reaction-scale optimization 
are integrated to provide an accurate representation of 
the interactions across spatio-temporal scales [11, 12]. 
The approach allows bespoke models to be constructed 
that contains appropriate levels of detail at relevant spa-
tio-temporal scales to open up the possibility for targeted 
resilience strategies.  

Multi-scale approaches have been utilized in the de-
sign and optimization of energy systems to achieve eco-
nomic and/or sustainability goals. Demirhan et al. [12] de-
veloped a multi-scale model for an energy system which 
uses solar and wind resources to supply electricity via 
various storage technologies at the lowest possible cost. 
The model accounts for renewable resource availability, 
storage technology constraints, as well as demand fluc-
tuations. Shao et al. [13] proposed a multi-scale model 
for a hydrogen-based off-grid microgrid to generate both 

power and heat for rural areas. A two-stage stochastic 
formulation was used to derive optimal capacity sizing 
and scheduling for both normal and on-emergency sce-
narios. Lin [14] explored the life-cycle impact of different 
technology pathways to develop future energy systems 
that integrate renewable resources, battery storage, and 
dense energy carrier production. 

For a holistic consideration of energy system resili-
ence, a multi-scale modeling approach can be beneficial 
to integrate risk factors and resilience enhancement 
strategies on the supply chain level and on the compo-
nent level. This paper, therefore, aims to illustrate how 
process-level considerations contribute to overall supply 
chain resilience in a cost-competitive and sustainable 
manner. A qualitative resilience analysis is conducted to 
identify critical model variables that directly affect overall 
system performance. Next, an integrated system model 
is constructed around key variables and optimized. 
What-if scenarios are applied on the optimized network 
to demonstrate its resilience against several supply chain 
disturbances. The proposed methodology is demon-
strated through a small regional biofuel supply chain. 

METHODOLOGY 

Consideration of Process Feasible Regions 
In a typical supply chain optimization formulation, 

the manufacturing facilities that produce goods to sell are 
modeled as nodes with a fixed production rate; that is, 
given some quantity of raw materials, the quantity of 
products made is known [3, 6]. Responding to disruptions 
involves adding redundancies into the supply chain su-
perstructure through alternate suppliers or transport 
routes, excess inventory, and overdesign of manufactur-
ing capacity. Conversely, in process systems literature, a 
manufacturing facility is modeled as a set of processes 
(chemical or physical) that can be described by their op-
erating parameters. Given a process design, it is well-
known that there exists a region of feasible operation 
where different operating parameters will yield a differ-
ent amount of product [15].   

In our previous work, we demonstrated the benefits 
of designing processes with high reliability on enhancing 
overall supply chain resilience under disruptions [16]. Re-
liability is achieved through choosing to install process 
equipment with low failure rates and high repair rates. In 
this work, we expand on the concept of implementing 
process-level strategies to enhance supply chain resili-
ence by considering the process feasible region within 
the supply chain optimization problem [17]. In effect, 
each manufacturing facility will be represented as a node 
with operational parameters that can be optimized for 
different scenarios. This necessitates a mathematical 
model for the process node that is then integrated into 
the supply chain optimization formulation. 
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To formulate a mathematical model of each process, 
computer-aided simulation software (e.g. Aspen Plus) 
and functional equations of key units within the module 
are first used to generate a computer model of the mod-
ule. Next, the operating parameters that are most critical 
to process output are identified. A surrogate model for 
each critical unit is then generated to represent the rela-
tionship between the critical parameters with process 
output. These surrogate models are then integrated as 
additional constraints in the supply chain formulation. A 
generalized form of the surrogate model is shown in Eq. 
1, where the unit-level parameter realizations 𝒙𝒙𝒖𝒖,𝒇𝒇,𝒕𝒕 deter-
mine the unit efficiency 𝑄𝑄𝑢𝑢,𝑓𝑓,𝑡𝑡. 

𝑄𝑄𝑢𝑢,𝑓𝑓,𝑡𝑡 = Φ(𝒙𝒙𝒖𝒖,𝒇𝒇,𝒕𝒕) (1) 

Integrated Model 
In this work, the energy system is assumed to be 

composed of a set of supplier cities that contain a set 
amount of raw material and could also contain modular 
refineries of a fixed nameplate capacity for production of 
a dense energy carrier (DEC). Finally, the product is 
transported to market cities to fulfill the required de-
mand. Mass balance constraints for a similar system is 
available in Chrisandina et al. [11]. Additional constraints 
to include process information are outlined in this section. 

Nomenclature 
The symbols used for the rest of the paper are de-

fined in Table 1 below. 

Table 1: Symbols and definitions for sets, parameters, 
and variables 

Notation Description 
Sets 

ℱ Set of manufacturing sites 
𝑆𝑆 Set of supplier sites 
𝑀𝑀 Set of market sites 
𝑇𝑇 Set of scheduling time periods 
𝑈𝑈 Set of process units 

Parameters 
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑓𝑓  Yield of product in site 𝑓𝑓  

Gmaxm,t Demand for product in market 𝑚𝑚 at time 
𝑡𝑡 

𝑑𝑑𝑖𝑖,𝑗𝑗 Distance between two locations 𝑦𝑦 and 𝑗𝑗  
servicem Minimum service rate for market 𝑚𝑚 
𝑥𝑥𝑢𝑢𝑁𝑁𝑁𝑁𝑁𝑁 Nominal parameter value for unit 𝑢𝑢 
𝐶𝐶𝑡𝑡 Cost of shipping feedstock [$/mile-ton] 
𝐶𝐶𝐶𝐶 Cost of feedstock [$/ton] 
𝐶𝐶𝐶𝐶 Cost of shipping product [$/mile-ton] 

Variables 
𝐺𝐺𝑓𝑓,𝑡𝑡 Production from site 𝑓𝑓 at time 𝑡𝑡 
𝐺𝐺′𝑓𝑓,𝑁𝑁,𝑡𝑡 Product delivered from site 𝑓𝑓 to market 

𝑚𝑚 at time 𝑡𝑡 
B𝑠𝑠,𝑓𝑓,𝑡𝑡 Raw material from supplier 𝑠𝑠 consumed 

by site 𝑓𝑓 at time 𝑡𝑡 
𝑄𝑄𝑓𝑓,𝑡𝑡 Efficiency of process modules in site 𝑓𝑓 

at time 𝑡𝑡 
𝒙𝒙𝒖𝒖,𝒇𝒇,𝒕𝒕 Realized parameter value for unit 𝑢𝑢 in 

site 𝑓𝑓 at time 𝑡𝑡 
𝑄𝑄𝑢𝑢,𝑓𝑓,𝑡𝑡  Efficiency for unit 𝑢𝑢 in site 𝑓𝑓 at time 𝑡𝑡 

mod𝑓𝑓,𝑡𝑡  Number of process modules in site 𝑓𝑓 at 
time 𝑡𝑡 

Generalized functions 
Φ(𝒙𝒙𝒖𝒖,𝒇𝒇,𝒕𝒕) Correlation between unit-level parame-

ters and unit efficiency 
Λu�Q𝑢𝑢,𝑓𝑓,𝑡𝑡� Correlation between unit efficiency and 

overall process module efficiency  
Ψ𝑓𝑓(mod𝑓𝑓,|𝑇𝑇|) Correlation between number of process 

modules and capital expense 

Constraints 
These constraints are modified from the original 

mass balance constraints to include process efficiency 
information. 

The product yield at each manufacturing site is gov-
erned by the amount of raw material supplied to the site 
and the efficiency of the process modules placed on site. 

𝐺𝐺𝑓𝑓,𝑡𝑡 = yield𝑓𝑓 × �𝐵𝐵𝑠𝑠,𝑓𝑓,𝑡𝑡

𝑆𝑆

𝑠𝑠

× Q𝑓𝑓,𝑡𝑡 (2) 

The efficiency of a process module is defined as a 
multiplier on the nominal process output which depends 
on the operating conditions to which the process module 
is set. The process module efficiency is governed by the 
efficiencies of the critical units within the process mod-
ule. The specific function that relates unit efficiency with 
process module efficiency depends on the exact config-
uration of the module. 

𝑄𝑄𝑓𝑓,𝑡𝑡 = Λ𝑢𝑢∈𝑈𝑈(Q𝑢𝑢,𝑓𝑓,𝑡𝑡) (3) 

Objectives 
The main objective of the optimization problem is to 

minimize total annual cost. This includes the annualized 
fixed cost in the purchase of process modules, as well as 
the operating cost (raw material purchase and transpor-
tation). The purchase cost is a function of the number of 
process modules deployed in the supply chain, and the 
specific function depends on how capacity scales with 
cost. The annualized fixed cost (AFC) is calculated by di-
viding the total capital cost across the lifetime of the pro-
cess modules.  

𝐶𝐶𝐶𝐶𝑠𝑠𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐶𝐶 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (4a) 
𝐶𝐶𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 =  Ψ𝑓𝑓∈𝐹𝐹(mod𝑓𝑓,𝑡𝑡=|𝑇𝑇|) (4b) 

𝐴𝐴𝐴𝐴𝐶𝐶 =
CAPEX
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠

(4c) 
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𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 = ��𝐵𝐵𝑠𝑠,𝑓𝑓,𝑡𝑡

𝑆𝑆

𝑠𝑠

𝐹𝐹

𝑓𝑓

× 𝐶𝐶𝐶𝐶 + ���𝐵𝐵𝑠𝑠,𝑓𝑓,𝑡𝑡 × 𝑑𝑑𝑠𝑠,𝑓𝑓 × 𝐶𝐶𝑡𝑡�
𝑆𝑆

𝑠𝑠

𝐹𝐹

𝑓𝑓

+���𝐺𝐺′𝑓𝑓,𝑁𝑁,𝑡𝑡 × 𝑑𝑑𝑓𝑓,𝑁𝑁 × 𝐶𝐶𝐶𝐶�
𝑀𝑀

𝑁𝑁

𝐹𝐹

𝑓𝑓

 (4𝑑𝑑)

 

To represent system resilience, we include a con-
straint on the target demand fill rate required at every 
scheduling time step. 

�𝐺𝐺′𝑓𝑓,𝑁𝑁,𝑡𝑡

𝐹𝐹

𝑓𝑓

≥ Gmaxm,t × servicem (5) 

CASE STUDY  
In this work, we adapt the case study introduced by 

Lopez-Molina et al. [18] where refuse-derived fuel (RDF) 
is converted to methanol and then sold as fuel. Gasifica-
tion-based technology is used, and a modular biorefinery 
is assumed for each manufacturing site. The goal of this 
case study is to compare the resilience of the supply 
chain to various external disruptions with and without the 
incorporation of process surrogate models in the supply 
chain formulation. 

Background Information 
The RDF-to-methanol conversion process occurs via 
gasification to produce syngas as an intermediary, purifi-
cation of the syngas, and methanol synthesis as a final 
step. Technical and operational details of the process are 
given in the literature [19, 20], and key process inputs 

and outputs are shown in Fig. 1.  A simplified process flow 
diagram is shown in Fig. 2. In this work, linear surrogate 
models (see Eq. 6) are generated for each critical param-
eter of the process, as listed in Table 2. Linear surrogates 
are chosen due to the small range of possible values for 
each critical parameter. 

𝑄𝑄𝑢𝑢,𝑓𝑓,𝑡𝑡 = 𝑚𝑚𝑢𝑢
𝑥𝑥𝑢𝑢,𝑓𝑓,𝑡𝑡

𝑥𝑥𝑢𝑢,0
+ 𝐶𝐶𝑢𝑢 (6) 

 
Figure 1: Key process inputs and outputs [18] 

We consider the case of six cities: three producer 
cities which act as suppliers and manufacturers (A, B, C), 
and three market cities which purchase methanol (D, E, 
F). The specific supply availability and demand require-
ments are given in Fig. 3, and as a base-case scenario a 
90% target demand fill rate is assumed. A planning hori-
zon of one year with monthly schedules is assumed. The 
strategic decision to be made is where to locate process 
modules, and the operational decisions to be made are 
how many process modules to deploy, tuning of process 

 
Figure 2: A simplified process flow diagram of the methanol synthesis process 

Table 2: Critical parameters for methanol synthesis and their feasible operating range [20] 

  Nominal operating 
condition (𝑥𝑥𝑢𝑢,0) Minimum Maximum Gradient 

(𝒎𝒎) 
Intercept 
(𝒃𝒃) 

MSW moisture content [%]    -  
Gasifier temperature [⁰C]     - 
Gasifier equivalence ratio    -  
Reactor pressure [bar]      
Recycle ratio      
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parameters in a location (listed in Table 2), and the con-
nection between supplier and market cities. 

 
Figure 3: The supply chain superstructure 

RESULTS AND DISCUSSION 

Qualitative Resilience Analysis Results 
In order to identify major risks to the supply chain, a 

table of potential failure modes and mitigation strategies 
has been constructed (see Table 3). Failure modes on 
supply chain entities (suppliers, logistic providers, manu-
facturing sites, and markets) as well as on process com-
ponents (gasifier, syngas purifier, methanol reactor) are 

considered. It can be seen that there are multiple poten-
tial mitigation strategies for each entity failure mode and 
that in many cases operational changes on the process 
module level (a sub-entity of a manufacturing site) can 
help in failure mitigation. It is expected, therefore, that 
simultaneous optimization of process and supply chain 
parameters will yield a supply chain schedule that is more 
resilient to these failure modes. The next sub-section will 
aim to quantify these benefits. 

Impact of Process Tuning on Supply Chain 
Performance 

In the base-case scenario, processes are operated 
at their nominal parameter values (𝑄𝑄𝑓𝑓,𝑡𝑡 = 1) with a total 
cost of $317MM. Several failure scenarios are tested to 
see if the supply chain is able to adjust. Table 4 shows 
the feasibility of different failure scenarios that occur in 
the beginning of the planning horizon. It can be seen that 
reacting to deviations away from the base-case scenario 
without process tuning increases the total cost of the 
supply chain, as more process modules are needed to 
compensate for additional production. However, pro-
cess-level tuning allows for existing modules to increase 
production within their feasible regions as needed, which 
significantly reduces the additional capital investment 
needed to meet the new demand. In these cases, raw 
material and utility costs contribute to the increase in to-
tal economic cost but no new process modules were 

Table 3: Potential failure modes and mitigation strategies 

Entity Sub-entity Potential failure mode Mitigation strategies 

Supplier  Decline in supply availability Multiple suppliers 
Tune process module to increase yield 

   Forecasting – storage for future 
Logistics 
provider 

 Technical problems with vehicle Vehicle maintenance 
Investment in updated vehicles  

  Delivery delays Reroute vehicles 
Manufac-
turing site 

Geographical lo-
cation 

Location experiences natural 
disaster event 

Relocate process modules to other 
manufacturing locations 

 Process module Module temporarily unavailable Surge production in other manufactur-
ing sites 
Repair/replace module 

 Gasifier Temperature  
  Moisture content  
 Syngas scrubber Absorption failure  
 Methanol reactor Low yield  
Market  Increase in demand Acquire new modules 

Surge production in manufacturing sites 
  Demand concentrated in one lo-

cation 
Relocate process modules to manufac-
turing sites in proximity 
Ship raw material to manufacturing 
sites in proximity 
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purchased. Table 5 shows the process parameter reali-
zations that correspond to various service fill rates, which 
demonstrates how different process units are operated 
to meet specific market demands. Furthermore, the de-
ployment of additional process modules represents an in-
crease in material consumption that is used to construct 
the process modules, meaning that process-level tuning 
also opens up the possibility for lower emission footprint 
across the supply chain while delivering the same level of 
service throughout the year.  

Table 4: Total economic cost of different supply chain 
scenarios – comparison between supply chain-only de-
sign and supply chain design with process surrogate 
model included 

Scenario Supply 
chain only 

Supply chain + 
process 

Target fill rate in-
creases to %  

$MM 
(+%) 

$MM 
(+%) 

Target fill rate in-
creases to %  

$MM 
(+%) 

$MM 
(+%) 

City E demand in-
creases to % 

start of year 

$MM 
(+%) 

$MM 
(+%) 

City E demand in-
creases to % for 

one month 

$MM 
(+%) 

$MM 
(+%) 

City B is partially 
disrupted 

$MM 
(+%) 

$MM 
(+%) 

Table 5: Process parameter realization for various ser-
vice fill rates 

Process  
parameter 

Base 
case 

Fill rate 
% 

Fill rate 
% 

MSW moisture 
content [%] 

   

Gasifier tem-
perature [⁰C] 

   

Gasifier equiv-
alence ratio 

   

Reactor  
pressure [bar] 

   

Recycle ratio    
 
Some scenarios are also tested where failure modes 

happen in the middle of the planning horizon. Without 
process tuning, supply chain operational decisions are 
updated to address failure. With process tuning, how-
ever, process module operational decisions are also up-
dated which provides additional options for failure miti-
gation. Taking Scenario #4 from Table 4 as an example, 
if the demand increase occurs in the middle of the year 

the process module in City C (the closest manufacturing 
site) slightly increases its capacity temporarily to meet 
the additional demand without affecting the operations 
of the other manufacturing sites or investing in additional 
process modules. This temporary capacity increase is 
achieved by increasing the reactor pressure by 10% and 
recycle ratio by 5%. When the demand level lowers, the 
process module in City C adjusts its operation again to its 
baseline level. 

A scenario where process-level failure occurs is also 
tested, where the process module in City B experiences 
a failure that lowers its production capacity until recovery 
efforts have concluded. In this scenario, City B experi-
ences a partial failure that affects 50% of its capacity and 
recovery efforts are concluded at the end of the planning 
horizon. The other manufacturing sites respond to this 
failure by increasing their production so that demand can 
still be met, alleviating the need to invest in a replace-
ment process module.  

CONCLUSION 
To achieve a resilient and sustainable energy sys-

tem, incorporating targeted strategies to mitigate poten-
tial failures while maintaining efficient resource utilization 
and low capital investment is critical. A multi-scale ap-
proach to design and optimization of energy systems en-
ables a holistic assessment of potential failure modes and 
mitigation strategies that operate on multiple spatio-tem-
poral scales. In this work, we have demonstrated a first 
attempt at simultaneous optimization of supply chain and 
process design by including critical process parameters 
as additional constraints within a supply chain model for-
mulation. We showed that the consideration of the feasi-
ble region around each process allows the energy system 
design to operate in various disruption scenarios with low 
additional capital investment and no additional process 
module constructions, limiting the economic and environ-
mental cost of these mitigation strategies. Furthermore, 
we also demonstrated that targeted changes can also be 
implemented in the middle of the planning horizon on 
specific nodes without affecting the overall system de-
sign or other nodes’ operations. To further develop this 
methodology, more bespoke process surrogate models 
that account for the relationship between multiple critical 
parameters will be beneficial. Additionally, the emissions 
footprint of establishing or transporting additional pro-
cess modules to a different manufacturing site can be in-
corporated to further elucidate the environmental cost of 
these resilience strategies. Finally, the effects of running 
processes at the boundary of their feasible regions on the 
reliability of the modules themselves need to be studied, 
as this may lead to an increased need for maintenance.  
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ABSTRACT 
We study the design and optimization of a multicomponent seawater desalination process with 
zero liquid discharge (ZLD). The designed process is highly integrated with multiple sub pro-
cessing units that include humidification-dehumidification, Lithium Bromide absorption chiller, 
multi-effect evaporators, mechanical vapor compression, and crystallization. Aspen Plus software 
with E-NRTL and SOLIDS thermodynamic packages are used for modeling and simulation of de-
salination and crystallization units, respectively. In addition to this, we use data-driven optimiza-
tion to find the best operating condition (i.e., the temperature of the last effect evaporator) that 
minimizes the overall energy consumption of the designed plant with an output constraint imposed 
on the mass fraction of salts going to the ZLD system should be greater than 20 wt.% to achieve 
the ZLD goal. We use a local sample-based data-driven optimizer, Nonlinear Optimization with the 
Mesh Adaptive Direct Search (NOMAD) algorithm, to perform constrained simulation-based opti-
mization. The results show that at the optimized temperature (71.58 °C), our design produces 1777 
kg/hr drinking water with an energy consumption of 536 kW in comparison to 580 kW of energy 
consumption for the same plant output in the base case design (not optimized). Thus, data-driven 
optimization of the evaporator temperature improves the overall energy consumption by 7.5% and 
achieves higher desalination efficiency. Further, the integration of the crystallizer unit into the 
overall desalination process allows us to produce about 43 kg/h of NaCl and achieve ZLD. 

Keywords: Zero Liquid Discharge, Desalination, Data-Driven Optimization, Aspen Plus, Multicomponent Anal-
ysis 

INTRODUCTION 
The global desalination capacity has experienced 

significant growth in recent decades due to the rising de-
mand for freshwater. Accordingly, the desalination pro-
cesses have sustained their position as a dependable 
means of obtaining potable water. Different desalination 
technologies including reverse osmosis, multi-stage flash 
desalination, and multi-effect distillation (MED) are used 
to produce clean water from seawater [1-2]. However, 
there are some critical factors to consider when design-
ing and implementing desalination technologies.  

The primary area of concern is the environmental 
impact of desalination. Energy consumption and the chal-
lenges associated with brine treatment are the leading 
causes of environmental issues that surround this tech-
nology [3]. From the brine management perspective, the 

aquatic ecosystem, natural hydrologic cycles, and public 
health are all negatively impacted by the large quantities 
of concentrated brine discharge produced by conven-
tional desalination systems. On the contrary, zero liquid 
discharge (ZLD) systems aim to recover the vast majority 
of liquid wastewater, thereby mitigating the release of 
harmful pollutants and reducing the expenses associated 
with brine waste disposal [4]. However, ZLD as a brine 
treatment method is notably high in energy consumption. 
For example, a predominant approach for achieving ZLD 
is via mechanical vapor compression (MVC). This tech-
nology is utilized by compressing hot water vapor from 
units, such as evaporators, and recycling the heat from 
that steam throughout the desalination process with an 
energy consumption of approximately 20-25 kWh per m3  
of desalinated water produced [5]. Tahir and Al-Ghamdi 
[6] also proposed a ZLD system that consists of a MED
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unit, a humidification-dehumidification (HDH) unit, and an 
evaporative crystallizer. According to their results, the 
highest performance ratio (PR) value of 12 is achieved 
when the brine temperature is 85⁰C and the temperature 
differential is 2⁰C. The HDH system further recovered po-
table water from the saline waste stream of the MED unit 
with a recovery ratio of 30% to 40%. A crystallizer unit is 
then used to produce salts derived from the highly con-
centrated brine effluent. Overall, their results showed 
that it was possible to attain a minimum specific energy 
usage of 720 kJ/kg. 
 From the energy consumption perspective, many 
desalination processes are fossil fuel-powered, which 
comes with a high carbon footprint [7]. There have been 
many efforts to reduce the energy consumption of sea-
water desalination by incorporating different technolo-
gies such as MVC or using a Lithium Bromide (LiBr) ab-
sorption chiller [8,9]. For example, Abdulrahim and Dar-
wish [9] presented a novel arrangement of an absorption 
cycle that utilizes solar radiation as the driving energy to 
produce chilled water for air conditioning purposes and 
feed saturated steam to a thermal desalination process. 
The proposed process had a gain output ratio of 5.7 with 
a cooling capacity of 1500 kW for 32 kg/s of seawater 
feed flow.    
 Previously, we have also presented a new desalina-
tion plant design that integrates multi-effect evaporators 
(MEEs), a LiBr absorption chiller, an MVC system, and an 
HDH unit to decrease the energy consumption of sea-
water desalination [3]. The LiBr absorption chiller and the 
MVC systems were employed to reclaim thermal energy 
from the evaporators, while the humidifiers were utilized 
to intensify the concentration of the brine effluent to a 
level appropriate for ZLD processing. Our results showed 
that this highly integrated system exhibited superior per-
formance in terms of gain-output ratio of 11 and recovery 
ratio of 81% when compared to a conventional HDH sys-
tem. Additionally, our design offered a cooling capability 
of 6 kW, which may be utilized for air conditioning pur-
poses. While this proposed process was successful with 
seawater desalination, it did have room for improvement 
through mathematical optimization and the addition of a 
crystallization unit. Especially, data-driven and simula-
tion-based optimization strategies have proven to be a 
highly successful approach for identifying the optimal 
process conditions across various applications [10-13].  
 Motivated by this, in this study, we further expand 
our process by adding a flash separator, crystallizer, and 
solid separator units to produce NaCl salts and reduce 
the brine discharge to almost zero. We also transitioned 
from two-component analysis to multicomponent analy-
sis, as initially the feedstock was only simulated with wa-
ter and NaCl. Moreover, we use data-driven optimization 
to find the optimized operation conditions for the MEEs 
to reduce the energy consumption of the overall process. 

To this end, we use the nonlinear optimization with mesh 
adaptive direct search algorithm (NOMAD) [14] and im-
pose output constraints on the discharged NaCl concen-
tration in the effluent stream to ensure ZLD. 

METHODOLOGY  
 In this work, desalination is carried out using sea-
water as the source water. Previously, we used a two-
component system to define the seawater composition 
(3.5 wt.% NaCl with the remaining being water) [3]. Here, 
we use a multicomponent analysis for the seawater com-
ponents with their respective composition values shown 
in Table 1. 

Table 1: Seawater feed composition [15]. 

 

Modeling & Simulation of the Base Case 
Desalination Units 
 The base case desalination process consists of the 
integration of four different technologies: HDH, LiBr ab-
sorption chiller, MEE, and MVC.  Seawater with a flowrate 
of 1950 kg/hr first enters the LiBr absorption chiller cycle 
where it is preheated. Afterward, the preheated seawater 
stream enters three multi-effect evaporation units where 
water is evaporated to steam. The effluent steam from 
the last effect is then compressed in the MVC subpro-
cess, where we compress the incoming vapor up to 1.5 
bar. This is then used to activate the generator in the LiBr 
cycle. The steam exiting the generator is recycled to the 
evaporators and as energy is released, the steam con-
denses and is collected as desalinated water. The brine 
discharged from the MEE units goes to the humidifiers to 
be further concentrated. This process is modeled in As-
pen Plus (V12.0) with the E-NRTL thermodynamic pack-
age using the default parameters. The details on model 
assumptions and simulation setup for this process can be 
found in [3].   

Path to Zero Liquid Discharge  
  To reach ZLD and minimize brine discharge, we add 
a flash separator, crystallizer, and solid filter units to the 
base case design (Figure 1). The concentrated brine 

Component Mass Fraction 
Water  
NaCl  
MgCl  
MgSO  
KCl  
NaHCO  
CaCl  
LiCl e- 
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effluent from the humidifiers goes to the flash separator 
first, where water vapor is recovered as desalinated wa-
ter, and the brine is further sent to the crystallizer unit to 
be precipitated and crystallized.  

 
 
Figure 1: Crystallizer flowsheet with a flash separator, 
crystallizer unit, and solids separator.  

Table 2: Solubility data of NaCl in water [15]. 

Temperature (⁰C) Solubility (g/L) 
  
  
  
  
  
  
  
  

Table 3: Operating parameters for the ZLD units. 

Unit Temperature  
(Celsius) 

Pressure 
(Bar) 

Crystallizer   

Flash Separa-
tor 

  

Evaporator 
(optimized) 

  

 
To have accurate results for the crystallizer, we use 

experimentally determined solubility data of NaCl in wa-
ter [15], as shown in Table 2. This solubility data is utilized 
by the SOLIDS thermodynamic package in Aspen Plus to 
determine how much NaCl salt will crystallize. Finally, the 
output stream of the crystallizer is processed in a solid 
separator and NaCl salts are recovered. The other salts 
present within the brine are treated as inert salts, where 

we assume that their crystallization is negligible due to 
their relatively small concentration compared to NaCl. 
The solid separation efficiency is also assumed to be 
100%. The key operating parameters used for simulating 
the ZLD units are provided in Table 3, with an overview 
of the process shown in Figure 2.  

Figure 2. Process overview of the designed multipurpose 
desalination system. 

Data-Driven Optimization 
 We used data-driven black-box optimization to op-
timize our operating conditions and minimize the energy 
consumption of the plant while maintaining ZLD. We for-
mulate the following optimization problem: 

min𝑥𝑥
𝒔𝒔.𝒕𝒕.

𝑓𝑓(𝑥𝑥):𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐸𝐸

𝐸𝐸𝑖𝑖(𝑥𝑥) ≤ 𝟎𝟎                ∀𝑐𝑐
ℎ𝑗𝑗(𝑥𝑥) = 𝟎𝟎                ∀𝑗𝑗
𝑥𝑥 ∈ [𝑥𝑥𝐿𝐿, 𝑥𝑥𝑈𝑈]                 

 
 (1) 

where 𝑥𝑥 is evaporator temperature for the last effect (i.e., 
the decision variable) bounded between 60⁰C to 80⁰C, 
𝐸𝐸(𝑥𝑥) is the inequality constraint regarding the mass frac-
tion of salt in the discharge brine which has to be greater 
than or equal to 21% wt. (i.e., 𝐸𝐸(𝑥𝑥) = 0.21 −
𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 𝑓𝑓𝐸𝐸𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐸𝐸 𝑐𝑐𝑓𝑓 𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁 𝑐𝑐𝐸𝐸 𝑏𝑏𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸 ≤ 0), and ℎ(𝑥𝑥) are the 
equality constraints pertaining mass and energy bal-
ances that are satisfied in Aspen Plus. We also performed 
sensitivity analysis on the base case simulation to iden-
tify the operating variables (i.e., decision variables) with 
the greatest effect on energy consumption. We found 
that the evaporator temperature had the greatest impact 
on energy consumption. Here, we do not consider all 
evaporator temperatures as decision variables because 
the 1st and 2nd effect evaporator temperatures depend on 
the temperature of the last effect. Hence, only the tem-
perature of the last effect evaporator is a true degree of 
freedom for optimization.  
 Our strategy for mathematically optimizing this pro-
cess is considered a black-box optimization, as the 
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mechanistic expressions are accounted in Aspen Plus 
and not explicitly available to us. As a result, we collect 
input-output data from the simulator to identify the best 
operating condition for the evaporator temperature that 
minimizes the total energy consumption of the designed 
plant while achieving ZLD. To this end, we utilize the NO-
MAD and its progressive barrier constraint handling ap-
proach to solve Equation 1, as NOMAD is a local data-
driven optimization algorithm. This algorithm is easy to 
implement and has shown good optimization perfor-
mance for black-box problems with less than 50 varia-
bles. NOMAD can also handle nonlinear inequality con-
straints with a relatively low computational time [14].  

 
Figure 3. Schematic of the connection between two 
Aspen Plus flowsheets and the flow of information 
between a generic data-driven optimizer and Aspen Plus. 

To perform data-driven optimization, we first ran-
domly initialize the algorithm within the lower and upper 
bounds of the decision variables. Following that, we solve 
the Aspen Plus simulation at this sampling point to collect 
the corresponding output values for the objective func-
tion and constraints. It is important to note that we exe-
cute Aspen Plus in two separate flowsheets due to having 
two different thermodynamic packages for the desalina-
tion and ZLD units. Once the first simulation (desalina-
tion) converges at a given sampling point, the data for the 
brine output in the first flowsheet is inputted as the feed 
conditions for the second flowsheet (ZLD). Final energy 
consumption from both processes is calculated by sum-
ming the energy consumption from individual flowsheets, 
and this serves as the output data along with the dis-
charge brine concentration constraint. This data ex-
change is facilitated by a Python script (V.3.11) which re-
lays the final input-output data to the NOMAD. After that, 
the algorithm generates new evaluation points to itera-
tively improve the incumbent solution, and the loop con-
tinues until a stopping criterion is met, such as reaching 
the maximum number of evaluations, or a tolerance for 
the mesh size [14]. Figure 3 illustrates how we performed 
the optimization over two flowsheets for a generic data-
driven optimization process. We perform the process 

simulation and the data-driven optimization on a Dell Pre-
cision Small Form Factor with 11th generation Intel Core 
i7- 11700, 4.9 GHz processor, and 16GB DDR4 installed 
memory running Microsoft Windows. 

RESULTS  
 The simulation results comparing the base case de-
salination and the new ZLD design are shown in Table 4. 
The key process parameters such as relative humidity 
and seawater temperature are set to be 80% and 20 ⁰C, 
respectively. A full set of the base case parameters can 
be found in [3]. We observe that the optimization of the 
evaporator temperature reduced the desalination energy 
consumption by 7.5% (580 kW energy in the base case to 
536 kW energy in the ZLD) for the same feed seawater 
and freshwater production flowrates. The energy con-
sumption of the crystallizer flowsheet is 164 kW, which 
comes from the flash separator that is used to further 
concentrate the brine to a concentration that produces 
significant crystallization, salt production, and water va-
por that can be recycled for heating. We observe that the 
water vapor is discharged at 217 kg/hr at 85 ⁰C and 0.4 
bar from the flash separator. This water vapor can also 
be condensed which will increase the freshwater produc-
tion by 217 kg/hr which is another benefit of adding crys-
tallization. The marginally higher total energy consump-
tion from the two flowsheets is also an expected result 
for the new design, as we added three new units to 
achieve ZLD.  
 Moreover, the results show that with the addition of 
a crystallizer unit, we were able to produce approximately 
43 kg/h of NaCl and nearly doubled the total dissolved 
solids (TDS) concentration of the discharged brine. Ini-
tially, according to the composition of seawater, there is 
about 1950 × 0.026 = 50.7 𝑘𝑘𝐸𝐸/ℎ of NaCl in our process. 
This means that our process achieves approximately 85% 
NaCl removal efficiency.  

 Furthermore, we show the compositions of the 
final brine to be discharged in Table 4, and it can be seen 
that the final brine is highly concentrated (TDS > 530,000 
mg/L) with a mass flow rate of 43.88 kg/h. Compared to 
the process without ZLD units, we reduced the brine dis-
charge from 302 to 43.88, approximately an 85% reduc-
tion. This would be valuable in reducing the environmen-
tal footprint of desalination. This brine reduction is due to 
the higher water recovery that we obtained by optimizing 
the process as well as the flash separator. Before adding 
the ZLD units to the base case simulation, the water re-
covery was about 81%. After adding the ZLD units, it fur-
ther increased by 10 %. In our new design, we can recover 
1777 kg/hr of freshwater from 1950 kg/hr of seawater 
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fed.  In this study, we also did a simple calculation of rev-
enue that can be gained by adding the ZLD components 
to the desalination units. Our base case had freshwater 
production as a revenue stream; however, with the opti-
mized ZLD case, the amount of freshwater produced in-
creased due to using a flash separator in the crystallizer 
flowsheet. The ZLD discharge case also produces salt 
through crystallization, providing another significant rev-
enue stream while desalinating the brine and reducing 
the environmental impact of the discharge. Table 5 
shows a simple calculation of the revenue that we can 
gain from water and salt production. Our analysis as-
sumes that the average selling price for NaCl salt is 0.2 
$/kg [3] and the water selling cost is $0.12/kg. The inte-
gration of ZLD units will result in generation of 217 kg/h 
of additional water in compared to process without ZLD 
units. This will result in $206,237 /yr revenue from selling 
water. We also assume that the plant will be operating for 
330 days annually.  

Our calculations show that adding the crystallization 
units will result in $274,776/yr revenue compared to a 
process without crystallization units. However, a detailed 
technoeconomic analysis is required to understand the 
economic viability of the process.  

 

 Table 5: Revenue streams of the ZLD process. 

Revenue 
source 

Assumptions Amount 

Salt Produc-
tion  

 $
𝑘𝑘𝑘𝑘

 
 

 $
𝑦𝑦𝑦𝑦

 
 

Fresh Water 
Production  

 $
𝑘𝑘𝑘𝑘

  $
𝑦𝑦𝑦𝑦

 
 

Total revenue   $
𝑦𝑦𝑦𝑦

 

CONCLUSIONS 
 In this work, we modeled and simulated a zero liquid 
discharge desalination process using a Lithium Bromide 
absorption chiller, multi-effect evaporators, and mechan-
ical vapor compression with crystallization. This process 
enabled us to recover more than 90% of seawater while 
producing NaCl salts. The results showed that we can 
have more than 43 kg/hr NaCl out of 1950 kg/hr seawater 
with approximately 85% NaCl removal efficiency. Our 
preliminary revenue analysis showed that we can gain 
$274,776/yr with fresh water and salt production serving 
as the main products. In addition to this, we performed 
data-driven optimization to minimize energy 

Table 4. Base case and ZLD results. 

  Base Case ZLD  
Air temperature [⁰C]   
Feed seawater Temperature [⁰C]   

Seawater flowrate [𝑚𝑚
3

ℎ𝑦𝑦
]   

Relative humidity [%]   
Humidifier pressure [bar]   
Cooling Capacity (kW)     

Crystallizer Salt Production [𝑘𝑘𝑘𝑘
ℎ𝑦𝑦

] -    

Freshwater Production [𝑘𝑘𝑘𝑘
ℎ𝑦𝑦

]  +()   

Energy Consumption of Desalination Flowsheet [kW]     
Crystallizer Unit Energy Consumption [kW] -    
     
 Base Case Brine ZLD Brine (Filter Output)   
NaCl (%)     
MgCl (%)    
MgSO (%)    
KCl (%)    
NaHCO (%)    
CaCl (%)    
LiCl (%)    
TDS (mg/L)    
Mass flow (kg/hr)    
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consumption in the process. Although the optimization in 
our study only considered the temperature of the last 
evaporator effect, the results showed that we can reduce 
the energy consumption by 7.5%. In the future, we will 
explore the optimization of other operational parameters 
and characterize their effects on the overall energy con-
sumption. Some additional parameters that we are con-
sidering for optimization include the flash separator tem-
perature and pressure as well as the operating pressure 
of the evaporators. These parameters showed significant 
influence on energy consumption during our initial sensi-
tivity analysis, but further work must be done to see if 
they are viable candidates for optimization parameters. 
Furthermore, we will perform a comprehensive technoe-
conomic analysis and life cycle assessment to quantify 
the economic and environmental impacts of the process, 
respectively. 
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ABSTRACT 
Critical minerals are essential to the future of clean energy, especially energy storage, electric 
vehicles, and advanced electronics. In this paper, we argue that process systems engineering 
(PSE) paradigms provide essential frameworks for enhancing the sustainability and efficiency of 
critical mineral processing pathways. As a concrete example, we review challenges and opportu-
nities across material-to-infrastructure scales for process intensification (PI) with membranes. 
Within critical mineral processing, there is a need to reduce environmental impact, especially con-
cerning chemical reagent usage. Feed concentrations and product demand variability require flex-
ible, intensified processes. Further, unique feedstocks require unique processes (i.e., no one-size-
fits-all recycling or refining system exists). Membrane materials span a vast design space that 
allows significant optimization. Therefore, there is a need to rapidly identify the best opportunities 
for membrane implementation, thus informing materials optimization with process and infrastruc-
ture scale performance targets. Finally, scale-up must be accelerated and de-risked across the 
materials-to-process levels to fully realize the opportunity presented by membranes, thereby fos-
tering the development of a circular economy for critical minerals. Tackling these challenges re-
quires integrating efforts across diverse disciplines. We advocate for a holistic molecular-to-sys-
tems perspective for fully realizing PI with membranes to address sustainability challenges in crit-
ical mineral processing. The opportunities for PI with membranes are excellent applications for 
emerging research in machine learning, data science, automation, and optimization.  

Keywords: Renewable and Sustainable Energy, Supply Chain, Multiscale Modelling, Process Intensification, 
Membranes, Machine Learning

INTRODUCTION 
As of 2022, there are 50 critical minerals [1] essen-

tial to renewable energy, such as lithium and rare earth 
elements (REEs). Lithium is vital to the function of several 
different types of batteries. REEs, particularly dyspro-
sium, neodymium, praseodymium, and terbium, have 
unique properties (e.g., magnetic, fluorescence), which 
make them essential components of many electronics 
and clean energy technologies (e.g., displays, hard disk 
drives, wind turbines, electric vehicles). [2] Further, the 
term “rare” denotes that REEs are economically difficult 

to produce or concentrate [3]; although relatively abun-
dant, REEs are generally present in very low concentra-
tions.  

Overall, there is a need to diversify the supply of 
critical minerals, as primary sources (e.g., minerals, clays, 
and brines) have been declining in quality (i.e., the con-
centration of critical minerals) [4,5] and the global energy 
transition (amongst other factors) has increased the de-
mand for critical minerals. The combination of these is-
sues drives a need to develop enhanced recovery pro-
cesses, including for end-of-life materials, to obtain crit-
ical mineral supplies, improve sustainability, and progress 

mailto:adowling@nd.edu
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toward circularity goals. [6] These sustainability-driven 
efforts include moving attention towards alternative 
feedstocks such as recycled electronic waste and un-
conventional sources like coal fly ash. Additionally, the 
concentrations of critical minerals in some alternative and 
unconventional sources are beginning to surpass those 
in primary sources. [2,7,8] Regardless of the source, crit-
ical mineral processing generally relies on techniques 
that can use hazardous materials (e.g., acid leaching). [9] 
One pathway to enhance sustainability and improve the 
process performance of critical mineral systems may be 
to integrate membrane technology, which has a track 
record of success in other industries (e.g., desalination, 
water treatment, chemical processing, and biomanufac-
turing). [10] 

This brief literature review focuses on opportunities 
for membrane technologies to optimize and intensify crit-
ical mineral processing systems. We emphasize the im-
portance of a molecular-to-systems perspective with 
close collaborations between process systems engineer-
ing (PSE) and other fields (e.g., membrane, data, and 
computational sciences) to accelerate the development 
of a circular economy.  

CRITICAL MINERAL PROCESSING 

Evolving Supply Chains 
The continued development of domestic critical 

mineral infrastructure is vital to decreasing reliance on 
foreign supply chains. Taking the United States as an ex-
ample, in 2022, the country produced only 14 critical min-
erals domestically, relying entirely on net imports for 12 
critical minerals and more than 50% on net imports for 
another 31 critical minerals. [11] Developing domestic 
supply chains will safeguard against unforeseen insecu-
rities in the global market. For example, the COVID-19 
pandemic caused disruptions across all aspects of supply 
chains, where production of certain critical minerals (e.g., 
manganese) decreased, and consumption of others (e.g., 
platinum) increased. [11] Therefore, securing reliable 
supply chains of critical minerals will be essential to na-
tional security and the clean energy sector. 

The growing dependence on technology and the 
decreasing quality of primary ore necessitates a more 
concerted shift towards harvesting critical minerals from 
secondary and unconventional sources, including recy-
cled materials. In particular, integrating recycled waste 
into current infrastructure can promote a circular econ-
omy for critical minerals; therefore, developing new and 
existing processes is essential to achieving global climate 
goals. There has been some progress in recycling prac-
tices; for example, the domestic supply of 7 critical min-
erals in the United States consisted exclusively of recy-
cled materials [11].  

Technology and Challenges 
Critical mineral processing systems often contain 

the four steps presented in Figure 1: mining/extraction, 
beneficiation/pre-treatment, chemical extraction, and 
separation/purification. [12] The technology used within 
these steps depends on the feed stream. For example, 
mineral ore requires mining techniques (e.g., open-pit, 
underground, in situ extraction) to extract host rocks or 
the critical minerals [13]; brines frequently need to be 
pumped from underground [14]; and end-of-life con-
sumer waste (e.g., cell phones) requires diversion from 
landfills via collecting the products to be recycled (i.e., 
urban mining). Beneficiation (or pre-treatment) encapsu-
lates the techniques that concentrate the critical mineral 
feeds by removing unwanted parts (e.g., nonvaluable 
rock and casings on electronic devices) or physically pre-
concentrate liquid sources. Typically, both chemical ex-
traction and separation/purification employ hydrometal-
lurgical (i.e., leaching, solvent extraction, and precipita-
tion) or pyrometallurgical techniques (i.e., high tempera-
tures) [7], which obtain critical minerals in usable quanti-
ties and purities. 

 
Figure 1. Generalized block-flow diagram for critical 
mineral processing route. 

Overall, there is motivation to revolutionize the pro-
cessing structure of critical minerals to reduce the envi-
ronmental impact, physical footprint, or cost of purifica-
tion. Conventional processing can produce large waste 
streams, which can be detrimental to the environment, or 
may have large physical footprints that disturb habitats. 
For example, acid leaching (hydrometallurgy) dissolves 
solid critical minerals into a liquid phase, creating acidic 
waste that requires treatment before disposal. On the 
other hand, lithium recovery from salt-lake brine has an 
extensive physical footprint, using large evaporation 
lakes/ponds to precipitate contaminants out of the solu-
tion successively. [15] Separation processes such as sol-
vent extraction use long sequences of settling tanks and 
separators and have slow process dynamics; thus, they 
cannot quickly adapt to changes such as new feed con-
centrations or product specifications. In many of these 
areas, the focus has shifted to designing processes that 
reduce the environmental footprint and can address var-
iability in the feed concentrations. Some sustainable so-
lutions address specific environmental concerns (e.g., an 
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electronic waste recycling process that limits the use of 
mineral acid leachates [9]); however, the processes are 
typically bespoke. Replacing certain hydrometallurgical 
techniques with mass separating agents (e.g., membrane 
systems) can offer environmental benefits for all critical 
mineral feed streams and facilitate process intensifica-
tion (PI). 

CRITICAL MINERAL PROCESS 
INTENSIFICATION  

Membrane Opportunities 
Membranes are uniquely equipped to aid in PI, as 

they can potentially improve efficiency, energy con-
sumption, and cost in many chemical engineering sys-
tems. [10] Table 1 organizes a non-exhaustive set of ref-
erences by the lithium- or REE-based feed stream and 
the corresponding applications of membrane technolo-
gies.  

Recently, there has been significant work in devel-
oping membrane units for critical mineral separations. For 
example, comprehensive lithium recovery processes 
from salt-lake brine, primarily relying on nanofiltration 
(NF), have produced high-purity lithium products. [16–18] 
Kumar et al. [19] developed a process for recycling lith-
ium-ion batteries (LIB) that leverages membranes to ob-
tain battery-grade lithium carbonate. However promis-
ing, these processes are limited by their bench-scale de-
sign for singular feed streams. Membranes with charge-
based separation mechanisms have been extensively ap-
plied to lithium extraction. For example, NF membranes 
have successfully separated lithium and magnesium ions 
in salt-lake brines by leveraging electrostatic interac-
tions. [20] Similarly, liquid membranes have shown simi-
lar separation capabilities with REEs from coal fly ash 
leachate while utilizing less hazardous solvents than con-
ventional solvent extraction. [21] Adsorption-based 
membrane techniques have demonstrated enhanced 
separations for both lithium and REEs. [22,23] 

Additionally, membrane distillation has been imple-
mented to achieve lithium recovery from brine four times 
faster than conventional evaporation ponds, with 20 
times less surface area, and a corresponding reduction in 
physical footprint. [24] 

PSE can guide future membrane studies like those 
presented in Table 1. Specifically, membrane cascades, 
which enable fractionation (i.e., utilize staged separa-
tions to isolate single-ion product streams), will be vital 
within critical mineral processing due to the complex feed 
streams typical of the industry. For example, batteries in 
electric vehicles can contain the following critical materi-
als: lithium, cobalt, manganese, nickel, and graphite. [25] 
While the components are relatively well-defined, the 
specific material compositions will vary depending on the 
battery type. [26] Processes to recycle the components 
of diverse batteries must be able to separate critical min-
erals from one another for efficient downstream re-man-
ufacture. The optimization of membrane cascades is one 
of the significant benefits that PSE offers within the crit-
ical mineral space. 

Multiscale and Interdisciplinary Challenges 
The ability to rapidly develop, optimize, and scale up 

processes can accelerate circular supply chain develop-
ment and the ability to meet clean energy (and, by exten-
sion, critical mineral production) goals. Multiscale optimi-
zation can be achieved with bidirectional (bottom-up and 
top-down) feedback to link technology breakthroughs at 
materials and device scales with process scale-up, sup-
ply chain optimization, and policy development at pro-
cess and infrastructure scales. We now elaborate on 
these themes in five specific research opportunities. 

Machine Learning to Accelerate Material 
Design 

Due to the number of different membrane materials 
(e.g., organic, inorganic) [27], materials should be chosen 
optimally for critical mineral separations and process 

Table  A breakdown of different critical mineral sources and  references that highlight various membrane 
technology implementations for each respective feedstock (lithium- or rare earth elements-based) 
LIB: lithium-ion battery; SLM: supported liquid membrane; LLM: liquid-liquid membrane; LEM: liquid emulsion mem-
brane; PIM: polymer inclusion membrane 
* Industrial waste mine tailings and coal leachate 
+ Nanofiltration ion exchange electrodialysis electrolysis capacitive deionization diffusion dialysis 

 Feed Membrane  
Process 

Charged  
Separations+ 

SLM LLM 
LEM PIM 

Adsorption Membrane  
Distillation 

Li 
Ore    []   
Brine [–] [–] [] [] [] 
LIB [] [] []   

REEs 
Ore   [] []  
Magnet  [] [–]   
Waste*  [] []   
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development. Membrane optimization is usually ineffi-
cient when pursued solely through Edisonian experimen-
tation due to the complexity of the design space (i.e., the 
parameters needed to describe material properties and 
reaction conditions) and the physical phenomena (i.e., 
the parameters within the mathematical model). [27] As 
such, machine learning (ML’s) capabilities with high-di-
mensional data make it well-suited to tackle membrane 
problems with many degrees of freedom. [27] Membrane 
development efforts present an opportunity to further 
improve and enhance the design, environmental impact, 
and performance of critical mineral and material produc-
tion systems, with the performance of membrane mate-
rials being the limiting factor in new, more environmen-
tally responsible processes. [28] Recently, there have 
been significant developments in ML techniques to push 
the functionality of membrane materials. For example, 
Bayesian optimization (BO) [29] can search the vast de-
sign space (i.e., monomer and fabrication conditions) for 
NF membranes. [30] The advanced capabilities of BO in-
creased the efficiency of membrane design and allowed 
for the fabrication of membranes that exceeded the up-
per limit of the trade-off between water selectivity and 
permeability. [30] 

Mathematical modeling and ML can connect mate-
rial design with larger length scales to enhance techno-
logical success. [27,31] For example, Eugene et al. [31] 
explored adsorptive membranes for removing lithium 
from water, comparing the properties of several sorbents 
to identify feasibility ranges. Further, the framework en-
ables analysis of membrane performance after scale-up, 
emphasizing the importance of characterizing materials 
within the desired operating range. As another example, 
Rall et al. [32] used artificial neural network surrogate 
models to optimize membranes at the material and pro-
cess levels. Testing new materials within the desired sys-
tem will become vital within critical mineral separations 
as the feed streams evolve. For instance, process devel-
opment and optimization must occur as new critical min-
eral sources emerge in recycled products. Employing 
similar frameworks for newly identified feed streams can 
accelerate material testing, process development, and 
scale-up. 

Optimizing Membrane Modules 
Computational fluid dynamics (CFD) helps optimize 

transport and flows in membrane module and device de-
signs. [33] For example, Shirazi et al. [34] applied CFD to 
membrane distillation (MD), a thermally-driven mem-
brane separation process, offering guidance on the phys-
ical design of the MD module and improving membrane 
performance. Recently, Choi et al. [35] used CFD with de-
sign of experiments (DoE) to identify variables affecting 
performance and determine the optimal MD module de-
sign. Similar optimization strategies using CFD 

simulations have been applied to membrane bioreactors. 
[36,37] The success of CFD techniques in optimizing the 
physical membrane module design can extend to the crit-
ical mineral space to enhance overall process develop-
ment further. 

Increasing Experimental Efficiency 
PSE paradigms motivate the transition from Edi-

sonian research to optimized and automated experi-
ments. 

We posit that membrane science is ripe to benefit 
from experiment automation and optimization advances. 
Automating experiments can accelerate material discov-
ery by reducing the required time. For example, Muetzel 
et al. [38] automated a diafiltration experiment, reducing 
experimentation time by 40% and discovering concentra-
tion dependence of transport parameters. Similarly, Oui-
met et al. [39] dosed a diafiltrate (of higher or lower con-
centration than the feed) into their automated diafiltra-
tion system to evaluate an expansive concentration 
space for water purification, leading to parameter identi-
fication five times faster than traditional filtration meth-
ods. 

More robust efforts in enhanced experimental auto-
mation focus on self-driving laboratories (SDLs), which 
combine robotics and automated lab work with ML tech-
niques to iterate experiments until the desired objective 
is reached. [40] SDLs improve computational efficiency 
(compared to the scientist performing the analysis) and 
increase the speed and precision of repetitive experi-
mental techniques. [40] Further, SDLs can improve ma-
terial discovery. For example, MacLeod et al. [41] re-
cently developed a SDL for palladium film synthesis to 
quantify the trade-offs between temperature and con-
ductivity. Their SDL required human action every 40-60 
experiments, providing a robust dataset of information 
and overcoming human limitations. [41] Alternatively to 
SDLs using data-driven ML models, experimentation can 
be optimized using model-based design of experiments 
(MBDoE). MBDoE exploits the mathematical structure of 
science-based models to identify the experiments that 
will generate the most informative data efficiently. [42] 
We anticipate that SDLs driven by MBDoE will be critical 
to navigating the complex (often competing) phenomena 
that govern efficient membrane separations. 

Process Design and Optimization 
Membrane cascades typically have several feasible 

designs [43], and as the system complexity or size in-
creases, it becomes unfavorable for the researcher to 
optimize each process individually. Superstructure opti-
mization (SSO) is a popular strategy to assess all config-
urations using mathematical programming [44], subject 
to the desired objective (e.g., minimizing energy or cost, 
maximizing recovery or revenue) and constraints (e.g., 
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transport phenomena, number of stages). 
The success of SSO for membrane-based pro-

cesses in other fields (e.g., carbon capture [43,45,46]) 
can inform future work in the critical mineral space. SSO 
has optimized membrane cascades within post-combus-
tion carbon capture to identify more efficient designs. 
[43,45] SSO routinely accommodates multiple objectives 
(e.g., cost, emissions, water usage). [46] The generaliza-
bility of SSO also allows for increased flexibility (e.g., 
configuration size, separation type, individual module 
performance). For example, Lee et al. [45] found that var-
ying the membrane properties in different stages (higher 
permeance upstream, higher selectivity downstream) im-
proved process performance and efficiency. The gener-
alized framework of SSO enables the application to di-
verse applications, allowing adaptation within critical 
mineral separations. Specifically, diafiltration cascades 
have used SSO for lithium-cobalt separation systems 
[47], efficiently optimizing staged separations and eval-
uating trade-offs in material property targets. 

Supply Chain Optimization 
Finally, supply chain optimization can identify the 

best opportunities for PI to maximize the impact at a 
global scale by promoting resilient and circular supply 
chains for critical minerals. For example, Canales-Bustos 
et al. [48] considered economic and environmental fac-
tors to optimize a mining supply chain subject to decar-
bonization goals. Fattahi et al. [49] investigated uncer-
tainty in the critical mineral supply chain through multi-
stage stochastic programming. Similar studies perform-
ing optimization under uncertainty will be essential to de-
veloping resilient supply chains, as variability in feed con-
centration, desired product specifications, market prices, 
and consumer demand is inevitable. After integrating 
membranes within process and infrastructure models, 
PSE methods enable the communication of performance 
targets back to the materials and device scales. This in-
tegrated feedback loop is the key to rapidly optimizing 
enhanced critical mineral processes within a circular 
economy. 

CONCLUDING REMARKS 
We propose a molecular-to-systems perspective of 

critical mineral processing and process systems engi-
neering to enable process intensification with mem-
branes. Machine learning techniques enable accelerated 
material discovery by evaluating material properties and 
process targets across materials, devices, and systems 
scales. Material discoveries lead to more robust device 
design, which can be further enhanced using automation 
and optimization techniques. Superstructure optimiza-
tion of membrane cascades increases the generalizability 
and flexibility of process design and can evaluate 

membrane material property targets and design specifi-
cations. Finally, supply chain optimization enables multi-
stakeholder optimization by managing material and en-
ergy flows and determining facility siting. [50] The ad-
vancements within the device and materials scales in-
form process design and infrastructure development, 
and vice versa, emphasizing the need for a holistic ap-
proach involving the materials, membrane, data, and 
computational science communities. 
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ABSTRACT 
Some of the most highly trusted and ubiquitous process simulators have solution methods that 
are incompatible with algorithms designed for equation-oriented optimization. The natively uncon-
strained Efficient Global Optimization (EGO) algorithm approximates a black-box simulation with 
kriging surrogate models to convert the simulation results into a reduced-order model more suit-
able for optimization. This work evaluates several established constraint-handling approaches for 
EGO to compare their accuracy, computational efficiency, and reliability using an example simula-
tion of an amine post-combustion carbon capture process. While each approach returned a feasi-
ble operating point in the number of iterations provided, none of them effectively converged to a 
solution, exploring the search space without effectively exploiting promising regions. Using the 
product of expected improvement and probability of feasibility as next point selection criteria re-
sulted in the best solution value and reliability. Constraining probability of feasibility while solving 
for the next sample point was the least likely to solve, but the solutions found were most likely to 
be feasible operating points. 

Keywords: Derivative Free Optimization, Surrogate Modeling, Process Simulation, Global optimization, Carbon 
Capture. 

INTRODUCTION 
Process simulators are trusted sources of property 

prediction and process design calculations [1]. Some pro-
cess simulations have characteristics that challenge 
most optimization algorithms. Black-box simulators have 
no exploitable functional form, computationally expen-
sive executions, and approximate derivatives. Coupled 
with highly constrained optimization formulations, these 
characteristics make most algorithms inefficient when 
applied to process simulations.  

Many different optimization techniques have been 
applied to process simulators. Gradient-based optimizers 
have been applied using finite difference approximation 
for derivatives. Derivative-free optimization techniques 
can be applied, but many rely prohibitively large numbers 
of objective function evaluations without extensive par-
allelization [2]. One approach to mitigate the challenges 
of expensive black-box optimization is to approximate 

the objective and constraint functions with surrogate 
models. In theory, these types of optimization algorithms 
should improve in accuracy each time the objective and 
constraint functions are sampled, learning characteristics 
of the problem each iteration [3]. 

Several types of surrogate models have been used 
to approximate process simulators. Automatic surrogate 
model generation has been achieved through several 
routes. ALAMO uses subset selection for constrained re-
gression to generate algebraic models suitable for opti-
mization [4–6]. Others have used parametric [7] and non-
parametric regression methods like neural networks [8], 
radial basis functions [9], and kriging models [10–12] to 
approximate process simulations. 

The Efficient Global Optimization (EGO) algorithm 
[13] is a prevalent example of surrogate-based optimiza-
tion. EGO uses a kriging surrogate model in an inner loop
optimization to pick the next point to sample. While it has
been extensively used in aerospace engineering design

mailto:clint.duewall@bre.com
https://doi.org/10.69997/sct.170471
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optimization, EGO has rarely been applied to process en-
gineering systems.  

Contemporary research studies probability of feasi-
bility, mean kriging predictions, and lower confidence 
bounds to constrain EGO’s inner loop [14, 15]. This work 
applies EGO with selected constraint approaches to a 
post-combustion carbon capture process modeled in 
ProMax®. The objective is to minimize process energy in-
tensity subject to process and reliability constraints.  

The results compare the merits of each constraint 
approach according to constraint faithfulness, final ob-
jective value, and solution reliability. Conclusions are 
drawn to recommend which methods are most effective 
for the post-combustion carbon capture process. 

CONSTRAINED EGO OVERVIEW 
EGO was first published by Jones, Schonlau, and 

Welch in 1998 [13]. They developed the algorithm to 
globally optimize expensive objective functions. The 
overall structure of the algorithm is as follows. Let 𝐹𝐹(𝑥𝑥) 
be function of independent variables 𝑥𝑥 to be minimized 
that returns a value 𝑦𝑦. 𝐹𝐹(𝑥𝑥) can be sampled at different 
points 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} yielding 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}. This in-
itial dataset is selected using methods called design of 
experiments to fill the search space. 𝑋𝑋 and 𝑌𝑌 are used to 
generate a kriging model 𝑓𝑓 with mean and variance func-
tions. Equation 1 shows the structure of the kriging model 
used in this work where 𝛽𝛽𝑖𝑖 and 𝜃𝜃𝑙𝑙 are sets of hyperparam-
eters tuned during the model building process. 

�̂�𝜇(x) = ∑ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑦𝑦𝑖𝑖 +  ∏ exp (−𝜃𝜃𝑙𝑙𝑛𝑛

𝑙𝑙=1 |𝑥𝑥𝑙𝑙
(𝑖𝑖) − 𝑥𝑥𝑙𝑙

(𝑗𝑗)|) (1) 

EGO uses this predicted mean and a predicted vari-
ance within selection criteria to determine the next best 
point to evaluate using the actual objective function. EGO 
has traditionally maximized a property called expected 
improvement 𝐸𝐸𝐸𝐸 to select the next point to evaluate. The 
expected improvement function is written in equation 2, 
where σ(x) is the prediction standard deviation, and Φ 
and 𝜙𝜙 are the cumulative and probability density func-
tions, respectively. 

𝐸𝐸𝐸𝐸(𝑥𝑥) = �𝑓𝑓min −  �̂�𝜇(x)� Φ(𝑎𝑎(x)) +  σ(x)𝜙𝜙(𝑎𝑎(x)) (2) 

𝑎𝑎(𝑥𝑥) = 𝑓𝑓min− 𝜇𝜇�(x)
σ(x)      

Once EGO determines the point that maximizes the 
expected improvement function, it samples the objective 
function with the point. The new sampled point is then 
added to the end of the dataset. As shown in Figure 1, the 
next iteration then begins by refitting the kriging model 
with the new dataset.  

Start

Design of Experiments

Sample Dataset

Build Surrogate Models

Max Acquisition Function Subject to Constraint 
Functions

Termination Criteria Met?

End

Sample Evaluation

 
Figure 1. General EGO Algorithm Flowchart 

Several constraint-handling methods have been de-
veloped for EGO. Modifying the next point selection cri-
teria, the three approaches tested in this work rely on dif-
ferent properties of kriging models to enforce constraint 
boundaries. Two of these methods rely on a calculated 
probability of feasibility and were proposed by Sohst et 
al [14], who found that each method had its merits solving 
both mathematical test problems and aerodynamic 
shape optimization. Probability of feasibility can be con-
ceptually understood as the probability that each con-
straint will be satisfied for a point based on the uncer-
tainty in the kriging model for each constraint function. 
The formulation is shown in equation 3 where the con-
straint function is written in the form 𝑔𝑔(𝑥𝑥) ≤ 0. Overall 
probability of feasibility is just the product of each indi-
vidual constraint’s probability of feasibility. 

𝑃𝑃𝐹𝐹(𝑥𝑥) =  Φ�−𝑔𝑔�(𝑥𝑥)
σ(x)�    (3) 

Probability of feasibility can be used in a few differ-
ent ways to augment expected improvement within 
EGO’s next point selection criteria. In one method, the 
product of expected improvement and probability of fea-
sibility is maximized to select the next sample point. This 
method will be referred to as OFPF (Objective Function x 
Probability of Feasibility) in this work and is shown in 
equation 4.  

max𝑂𝑂𝐹𝐹𝑃𝑃𝐹𝐹(𝑥𝑥)    (4) 
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𝑂𝑂𝐹𝐹𝑃𝑃𝐹𝐹(𝑥𝑥) =  𝐸𝐸𝐸𝐸(𝑥𝑥) ∙ 𝑃𝑃𝐹𝐹(𝑥𝑥)    

Another method tested in this work applies a prob-
ability of feasibility constraint to the maximization of ex-
pected in the next point selection suboptimization prob-
lem. This method will be referred to as PFCON (Probabil-
ity of Feasibility Constraint). 

max𝐸𝐸𝐸𝐸(𝑥𝑥)     (5) 

s. t.  𝑃𝑃𝐹𝐹(𝑥𝑥) ≥ 0.5     

Constraints can also be enforced using a concept 
called the upper trust bound (UTB) of the kriging value. 
Given a desired confidence interval, the kriging model 
can calculate an upper bound on the constraint value by 
adding a factor of uncertainty. This constraint on the next 
point selection criteria is shown in equation 7 below 
where the constraint must be satisfied within three 
standard deviations of the kriging mean.  

max𝐸𝐸𝐸𝐸(𝑥𝑥)     (6) 

s. t.  𝑔𝑔�(𝑥𝑥) ≤ 3σ(x)     

If EGO selects a point where the objective function 
or constraint functions are undefined, a sufficiently 
suboptimal point approximating an infinite objective 
value can be used [16]. This approach should sufficiently 
penalize points in regions of the search space that cannot 
be evaluated. 

CARBON CAPTURE PROCESS MODEL 
Gas processors have used amines to recover CO2 

and H2S from natural gas for nearly a century. After cool-
ing the flue gas with a quench tower, the process of post-

combustion carbon capture with amines contacts an 
aqueous amine solvent with a CO2-rich stream to chemi-
cally absorb CO2 with the amine. The CO2-rich amine is 
then heated in a still to regenerate the amine. Figure 2 
provides a process flow diagram of the example unit used 
in the case study. 

The main difference between post-combustion car-
bon capture and natural gas treating lies in the partial 
pressure of CO2 in the feed gas. The concentration of CO2 
in the flue gas from a natural gas power plant is about 4 
mol%. While this is easily within the range of concentra-
tions found in natural gas, the pressure of the flue gas is 
near atmospheric pressure. The partial pressure of CO2 in 
the flue gas will be 10-100 times less than in typical nat-
ural gas amine sweetening units, leading to the differ-
ences in the design of the two processes. 
 Flue gas carbon capture units are marked by larger 
absorber columns, due to the large volume of gas, with 
extensive water wash sections to reduce amine losses to 
the atmosphere. The amine solvent lost is not only ex-
pensive but also an air pollutant. Some designs also em-
ploy a side cooler, a feature not usually afforded for nat-
ural gas treating. Cooling the amine in the absorber re-
moves heat of reaction and shifts equilibrium towards ab-
sorption in the liquid. 
 The example facility in this case study has a 30 ft 
diameter absorber packed with 60 ft of Sulzer IMTP #50 
Metal random packing solved with ProMax’s Mass + Heat 
Transfer calculation method. The regenerator is a 9 ft di-
ameter column modeled with 10 ideal stages of separa-
tion. The amine circulated is the CESAR-1 blend of 27 wt% 
amino methyl propanol (AMP) and 13 wt% piperazine. 

 

Figure 2: Post-combustion carbon capture process model with compression. 
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Table 1: Inlet flue gas properties and composition 

Feed Property  
Temperature  °F 
Pressure  psig 
Standard Vapor Volumetric Flow  MMSCFD 
Feed Composition mol % 
Carbon Dioxide  
Nitrogen  
Oxygen  
Water  

 
 Operators control the plant by manipulating the 
amine circulation rate, water wash rate, and reboiler duty. 
Operators are economically incentivized to minimize en-
ergy use while achieving a CO2 recovery greater than 
90% and amine losses below a permitted threshold. Util-
ities are integrated with the power generation facility. 
The amine reboiler can be powered by a slipstream of 
low-pressure steam from the heat recovery network of 
the powerplant. When integrated into the low-pressure 
steam circuit, the steam dedicated to the reboiler single-
handedly reduces net power generation from 100 MW to 
87 MW for the base-case simulation. Pumps and com-
pressors can be powered by electricity generated on-
site. 

Table 2: Base carbon capture model power use summary. 

Unit Operation Power 
Gas turbine  MW 
Steam turbines (no CC)  MW 
Total power production  MW 
Reboiler steam power reduction - MW 
Flue gas blower - MW 
Amine and process water pumps  - MW 
CO Compression Power  - MW 
Cooling water pumps - MW 
Total power usage  - MW 
Net power production  MW 

 
 The desired CO2 recovery depends on several fac-
tors including but not limited to local laws, plant scale, 
CO2 sequestration or utilization strategy, and investor 
pressures. For plants located in the United States, the 
IRS’s Section 45Q tax credit for carbon sequestration 
credits a dollar per ton amount based on the ultimate CO2 

use for eligible facilities [17]. In 2023 for new non-direct 
air capture processes, 45Q credits up to is $85/tonne for 
geologically sequestered CO2 and $60/tonne for other 
qualified uses of CO2 for the first 12 years of operation. 
Eligible power plants must capture at least 18,750 tonnes 
of CO2 and be designed to capture at least 75% of the 
plant’s emissions. In practice, many of these facilities are 
designed to capture at least 90% of baseline CO2 emis-
sions. 

 Once CO2 is captured, it will require compression for 
transportation and its ultimate use. CO2 transmission 
lines are designed to operate over 1000 psig in the so 
called supercritical “dense phase” where the fluid can be 
effectively pumped like a liquid. In this case, the captured 
CO2 leaves the facility at 1500 psig. 

OPTIMIZATION FORMULATION 
The implementation of constrained EGO uses the 

Surrogate Modeling Toolbox [18] package in Python. SMT 
includes an unconstrained implementation of EGO that 
was augmented to generate kriging models of each con-
straint function and use PFCON, UTB, and OFPF as next 
point selection criteria. The formulations used for next 
point selection criteria are described in equations (4) – 
(6) previously. These formulations are solved using a py-
thon SLSQP implementation [19] from 20 different start-
ing points.  

Any simulation run that did not converge in ProMax 
was given an objective value of 10 GJ/tonne, which was 
far greater than any observed objective value. Con-
straints for these unconverged samples were given val-
ues of 10 in standard form (𝑔𝑔(𝑥𝑥) ≤ 0) to denote a violation 
of each constraint.  

The first task for developing an optimization formu-
lation for a process is determining the most appropriate 
objective function and the most necessary constraints. 
For post-combustion carbon capture on power plant flue 
gas, one useful objective function is to minimize the en-
ergy used for carbon capture. Likely all this energy will be 
supplied by the power plant, so minimizing energy con-
sumption will minimize the impact of carbon capture on 
plant profitability. 

The overwhelming power requirement in the carbon 
capture process is the heat used to drive the reboiler. Of 
the power requirements shown in Table 2, the only sig-
nificant costs that could be affected by the carbon cap-
ture unit itself are the reboiler duty and compression 
power. To avoid penalizing higher CO2 recovery inher-
ently, the objective function 𝐸𝐸�(𝑥𝑥) will be the sum of the 
energy consumed by both the CO2 compressors and the 
reboiler duty per unit of recovered CO2 in units of 
GJ/tonne CO2. 

Constraints are selected to ensure that equipment 
and operating constraints are met. The facility will be re-
quired to exceed 90% CO2 recovery 𝐶𝐶(𝑥𝑥), emit less than 
300 tonne/yr of amine solvent 𝑆𝑆(𝑥𝑥), and not exceed a cal-
culated 95% fraction flooding in both the absorber 𝐹𝐹𝑎𝑎(𝑥𝑥) 
and stripper 𝐹𝐹𝑠𝑠(𝑥𝑥). 

Decision variables are limited to properties under 
operational control, leaving amine circulation 𝑎𝑎, water 
wash circulation 𝑤𝑤, and reboiler duty as candidates. In 
this study, the lean loading 𝑙𝑙, defined as the molar ratio 
of CO2 and amine in the amine entering the absorber, will 
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be used as a decision variable since it lends itself better 
to linear bounds than reboiler duty and should be more 
independent of other decision variables.  

min𝐸𝐸�(𝑥𝑥)  where 𝑥𝑥 = (𝑎𝑎,𝑤𝑤, 𝑙𝑙)    

subject to    𝐶𝐶(𝑥𝑥) ≥ 90%    

S(𝑥𝑥) ≤ 300 tonne/yr  

       𝐹𝐹𝑎𝑎(𝑥𝑥), 𝐹𝐹𝑠𝑠(𝑥𝑥) ≤ 95%  (8) 

1500 ≤ 𝑎𝑎 ≤ 3000  

3000 ≤ 𝑤𝑤 ≤ 5000  

 0.05 ≤ 𝑙𝑙 ≤ 0.2  

Each constraint function is passed to the algorithm 
in the form 𝑔𝑔(𝑥𝑥) ≤ 0. A Latin hypercube design of experi-
ments is used to sample 30 points. This initial dataset be-
comes training points for the first kriging model. Next, 
each constraint-handling method is allowed 20 objective 
function evaluations to evaluate the search space and 
find an optimal solution. 

One familiar with amine units would expect lower 
amine circulation rates and higher lean loadings to result 
in lower objective values. While the heat of absorption 
per ton of CO2 is effectively constant in this system, heat-
ing more solvent to the temperature required to desorb 
CO2 requires extra heat. One would also expect the water 
wash circulation should converge to the minimum re-
quired to meet the amine loss constraint.  

RESULTS AND DISCUSSION 
The performance of each constraint method is eval-

uated using three criteria: constraint faithfulness, solu-
tion reliability, and best optimal solution. For this case 
study, each constraint method provides a feasible solu-
tion, but none of the methods reliably converged in the 
allotted number of iterations. 

Objective function values for each iteration are 
shown in Figure 3. Optimal solutions for each run, plus 
the best solution observed for the problem in the study 
are stated in Table 3. This best solution was found by 

 
Figure 3: Comparison of objective function, expected improvement, probability of feasibility, and feasible solution 
progress by iteration. Missing iterations failed to yield a sample point during sample point selection. 
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chance in the initial design of experiments. The most op-
timal solutions had an intermediate value of lean loading 
between 0.12 – 0.15 mol CO2/mol amine which allowed 
lower circulation rates to meet the 90% CO2 recovery 
constraint. 

Table 3: EGO optimal solutions by constraint method. 

 PFCON UTB OFPF Best 
Optimal Solution 
(GJ/tonne) 

    

Amine Flow 
(sgpm) 

    

Water Wash 
Flow (sgpm) 

    

Lean Loading 
(mol/mol) 

    

 
Despite not converging on a consistent operating 

point, the solutions provided by each method favor the 
expected minimal amine circulation rate. What was not 
expected was the extent to which lower lean loadings 
were preferred. Contacting flue gas with leaner than the 
maximum required lean loading to achieve 90% CO2 re-
covery increased the capacity of each gallon of amine in 
circulation enough to offset the increased regeneration 
energy per gallon of amine. This resulted in lower energy 
requirements per metric ton of CO2 captured.  

Further analysis on the objective function values 
showed that specific compression power was effectively 
constant at about 0.63 GJ/tonne CO2 captured. This in-
dicates that compression power per unit of CO2 captured 
was unaffected by regenerator operation while the over-
head pressure was held constant. 

Table 4: EGO run characteristics by constraint method. 

 PFCON UTB OFPF 
Failed Iterations    
Feasible Points    
Infeasible Points    
Simulator  
Execution Error 

   

 
Table 4 shows the incident rate of sample point se-

lection failures and the tendency of each method to gen-
erate feasible solutions. OFPF produced the best optimal 
solution and the most feasible points with the least inner-
loop failures. PFCON rarely converged to a sample point 
with its inner-loop optimization; however, when a sample 
point was selected, it had the highest rate of feasible 
sample points. UTB constraints rarely selected feasible 
points, and frequently sampled points where the simula-
tor could not converge to a solution. These trends ob-
served between the different constraint methods are 
consistent with the conclusions of Sohst et al [14].  

CONCLUSIONS 
Each of the three tested constraint-handling meth-

ods yielded a feasible optimal solution; however, none of 
these methods were able to converge on an optimum or 
surpass a solution found in the design of experiments in 
the allowed number of iterations. 

OFPF resulted in the best optimal solution found and 
had the lowest incidence of failures to select a new sam-
ple point. Finding a similar solution to OFPF, UTB sampled 
far more infeasible points than any of the other algo-
rithms. PFCON suffered from several incidences where 
the next point selection algorithm failed to yield a sample 
point. However, when a sample point was determined, 
PFCON was the most likely to yield a feasible solution. 
The numerical issues of PFCON could be addressed by 
modifying the implementation of EGO used. 

One potential improvement is to replace the multi-
start SLSQP optimization algorithm to find the next sam-
ple point. The expected improvement objective function 
is highly multimodal and evaluates very quickly, lending 
itself well to heuristic optimization methods that would 
fight through local minima more effectively. 

The effects of different constraint parameter values 
and larger numbers of EGO iterations on algorithm per-
formance were not studied. More iterations could result 
in convergence to a better solution. There is a chance 
that different lower bound for probability of feasibility in 
PFCON would improve its reliability. Future work could 
compare parameters for each constraint method on dif-
ferent types of functions over more iterations. 

Ultimately, applying these optimization methods to 
a chemical process simulator produced similar results to 
previous work on aerodynamic shape optimization. Fur-
ther improvements on the algorithm would be necessary 
for constrained EGO to be of practical use for optimizing 
process simulations. 
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ABSTRACT 
Utilizing sustainable energy sources is crucial for expanding the range of solutions available to 
meet the growing energy demand and reducing reliance on environmentally damaging and deplet-
ing conventional fuels. Biosolids, a type of biomass, are generated as secondary effluent during 
wastewater treatment process in municipal and industrial sites. These solids possess the potential 
to serve as a sustainable energy source due to their richness of carbon. For an extended period, 
biosolids have been landfilled, even though it can be considered a wasteful use of a precious 
resource and a possible mean for contamination to the food supply chain. This has served as an 
extra impetus to investigate the potential for harnessing the capabilities of these substances. 
While many research studies have looked at different ways to put biomass waste to use, very little 
has been written on biosolids, especially those derived from industrial sources. This research as-
sesses the feasibility of transforming GTL derived biosolids into value-added commodities that 
can serve as raw materials in chemical manufacturing or be employed energy generation. The 
study primarily examines widely recognized thermal conversion processes, pyrolysis and gasifi-
cation. An evaluation is carried out to analyze the economic, technological, and environmental 
aspects of the treatment methods utilizing these technologies. The aim is to demonstrate the po-
tential of GTL biosolids conversion and to determine associated costs and environmental impacts. 
The ASPEN simulation tool is utilized to model thermal treatment pathways, allowing for the gen-
eration of economic and environmental estimations for each route. 

Keywords: Biosolids, Energy, Utilization, Simulation

INTRODUCTION 
  Biosolids are a significant waste stream that is dis-

charged from wastewater treatment plants and water 
management facilities around the world. Although biosol-
ids have traditionally been regarded as a waste by-prod-
uct and disposed of in landfills for many years, current 
research has demonstrated that they possess significant 
value as a result of their nutrient and energy content [1, 
2]. They are now formally classified as renewable 
sources of energy because of the energy value derived 
from their organic component [3, 4]. The utilization of bi-
osolids for energy generation has a significant potential 
to promote a circular economy and reduce environmental 
waste [4]. Possible uses for the recovery of mass and en-
ergy from biosolids include using them as fertilizer for 

land, composting, anaerobic digestion, combustion, gas-
ification, pyrolysis, and hydrothermal treatment. These 
applications transform biosolids into valuable resources, 
such as composts for nutrients or biofuels and char for 
energy. Each of these uses necessitates a designated 
preliminary treatment to prepare the biosolids stream. 
The treatment of biosolids is a significant obstacle in wa-
ter management and treatment plants due to the sub-
stantial electrical and operational expenses involved. 
These costs make up 20% and 53% respectively of the 
total wastewater treatment process [1]. Pyrolysis and 
gasification are two thermal conversion methods that 
have great potential for transforming biosolids into prod-
ucts that have increased value.  

Pyrolysis is a process that involves the combination 
of thermal cracking and catalytic conversion. It is 
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conducted at relatively moderate temperatures (400 – 
700 oC) and atmospheric pressure [5]. The process of 
producing bio syngas, oil, and fuel char from biosolids in-
volves heating them in an oxygen-free environment [6, 
7]. Gasification is a combustion process that involves 
burning biosolids with a limited amount of oxygen or air 
at very high temperatures that can reach up to 1200 oC 
and 0.6-2.6 MPa. Conceptually, this technology has re-
semblance to pyrolysis, albeit it differs by utilizing a sub-
stoichiometric oxygen input and operating at considera-
bly higher temperature settings [8].  

Considerable research is readily accessible that ex-
amines the costs and economic evaluations of treating 
and reusing biosolids. AlNouss et al. performed a tech-
noeconomic assessment of biomass gasification for hy-
drogen production[9]. Ghiat et al. provided a comprehen-
sive economic analysis of a biomass gasification system 
that is combined with power generation and carbon diox-
ide recovery. The analysis was conducted using aspen 
simulation software [10]. [11] conducted a study on the 
techno-economic factors of power generation using bio-
gas produced by gasifying biosolids, utilizing actual data 
from a facility [11]. However, there is a scarcity of re-
search that has examined the process of converting bio-
solids produced by industrial facilities in oil and gas sec-
tor. 

This study assesses the feasibility of transforming 
GTL industrial biosolids into high-value products through 
gasification and pyrolysis processes. Analytical investi-
gation is conducted to compare the technological, eco-
nomic, and environmental aspects of two treatment 
methods in order to identify the demonstrate efficient 
paths for treating GTL derived biosolids. The conversion 
processes are simulated using Aspen process simulation 
tool. 

PROBLEM STATMENT 
Gas-to-liquids (GTL) technology transforms natural 

gas, which is the most environmentally friendly fossil fuel, 
into premium liquid products that are typically derived 
from crude oil. The process produces biosolid waste 
streams that need to be treated to uncover their energy 
potential and reduce the need for solid waste manage-
ment.  

To assess the feasibility of treating a continuous 
flow of GTL biosolids, which includes information on 
flowrate, solid content, and moisture content, it is neces-
sary to examine the viability of employing thermal pyrol-
ysis and gasification methods. Additionally, it is crucial to 
quantify the costs and environmental impacts associated 
with these treatment approaches. 

ASPEN MODEL 

Process Flowsheet 
The diagram in Figure 1 depicts the process of con-

verting GTL biosolids through pyrolysis and gasification, 
as simulated using Aspen Plus. The primary feed stream 
consists of GTL generated biosolids. The thermo-chemi-
cal parameters of the GTL biosolids have been deter-
mined using proximate and ultimate analysis, as de-
scribed in the study by Zuhara et al. [12]. The character-
istics are succinctly outlined in Table 1. Figure 1 describes 
the pyrolysis flowsheet. The initial step involves the 
treatment of biosolids in a decomposition unit, which is 
simulated using the Ryield reactor model in Aspen Plus. 
The device disassembles the non-conventional flow of 
biosolids into its primary elemental components, namely 
hydrogen, oxygen, carbon, nitrogen, and sulfur. The out-
put of this unit is sent to the pyrolysis reactor, which is 
simulated using the RGibbs reactor model. This model 
uses Gibbs energy minimization to estimate the products 
produced by the reactions. Subsequently, the pyrolysis 
products are sent to a separator, where the resultant gas 
is isolated from the solid phase products, namely ash and 
char. After the separation process, the gas undergoes a 
cooling process, which leads to the retrieval of biogas as 
the final outcome.   

Table 1: GTL biosolids proximate and ultimate analysis 
[12]  

Proximate Analysis  
Moisture 

Volatile matter 
Ash 

Fixed carbon 

 
 
 
 

Ultimate Analysis  
C  
H 
O 
N 
S 

 
 
 

- 
 

The gasification flow sheet illustrated in Figure 2, diverts 
the elemental components produced in the decomposi-
tion unit to an alternative treatment pathway. Post de-
composition, a solid separation unit is used to initially 
separate ash and char products from the gas stream. 
Subsequently, the gas stream leaving the separation unit 
is combined with steam and air before being introduced 
into the gasification reactor. Steam and air act as gasifi-
cation agents in this process. The gasifier is simulated 
using the RGibbs reactor model. The gasifier products 
undergo a cooling process and are subsequently sepa-
rated in a solid separation unit to obtain biogas and char 
products.  
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The simulation utilized thermodynamic calculations 
employing the Peng Robinson property method with the 
Boston modification to improve the accuracy of estimat-
ing the properties of non-conventional inputs, specifically 
GTL biosolids and Ash. The operational parameters are 
concisely outlined in Table 2. 

RESULTS AND DISCUSSION 
The simulation model was constructed under the 

assumption of steady-state operation under atmospheric 
pressure, disregarding pressure variations throughout 
unit operations and heat dissipation in gasification and 
pyrolysis units.  

Table 2 Pyrolysis and Gasification flowsheet operation 
conditions 

 
The model presupposes that the char consists en-

tirely of solid carbon. 
The simulation model was executed using a feed 

flowrate of 2000kg/hr of GTL biosolids, as described by 
the provided approximate and ultimate analysis. Prior to 
being sent to the conversion units, pyrolysis and gasifier, 
the decomposition unit transformed the nonconventional 
biosolid material into its primary components. After the 
conversion has taken place, The solid splitters were used 
to separate the ashes and char, while the resulting biogas 
was pre-cooled to recover heat before being collected as 
the end product. The composition of the biogas stream 
was analyzed to determine the amounts of syngas and 
methane generated during the process. These gases are 
commonly used for energy production or as raw materials 
in downstream petrochemical processes.  The accumu-
lated ash can be beneficial in several applications for ma-
terial utilization, such as in the manufacturing of cement. 

Char, in its solid state, is a useful energy source that can 
be used for carbon sequestration and land reclamation, 
depending on its specific properties [13]. The production 
rate of each of these components is illustrated in Figure 
3.  
 

 
Figure 3. Production rate of various thermal conversion 
products for GTL biosolids feed 

The findings exhibited total transformation of the bi-
osolids into biogas, char, and ash. Upon analyzing the 
syngas composition in the effluent of the two processes, 
it is observed that gasification yields 1029 Kg/hr of car-
bon monoxide (CO) and 121 Kg/hr of hydrogen (H2). The 
generation of CO has increased by approximately 50%, 
while the production of H2 has increased by approxi-
mately 15% compared to pyrolysis. The increase in syn-
gas creation was achieved at the cost of a 48% decrease 
in CH4 output during gasification. The overall quantity of 
ash exiting the process remains constant in both process 
outlets, as they possess identical characteristics and re-
ceive the same amount of biosolids feed with a predeter-
mined nonconventional ash content, according to the ap-
proximate and ultimate analysis of GTL biosolids. Gasifi-
cation is preferred over pyrolysis when considering the 
use of biosolids as an extra feedstock stream for a pet-
rochemical plant. 

Post process simulation, Aspen program was used 
to conduct a technoeconomic and environmental assess-
ment of the two processes. The model employs the inte-
grated economic analyzer and environmental analysis 
tool. The tool provided estimates for the financial ex-
penses, capital and operational costs of both scenarios 
and presented the greenhouse gas (GHG) emissions as 
carbon equivalents, measured in terms of their ability to 
contribute to global warming (GWP) [14]. The capital cost 
encompassed equipment cost estimation via an inte-
grated unit operation mapping and equipment sizing 
methodology. Figure 4 below provides a concise sum-
mary of the cost estimation analysis and the CO2 equiva-
lent emissions for the two conversion scenarios. 

Parameter Unit Value 
 

Biosolids Feed 
Feed flowrate  Kg/hr   
Temperature  oC  

 
Pyrolysis 
Inert flowrate Kg/hr  
Inert temperature oC  
Pyrolysis unit temperature oC  
Decomposer temperature oC  

 
Gasification 
Air flowrate Kg/hr  
Air temperature oC  
Gasifier temperature oC  
Decomposer temperature oC  
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Figure 4. Cost estimation and GHG emissions from 
biosolids pyrolysis and gasification processes 

 The results indicate that the capital cost for biosol-
ids gasification is around $4.6 million, which slightly ex-
ceeds the capital required for pyrolysis by 8%. The dis-
crepancy can  be rationalized by the disparity in unit op-
erations employed in each scenario's flowsheet and the 

chosen materials capable of withstanding the operational 
temperatures of the conversion units. The model allo-
cated suitable utilities to the various unit operation as per 
the required duties and pressure and temperature 
ranges. In order to meet the conversion process require-
ments in both scenarios, three primary utility categories 
were chosen: fuel, cooling water, and power. The overall 
operational cost, with utility expenses being the primary 
factor, showed an insignificant variance between the two 
scenarios. The anticipated cost for pyrolysis was $2.09 
million per year, while the cost for the other method was 
$1.97 million per year. The CO2 emissions depicted in Fig-
ure 4 exhibit a significant disparity in emissions between 
pyrolysis at a rate of approximately 1800 kg/hr and  gas-
ification 900 kg/hr. According to this model, pyrolysis re-
sults in double the amount of gasification GHG emissions. 
In gasification, the conversion process results in the pro-
duction of additional CH4 and CO2. However, these gases 
are then further converted into H2 and CO products, 
which helps to reduce greenhouse gas emissions from 
the process side of operation. 

 
Figure 1: Biosolids pyrolysis flowsheet developed in Aspen Plus 

 

 
 
 
 
Figure 2: Biosolids gasification flowsheet developed in Aspen Plus 
 



 

Elfaki et al. / LAPSE:2024.1599 Syst Control Trans 3:726-731 (2024) 730 

CONCLUSION 
Biosolids are a valuable byproduct that must be ef-

fectively treated in order to be utilized. There is a dearth 
of research exploring the possibilities of utilizing indus-
trial biosolids in literature. This study focuses on examin-
ing the transformation of biosolids derived from GTL 
(Gas-to-Liquid) into biogas products, specifically hydro-
gen (H2), carbon monoxide (CO), and methane (CH4). The 
investigation is conducted through the utilization of an 
Aspen simulation flowsheet that has been specifically de-
veloped for this purpose. Two primary thermal conver-
sion pathways have been developed, which involve the 
integration of gasification and pyrolysis processes. Gasi-
fication emerges as the ideal method for treating biosol-
ids and using them as an additional source of feedstock 
in a petrochemical plant. The results suggest that gasifi-
cation produces greater amounts of carbon monoxide 
(CO) and hydrogen (H2) in comparison to pyrolysis, which 
is beneficial for specific industrial uses. Gasification re-
duces methane (CH4) emissions, while maintaining effec-
tive conversion of biosolids into biogas, char, and ash.  

 The Aspen software allows for technoeconomic 
and environmental studies, which offer additional in-
sights. Although gasification has a somewhat larger initial 
investment compared to pyrolysis, the ongoing expenses 
for both techniques are practically the same. This implies 
that although the initial cost for gasification may be 
slightly greater, the operational effectiveness and long-
term advantages compensate for this disparity. The en-
vironmental impact connected with each activity is of 
paramount significance. Gasification exhibits a notable 
superiority over pyrolysis in relation to greenhouse gas 
emissions since it leads to reduced emissions of carbon 
dioxide (CO2) equivalents. The decrease in emissions is 
credited to the transformation of excess methane and 
carbon dioxide into hydrogen and carbon monoxide, ef-
fectively reducing greenhouse gas emissions from the 
operational process.  

Ultimately, when it comes to utilizing biosolids as an 
extra input for petrochemical operations, gasification 
proves to be a beneficial choice. Gasification, despite 
having somewhat higher initial costs, has better conver-
sion efficiency, similar running expenses, and reduced 
environmental effect when compared to pyrolysis. 

In conclusion, this study demonstrates the capacity 
to transform industrial biosolids wastes into a viable en-
ergy source or valuable raw material, while simultane-
ously reducing the amount of solid waste generated. 
These findings provide valuable insights for decision-
making processes as it enables well-informed judg-
ments regarding biosolids treatment strategy that 
achieves a balance between the efficiency of conver-
sion efficiency, economic feasibility, and environmental 
impacts. 
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ABSTRACT 
Modern mechanical recycling infrastructure for plastic is capable of processing only a small subset 
of waste plastics, reinforcing the need for parallel disposal methods such as landfilling and incin-
eration. Emerging pyrolysis-based chemical technologies can “upcycle” plastic waste into high-
value polymer and chemical products and process a broader range of waste plastics. In this work, 
we study the economic and environmental benefits of deploying an upcycling infrastructure in the 
continental United States for producing low-density polyethylene (LDPE) and polypropylene (PP) 
from post-consumer mixed plastic waste. Our analysis aims to determine the market size that the 
infrastructure can create, the degree of circularity that it can achieve, the prices for waste and 
derived products it can propagate, and the environmental benefits of diverting plastic waste from 
landfill and incineration facilities it can produce. We apply a computational framework that inte-
grates techno-economic analysis, life cycle assessment, and value chain optimization. Our results 
demonstrate that the infrastructure generates an economy of nearly 20 billion USD and positive 
prices for plastic waste, opening opportunities for compensation to residents who provide plastic 
waste. Our analysis also indicates that the infrastructure can achieve a plastic-to-plastic degree 
of circularity of 34% and remains viable under various external factors (including technology effi-
ciencies, capital investment budgets, and polymer market values). Finally, we present significant 
environmental benefits of upcycling over alternative landfill and incineration waste disposal meth-
ods, and comment on ongoing work expanding our modeling methodology to other chemical up-
cycling pathway case studies, including hydroformylation of specific plastics to chemicals.  

Keywords: Polymers, Optimization, Supply Chain, Modelling, Interdisciplinary 

INTRODUCTION 
With global rates of plastic production reaching up-

wards of 400 million tonnes per year and growing [1], na-
tions require integrated, reliable plastic waste manage-
ment systems [2]. Despite reductions in the environmen-
tal impacts of plastic production [3], global plastic recy-
cling rates remain well below 10% [4], necessitating the 
continued use of parallel disposal methods (such as land-
filling and incineration) and allowing significant plastics to 
accumulate in the environment [5]. 

Most current recycling occurs by well-established 
mechanical methods, which are designed to accept bot-
tles of polyethylene terephthalate (PET) and high-density 
polyethylene (HDPE), together making up less than 12% 

of post-consumer plastic waste [6]. However, these 
methods also produce degradation and allow these plas-
tics to only be recycled a finite number of times [7]. Me-
chanical recycling strategies cannot process most other 
resins or flexible, multilayer plastics (which account for 
35% of plastics currently produced [8]). The parallel dis-
posal methods required for these plastics cause signifi-
cant environmental and social issues.  

Chemical upcycling has been proposed as a com-
plement to mechanical systems. These pathways apply a 
complex sequence of chemical processing steps to de-
compose plastics into constitutive chemical species that 
can be further refined into value-added products, such 
as fuels, chemicals, and plastic precursors. Due to their 
improved feedstock versatility, chemical upcycling 
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pathways can be more scalable than mechanical recy-
cling pathways. We analyze a pathway which requires 
pre-sorting and purification of mixed plastic waste from 
post-consumer recyclable streams, occurring at material 
recovery facilities (MRFs) and plastic reprocessing facili-
ties (PRFs). Sorted plastic waste is baled and mechani-
cally reduced to flakes before undergoing pyrolysis and 
steam cracking to produce plastic monomers, which can 
finally be repolymerized into resins (here, low-density 
polyethylene and polypropylene) with identical quality as 
the starting materials and the same original properties as 
virgin plastics [4]. Thus, chemical upcycling pathways 
can help to achieve a circular economy for plastic waste.  

Many recent analyses have explored the potential 
contributions of upcycling to broader plastic waste man-
agement systems [4, 7, 9, 10, 11] and its economic and 
environmental performance [12, 13, 14]. However, a sig-
nificant gap exists in our understanding of the deploy-
ment of upcycling technologies at scale. Previous works 
have developed models to analyze plastic waste supply 
chains [15, 16] and supply chain optimization frameworks 
for studying these problems at regional scales [6]. Large 
supply chain models can help to analyze complex eco-
nomic behavior of networks of processing facilities and 
track the transportation of products in the value chain. 

In this paper, we summarize the methods and re-
sults of our recent full paper on the national-scale mod-
eling of an upcycling pathway for the continental US [17], 
and present updates in ongoing comparative analysis of 
other upcycling pathways with different process details 
and outcomes on the same national scale, including the 
recently explored hydroformylation process [18]. 

We overview a computational framework to examine 
the potential for deploying a national-scale upcycling in-
frastructure for post-consumer plastic waste in the con-
tinental US, and present an optimal upcycling value chain 
solution (see Figure 1) for techno-economic analysis and 
lifecycle assessment. The infrastructure is optimized to 
maximize total profit while minimizing investment, oper-
ating, and transportation costs. We show that this infra-
structure can be interpreted as a value chain (an econ-
omy) under which stakeholders exchange plastic waste 
and derived products to maximize profit. In our model, 
upcycling creates high value from the production of virgin 
polymers from post-consumer waste, producing a total 
economy (market) size of 19.7 billion USD per year and 
remaining viable under various changes to market inputs.  

Upcycling as a national plastic waste management 
strategy achieves a 34% plastic-to-plastic degree of cir-
cularity for converting residential plastic waste into high 
quality polymers. The system compares favorably to ex-
isting disposal methods for mixed plastic by environmen-
tal metrics, including 69-75% reductions in greenhouse 
gas (GHG) emissions relative to incineration and 86 
avoided new landfills over the next 50 years).  

In contrast to this form of pyrolysis-based upcycling 
(a plastic-to-plastic method for mixed plastics), hydro-
formylation has been envisioned as a plastic-to-chemi-
cals pathway for more specific plastic feedstocks. To 
date, hydroformylation has only been explored for one 
post-consumer resin (HDPE) and three virgin resins 
(HDPE, LDPE, and PP) [18]. Thus, hydroformylation would 
compete with mechanical recycling for HDPE. We com-
ment that current market prices for the products of hy-
droformylation may not support the pathway’s use rela-
tive to prices for mechanically recycled HDPE. 

METHODOLOGY 
We model the US as a collection of county-level 

waste-producing centers of population. Our chemical up-
cycling pathway comprises a series of six processing 
technologies, including MRFs, PRFs, pyrolysis, steam 
cracking, LDPE polymerization, and PP polymerization. 
The value chain contains 16 different products, including 
inputs (post-consumer recyclables), intermediates (e.g., 
plastic waste bales, plastic flake, pyrolysis oil, ethylene), 
and outputs (e.g., LDPE, PP, fuels). Only feedstock recy-
clables, plastic bales, plastic flake, and pyrolysis oil are 
modeled as transportable to represent the infeasibility of 
transporting many intermediates (e.g., ethylene and pro-
pylene gas) and simplify analysis of market demand.  

Each component of the value chain has techno-eco-
nomic definitions from Ma et al. [6]. We applied a mixed-
integer program (MIP) formulation to our supply chain op-
timization model, also proposed by Ma et al. [6] to study 
upcycling in the US Midwest region. The MIP designs a 
value chain by placing processing facilities in locations 
that best capture residential waste, maximize profit, and 
minimize investment, processing, and transportation 
costs. Furthermore, we apply LCA methodologies to 
compare GHG emissions of upcycling, landfilling, and in-
cineration. Emission factors for each technology are 
adapted from Ma et al. [6]. 
 To limit model size and computational complexity 
for a national case study, we allow transportation routes 
between adjacent county centers. Still, the national scale 
presents challenges for current solvers, so we report 
close-to optimal solutions with optimality gaps demon-
strating their measured distance from the estimated up-
per bound on total profit. 

The model comprises 3,108 county centers and 
4,010 sites available for technology placement, with two 
sizes of technology possible at each potential site. In to-
tal, the MIP problem contains 796,756 continuous varia-
bles, 8,020 binary variables, and 587,405 constraints.  

To implement and run the MIP formulation, we utilize 
the algebraic modeling package JuMP [17] for the Julia 
programming language and solve using Gurobi 9.1.0. 
[20]. We use the MIP to design the physical arrangement 
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of the upcycling value chain and then perform economic 
and environmental analysis using the CoordinatedSup-
plyChains.jl package (CSC.jl) developed by Tominac and 
Zavala [21] and modified for this work with visualization 
capabilities. After 180 hours of computational time, the 
MIP was solved to an optimality gap of 4.66%, meaning 
that the identified system design provides an economic 
result within 5% of the optimal solution. The optimal de-
sign reaches all 3,108 counties and captures 100% of res-
idential plastic waste; in other words, the model indicates 
that there are sufficient economic incentives to harness 
all the post-consumer waste to obtain virgin plastics. 

RESULTS 

Circularity & Economic Evaluation 
The final upcycling network captures 100% of resi-

dential waste, recovering 11.6% of input waste plastics 
(the fraction of PET and HDPE bottles) as mechanically-
recycled HDPE and PET through MRFs and PRFs, and 
22.3% as LDPE and PP through pyrolysis, steam cracking, 

and repolymerization. This leads to a total plastic-to-
plastic degree of circularity of 33.9%, but overall, 94.6% 
of residential plastics are recovered as valuable products 
(including significant fuel and chemical byproducts of up-
cycling which enhance upcycling’s economic viability).  

Prices for plastic waste are positive for all county 
centers, demonstrating that the upcycling network is 
economically viable without added incentives through 
policy, largely due to the production of high-value LDPE 
and PP through chemical upcycling. Upcycling creates an 
economy worth 19.7 billion USD annually (a measure of 
total economic surplus, excluding capital costs) and 
nearly 10 billion in residential profit, which could be ap-
plied to compensate residents for recycling properly (or 
donating their waste plastics to upcycling systems) at a 
rate of 31 USD / year.  

Sensitivity Analysis 
External market factors and technical specifications 

impact the economic performance of the upcycling net-
work. Total waste capture remains above 99% for resi-
dent offering costs up to 40 USD / tonne (rather than 

 
Figure 1: Overview of a pyrolysis-based chemical upcycling value chain. In chemical upcycling, waste plastics are 
recovered as fuels, chemicals, and virgin-quality polymers in a sequence of processing steps. Our case study 
examines a combination of mechanical recycling for PET (plastic type #1) and HDPE (plastic type #2), and chemical 
upcycling of mixed plastics (plastic types #3 - #7). This combined network creates an economy worth nearly 20 
billion USD annually and processes 100% of US residential plastic waste, achieving a degree of circularity of 33.9% 
(more than one-third of input waste plastics are recovered as mechanically or chemically recycled plastics) while 
most other remaining inputs are converted into valuable byproduct fuels and chemicals. 
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donating plastic waste for free). Improving the efficien-
cies of key technologies (such as pyrolysis and steam 
cracking) increases economic surplus but can exhaust 
the processing capacity of the network faster, excluding 
some residential waste providers from the market. In-
creasing transport costs for feedstocks and intermedi-
ates has a minimal impact on process economics 
(transport costs can be doubled and the system pro-
cesses 99.47% of residential waste plastic). The network 
can withstand 20% reductions in LDPE and PP market 
value (major economic drivers of viability) without signif-
icant decreases in waste capture. Finally, limiting the 
overall capital cost investment available for constructing 
the network limits its extent of waste capture, prioritizing 
regions of higher waste production density excluding re-
gions including the Great Plains and Northwest.  

Comparison to Existing Processing Methods 
The upcycling network emits 1.387 tonne CO2 eq / 

tonne of plastic, including processing and transportation 
contributions. Landfills produce limited direct GHG emis-
sions (0.0236 tonne CO2 eq / tonne of plastic), but impose 
other categories of environmental impacts including land 
use, leakage and microplastic pollution. Incineration or 
waste-to-energy (WtE) systems produce 2.3-3.1 tonnes 
CO2 eq of direct emissions per tonne of plastic com-
busted depending on resin type. 

However, upcycling and WtE fulfill additional func-
tions not achieved by landfills: upcycling produces virgin-
quality polymers and WtE can produce electricity. Apply-
ing LCA methodology to credit upcycling for its avoided 
fossil fuel use and WtE for its avoided grid electricity con-
sumption, we determine revised emissions factors of 
0.508 tonne CO2 eq / tonne plastic (including transport) 
for upcycling and 1.6-2.0 tonnes CO2 eq per tonne of 
plastic combusted for WtE. With credits, upcycling emis-
sions compare more favorably to WtE, whose credits 
based on grid electricity will gradually disappear as the 
grid becomes decarbonized.  

Comparison to Hydroformylation 
While we model a plastic-to-plastic upcycling path-

way with fuel and chemical byproducts, other pathways 
with other aims also attract the interest of researchers. In 
particular, Li et al. [18] studied hydroformylation (another 
pyrolysis-based pathway) to produce aromatics, paraf-
fin, alcohols, and dialcohols from post-consumer HDPE or 
virgin HDPE, LDPE, and PP. The inputs of this pathway 
also determine its applications: as developed in this pub-
lication for a HDPE waste feedstock, hydroformylation 
would not be an alternative to pyrolysis-based upcycling 
in this work and Ma et al. [6] but to mechanical recycling. 
However, since the pathway is still based upon pyrolysis, 
it could be applied to mixed plastic wastes in the future. 

Li et al. [18] report yields and market values of the 

four chemical categories produced by hydroformylation 
of waste HDPE, which we apply as preliminary target 
yields for the hydroformylation of mixed plastic wastes. 
We determine that hydroformylation provides a high 
combined revenue for pyrolysis oil (2154 USD / tonne) 
from which additional operating costs (644 USD / tonne) 
detract significantly, leading to an adjusted pyrolysis oil 
value of 1509 USD / tonne and a corresponding post-
MRF-and-PRF plastic waste value of 1035 USD / tonne. 
This is slightly above the market value prices for recycled 
HDPE produced at MRFs and PRF used in Ma et al. [6] 
and this work (991 USD / tonne), but is significantly above 
the market value produced for post-MRF-and-PRF mixed 
plastic wastes from plastic-to-plastic upcycling (711 USD 
/ tonne).  

We extend our model to consider a hydroformylation 
pathway and map its optimal infrastructure arrangement 
and product transportation flows in Figure 2. The com-
paratively higher value for mixed plastic waste supported 
by hydroformylation allows plastic waste to sustain 
greater transportation distances and costs, and thus, the 
resulting arrangement possesses fewer decentralized 
components. For example, the plastic-to-plastic upcy-
cling solution placed 336 mostly small-scale MRFs (the 
first step in each pathway) whereas the hydroformylation 
solution placed only 38 mostly large-scale MRFs. The to-
tal MRF capacity of the hydroformylation solution was 
nearly 18% lower than that of plastic-to-plastic upcycling, 
but the utilization of available MRF capacity was much 
greater (98.8% compared to 81.2%). In contrast, the num-
ber of hydroformylation hubs in this solution is roughly 
comparable to the number of steam cracking and 
polymerization combined hubs in the plastic-to-plastic 
upcycling solution.  

A more centralized network entails trade-offs with 
supply, as in the hydroformylation solution, only 99.36% 
of suppliers (3088 counties out of 3108) participate in the 
network, compare to 100% in the plastic-to-plastic upcy-
cling solution. Future work will aim to refine this solution 
to achieve 100% waste capture. For the residents that 
participate in the hydroformylation network, a potential 
compensation rate of 30 USD / year is generated through 
the value chain, which is just below that of plastic-to-
plastic upcycling. 

Hydroformylation achieves different production ob-
jectives than plastic-to-plastic upcycling, and with differ-
ent environmental performance. The uncredited emis-
sions of the hydroformylation network reach 1.473 tonne 
CO2 eq / tonne of plastic processed, which is greater than 
that of plastic-to-plastic upcycling. We note that this 
analysis does not consider that hydroformylation prod-
ucts would otherwise be produced by expensive fossil-
based pathways. Furthermore, hydroformylation pro-
duces only chemicals, so its plastic-to-plastic degree of 
circularity is 0%. 
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DISCUSSION & IMPLICATIONS 
Previous research has defined the individual steps 

of upcycling and modeled their implementation at 
smaller scales. Our analysis reveals that upcycling re-
mains viable when expanded to the continental US, con-
tributing to a circular economy for plastics driven by the 
high value of upcycling’s end products. Upcycling also 
presents environmental impact reductions in land use 
relative to landfills and GHG emissions relative to WtE 
plants. 

As demonstrated in this work, system-level model-
ing projects have the potential to illuminate not only eco-
nomic and environmental behaviors of potential value 
chains, but also comparative results between processing 
options. Our future work will continue expanding our case 
studies in hydroformylation and other proposed chemical 
upcycling pathways, while also incorporating ways to re-
lax some of the major simplifying assumptions in our 
model structure. We are also interested in more directly 
modeling policy interventions (including plastic waste 
source reduction or incentives for upcycling technolo-
gies) to better represent the role of policy in national 

scale systems and the considerations of current US 
waste management, recycling, and plastic pollution pre-
vention strategies. 

DIGITAL SUPPLEMENTARY MATERIAL 
The CSC.jl analysis package is publicly available at 

https://juliahub.com/ui/Packages/CoordinatedSupply-
Chains. All scripts and data needed to reproduce the re-
sults are available at https://github.com/zavalab/Julia-
Box/tree/master/National_Plastic. 
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ABSTRACT 
There is a need to drastically reduce greenhouse gas emissions. While significant progress has 
been made in electrifying transport, heavy duty transportation and aviation are not likely to be 
capable of electrification in the near term, spurring significant research into biofuels. When cou-
pled with carbon capture and storage, biofuels can achieve net-negative greenhouse gas emis-
sions via many different conversion technologies such as fermentation, pyrolysis, or gasification 
to produce ethanol, gasoline, diesel, or jet fuel. However, each pathway has a different efficiency, 
capital and operating costs, and potential for carbon capture, making the optimal pathway de-
pendent on policy and spatial factors. We use the Integrated Markal-EFOM System model applied 
to the USA, adding a rich suite of biofuel and carbon capture technologies, region-specific CO2 
transportation and injection costs, and government incentives from the Inflation Reduction Act. 
We find that under current government incentives, biofuels and carbon capture from biorefineries 
are primarily focused in the Midwest and South of the USA, but play a relatively small role in the 
overall USA transportation sector even in 2055. However, increased government incentives, bio-
mass availability, or oil price could lead to increased biofuel production and reduced transportation 
emissions. 

Keywords: Carbon Dioxide Sequestration, Biofuels, Biomass, Optimization, Energy Systems

INTRODUCTION 
Reducing greenhouse gas (GHG) emissions in the 

transportation sector is critical for reducing global warm-
ing. While improvements in electrification and electric ve-
hicles are expected to play a critical role in reducing 
emissions from light duty vehicles, heavy duty transpor-
tation and aviation are not likely to be electrified in the 
near term [1]. In these sectors, the high energy density of 
fuel is important, so liquid fuels are expected to be es-
sential for years to come [2]. Therefore, there has been 
significant research into renewable liquid fuels. 

Renewable liquid fuels can be derived from a variety 
of sources. One of the most affordable sources has been 
waste lipids, which can be upgraded through the hydro-
processed esters and fatty acids (HEFA) conversion 
pathway. However, the availability of waste lipids, and 
purpose-grown oil crops, is currently limited, and ex-
pected to remain low [3]. Meanwhile, cellulosic biomass 

is widely available and can be converted into ethanol, 
gasoline, diesel, or jet fuel through a variety of biological 
and thermochemical pathways [4].  

Biofuels have dramatically lower GHG emissions 
than their fossil fuel counterparts, but there are still emis-
sions from the growth, harvesting, transportation, and 
conversion of the biomass. However, by coupling biofuel 
production with carbon capture and storage (CCS), net-
negative GHG emissions can be achieved [5]. CCS incurs 
significant capital and operating expenses, so it is gener-
ally only economically viable with government incentives. 
With the passing of the Inflation Reduction Act (IRA), the 
USA has a tax credit of $85/Mg CO2 captured and stored 
securely. There is also a higher credit of $180/Mg CO2 for 
CO2 captured directly from the atmosphere. The USA 
also provides incentives for the production of renewable 
liquid fuels, including ethanol, gasoline, diesel, and jet 
fuel. Notably, the credit for sustainable aviation fuel (SAF) 
depends on its emission reduction compared for fossil-
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based jet fuel. SAF with 50% emission reduction receives 
a $1.25/gallon credit, which increases by 1 cent for each 
additional percent of emission reduction, up to a maxi-
mum of $1.75/gallon at net-zero emissions. This credit 
exceed that for ethanol, gasoline, and diesel at $1/gallon. 

Many techno-economic analysis have been per-
formed on biofuels with carbon capture and storage 
(BECCS) systems and the impact of sequestration credits 
son their economic viability, but many of these studies 
pick a single conversion pathway and option for CCS. 
They also typically study a single biorefinery with a single 
feedstock price for a representative year [6]. However, 
biomass availability, locations for carbon sequestration, 
and competition with other fuels are key factors that can 
only be included with larger systems-level models. 

Biofuels, with and without CCS, have featured heav-
ily in integrated assessment models (IAMs). However, 
IAMs model economic, energy, and environmental sec-
tors and interactions for the globe over long periods of 
time, so are often limited to a coarse representation of 
the energy sector [7]. Instead, detailed energy systems 
model can include a rich suite of conversion pathways. 

Other studies of biofuels in energy systems models, 
and especially those focusing on the USA, have several 
crucial limitations. First, they typically simplify the wide 
range of combinations of biomass type, conversion path-
way, and CCS to one or two conversion technologies. 
Second, they consider CCS from only some streams at 
the biorefinery even for pathways that generate multiple 
distinct CO2 streams, such as those based on microbial 
conversion and gasification. Third, they often simplify the 
cost of CO2 transportation and injection to a single value 
that is independent of region. 

In this work, we present a study including a rich suite 
of biofuel conversion pathways to ethanol, gasoline, die-
sel, and jet fuel with the option for CCS from each CO2 
stream. We add these pathways to the Integrated 
MARKAL-EFOM System (TIMES) model applied to the 
USA. We further improve the model by adding transpor-
tation costs and region-specific injection cost curves for 
CO2. We also implement the most recent government in-
centives to study the role of biofuels and CCS in the USA 
transportation sector. 

METHODS 

Optimization Model 
TIMES is a bottom-up long-term energy system lin-

ear optimization model that includes transportation, elec-
tricity generation, residential, commercial, and industrial 
sectors. It is solved considering 5-year timesteps from 
2020 through 2055 with perfect foresight to minimize the 
discounted cost of meeting energy demands. It divides 
years into seasons, which are further divided into daily 
time slices. These times slices are used to consider both 

seasonal and daily balances for energy demands [8].  
TIMES can be applied to different regions depend-

ing on the technologies available, and we use the 
EPAUS9rT database, which includes the existing energy 
technologies in the USA and their associated GHG emis-
sions, divided into nine regions [9]. The inclusion of ex-
isting capacity and costs for conventional fuel technolo-
gies are essential for investigating how biofuel would 
compete in the current and future energy sector. How-
ever, because advanced biofuels are not currently wide-
spread in the USA, the database has little representation 
for these fuels. Thus, this work adds these advanced bio-
fuel technologies, as outlined in the following sections.  

Biomass Availability and Oil Price 
The amount of biomass available and its cost is crit-

ical for studying biofuels. The Billion Ton report, updated 
in 2016, determined supply curves of biomass availability 
as a function of price for a variety of biomass types under 
different scenarios [10]. It generates these results as-
suming that sufficient land for food production is ensured 
before land is used for biomass production so that there 
is no competition with food. The study includes agricul-
tural residues, grassy energy crops, corn stover, urban 
wood waste, forest resources, and woody energy crops. 
We note that utilizing waste biomass requires no addi-
tional land or water. For energy crops, additional water 
and land is required, but these are not tracked in TIMES 
and therefore beyond the scope of this study. We gener-
ate four scenarios of reference biomass availability and 
oil price, high biomass availability and reference oil price, 
reference biomass availability and high oil price, and high 
biomass availability and oil price. 

Biofuel Conversion Pathways 
We include a wide variety of conversion technolo-

gies and options for CCS, summarized in Figure 1. 

 
Figure 1. Biofuel production and carbon capture 
technologies considered in this study. 

One mature pathway is microbial conversion, in 
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which fermentation is used to produce ethanol from sug-
ars. In a biorefinery using this pathway, CO2 is released 
from the fermentation process, in biogas from anaerobic 
digestion of wastewater, and in the flue gas from solid 
residue combustion [11]. Ethanol can be used as a fuel, or 
further upgraded. The upgrading options begin with 
Guerbet coupling to produce jet fuel, or with dehydration 
to produce a range of gasoline, diesel, and jet fuel [12]. 

Biomass can also be converted thermochemically. 
Pyrolysis produces a bio-oil that can be further upgraded 
into gasoline and diesel with hydrogen that can be pro-
duced onsite from the fuel gas. In this case, the only 
stream from which CO2 can be captured is the dilute flue 
gas stream [13]. Alternatively, biomass can first undergo 
gasification to produce syngas. The syngas can then be 
converted into a range of gasoline, diesel, and jet fuel 
through Fischer-Tropsch synthesis [14], or to gasoline 
through a methanol intermediate [15]. For both pathways 
based on gasification, a very pure stream of CO2 is pro-
duced when cleaning the syngas, and another dilute 
stream of CO2 is produced from fuel gas combustion. 

While thermochemical conversion technologies can 
process any type of biomass, the lower carbon content 
and higher ash content of herbaceous biomass increases 
costs. The nearly pure CO2 streams from fermentation 
and syngas cleaning require only dehydration before 
compression, transportation, and sequestration. For all 
other CO2 streams, we assume that amine absorption is 
used. We also assume that all the CO2 in biogas is cap-
tured, while 85% of CO2 in flue gas streams is captured. 

CO2 Transportation and Sequestration 
An important element in CO2 sequestration not in-

cluded in the EPAUS9rT database is the availability and 
injection cost of saline aquifers in each region. To add 
this to the model, we identified the potential injection 
sites with injection costs below $100/Mg CO2 in the liter-
ature. Assuming that each aquifer has a maximum annual 
injection limit of 1% of its total capacity, we constructed 
a cost curve of marginal cost of injection as a function of 
total CO2 injection within each region. We calculated the 
CO2 transportation costs within and between regions by 
the average distance between the potential locations of 
biorefineries and the potential injection sites.  

RESULTS 

Existing Credits 
With the existing credits, we run the improved model 

through 2055. The results of biofuel production and the 
transportation emission reduction are shown in Figure 2.  
The total biofuel production increases rapidly beginning 
in 2030, almost entirely comprised of gasification and 
Fischer-Tropsch synthesis. Biofuel production continues 
to increase through 2050, but the growth slows as the all 

the low-cost biomass sources are used and marginal cost 
of using additional biomass increases. 

 
Figure 2. Biofuel production and corresponding GHG 
emission reduction over time. 

The amount of CCS varies by region depending on 
the cost of electricity and CO2 transportation and injec-
tion, but on average 60% of biofuel production from 
Fischer-Tropsch includes CCS in both the stream from 
syngas cleaning and flue gas, while the remaining 40% 
includes capture from the syngas cleaning stream only.  

Biofuels produce some emissions, but much fewer 
than fossil fuels. Accordingly, more than one third of 
emission reduction from BECCS come from the replace-
ment of fossil fuels, while the remaining comes from the 
direct negative emissions of CCS.  

Figure 3 shows the distribution of biomass sources 
and biofuel conversion pathways selected in 2055. Ded-
icated woody energy crops are the most used biomass 
sources, followed by urban wood waste and forest re-
sources. These sources are selected due to their higher 
yields and lower costs than herbaceous sources. 

 
Figure 3. Sankey diagram for energy flows of biomass 
and biofuels. Results are in petajoules (PJ) in 2055. 



 

Geissler et al. / LAPSE:2024.1601 Syst Control Trans 3:738-743 (2024) 741 

 Very little herbaceous biomass is used and is limited 
primarily to producing small amounts of ethanol via mi-
crobial conversion. Overall, only a quarter of biomass 
available is used in 2055. 

Figure 4 shows the regional distribution of biofuel 
production and CCS from biorefineries. Both biofuel pro-
duction and CCS are focused in the Midwest and South 
(regions 3-7), which have lower costs and higher availa-
bility of both biomass and saline aquifer injection sites 
compared to the coastal regions. R4 has the highest bio-
fuel production of any region at 445 PJ, and the highest 
amount of carbon captured at 50 MT/year. In New Eng-
land (R1), there are no potential injection sites, so any 
carbon captured would have to be transported a signifi-
cant distance, which would be expensive. Therefore, in 
that region a small amount of biomass is converted to fuel 
using pyrolysis without any CCS, which is the lowest-cost 
method of producing biofuels when CCS is not available 
or economically viable. The only region that continues to 
produce ethanol in 2055 is R6, which produces ethanol 
from grassy energy crops, instead of from corn as is cur-
rently the case in the USA. While there are options to up-
grade ethanol to jet fuel via dehydration or Guerbet cou-
pling, no ethanol upgrading pathways are selected due to 
their high costs compared to the thermochemical conver-
sion pathways based on pyrolysis and gasification. 

Impact of changing credits 
Relatively little biofuel production is incentivized 

with existing credits, so we next explore how changing 
the value of the credits impacts the choice of technolog-
ical pathway for biomass to biofuels, total biofuel produc-
tion, and national transportation emission reduction.  

Figure 5a shows that the sequestration credit is 
much more impactful on biofuel production and emission 
reduction than the SAF credit. In fact, at low sequestra-
tion credits, a SAF credit of over $2.20 would be required 
to increase biofuel production by a significant amount. 
While at current incentives and assumptions in the 
EPAUS9rT database, annual transportation emissions 
were reduced by only 15% compared to 2020 levels, mi-
nor increases in the sequestration credit can dramatically 
reduce emissions, reaching 50% emission reduction at 
$120/Mg CO2 with current SAF credit levels. 

Figure 5b shows the range of sequestration credits 
for which biofuel conversion pathways are selected. In all 
regions, pyrolysis is chosen at low credits, and this tran-
sitions to gasification and Fischer-Tropsch at higher 
credits, with the credit at which the transition occurs var-
ying by region. The transition begins to occur at credits 
as low as $55/Mg CO2 in R7 and R8, where CCS from the 
syngas stream becomes incentivized. At credits above 
$110/Mg CO2, gasification and Fischer-Tropsch synthesis 
with CCS from all sources preferred in all regions. Gasifi-
cation and methanol-to-gasoline is incentivized in R4 at 
high sequestration credits because it has a higher ratio 
of CO2 captured to fuel produced, allowing it to take 
greater advantage of the sequestration credit. 

 
Figure 4: Map of biofuel production and carbon capture from biorefineries in the USA in 2055 under existing 
incentives. The size of each pie chart is proportional to the relative fuel demand. 
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Impact of biomass availability and oil price 
Even if sequestration and SAF credits do not 

change, there are other ways in which biofuel production 
might be increased. With continuing research in purpose-
grown woody and herbaceous energy crops, and the 
potential of rising oil prices with depletion of reserves and 
environmental restrictions, biofuels may become 
economically attractive without increased government 
incentives. Accordingly, we show in Figure 6 biofuel 
production by different biomass sources under different 
scenarios of biomass availability and oil price. 

With increasing biomass availability and oil price, the 
choice of biofuel conversion pathways does not change, 
though the magnitude of production changes signifi-
cantly. The high biomass availability (B+) scenario has 
approximately double the biomass availability in 2055 
compared to the reference (R) scenario, and biofuel pro-
duction correspondingly doubles. The most significant 
increase between these scenarios is the increased use of 
woody energy crops, though there is also an increase in 
grassy energy crops undergoing gasification and 
Fischer-Tropsch synthesis and microbial conversion. 
However, R7 is the only region that uses grassy energy 
crops in this scenario. 
 When the oil price increases with reference biomass 
availability (scenario R to scenario O+), the most signifi-
cant change is the dramatic increase in the use of herba-
ceous biomass, primarily in R3, R4, and R7. Herbaceous 
biomass has lower conversion efficiency and higher 
costs compared to woody biomass that makes it not 
competitive with fossil fuels in the reference scenario, 
but the increase in oil price is sufficient to change that. In 

this scenario, R2 also begins to produce small amounts of 
ethanol from grassy energy crops and corn stover. Over-
all, an increase in the oil price alone increases total bio-
fuel production by a factor of 4.  
 When an increase in biomass availability is also 
added on (scenario O+ to scenario BO+), there is less 
corn stover and significantly more woody energy crops 
available, which further increases biofuel production to 
nearly 7500 PJ. In the BO+ scenario, biofuel meets 
roughly 14% of gasoline, 55% of diesel, and 28% of jet fuel 
demand, resulting in 60% emission reduction compared 
to 2020 levels. 

 
Figure 6: Biofuel production by biomass type under each 
biomass availability and oil price scenario in 2055. 
Abbreviations are: ECG: grassy energy crops; STV: corn 
stover; AGR: agriculture residues; UWW: urban wood 
waste; FSR: forest resources; ECW: woody energy crops. 

 
Figure 5: a) National biofuel production as a function of government incentives. Solid black lines indicate contours 
of 10-60% reduction of transportation emissions compared to 2020 levels. b) Range of sequestion credits for 
which technologies are selected in each region. Abbreviations are: PYR: pyrolysis; GAS-FT-C1: gasification and 
Fischer-Tropsch with capture from syngas; GAS-FT-C2: gasification and Fischer-Tropsch with capture from 
syngas and flue gas; GAS-MTG-C2: gasification and methanol-to-gasoline with capture from syngas and flue gas. 
All results are in 2055. 
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CONCLUSION 
We improved the TIMES model applied to the USA 

energy sector by adding a rich suite of biofuel conversion 
pathways with the option for carbon capture from all CO2 
streams generated and region-specific CO2 transporta-
tion and injection costs. With the improved model, we 
studied how the existing government credits in the Infla-
tion Reduction Act would incentivize biofuel production 
and carbon capture, finding biofuels to meet only 15% of 
diesel, 4% of gasoline, and less than 1% of jet fuel demand 
in 2055. We explored changes in sequestration and SAF 
production credits and found the sequestration credit to 
be much more impactful, with a relatively minor increase 
to $120/Mg CO2 reducing emissions by 50%. Lastly, we 
examined how increases in biomass availability or oil 
price could increase biofuel production without and 
change in government incentives. Here, we found similar 
levels of emission reduction could potentially be 
achieved in the most biofuel-friendly scenario. 
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ABSTRACT 
Increases in population and improvements in living standards have significantly increased the de-
mand for animal products worldwide. However, modern livestock agriculture exerts significant 
pressure on the environment due to high material and energy requirements. These systems also 
generate significant amounts of waste that can cause severe environmental damage when not 
handled properly. Thus, if we wish to enable farmers to meet this increased demand in a sustain-
able way, technology pathways must be developed to convert livestock agriculture into a more 
circular economy. With this end in mind, we propose a novel framework (which we call ReNuAl) for 
the recovery of nutrients from livestock waste. ReNuAl integrates existing technologies with a 
novel biotechnology approach that uses cyanobacteria (CB) as a multi-functional component for 
nutrient capture and balancing, purifying biogas, and capturing carbon. The CB can be applied to 
crops, reducing the need for synthetic fertilizers like diammonium phosphate. Using manure pro-
files obtained from dairy farms in the Upper Yahara region of Wisconsin, we construct a case study 
to analyze the environmental and economic impacts of ReNuAl. Our results illustrate that the min-
imum selling price (MSP) of CB fertilizer produced from deploying ReNuAl at a 1000 animal unit 
(AU) farm is significantly higher than the cost of synthetic fertilizers. We also observe that ReNuAl 
can return environmental benefits in areas such as climate change and nutrient runoff when com-
pared to current practices. As a result, we see that consideration of environmental incentives can 
significantly increase the economic viability of the process. 

Keywords: Process Design, Technoeconomic Analysis, Life Cycle Analysis 

INTRODUCTION 
The UN Food and Agriculture Organization projects 

that demand for animal products will increase by up to 
70% by 2050 [1]. This represents an opportunity for sig-
nificant economic growth for areas that specialize in live-
stock agriculture like the Upper Yahara region of Wiscon-
sin. However, meeting this demand also presents a sig-
nificant sustainability challenge. Livestock agriculture is 
a resource-intensive venture: production of 1 kg of fat 
and protein corrected milk requires 2.7 MJ of energy, 2.61 
kg of nitrogen (N), and 0.4 kg of phosphorus (P) [2, 3]. 
While nitrogen is a renewable resource, phosphorus and 
the required energy are usually sourced from non-renew-
able feedstocks [4].  Concurrently, these systems gener-
ate large amounts of waste, mostly in the form of animal 

manure [5]. The most common method for managing this 
waste is to apply it to cropland where it can serve as a 
fertilizer. However, this approach leads to several unde-
sirable environmental outcomes. Manure breaks down 
when exposed to sunlight and releases potent green-
house gases (GHGs) like N2O and CH4; this practice has 
been measured to have a global warming potential (GWP) 
of 72.5 kg CO2-eq/tonne of manure. Additionally, be-
cause livestock waste has a low N:P ratio, it is often over-
applied to meet crop N requirements; this results in the 
overloading of soils with P [6]. This, in turn, leads to ex-
cess nutrients being washed out into surrounding water-
ways where they cause harmful algal blooms (HABs). In 
addition to severe environmental damage to aquatic eco-
systems, these eutrophication events also result in sig-
nificant health and economic damage to the residents of 
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neighboring communities [7].  
Technologies that provide alternative methods for 

handling livestock manure have existed for decades. The 
use of anaerobic digesters (ADs), which were developed 
in the early 20th century, in a farm setting was initially 
considered during the 1970s in response to an energy cri-
sis [8]. ADs use microorganisms that feed on raw manure 
to generate a gas mixture, commonly referred to as bio-
gas, largely composed of CO2 and CH4 that can serve as 
a renewable energy source. Additionally, by breaking 
down manure in a more controlled setting, ADs are able 
to prevent the release of GHG emissions seen in land ap-
plication. However, the leftover material, known as diges-
tate, has a similar N:P ratio as manure, and also leads to 
nutrient overloading when applied to cropland. Water re-
covery systems (WRS) offer a solution to this issue by 
providing further separation capabilities for the diges-
tate. The central aim of a WRS is to recover clean water 
from manure. This is achieved using a solids-liquids sep-
arator (SLS) followed by ultrafiltration (UF) and reverse 
osmosis (RO) systems [9]. This allows for the separation 
of P and N nutrients. The solid product contains most of 
the P while the N is largely recovered in a concentrated 
solution following the UF and RO steps [10]. While this 
allows for variable nutrient loading, additional infrastruc-
ture and management protocols are required to ensure 
that these products are properly stored and applied [9].  

Cyanobacteria (CB) are aquatic photosynthetic bac-
teria with high productivity compared to terrestrial plants 
[11, 12] that have been shown to be capable of pro-
cessing nutrient-rich streams like manure or digestate 
[13, 14]. In fact, HABs are the result of the rapid growth 
of certain species of CB in nutrient-rich water. We pro-
pose harnessing this ability in a more controlled way to 
cultivate this organism for use as a biofertilizer. In addi-
tion to recycling nutrients and reducing nutrient leaching, 
CB fertilizer has been shown to improve soil health, re-
duce erosion, and has a smaller carbon footprint when 
compared to synthetic fertilizers [15-17]. To this end, we 
present the Renewable Nutrients from Algae (ReNuAl) 
process, a small and low-intensity operation for the pro-
duction of CB fertilizer from manure. This technology 
pathway is centered around the use of CB strains that are 
engineered to have N and P content ratios that match 
crop nutrient requirements. We study the economic met-
rics of this process using a technoeconomic (TEA) model 
of ReNuAl at a hypothetical 1000 animal unit (AU) diary 
farm in the Upper Yahara. The calculated minimum selling 
price (MSP) of the biofertilizer, while similar to the value 
reported in another study [18], is significantly higher than 
the cost of synthetic fertilizers. However, a preliminary 
life cycle assessment (LCA) of the process indicates that 
ReNuAl has the potential to deliver substantial environ-
mental benefits when compared to direct land applica-
tion. Thus, the consideration of environmental incentives 

can reduce the fertilizer MSP significantly. 

COMPUTATIONAL FRAMEWORK 
In this section we present the ReNuAl process, state 

the assumptions made in the process models, and pro-
vide a description of the proposed computational frame-
work. As seen in Figure 1, the front end of ReNuAl pairs 
anaerobic digestion with CB cultivation and harvesting. 
This integration allows for the continued recovery of en-
ergy from manure via biogas in tandem with biofertilizer 
production, providing the process with multiples product 
streams. The CB are cultivated in bag photobioreactors 
(b-PBRs), and their growth is assumed to be light-limited. 
We assume that two thirds of the produced biogas is ex-
ported to the grid while the remaining third is burned for 
on-site power generation. The flue gas is scrubbed, and 
the CO2 is fed to the cyanobacteria. Solids in the diges-
tate are removed in a solids-liquids separation unit, and 
the liquid fraction is pumped into the b-PBRs along with 
any additional N required in the form of urea. Once the 
CB are ready to be harvested, they are sent to a dewater-
ing train consisting of a flocculation tank, clarifier, and 
pressure filter that yields a concentrated CB solution. 
This stream is then fed to a thermal dryer to achieve the 
desired moisture level. CB growth in the b-PBRs is simu-
lated using a detailed growth model based on the work 
of Straka [22] while the remaining units are simulated 
with linearized models using yield factors found in the lit-
erature. The ReNuAl process is fed 11.7 tonnes/yr of N 
and 10.6 tonnes/yr of P from 20800 tonnes/yr of manure. 
The b-PBRs receive 350 µmol/m2⋅ s of sunlight and are 
harvested every 30 days. The P content of the CB is as-
sumed to be 0.023 g P/g CB resulting in a production rate 
of 419 tonnes/yr of fertilizer. Using these unit operations 
models and system parameters, we calculate the mass 
and energy flows of the process and the required size of 
the process units. This information is then used to deter-
mine the capital investment as well the yearly operating 
costs and revenues of ReNuAl. Note that prices are set in 
terms of 2020 USD and the process is assumed to have 
a lifetime of 20 years. 

The MSP is calculated by determining the price at 
which the fertilizer must be sold to achieve a discounted 
return on investment (DROI) of 15%. The DROI is defined 
as the discount rate that results in a net present value 
(NPV) of 0 at the end of the project life where:  

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐶𝐶 + ∑ 𝑁𝑁(1 + 𝑖𝑖)−𝑡𝑡𝑇𝑇
𝑡𝑡=1    (1) 

The DROI is denoted by 𝑖𝑖 , 𝑇𝑇  is the project lifetime (in 
years), 𝐶𝐶 is total capital investment (TCI) and 𝑁𝑁 is the an-
nual after-tax profit (AATP) and is formulated as: 

𝑁𝑁 = (1 − 𝑟𝑟)�𝑝𝑝𝑓𝑓�̇�𝑚𝑓𝑓 + 𝑝𝑝𝑔𝑔�̇�𝑚𝑔𝑔 + 𝑝𝑝𝑒𝑒�̇�𝑤 − 𝑝𝑝𝑜𝑜 − 𝑑𝑑� + 𝑑𝑑 (2) 
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Figure 1. ReNuAl process configuration 
 
where the production rates of fertilizer, biogas and 
electricity are represented by �̇�𝑚𝑓𝑓, �̇�𝑚𝑔𝑔, and �̇�𝑤 respectively 
and these are sold at 𝑝𝑝𝑓𝑓, 𝑝𝑝𝑔𝑔, and 𝑝𝑝𝑤𝑤. The term 𝑟𝑟 is the tax 
rate, 𝑝𝑝𝑜𝑜 is the total annual operating cost (TOC), and 𝑑𝑑 is 
the annual depreciation of the process equipment. Note 
that the values in (2) are held constant throughout the 
lifetime of the project. Thus, the MSP is defined as the 
value of 𝑝𝑝𝑓𝑓 that results in a value 0 for (1) when 𝑖𝑖 = 0.15. 
 We use the material and energy flows calculated by 
the process model to develop a preliminary LCA to 
quantify the environmental benefits of ReNuAl over 
current practices. The LCA is performed using openLCA 
in conjunction with the Environmental Footprint and 
AGRIBALYSE databases and the Environmental Footprint 
impact assessment method [19, 20, 21]. The functional 
unit is set to be the size of the dairy farm (1000 AU), and 
we consider that the electricity demands are satisfied 
using the average electricity mix in the US. The impact 
categories considered in this study are climate change 
and water use. We valorize the observed benefits using 
existing frameworks, such as RIN and LCFS credits and a 
hypothetical P credit based on the economic impact of P 
runoff as quantified in [7], in order determine the effect 
of these additional cash flows on the product MSP. 

RESULTS AND DISCUSSION 
We determined that the construction and operation 

of the ReNuAl process have a cost of 4.36 MMUSD and 
2.73 MMUSD/yr respectively. At these values, the ferti-
lizer would have to be sold for 7.75 USD/kg to meet the 
DROI target. This is significantly higher than the 0.25 
USD/kg that it would cost to obtain the equivalent N and 
P content using synthetic fertilizers. 

From Figure 2, we can see that TCI and TOC are not 

evenly distributed across the various sections of the pro-
cess. The anaerobic digester and thermal dryer alone ac-
count for over 60% of the TCI while the operation of the 
b-PBRs represents about 75% of the TOC. This indicates 
that by exploring alternative process configurations or 
extending the capabilities of the CB, we might be able to 
significantly decrease these costs and, by extension, the 
MSP. For example, a CB strain that can clean the biogas 
by removing H2S and CO2 can reduce the capital cost by 
11% by eliminating the need for gas scrubbers. Similarly, 
if it is not necessary to completely dry the CB or if strains 
that are more easily recoverable via sedimentation and 
filtration are used, then it might be possible to reduce the 
size of the thermal dryer or eliminate it completely.   

 
Figure 2. Distribution of total capital (left) and operating 
(right) costs in MMUSD across the sections of the ReNuAl 
process 

While the economic metrics of ReNuAl seem unfa-
vorable, it should be noted that there is a significant de-
gree of uncertainty surrounding the values of the CB cul-
tivation and harvesting sections; the design of these sys-
tems has traditionally focused on biofuels applications. 
As a result, the scale and complexity of the equipment 
used is significantly higher than what should realistically 
be required for ReNuAl; this is especially true of the bio-
reactors. From Figure 3, we can determine that operation 
of the b-PBRs accounts for approximately 75% of the en-
ergy consumed by the process. This is largely driven by 
the mixing requirements of the reactors, which alone rep-
resent 24% of the TOC. This level of energy demand is 
reasonable at a biofuel production facility given the large 
volume b-PBRs must fit to accommodate the high pro-
duction rates required. However, ReNuAl will use signifi-
cantly smaller reactors, and, as a result, these will likely 
require less energy to be well-mixed. Similarly, the labor, 
maintenance, and replacement costs of the b-PBRs, 
which together account for 40% of the TOC, would likely 
be lower than the values we calculated for the same rea-
son.  

The preliminary environmental analysis shows that 
the water use impact is higher for ReNuAl than for current 
practices. This is unsurprising as CB cultivation opera-
tions have high water requirements due to the achievable  
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Figure 3. Yearly energy flows (in MW-hr) for the different 
sections of the ReNuAl process 

titers being fairly low (approximately 1-2g/L). Manure 
spreading, on the other hand, does not require any addi-
tional water as manure has a moisture content of approx-
imately 90%, and, after the removal of suspended solids, 
it can be easily pumped through a liquids distribution sys-
tem. However, we also observe that ReNuAl generates 
39% fewer GHG emissions than land application of ma-
nure. A significant portion of this reduction is due to the 
production of biogas. Under our framework, ReNuAl is 
able to export 429 tonnes/yr of methane which make it 
eligible to receive compensation from government-
funded incentives like RIN credits from the EPA’s renew-
able fuel standards program and low carbon fuel stand-
ard (LCFS) credits offered by the state of California. Ap-
plying the value of the RIN and LCFS credits, we deter-
mine that the process is able to generate an additional 
600,000 USD/yr of revenue; this lowers the MSP of the 
CB fertilizer 18% to 6.33 USD/kg.  

When we consider the release of nutrients to the en-
vironment from the land application of livestock waste 
with those from ReNuAl, we observe that our process has 
two distinct advantages. First, the N:P ratio of the biofer-
tilizer more closely matches crop needs than manure, re-
ducing the need for overapplication. Second, CB is a 
more stable medium and releases nutrients more gradu-
ally than manure [15, 16]; this significantly reduces the 
amount of nutrients carried away during rain events. The 
HABs caused by nutrient runoff result in the affected wa-
terbodies not being usable for economic activities like 
fishing and recreation and, as a result, represent a loss 
for the surrounding communities. Previous studies focus-
ing on the Upper Yahara have estimated these losses to 
have a cost of 74.5 USD/kg P [7]. Thus, if we apply an 
equivalent credit, we determine that we can generate an 
additional 789,700 USD/yr if a CB strain that is able to 
capture all of the P in the manure can be engineered. If 
we combine this with the revenue from the RIN and LCFS 
credits, the MSP of the CB can be reduced further to 4.45 
USD/kg. It is important to note that this represents a 
best-case scenario and additional work must be done to 

determine nutrient uptake and leaching rates for the CB.  
In addition to highlighting potential knowledge gaps 

as previously discussed, our framework allows us to un-
derstand the sensitivity of process economics to 
changes in various key parameters. For this analysis we 
considered the reactor batch time, the fraction of biogas 
sent to market, the reactor surface area to volume (SA:V) 
ratio, the light available to the bioreactors, and the P up-
take of the CB. Note that this is not an exhaustive selec-
tion; rather, these choices are based on the variables we 
can meaningfully simulate using the current process 
model. 

The results shown in Figure 4 (note we are including 
RIN and LCFS credits in the calculation of the MSP) indi-
cate that the parameters associated with the design and 
operation of the b-PBRs, batch time and reactor SA:V ra-
tio, have the largest impact on MSP. Given the cost of 
operating the reactors, these results are not surprising as 
these parameters directly affect the amount of reactor 
volume required.  

After the batch time and SA:V ratio, the next most 
important variable to consider is the fraction of biogas 
sent to market. Due to the low value of electricity com-
pared to the value of biogas and the cost of the electricity 
generation section, we observe a 13% decrease in the 
MSP when we export all of the biogas offsite.  However, 
we should note that a significant portion of the revenue 
from the biogas comes from RIN and LCFS credits, and 
changes in policy can reduce the value of these credits.  

From the variation in the light intensity, we can con-
clude that the process is not severely light-limited as 
shifting light availability up or down by 50% only moves 
the MSP -5% to +11% from the baseline. This indicates 
that in the current design it is the reactor surface area to 
volume ratio that limits the titer that can be achieved. 
This is due to shading effects which limit the distance 
that light can penetrate the vessel. As a result, the reac-
tor design should be optimized before exploring methods 
for increasing light availability. 

 The results seem to indicate that lowering the P 
content of the CB might be favorable as this lowers the 
MSP. However, in this context, it is important to think 
about the value of CB which is dependent on its nutrient 
content. The reason the MSP decreases at lower P up-
take values is because more of it must be produced to 
consume all of the available nutrients. As a result, on a 
nutrient content basis, the biomass is less valuable. A 
more appropriate question is then if this drop in value is 
matched by the drop in MSP. From Figure 4, we observe 
that the answer is no. Conversely, we also see that when 
the P content of the cells is increased, the MSP increases 
at a lower rate. Additionally, this decrease in throughput 
translates to a lower TCI and TOC. Thus, it might be pos-
sible to reverse this trend at higher P loading values.  
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Figure 4. Change in MSP of CB product with changes to 
selected operating parameter  

CONCLUSIONS AND FUTURE WORK 
This study presented a framework for the capture 

and recycling of nutrients in livestock waste. The goal of 
this process, which we refer to as ReNuAl, is to provide a 
pathway towards a more circular economy that will allow 
livestock farmers to meet the projected increase in de-
mand for animal products in a sustainable manner. An in-
itial economic analysis of ReNuAl indicates that the pro-
duced biofertilizer is significantly more expensive than 
current synthetic fertilizers. However, we also deter-
mined that there is a significant degree of uncertainty 
around the economic values calculated for the b-PBR 
section due to the difference in scales that existing CB 
cultivation facilities operate at compared to ReNuAl. 
Thus, we are interested in developing protypes of the b-
PBRs to better understand their operations and obtain 
more accurate performance metrics. 

Our environmental analysis indicates that ReNuAl 
has the capability to reduce carbon and nutrient-based 
pollution. However, we also observe that CB cultivation 
has a high water requirement. As result, identifying meth-
ods that allow for high degrees of water reuse and recov-
ery as well as locations that are not water-strained for 
deployment are important factors to consider moving for-
ward. It is also important to note that these results are 
preliminary. Moving forward we will focus on improving 
the accuracy of these values by working with microbial, 
agronomy, and environmental science experts who can 
perform field trials to measure variables of interest like 
maximum attainable titer, nutrient uptake and leaching, 
and GHG emissions. Additionally, we will also extend our 
analysis by evaluating other environmental metrics and 
performing a sensitivity analysis on the energy sources 
used to power the process as previous studies have 
shown that changing the energy source to non-fossil al-
ternatives can decrease the climate change impact [23]. 

Using our TEA model, we were able to identify key 
operating parameters that can have a significant impact 
on the viability of the ReNuAl process. Our results indi-
cate that optimization of b-PBR design and operation, 

specifically vessel geometry and batch times, can signif-
icantly reduce the MSP of the biofertilizer. We also ob-
serve that by increasing P-uptake we can make a more 
nutrient-dense product that can be sold at a lower price 
(on a nutrient content basis) while also reducing capital 
and operating expenses. From these results we can con-
clude that developing fast-growing CB strains that have 
a high P content using a reactor with as high an areal 
mass density (high SA:V value) as possible will signifi-
cantly improve the economics of ReNuAl. Additionally, 
this works demonstrates how a computational framework 
serves as a goal-oriented tool for determining promising 
directions that researchers can proceed in. Moving for-
ward we are interested in exploring the impact of addi-
tional CB-specific traits that can potentially improve the 
economic and environmental performance of ReNuAl 
such as maximum harvest titer and settling velocity as 
well as the capacity of the organism to remove CO2 and 
H2S from the biogas stream; we plan to achieve this by 
making use of new experimental data to refine our exist-
ing process models. In other words, our future work cen-
ters around the integration of process and economic 
models with experiments to allow for continuous model 
improvement which in turn allows for the accurate iden-
tification of key variables and regions of diminishing re-
turns.  
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ABSTRACT 
This study investigates the feasibility of valorizing pulp and pulp sludge (PPS) into methane 
through anaerobic digestion (AD) with a focus on techno-economic analysis (TEA). Three scenar-
ios are evaluated: (A) the base case, (B) sludge AD with alkaline pretreatment using green liquor 
dregs (GLD), and (C) co-digestion with nitrogen-rich feedstocks. The evaluation is applied to a 
common PPS, consisting of 70% primary sludge (PS) from the primary clarifier and 30% secondary 
sludge (SS) from biological treatments from a kraft mill. Theoretical methane potential (TMP) is 
determined using the Buswell equation. The study highlights the significance of co-digestion with 
nitrogen-rich feedstocks in enhancing the economic viability of the AD process for PPS, providing 
valuable insights for sustainable waste management and resource recovery in the pulp and paper 
industries.   

Keywords: Pulp and paper sludge, biomethane, anaerobic digestion, techno-economic analysis, valorization. 

INTRODUCTION 
The pulp and paper industry (PPI) generates a sig-

nificant volume of wastewater that undergoes physical 
and biological treatment [1,2], resulting in a considerable 
quantity of pulp and paper sludge (PPS) [3], which is one 
of the major waste streams of PPI [4]. As global energy 
demand escalates and concerns over energy security 
and climate change intensify, anaerobic digestion (AD), 
which transforms organic materials into methane and 
carbon dioxide in the absence of oxygen [5], has 
emerged as a versatile technology for renewable energy 
production. This microbial-mediated process presents a 
promising solution for managing PPS, offering an alterna-
tive energy source to supplement industrial fossil fuels. 
PPS contains 45-55% organic matter and various nutri-
ents, including nitrogen and phosphorus [6], making it a 
potential resource for microorganisms in the production 
of bio-products and biofuels. The conversion of pulp and 
paper mill by-products, such as sludge, into value-added 
goods and bioenergy can significantly contribute to the 
commercial growth of biorefineries. However, for effec-
tive utilization, these by-products must meet specific 
minimum standards. To enhance efficiency and 

profitability, there is a growing interest in evaluating op-
portunities to generate new revenues from innovative, 
value-added products within the existing infrastructure 
of pulp and paper mills. Consequently, this study aims to 
identify a promising process pathway for a biorefinery in-
tegrated with an existing pulp and paper mill, considering 
various scenarios in pursuit of improved efficiency and 
profitability. 

METHODOLOGY OVERVIEW 

Process synthesis and design  
The techno-economic analysis (TEA) of AD for PPS 

considers three distinct scenarios (Fig. 1), each repre-
senting a unique process aimed at evaluating the eco-
nomic and technical feasibility of methane production. 
The sludge mixture constituted 70% PS from the primary 
clarifier and 30% SS obtained from biological treatments. 
The sludge generation varies widely among mills. In this 
context, the input mass flow for the sludge is assumed to 
be 500 tons per day with a dry matter content of 12%. 
The dry matter content and mass flowrate specified con-
form to data obtained from a United States Environmen-
tal Protection Agency (EPA) investigation encompassing 

https://doi.org/10.69997/sct.129762
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104 bleached Kraft mills and are consistent with estab-
lished industry norms [7,8]. 

 
Figure 1. Three TEA scenarios for AD of mixed kraft mill 
primary and secondary sludge. 

Scenario A: Base case 
The base case scenario mirrors the conventional 

operational conditions of AD. As a baseline condition, 
scenario A serves as a reference point for assessing the 
shortcomings and limitations of the existing process in 
terms of economic viability and methane production effi-
ciency. 

Scenario B: Sludge AD with alkaline pretreatment 
Among the various pretreatment methods, alkaline 

pretreatment is a promising approach that can success-
fully improve the enzymatic hydrolysis for many lignocel-
lulosic materials [9,10]. 

As reported in [9], alkaline pretreatment effectively 
disrupted the floc structure of pulp and paper sludge, 
leading to a reduction in fiber size. According to refer-
ence [9], effective biodegradation in bioreactors was ev-
idence in terms of soluble chemical oxygen demand 
(SCOD) removal efficiency, which attained the range of 
83–93% in bioreactors with pretreated PPS compared 
with 70% removal for untreated PPS, indicating a signifi-
cant improvement of 18.6-32.8% in organic removal. 
These findings show the efficacy of alkali pretreatment 
as a promising method for enhancing methane yield in the 
context of PPS. 

An alkaline pretreatment typically involves the use 
of hydroxides like NaOH or KOH [11]. However, it has 
been suggested that the GLD, a by-product of the kraft 
pulping process, could be used as a substitute for pow-
erful and expensive alkaline agents like NaOH [12].  

Scenario C: Co-digestion with nitrogen-rich 
feedstocks 

In this scenario, food waste (FW) is specified as a 
promising nitrogen-rich feedstock for co-digestion with 
PPS, supported by existing studies on the co-digestion of 
FW with PPS [13]. Previous work has mentioned nitrogen 

deficiency as a major challenge in AD of PPS [14,15]. The 
ideal carbon-to-nitrogen ratio for AD feedstock typically 
falls within the 20-30% range [16]. A high C:N ratio, as 
observed in PPS, accelerates nitrogen consumption by 
methanogens, adversely affecting microbial population 
growth and prolonging the carbon digestion process. 
Conversely, a low C:N ratio leads to elevated ammonia 
release in the digester and inhibits the AD process. 

Theoretical methane potential  
Theoretical methane potential was assessed using 

the Buswell equation (Eq. (1)), which relies on the stoichi-
ometric balance between biodegradable organic matter 
and the resulting gaseous products from anaerobic bio-
degradation [17]. Volatile solids (VS) represent the or-
ganic matter content of the sludge that is readily con-
verted to gas during the anaerobic digestion process, 
and total solids (TS) refer to the total mass of both or-
ganic and inorganic matter present in the sludge. These 
key parameters, VS and TS, play a significant role in de-
termining the efficiency of anaerobic digestion and the 
potential methane yield. In the specific case of PPS, the 
Buswell equation can be applied, assuming a 30% volatile 
solids (VS) removal based on experimental findings [14]. 
In this context, biodegradation efficiency signifies the 
proportion of VS degraded during the process. 
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We can deduce the maximum theoretical methane 
potential (TMP) using Eq. (2): 

𝑇𝑇𝑇𝑇𝑇𝑇 � 𝑚𝑚3

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
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(4𝑎𝑎+𝑏𝑏−2𝑐𝑐−3𝑑𝑑8 )×22.415

12𝑎𝑎+𝑏𝑏+16𝑐𝑐+14𝑑𝑑
�   (2) 

Economic analysis 

Gross economic potential (GEP) 
The gross economic potential is used to assess the 

economic benefits and potential value generated by the 
process. The GEP is defined in Eq. (3). 

GEP = VP + STF – VF        (3) 

where VP is the value of products, STF is savings on 
tipping fee, and VF is the value of feeds. The value of 
products refers to the economic value generated from 
the products resulting from the AD process. In the case 
of converting sludge to methane, VP would include the 
revenue or value obtained from selling the methane pro-
duced, as well as any other by-products that can be mon-
etized, such as organic fertilizers or other valuable sub-
stances extracted from the process. Tipping fees are 
charges imposed for disposing of waste in landfills. By 
diverting sludge from landfills and converting it into bio-
gas through AD, the process effectively reduces or 
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eliminates the need to dispose of the waste in landfills. 
This saving is a significant factor in the economic assess-
ment, especially given the specific cost of the tipping fee 
($58.47/ton [18]). Value of feeds represents the value of 
any feeds or materials used in the process. In the context 
of PPS converted to biogas, the VF is considered zero 
because PPS is a by-product with no value as a feed or 
input material. 

Manufacturing cost 
The sizing and cost estimation of the pretreatment 

reactor followed the methodology proposed by Ulrich et 
al. [19]. However, in the case of the digester, its large size 
exceeds the range covered by the graphs outlined. 
Therefore, for the digester, we referred to a similar farm 
digester documented in the literature as a case study to 
estimate costs [20]. Capital cost of this case study is 
scaled to the capacity of AD systems assumed in our sce-
narios based on the usual 0.6-power rule (Eq. (4)):  

𝐶𝐶𝐶𝐶𝐴𝐴 = 𝐶𝐶𝐶𝐶𝐵𝐵 × (𝐶𝐶𝑎𝑎𝑝𝑝𝐴𝐴
𝐶𝐶𝑎𝑎𝑝𝑝𝐵𝐵

)0.6    (4) 

 In Equation 4, 𝐶𝐶𝐶𝐶𝐴𝐴 and 𝐶𝐶𝐶𝐶𝐵𝐵 represent the capital 
costs of equipment A and B, respectively, while 𝐶𝐶𝑎𝑎𝑝𝑝𝐴𝐴 and 
𝐶𝐶𝑎𝑎𝑝𝑝𝐵𝐵 denote the capacities of equipment A and B. All cost 
calculations are based on the chemical engineering plant 
cost index (CEPCI) of 816 (for 2022). Finally, assuming 
18% of the bare module costs for contingency costs and 
fees based on reference [21], the total module cost (𝐶𝐶𝑇𝑇𝑇𝑇) 
is calculated as Eq. (5) where 𝑛𝑛 represents the total num-
ber of pieces of equipment and 𝐶𝐶𝐵𝐵𝑇𝑇,𝑖𝑖 is the bare module 
cost for each piece of equipment 𝑖𝑖: 

𝐶𝐶𝑇𝑇𝑇𝑇 = 1.18 × ∑ 𝐶𝐶𝐵𝐵𝑇𝑇,𝑖𝑖
𝑛𝑛
𝑖𝑖=1     (5) 

In this work, the CAPCOST method was applied to 
estimate the manufacturing costs [21]. Following the 
methodology proposed by Ulrich [19], the typical labor 
requirement for a continuous reactor is estimated at 0.3 
workers per unit per shift. The operating labor cost (𝐶𝐶𝑂𝑂𝑂𝑂) 
estimation assumptions considered are: 

 On average, a worker at this plant operates five 
shifts per week for 52 weeks annually. 

 The plant operates 365 days a year with three 
shifts per day. 

 The 2022 Mean Annual Wage for Chemical plant 
and system operators is reported as $79,290 per 
year, according to the U.S. Bureau of Labor 
Statistics [22]. 

The equation used to evaluate the cost of manufac-
ture (COM) is: 

𝐶𝐶𝑂𝑂𝑇𝑇 =  𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇𝑎𝑎𝑛𝑛𝑀𝑀𝑀𝑀𝑎𝑎𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝑖𝑖𝑛𝑛𝑀𝑀 𝐶𝐶𝐶𝐶𝑠𝑠𝐷𝐷𝑠𝑠 +
𝐹𝐹𝑖𝑖𝐹𝐹𝐷𝐷𝑑𝑑 𝑇𝑇𝑎𝑎𝑛𝑛𝑀𝑀𝑀𝑀𝑎𝑎𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝑠𝑠𝐷𝐷𝑠𝑠 + 𝐺𝐺𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑎𝑎𝐺𝐺 𝐸𝐸𝐹𝐹𝑝𝑝𝐷𝐷𝑛𝑛𝑠𝑠𝐷𝐷𝑠𝑠   (6) 

Each individual cost item can be estimated 

considering the costs of utilities (𝐶𝐶𝑈𝑈𝑇𝑇), waste treatment 
(𝐶𝐶𝑊𝑊𝑇𝑇), raw materials (𝐶𝐶𝑅𝑅𝑇𝑇) and fixed capital investment 
(FCI). Turton et al. provide typical ranges for constants 
(multiplication factors) (Table 8.2. of [21]) to estimate 
these individual cost items. Since no other information is 
accessible regarding these costs in our study, we utilize 
the midpoint value within each range. Depreciation allow-
ance is added separately to compute the cost of manu-
facturing (COM) using Eq. (7). 

𝐶𝐶𝑂𝑂𝑇𝑇 =  0.28 × 𝐹𝐹𝐶𝐶𝐹𝐹 +  2.76 × 𝐶𝐶𝑂𝑂𝑂𝑂  +  1.23 × (𝐶𝐶𝑈𝑈𝑇𝑇  +
  𝐶𝐶𝑊𝑊𝑇𝑇  +  𝐶𝐶𝑅𝑅𝑇𝑇)      (7) 

In Eq. (7), the FCI cost equals the total module cost, 
given that we are making alterations to an existing facil-
ity. In the specific context of our preliminary feasibility 
study or conceptual design, we adopt a simplified model 
or scenario wherein the costs of utilities (𝐶𝐶𝑈𝑈𝑇𝑇), waste 
treatment (𝐶𝐶𝑊𝑊𝑇𝑇), and raw materials (𝐶𝐶𝑅𝑅𝑇𝑇) are ignored. 
However, it is essential to acknowledge that in real-world 
scenarios, these costs would typically be significant fac-
tors contributing to the overall manufacturing expenses. 

RESULTS AND DISCUSSION 

Buswell method  
Based on the results of the elemental composition 

analysis for sludge derived from Lopes et al. [23] (refer 
to table 1), we can calculate the theoretical volume of me-
thane using Eq. (2).  

Table 1. Elemental compositions of the primary sludge 
(PS) and secondary sludge (SS) and mixed sludge (7:3) 
[23] 

Parameters     PS     SS       Mix  

VS/TS (g/g)    

C (% TS)    

H (% TS)    

O (% TS)    

N (% TS)    

S (% TS)    

Ash(%TS)    

Total    

VS Volatile Solids TS Total Solids 
 
According to the data presented in Table 2 calcu-

lated using Eqs. (1) and (2), the TMP for the mixed pri-
mary and secondary sludge, with a ratio of 7:3, was ap-
proximately 130.95 mlCH4/gVSfed, assuming a 30% re-
moval of volatile solids (VS). This aligns with experimental 
findings documented in the literature [14,24]. This 
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theoretical value provides a preliminary insight into bio-
gas and methane production. 

Table 2. Biogas product yield and composition from the 
Buswell equation 

Biogas Yield (ml/gVSfed) Composition (%)  
𝐶𝐶𝐻𝐻4   
𝐶𝐶𝑂𝑂2   
𝑁𝑁𝐻𝐻3   
𝐻𝐻2𝑆𝑆   
𝐵𝐵𝑖𝑖𝐶𝐶𝑀𝑀𝑎𝑎𝑠𝑠   

Techno-economic analysis 

GEP of the different scenarios 
For the base case scenario, the methane yield 

amounts to 130.95 mlCH4/gVSfed, equivalent to 
269,141.78 ft³CH4/day and 17.46 tons PPS conversion 
per day. In a simplified context, assuming full upgrading 
and considering the lower heating value of methane at 
910 Btu/ft3 [25], the resulting energy production would 
be approximately 244.92 million Btu/day. Considering a 
natural gas price of $6.45 per million Btu [26] and the av-
erage cost of landfilling municipal solid waste in the US in 
2022 at $58.47 per ton [18], the GEP of the base case is 
0.95 million dollars per year.  

In the second scenario, given the absence of spe-
cific Volatile Solid Removal (VSR) data in the literature, 
we approximated the improvement in VSR by referencing 
the enhancement in Soluble Chemical Oxygen Demand 
(SCOD) removal. Both SCOD and VSR serve as crucial in-
dicators of organic material removal efficiency, and ac-
cording to the literature [27], they tend to exhibit similar 
trends. According to [9] the highest organic conversion 
rate corresponds to a 33% increase in SCOD removal ef-
ficiency. This translates to approximately a 40% conver-
sion of volatile solids for the pretreated PPS in our study, 
leading us to anticipate a methane yield of 174.60 
mlCH4/gVSfed, equivalent to 358855.71 ft³CH4/day and 
23.28 tons PPS conversion per day. Taking these factors 
into account, the GEP for the second scenario is esti-
mated to be $1.26 million per year. 

According to the literature, AD of food waste gave a 
specific methane yield of 470 mlCH4/gVSfed, which is 
equal to approximately 70% of the theoretical value (660 
mlCH4/gVSfed with a biogas methane content of 58%) 
based on the Buswell equation. Also, the food waste ex-
hibited a TS content of 23.9% and a VS content of 21.6% 
[28]. Assuming the absence of any synergistic effects, 
the biodegradation efficiency, calculated by averaging 
the efficiencies of AD for both FW and PPS, stands at 
50%. Using the Buswell equation and the elemental com-
position for the mixture of PPS and FW at a TS ratio of 1:1 
(refer to Table 3), the cumulative methane yield reaches 
291.76 mlCH4/gVSfed, aligning with the findings reported 

in the literature [29]. With a fixed ratio of 0.94 gVS/gTS 
[23,28] and a total solids content of 12%, the calculated 
methane yield amounts to 581,107.51 ft³/day, resulting in 
a converted PPS of 28.2 tons/day. Consequently, for the 
third scenario, the GEP is $1.85 million per year. 

Table 3: Elemental compositions of the food waste and 
mixed Pulp and paper sludge 

Parameters FW [] FWMixed PPS () 
VS/TS (g/g)   
C (% TS)   
H (% TS)   
O (% TS)   
N (% TS)   
S (% TS)   
Ash (% TS)   
Total   

Sizing and Capital Cost 

Digester 
Considering 12% TS and an organic loading rate 

(OLR) of 5 kgVS/m3day, the required digester volume is 
11,220 m3 or approximately 3 million gallons (MG) [30]. 

The hydraulic residence time (HRT) was calculated 
as 22.44 days for a 3 MG digester processing 500 tons 
of feed per day, aligning with established industry stand-
ards. The cost estimation is derived from the Synergy Bi-
ogas, LLC Case Study [20]. The purchased cost from the 
case study has been adjusted to suit the assumed capac-
ity of the AD systems in this study. The capital cost for a 
digester vessel with a volume of 2.2 million gallons, as 
indicated in the report from the year 2011, is specified at 
$1.25 million. The cost was adjusted to fit the 3 MG ca-
pacity using Eq. (4) yielding a value of $1.50 million. Sub-
sequently, converting this cost estimation to the 2022 
price, the adjusted cost would be approximately $2.01 
million. 

Pretreatment reactor 
The sizing of the pretreatment reactor, determined 

in accordance with established norms, for a given input 
flow rate (q) and hydraulic retention time (HRT) of 1 hour 
is computed using Eq. (8), resulting in a volumetric ca-
pacity of 20.83 m³ (Equivalent to a process vessel with a 
height of 5 m and an inside diameter of 2.3 m). 

𝑉𝑉𝐶𝐶𝐺𝐺𝑀𝑀𝑉𝑉𝐷𝐷(𝑉𝑉3) = 𝐻𝐻𝐻𝐻𝑇𝑇 × 𝑞𝑞    (8) 

Based on Ulrich's graphs (see Fig 5.44 of reference 
[19]), the estimated purchase cost for a carbon steel ves-
sel of this size under atmospheric pressure is approxi-
mately $150,000. 

For Scenario B, the total bare module cost for this 
initial TEA is assessed by combining the purchased costs 
of digester and pretreatment reactor, totaling $2.16 
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million. Utilizing Eq. (5), the total module costs for sce-
narios A, B, and C amount to $2.37 million, $2.55 million, 
and $2.37 million, respectively. 

Operating Cost 

Labor cost 
Based on the specified assumptions, the base case 

scenario requires 1.5 full-time operators, whereas the 
scenario involving alkaline pretreatment necessitates 2.5 
full-time operators due to an additional reactor. 

According to the 2022 yearly mean wage estimates 
from the US bureau of labor statistics, the reported an-
nual mean wage for chemical plant and system operators 
is $79,290 [22]. Using this information, the estimated an-
nual labor cost is $118,935 for the base case and scenario 
C and $198,225 for the scenario incorporating alkaline 
pretreatment. 

Fixed capital investment 
The fixed capital investment (FCI) for the process is 

equal to the total module cost for each scenario. Finally, 
using Eq. (7), the total manufacturing cost is estimated to 
be $0.99, 1.26, and $0.99 million for scenarios A, B, and 
C respectively. 

Cash Flow Analysis  
The feasibility of different scenarios is analyzed 

based on key parameters – i.e., net present value (NPV), 
cash flow rate of return (CFRR), and payback period. Ta-
ble 4 summarizes revenue generation through each sce-
nario, and other critical parameters for a 20-year project 
life (years after Startup). The assumed values, parame-
ters, and equations for the analysis are summarized in 
Table 5. 

Scenario C stands out as the most promising sce-
nario as it was the only one to yield a positive NPV. This 
favorable outcome is principally due to its high conver-
sion rates and methane production yield, resulting in in-
creased revenue. Although Scenario B has higher con-
version rates than the base case scenario, its overall per-
formance is still overshadowed by higher total module 
cost and comparatively higher COM due to higher labor 

costs associated with the additional reactor. 
Further research is needed to explore the synergis-

tic effects of co-digesting FW and PPS, ensuring a more 
comprehensive understanding of their potential eco-
nomic benefits in AD processes. In addition, to enhance 
the robustness of our findings and pave the way for fu-
ture advancements, several additional aspects demand 
further attention. Considering the potential benefits of 
co-digesting FW and PPS, along with alkaline pretreat-
ment, presents an opportunity to reveal novel insights for 
optimizing AD processes. For more accurate cost estima-
tion, it's crucial to integrate biogas upgrading, utility and 
chemical expenses (covering items such as inoculum for 
bacterial cultures, buffering agents, antifoaming agents, 
and, where applicable, enzymes) into the analysis. These 
efforts will collectively contribute to advancing the eco-
nomic and environmental sustainability of AD processes 
in the PPI. 

Table 5: Parameters and equations employed for the 
cash flow analysis 

Parameter Unit Value 

Project life Years  
Construction period Years  
Taxation rate %  
Annual interest rate %  
Depreciation 
method 

- MACRS (-year) 

Annual interest rate %  
Salvage value $ *FCI [] 
Working capital $ *(CRM + FCI + COL) 

[] 

CONCLUSION 
This study investigates the potential of AD to valor-

ize PPS through TEA. Three distinct scenarios are com-
pared: (A) the base case, (B) sludge AD with an alkaline 
pretreatment, and (C) co-digestion with nitrogen-rich 

Table 4: Comparative economic analysis of a PPS-based biogas plant in different scenarios. 

Scenar-
ios 

CTM 
($MM) 

Labor 
cost 
($MM) 

COM 
($MM) 

GEP ($MM) Payback 
period 
(years) 

CFRR 
(%) 

NPV 
($MM) 

    VP STF Total    
A       Undefined NA - 
B       Undefined NA - 
C          

NA Not Applicable CTM Total Module Cost COM Cost of Manufacturing GEP Gross Economic Potential CFRR 
Cash Flow Rate of Return NPV Net Present Value 
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feedstocks. 
The study highlighted the enhanced economic via-

bility of PPS digestion through the integration of food 
waste (Scenario C). Alkaline pretreatment (Scenario B) 
also showed potential with a 33% increase in volatile sol-
ids conversion.  

Further research is needed to investigate the syner-
gistic effects of co-digesting food waste and PPS in AD 
and integrate biogas upgrading, utility, and chemical ex-
penses in the TEA. Conducting experiments to optimize 
process parameters such as temperature, pH, TS con-
tent, OLR, and retention time could enhance methane 
production efficiency in the pulp and paper industry's AD 
processes. In addition, exploring potential applications 
for the AD digestate could lead to additional revenue 
streams or beneficial reuse options.  
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ABSTRACT 
Biorefineries can reduce carbon dioxide emissions while serving the global chemical demand mar-
ket. Governments are also using carbon pricing policies, such as carbon taxes, cap-and-trade 
models, and carbon caps, as a strategy to reduce emissions. The use of biomass feedstocks in 
conjunction with carbon capture usage and storage technologies are mitigation strategies for 
global warming. Businesses can invest in these technologies to accommodate the adoption of 
these policies. Rapid action is necessary to halt global warming, which results in aggressive poli-
cies. In this work, a multi-period process design and planning problem is developed for the design 
and capacity expansion of biorefineries. The three carbon pricing policies are integrated into the 
model and parameters are selected according to the aggressive scenario denoted by the Paris 
Agreement. The results show that the cap-and-trade policy achieves a higher net present value 
evaluation over the carbon tax model across all pareto points due to the flexibility of the allow-
ances in the cap-and-trade policy. The carbon cap model substantial investments are required in 
carbon capture technologies to adhere to the emissions constraints.  

Keywords: Biomass, Life Cycle Analysis, Technoeconomic Analysis, Technoeconomic Analysis, Process De-
sign 

INTRODUCTION 
CO2 emissions from energy combustion and indus-

trial processes have risen from 24.9 Gt CO2 to 36.8 Gt 
CO2 from 2000 to 2022[1]. The Intergovernmental Panel 
on Climate Change (IPCC) reported that urgent action is 
necessary to curb global warming to 1.5oC[2]. Towards 
that end, scientists and policymakers are developing so-
lutions to mitigate CO2 contributions to the global warm-
ing crisis.  

Traditional chemical manufacturing uses petroleum-
based feedstocks, which are unsustainable resources 
and result in high CO2 emissions. In an effort to reduce 
reliance on petroleum-based feedstocks, scientists have 
been researching lignocellulosic biomass as a feedstock 
alternative. Lignocellulosic biomass is an abundant re-
source and has the potential to be sustainable with low 
emissions. The biorefinery concept proposes that each 
major component from lignocellulosic biomass, i.e., 

cellulose, hemicellulose, and lignin, can be fractionated 
and valorized into chemicals, like petroleum refinery and 
chemical plant operations. Biorefineries supports decar-
bonization by transitioning towards a sustainable feed-
stock and lower emissions processes. 

Significant research has been conducted in the Car-
bon Capture, Utilization, and Storage (CCUS) field that 
aims to reduce the amount of CO2 currently emitted by 
industrial processes and capture CO2 already existing in 
the atmosphere. For example, Yusuf et al. evaluated the 
economic feasibility of producing soda ash from CO2 
heavy flue gas generated from power plants, a Carbon 
Capture and Utilization (CCU) technology[3]. Wang et al. 
performed a technoeconomic analysis on the sequestra-
tion of CO2 flue gas from power plants via compression 
and storage, a Carbon Capture and Storage (CCS) tech-
nology[4]. 

Governments are increasingly leveraging environ-
mental policies to reduce CO2 emissions. As of 2022, 23% 
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of all CO2 emissions are under some form of carbon pric-
ing policy[5]. Fifty-two countries enforce a carbon tax, 
Emissions Trading System (ETS), or both policies[5]. 
Twenty countries are currently considering the imple-
mentation of these policies as they can provide not only 
environmental but also social and economic benefits[5]. 
Under a carbon tax policy, carbon dioxide emitters are 
charged a financial penalty per ton of CO2 emitted. An 
ETS is a system enforcing a cap-and-trade model where 
the government provides allowances, an amount of per-
mitted CO2 emissions, for manufacturers. They can pur-
chase additional allowances or sell unused allowances on 
an open market. Benchmarks have been set via carbon 
pricing to limit global warming to 2oC. According to the 
Paris Agreement, emission levels should be reduced by 
45% by 2030 and reach net-zero carbon emissions by 
2050[5]. An additional benchmark provided by the World 
Bank states that carbon pricing should be between 61 
and 122$ by 2030[5]. 

Superstructure optimization is used as a framework 
for exploring multiple process design alternatives. Luo et 
al. utilized neural networks to model the biorefinery flex-
ibility index facilitating operational flexibility constraints 
in superstructure optimization[6]. Multi-period optimiza-
tion can be used for considering planning problems over 
a long-time horizon. Sabet et al. used a multi-period for-
mulation to model a global manufacturing capacity man-
agement problem[7]. These two approaches can be inte-
grated with environmental policy to optimize process de-
signs.  

This work incorporates the benchmarks provided by 
the World Bank and IPCC into a multi-period biorefinery 
design and optimization problem[2, 5]. Three different 
carbon emissions policies, namely carbon cap, cap and 
trade, and carbon tax, are considered as constraints in 
the formulation. Pareto fronts are constructed for eco-
nomic and environmental objective functions.   

MULTI-PERIOD PROGRAMMING FOR 
BIOREFINERY 

The multi-period programming formulation is uti-
lized for the long term biorefinery construction and ex-
pansion optimization problem. The planning horizon is set 
for thirty years corresponding to the Paris Agreement 
goals. Each time period represents one year. In the first 
year, an initial biorefinery is constructed. In each subse-
quent time period, the biorefinery can experience capac-
ity expansion or the construction of new units. The prob-
lem is constrained by three environmental policies that 
are increasingly restrictive over each time period to 
match the IPCC and Paris Agreement benchmarks while 
maximizing net present value.  

A superstructure approach is used. In this work, the 
superstructure represents all process alternatives 

consisting of chemical transformations and separation 
sequences. The reactions were selected to represent a 
broad range of chemicals, which is displayed in Figure 1. 
Commodity chemicals, such as ethanol, and biomass 
platform chemicals, such as furfural, were included. 
Drop-in chemicals, such as para-xylene, and biomass de-
rived alternatives, such as furan-dicarboxylic acid, were 
also included. Different separation steps were consid-
ered consisting of crystallization, distillation, extraction, 
membrane separation, and pervaporation. Shortcut 
methods and surrogate models are used to characterize 
the utility usages. Carbon capture storage and carbon 
capture and utilization technologies were also incorpo-
rated into the superstructure to accommodate the dy-
namic environmental policies.  

Figure 1. Biorefinery superstructure with CCUS 
technologies. 

Objective Functions 
The objective of the optimization problem is to max-

imize net present value (NPV) and minimize cumulative 
emissions (CE) while adhering to the carbon pricing poli-
cies. The net present value calculation is shown in Equa-
tion (1) where 𝑖𝑖𝑖𝑖 represents the interest rate, t represents 
the time period; 𝐼𝐼𝐶𝐶𝑡𝑡 represents the capital investment in 
time period t; 𝑅𝑅𝑡𝑡 represents the product revenue in time 
t; 𝑂𝑂𝑡𝑡 represents the operating cost in time t; and 𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡 
represents the carbon dioxide cost in time period t.   

𝑁𝑁𝑁𝑁𝑁𝑁 = �(1 + 𝑖𝑖𝑖𝑖)−𝑡𝑡
𝑡𝑡∈𝑇𝑇

�−(𝐼𝐼𝐶𝐶𝑡𝑡 − ICt−1 ) + 𝑅𝑅𝑡𝑡 − 𝑂𝑂𝑡𝑡  ± 𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡� (1) 

The power law model in Equation (2) captures the 
capital costs where 𝑎𝑎𝑢𝑢 and 𝑏𝑏𝑢𝑢 are parameters for unit op-
eration 𝑢𝑢, and 𝑥𝑥𝑢𝑢,𝑡𝑡 represents the cumulatively capacity 
of unit 𝑢𝑢 in period 𝑡𝑡. The cost of capacity expansion in 
time period t is captured as the difference between the 
cost of a plant with the cumulative capacity and the cost 
of the plant in the previous expansion period.  

𝐼𝐼𝐶𝐶𝑡𝑡 = Σ𝑢𝑢∈𝑈𝑈𝑎𝑎𝑢𝑢�𝑥𝑥𝑢𝑢,𝑡𝑡�
𝑏𝑏𝑢𝑢  , t > 1  (2) 

The revenue, 𝑅𝑅𝑡𝑡, generated in time period 𝑡𝑡 by the 
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products are captured in Equation (3), where 𝑏𝑏𝑖𝑖,𝑡𝑡 is the 
amount of chemical 𝑖𝑖 produced in time period 𝑡𝑡, and 𝐶𝐶𝑖𝑖 
represents the cost of chemical 𝑖𝑖.  

𝑅𝑅𝑡𝑡 = �𝑏𝑏𝑖𝑖,𝑡𝑡𝐶𝐶𝑖𝑖
𝑖𝑖∈𝐼𝐼

 (3) 

The operating cost, 𝑂𝑂𝑡𝑡, in time period t is captured 
in Equation (4), where 𝑓𝑓𝑗𝑗,𝑡𝑡 is the operating level of unit op-
eration j in time period t; 𝐶𝐶𝑗𝑗 is the unit cost of running unit 
j; 𝐸𝐸𝑤𝑤,𝑡𝑡𝑡𝑡 is the energy usage of utility 𝑤𝑤; 𝐶𝐶𝑤𝑤 is the unit cost 
of operating utility 𝑤𝑤; and 𝑓𝑓𝑓𝑓𝑓𝑓 is the fixed cost factor.  

𝑂𝑂𝑡𝑡 = �𝑓𝑓𝑗𝑗,𝑡𝑡𝐶𝐶𝑗𝑗  
𝑗𝑗∈𝑗𝑗

+ � 𝐸𝐸𝑤𝑤,𝑡𝑡𝐶𝐶𝑤𝑤
𝑤𝑤∈𝑊𝑊

+ 𝐼𝐼𝐶𝐶𝑡𝑡(𝑓𝑓𝑓𝑓𝑓𝑓) (4) 

The environment impact calculation is based on a 
cradle-to-gate life cycle assessment. The system bound-
ary is depicted in Figure 2 and considers biomass trans-
portation, raw material production, utilities, combustion 
products, landfill, and wastewater treatment. Biomass is 
assumed to be carbon neutral. The data for the calcula-
tions are obtained from the Ecoinvent v.3.8 database, 
and the Global Warming Potential (GWP) indicator from 
the ReCipE2016 impact assessment method is used[8, 9].  

 

Figure 2. System boundary depicted for environmental 
impact calculations. Biomass is transported to the 
biorefinery. Raw materials and utilities are imported into 
the biorefinery for chemical production. Wastewater is 
exported for wasterwater treatment. Emissions from the 
combustion of lignin to the atmosphere and the resulting 
ash sent to the landfill are included. 

The environmental impact in time period t, 𝑇𝑇𝐸𝐸𝑡𝑡 , is 
given by Equation (5) where 𝐺𝐺𝐺𝐺𝑁𝑁𝑤𝑤 represents the GWP 
of utility 𝑤𝑤; 𝑏𝑏𝑤𝑤𝑤𝑤,𝑡𝑡 represents the amount of waterwater 
generated in time period t; 𝐺𝐺𝐺𝐺𝑁𝑁𝑤𝑤𝑤𝑤 represents the GWP of 
wastewater treatment; 𝑓𝑓𝑟𝑟𝑟𝑟,𝑡𝑡 represents the amount of 
raw material rm used in time period t; 𝑏𝑏𝐴𝐴𝐴𝐴ℎ,𝑡𝑡 represents the 
amount of ash generated in time period 𝑡𝑡; 𝐺𝐺𝐺𝐺𝑁𝑁𝐴𝐴𝐴𝐴ℎ repre-
sents the GWP of sending the ash to the landfill; 𝑏𝑏𝑐𝑐𝑐𝑐𝑟𝑟𝑏𝑏 
represents the combustion products in time period 𝑡𝑡; and 
𝐺𝐺𝐺𝐺𝑁𝑁𝑐𝑐𝑐𝑐𝑟𝑟𝑏𝑏 represents the GWP of the combustion product 
mixture. 

𝑇𝑇𝐸𝐸𝑡𝑡  = �𝐸𝐸𝑤𝑤,𝑡𝑡
w

GWPw + 𝑏𝑏𝑤𝑤𝑤𝑤,𝑡𝑡𝐺𝐺𝐺𝐺𝑁𝑁𝑤𝑤𝑤𝑤 + � 𝑓𝑓𝑟𝑟𝑟𝑟,𝑡𝑡𝐺𝐺𝐺𝐺𝑁𝑁𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅

+ b𝐴𝐴𝐴𝐴ℎ,𝑡𝑡GWPAsh + bcombGWPcomb (5)
 

The second objective function, cumulative emis-
sions (CE), is given by Equation (6) where 𝑇𝑇𝐸𝐸𝑡𝑡 represents 
the total emissions in time period 𝑡𝑡.  

𝐶𝐶𝐸𝐸 = �𝑇𝑇𝐸𝐸𝑡𝑡
𝑡𝑡

(6) 

 In this work, it is assumed that the residence time 
of CO2 emissions is longer than the planning period and, 
therefore, that the emissions across the time periods 
have equal weight. 

Constraints 
The processing of materials is described by the mo-

lar balance Equation (7) where ν𝑖𝑖,𝑗𝑗 represents the conver-
sion coefficient for compound 𝑖𝑖 in operation 𝑗𝑗; 𝑓𝑓𝑗𝑗,𝐴𝐴 is the 
extent of process 𝑗𝑗 in time period 𝑡𝑡; and 𝑏𝑏𝑖𝑖,𝑡𝑡 is the amount 
of chemical 𝑖𝑖 in time period t.  

Σ𝑗𝑗ν𝑖𝑖,𝑗𝑗𝑓𝑓𝑗𝑗,𝐴𝐴 = 𝑏𝑏𝑖𝑖,𝐴𝐴 (7) 

The unit operation expansion is described by Equa-
tions (8a) and (8b) where 𝑥𝑥𝑗𝑗,𝑡𝑡 represents the capacity of 
unit operation 𝑗𝑗 in time period t; where 𝑥𝑥𝑗𝑗,𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒 the additional 
capacity added to unit operation j in period 𝑡𝑡; and 
𝑥𝑥𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 represents the initial capacity built for unit operation 
𝑗𝑗.  

𝑥𝑥𝑗𝑗,𝑡𝑡 = 𝑥𝑥𝑗𝑗,𝑡𝑡−1 + 𝑥𝑥𝑗𝑗,𝑡𝑡−1
𝑒𝑒𝑒𝑒𝑒𝑒      ∀𝑗𝑗; 𝑡𝑡 > 1   (8𝑎𝑎) 

𝑥𝑥𝑗𝑗,𝑡𝑡 = 𝑥𝑥𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡     ∀𝑗𝑗;  𝑡𝑡 = 1   (8𝑏𝑏) 

The capacity expansion is limited in its lower and 
upper bound as expressed in Equation (9), where 𝑌𝑌𝑗𝑗,𝑡𝑡 is a 
binary variable that equals 1 when there is capacity ex-
pansion; where CapLo represents the minimum possible 
capacity expansion; and CapUp represents the maximum 
possible capacity expansion.  

𝐶𝐶𝑎𝑎𝑝𝑝𝐿𝐿𝑐𝑐𝑌𝑌𝑗𝑗,𝑡𝑡 ≤ 𝑥𝑥𝑗𝑗,𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 𝐶𝐶𝑎𝑎𝑝𝑝𝑈𝑈𝑒𝑒𝑌𝑌𝑗𝑗,𝑡𝑡 (9) 

The capacity is limited to a fixed number of expan-
sions represented by Equation (10), where 𝑌𝑌𝑗𝑗,𝑡𝑡 represents 
expansion in time period t, and Ej represents the number 
of expansions permitted for unit j.  

�𝑌𝑌𝑗𝑗,𝑡𝑡
𝑡𝑡

≤ 𝐸𝐸𝑗𝑗  ∀𝑗𝑗  (10) 

The operating level of unit j is constrained by the 
maximum capacity of unit j, which is expressed in Equa-
tion (11). xj,t represents the capacity of unit j in time period 
t; h represents the minimum operating ratio; and f𝑗𝑗,𝑡𝑡 rep-
resents the operating level of unit j in time period 𝑡𝑡. 
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hxj,t  ≤ 𝑓𝑓𝑗𝑗,𝑡𝑡 ≤ 𝑥𝑥𝑗𝑗,𝑡𝑡     ∀𝑗𝑗 ∈ 𝐽𝐽 ∀𝑡𝑡 ∈ 𝑇𝑇 (11) 
The plant size is limited to amount 𝑚𝑚𝑏𝑏𝑟𝑟 as expressed 

in Equation (12) where 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 represents the biomass 
feedstock, 𝑏𝑏𝑚𝑚, processing capacity in the last period.  

𝑚𝑚𝑏𝑏𝑟𝑟 = � 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒
bm∈BM

  (12) 

Environmental Constraints 
The formulations for the carbon policies utilized in 

this work are presented below. These policies enforce 
environmental constraints and may affect the NPV calcu-
lation. 

The carbon cap policy enforces a fixed amount of 
CO2 emissions. In this work, we consider the cap to be 
placed on the aggregated amount of emissions in the 
time period of one year. The constraint is expressed in 
Equation (13) where 𝑇𝑇𝐸𝐸𝑡𝑡 represents the amount of CO2 
emitted in time period 𝑡𝑡, and 𝑇𝑇𝐸𝐸t

𝐶𝐶𝐶𝐶𝑒𝑒 represents the emis-
sions cap in time period 𝑡𝑡.  

𝑇𝑇𝐸𝐸𝑡𝑡 ≤ 𝑇𝑇𝐸𝐸t
𝐶𝐶𝐶𝐶𝑒𝑒     ∀𝑡𝑡 ∈ 𝑇𝑇 (13) 

In the cap-and-trade policy, the governing body al-
locates a number of allowances to manufacturers. This 
represents a soft emissions cap, which can be exceeded 
by purchasing additional allowances from other manu-
facturers or can be sold for profit. The constraint is ex-
pressed in Equations (14-16) where  𝑁𝑁𝐶𝐶𝐶𝐶2,t represents the 
price of CO2 in time period 𝑡𝑡; 𝐸𝐸𝑡𝑡+ represents the allow-
ances purchased in time period 𝑡𝑡; 𝐸𝐸𝑡𝑡− represents the al-
lowances sold in time period 𝑡𝑡; and 𝑇𝑇𝐸𝐸t

𝐶𝐶𝐶𝐶𝑒𝑒 represents the 
allowances provided in time period 𝑡𝑡.  

𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡 = 𝑁𝑁𝐶𝐶𝐶𝐶2,t�𝐸𝐸𝑡𝑡+ − 𝐸𝐸𝑡𝑡−� (14) 
𝑇𝑇𝐸𝐸𝑡𝑡 ≤ 𝑇𝑇𝐸𝐸t

𝐶𝐶𝐶𝐶𝑒𝑒 + 𝐸𝐸𝑡𝑡+ − 𝐸𝐸𝑡𝑡−     ∀𝑡𝑡 ∈ 𝑇𝑇 (15) 

𝐸𝐸𝑡𝑡+ > 0,𝐸𝐸𝑡𝑡− > 0 ∀𝑡𝑡 ∈ 𝑇𝑇 (16) 

Under a carbon tax policy, manufacturers are 
charged per tCO2 emitted. The total carbon tax is given 
by Equation (17), where  𝑁𝑁𝐶𝐶𝐶𝐶2,t represents the price of one 
ton of CO2 emitted in time period 𝑡𝑡; 𝑇𝑇𝐸𝐸𝑡𝑡 represents the 
amount of CO2 emitted in time period 𝑡𝑡; and 𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡 repre-
sents the carbon tax cost associated with those emis-
sions in period 𝑡𝑡. 

𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡 = 𝑁𝑁𝐶𝐶𝐶𝐶2,t𝑇𝑇𝐸𝐸𝑡𝑡 (17) 

CASE STUDY RESULTS AND DISCUSSION 
The epsilon constraint method is used to construct 

a Pareto front for the multi-period biorefinery optimiza-
tion problem. NPV and CE are the two functions consid-
ered in the bi-objective optimization. The nonlinear Equa-
tion (2) is reformulated via piecewise linearization to keep 

the formulation linear. Consequently, all instances of the 
model are formulated and solved in GAMS as a MILP us-
ing CPLEX solver on an Intel Xeon E-2247G @ 4.00 GHz 
CPU and 32.0 GB of RAM.  

In our case study, a biorefinery is considered in 
McClean, IL with a plant capacity set at 2984 metric tons 
per year corresponding to four times the nominal corn 
stover production in McClean. Additional biomass can be 
purchased within the five closest counties within 
McClean. The years 2020 to 2050 are considered to rep-
resent a thirty-year time horizon with each time period 
having a length of one year. The carbon pricing parame-
ters considered correspond with the aggressive scenario 
set by the Paris Agreement, which aims to maintain global 
warming below 2oC. Table 1 presents the parameter 
benchmarks. Linear interpolation is used to determine the 
parameters in the intermediate years. The carbon tax and 
cap-and-trade policies are evaluated by constructing pa-
reto fronts to compare economic and environmental 
trade-offs. The carbon cap policy is analyzed yearly to 
elucidate the effects of a shrinking carbon cap.  

Table 1: Carbon pricing policy parameters during mile-
stone years 

Year Carbon Cap (%) Carbon Tax ($/tCO) 
   
   
   

 
Figure 3 demonstrates increasing NPV with increas-

ing CE for both cap-and-trade and carbon tax policies. 
For the cap-and-trade policy, the allowances provided 
are equal to the carbon cap parameters given in Table 1. 
Similarly, the carbon prices are set at the carbon tax 
value in Table 1. At the minimum CE point for both poli-
cies, a positive NPV exists. Across all points on the pareto 
front, the cap-and-trade policy results in a higher NPV 
than the carbon tax policy. This is a consequence of the 
allowances that can be sold for a profit when the carbon 
cap is high as well as the allowances providing tax-free 
emissions. Additional production incurs a larger financial 
penalty under the carbon tax policy, resulting in lower 
overall production. This is noted through the maximum 
profit point for the carbon tax policy having lower CE than 
the cap-and-trade policy.  
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Figure 3. NPV and CE pareto curve for cap-and-trade 
and carbon tax policies 

 
Figure 4. Sensitivity analysis for NPV and CE pareto 
curve for a cap-and-trade policy 

A sensitivity analysis was performed for the cap-
and-trade and carbon tax policies. The raw material costs 
were varied by 25%. Figure 4 and Figure 5 show the 
changes in the pareto curves for the cap-and-trade and 
carbon tax policies, respectively. In both policies, in-
creasing the raw material price by 25% has a significantly 
greater impact than decreasing the raw material price by 
25%. For the carbon tax policy, the average relative dif-
ference to the base case for the 25% increase and de-
crease case is 9.0% and 2.2%, respectively. For the cap-
and-trade policy, the average relative difference to the 
base case between the 25% increase case and decrease 
case is 7.1% and 1.4%, respectively. The large decrease 
in NPV in the 25% increase case is explained by the 
change in production relative to the base case. In the 25% 
increase case, production shifts from ethyl lactate to eth-
anol production which has higher raw material costs. The 
average relative differences for the carbon tax policy are 
greater than those of the cap-and-trade policy because 

emissions are more heavily penalized under the carbon 
tax policy. 

 
Figure 5. Sensitivity analysis for NPV and CE pareto 
curve for carbon tax policy 

Figure 6 demonstrates the effect of an increasingly 
restrictive carbon cap over time. It is clear from the emis-
sions curve that the rate of carbon dioxide reduction is 
greater between 2020 to 2030 than between 2030 and 
2050. Despite the rapid reduction in emissions levels, the 
yearly profit generated is unaffected until 2029. This is a 
consequence of decreasing production in high carbon di-
oxide emitting chemicals that do not significantly contrib-
ute to profit. After 2030, emissions cannot continue to 
decrease without decreases to profit. Every year an in-
vestment is made, the slope of the annual profit line 
changes, reflecting the change in operation regimes as 
more CCS and CCU is required to maintain policy compli-
ance.  

 
Figure 6. Annual profit and emissions with time for 
carbon cap policy with reduced CCS and CCU costs 

Table 2 displays the investment capacities and ca-
pacity expansions for both CCS and CCU technologies 
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under the carbon cap policy. In year 2020, there is a small 
investment in both CCS and CCU technology during the 
initial construction of the biorefinery. Initially, annual 
emissions are reduced by altering operations. In year 
2033 and 2047, there is a significant investment in CCU 
technology. In the year 2041 and 2045, there is an addi-
tional investment in CCS technology. There is a higher in-
vestment in CCU technology overall due to its lower op-
erating cost, despite its higher capital cost.  

Table 2: Initial capacity and expansions for carbon cap-
ture technologies under a carbon cap policy 

 Carbon Capture Capacity (tCO/yr) 
Year CCS CCU 
 E E 
  E 
  E 
 E  
 E  

CONCLUSIONS 
This work formulated a biorefinery process design 

and capacity expansion problem. A multi-period pro-
gramming approach was utilized to consider the capacity 
expansion decisions when carbon pricing increases and 
carbon caps decrease with time in accordance with 
benchmarks of the Paris Agreements. The carbon tax, 
cap-and-trade, and carbon cap policies were formulated 
as constraints to evaluate their effects on the NPV and EI 
pareto fronts. The framework allows manufacturers to 
plan biorefinery product portfolios and future expansion 
projects considering carbon pricing policies.  

The cap-and-trade policy is evaluated to be more 
profitable compared to the carbon tax policy and includes 
greater flexibility as a consequence of the purchasing 
and selling of allowances mechanism as well as the por-
tion of carbon tax free emissions. The carbon cap policy 
has shown the importance and necessity of reducing the 
cost of CCUS technologies for chemical plants to adhere 
to increasingly strict carbon caps over time. The carbon 
tax policy results in decreased chemical production due 
to the financial penalty further highlighting the need for 
low cost CCUS technologies to offset emissions and 
achieve net zero carbon emissions.  
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ABSTRACT 
This paper introduces a computational framework for selecting green solvents to separate multi-
layer plastic films, particularly those challenging to recycle through mechanical means. The frame-
work prioritizes the selective dissolution of polymers while considering solvent toxicity. Initial 
screening relies on temperature-solubility dependence, utilizing octanol-water partition coeffi-
cients (LogP) to identify non-toxic solvents (LogP ≤ 3). Additionally, guidelines from Glax-
oSmithKline (GSK), Registration, Evaluation, Authorization, and Restriction of Chemical Regulation 
(REACH), and the US Environmental Protection Agency (EPA) are employed to screen for green 
solvents. Molecular-scale models predict temperature-dependent solubilities and LogP values for 
polymers and solvents. The framework is applied to identify green solvents for separating a mul-
tilayer plastic film composed of polyethylene (PE), ethylene vinyl alcohol (EVOH), and polyethylene 
terephthalate (PET). The case study demonstrates the framework's effectiveness in identifying 
environmentally friendly solvents and balancing trade-offs between solvent toxicity and solubility. 
Furthermore, the framework informs process design by screening for suitable green solvents in 
selective dissolution processes, potentially leading to the development of more sustainable dis-
solution processes and the identification of easily recyclable polymer blends in multilayer plastic 
films.  

Keywords: Plastics Recycling, Green Solvents, Process Design, Life Cycle Analysis, Technoeconomic Analysis, 
Polymer, COSMO-RS. 

INTRODUCTION 
Multilayer plastic films have been pivotal in enhanc-

ing product safety, security, and handling [1]. These 
films, mostly comprised of polyethylene (PE), ethylene vi-
nyl alcohol (EVOH), polyethylene terephthalate (PET), 
polyvinyl acetate (PVA) polymers, etc., serve diverse 
functions in prolonging the shelf life of food products [2]. 
Nevertheless, the intricate mix of these polymers compli-
cates the recycling process, resulting in only 5% of mul-
tilayer plastic films being recycled in the United States; 
the rest are disposed of through incineration or in land-
fills. Various technologies have been utilized for recycling 
plastic waste, including thermochemical methods such 
as pyrolysis and thermal oxo-degradation, chemical pro-
cesses, supercritical fluid application, and mechanical 
processes, but these processes are often not suitable for 
multilayer films.  

As documented in previous studies, solvent-based 
separation technologies have exhibited significant po-
tential in recovering virgin resins from multilayer plastic 
films [3]. An illustrative embodiment of this methodology 
is the solvent-targeted recovery and precipitation 
(STRAP™) process introduced by Walker et al. [4]. This 
approach systematically segregates the polymer constit-
uents of multilayer plastic films by employing selective 
solvents, capitalizing on the temperature-dependent sol-
ubility of polymers in solvents, anti-solvents, or a combi-
nation of both, as expounded by Sánchez‐Rivera et al. 
[5]. A critical step in achieving this separation lies in the 
solvent screening, which serves as the linchpin of the en-
tire procedure. Therefore, prediction of temperature-de-
pendent polymer solubility is a critical requirement. To 
address this need, molecular-scale models have been 
harnessed to expediently predict the temperature-de-
pendent solubilities of various plastic components, 
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including but not limited to PE, EVOH, PET, and PP, across 
a spectrum of ~1000 solvents [6]. This was realized by 
modeling polymers as short oligomers, employing molec-
ular dynamics simulations, and the COnductor-like 
Screening MOdel for Real Solvents (COSMO-RS), 
grounded in quantum chemistry principles for solubility 
determinations.  

Furthermore, establishing a predictive framework 
for polymer solubility, as elucidated by the researchers 
mentioned above, underscores the influence of selective 
solvent availability in shaping the sequence of polymer 
resin recovery. This, in turn, informs the design of the 
overall process and its associated economic and environ-
mental implications.  

In addressing critical environmental challenges, de-
ploying solutions like STRAP™ is essential. However, it is 
imperative to mitigate the emergence of new toxic waste 
streams proactively. In dissolution-based recycling 
methods, solvents typically remain unconsumed. None-
theless, over repeated usage, minute quantities of these 
solvents tend to escape into the environment or are de-
liberately disposed of, potentially creating new waste 
streams. The ecological impact of such waste streams 
can be substantial when the solvents in question possess 
toxic attributes. Moreover, using toxic solvents may pose 
risks to the safety of operation personnel. Therefore, it is 
crucial to incorporate process safety and toxicity consid-
erations in selecting solvents, influencing both process 
design and economic factors [7].  

Numerous investigations have sought to elucidate 
the concept of "green" solvents within the framework of 
green chemistry principles. Saleh and Koller [8] charac-
terize green solvents as those possessing low reactivity 
and flammability, exemplified by ionic liquids, per the 12th 
principle of green chemistry. Choi et al. [9] initially iden-
tified natural deep eutectic solvents (NADES) and 
deemed them environmentally friendly due to their deri-
vation from plant sources.  

Considering these different perspectives of green 
solvents, as discussed in the literature, Figure 1 depicts 
the ideal green solvent and its life cycle. This ideal green 
solvent, designed to harmonize sustainability and tech-
nical efficiency, should ideally originate from a renewable 
source, notably plant-derived solvents, and maintain 
cost-effectiveness as a fundamental criterion. Its utility in 
dissolution-based procedures should also be distin-
guished by enhanced solubility and reduced energy con-
sumption, exemplifying its advantageous influence on 
process efficacy. It should also have benign health, 
safety, and environmental hazards throughout its life cy-
cle. It should also be easily recyclable and biodegradable 
for disposal. Although it is necessary to find an ideal 
green solvent that satisfies all these criteria, it is difficult 
to achieve these metrics.  

 
Figure 1. The Ideal green solvent. 

The assessment of solvent greenness is subject to 
variations in ranking based on the chosen metrics. This 
was demonstrated by the different perspectives consid-
ered by the authors mentioned above to classify solvents 
as green. Nevertheless, Hessel et al. [10] assert that the 
principal objective of green solvents should be the miti-
gation of health, safety, and environmental risks. There-
fore, it is vital to adopt a holistic approach in screening 
solvents for specific purposes, hence this study. To date, 
no existing study in the literature has formulated a com-
prehensive framework for the systematic evaluation and 
selection of environmentally friendly solvents designed 
explicitly for the separation of multilayer plastic films.  

Therefore, in this study, we aim to develop a fast 
green solvent-screening framework for separating multi-
layer plastic films into virgin resins that considers solvent 
solubility and toxicity and how they impact process de-
sign and economics. Although this framework was devel-
oped in the context of multilayer plastic film separation, 
it can be extrapolated to any dissolution-based process. 
This work also elucidates the need to redesign multilayer 
plastic films, accounting for the ease of recycling food 
packaging materials. It also motivates the development 
of new green solvents to separate multilayer plastic films.  

FRAMEWORK DEVELOPMENT 
As previously detailed, this study introduces a mul-

tistep framework for the fast screening of green solvents 
in the context of efficiently separating multilayer plastic 
films into their respective virgin resins, as depicted in Fig-
ure 2. The framework starts by predicting solubilities in 
various solvents at a standard temperature of 120 °C to 
avoid the thermal degradation of the polymer while 
providing adequate temperature leeway to achieve opti-
mal solubilities, as per Zhou et al. [6]. While steps (2) 
through (5) pertain specifically to selective dissolution-
based procedures conducted at standard atmospheric 
pressure, other aspects of this framework are generaliza-
ble to solvent-based processes. 

Solubility Prediction and Octanol-Water 
Partition Coefficient (LogP) 

In this investigation, we employed the solubility pre-
diction framework introduced by Zhou et al. [6] to predict 
the solubilities of target polymers in ~1000 solvents at 
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120 oC. The target polymers were first modeled as short 
oligomers in reference solvents using molecular dynam-
ics simulations to obtain different conformational struc-
tures. These conformations in the form of trajectories are 
then optimized and served as inputs into COnductor-like 
Screening MOdel for Real-Solvents (COSMO-RS) to pre-
dict the temperature-dependent solubilities at infinite di-
lution as described in detail by the authors mentioned 
above.  

The octanol-water partition coefficient (LogP) gives 
information about a solvent's tendency for bioaccumula-
tion. It is often described as the ratio of concentrations of 
a chemical in a mixture of octanol (hydrophobic or non-
polar phase) and water (hydrophilic or polar phase) in 
equilibrium. This study employed the COSMO-RS method 
to predict the LogP values of all solvents. 

Solvents with LogP > 0 are considered lipophilic and 
hence have the possibility of bioaccumulation, while sol-
vents with LogP < 0 are considered hydrophilic. Although 
solvents with LogP > 0 are generally not regarded as 
green solvents due to their possibility of bioaccumulating 
in mammals and aquatic life, this study considered sol-
vents with LogP ≤ 3 as an initial screening process. This 
choice was to assess the trade-offs among the different 
selected solvents.  

Fast green solvent screening 
Having benchmarked the solubilities of all target 

polymers in all solvents and computed the required mo-
lecular properties described in the preceding sub-sec-
tion, python-based data analytical techniques were em-
ployed to screen for green solvents quickly. To ensure 

selective solubility, the solubility difference between the 
target polymer and other polymers in the multilayer plas-
tic films must be greater than 10 wt.%. 

 Furthermore, the solvents having boiling points 
lower than room temperature (RT) were removed. This 
rule only applies to processes that wish to operate at 
standard atmospheric pressure. Similarly, the elevated 
temperature (Th) was set to a degree less than the sol-
vent's boiling point to maintain this operating condition. 
Solvents with at least 10 – 15 wt.% at Th are then se-
lected. This solubility range has been identified to be rea-
sonable for multilayer plastic film separation [7]. To re-
cover the dissolved layer after hot filtration, the solvent 
must exhibit low solubility of the target polymer at room 
temperature for easy precipitation [5]. To assess the first 
environmental impact of the selected solvents, the mini-
mum energy required by each solvent was determined 
using Equation 1, and these solvents were ranked ac-
cordingly.  

𝑄𝑄 = 𝑚𝑚 𝐶𝐶𝑝𝑝 ∆𝑇𝑇     (1) 

𝑚𝑚(𝑔𝑔) denotes the mass of solvent, 𝐶𝐶𝑝𝑝(𝐽𝐽/𝑔𝑔𝑔𝑔) denotes 
the heat capacities of the solvents at the operating tem-
peratures, and ∆𝑇𝑇 is the temperature difference between 
room temperature and the elevated temperature. Fur-
thermore, solvents with LogP greater than three were re-
moved since these would have a high bioaccumulation 
tendency. Further solvent screening was subsequently 
done using data from publicly available industrial solvent 
selection guidelines. Finally, an LCA and TEA analysis will 
be done within a process such as STRAP™ to assess the 
environmental impact and the associated process cost 

 
Figure 2. Green solvent selection framework for separating multilayer plastic films. 
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attached to each selected solvent.  

Solvent toxicity database and regulatory 
framework 

Using a toxic solvent in any solvent-based process 
runs beyond contributing to the inefficiency of the pro-
cess. It constitutes the most significant environmental 
burden to processes resulting from its energy demand 
and end-of-life fate. This observation has led to different 
societies and companies developing quantitative toxicity 
metrics for common solvents as a guide for solvent se-
lection. These guides mostly contain the environmental 
implications of each solvent's usage. Some of these in-
clude guides developed by GlaxoSmithKline (GSK) [11], 
the ACS Green Chemistry Institute Pharmaceutical 
Roundtable (ACS GCI-PR) [12], and AstraZeneca (AZ) 
[13].  

The GSK guideline categorized 111 solvents with 
over ten primary functional groups under six headings. 
These categories include wastes, environmental impact, 
health, flammability, reactivity, and life cycle. Scores be-
tween 1 and 10 were given to each solvent, with 1 indi-
cating the solvents with the most concern and 10 indicat-
ing the solvents with the least concern. Two extra cate-
gories were included to classify solvents based on legis-
lation and restriction bans placed by the Environmental 
Health Services (EHS). Conversely, AZ and ACS GCI-PR 
guidelines categorized 46 and 63 solvents, with a score 
of 10 indicating the solvent with the most concern and 1 
with the least concern. Although these guidelines contain 
different metric categories, they all seek to rate solvents 
based on the Health, Safety, and Environment (HSE) met-
rics.  

This study employed only the GSK solvent guideline 
because it contains the most solvents, covers the HSE 
metrics, and includes the legislation and regulatory ban 
information about some solvents. Although the GSK 
guide can be used with other guides, the difference in the 
meaning of the rank assigned to each solvent makes it 
more difficult. Moreover, using these guides is not the 
sole toxicity check in this framework, as these guidelines 
do not contain information about most of the solvents in 
our database. Hence, other solvent regulatory standards 
are considered.  

The Registration, Evaluation, Authorization, and Re-
striction of Chemical Regulation (REACH) initiative, a Eu-
ropean Union regulation, focuses on limiting the adverse 
effects of chemicals on human health and the entire eco-
system [14]. This initiative guides the use of solvents 
both for large-scale processes and our day-to-day lives. 
This initiative also places restrictions on both common 
and uncommon chemicals. For example, as of the period 
of conducting this study, benzene and toluene were en-
listed on the list of restricted substances under the 
REACH [15]. Similarly, the US Environmental Protection 

Agency (EPA) aims at securing human lives and the envi-
ronment from toxic chemicals. The Toxic Substances 
Control Act (TSCA), established in 1976, provides the 
EPA with the authority to demand full disclosure of any 
process relating to chemical substances and mixtures 
[16].  

Furthermore, as of the period this study was con-
ducted, common chemicals like toluene, formamide, and 
fluorine were included in the list of chemicals covered by 
the Toxic Release Inventory (TRI) [17]. Processes that use 
chemicals in this list are generally required to disclose 
their operations due to their toxicity. Other chemical reg-
ulatory frameworks include the Chemical Hazards and 
Toxic Substances (OCHA) framework, which strives to-
wards similar goals, but rather than enforcing restrictions 
on chemicals, this framework implements operational 
standards and handling of chemicals to ensure safe 
working conditions for personnel.  

This study will use the REACH and EPA TSCA sol-
vent list of concern to access the selected solvents from 
the automated screening process. 

Process Economics and Environmental 
Impact Assessment 

Techno-economic analysis (TEA) 
A techno-economic analysis is done to assess the 

process cost associated with using a choice solvent 
within the context of the selected process. This will de-
termine the minimum selling price of the recovered poly-
mer. As illustrated in Figure 1, the ideal solvent must ex-
hibit high efficiency. This translates into a balance across 
different metrics mentioned in previous sections and pro-
cess costs. The TEA is done on BioSTEAM, an open-
source python-based steady-state process simulator 
that has been benched marked against existing proprie-
tary software like Aspen Plus [18]. The choice of solvent 
for multilayer plastic film separation can also inform the 
dissolution sequence. Hence, the TEA of all possible se-
quences will be evaluated to consider all scenarios and 
assess the trade-offs. Although this TEA does not include 
the process cost associated with the process safety 
equipment needed for each choice solvent, this can be 
introduced to this framework in future studies.  

Life Cycle Assessment (LCA) 
The impact of using each chosen solvent within the 

multilayer plastic film separation process on the environ-
ment and climate (kg CO2 eq.) will be measured using an 
LCA methodology. For simplicity, the functional unit con-
sidered in the LCA is the production of 1 kg of multilayer 
plastic film. Thus, we compare the impact of producing 1 
kg of ML film using some choice solvents. BioSTEAM will 
also be used to perform this assessment. The case study 
will describe more details of the method employed. This 
framework does not include accessing the full Life Cycle 



 

Ikegwu et al. / LAPSE:2024.1605 Syst Control Trans 3:763-770 (2024) 767 

Assessment (LCA) of each solvent outside the context of 
the dissolution process. However, it can be incorporated 
as an additional step, demonstrating the adaptability of 
this framework.  

RESULTS AND DISCUSSION 
As described earlier, STRAP™, a solvent-based pro-

cess, has been identified as a state-of-the-art technol-
ogy for separating complex waste plastics containing 
multiple polymers as components. Moreover, three dif-
ferent variations of this technology have been developed 
[5]. STRAP™-A is anti-solvent dependent, whereby sol-
vents and antisolvents dissolve and precipitate the poly-
mer layers. STRAP™-B relies on the solubility dependence 
on temperature whereby after dissolution occurs at an el-
evated temperature, the polymer solution is cooled to 
precipitate the polymer. STRAP™-C employs both anti-
solvent and temperature to achieve a similar purpose.  

Munguía-López et al. [19] quantified the environ-
mental impact of all three variants using the LCA tool to 
evaluate the carbon footprint, energy use, water use, and 
toxicity. It was observed that STRAP™-B (temperature 
dependent) when applied to a multilayer plastic film man-
ufactured by Amcor, had the best metrics among the 
three variants. This STRAP™-B variant was also com-
pared to the environmental impact of producing virgin 
films and outperformed fossil-based virgin films on all 
metrics. Hence, as this work also focuses on driving a 
sustainable process, STRAP™-B is adopted as a case 
study to elucidate the strength of this framework. The 
STRAP™-B process schematic can be seen in the study 
mentioned above.  

This study delineates two distinct scenarios origi-
nating from a systematic, bottom-up approach. The first 
scenario focuses on selecting a green solvent to separate 
a two-component system comprising EVOH-PET plastic 
film. Subsequently, the second scenario pertains to se-
lecting a green solvent for separating a three-component 
system, specifically involving PE-EVOH-PET plastic film. 
However, in this paper, only the former scenario will be 
presented. As depicted in Figure 2, the framework's initial 
phase involves assessing solubility data for all polymers 
and solvents at a temperature of 120 °C.  

Two-component system (EVOH-PET) 

Selective dissolution and precipitation 
In alignment with the separation sequence outlined 

by Sánchez‐Rivera et al. [5], our objective is to identify 
green solvents suitable for the selective dissolution of 
EVOH (ethylene vinyl alcohol) from a composition of 
EVOH-PET (polyethylene terephthalate) polymer blend. 
To ensure the targeted dissolution of EVOH, solvents ex-
hibiting a minimum of 10 %wt. difference in solubility be-
tween EVOH and PET at 120 °C were retained. This initial 

screening resulted in the identification of 116 potential 
solvents.  

Subsequently, we narrowed our selection to sol-
vents amenable to operation at atmospheric pressure, 
i.e., those possessing boiling points above room temper-
ature. This criterion led to the exclusion of 19 solvents, 
resulting in a remaining pool of 97 solvents. We then de-
termined each solvent's elevated temperatures (Th) and 
selected only those exhibiting a minimum of 15 %wt. sol-
ubility at Th to ensure the solubility of EVOH. This refine-
ment further reduced the solvent list to 56 candidates. 
To facilitate subsequent precipitation processes, we fur-
ther refined our selection by retaining only those solvents 
with less than 2% weight solubility of EVOH at room tem-
perature (RT). Consequently, the number of viable sol-
vents was reduced to 45. 

Energy Demand Evaluation 
The minimal energy requirements for each of the 45 sol-
vents were calculated using Equation 1. A representation 
of some solvents' respective minimum energy require-
ments is presented in Figure 3. The x-axis of Figure 3 de-
notes solvents, with each letter signifying a specific sol-
vent and its EVOH solubility at Th in brackets. Although 
higher energy requirement equals higher carbon emis-
sions, solvents were not screened solely based on en-
ergy demand. However, they were considered when 
quantifying the trade-offs amongst all the green metrics.  

Toxicity Evaluation 
Partition coefficients were next computed to re-

move solvents with a LogP greater than 3, indicating a 
propensity for bioaccumulation. Nevertheless, the sol-
vent count remained at 45, and we performed additional 
screening steps 6 through 8. Furthermore, we aimed to 
identify solvents with less environmental concerns and 
regulations. For example, dimethyl formamide (DMF), 
ethylene glycol monomethyl ether, N,N-dimethyl acet-
amide, N-methyl formamide, and N-methyl-2-pyrroli-
done all have restrictions placed on their usage by the 
United States Environment, Health, and Safety (EHS) [11]. 
However, as earlier mentioned, the GSK solvent guideline 
does not contain all ~1000 solvents studied in this work. 
Hence, other solvent guides/restriction lists are queried 
to screen the selected solvents further. 

As shown in Figure 3, dimethyl sulfoxide (DMSO) ful-
fills the selective solubility criteria of this separation pro-
cess. This observation agrees with the solvent screening 
process done by Walker et al. [4], showing that DMSO 
fulfills the selective solubility criteria without necessarily 
considering its HSE concerns. However, this study's 
framework considers solvent toxicity. Furthermore, as 
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human health safety is paramount in any process, sol-
vents that pose human health hazards are strongly dis-
couraged from being considered to avoid trace amounts 
from contacting food. For example, diethanolamine, Eth-
ylene Glycol Monomethyl Ether, and Hexa-
methylphosphoramide all pose serious health hazards.  

Having considered the various hazards associated 
with each of the 45 solvents based on the data contained 
in the GSK solvent guidelines, the PubChem public data-
base, the European Chemical Agency (ECHA), and the 
Environmental Protection Agency (EPA), three candidate 
solvents with the least known hazards have been 

identified as contained in Table 1.  

CONCLUSION AND FUTURE WORK 
This study presented a fast green solvent selection 

framework for multilayer plastic film separations. This 
work uses STRAP™-B, a variant of STRAP™, to elucidate 
the need to employ this holistic framework to guide green 
solvent selection. This will eliminate the risk of producing 
new toxic waste streams associated with solvent-based 
approaches.  

The framework was developed by benchmarking 

Table 1: Selected candidate solvents for EVOH dissolution and its associated hazards 

S/N Solvent Name Hazard Flash  
Point  
(°C) 

Operating  
Temp  
(°C) 

Melting  
Temp  
(°C) 

Solubility  
(% wt) 

LogP  
(-) 

Energy  
(J/g) 

Note 

 -Ethyl Phenol Corro-
sive 

      Used as a flavor in 
pharmaceuticals 

 Dimethyl Sulfoxide  
(DMSO) 

Irritant     -  Used as a pharma-
ceutical 

 Epsilon-Caprolac-
tam 

Irritant     -  Used as monomer 
for plastics and 
paints 

 
Figure 3. The minimum energy required by selected solvents for EVOH selective dissolution.  
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the solubilities of all target polymers in ~1000 solvents. 
This was done by adopting a similar solubility prediction 
workflow developed by previous researchers. This 
framework comprises two key components: selective 
dissolution and solvent greenness. This selective disso-
lution was achieved by ensuring a 10 %wt. difference be-
tween the target polymers and the non-target poly-
mer(s). Subsequently, for a solvent to be selected, the 
solubility of the target polymer must be at least 15 %wt. 
at elevated temperatures, and its boiling point must be 
higher than room temperature to ensure its operability at 
standard atmospheric pressure.  

The solvent greenness screening involved quantify-
ing the energy requirement of each solvent and predict-
ing the octanol-water partition coefficients (LogP) to 
eliminate solvents with LogP > 3. Selected candidate sol-
vents were further subjected to the GSK solvent screen-
ing guide and regulatory frameworks such as the REACH 
and the EPA. The framework's final stage encompassed 
evaluating each candidate solvent's cost and environ-
mental impact in a dissolution-based process. Further-
more, this framework was applied to a case study involv-
ing separating a 3-component multilayer plastic film (PE, 
EVOH, and PET) employing a two-step dissolution pro-
cess. Additionally, the framework's robustness was 
demonstrated by its application in informing the process 
design of dissolution-based processes.  

 The case study employed a separation sequence of 
PE-EVOH-PET. Initial consideration focused on selec-
tively dissolving EVOH from an EVOH/PET polymer blend, 
followed by PE selective dissolution from a PE/EVOH/PET 
polymer blend. In the first separation (EVOH), only 45 out 
of ~1000 solvents could dissolve EVOH selectively. Three 
solvents with the least hazards were identified through a 
solvent greenness screening process. While DMSO (770 
J/g) demonstrated a lower energy requirement than ep-
silon-caprolactam (851 J/g), both solvents exhibited 
promising features, including negative LogP values. Ad-
ditionally, epsilon-caprolactam is a precursor in plastic 
production. 

We have demonstrated the efficacy of the initial 
seven steps within this framework for identifying envi-
ronmentally friendly solvents in separating multilayer 
plastic films. In our immediate future work, we intend to 
apply this framework to the selective dissolution of PE 
from a PE/EVOH/PET polymer blend. Additionally, to 
demonstrate how this framework informs process de-
sign, we will apply this framework to select feasible sep-
aration sequences based on the availability of green sol-
vents using a similar multilayer plastic film blend.  

Furthermore, we intend to evaluate each solvent's 
Techno-Economic Analysis (TEA) and Life Cycle Assess-
ment (LCA) in the context of the STRAP™ process. This 
assessment aims to establish the framework as a green 
solvent selection tool and a valuable resource for 

informing process design considerations. 
While selective dissolution and LogP screenings of-

fer rapid and automated assessments, solvent selection 
based on specified guidelines and regulatory frameworks 
is manual and time-consuming. This underscores the ne-
cessity to quantify solvent toxicity numerically, consider-
ing the diverse regulations imposed on each solvent. Our 
future research aims to achieve this, expediting the green 
solvent selection process. 
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ABSTRACT 
Chemical looping Reforming (CLR) is seen as a promising technology for blue hydrogen produc-
tion. With proper control, CLR in fixed bed reactors has demonstrated the capability to generate 
blue hydrogen and nitrogen from a single reactor. To enhance efficiency and H2 purity in the prod-
uct stream, integration of a CLR reactor with a heat recovery system and a Shift reactor is essen-
tial. This study explores the design and control of an integrated CLR-Shift reactors system. The 
integrated system yields a product stream with 75% H2 mole fraction during the Reforming step of 
CLR, and a nitrogen with high purity (98%) during the Oxidation step. In the best-case scenario, 
the integrated system produces H2 and N2 at a molar ratio of 1.26 with H2 production efficiency of 
80.1%. 

Keywords: Chemical-looping reforming, shift reactor, optimal control problem, blue hydrogen and nitrogen 
production.

INTRODUCTION 
The imperative of decarbonization makes hydrogen 

one of the top candidates to address the need for future 
energy carriers. Currently, 95% of hydrogen comes from 
fossil fuels through conventional steam methane reform-
ing, resulting in emissions of over 12 kg of CO2 per kg of 
H2 [1]. This hydrogen production route is known as grey 
hydrogen. Figure 1 provides a visual representation of 
the hydrogen color spectrum, classifying hydrogen 
based on production techniques, byproducts, feedstock, 
and energy source. Green hydrogen, generated through 
water electrolysis powered by renewable energy 
sources, is regarded as the most environmentally friendly 
method of hydrogen production. Despite its environmen-
tal advantages, the current cost of green hydrogen is 
nearly four times that of grey hydrogen [2], posing eco-
nomic challenges for its utilization. Blue hydrogen 
emerges as a promising alternative. While it still origi-
nates from hydrocarbons, this process requires capturing 
CO2, minimizing its release to the atmosphere. This ap-
proach allows for the utilization of established hydrogen 
production technologies, such as steam methane reform-
ing, with the addition of a CO2 capture process in the 
plant. Blue hydrogen is considered a cost-effective 

solution during this transitional phase until green hydro-
gen becomes more economically competitive.  

The increase in hydrogen production requires a suit-
able carrier for large-scale transport and storage. A hy-
drogen carrier becomes imperative to tackle the inherent 
challenge of hydrogen’s low density. Ammonia is consid-
ered as a potential candidate for a hydrogen carrier, of-
fering the ability to store larger quantities of hydrogen in 
a smaller volume. This route is made possible by capital-
izing on the existing global ammonia infrastructure devel-
oped for the fertilizer industry [3]. 

Figure 1. Hydrogen color spectrum 

Chemical-looping reforming (CLR) is considered as 
a promising method for blue hydrogen production [4]. 
This process relies on the capability of oxygen carriers, 
performing a cycle of reduction, oxidation, and catalytic 

mailto:george.bollas@uconn.edu
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reforming reactions. Opting for a fixed bed reactor in CLR 
proves more advantageous than a fluidized bed reactor 
due to its simplicity, prolonged oxygen carrier’s lifespan, 
and the absence of a need for gas-solid separation. How-
ever, using fixed bed reactors require a dynamic switch-
ing operation to complete the CLR cycle. With proper 
control, CLR in a fixed bed reactor yields an exit stream 
with a high H2 concentration during Reforming step, and 
a high N2 concentration during Oxidation step [5]. In our 
previous research, the optimized CLR reactor produced 
H2 with an H2/CO ratio of 3 during REF and N2 stream with 
a purity of 98% during OX [5]. From these results, we 
identified two key improvements necessary for the CLR 
reactor. The first enhancement involves the incorporation 
of a shift reactor to increase the hydrogen concentration 
in the product stream. The second improvement involves 
introducing a heat recovery system that utilizes the tem-
perature of the exit gas from CLR as a heat source. This 
heat recovery system has the potential to substantially 
improve the overall efficiency of the system. 

This study focuses on evaluating the performance 
of an integrated system comprising a CLR reactor, a shift 
reactor, and a heat recovery system: a preheater and a 
steam generator. The main goal is to explore an optimal 
control strategy for the integrated CLR-Shift reactors 
system by solving a dynamic optimization problem. The 
specific objective is to maximize H2 production while con-
currently meeting criteria that guarantee nearly pure N2 
production and ensure the safety and operability of each 
component within the system. The novelty of this work 
lies in its integrated approach combining a CLR fixed bed 
reactor, a heat recovery system, and a shift reactor, fa-
cilitating the determination of optimal control parameters 
and a heat management strategy for highly efficient blue 
H2 and N2.   

PROCESS DESCRIPTION 
The integrated system consists of a CLR reactor, a 

shift reactor, a preheater, and a steam generator, as il-
lustrated in the process flow diagram presented in Figure 
2. In the CLR reactor, CLR cycle takes place performing 
oxidation (OX), reduction (REF), and reforming (REF) 
stages alternately. During OX, the oxygen carrier experi-
ences oxidation by air, generating heat within the reactor 
and leaving N2 as the primary product in the exit stream. 
During RED, the oxygen carrier undergoes reduction of 
the active metal through a gas-solid reaction with the re-
ducing gas (i.e. CH4, H2, CO). The exit stream consists of 
CO2 and H2O, easily separable through condensation for 
subsequent CO2 capture and storage. During REF, cata-
lytic reactions occur, resulting in a product stream pri-
marily composed of H2 and CO. The heat required for 
both RED and REF comes from the heat generated during 
OX. The product stream of CLR reactor in each stage is 

directed to the heat recovery system. 
The heat recovery system utilizes the high temper-

ature of the CLR product streams as the heat source. In-
itially, each hot stream enters the preheater and subse-
quently progresses to the steam generator. Both the pre-
heater and the steam generator operation are synchro-
nized with the ongoing stage in the CLR reactor. In the 
preheater, the cold feed gas stream of CLR is heated to 
the target temperature, around 600 °C. After the pre-
heater, the product stream is used in the steam genera-
tor. In the steam generator, the quantity of steam gener-
ated in each CLR stage is tuned based on the enthalpy 
and temperature difference remaining in the hot stream. 
At the exit of the steam generator, the temperature of the 
hot stream is set to be around 200 °C.  

After the steam generator, the product stream is fed 
to the Shift reactor. In this reactor, the steam and CO in 
the product stream undergo conversion to H2 through the 
water gas shift reaction. The reactor bed warms up due 
to the exothermic nature of the water gas shift reaction. 
During OX and RED, no reactions occur in the Shift reac-
tor, as the stream cool down the reactor bed, keeping it 
within the active temperature range of 200–350°C. 

CLR
Reactor

Shift
Reactor

Preheater

CH4

Air

Steam 
Gen.

Water
reservoir

Feed
• OX   : Air
• RED : CH4 + CO2

• REF  : CH4 + Steam

Exit
• OX   : N2

• RED : CO2 + H2O
• REF  : H2 + CO+ H2O 

+ off gas (CH4, H2, CO2)

 
Figure 2. The flow diagram integrated system of the 
reactor 

MODELING 
The CLR reactor uses a 1D heterogenous dynamic 

model of the mass and energy balances for the solid and 
fluid phases. A summary of the partial differential equa-
tions (PDEs) governing the fixed-bed reactor model is 
presented in Table 1. Ni-based oxygen carriers are used 
in the CLR reactor with reaction kinetics, developed in 
prior work [6]–[8]. Table 2 outlines the reactions used in 
the model, while their corresponding kinetic expressions 
are provided in [9]. 
Table 1: Summary of the governing equations of the fixed 
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bed reactors for CLR and Shift and heat recovery system 
model of the preheater and the steam generator. 

Fixed bed Reactor 
Fluid phase 
Mass Balance 

𝜖𝜖𝑏𝑏
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕 = 𝜖𝜖𝑏𝑏

𝜕𝜕
𝜕𝜕𝜕𝜕 �𝐷𝐷ax,𝑖𝑖𝜖𝜖𝑏𝑏

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕 � + 𝑘𝑘𝑐𝑐,𝑖𝑖𝑎𝑎𝑣𝑣�𝐶𝐶𝑐𝑐,𝑖𝑖|𝑅𝑅𝑅𝑅 − 𝐶𝐶𝑖𝑖� 

Energy Balance 

𝜖𝜖𝑏𝑏𝐶𝐶𝑅𝑅,𝑓𝑓𝐶𝐶𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐶𝐶𝑅𝑅,𝑓𝑓𝐶𝐶𝑇𝑇
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜖𝜖𝑏𝑏
𝜕𝜕
𝜕𝜕𝜕𝜕 �𝜆𝜆ax

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕� + ℎ𝑓𝑓𝑎𝑎𝑣𝑣�𝜕𝜕𝑐𝑐|𝑅𝑅𝑅𝑅 − 𝜕𝜕� 

Momentum Balance 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕 = −�

1 − 𝜖𝜖𝑏𝑏
𝜖𝜖𝑏𝑏3

� �
𝜌𝜌𝜕𝜕𝑜𝑜2

𝐷𝐷𝑅𝑅
��

150
𝑅𝑅𝑅𝑅𝑅𝑅

+ 1.75� 

Boundary conditions 

𝜖𝜖𝑏𝑏𝐷𝐷ax,𝑖𝑖
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕 �𝑧𝑧=0

= 𝜕𝜕in�𝐶𝐶𝑖𝑖|𝑧𝑧=0 − 𝐶𝐶𝑖𝑖,in�, 

𝜖𝜖𝑏𝑏𝜆𝜆ax
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑧𝑧=0

= 𝜕𝜕in𝐶𝐶𝑇𝑇(𝜕𝜕|𝑧𝑧=0 − 𝜕𝜕in), 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕 �𝑧𝑧=𝐿𝐿

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑧𝑧=𝐿𝐿

= 0,𝑑𝑑|𝑧𝑧=𝐿𝐿 = 𝑑𝑑out, 

Solid phase 
Mass Balance 

𝜖𝜖𝑐𝑐
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕 +

1
𝑟𝑟𝑐𝑐2

𝜕𝜕
𝜕𝜕𝑟𝑟𝑐𝑐

(𝑟𝑟𝑐𝑐2𝐽𝐽𝑖𝑖) = 𝜌𝜌𝑠𝑠�𝑅𝑅𝑖𝑖 

Energy Balance 

�(1 − 𝜖𝜖𝑐𝑐)𝜌𝜌𝑠𝑠𝐶𝐶𝑅𝑅,𝑠𝑠 + 𝜖𝜖𝑐𝑐𝐶𝐶𝑅𝑅,𝑐𝑐𝐶𝐶𝑇𝑇,𝑐𝑐�
𝜕𝜕𝜕𝜕𝑐𝑐
𝜕𝜕𝜕𝜕

=
𝜆𝜆𝑠𝑠
𝑟𝑟𝑐𝑐2

𝜕𝜕
𝜕𝜕𝑟𝑟 �𝑟𝑟𝑐𝑐

2 𝜕𝜕𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟𝑐𝑐

� + 𝜌𝜌𝑠𝑠�(−∆𝐻𝐻𝑛𝑛)(𝑅𝑅𝑛𝑛) 

Dusty gas model 

−
𝜕𝜕𝐶𝐶𝑐𝑐,𝑖𝑖

𝜕𝜕𝑟𝑟𝑐𝑐
= �

1
𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒

𝑁𝑁

𝑖𝑖=1

(𝑦𝑦𝑘𝑘𝐽𝐽𝑖𝑖 − 𝑦𝑦𝑖𝑖𝐽𝐽𝑘𝑘) +
𝐽𝐽𝑖𝑖
𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒

 

𝐽𝐽𝑖𝑖|𝑟𝑟𝑐𝑐=𝑅𝑅𝑝𝑝 = 𝑘𝑘𝑐𝑐,𝑖𝑖 �𝐶𝐶𝑐𝑐,𝑖𝑖�𝑟𝑟𝑐𝑐=𝑅𝑅𝑝𝑝 − 𝐶𝐶𝑖𝑖�, 

−𝜆𝜆𝑠𝑠 �
𝜕𝜕𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟𝑐𝑐

��
𝑟𝑟𝑐𝑐=𝑅𝑅𝑝𝑝

= ℎ𝑓𝑓 �𝜕𝜕𝑐𝑐|𝑟𝑟𝑐𝑐=𝑅𝑅𝑝𝑝 − 𝜕𝜕�. 

Heat Recovery System  
Streams in each side  

�̇�𝑄 = 𝑚𝑚𝑐𝑐𝑐𝑐𝑅𝑅,𝑐𝑐�𝜕𝜕𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜕𝜕𝑐𝑐𝑖𝑖𝑛𝑛� = 𝑚𝑚ℎ𝑐𝑐𝑅𝑅,ℎ�𝜕𝜕ℎ,𝑖𝑖𝑛𝑛 − 𝜕𝜕ℎ,𝑜𝑜𝑜𝑜𝑜𝑜�, 
Heat exchanger model 

�̇�𝑄 = 𝑈𝑈𝑈𝑈∆𝜕𝜕𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿 , ∆𝜕𝜕𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿 = ∆𝑇𝑇𝑎𝑎−∆𝑇𝑇𝑏𝑏
ln�∆𝑇𝑇𝑎𝑎 ∆𝑇𝑇𝑏𝑏� �

,  

Co-current flow 
∆𝜕𝜕𝑎𝑎 = 𝜕𝜕ℎ,𝑖𝑖𝑛𝑛 − 𝜕𝜕𝑐𝑐,𝑖𝑖𝑛𝑛, ∆𝜕𝜕𝑏𝑏 = 𝜕𝜕ℎ,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜕𝜕𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜 , 

Counter-current flow 
∆𝜕𝜕𝑎𝑎 = 𝜕𝜕ℎ,𝑖𝑖𝑛𝑛 − 𝜕𝜕𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜 , ∆𝜕𝜕𝑏𝑏 = 𝜕𝜕ℎ,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜕𝜕𝑐𝑐,𝑖𝑖𝑛𝑛. 

 
Like the CLR reactor, the Shift reactor is modeled 

using a fixed bed reactor with a 1D heterogenous dy-
namic model. The corresponding PDEs for the Shift reac-
tor are presented in Table 1. Operating at low tempera-
tures (200–350°C), the Shift reactor uses a Cu/ZnO/Al2O3 
catalyst for the water-gas shift reaction. The kinetic 

correlation for this reaction is adopted from [10], [11] and 
presented in Eq. (1), where  𝑟𝑟𝑆𝑆,𝑊𝑊𝑊𝑊𝑆𝑆 is the reaction rate of 
the water gas shift reaction, 𝑑𝑑𝑐𝑐𝑎𝑎𝑜𝑜 and 𝜀𝜀 are the diameter 
and the porosity of the catalyst, respectively, 𝑑𝑑𝑆𝑆 is the 
pressure in atm, 𝑦𝑦 is the species mole fraction, 𝐾𝐾𝑒𝑒𝑒𝑒 is the 
reaction equilibrium described in Eq. (2), 𝑅𝑅 is the gas con-
stant, and 𝜕𝜕𝑆𝑆 is the gas temperature in the Shift reactor in 
K. The feed of the Shift reactor is the product stream from 
the CLR reactor, which has been cooled to 200°C.  

 
Table 2:  List of feasible reactions in the reduction, re-
forming, and oxidation using Ni oxygen carriers.  

Index Reactions 
(R) H2 + NiO → Ni + H2O  
(R) CO + NiO → Ni + CO2  
(R) CH4 + NiO → Ni + 2H2 + CO  
(R) CH4 + H2O ↔ 3H2 + CO  
(R) CO + H2O ↔ H2 + CO2  
(R) CH4 + CO2 ↔ 2CO + 2H2  
(R) CH4 ↔ 2H2 + C  
(R) C + H2O ↔ CO + H2  
(R) C + CO2 ↔ 2CO  

(R) O2 + 2Ni → 2NiO  
(R) O2 + C → CO2  
(R) O2 + C → 2CO  
(R) O2 + 2CO → 2CO2  

 
 

𝑟𝑟𝑆𝑆,𝑊𝑊𝑊𝑊𝑆𝑆 = 𝑑𝑑𝑐𝑐𝑎𝑎𝑜𝑜(1 − 𝜀𝜀) 𝑑𝑑𝑆𝑆
(0.5−𝑃𝑃𝑆𝑆/250)  �2.96

× 105
mol
g. hr� exp�

−47400 J
mol�

𝑅𝑅𝜕𝜕𝑆𝑆
�

× �𝑦𝑦CO𝑦𝑦H2O −
𝑦𝑦CO2𝑦𝑦H2

𝐾𝐾𝑒𝑒𝑒𝑒
� 

(1) 

𝐾𝐾𝑒𝑒𝑒𝑒 = exp�
5693.5
𝜕𝜕𝑆𝑆

+ 1.077 𝑙𝑙𝑙𝑙(𝜕𝜕𝑆𝑆) + 5.44 × 10−4𝜕𝜕𝑆𝑆

− 1.125 × 10−7𝜕𝜕𝑆𝑆 −
49170
𝜕𝜕𝑆𝑆2

− 13.148� 

(2) 
 

 
The energy balance in the preheater and the steam 

generator are summarized in Table 1. The momentum 
balance, pressure drop, and heat loss in both the pre-
heater and the steam generator were neglected. The 
models for the CLR and Shift reactors were validated with 
available experimental data and are illustrated in Figure 
3. 
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Figure 3. Model validation of CLR (a) and Shift (b) 
reactors using experimental data reported in [12] and [11] 
respectively 

OPTIMIZATION 
The operational challenges associated with a fixed-

bed reactor stem mainly from its semi-batch operation. 
In the fixed bed reactor, the oxygen carrier remains in the 
reactor while the feed alternates serving CLR stages and 
complete the cycle. These reactions are kinetically con-
trolled and exhibit different reaction enthalpies. Conse-
quently, the bed temperature and the state of the oxygen 
carrier experience significant changes during the transi-
tion between CLR stages. Each CLR stage produces dif-
ferent gas products, resulting in downstream discontinu-
ities. For H2 production, the steam-to-methane ratio dur-
ing REF plays an important role in determining the pro-
duction of H2 and in managing carbon deposition. The in-
tegration with the heat recovery system and the Shift re-
actor requires an effective control strategy to ensure the 
heat generated during OX is appropriately distributed for 
reactions occurring in the CLR, the heat recovery system, 
and the Shift reactor. The primary challenge lies in main-
taining a high H2 production while consistently retaining 
sufficient heat within the integrated system and meeting 
constraints related to fuel conversion, high N2 concentra-
tion, the energy-temperature difference required for feed 
gas preheating, steam generation, and the Shift reactor. 

To achieve this objective, we formulated an optimal 
control strategy for the decision variables for the inte-
grated CLR-Shift system. The focus was on maximizing 
hydrogen production while consistently meeting the dy-
namic constraints of the system. The decision variables 
chosen were the time interval of the CLR stages: RED, 
REF, and OX (τOX, τRED, and τREF), feed gas temperatures, 
steam-to-methane ratio, the percentage of active metal 
in oxygen carrier, and the steam added to the Shift reac-
tor, as summarized in Table 3. The control profile for the 
feed gas was modeled using piecewise constant func-
tions, denoted as 𝐮𝐮(τ𝑖𝑖) = 𝐮𝐮, where 𝐮𝐮 is the vector of tem-
perature, flow, and composition of the gas stream, while 
τ𝑖𝑖 is the time duration of the 𝑖𝑖-th CLR step, i.e., OX, RED, 
and REF. The design vector, 𝝓𝝓, summarizes the set of 
control variables, and was constrained by upper and 
lower limits defined within the design space, 𝚽𝚽, as pre-
sented in Eq. (3). 

Table 3: Design variables for the optimal control of the 
integrated CLR-Shift reactors system 

Control variables Notation 
Feed gas temperature 

𝐮𝐮𝑖𝑖 
Steam-to-methane ratio @REF 
Methane-to-CO ratio @RED 
Steam added into the Shift reac-
tor @REF 
Time interval of OX 𝜏𝜏OX 
Time interval of RED 𝜏𝜏RED 
Time interval of REF 𝜏𝜏REF 
Active metal content in OC 𝜔𝜔 

 
 The objective function of the optimal control prob-
lem is to maximize hydrogen production during the cyclic 
steady-state operation of the integrated system. The ob-
jective function uses a metric called the hydrogen pro-
duction efficiency, η, shown in Eq. (4), where 𝐹𝐹𝑆𝑆−out,H2 is 
the hydrogen flowrate at the exit of Shift reactor, 𝐹𝐹𝑅𝑅−in,CH4 
is the methane flowrate at the inlet of CLR Reactor, 𝜕𝜕0 and 
𝜕𝜕𝑓𝑓 are the initial time and final time of integration, with 𝜕𝜕𝑓𝑓 =
𝜏𝜏OX +  𝜏𝜏RED + 𝜏𝜏REF .  

ϕ =  �𝒖𝒖𝑖𝑖 , 𝜏𝜏OX, 𝜏𝜏RED, 𝜏𝜏REF,ω,𝐹𝐹S−in,H2O� ∈ 𝚽𝚽. (3) 

𝜂𝜂 =
∫ 𝐹𝐹𝑆𝑆−out,H2(𝑜𝑜)𝑑𝑑𝑜𝑜𝜏𝜏REF
𝑡𝑡0

∫ 𝐹𝐹R−in,CH4(𝑜𝑜)𝑑𝑑𝑜𝑜
𝑡𝑡𝑓𝑓
𝑡𝑡0

 , (4) 

The optimization of the integrated system is subject 
to the following constraints. A minimum methane conver-
sion (𝑋𝑋CH4) of 96% in the CLR reactor must be achieved 
during both RED and REF (Eq. (5)). During OX, the CLR 
reactor must yield a N2 stream with 98% minimum mole 
fraction, as shown in Eq. (6), where 𝐹𝐹𝑅𝑅−out,N2 is the N2 mo-
lar flowrate at the exit of CLR reactor and 𝐹𝐹𝑅𝑅−out,𝑇𝑇 is the 
total flowrate at the exit of CLR reactor. Since the product 
stream of the CLR reactor is used in the heat recovery 
system, the total enthalpy carried by the product stream 
must exceed the enthalpy required for gas preheating 
and steam generation, Eq. (7), where, 𝐹𝐹𝑅𝑅−in,𝑇𝑇 is the total 
flowrate at the inlet of the CLR reactor, 𝑐𝑐𝑅𝑅 is the heat ca-
pacity of the inlet/oulet streams, ℎ𝑓𝑓𝑓𝑓,H2O is the enthalpy of 
evaporation of water, 𝜕𝜕𝑅𝑅−in and 𝜕𝜕𝑅𝑅−out are the inlet and 
outlet temperatures at the CLR reactor, respectively. In 
Eq. (7), it is assumed that in the heat recovery system 
product streams are cooled to 200 °C, while feed 
streams are heated up from 25°C. 𝐹𝐹𝑅𝑅−in,H2O and 𝐹𝐹S−in,H2O 
are the molar flowrate of steam fed into CLR reactor and 
Shift reactor, respectively. To prevent agglomeration and 
sintering of the Ni-based oxygen carrier, the maximum 
temperature allowed in CLR reactor, 𝜕𝜕𝑅𝑅−bed, at any axial 
location 𝜕𝜕, must not exceed 1100°C, (Eq. (8)). The pre-
heater must be able to heat up the cold stream, 𝜕𝜕𝑃𝑃𝑅𝑅−c,out, 
to between 500 and 700°C, the desired temperature for 
feed gas of the CLR reactor (Eq. (9)). In the steam 
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generator, the exit temperature of the hot stream, 
𝜕𝜕𝑆𝑆𝑊𝑊−ℎ,𝑜𝑜𝑜𝑜𝑜𝑜, must be between 200 and 250°C, close to the 
operation temperature of the Shift reactor as in Eq. (10).   

The complete optimal control problem can be for-
mulated as shown in Eq. (11), where 𝐟𝐟 is the set of differ-
ential-algebraic equations (DAEs) that describe the 
model of the reactors in the integrated CLR-Shift system, 
comprising mass, energy, and momentum balance and 
reaction kinetics, 𝐱𝐱 is the vector of state variables (i.e., 
mass, temperature, and pressure), and �̇�𝐱 is time deriva-
tives of 𝐱𝐱. Cyclic steady-state conditions are typically 
achieved after more than two cycles. Therefore, the op-
timization time horizon was set to at least two times the 
𝜏𝜏cycle. 

 

𝑋𝑋CH4
(𝜕𝜕) = 1 −

∫ 𝐹𝐹𝑅𝑅−out,CH4(𝑜𝑜)𝑑𝑑𝑜𝑜
𝑡𝑡𝑓𝑓
𝑡𝑡0

∫ 𝐹𝐹𝑅𝑅−in,CH4(𝑜𝑜)𝑑𝑑𝑜𝑜
𝑡𝑡𝑓𝑓
𝑡𝑡0

 ≥ 96% , (5) 

𝛽𝛽(𝜕𝜕) =
∫ 𝐹𝐹𝑅𝑅−out,N2(𝑜𝑜)𝑑𝑑𝑜𝑜𝜏𝜏OX
𝑡𝑡0

∫ 𝐹𝐹𝑅𝑅−out,𝑇𝑇(𝑜𝑜)𝑑𝑑𝑜𝑜𝜏𝜏OX
𝑡𝑡0

 ≥ 98% , (6) 

𝛾𝛾(𝜕𝜕) = ∫ 𝐹𝐹𝑅𝑅−out,𝑇𝑇(𝜕𝜕)𝑐𝑐𝑅𝑅,out(𝜕𝜕𝑅𝑅−out(𝜕𝜕) − 200℃)𝑑𝑑𝜕𝜕𝑜𝑜𝑓𝑓
𝑜𝑜0

   
−∫ 𝐹𝐹𝑅𝑅−in,𝑇𝑇(𝜕𝜕)𝑐𝑐𝑅𝑅,in(𝜕𝜕𝑅𝑅−in(𝜕𝜕) − 25℃)𝑑𝑑𝜕𝜕𝑜𝑜𝑓𝑓

𝑜𝑜0
   

−∫ �𝐹𝐹𝑅𝑅−in,H2O(𝜕𝜕) + 𝐹𝐹S−in,H2O(𝜕𝜕)� ℎ𝑓𝑓𝑓𝑓,H2O𝑑𝑑𝜕𝜕
𝜏𝜏REF
𝑜𝑜0

≥ 0, 
  (7) 

𝜕𝜕𝑅𝑅−bed(𝜕𝜕) ≤ 1100℃ , (8) 

500℃ ≤ 𝜕𝜕𝑃𝑃𝑅𝑅−c,out(𝜕𝜕) ≤ 700℃ , (9) 

200℃ ≤ 𝜕𝜕𝑆𝑆𝑊𝑊−h,out(𝜕𝜕) ≤ 250℃ , (10) 

   
max
𝜙𝜙∈𝛟𝛟

𝜂𝜂   
subject to: 
𝐟𝐟(�̇�𝐱(𝜕𝜕), 𝐱𝐱(𝜕𝜕),𝐮𝐮(𝜕𝜕),𝛉𝛉, 𝜕𝜕) = 0, 
𝐟𝐟𝟎𝟎(�̇�𝐱(𝜕𝜕0), 𝐱𝐱(𝜕𝜕0),𝐮𝐮(𝜕𝜕0),𝛉𝛉, 𝜕𝜕0)  =  0,   (11) 
Eqs. (5) − (10), 
 𝐱𝐱𝐦𝐦𝐦𝐦𝐦𝐦 ≤ 𝐱𝐱(𝜕𝜕) ≤  𝐱𝐱𝐦𝐦𝐦𝐦𝐱𝐱, 
𝐮𝐮𝑖𝑖𝐦𝐦𝐦𝐦𝐦𝐦 ≤ 𝐮𝐮𝑖𝑖(𝜕𝜕) ≤ 𝐮𝐮𝑖𝑖𝐦𝐦𝐦𝐦𝐱𝐱, 
𝛕𝛕𝑖𝑖𝐦𝐦𝐦𝐦𝐦𝐦 ≤ 𝛕𝛕𝑖𝑖(𝜕𝜕) ≤ 𝛕𝛕𝑖𝑖𝐦𝐦𝐦𝐦𝐱𝐱, 
𝜔𝜔𝐦𝐦𝐦𝐦𝐦𝐦  ≤    𝜔𝜔  ≤  𝜔𝜔𝐦𝐦𝐦𝐦𝐱𝐱. 

 
The system of DAEs were built and solved in the 

equation-based process modeling platform gPROMS 
Model Builder, 7.0.9 [13]. For the spatial discretization, 
the backward finite difference method was used, dividing 
the reactor's axial direction into 21 nodes and its solid 
particle radial direction into 11 nodes. The system of DAEs 
was then solved with the DAEBDF solver. The non-linear 
optimization was solved with control vector parameteri-
zation with single shooting (CVP_SS) solver available in 
gPROMS. With control vector parameterization, the con-
trol variables were discretized as piecewise constant 
over a specified time interval, while with the single shoot-
ing approach, the control variables were fixed during the 
entire respective time horizon in each iteration. 

RESULTS AND DISCUSSION 
The integrated CLR-Shift system was used to study 

its performance for small-scale blue hydrogen and nitro-
gen production. The system was configured to run in par-
allel with multiple CLR reactors, collectively achieving a 
production rate of 300 kg-H2 per day. Table 4 (top rows) 
reports the reactor design and operating parameters, in-
cluding reactor diameter, length, and operating pressure. 
Eq. (11) was solved, resulting in the optimized control var-
iables reported in Table 4 (bottom rows). These parame-
ters were then used in simulations to evaluate the perfor-
mance of the integrated CLR-Shift system.  

Table 4: Parameters used in the integrated CLR-Shift 
system. The top rows are the common parameters, while 
the bottom rows show the optimized parameters.  

Parameters Values 
OX RED REF 

CLR Reactor  
- length [m]  
- diameter [m]  
Shift Reactor  
- length [m]  
- diameter [m]  
Operating pressure [bar]  
Feed vol flow [NCMH]    
CO-to-CH ratio --  -- 
Steam-to-CH ratio -- --  
Feed temp [°C]    
CLR stages interval [s]    
Active metal in OC [%]  
Add steam @ Shift 
[mol/s] -- --  

 
Figure 4 presents the exit mole fractions of CLR and 

Shift reactors at cyclic steady state. At the optimal oper-
ating conditions, the exit stream of the CLR reactor (Fig-
ure 4a) exhibits compositions of 98% N2 during OX, 70% 
CO2 and 30% steam during RED, and 66% H2 during REF. 
The N2 stream with high purity during OX is promising for 
the further integration with an ammonia plant. In RED, the 
exit stream, consist of CO2 and H2O, can be separated by 
a condensing unit before captured or recirculated for 
plant utility. The 66% H2 during REF showcases the fea-
sibility of CLR as one promising route for blue hydrogen 
production. In REF, there is also smaller gas constituents 
consisting of CO (20%), H2O (10%), and CO2 (2%) that 
need further purification. 
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Figure 4. The performance of CLR and Shift reactor 
during cyclic steady-state, simulated at optimized 
parameters (Table 4). (a) Exit mole fraction at CLR 
Reactor; (b) exit mole fraction at Shift reactor without 
additional steam (Case 1); and (c) exit mole fraction at 
Shift reactor with additional steam (Case 2).  

The product stream from CLR goes to the heat re-
covery system and serves as a heat source. Figure 5 
shows the temperature of the CLR product stream de-
creasing as it passes through the preheater and the 
steam generator, respectively. From the CLR reactor, the 
temperature of product stream is around 950°C. As the 
product stream exits the preheater, the temperature 
drops to 300–500°C. The exit temperature at the pre-
heater varies in each CLR stage depending on the en-
thalpy remaining and temperature difference between 
hot and cold streams. Nonetheless, the CLR feed gas is 
successfully preheated to 500–700°C. The product 

stream then enters the steam generator producing steam 
needed for the reforming reactions. The steam generator 
operates in each CLR stage, using the remaining available 
enthalpy and temperature in the product stream as a heat 
source. The portion of the steam generated in each stage 
was tuned so that the exit temperature of the product 
stream in the steam generator was close to 200 °C (Fig-
ure 5).  

 
Figure 5. Exit gas temperature in the preheating and 
steam generating systems. The exit stream of CLR 
reactor is used as the heat source for the preheating and 
steam generating systems. The exit preheater cold 
stream feeds the CLR, while the hot stream from the 
preheater is used for steam generation.    

We explored two scenarios for the Shift reactor: 1) 
Shift reactor without additional steam (Case 1), and 2) 
Shift reactor with additional steam (Case 2). In Case 1, 
the feed of the Shift reactor is the CLR product stream 
that has been cooled in the heat recovery system. In 
Case 2, an optimized amount of steam (Table 4) is added 
to the feed during REF. Figures 4b and 4c present the 
result of Case 1 and Case 2, respectively. In both cases, 
the Shift reactor increased H2 mole fraction from 66% to 
75-76%. In Case 1, CO conversion was low, only 49.2%, 
due to the limited steam available for water gas shift re-
action. At the exit, around 10% of CO remain unconverted 
and the H2 production rate was 3 mol/s. In Case 2, the 
steam addition increased the extent of the water gas shift 
reaction and increased CO conversion to 82.7%. At the 
exit, H2 production rate was 3.2 mol/s (75.6% of the total 
stream), with smaller gas constituents consisting of: CO2 
(16.7%), H2O (4%), and CO (3.2%).  

Overall, the integrated CLR-Shift reactors system 
successfully generated H2 and N2, with high concentra-
tion and efficiency. In Case 1, H2 and N2 were produced 
with a ratio of 1.16 and an H2 production efficiency of 
74.9%. Meanwhile, Case 2 yielded H2 and N2 with a ratio 
of 1.26 and an H2 production efficiency of 80.1%. Further-
more, the dynamic operation of this integrated system 
suggest the possibility of integration with an ammonia 
synthesis process reported in [14]. 
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CONCLUSIONS 
Integration of the CLR reactor, Shift reactor, and 

heat recovery system demonstrated promising results for 
blue hydrogen and nitrogen production. An optimized 
control scheme is crucial to ensure high H2 production 
that satisfies the numerous system constraints. Under 
the optimized control scenario, the integrated CLR-Shift 
reactors system produced H2 with a 75% mole fraction 
during REF, N2 with 98% purity during OX, and a potential 
for CO2 capture during RED. The control scenario is also 
essential in distributing the heat within the integrated 
system, meeting the heat requirements for overall reac-
tions, the feed gas preheating and steam generation. The 
addition of steam in the Shift reactor is essential to main-
tain steam availability for the water gas shift reaction. 
Further purification in the downstream product, such as 
pressure-swing adsorption, must be considered to 
achieve higher H2 purity. A future study on multiple re-
forming reactor system and reactor scheduling will target 
a continuous flow of hydrogen and nitrogen products. 

ACKNOWLEDGEMENTS 
This work was supported by a DIKTI-funded Ful-

bright Fellowship and the Pratt & Whitney Institute of Ad-
vanced Systems Engineering (P&W-IASE) of the Univer-
sity of Connecticut. Any opinions expressed herein are 
those of the author and do not represent those of the 
sponsor. 

REFERENCES 
1. IEA, “Towards hydrogen definitions based on their 

emissions intensity,” 2023. [Online]. Available: 
www.iea.org. 

2. J. F. George, V. P. Müller, J. Winkler, and M. 
Ragwitz, “Is blue hydrogen a bridging technology? 
- The limits of a CO2 price and the role of state-
induced price components for green hydrogen 
production in Germany,” Energy Policy, vol. 167, 
Aug. 2022, doi: 10.1016/j.enpol.2022.113072. 

3. J. Andersson and S. Grönkvist, “Large-scale 
storage of hydrogen,” Int. J. Hydrogen Energy, vol. 
44, no. 23, pp. 11901–11919, 2019, doi: 
10.1016/j.ijhydene.2019.03.063. 

4. C. A. Del Pozo, S. Cloete, Á. J. Álvaro, F. Donat, and 
S. Amini, “The potential of gas switching partial 
oxidation using advanced oxygen carriers for 
efficient h2 production with inherent co2 capture,” 
Appl. Sci., vol. 11, no. 10, May 2021, doi: 
10.3390/app11104713. 

5. A. R. Irhamna and G. M. Bollas, “Process 
intensification in a fixed bed reactor for a small-
scale process in the stranded assets,” in 33rd 

European Symposium on Computer Aided Process 
Engineering, 2023, pp. 3043–3048. 

6. Z. Zhou, L. Han, and G. M. Bollas, “Model-based 
analysis of bench-scale fixed-bed units for 
chemical-looping combustion,” Chem. Eng. J., vol. 
233, pp. 331–348, 2013, doi: 
10.1016/j.cej.2013.08.025. 

7. Z. Zhou, L. Han, O. Nordness, and G. M. Bollas, 
“Continuous regime of chemical-looping 
combustion (CLC) and chemical-looping with 
oxygen uncoupling (CLOU) reactivity of CuO 
oxygen carriers,” Appl. Catal. B Environ., vol. 166–
167, pp. 132–144, 2015, doi: 
10.1016/j.apcatb.2014.10.067. 

8. O. Nordness, L. Han, Z. Zhou, and G. M. Bollas, 
“High-Pressure Chemical-Looping of Methane and 
Synthesis Gas with Ni and Cu Oxygen Carriers,” 
Energy and Fuels, vol. 30, no. 1, pp. 504–514, 2016, 
doi: 10.1021/acs.energyfuels.5b01986. 

9. A. R. Irhamna and G. M. Bollas, “Intensified reactor 
for lean methane emissions treatment,” AIChE J., 
pp. 1–40, 2023, doi: 10.1002/aic.18040. 

10. T. A. Adams and P. I. Barton, “A dynamic two-
dimensional heterogeneous model for water gas 
shift reactors,” Int. J. Hydrogen Energy, vol. 34, no. 
21, pp. 8877–8891, 2009, doi: 
10.1016/j.ijhydene.2009.08.045. 

11. Y. Choi and H. G. Stenger, “Water gas shift reaction 
kinetics and reactor modeling for fuel cell grade 
hydrogen,” J. Power Sources, vol. 124, no. 2, pp. 
432–439, 2003, doi: 10.1016/S0378-
7753(03)00614-1. 

12. P. Alexandros Argyris et al., “Chemical looping 
reforming for syngas generation at real process 
conditions in packed bed reactors: An experimental 
demonstration,” Chem. Eng. J., vol. 435, May 2022, 
doi: 10.1016/j.cej.2022.134883. 

13. Process Systems Enterprise, “gPROMS.” 2021, 
[Online]. Available: 
www.psenterprise.com/products/gproms. 

14. L. Burrows, P. X. Gao, and G. M. Bollas, 
“Thermodynamic feasibility analysis of distributed 
chemical looping ammonia synthesis,” Chem. Eng. 
J., vol. 426, no. May, p. 131421, 2021, doi: 
10.1016/j.cej.2021.131421. 

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 



Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.110967 Syst Control Trans 3:778-782 (2024) 778 

Model assessment for Design of Future Manufacturing 
systems using Digital Twins: A case study on a single-
scale pharmaceutical manufacturing unit 
Prem Jagadeesana and Shweta Singh a,b,c* 

a Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, US 
b Division of Ecological and Environmental Engineering, Purdue University, West Lafayette, IN, US 
c Davidson School of Chemical Engineering (By Courtesy), Purdue University, West Lafayette, IN, US 
* Corresponding Author: singh294@purdue.edu.

ABSTRACT 
Designing a digital twin will be crucial in developing automation-based future manufacturing sys-
tems. The design of digital twins involves data-driven modelling of individual manufacturing units 
and interactions between the various entities. The goals of future manufacturing units such as 
zero waste at the plant scale can be formulated as a model-based optimal control problem by 
identifying the necessary state, control inputs, and manipulated variables. The fundamental as-
sumption of any model-based control scheme is the availability of a “reasonable model”, and 
hence, assessing the goodness of the model in terms of stability and sensitivity around the optimal 
parameter value becomes imperative. This work analyses the data-driven model of an acetamino-
phen production plant obtained from SINDy, a nonlinear system identification algorithm using 
sparse identification techniques. Initially, we linearize the system around optimal parameter values 
and use local stability analysis to assess the stability of the identified model. Further, we use what 
is known as a conditional sloppiness analysis to identify the sensitivity of the parameters around 
the optimal parameter values to non-infinitesimal perturbations. The conditional sloppiness anal-
ysis will reveal the geometry of the parameter space around the optimal parameter values. This 
analysis eventually gives valuable information on the robustness of the predictions to the changes 
in the parameter values.  We also identify sensitive and insensitive parameter direction. Finally, we 
show using numerical simulations that the linearized SINDy model is not good enough for control 
system design. The pole-placement controller is not robust, and with high probability, the control 
system becomes unstable to very minimum parameter uncertainty in the gain matrix.   

Keywords: Dynamic Modelling, System Identification, Stability, Sloppiness, Identifiability 

INTRODUCTION 
Design of future manufacturing systems will benefit 

from building digital twins that can inform the controller 
design at plant scale. Several future manufacturing goals 
such as planning and scheduling for zero waste at the 
plant scale can be formulated as a control system design 
problem, where an optimal control problem can be for-
mulated and solved. 

The design of optimal control mandates a reasona-
ble model. Developing a mechanistic model at the plant 
scale might involve hundreds of state variables and pa-
rameters; hence we adopt a data-driven nonlinear 

system identification approach known as SINDy to iden-
tify a reduced-order parsimonious model in this work. 
SINDy uses the idea of sparse identification to discover 
the underlying governing equations [2]. The SINDy algo-
rithm has already been used to design an entire algal bio-
diesel industrial network for sustainable design of carbon 
capture and utilization technologies [3]. In addition to 
this, SINDy has also been used to identify governing 
equations of unit operations in a plant and natural sys-
tems [7]. In previous work, the authors have used the 
SINDy algorithm to identify a reduced order dynamical 
model for the distillation column [6].  

The models developed in the above works were 

https://doi.org/10.69997/sct.110967
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satisfactory in replicating the system dynamics; however, 
the model has to satisfy additional requirements for de-
signing control systems. The critical factors that affect 
the control system design are stability, model and param-
eter uncertainty. The seminal work of Bhattacharyya et al 
[5] showed that while designing robust and optimal con-
trollers such as  H2 and H∞;  a very small parameter un-
certainty in the controller parameters will result in an un-
stable control system. They argue that the fragility of the 
controller is a result of the parameter sensitivity of the 
plant that is transferred to the controller. Hence, it be-
comes imperative to assess the sensitivity of the plant 
before the controller design; otherwise, uncertainty in the 
controller output will impact the overall performance 
metrics.   

In this work, we propose a method to analyze the 
control relevance of the SINDy model; even though this 
method is applied to models developed from SINDy, in 
general, this proposed method can be used for any sur-
rogate dynamical model.  The novelty in the present work 
is proposing a new method to assess the robustness of a 
pole-placement control system design by assessing the 
model's parameter space by introducing the concept of 
conditional sloppiness. In general, it is a novel method to 
assess whether the estimated model is control-relevant. 
As a first step, we analyze the stability of the linearized 
model around the operating point. We use sloppiness 
analysis as a next step to characterize the model's be-
haviour around the nominal parameter set. Sloppiness is 
a phenomenon where there are regions in the parameter 
space over which model predictions are nearly identical. 
The role of sloppiness in system identification has been 
extensively studied in the past two decades [1,4]. Here, 
we use what is known as conditional sloppiness to assess 
the model sensitivity. Together with stability and sloppi-
ness analysis we provide directions to refine the esti-
mated model. When the model sensitivity index is very 
high in the vicinity of the parameter space, the model is 
unsuitable for controller design. This has been demon-
strated using a simple pole-placement controller design. 

The rest of the paper is organized as follows: Sec-
tion 2 presents the preliminary concepts, Section 3 illus-
trates the detailed methodology for assessing the model 
structure, we assess the goodness of the model of a 
pharmaceutical node (single plant) in Section 4, and the 
paper ends with some concluding remarks in Section 5. 

PRILIMINARIES  

Local Stability Analysis 
Analysing the stability of the model plays a crucial 

role in designing the controllers. The dynamics of indus-
trial systems are predominantly represented by a set of 
first-order nonlinear differential equations, these are 
known as state-space models. The set of solution to 

these nonlinear differential equations are known as state 
trajectories. A system is completely characterized by the 
values of the state variables at any given instance of 
time. The generic nonlinear model representation is given 
below 

        𝛭𝛭: �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃)
𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃)

       (1) 

where, x(t) is the state vector, u(t) is the input vector 
and  θ is the parameter vector.  Even though the dynam-
ics is nonlinear, in most cases it can be approximated to 
a linear dynamics around the operating region. Hence, in 
this work we use linear stability analysis on the linearized 
state space model of Eqn 1. The linearized model is given 
in Eqn 2.  

                          𝛭𝛭� : � �̇�𝑥 = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡)
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡) + 𝐷𝐷𝑢𝑢(𝑡𝑡)          (2)     

where A, B, C and D are state-space matrices obtained by 
evaluating Jacobin of Eq (1) at the operating point 
(x∗, u∗)The eigenvalues of the 𝐴𝐴 matrix will indicate the 
stability of the linear perturbation system (2). 

Sloppiness 
In models with nonlinear predictors, often there are 

large regions in the parameter space over which the 
model predictions are nearly identical, this is known as 
sloppiness or model sloppiness. For infinitesimal pertur-
bations sloppiness is quantified by the inverse of the con-
dition number of the Hessian of the cost-function.   The 
Hessian of the cost function can be approximated as  

 

                               𝐻𝐻𝑖𝑖𝑖𝑖 = 1
𝑁𝑁
∑ 𝜕𝜕𝜕𝜕

𝜕𝜕 log𝜃𝜃𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕 log𝜃𝜃𝑗𝑗

𝑁𝑁
𝑛𝑛=1                (3) 

 
where y denotes model output. More formally, for non-
infinitesimal perturbations, sloppiness can be condi-
tioned on the experiment space known as conditional 
sloppiness.  A model ℳ is conditionally (ϵ, δ) sloppy with 
respect to an experiment space 𝒵𝒵ℳ  at θ∗ ∈ ℐ ⊂ 𝒟𝒟ℳ ,if 

                         �|θ∗ − θ1|�2 > δ  ∀ θ ∈ 𝒮𝒮 ⊂ ℐ                   (4) 

                 �|𝑦𝑦(θ∗, 𝑡𝑡) − 𝑦𝑦(θ1, 𝑡𝑡)|�2
2 < ϵ∀ 𝑢𝑢 ∈ 𝒵𝒵 ⊂ 𝒵𝒵ℳ         (5) 

for every (θ1, θ∗) satisfying (4) and (5). ϵ is arbitrarily 
small .  δ ≫ ϵ.          

 The role of sloppiness in the system identification 
has been extensively studied in. Sloppiness often affects 
the uncertainty in the parameter estimates. it is well 
known the uncertainty in the model structure and 
parameter estimates affects the robustness of the 
controller and hence, assessing the parameter 
uncertainty of the model becomes imperative to a 
satisfactory control system design. In this work, we use 
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conditional sloppiness analysis to assess the insensitivity 
in the parameter directions in SINDy models. 

 
Figure 1: Algorithm for model assessment. 

METHODOLOGY 

This section illustrates the method proposed for 
assessing the goodness of the model estimated using the 
SINDy algorithm. However, the method proposed, in 
general, can be used to evaluate any model. The 
proposed method has two significant steps: Firstly, 
assessing the stability of the local perturbation model 
(Linearized) and model sloppiness. As a next step,  we 
construct what is known as a (δ − γ) plot as proposed in 
[1] for conditional sloppiness analysis around the optimal 
parameter estimated from the SINDy algorithm. The cen-
tral idea of this analysis is to characterize the model's be-
haviour around the point of interest in the parameter 
space; this is done by constructing an n-ball and evalu-
ating the change in the model's output for all the param-
eters inside the n-ball with respect to the reference point. 
The procedure for constructing the (δ − γ) plot is in Fig-
ure 2.  

One of the main advantages of the proposed 
method is its ability to identify the parameters that are 
likely to be estimated with poor precision. When those 
parameters belong to stiff region/sensitive region, then 
with high probability, the controller system designed may 
become fragile. In the next section, we demonstrate the 
working of the proposed method in a dynamical model of 
an industrial node developed from the SINDy algorithm. 

Numerical Results 
In this section, we demonstrate the working of the 

proposed method in a model developed for acetamino-
phen production plant. 

A linearized state-space model of 
acetaminophen production network 

To demonstrate the working of the proposed 
method, we consider a process where Para-

 
 
 
 
                                           Figure 2: Algorithm to perform conditional sloppiness analysis 



 

Jagadeesan et al. / LAPSE:2024.1607 Syst Control Trans 3:778-782 (2024) 781 

Aminophenol(PAP) reacts with Acetic Anhydride to 
produce Acetaminophen (A-PAP). Equation 7 is the 
linearized model obtained from the non-linear SINDy 
model. The detailed state variables and input variables 
are given in Table 1.   The nonlinear ODE model identified 
using SINDy algorithm is linearized around the operating 
point. The Operating point and the linearized model is 
given in the Table 1 and equation 4  

�̇�𝑥(𝑡𝑡) =  �

−16.34 −5.06 −15.83 9.04
12.22 −3.41 10.72 3.43
−0.07 7.85 −1.10 −5.63
3.70 0.006 2.97 −3.90

� 𝑥𝑥(𝑡𝑡) + 

�

11.15 3.21 4.39 −7.56
2.84 −0.62 2.38 7.58
0.76 2.78 −1.91 −3.52
−0.03 4.80 4.36 −0.96

� 𝑢𝑢(𝑡𝑡)  (6) 

              𝑦𝑦(𝑡𝑡) = [1 0 0 0]𝑥𝑥(𝑡𝑡)                                (7)      

where x1(t) is APAP, x2(t), x3(t) and x4(t) are the waste 
materials produced and u1(t) is PAP.Fm, u2(t) is Acetic An-
hydride.Fm, u3(t) is water and u4(t) is water 

The Eigen values of the system matrix A are given 
below 

𝜆𝜆(𝐴𝐴) =  [−19.27 −5.28 −0.1 + 3.43𝑖𝑖 −0.1 − 3.43𝑖𝑖]  

The system has both real and complex poles with 
negative real parts, which guarantees that the system is 
capable of damped oscillations. It is also worth noting 
that the complex poles have real parts that are close to 
zero value, which says that the system is on the verge of 
instability. However, the system is in the verge of insta-
bility. In the next section we perform conditional sloppi-
ness analysis to study the sensitivity of the system to the 
parameter perturbations. 

Conditional Sloppiness Analysis 
In this section, we do the conditional sloppiness 

analysis for the unforced system, i.e. the input is turned 
off in the Eq (6) and the x(1) is measured as the output. 
The model output is generated with the same initial con-
ditions for t=0 to t=10 seconds. In this work, we analyzed 
the system for δ = 10-5, an infinitesimal distance from its 
optimal parameter. The visual plots for the model assess-
ment are given below.  

From Fig. 3 it is clear that the model is extremely sensitive 
in the vicinity of the operating initial condition. The 
system clearly becomes unstable. In addition to that, it is 
observed that the system is sensitive is almost identical 
in all the directions. The Model sensitivity index shows 
that the model is locally unidentifiable, ie there exist 
several parameter sets in the vicinity that results in an 
unstable model. In summary, the model identified by 
SINDy is extremely sensitive to parameter perturbations 
and a very small perturbation leads to instability. In the 
next section we demonstrate the role of this insensitivity 

in the controller design.  

 
          Figure 3: Minimum and Maximum sensitivity plot 
 

 
                             Figure 4: Model sensitivy index  

Analysis of controller design 
In the previous section, using conditional sloppiness 

analysis, we showed that the model is very sensitive in 
the vicinity of the operating region, and an infinitesimal 
perturbation from the equilibrium position has 
destabilized the system. In this section, we show that 
designing the controller for such a system leads to a 
fragile controller, in the sense a very small perturbation in 
the controller parameters will destabilize the system. To 
demonstrate this, we adopt a pole-placement controller 
design. We place the poles on the following location to 
stabilize the oscillations in the system p =[-0.5 -1 -1 -0.5].  

The gain matrix is obtained for the given A, B and p. 
The gain matrix is given below. We add a Gaussian 
random matrix with the controller gain matrix to analyse 
the controller fragility. We generate a hundred such 
matrices and compute eigenvalues of the closed-loop 
system matrix. Ak=A-BK and plot the histogram of the 
real part of the eigenvalues in Figure 5. It is evident that 
the controller design is not robust with respect to very 
small uncertainty in the controller parameters as the 
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distributions shows that are positive real eigen values 
with significantly hight probability. This analysis shows 
that the presence of sloppy and stiff directions in the 
parameter space of the plant affects controller 
robustness.                  

 

 Figure 5: Histogram of real part of the closed loop 
system matrix. 

CONCLUSION 
In this work, we proposed a novel method to assess 

the goodness of data driven surrogate dynamical models 
developed using the SINDy algorithm for control system 
design. We analyzed the model generated from the 
acetaminophen production plant. The original model is a 
nonlinear ODE. The model is then linearized for the 
stabilized operating conditions. The analysis revealed 
that the linearized model is on the verge of instability, and 
the sloppiness analysis revealed that a tiny perturbation 
leads to instability. To assess the role of sensitivity in the 
controller design, we designed a pole placement 
controller to stabilize the oscillations. We added a small 
amount of noise to the controller parameters. The Monte 
Carlo simulations revealed that the closed-loop system 
would become unstable with a significant probability of 
minimal uncertainty in the controller parameters. This re-
emphasizes that the model identified using the SINDy 
algorithm is not good enough for control system design. 
As a logical extension to this work, we propose to 
formulate and solve a multi-objective robust-optimal 
control problem to ensure stability, achieve zero waste 
and maximize the productivity of acetaminophen. This 
study opens up new avenues in the controller design for 
sloppy systems. 
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ABSTRACT 
Achieving worldwide sustainable development is a practical challenge that demands an efficient 
management of resources across their entire value chains. This practical task requires the optimal 
selection of pathways for extracting, processing, and transporting resources to meet the demands 
in different geographic regions at minimal economic cost and environmental impact. This work 
addresses the challenge by proposing a systematic framework for designing resource-processing 
networks that can be applied to resource management problems. The framework considers the 
integration and resource exchange within and across multiple processing clusters. It allows for the 
life cycle assessment of the environmental and economic impacts of the defined value chains, and 
design accordingly the different processing and transport systems from extraction to final use. 
The proposed representation and optimization model are demonstrated in a case study to assess 
the impact of energy transition under decarbonization constraints on long-distance energy supply 
chains. The objective is to identify optimal cluster designs and interconnecting transportation net-
works for decarbonized energy supply between energy exporters and importers. 

Keywords: Optimization, Supply Chain, Energy, Carbon Dioxide, Life Cycle Analysis 

INTRODUCTION 
Population growth is associated with increased de-

mand for resources (water, energy, food, products…), 
fuel combustion, emissions levels, and waste production. 
Addressing these challenges requires effective resource 
management to ensure economic prosperity and avoid 
environmental disasters. Achieving the goals of sustain-
able development globally requires a life cycle view of the 
resource management problem. 

Process systems engineering has provided different 
methods and approaches to manage material and energy 
resources through optimal integration. Heat [1] and mass 
[2] integration have been implemented at the chemical
process scale to minimize feedstock intake and waste
generation while meeting a defined production level. The
scope of integration has been extended through total site
analysis [3] to include exchanging resources between
different plants within close vicinity.

Process Integration has been the basis for designing 
integrated systems, where different plants can exchange 
specified resources to achieve defined objectives 

(economic or environmental). Many problems in this field 
are developed as mathematical programming models 
whose solutions yield the optimal outcomes for the de-
fined problems. For example, Almansoori and Shah [4] 
proposed a mixed integer linear programming (MILP) 
model for optimizing the design and operation of H2 sup-
ply chains. Alnouri et al. [5] proposed an optimization 
model for water integration and optimal brine manage-
ment. Al-Mohannadi et al. [6] proposed a mixed integer 
linear programming model for integrating CO2 across 
sources and sinks to optimize the design of CO2 capture, 
utilization, and sequestration (CCUS) systems. These are 
some applications among many of the Process Integra-
tion approaches that have been widely described and re-
viewed [7]. Many of these approaches focus on a specific 
number of resources, which limits the scope of such ap-
proaches. Expanding the scope would then require de-
veloping new models that account for the missing oppor-
tunities.  

To address this gap, new methods have been pro-
posed that consider more holistic sets of resources by 
incorporating more materials. For example, the C-H-O 
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approach balances carbon, hydrogen, and oxygen ele-
ments in integrated processing clusters [8]. Different en-
ergy streams have been considered in multi-sectoral en-
ergy systems design through simulations and linear pro-
gramming [9]. Although such approaches provide more 
generic frameworks than the direct applications de-
scribed earlier, they still lack the comprehensiveness of 
integrated designs needed when considering different 
raw materials, intermediates, waste, and emissions 
streams. Ahmed et al. [10] proposed a resource integra-
tion representation of a processing cluster and a MILP 
model for maximizing the profit of the integrated system 
while abiding by environmental constraints. The flexible 
representation allows a complete accounting of all mate-
rial and energy resources. The framework considers the 
specifications and conditions at which resources can be 
exchanged, with an inclusive accounting for the econom-
ics of processes and flows. However, this resource inte-
gration representation allows resource extraction, pro-
duction, use, and reuse only within a defined system, 
which is limiting when it comes to life-cycle assessment 
considerations or representing the interactions across 
geographic locations. 
 Some of the energy systems modeling tools have 
considered the spatial aspect of the integration problem 
[11]. In such approaches, the transportation network is an 
infrastructure dedicated to one of the energy vectors 
(like a pipeline that transports H2 from location A to loca-
tion B). Besides the fact that such models are limited to 
the energy systems they present (by the resource and 
process selection), the representation of the transporta-
tion network does not allow the consideration of multiple 
options that may impact the processing in different loca-
tions. This work proposes a framework for simultaneous 
resource integration within and across multiple pro-
cessing clusters. The novel approach builds on Ahmed et 
al.'s [4] representation and expands the scope to include 
multiple systems with supply chains for exchanging re-
sources. The transportation networks and processing 
clusters have similar generic representation which allows 
the consideration of multiple technologies for processing 
and transportation of the resources. A MILP model is pro-
posed to minimize the integrated system’s costs. This is 
the first generic framework for resource integration that 
yields optimal value chains under environmental limita-
tions while considering transportation networks as pro-
cessing clusters. An illustration of the model is presented 
by considering the problem of decarbonizing the energy 
supply chain between an energy importer and an energy 
exporter, including long-distance shipping of energy car-
riers and CO2. The case study considers the emissions 
across the energy value chain in the different systems, 
as well as different decarbonization pathways, to pro-
pose cost-optimal strategies for achieving decarboniza-
tion targets at the global level. 

PROBLEM STATEMENT  
Given is a system characterized by multiple pro-

cessing clusters and different resources that can be pro-
cessed and exchanged within and across the clusters. 
Each cluster is characterized by a set of processing op-
tions that can consume, produce, and convert the re-
sources accessible by the cluster. The aim is to find the 
optimal capacities of the processing options that result in 
minimizing the net cost of the overall system while meet-
ing the defined demands of resources in each cluster and 
abiding by defined footprint limitations. 

The proposed representation allows for considering 
generic systems representing resources’ value chains. 
Each processing cluster can be attributed to a geo-
graphic location or a transportation network. This allows 
the consideration of resource or process availability that 
may vary across geographic regions. Supply chains or 
transportation networks can access resources in differ-
ent geographic locations, which allows for considering 
different modes of transport, each of which can be char-
acterized as a processing option within the supply chain 
cluster. Integrating supply chains into the design of pro-
cessing networks allows accounting for all possible op-
portunities to determine optimal configurations that meet 
defined demands at constrained footprint impacts. For 
example, when designing energy vectors for long-dis-
tance shipping, while some pathways may be considered 
better for shipping (due to high energy density, for ex-
ample), they might produce more emissions or require 
higher costs for processing with respect to other less en-
ergy-dense carriers. Hence, considering the different 
processing and transportation options of the various re-
sources simultaneously allows the identification of the 
synergies and trade-offs to support efficient decisions. 

This work proposes a generic approach for consid-
ering integrated value chains, giving the user flexibility in 
defining the specifics of the problem. The aim is to deter-
mine the optimal processing options, their location, and 
their capacity by designing low-cost, low-footprint value 
chains. 

CLUSTER-OF-CLUSTERS 
REPRESENTATION  

Figure 1 illustrates an example of a superstructure 
considered in the proposed framework. Each resource 
that can be consumed, produced, or exchanged within 
each system is characterized and tracked along the cor-
responding resource line. Each resource line is charac-
terized by its physical properties (temperature, pressure, 
composition, AC/DC power, frequency, etc.) and geo-
graphic location. The characterization builds upon com-
mon infrastructures for energy and material transmission 
(like power, feedstock, waste, etc.). 
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Different resources can be imported to each system 
as fresh feedstock or energy/power inputs, or exported 
as products, by-products, waste streams, etc. The pro-
cesses shown in the representation act as conversion 
units with connections to each resource line. These con-
version processes account for any processing a resource 
line must go through to change its location or specifica-
tions. The units are characterized by their costs and ca-
pacity limitations, allowing full economic accounting 
across the entire systems. 

The proposed methodology provides a comprehen-
sive scope for considering the integration and resource 
exchange within and across multiple processing clusters. 
Each cluster is defined based on accessibility to the 
available processes and resources. This incorporates the 
spatial dimensions into the planning framework. The pro-
posed representation considers the supply chains as 
systems with different transport modes that can ex-
change resources between different geographic loca-
tions. By considering the exchange of resources between 
multiple clusters, the entire value chain can be assessed, 
and the impact of transportation modes on resource pro-
duction and utilization in different systems can be evalu-
ated. 

 
Figure 1. Resource integration across multiple clusters. 

OPTIMIZATION MODEL 
 Given are a set of resources 𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑛𝑛}, a 

set of processes 𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛}, a set of components 
𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛}, and a set of systems (or clusters) 𝑆𝑆 =
{𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛}. Note that the transportation units are con-
sidered in the proposed representation as “processes” 
since they “convert” resource lines from one location to 
another. Cost, capacity limits, and environmental impact 
characterize each processing and transportation unit. 
The proposed framework uses MILP to select the 

processing and transportation units to minimize the sys-
tem's cost under defined constraints on resource imports 
and exports (resource availability, demand, environmen-
tal constraints, etc.). The optimization variables are: the 
capacities of the different processes (and transportation 
options) in each system, the resources imports and ex-
ports flow rates into and out of each system, the flows of 
resources exchanged between systems, and the binary 
variables that activate each of the processes in each sys-
tem.  

The parameters used for characterizing the pro-
cesses and resource lines are as follows: the conversion 
parameters, which are defined as the ratio of the flow 
rate of resource r produced by process p in system s rel-
ative to 𝐹𝐹𝑝𝑝,𝑠𝑠, the composition of each component in each 
resource line in each system, the minimum and maximum 
capacity of each process in each cluster, the minimum 
and maximum resource import and export flowrate from 
each system, and the minimum and maximum resource 
flow rates of resources exchanged across the different 
systems. 

The following parameters are considered in estab-
lishing the economic model to formulate the objective 
function: the capital expenditure of the processing units 
in each system is represented as the ratio of the annual-
ized capital costs relative to the capacity of the units, the 
operating costs of the processing units in each system 
are represented as the ratio of the operating costs rela-
tive to the capacity of the units, and the selling and buy-
ing prices of each resource at each system. Economies 
of scale may result in cost advantages at high production 
capacities, leading to a non-linear relationship between 
the capital cost and the capacity. However, when the ca-
pacities are high enough, the impact of the economies of 
scale diminishes, which justifies the linear relation as-
sumed in this work.  

The model is set by defining the following con-
straints that ensure the applicability of the solution and 
its abidance to mass and energy balances and technical 
and environmental constraints defined by the user: 

 Resource balance: resource balances are defined 
for each resource line to ensure mass and energy 
conservation across exports, imports, exchanges, 
and process conversions. 

 Capacity limits: the lower and upper limits on the 
capacity of each considered process are 
introduced to ensure the applicability of the 
solutions based on the process’s technical 
limitations. 

 Flowrates limits: the limits on the flowrates of 
resource imports, exports, and exchanges 
between the different clusters are introduced to 
allow the user to define resource demands, 
consider resource availability, and account for any 

Process 
2

Process 
1

Process 
p

Cluster 1

Transport 
2

Transport 
1

Transport 
kTr

an
sp

or
ta

tio
n 

N
et

w
or

k

Cluster 2

Process 
p+2

Process 
p+1

Process 
q



 

Lameh et al. / LAPSE:2024.1608 Syst Control Trans 3:783-791 (2024) 786 

limitation on the exchanges between systems. 

 Components limits: the limits on the components in 
the resource exports and imports are defined to 
allow for the consideration of environmental 
limitations (such as emissions reduction targets, 
waste discharges, toxicity limits, etc.). 

The total net cost of the overall system (the cluster 
of all clusters) is determined by accounting for the costs 
of installing and operating the processing (and transpor-
tation) units, the costs of acquiring the resources in the 
different clusters, and the revenues from selling the re-
sources in each system. The objective function is devel-
oped by defining the net cost based on all the accounted 
costs and revenues to minimize it. 

Considering the spatial dimension coupled with the 
ability to exchange resources across the clusters allows 
a holistic vision of the interactions between the systems, 
where the decisions in one system affect the entire value 
chain. The MILP model can efficiently screen through all 
possible combinations to give real-time solutions and 
suggestions on the optimal technology mix of the whole 
supply chain (from production to transportation, to final 
use). Note that all the optimization runs performed in the 
case study (the following section) gave solutions in less 
than 1 second. 

CASE STUDY: DECARBONIZING LONG-
DISTANCE ENERGY SUPPLY CHAIN  

The framework applies to analyzing energy supply 
chains, which can be represented by three systems: an 
energy importer, an energy exporter, and energy ship-
ping. Figure 2 shows a high-level representation of the 
considered systems. The energy exporter utilizes abun-
dant natural resources to produce energy carriers that an 
energy importer can store, transport, and use to supply a 
defined demand. The case study presented here is based 
on exporting energy between an energy importer and an 

energy exporter 8000 nautical miles apart. The base case 
corresponds to exporting Liquefied Natural Gas (LNG). 
This case establishes a performance benchmark for sup-
ply chain costs and emissions against which decarboni-
zation is assessed. The emissions from the supply chain 
can be reduced either through CO2 capture, shipping, and 
storage to decarbonize the LNG-based energy supply 
chain, or by replacing natural gas with alternative hydro-
gen fuels and carriers. Applying the proposed framework 
to the described problem allows determining the pro-
cesses to be implemented in each system (importer, ex-
porter, and shipping) and their capacities, and the 
flowrates of the different resources imported, exported, 
and exchanged across the systems. These variables di-
rectly relate to key decisions for the optimal supply chain 
design, which include the following: What are the cost-
optimal supply chain decarbonization pathways? Where 
can decarbonization technologies be applied to reduce 
targeted supply chain emissions? Which energy carriers 
should be produced and shipped? Where to produce al-
ternative fuels? How will the cost-optimal decarboniza-
tion affect the direct costs and emissions incurred by 
each system? Considering all the systems constituting 
the supply chain simultaneously in this design process al-
lows accounting for the impact each of the considered 
pathways has on the others. For example, transitioning to 
H2 based fuels at the importer would decrease the LNG 
production level at the exporter, given that the energy 
demand to be supplied at the importer is fixed. This 
would affect the scale of CO2 capture and storage from 
the LNG production process, and the shape of the re-
quired shipping fleet (type and number of ships).  
 The different decisions are considered by defining 
energy carriers’ production processes at the exporter and 
the corresponding shipping and processing units in the 
remaining systems. The energy carriers considered are 
LNG (base case), H2, which can either be directly shipped 
as a liquid or loaded on a liquid organic H2 carrier (LOHC), 
and Ammonia. An additional case is investigated 

 
Figure 2. High-level representation of the different systems in the energy supply chain. 

Energy Exporter: Utilizing 
abundant natural resources to 
produce energy carriers 

Energy Importer: extracting 
energy to fulfill the demand 
at reduced emissions

Energy Shipping: long-
distance transportation 
of energy carriers

Cost Emissions Cost Emissions Cost EmissionsEnergy 
Demand
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considering LNG as an energy carrier (EC) and decarbon-
izing the supply chain by capturing the CO2 at the ex-
porter and the importer. The captured emissions at the 
importer are shipped back to the exporter to be stored, 
as CO2 sequestration may result in safety concerns in 
some locations [12]. An option for decarbonizing the 
ships using the shipped alternative fuels (H2 and NH3) as 
fuel for shipping instead of heavy fuel oil (HFO) is 

considered. 
 Defining the energy supply chain problem in the 

cluster-of-clusters framework requires introducing the 
following resources: energy carriers (H2, NH3, LNG), the 
processed H2 conditioned for shipping (liquid or loaded 
on LOHC), forms of direct energy, CO2 footprint (from 
each of the processes), and CO2 streams in the supply 
chain (captured, compressed, and liquified CO2). 

Table 1: Key parameters characterizing energy carriers’ production and processing units at the exporter. 

Process Cost ($/GJ) Natural Gas Intake 
(GJ NG/GJ) 

Power Intake 
(MWh/GJ) 

CO2 emissions 
(kgCO2/GJ) 

LNG production 2.61  1.17  0 17.8 
Blue H2 Production 4.54  1.46  0 10 
H2 Liquefaction 5.82  0   59 0 
LOHC Hydrogenation 0.40  0    0.58 0 
Blue NH3 production 13.90  1.52  24 2.2 

Table 2: Key parameters characterizing energy carriers’ processing units at the importer. 

Process Cost ($/GJ) EC Usage for heat (%) Power Intake (kWh/GJ) 
LNG Regasification  0.34  1.5% 0.10  
H2 Regasification  0.14  0% 1.2 
LOHC Dehydrogenation  1.28  21% 2.3 

Table 3: Key parameters characterizing energy carriers’ ships in the shipping system. 

Process Cost ($/GJ) EC loss (%) CO2 emissions (kgCO2/GJ) 
LNG Ships 1.66 6.21% 3.13 
H2 Ships 7.59 7.31% 10.7 
LOHC Ships 5.15 0.00% 12.4 
NH3 Ships  3.23 0.15% 7.22 
H2-fueled LOHC ships 3.44 16.3% 0 
NH3-fueled NH3 ships 2.25 9.64% 0 

Table 4: Key parameters characterizing the different units across the CO2 supply chain. 

System Process Cost 
($/tCO2) 

Natural Gas In-
take (GJ/tCO2) 

Power Intake 
(kWh/tCO2) 

CO2 emissions 
(tCO2/tCO2) 

Exporter CO2 capture and com-
pression  

60 3 108 0.11 
 

CO2 Processing  3.26 0 4 0  
CO2 Storage 10 0 0 0 

Shipping CO2 Ships 70 0 - 0.12 
 LNG Fueled CO2 ships 61 1.05 - 0.09 
Importer CO2 Capture 48 3 28.7 0.11 
 CO2 Liquefaction 8.5 0 83.1 0 

 



 

Lameh et al. / LAPSE:2024.1608 Syst Control Trans 3:783-791 (2024) 788 

The system contains a three clusters, 24 resources, 
and 25 processes. The resources and processes are de-
fined within each cluster based on availability, cost, en-
ergy requirements, and CO2 emissions levels. The sys-
tems incorporate two major supply chains for shipping 
energy and CO2. The optimization problem aims to find 
the optimal configuration that supplies the energy de-
mand for the importer at minimum cost while abiding by 
a defined supply chain emissions level. The energy de-
mand at the importer is set to 140 million GJ/y.  

Tables 1 through 4 summarize the data used in set-
ting up the case study. The data on LNG production is 
based on Katebah et al. [13] and Raj et al. [14]. LNG re-
gasification parameters are estimated based on Hafner 
and Luciani [15] and Park et al. [16]. The data on blue H2 

production is based on the integrated process reported 
by Katebah et al. [17]. The parameters characterizing the 
blue ammonia production process are based on the de-
scription of the ammonia process in Ullmann’s Encyclo-
pedia [18] and on data reported by Wang et al. [19] and 
Pfromm [20] on the ammonia process and CO2 capture 
[21]. The studies reported by Raab et al. [22] and 
Niermann et al. [23] were used to estimate the data for 
H2 liquefaction and LOHC hydrogenation and dehydro-
genation. CO2 capture data are based on the parameters 
of CO2 capture from a natural gas combustion flue gas 
[24]. The costs of CO2 sequestration are based on a re-
port by the Global CCS Institute [25], assuming 10 $/tCO2 
storage and transportation costs. The parameters char-
acterizing CO2 liquefaction, processing, and CO2 ships 
are based on a report published by Element Energy Lim-
ited [26] in collaboration with Brevik Engineering, Polar-
konsult, TNO, and SINTEF. Note that the parameters 
shown in the tables are used to define the conversions of 
the different processes based on the intake and produc-
tion levels of the different resources with respect to their 
capacities. This allows defining clear boundaries for each 
process to avoid double counting. For example, the 
power requirements parameter is defined as zero for 
some processes. This means that the process does not 
require importing the resource “power” from the inte-
grated cluster. Power may be produced and consumed 
within the process boundaries, which may impact the 
conversion factors of the resources like cost and CO2 
emissions (which are also stated in the tables). 

Table 1 shows the key parameters that define the 
energy carrier’s production (from natural gas) and pro-
cessing units in the cluster representing the energy ex-
porter. The parameters are reported based on LHV en-
ergy content in the fuels produced and processed by 
each unit. Note that the reported costs do not include the 
cost of natural gas or power, which are considered as re-
sources imported into the cluster as fresh feeds. The 
power is assumed to be obtained from natural gas-fired 
power plants with an emissions factor of 0.54 

kgCO2/kWh. The power price at the exporter is assumed 
to be 0.032 $/kWh, and the natural gas cost is 4 $/GJ.  
Table 2 shows the parameters used to characterize the 
processing units at the importer. These units treat the re-
ceived energy carriers from the ships to be at conditions 
suitable for energy extraction (through combustion). The 
heat requirements of these units are covered by the cor-
responding energy carriers, which is accounted for 
through the inefficiency or the EC loss parameter. LOHC 
dehydrogenation is an endothermic process that results 
in high energy requirements covered by the shipped H2. 
The power is assumed to be covered by a natural gas 
power plant at a price of 0.19 $/kWh. Natural gas com-
bustion at the importer (from the case of shipping LNG) 
produces 50.3 kgCO2/GJ. Table 3 presents the parame-
ters characterizing the shipping fleets. The reported 
costs include heavy fuel oil (HFO), used as the fuel for H2 
ships, LOHC ships, and NH3 ships. Energy carriers’ losses 
from the ships are due to EC evaporation (LNG and H2 

and NH3) or due to utilizing the shipped EC as shipping 
fuels (H2-fueled and NH3-fueled ships). The evaporated 
energy carriers are recovered and used onboard to sup-
ply power to the ship’s engine (with HFO). CO2 emissions 
from the ships are due to the combustion of the shipping 
fuels (HFO and LNG). The costs of the decarbonized 
ships are determined by assuming a 20% increase in the 
ship’s capital costs. The cost reduction is due to not uti-
lizing HFO on the decarbonized ships. The trade-off is 
between avoiding the HFO cost or reducing the energy 
efficiency of the supply chain by using the energy carri-
ers as fuels. Table 4 shows the parameters that charac-
terize the different units along the CO2 supply chain. CO2 
is captured from the LNG production, compressed, and 
stored at the exporter. The CO2 captured from natural 
gas combustion at the importer is treated and shipped 
back to the exporter, where it is processed and stored. 
The heating requirements for CO2 capture are covered by 
burning the natural gas in the supply chain. Two options 
for fueling the CO2 ships are considered: HFO or LNG 
(produced at the exporter) as shipping fuels. Natural gas 
power is assumed to cover the power requirements of 
CO2 processing units. 

 RESULTS 
The optimization model, based on the defined sys-

tem, contains 870 constraints and 654 variables. The 
model is set up in Python and solved using Gurobi. The 
optimal scenario with the highest emissions flow rate was 
obtained by running the optimization model at relaxed 
emissions constraint. This scenario corresponded to pro-
ducing LNG at the exporter and exporting it on LNG car-
riers to the importer, where it is regasified, and natural 
gas is combusted to cover the 140 million GJ/y energy 
demand. The corresponding emissions level in that 
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scenario is 10.23 MMtCO2/y (26% from the exporter, 69% 
from the importer, and 5% from the ships).  

 
Figure 3. The total supply chain cost (a) and the 
breakdown of costs (b) and emissions (c) across the 
three systems at different CO2 reduction levels. 

The emissions limit constraint was then introduced 
by setting an upper limit on the CO2 exports across all the 
systems. The CO2 emission limit was reduced from 10.23 
MMtCO2/y to 2.35 MMtCO2/y. Further CO2 reduction was 
not attainable considering the described technologies. 
The supply chain cost and the costs and CO2 emissions 
of each considered system are tracked. Figure 3 shows 
the results obtained at varying CO2 emissions reduction. 
Three different system configurations were identified as 
the CO2 emissions reduction target increased. Low emis-
sions reduction levels (up to 21%) could be achieved by 
capturing the emissions from LNG production and storing 

them at the exporter. This results in maintaining the cost 
and emissions level in the shipping system and at the im-
porter, as no changes in the designs are required. The 
emissions at the exporter drop while the cost increases 
due to the investment in CO2 capture and storage (CCS).  

 Emissions reduction between 21% and 69% can 
be achieved by capturing the emissions of the exporter 
and the importer and storing them at the importer. The 
captured emissions from the importer are shipped back 
to the exporter on CO2 ships. This configuration in-
creased the costs for all three systems due to the invest-
ments required in CO2 capture, shipping, and storage. 
The emissions at the exporter were maintained at the 
same level achieved in the previous configuration as all 
the emissions were captured. The importer’s emissions 
level dropped significantly, while the level of emissions 
from shipping increased. The rise in the shipping energy 
level is due to introducing a new shipping fleet that burns 
fuel onboard. Going beyond 69% emissions reduction re-
quires a transition in the energy system at the importer 
from LNG to H2. The optimization solution showed that 
blue H2 would be produced and loaded on LOHC at the 
exporter and then shipped to the importer on oil tankers 
fueled by H2. This scenario reduces the cost and emis-
sions level in the shipping system and at the importer due 
to burning a fuel mix with less carbon content in both sys-
tems. The cost and emissions level increase at the ex-
porter. This is because of the higher cost of blue H2 pro-
duction relative to LNG production. Moreover, a high 
amount of CO2 is captured from the H2 production, result-
ing in high emissions due to the capture inefficiency.The 
results indicate a variation in the performance of the sys-
tems as the emissions reduction target increases. An op-
tion that achieves global emissions reduction may in-
crease emissions at a singular system level. At the same 
time, an option that results in global cost reduction may 
require an unevenly distributed investments. This indi-
cates the necessity for fair crediting of CO2 reduction to 
promote efficient implementation globally.  

CONCLUSIONS  
This work presented a methodology for cost-opti-

mal integration of different resources within and across 
multiple systems. The representation allows tracking en-
ergy and material streams based on their defined speci-
fications. The generic representation of resources and 
processes gives the user flexibility in defining the prob-
lem by considering multiple material and energy re-
sources that can be integrated across different pro-
cessing units. The model allows full economic accounting 
by considering the cost of processes and transportation 
pathways, the cost of imported resources, and revenues 
from selling the exports. A comprehensive environmental 
accounting is allowed by considering multiple footprints. 
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Considering the design of multiple processing systems 
simultaneously results in insightful decision-making that 
accounts for the impact of systems interactions. The 
method can be applied to a wide range of problems like 
circular value chains, industrial symbiosis beyond eco-in-
dustrial parks, and the net-zero transition. This study 
presented an application of the framework for decarbon-
izing the energy supply chain by defining three systems: 
an energy carrier, an energy importer, and an energy ex-
porter. Such a problem has been addressed in literature 
by analyzing one or two supply chains, but no work has 
considered multiple options simultaneously in an optimi-
zation framework. In this work, different technologies are 
considered for decarbonizing the different systems, and 
the interconnectivity of the decision-making was ac-
counted for in the proposed method. The results showed 
that cost-optimal decarbonization starts with CO2 cap-
ture and storage at the exporter (reducing 21% of the 
emissions), followed by CO2 capture at the importer (with 
CO2 shipping, which reduces up to 69% of the emissions), 
and energy transition to H2 is activated at high CO2 emis-
sions reduction targets, which allows for 77% emissions 
reduction. The CO2 marginal abatement cost increases 
from 110 $/tCO2 to 250 $/tCO2 as the reduction targets 
rise. The analysis showed that the environmental and 
economic impact of the decarbonization transition on the 
different systems varies with the targeted reduction lev-
els. Hence, the implementation of an optimal transition 
calls for fair crediting of emissions reduction (environ-
mentally and economically) across the systems. 
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ABSTRACT 
In a world grappling with mounting plastic waste, the pursuit of sustainable plastic waste manage-
ment has become pivotal in aligning with Circular Economy (CE) goals, with a strong emphasis on 
resource conservation, product durability, and carbon footprint reduction. The strategic imple-
mentation of recycling methods serves as a stepping stone for transitioning from linear to circular 
models. This work delves into plastic waste recycling technologies, specifically focusing on open 
and closed-loop approaches, providing a comprehensive evaluation anchored on economic, envi-
ronmental, and circularity criteria. Different recycling techniques are thoroughly examined, with 
particular attention given to chemical recycling methods such as pyrolysis and gasification. This 
work introduces a comprehensive screening model driven by a new proposed circularity metric 
validated through a case study to assess these recycling pathways. The results reveal the sub-
stantial potential of chemical recycling technologies compared to conventional incineration for en-
ergy recovery. Pyrolysis refinery and methanol production from plastic waste demonstrate triple 
and double the profitability of incineration while significantly enhancing the overall contribution of 
CE. This work emphasizes the imperative of a sustainable approach to plastic waste management 
by balancing different metrics considerations. 

Keywords: Plastic waste, Chemical recycling, Circular economy, Circularity 

INTRODUCTION 
Plastic materials have become increasingly preva-

lent as lightweight, robust, and cost-effective alterna-
tives. The annual production of plastics is estimated to 
reach 430 million metric tons by 2023, of which 139 mil-
lion metric tons will become waste [5]. The accumulation 
of plastic waste pollutants poses a pressing global chal-
lenge due to its degrading effects on ecosystems and 
threats to living and nonliving systems [6]. Therefore, 
sustainable plastic waste management methods are ur-
gently needed to fulfill the requirements of the Circular 
Economy (CE) [7]. Recycling strategies are imperative for 
the shift from linear to circular models [8]. Recycling 
techniques are divided into material and chemical recy-
cling. Material recycling could involve mechanical pro-
cesses to produce regranulates and degraded plastic 
quality [9] or physical recycling that relies on solvent-
based separation methods [5]. On the other hand, chem-
ical recycling, or molecular recycling, involves breaking 

down polymer chains into oligomers, monomers, or other 
basic chemicals through high-temperature processes. It 
includes pyrolysis, gasification, and depolymerization. 
Pyrolysis is a method that thermally degrades long-chain 
polymer molecules into smaller, less complex molecules, 
producing valuable products like oil, gas, and char [10]. 
Gasification is a thermo-chemical process transforming 
carbon-based materials through partial oxidation into 
synthetic gas [11]. Depolymerization, or Chemolysis, uses 
solvents to break polymer chains, making it ideal for ho-
mogeneous plastics. 

Recycling methods are categorized into polymer, 
monomer, and molecular loops. Material recycling be-
longs to the polymer loop, producing purified plastic 
waste identical to the input. Chemical recycling includes 
depolymerization of the monomer loop, whereas pyroly-
sis and gasification are classified as molecular loops. 
Closed-loop recycling, which allows for the potential pro-
duction of virgin-quality plastic from recycled materials, 
is commonly linked to monomer and molecular loops [5]. 
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The potential of chemical recycling technologies comes 
with the challenge of identifying the most sustainable op-
tions, given the numerous possibilities and the early 
stages of research and development. This approach, 
which transforms waste into a resource, demands an ef-
ficient screening method to explore all possibilities [12]. 
Moreover, exploring plastic waste management path-
ways is a pivotal driver toward a CE model, emphasizing 
sustainability through waste minimization and resource 
optimization with the potential to mitigate pollution re-
sulting from landfilling and direct combustion [13]. 

BACKGROUND 
 Various state-of-the-art and critical literature stud-

ies have contributed significantly to our understanding of 
sustainable waste management practices. [14] proposed 
a method integrating mass flow analysis, techno-eco-
nomic assessment, and life cycle assessment to evaluate 
primary plastics production and sorting. [15] compared 
thermochemical depolymerization technologies for LDPE 
waste, while [16] analyzed closed-loop recycling tech-
nologies for common consumer polymers. [17] conducted 
simulations of recycling processes for PP, and [18] com-
pared thermochemical technologies for MSW treatment. 
Additionally, [19] and [20] assessed energy recovery op-
tions from MSW in Brazilian cities and southern Spain, re-
spectively, providing valuable insights for sustainable 
waste management practices. 

Nevertheless, limited research has focused on 
building optimization models to assess waste manage-
ment pathways and enhance CE objectives. For example, 
[12] proposed a framework utilizing mixed integer linear 
programming to optimize waste recovery processes, 
aligning with circular economy principles. [13] introduced 
a mixed-integer nonlinear programming model for sorting 
and recycling mixed plastic waste, emphasizing eco-
nomic feasibility and environmental impact. [6] presented 
a comprehensive superstructure and a multi-objective 
mixed integer nonlinear fractional programming model for 
HDPE recycling. [21] expanded on this work with a multi-
objective MINLP model to optimize plastic waste sorting 
and recycling processes. [22] developed a systematic 
framework that integrates life cycle assessment and op-
timization methods for analyzing circular systems and 
synthesizing processes. Most of these studies have fo-
cused on evaluating the viability of diverse waste man-
agement technologies for transforming plastic waste into 
value-added products. However, comparatively less at-
tention has been given to utilizing the primary products 
derived from chemical recycling processes, such as py-
rolysis oil and synthesis gas. Despite their potential as 
excellent raw materials, they can enable both closed-
loop (plastic to plastic) recycling, such as olefin produc-
tion, as well as open-loop (plastic to product) recycling 

options, such as hydrogen, ammonia, and Fisher-Tropsch 
synthesis. Although most literature studies focus on eco-
nomic and environmental aspects, they overlook crucial 
circular economy factors such as material and energy uti-
lization, product recyclability, quality, and durability. A 
comprehensive evaluation of these aspects is essential 
for adhering to circular economy principles in open and 
closed-loop recycling approaches. It is crucial to explore 
these pathways' potential thoroughly to advance these 
principles and establish a more sustainable approach to 
plastic waste management. Furthermore, addressing a 
common misconception suggests every product and ma-
terial should undergo maximum recycling is essential. 
However, it is crucial l to recognize that specific disposal 
methods may be more environmentally friendly for cer-
tain products. This distinction is vital because recycling 
processes for some products can be energy and carbon-
intensive [23, 24]. Therefore, a well-balanced and com-
prehensive evaluation is essential to overcome this 
trade-off.  

Expanding research on plastic waste treatment, 
mainly through chemical recycling, is crucial to address 
existing limitations. This work introduces significant con-
tributions to the field by presenting a screening model 
and decision-making framework for evaluating plastic 
waste recycling technologies, with a particular focus on 
chemical recycling and various upgrading and processing 
technologies within both closed-loop and open-loop 
pathways to achieve holistic, sustainable waste manage-
ment strategies, facilitating sophisticated decision-mak-
ing by balancing economic, environmental, and circularity 
aspects. Moreover, the model introduces a novel circu-
larity indicator integrating various metrics to assess cir-
cularity comprehensively. The introduced measure con-
siders factors such as material consumption, energy de-
mand, and economic viability, thereby enhancing sus-
tainability in plastic waste management. It emphasizes 
not solely evaluating one factor but focusing on multiple 
factors simultaneously. This approach ensures a compre-
hensive assessment of the downstream implications for 
resulting products, contributing to a more holistic evalu-
ation of plastic waste management strategies. 

METHODS 
   This work focuses on investigating various plastic 

waste recycling technologies. Figure 1 provides an over-
view of potential pathways for plastic waste manage-
ment and the final products. The approach to screening 
different plastic waste treatment methods involved con-
ducting a thorough literature review and collecting data 
from real-life plants and simulations. A structured data-
base covering various technologies was analyzed for 
techno-economic and environmental performance. A 
screening model formulated using mixed integer linear 
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programming aimed to maximize the overall net profit 
while considering circularity indicators. Validation 
through a comprehensive case study confirmed the mod-
el's effectiveness. The model's primary objective is rep-
resented by Eq (1) and subjected to multiple equality and 
inequality constraints illustrated by Eq (2) and Eq (3). 
These constraints include material and energy balance, 
capacity limits, economics considerations, and the de-
gree of circularity metric (DCM) constraints. The net 
profit of the recycling route is determined by subtracting 
annual income from total production costs. Capital ex-
penditure (Capex) information is estimated through re-
gression modeling with piecewise linearization to handle 
nonlinear data. Circularity is measured through multiple 
factors including Material Indicator (MI), Energy Indicator 
(EI), Water Indicator (WI), Solid-Waste Indicator (SWI), 
Global Warming Potential Indicator (GWPI), Economic In-
dicator (ECI), Co-product Utilization Indicator (CPI), Re-
cyclability Indicator (RI), the product’s Quality Indicator 
(QI), and Technology Readiness Level Indicator (TRLI). 
The individual indicators are classified into two catego-
ries: "Higher the better," where higher values emphasize 
better circular economy contribution, and the second 
category, "Lower the better," where lower values are 
more useful for overall circularity performance. Both cat-
egories have been normalized on a scale of 0 to 1 Max-
Min normalization method [25], where 1 represents the 

best-case scenario, and 0 is the worst-case scenario for 
both. Simultaneously, higher values of DCM are desira-
ble, ensuring better technology sustainability. All these 
factors collectively form the total DCM, as shown in Eq 
(4). Moreover, each indicator in both categories is given 
a specific weight in the total circularity indicator using the 
Simple Additive Weighting (SAW) method  [25]—more 
details about how each indicator and the total DCM are 
illustrated in the supplementary materials. A case study 
was conducted and evaluated to validate the model's ef-
ficacy. The proposed MILP and optimization problem 
have been solved with Python 3.10.2 - Pyomo 6.4.0 and 
Gurobi solver 10.0.1. Optimal solutions have been con-
sistently obtained within a few seconds. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  (𝑁𝑁𝑁𝑁𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁) = 𝑝𝑝(𝑥𝑥) (1) 

Subject to: 

𝑔𝑔𝑖𝑖(𝑥𝑥) ≤ 0, 𝑝𝑝 = 1, … ,𝑚𝑚  (2) 

ℎ𝑗𝑗(𝑥𝑥) = 0, 𝑗𝑗 = 1, … ,𝑛𝑛 (3) 

𝐷𝐷𝐷𝐷𝑀𝑀𝑘𝑘 = 𝑀𝑀𝑀𝑀𝑘𝑘 + 𝑀𝑀𝑀𝑀𝑘𝑘 + 𝑊𝑊𝑀𝑀𝑘𝑘 + 𝑆𝑆𝑊𝑊𝑀𝑀𝑘𝑘 + 𝐺𝐺𝑊𝑊𝐺𝐺𝑀𝑀𝑘𝑘 + 𝑀𝑀𝐷𝐷𝑀𝑀𝑘𝑘 +
𝐷𝐷𝐺𝐺𝑀𝑀𝑘𝑘 + 𝑅𝑅𝑀𝑀𝑘𝑘 + 𝑄𝑄𝑀𝑀𝑘𝑘 + 𝑇𝑇𝑅𝑅𝑇𝑇𝑀𝑀𝑘𝑘,   𝑘𝑘 = 1, … , 𝑝𝑝 (4) 

Where k is the set of plastic waste recycling technology 
alternatives, and p represents the total count of technol-
ogy alternatives.  

 
Figure 1. Overview of potential pathways for mixed plastic waste (MPW) management 
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CASE STUDY 
   The case study considers three pathways: gasifi-

cation, pyrolysis represented by methanol production, 
and pyrolysis refinery, both closed-loop pathways capa-
ble of producing new plastic, and incineration for energy 
recovery serving as an open-loop base case scenario. 
The model aimed at achieving maximum economic profit 
and maximum contribution to the circular economy 
through the higher values of DCM. The case study is 
scaled based on sources that generate 100,000 tons of 
mixed plastic waste annually [26]. Detailed technical in-
formation about each scenario, such as the yield, material 
consumption requirements, energy, utility requirements, 
waste generation, and emissions, are provided in Table 1 
and Table 2. 

Table 1. Pathways considered in the case study. 

Name Main products Yield % Ref 
Gasification 
to Methanol 
Synthesis 
(GTM) 

Methanol 
CO (carbon 
credit) 

 
 

[] 

Pyrolysis+ 
Refinery (PR) 

Ethylene 
Propylene 
Aromatics mix 
LMWHC (Gaso-
line) 
HMWHC (Diesel) 

 
 
 
 
 

[ ] 

Incineration 
for energy 
recovery 
(IER) 

Electricity (Gas 
LHV= kJ/kg) 

 [ ] 

RESULTS AND DISCUSSION 
   Figure 2 illustrates the individual circularity indica-

tors that contribute to the DCM. It is important to note 
that an assumption of equal weight distribution has been 
given to individual metrics impacting the final DCM value, 
set at 10% each.  In the case of methanol production, the 
MI is notably low at 0.005, indicating inefficient material 

utilization and the requirement of extensive materials for 
recycling the given plastic waste quantity. However, the 
EI is 0.07, demonstrating good energy efficiency with 
minimal energy demands. The WI is 0.08, reflecting effi-
cient water use, while the SWI is also 0.08, suggesting 
minimal solid waste generation. The GWPI stands at 0.08, 
highlighting efficient waste management practices. The 
ECI is 0.06, indicating economic feasibility. In contrast, 
the CPI is very low at 0.02, signifying minimal co-product 
generation within the process. The RI and QI are at 0.100, 
emphasizing full recyclability and high product quality.  
Lastly, TRLI is 0.07, indicating a mature technology. Low 
MI, EI, ECI, and CPI values signify inefficient resource us-
age and high annualized costs in the pyrolysis refinery 
process. Conversely, high WI and GWPI values indicate 
effective water conservation, reduced emissions, and 
moderate waste generation. The process excels in recy-
clability and product quality, underscoring its commit-
ment to sustainability and circular economy goals, as RI 
and QI values indicate.  

 
Figure 2. Individual circularity indicators for all pathways. 

The high TRL reflects a mature technology that effi-
ciently utilizes energy (high EI) and exhibits economic vi-
ability (high ECI) for the incineration energy recovery 
pathway. However, low MI, WI, SWI, GWPI, CPI, RI, and QI 
values raise environmental concerns.  

0.00
0.02
0.04
0.06
0.08
0.10

MI

EI

WI

SWI

GWPI

ECI

CPI

RI

QI

TRL

Methanol Olefines+Fuels Base case

Table 2. Required materials and utilities in kg/ tons of plastic waste input and MWh/ton waste for electricity. 

Name NaCl Sul-
folane 

H Baux-
ite 

Lime-
stone  

O He Water Solid 
waste  

Energy  Reference 

GTM           [] 
            
PR           [ ] 
            
IER           [] 
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Figure 3.  DCM Breakdown. 

This pathway consumes substantial materials and 
water, generates significant waste, emits pollutants, pro-
duces non-recyclable products, and lacks co-products.  
The DCM values are represented in Figure 3, where 
higher values indicate higher circularity levels. The incin-
eration base case achieves the lowest DCM of 0.48, while 
methanol synthesis contributes to circular economy prin-
ciples, boasting a DCM of 0.67, nearly 40% better than 
the base case. Pyrolysis refinery follows closely with a 
DCM of 0.61, exceeding the base case by 27%. Regarding 
profitability, all technologies are economically viable and 
generate positive economic impacts. The base case 
yields an annual profit of 11 M USD. In contrast, methanol 
synthesis and pyrolysis refinery outperform, with net 
earnings of 26 M USD and 33 M USD per year, respec-
tively, doubling and tripling the base case's net profit.  

 
Figure 4. Capacity allocation of the optimal solution using 
different indicator weights. 

After conducting a multi-criteria analysis, the opti-
mization model was tested with an objective function 
aimed at maximizing the net profit of the technology 
while pursuing the maximum possible circularity. The first 
case was solved with equal weight distribution (ED) of 
the individual metrics compromising the DCM. However, 
the specific preferences for each indicator depended on 
the context and objectives of circularity within the tech-
nology or system. Sometimes, prioritizing one indicator 
was essential based on geographical location, system 
needs, and regulatory perspectives. Therefore, the anal-
ysis included a second case of assigning a high weight of 
55% to the indicator under focus, while other indicators 
received a minimum equal contribution of 5% each. This 
part of the analysis explored the optimal solution when 
one indicator was significant, with the remaining indica-
tors being critical. Both cases were solved using suitable 
constraints for the same objective function, resulting in 
the optimal allocation of the proposed capacity depicted 
in Figure 4.  

 

Figure 5. Profitability (M USD/y) of the optimal solutions 
in comparison to the base case, GTM, and PR processes. 

Furthermore, the net profit and DCM values, as illus-
trated in Figure 5, and Figure 6 Respectively, show that 
the optimal solutions will always have better profitability 
and circularity contribution compared to the base case. 
Maximizing the value of the weight of MI, EI, WI, SWI, 
GWPI, and ECI in the total DCM will not significantly affect 
the overall economic feasibility of the optimal solutions 
as reflected by the values of net profit of 27, 26, 33, 29, 
33, and 27 M USD/y respectively. Moreover, the DCM 
faces an apparent variation with values of 68%, 74%, 
80%, 72%, 77%, and 72% respectively. 
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Figure 6. Degree of Circularity Metric DCM (%) of the 
optimal solutions in comparison to the base case, GTM, 
and PR processes. 

CONCLUSIONS 
   Given the projected annual increase in plastic 

waste, sustainable plastic waste management has be-
come necessary. This work delves into open and closed-
loop plastic waste recycling technologies. The novel 
screening model introduced here is a robust tool for eval-
uating these recycling pathways. The case study cen-
tered around 100,000 tons of mixed plastic waste gener-
ated annually, considers three pathways: gasification, 
pyrolysis represented by methanol production, and py-
rolysis refinery, both closed-loop pathways capable of 
producing new plastic, and incineration for energy recov-
ery serving as an open-loop base case scenario. The re-
sults reveal chemical recycling technologies' considera-
ble potential. Methanol synthesis and pyrolysis refinery 
emerge as the stars, generating net profits of 26 M USD 
and 33 M USD per year, respectively, substantially ex-
ceeding the base case's annual profit of 11 M USD. While 
economic viability is crucial, this analysis emphasizes cir-
cularity considerations. The incineration base case rec-
ords the lowest DCM at 0.48, while methanol synthesis 
shines as a circular economy champion, boasting a DCM 
of 0.67, nearly 40% better than the base case. The pyrol-
ysis refinery has a DCM of 0.61, surpassing the base case 
by 27%. Moreover, the analysis also investigated the im-
pact of different indicator weights on the optimal solu-
tions, allowing for tailored solutions based on specific 
system needs and preferences. The optimal solution var-
ied accordingly, highlighting the importance of selecting 
relevant indicators for the given context of the system. In 
conclusion, the presented approach provides valuable 

insights for decision-makers and stakeholders, enabling 
them to choose appropriate recycling technologies 
based on their objectives and priorities. The results em-
phasize the crucial role of circularity in improving both 
environmental sustainability and economic viability. Fu-
ture research can build upon these findings, exploring 
additional factors and technology options to enhance 
plastic waste management further and contribute to ad-
vancing the circular economy concept. 
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ABSTRACT 
The food-energy-water nexus (FEWN) has been receiving increasing interest in the open literature 
as a framework to address the widening gap between natural resource availability and demand, 
towards more sustainable and cost-competitive solutions. The FEWN aims at holistically integrat-
ing the three interconnected subsystems of food, energy and water, into a single representative 
network. However, such an integration poses formidable challenges due to the complexity and 
multi-scale nature of the three subsystems and their respective interconnections. Additionally, the 
significant input data uncertainty and variability, such as energy prices and demands, or the eval-
uation of emerging technologies, contribute to the system’s inherent complexity. In this work, we 
revisit the FEWN problem in an attempt to elucidate and address in a systematic way issues related 
to its multi-scale complexity, uncertainty and variability. In particular, we provide a classification 
of the sources of data and technology uncertainty from historic data, forecasting and process 
parameters, and propose ways to quantify their impact on the integrated system analysis. To ef-
fectively tame the FEWN’s multi-scale complexity, we distinguish between the introduced error of 
approximation and optimization of employed surrogate models. In turn, it is possible to character-
ize their impact on optimal FEWN decision-making based on the quantification of the introduced 
errors at all levels. Thus, we present strategies to systematically characterize FEWN process sys-
tems modeling and optimization. Ultimately, this facilitates translating obtained solutions into ac-
tionable knowledge by quantifying the level of confidence one can have in the derived process 
model and optimal results.   

Keywords: Food & Agricultural Processes, Energy, Water, Design Under Uncertainty, Surrogate Model, Envi-
ronment

INTRODUCTION 
The food-energy-water nexus (FEWN) has been 

identified in the open literature as an effective methodol-
ogy to address the increasing disparity between natural 
food, energy and water resource availability and the re-
spective resource demands sustainably. Based on a de-
tailed analysis of the interconnections of the food, en-
ergy, and water subsystems, the FEWN aims to facilitate 
synergies among the three resource network subsys-
tems, whereas competition is to be avoided to ultimately 
uncover trade-off solution strategies [1]. This proposed 
sustainable systems integration approach poses 

formidable challenges from a process systems engineer-
ing (PSE) perspective, including but not limited to multi-
scale uncertainty, appropriate system boundary defini-
tion, together with multiple and often conflicting stake-
holder perspectives [2]. Furthermore, it has been shown 
that FEWN research does not produce sufficient action-
able knowledge [3], meaning that obtained PSE FEWN 
frameworks and results are not translated into real world 
impact. In turn, the achievable synergy level of obtained 
optimal FEWN solutions is not only limited by the data 
availability, but also by the utilized modeling and com-
plexity reduction techniques due to the introduced un-
certainties and errors [4, 5].  
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Therefore, this work revisits the FEWN problem 
statement to systematically address its multi-scale com-
plexity and uncertainty. More specifically, the scope of 
this work is to present methods to quantify introduced 
errors across all scales stemming from the necessity to 
overcome uncertainty, modeling, and computational 
complexity. While characterizing data uncertainty is well 
established in the literature, this work presents a novel 
distinction among the errors of approximation and opti-
mization to fully characterize modeling complexity based 
on a representative surrogate energy-water supply 
model. Bridging the computational complexity of the sur-
rogate model is evaluated via clustering of operational 
decisions of the water supply system. In turn, this work 
presents a framework to characterize introduced errors 
at all levels to provide decisionmakers, such as stake-
holder or policymakers, with a quantifiable level of confi-
dence one can have in the derived process model and 
optimal results.   
 The similarities among data uncertainty and com-
plexity mitigation strategies are a central narrative of this 
work, the basis of which is elucidated via a representative 
energy-water supply system in the section FEWN Model-
ing. For impactful FEWN system modeling and optimiza-
tion relevant system parameters have to be defined ac-
cording to historic data which inherently introduces er-
rors due to data uncertainty. Regarding data uncertainty 
the major challenges can be identified as (i) data variabil-
ity, (ii) data aggregation, and (iii) data forecasting. All of 
this is discussed as part of the FEWN Modeling section. 
Due to the multi-scale complexity of the FEWN an inter-
connected system model cannot be optimized directly. In 
turn, modeling complexity mitigation via surrogate mod-
eling, such as feedforward artificial neural networks 
(ANNs) or linear regression, and computational complex-
ity reduction via algorithmic strategies, such as clustering 
or rolling horizon approaches, are discussed in the sec-
tion System Complexity. It is important to note that the 
observations discussed in this work can readily be ex-
tended from FEWN approaches to general PSE problem 
statements tackling interconnected process systems and 
are essential for deriving actionable knowledge by quan-
tifying the introduced errors stemming from data uncer-
tainty and variability, as well as from the selected approx-
imation and optimization methods.  

FEWN MODELING 
The assumed system boundary inherently influ-

ences the FEWN system’s modeling and solution genera-
tion. Accordingly, it has to be identified based on the de-
fined research goals for impactful decision-making of 
FEWN frameworks [6]. This work investigates the quan-
tification of complexity and data uncertainty mitigation 
errors across all scales of FEWN systems for the 

derivation of actionable knowledge. Accordingly, a rep-
resentative FEWN process system, based on benchmark 
resource supply systems, is selected as the relevant sys-
tem boundary.  

A renewable energy supply system for the identifi-
cation of the cost-optimal mix of renewable energy gen-
eration and storage system has been selected as a rep-
resentative energy supply system due to its reduced 
greenhouse gas emissions and therefore key role in the 
energy transition [7].  

 
𝑃𝑃𝐷𝐷(𝑡𝑡) ≤ ∑ (𝑃𝑃(𝑡𝑡) − 𝐸𝐸𝐸𝐸(𝑡𝑡)𝑡𝑡 + ∑ [𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘(𝑡𝑡) − 𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟,𝑘𝑘(𝑡𝑡)𝑡𝑡,𝑘𝑘 ])        (1) 
𝑃𝑃(𝑡𝑡) = ∑ 𝑛𝑛𝑇𝑇𝑟𝑟𝑇𝑇ℎ ⋅ 𝑝𝑝𝑇𝑇𝑟𝑟𝑇𝑇ℎ(𝑡𝑡)𝑇𝑇𝑟𝑟𝑇𝑇ℎ          (2) 
𝑃𝑃𝑘𝑘𝑏𝑏𝑏𝑏𝑡𝑡(𝑡𝑡) = 𝑃𝑃𝑘𝑘𝑏𝑏𝑏𝑏𝑡𝑡(𝑡𝑡 − 1) + 𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟,𝑘𝑘(𝑡𝑡) − 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘(𝑡𝑡) ∀𝑘𝑘 ∈ 𝐾𝐾           (3) 
 
The governing equations of the energy supply system are 
summarized for evert time point 𝑡𝑡 ∈ 𝑇𝑇 from Eq. (1) to (3). 
The energy demand 𝑃𝑃𝐷𝐷(𝑡𝑡) has to be satisfied by generat-
ing renewable energy from different technologies such 
as biomass, wind turbines, single axis tracking or fixed 
angle solar panels (see Eq. (2)) or releasing energy from 
available energy storage systems (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘(𝑡𝑡) 𝑘𝑘 ∈ 𝐾𝐾). In turn, 
a surplus of renewable energy availability can be used to 
store energy (𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟,𝑘𝑘(𝑡𝑡) 𝑘𝑘 ∈ 𝐾𝐾) or satisfy the energy con-
sumption of the water supply system (𝐸𝐸𝐸𝐸(𝑡𝑡)). 

Reverse osmosis (RO) desalination water supply 
systems have already been identified as benchmark wa-
ter supply systems in the literature and are accordingly 
selected for this study [8].  

 
𝑆𝑆𝐸𝐸𝐸𝐸(𝑡𝑡) = 1

𝑊𝑊𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ⋅ �
1

4⋅𝜂𝜂1
∑ 𝑃𝑃𝑓𝑓,1,𝑗𝑗(𝑡𝑡)4
𝑗𝑗=1 +

⋯�1−𝑊𝑊𝑅𝑅1(𝑡𝑡)�⋅�1−𝑊𝑊𝑅𝑅2(𝑡𝑡)�
𝜂𝜂1

�1
2
∑ 𝑃𝑃𝑓𝑓,3,𝑗𝑗(𝑡𝑡)2
𝑗𝑗=1 − 1

4
∑ 𝑃𝑃𝑟𝑟,2,𝑗𝑗
4
𝑗𝑗=1 (𝑡𝑡)� −

⋯ �1−𝑊𝑊𝑅𝑅1(𝑡𝑡)�⋅�1−𝑊𝑊𝑅𝑅2(𝑡𝑡)�⋅�1−𝑊𝑊𝑅𝑅3(𝑡𝑡)�⋅𝜂𝜂2
2

∑ Δ𝑃𝑃𝐸𝐸𝑅𝑅𝐷𝐷,𝑗𝑗(𝑡𝑡)2
𝑗𝑗=1 �           (4) 

𝐸𝐸𝐸𝐸(𝑡𝑡) = 𝑆𝑆𝐸𝐸𝐸𝐸(𝑡𝑡) ⋅ 𝑄𝑄𝑝𝑝(𝑡𝑡)             (5) 
 𝑄𝑄𝑝𝑝(𝑡𝑡) =  𝑊𝑊𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ⋅ 𝑄𝑄𝑓𝑓(𝑡𝑡)        (6) 

𝑊𝑊𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝑊𝑊𝑅𝑅1(𝑡𝑡) + �1 −𝑊𝑊𝑅𝑅1(𝑡𝑡)� ⋅ 𝑊𝑊𝑅𝑅2(𝑡𝑡) + �1 −
⋯𝑊𝑊𝑅𝑅1(𝑡𝑡)� ⋅ �1 −𝑊𝑊𝑅𝑅2(𝑡𝑡)� ⋅ 𝑊𝑊𝑅𝑅3(𝑡𝑡)        (7) 
 
Eq. (4) to (7) summarize the governing RO desalination 
system equations. The specific energy consumption can 
be calculated based on the feed pressures (𝑃𝑃𝑓𝑓,𝑖𝑖,𝑗𝑗(𝑡𝑡)) of 
every stage (𝑖𝑖) and parallel flow (𝑗𝑗), as well as water re-
coveries per stage (𝑊𝑊𝑅𝑅𝑖𝑖(𝑡𝑡)) and of the overall system 
(𝑊𝑊𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)), together with the pressure difference across 
the energy recovery device (Δ𝑃𝑃𝐸𝐸𝑅𝑅𝐷𝐷,𝑗𝑗(𝑡𝑡)). The remainder of 
the RO system is characterized by the system’s energy 
consumption (𝐸𝐸𝐸𝐸(𝑡𝑡)), together with its produced perme-
ate (𝑄𝑄𝑝𝑝(𝑡𝑡)) and required feed flow (𝑄𝑄𝑓𝑓(𝑡𝑡)). 𝑄𝑄𝑝𝑝(𝑡𝑡) can then 
be used to satisfy the municipal water demand and the 
water demand for biomass farming of the renewable en-
ergy supply system. In addition, a water storage balance 
analogous to Eq. (3) can be added to the RO desalination 
system.  
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For semi-arid and arid water scarce regions with 
high temperatures and harsh external conditions, out-
door agriculture is neither a viable nor a sustainable op-
tion. Therefore, greenhouse farming systems providing a 
controlled environment for secure plant growth are se-
lected as a representative food supply system [9].  

To reduce the overall system complexity only the re-
newable energy supply system and the RO water supply 
system are considered in detail. The greenhouse system 
is considered via water and energy demand fulfillment 
constraints in addition to metropolitan energy and water 
demand constraints [10]. Accordingly, optimal solutions 
specify the design and operation of an interconnected 
renewable energy supply system and RO water supply 
system with energy and water storage consideration for 
the dynamic water and energy demand fulfillment as 
specified by the demands of an urban center and a 
greenhouse farming system. 

The overall representative energy-water supply 
system for metropolitan and agricultural ecosystems is 
summarized together with all encountered data uncer-
tainties and modeling complexities in Figure 2. The de-
tailed mathematical model of the renewable energy sup-
ply system can be found in [7], of the RO water supply 
system in [8,11] and their modeled interconnections in 
[10]. The novelty of this work consists of revisiting the 
FEWN problem statement by systematically discussing 
mitigation strategies overcoming data uncertainty and 
variability, as well as system modeling and computational 
complexity. Dependent on the complexity mitigation 
strategy not only the feasible region of the optimization 

model, but also the obtained optimal results in the form 
of the objective function and optimization variable values 
can potentially be altered [11]. To maintain the practica-
bility of derived FEWN frameworks and results, it is of the 
utmost importance to quantify the introduced errors. This 
represents a certified level of confidence decision-mak-
ers can have in the proposed FEWN process systems so-
lutions. 

 
The identification of relevant data of reduced order 

compared to the historically available data remains one 
of the main challenges of solving FEWN problems toward 
practical impact. To operationalize the FEWN researchers 
have to not only mitigate data variability, but also derive 
representative data from a plethora of historical data (ag-
gregation) and extrapolate currently available data to fu-
ture trends (forecasting), as depicted in Figure 2.  For all 
of these data uncertainty challenges, a sensitivity analy-
sis of derived results can be leveraged as a proxy of the 
introduced error. One of the most direct ways to quantify 
the sensitivity of optimal solutions dependent on chang-
ing parameter values is multi-period or what-if scenario 
analysis. These approaches attempt to integrate uncer-
tainty into policymaking through iterative exploration of 
possible optimal solutions [12]. Here, this can be under-
stood as varying assumed input climate data profiles, 
such as solar direct normal irradiance (DNI) or wind 
speeds, or potential future energy and water demand 
profiles and prices. Other strategies to capture data var-
iability include stochastic approaches which leverage 
probability distributions to approximate the variable input 

 
Figure 2: Representative renewable energy and RO water supply system under investigation with specified 
uncertainty and complexity considerations. 
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data [13]. In this instance, the original deterministic opti-
mization model becomes stochastic and can be solved 
via either Monte Carlo simulation, chance-constrained or 
robust programming.  

To extrapolate patterns and behavior from historic 
data into the future forecasting techniques are utilized. 
Here, the introduced error of uncertainty stems from the 
quality of representative data utilized for forecasting and 
how accurate future trends can be captured based on 
this training data set. While there exist long term projec-
tions of future water demands, this is not the case for fu-
ture energy demands and prices. To address this chal-
lenge, Baratsas et al. [14] established a quantitative 
framework to evaluate the integrated price of energy, the 
Energy Price Index (EPIC), which, influenced by both the 
demand and prices of energy products, signifies the av-
erage monthly price of energy for end-use consumers. 
To predict the present value for the demand and price of 
the energy products, a rolling horizon methodology is uti-
lized since the availability of data for the demand and 
prices for certain energy products is often lagged by one 
to three months [15].  

The interested reader is advised to consult [16] for 
a general review of advantages, disadvantages, and nov-
elties of time series forecasting techniques applied to the 
energy sector. It is important to note that the degree of 
uncertainty significantly increases with the projected 
time scale of the forecast. This is for example illustrated 
by the divergence of long-term projections for industry 
sector energy consumptions due to varying base and fi-
nal year assumptions and if non-monetary drivers are 
used to project material demand [17]. Even if long-term 
projections are generated via a rolling horizon approach, 
the introduced uncertainty increases with every fore-
casted time step due to the possibility of compounding 
the forecasting error.  

Aggregation aims at reducing comprehensive his-
toric data into a manageable representative data set 
which is subsequently used to replace the original his-
toric data. This is for example applied to hourly or daily 
wind speed or solar direct normal irradiance profiles for 
renewable energy systems optimization or available sub-
land clusters for land-use optimization. Accordingly, an 
error of uncertainty is introduced in the process system 
due to the scale reduction. However, this scale reduction 
also reduces the computational complexity which simul-
taneously introduces an error of optimization. Here, one 
can appreciate the interconnectedness of complexity re-
duction and data uncertainty. To address the computa-
tional burden associated with hourly time discretization 
and extensive time horizons in optimization models, Tso 
et al. [18] proposed a decomposition algorithm based on 
agglomerative hierarchical clustering (AHC), moving 
away from traditional k-means clustering, to preserve the 
time chronology of the input data. To select the optimal 

number of clusters, a cut-off threshold, showing the per-
centage of slope decrease in within-cluster variance, is 
applied, which can be understood as the allowable ag-
gregation error. 

SYSTEM COMPLEXITY 
 The individual renewable energy supply system and 
the RO water supply system are highly complex to model 
and optimize due to their nonlinear behavior. In fact, de-
pendent on the selected time scale the interconnected 
model is computationally intractable [10]. However, 
solely optimizing each subsystem individually is not suf-
ficient to uncover synergies among the supply systems 
[1]. In turn, researchers employ surrogate models to-
gether with advanced algorithmic strategies to overcome 
modeling and computational complexity [19]. While these 
are effective approaches to reduce system complexity, 
these methods introduce errors due to the leveraged ap-
proximation and optimization strategies.  
 The error of approximation is well studied in the lit-
erature and can readily be quantified based on the coef-
ficient of determination (𝑅𝑅2) or the mean squared error 
(MSE). On the contrary, the introduced error due to the 
selected optimization method can be understood as the 
introduced change in objective function value and de-
grees of freedom (DOF) due to the utilization of a surro-
gate model or advanced algorithmic strategy. The varia-
tion of DOF and objective value (𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑝𝑝𝑡𝑡) can be quantified 
by calculating the 𝑅𝑅2 (or MSE) of the “original” optimiza-
tion model (𝑥𝑥𝑖𝑖) and the surrogate model optimization re-
sults (𝑥𝑥𝑖𝑖�), as shown in Eq. (8). In this case, 𝑅𝑅2 can be un-
derstood as the amount of original model variability ex-
plained by the surrogate model and optimization method 
which should ideally be one. To summarize all introduced 
errors, 𝑅𝑅2 for each approximation or optimization ap-
proach can be calculated and subsequently be multiplied 
to obtain a final value for the introduced error due to the 
necessity of system complexity mitigation.    
 
 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑝𝑝𝑡𝑡 = 1 − 𝑅𝑅2 = 1 −  ∑ (𝑥𝑥𝑖𝑖−𝑥𝑥𝚤𝚤�𝑛𝑛

𝑖𝑖=1 )2  
 ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑛𝑛
𝑖𝑖=1

        (8) 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 = 1 − 𝑠𝑠�
𝑠𝑠

        𝑦𝑦�,𝑦𝑦 ≥ 0                                              (9) 
 
 Further, the change in objective function value can 
be quantified based on Eq. (9), where 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 denotes the 
introduced error based on the derived objective function 
values. In this case, 𝑦𝑦� denotes the optimal solution ob-
tained via the surrogate optimization model, whereas 𝑦𝑦 
represents the originally obtained optimal solution. Based 
on this definition we can conclude that if  

• 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 > 0, then 𝑦𝑦� is a lower bound for 𝑦𝑦. 
• 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 < 0, then 𝑦𝑦�  is an upper bound for 𝑦𝑦. 

This deduction is only valid if the objective function val-
ues are positive. For negative objective function values, 
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the reversible observations are applicable.   

Modeling Complexity 
As previously mentioned, the RO water supply sys-

tem is selected to illustrate the influence of surrogate 
modeling on optimal decision-making. We selected sim-
ple linear regression, first-order Taylor approximation, 
multiple linear regression, and feedforward artificial neu-
ral networks (ANNs) with rectified linear units (ReLUs) as 
activation functions as potential surrogate models. Shal-
low ANNs with a limited number of neurons utilizing Re-
LUs can be interpreted as a multiple variable piecewise 
linear regression. If one of these models, in the presented 
sequence, satisfied a set quality of approximation crite-
rion (𝑅𝑅2 ≥0.95) the corresponding model has been se-
lected to balance simplicity and accuracy. 

Here, the specific energy consumption (𝑅𝑅2=0.99) 
and the energy consumption (𝑅𝑅2=0.99) of the RO plant 
can both be calculated based on individual shallow ANNs 
utilizing ReLUs as activation functions. The RO plant’s 
overall permeate flow (𝑅𝑅2=0.98) and water recovery 
(𝑅𝑅2=0.98) can be approximated via first-order Taylor ex-
pansions. In this instance, the surrogate model explains 
approximately 94% of the observed variability of the orig-
inal model and thus we can certify the introduced error 
due to approximation to be 6%. Accordingly, the original 
mixed-integer nonlinear programming (MINLP) problem 
can be successfully approximated by a mixed-integer lin-
ear programming problem (MILP) [11].  

 

 
Figure 3: Results of RO modeling and optimization. Lines: 
Original MINLP model; Points: MILP Surrogate model. 
 
In turn, the error of optimization can be quantified by op-
timizing both the MINLP and MILP for the same set of 
constraints. The optimization models have been solved in 
GAMS with the Gurobi solver for the MILP problem and 
the BARON solver for the MINLP problem. Results of this 
analysis in terms of a direct comparison between the op-
timal energy consumption of the RO plant for changing 
feed flows and efficiencies of the MINLP and MILP prob-
lem are displayed in Figure 3. Here, we can appreciate 
how the differences in minimized energy consumption 

between the MILP and MINLP model shrink with increas-
ing water recovery and decreasing feed flow. The differ-
ence between the two optimization approaches results in 
𝑅𝑅2=0.98, meaning that solely based on the optimization 
approach an additional error of 2% is introduced in the 
objective function values. This change in objective func-
tion value can also be quantified by calculating 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 (Eq. 
(3)) for every pair of feedflow and water recovery. Inter-
estingly, the error of objective function value does not 
change significantly with changes in feed flow, which is 
exemplified by a maximum standard deviation of 0.0026 
across all values. 
 

 
Figure 4: Results of RO modeling and optimization. Intro-
duced error due to the selected optimization method.  
 
Accordingly, the average 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 for each water recovery 
has been calculated which is depicted in Figure 4. On first 
glance we can postulate that the MILP problem provides 
in all cases a lower bound to the true optimal solution 
(𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 > 0). It is interesting to see how the error of opti-
mization decreases with increasing water recovery, i.e. 
system efficiency. For water recoveries higher than 0.6, 
the introduced error in the objective function value is less 
than 0.133. Besides the change in objective function 
value, the utilization of surrogate models can also influ-
ence the obtained values of optimization variables. 
   

 
Figure 5: Results of RO optimization. Comparison of the 
SEC of system solutions for the MINLP and MILP case. 
For RO systems, key performance indicators besides the 
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plant’s energy consumption are the system’s overall wa-
ter recovery, overall permeate output and specific energy 
consumption. Both, the MINLP and MILP optimization 
problem, result in the same system water recovery and 
permeate output, meaning that the RO systems operate 
at the same efficiency and output level.  

Interestingly, the SEC consumption of both models 
differ due to the selection of different operational pres-
sures and water recoveries per stage across the plant 
(see Eq. (4) and (7)). This is possible since the same wa-
ter recovery of the system can be achieved with different 
water recoveries per stage and since the same water re-
covery per stage can be achieved with different pres-
sures per stage and parallel flow across the plant. To 
measure this difference in operational decisions the SEC 
for the MINLP and MILP case are visualized in Figure 5. It 
is important to note that it has been shown that the SEC 
is only dependent on the water recovery [8] explaining 
the reduction in data points between Figures 3 and 5, 
similar to the observation regarding Figures 3 and 4. Ide-
ally, the data points would follow a straight line of slope 
one indicating that the SEC results of the respective 
models are identical. Since this is not the case, we can 
appreciate the introduced optimization method error as 
departures from said line, which can be quantified as 
𝑅𝑅2=0.95. In turn, this represents an introduced error of 5% 
in terms of decision variable values.  

Taking into account this additional error, the optimi-
zation model can only capture 88% of the original model’s 
behavior, instead of the initial 94%. Arguably, the error 
due to the selected approximation approach is approxi-
mately the same as the error introduced stemming from 
the selected optimization approach (both 6%). This ob-
servation indeed underlines the importance of quantify-
ing the quality of obtained surrogate model optimization 
results, although this is a difficult task which might not 
always be possible because of the potential non-solva-
bility of the underlying physics-based models.    

Computational Complexity 
The spatial and temporal multi-scale complexity of 

the FEWN results in large scale optimization models, 
which is one of the main reasons that derived optimiza-
tion frameworks are computationally intractable. It al-
ready has been shown that the full energy-water supply 
system cannot be solved at an hourly time scale over a 
one-year time horizon. To obtain an upper bound on the 
true optimal solution, the RO system has been restricted 
to a single operating point whereas the full dynamic re-
newable energy system is solved over a one-year time 
horizon [10]. In this extreme case, the RO system is ef-
fectively clustered to a single representative operating 
point specifying only once its constant 𝐸𝐸𝐸𝐸, 𝑄𝑄𝑝𝑝, 𝑄𝑄𝑓𝑓 and 
𝑊𝑊𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠. This is analogous to assuming that there exists 
only a single time period of operation of the RO system 
according to a “short-sighted” rolling horizon approach 
and can effectively be understood as introducing a dif-
ferent time scale for the water supply system. In turn, this 
inherently limits the system’s flexibility and potentially its 
ability to adjust to the variability of the renewable energy 
supply system. Accordingly, altering the frequency of op-
erational clustering corresponds to evaluating the im-
portance of considering varying or equal time scales 
among the interconnected supply systems.   

However, the quality of the obtained upper bound 
on the true optimal solution has not been quantified yet.  
In theory, better upper bounds to the true optimal solu-
tion can be obtained by adding more operational RO clus-
ters to the system. This clustering of operating points can 
directly be compared to similar approaches for data ag-
gregation. Alternatively, instead of solving the optimiza-
tion model over a one-year time horizon, the model can 
only be solved for one month and then resolved 12 times 
to approximate the annual solution, similar to a rolling 
horizon strategy [20].  

To evaluate the potential of operational RO cluster-
ing for complexity mitigation, this work solves the full en-
ergy-water model for two weeks at an hourly time scale 

 
Figure 6: Impact of clustering of operational RO decisions on solution time. Left: 2 week time horizon; Right: 1 
month time horizon. 
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(336 hours), as well as for one month at an hourly time 
scale (730 hours). In both instances, the RO operation is 
successively restricted from the full dynamic model to a 
single operating point. Special attention is placed on how 
the solution times and objective function values change 
with increasing operational restriction. It is expected that 
in all cases 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 ≤ 0 since this clustering approach of 
the RO system can only provide upper bounds to the true 
optimal solution. For all cases an optimal solution and 
mixed-integer programming (MIP) gap of 0% is enforced.  

As shown in Figure 6, the solution time decreases 
significantly with decreasing number of clusters for both 
cases. However, starting at 12 clusters for the 336 hour 
time scale and at 10 clusters for the 730 hour time scale 
no significant speed-ups in solution time can be ob-
served. Moreover, for both cases,  𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 is negligible 
over the complete cluster horizon as illustrated by a 
mean of −1.4215 ⋅ 10−6 (standard deviation of 2.3877 ⋅
10−7) and  −1.4640 ⋅ 10−4 (standard deviation of 3.9754 ⋅
10−7), for the 2 week and the 1 month case study, respec-
tively. These results suggest that there is a cluster 
threshold after which no speed-up in solution time and 
no significant changes in objective function value are ex-
pected, meaning there is an advantageous trade-off be-
tween operational flexibility (number of clusters), system 
solvability (solution time) and accuracy (𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗). How-
ever, we can also deduct that collapsing a bi-weekly or 
monthly operation in a single operating point does not re-
sult in a significant loss of information (𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑏𝑏𝑗𝑗 < 1.4 ⋅
10−4). Therefore, it is suggested to evaluate how the so-
lution of the full-time scale FEWN problem changes with 
increasing RO operational flexibility (yearly, monthly, bi-
weekly, daily, every 12 hours). In this case the model was 
solved to an optimal solution and MIP gap of 0%.  

Table 1: Results of solving the full-scale energy-water 
nexus supply model (8760 hours). Model size is specified 
according to the dimensions of the constraint matrix. 

RO  
Operation Clusters Model Size 𝑬𝑬𝑬𝑬𝑬𝑬𝒐𝒐𝒐𝒐𝒐𝒐 

Yearly  [ 
] Basis 

Monthly  [ 
] 3.925 ⋅ 10−6 % 

Bi-Weekly  [ 
] 7.860 ⋅ 10−6 % 

Daily  [ 
] 1.426 ⋅ 10−5 % 

 hours  [ 
] 1.630 ⋅ 10−5 % 

 
 Interestingly, the objective function value does not 
change for all practical purposes by allowing for more 
flexible operational RO decisions over one year, as shown 
in Table 1. In addition, the energy and water storage 

schedules differ only insignificantly among obtained so-
lutions. For all intents and purposes, the obtained optimal 
solutions are virtually identical. The solution times on the 
other hand vary from 250 seconds for the yearly case to 
6400 seconds (around 2 hours) and even 53,000 sec-
onds (more than 14 hours) for the daily and every 12 
hours RO operational decision strategy, respectively. For 
the case study presented here, the RO clustering does 
not seem to have an impact on the overall solution accu-
racy. This novel analysis overall strengthened our confi-
dence in the harsh sounding assumption of allowing only 
one RO operating point over one year to obtain a valid 
upper bound on the true optimal solution. However, this 
statement can only be generalized if the solution of the 
full-time scale FEWN model can be obtained, i.e. via de-
composition strategies. It is expected that there exists a 
solution drop-off with an increasing number of clusters 
towards the full-time scale model. The obtained results 
can also aid in the convergence time of the full-scale op-
timization model by providing valid upper bounds to the 
problem which potentially shrinks the solution gap signif-
icantly depending on the quality of the lower bound. 

CONCLUSION 
In this work, we revisited the FEWN problem state-

ment by addressing data uncertainty and system com-
plexity through the lens of a representative surrogate en-
ergy-water supply system. Sources of introduced data 
uncertainty and complexity mitigation errors have been 
discussed in detail. While it is difficult to quantify the in-
troduced modeling and data uncertainty errors it is an es-
sential task to maintain confidence in derived FEWN op-
timization frameworks and results. Implications of ap-
proximation and optimization methods for a RO water 
supply system have been discussed in detail, which has 
then been extended to an operational RO clustering ap-
proach to mitigate the computational complexity of the 
interconnected energy-water supply system optimiza-
tion.  

Policy makers and stakeholders are crucial in trans-
lating obtained PSE FEWN methodologies and results into 
real-world implementation. Being able to quantify a level 
of confidence one can have into proposed modeling 
strategies aids in this process. The proposed error quan-
tification strategies can be leveraged to certify how much 
uncertainty in the obtained optimal solution is added with 
every data processing and modeling step. In turn, this un-
certainty can be utilized to provide interpretable ranges 
of optimal results instead of single values, similar to con-
fidence intervals, for transparent and effective decision-
making across all levels.  
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ABSTRACT 
This paper considers the optimal incorporation of renewable ammonia production facilities into 
existing supply chain networks which import ammonia from conventional producers while account-
ing for uncertainty in this conventional ammonia price. We model the supply chain transition prob-
lem as a two-stage stochastic optimization problem which is formulated as a Mixed Integer Linear 
Programming problem. We apply the proposed approach to a case study on Minnesota's ammonia 
supply chain. We find that accounting for conventional price uncertainty leads to earlier incorpo-
ration of in-state renewable production sites in the supply chain network and a reduction in the 
quantity and cost of conventional ammonia imported over the supply chain transition horizon. 
These results show that local renewable ammonia production can act as a hedge against the vol-
atility of the conventional ammonia market.  

Keywords: Design and Sustainability, Stochastic Optimization, Capacity Expansion, Supply Chain Optimization, 
Green Ammonia 

INTRODUCTION 
Ammonia is one of the most important industrial 

chemicals and serves as the backbone of modern agri-
culture in its use either directly or as a precursor to other 
nitrogen fertilizers. The standard production of ammonia 
is based on the Haber-Bosch process, which uses fossil 
fuels as the feedstock hydrogen source and operates at 
high pressure and temperature [1]. These facilities gen-
erally have capacities greater than 1,000,000 metric tons 
per year (mt/y) to take advantage of economies of scale 
[2]. This production paradigm leads to high transporta-
tion costs and carbon emissions in the operation of the 
supply chain because ammonia is transported through 
national and even global networks of ships, pipelines, rail, 
and trucks from a few production sites to the final cus-
tomers [3]. 

The transition to a more sustainable supply chain 
network can be achieved by reducing the carbon emis-
sions related to the manufacturing and distribution of am-
monia. Renewable or green ammonia production recently 
has been the subject of extensive research and develop-
ment as an alternative to the standard ammonia manu-
facturing paradigm [4]. In this approach, renewable 

resources such as wind and solar are used to produce 
hydrogen via electrolysis and nitrogen via air separation, 
reducing the carbon intensity of producing ammonia. The 
Midwest region of the United States uses the most nitro-
gen fertilizer in the country while also being home to rich 
wind resources [5]. This gives rise to an opportunity to 
produce renewable ammonia closer to where it is used, 
thus reducing the cost and carbon intensity of ammonia 
distribution [6]. Producing ammonia using renewable en-
ergy also offers the potential for ammonia production 
cost stability. The feedstock renewable energy can have 
a close-to-constant price in this production setting, 
whether this energy is sourced through multi-year power 
purchase agreements (PPA) or the ammonia producer 
owns and operates the necessary renewable genera-
tion.  In contrast, ammonia is currently traded on a global 
market and its price is subject to variability due to a num-
ber of factors including natural gas prices, food prices, 
and global conflict (see Figure 1). Given the transforma-
tive potential of renewable ammonia, achieving econom-
ical deployment through optimal design of manufacturing 
facilities and the supply chain network is of critical im-
portance. In this work, we focus on the latter.

The transition of existing ammonia supply chain 

https://doi.org/10.69997/sct.141495
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networks to incorporate renewable production will likely 
occur over multiple years and will be affected by multiple 
sources of uncertainty. Identifying optimal investment 
decisions over a fixed planning horizon is a widely stud-
ied problem in process systems engineering and opera-
tions research and is formally known as the capacity ex-
pansion problem [7]. However, the application of the ca-
pacity expansion formalism to the transition of ammonia 
supply chain networks is rather limited. Recently, we 
have proposed a multiperiod deterministic capacity ex-
pansion model that considers the optimal transition of 
ammonia supply chain networks [8]. The model optimizes 
the investment decisions regarding the installation year 
and capacity, such that the overall net present cost is 
minimized while ammonia fertilizer demand is satisfied.

 
Figure 1. U.S. Gulf Coast ammonia price from 2010 to 
2022 [9]. 
 

In this work, we consider the effect of uncertainty 
on the optimal transition of existing ammonia supply 
chain networks. The primary sources of uncertainty in an 
ammonia supply chain are the ammonia demand and the 
market price of ammonia. Although the demand for am-
monia can be predicted from total fertilizer demand esti-
mates, the ammonia price is more volatile. Accounting for 
the significant price variability and uncertainty is essen-
tial for the optimal expansion of existing supply chain net-
works. 

We propose a two-stage stochastic programming 
approach where the uncertainty in price is accounted for 
in the form of scenarios [10,11]. Such a conceptual ap-
proach has been previously employed in supply chain op-
timization models in a number of different industries, for 
example, waste-to-bioethanol [12], biodiesel production 
from wastewater treatment byproducts [13], and coal-to-
liquids [14]. In our model, the installation decisions (the 
location, capacity, and construction year for new renew-
able ammonia manufacturing facilities) are the first stage 
decisions, and the distribution of ammonia from the in-
stalled renewable sites and the conventional producers 

to the customers for the different ammonia prices (sce-
narios) are the second stage decisions. We consider a 
case study on Minnesota’s ammonia supply chain net-
work. The results show that accounting for uncertainty in 
the price of ammonia, especially high prices, requires in-
vestments earlier in the planning horizon, compared to 
assuming a nominal price. Furthermore, we simulate the 
supply chain obtained from the deterministic and sto-
chastic models, and we find that for high ammonia prices, 
the design obtained via stochastic programming results 
in lower net present costs. These results highlight the 
ability of locally-produced renewable ammonia to act as 
a hedge against high prices on the conventional ammonia 
market. The rest of the paper is organized as follows: 
First, we present the two-stage stochastic optimization 
model, then we present the case study and, finally, the 
numerical results. 

TWO-STAGE STOCHASTIC 
OPTIMIZATION MODEL 

We consider an existing supply chain network that 
delivers ammonia to a set of counties 𝒞𝒞 = {1, … ,𝐶𝐶} via dis-
tribution centers 𝒟𝒟 = {1, … ,𝐷𝐷}. In the original network, the 
demand 𝛿𝛿𝑐𝑐 at each county is satisfied by purchasing am-
monia from conventional producers 𝒫𝒫 = {1, … ,𝑃𝑃} with 
price 𝛼𝛼𝑝𝑝. Given a set of candidate locations for renewable 
ammonia production facilities ℛ = {1, … ,𝑅𝑅}, the goal is to 
find the optimal investment decisions over a planning 
horizon 𝒦𝒦, such that the total net present cost of the sup-
ply chain is minimized, demands are met for each period 
of the planning horizon, and at the end of the horizon the 
entire demand is satisfied using renewable ammonia. We 
assume that the capacity investment decisions are made 
annually and the planning horizon 𝒦𝒦 is discretized into K 
time periods. We define variable 𝑥𝑥𝑟𝑟𝑟𝑟 as the capacity in-
stalled at candidate renewable site 𝑟𝑟 at time period 𝑘𝑘, and 
binary variable 𝑧𝑧𝑟𝑟𝑟𝑟 which is equal to one if an investment 
is made at candidate site 𝑟𝑟 at time period 𝑘𝑘 and zero oth-
erwise. We assume that the only uncertain parameter is 
the price of ammonia imported from conventional pro-
ducers. We model the renewable ammonia production in-
vestment decisions, specifically the time period when an 
investment is made 𝑧𝑧𝑟𝑟𝑟𝑟 and the production capacity 𝑥𝑥𝑟𝑟𝑟𝑟 
at a given candidate location 𝑟𝑟, as first-stage decisions. 
The amount of ammonia sent to each county through a 
combination of purchases from conventional producers 
routed through distribution centers and from new renew-
able production facilities are the second stage decisions. 
We follow a scenario-based formulation and define the 
set 𝒮𝒮 = {1, … , 𝑆𝑆} which represents the scenarios of the 
price of ammonia, where each scenario has probability 
𝓅𝓅𝑠𝑠, and the price of ammonia for producer 𝑝𝑝 and scenario 
𝑠𝑠 is 𝛼𝛼𝑝𝑝𝑠𝑠. 

Given this problem setting, first, we define 
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constraints related to the maximum and minimum capac-
ity that can be installed in each location and time period 
by the following constraints 

𝑥𝑥𝑟𝑟𝑟𝑟 ≤ �̅�𝑥𝑈𝑈𝑧𝑧𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ ℛ, 𝑘𝑘 ∈ 𝒦𝒦    (1) 

𝑥𝑥𝑟𝑟𝑟𝑟 ≥ �̅�𝑥𝐿𝐿𝑧𝑧𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ ℛ, 𝑘𝑘 ∈ 𝒦𝒦,    (2) 

where �̅�𝑥𝑈𝑈, �̅�𝑥𝐿𝐿 are the upper and lower bounds on the size 
of renewable sites. Each renewable candidate site has a 
certain wind capacity Ω𝑟𝑟, electrolysis capacity Ω𝑟𝑟, and a 
construction period of two years, which constrain the 
maximum capacity that can be installed and the time that 
the capacity is available as follows 

∑ 𝑥𝑥𝑟𝑟𝑟𝑟′𝜔𝜔𝑟𝑟𝑟𝑟′
𝑟𝑟
𝑟𝑟′=1 ≤ Ωr  ∀𝑟𝑟 ∈ ℛ, 𝑘𝑘 ∈ 𝒦𝒦   (3) 

∑ 𝑥𝑥𝑟𝑟𝑟𝑟𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟∈ℛ ≤ Ξk  ∀𝑘𝑘 ∈ 𝒦𝒦.    (4) 

We define variable 𝑦𝑦𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠 as the amount of ammonia 
purchased from conventional producer 𝑝𝑝 and shipped to 
distribution center 𝑑𝑑 at time period 𝑘𝑘 and scenario 𝑠𝑠. We 
also define variable 𝑦𝑦𝑝𝑝𝑐𝑐𝑟𝑟𝑠𝑠 as the amount of ammonia 
shipped from distribution center 𝑑𝑑 to county 𝑐𝑐 at time pe-
riod 𝑘𝑘 and scenario 𝑠𝑠, and the amount of ammonia 
shipped from the renewable site 𝑟𝑟 to county 𝑐𝑐 at time pe-
riod 𝑘𝑘 and scenario 𝑠𝑠 is 𝑦𝑦𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠. The demand satisfaction 
constraints are 

∑ 𝑦𝑦𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟∈ℛ + ∑ 𝑦𝑦𝑝𝑝𝑐𝑐𝑟𝑟𝑠𝑠d∈𝒟𝒟 ≥ δck  ∀𝑠𝑠 ∈ 𝒮𝒮, c ∈ 𝒞𝒞, k ∈ 𝒦𝒦 (5) 

∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠𝑝𝑝∈𝒫𝒫 ≥ ∑ 𝑦𝑦𝑝𝑝𝑐𝑐𝑟𝑟𝑠𝑠c∈𝒞𝒞   ∀𝑠𝑠 ∈ 𝒮𝒮, d ∈ 𝒟𝒟, k ∈ 𝒦𝒦  (6) 

∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠𝑝𝑝∈𝒟𝒟 ≤ Λp  ∀𝑠𝑠 ∈ 𝒮𝒮, p ∈ 𝒫𝒫, k ∈ 𝒦𝒦   (7) 

∑ 𝑦𝑦𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐∈𝒞𝒞 ≤  ∑ 𝑥𝑥𝑟𝑟𝑟𝑟′k−2
k′=1   ∀𝑠𝑠 ∈ 𝒮𝒮, r ∈ ℛ, k ∈ 𝒦𝒦  (8) 

∑ ∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝∈𝒟𝒟𝑝𝑝∈𝒫𝒫 = 0  ∀𝑠𝑠 ∈ 𝒮𝒮.    (9) 

The objective function is the net present cost of the 
supply chain transition over the planning horizon. It can 
be partitioned into two terms. The first term, 𝑍𝑍𝑟𝑟, is the 
sum of the capital 𝐶𝐶𝐶𝐶𝑃𝑃𝑟𝑟 and operating costs 𝑂𝑂𝑃𝑃𝑟𝑟 which 
depends only on the first-stage decisions, and are com-
puted as follows 

𝐶𝐶𝐶𝐶𝑃𝑃𝑟𝑟 = 1
𝜃𝜃
∑ ∑ 𝑥𝑥𝑟𝑟𝑟𝑟′𝜎𝜎𝑟𝑟𝑟𝑟′ + 𝑧𝑧𝑟𝑟𝑟𝑟′𝛾𝛾𝑟𝑟𝑟𝑟′𝑟𝑟

𝑟𝑟′=1  r∈ℛ   (10) 

𝑂𝑂𝑃𝑃𝑟𝑟 = ∑ ∑ 𝑥𝑥𝑟𝑟𝑟𝑟′𝜁𝜁𝑟𝑟𝑟𝑟′𝑟𝑟
𝑟𝑟′=1  r∈ℛ .   (11) 

The capital cost of a renewable production facility is 
modeled as a piece-wise affine function of the installed 
capacity, with slope 𝜎𝜎𝑟𝑟𝑟𝑟 and intercept 𝛾𝛾𝑟𝑟𝑟𝑟, to capture the 
effect of economies of scale. These parameters vary with 
both renewable site 𝑟𝑟 and time period 𝑘𝑘 to capture the 
effects of varying renewable potential and expected 
technology cost reductions respectively. The capital cost 
is annualized using scaled plant lifetime 𝜃𝜃 which is equal 
to 10.23 y-1. The operating cost is assumed to scale line-
arly with the installed capacity with proportionality con-
stant 𝜁𝜁𝑟𝑟𝑟𝑟. This parameter is assumed to remain constant 
after installation and also varies with renewable site and 

period to capture the effects described above. 
The second term in the objective, �̅�𝑍𝑟𝑟𝑠𝑠, is the sum of 

the distribution of renewable ammonia 𝐷𝐷𝑅𝑅𝑟𝑟𝑠𝑠, transporta-
tion of ammonia from the conventional producers to the 
distribution centers 𝑇𝑇𝐶𝐶𝑟𝑟𝑠𝑠, and distribution of conventional 
ammonia 𝐷𝐷𝐶𝐶𝑟𝑟𝑠𝑠. The individual costs are equal to 

𝐷𝐷𝑃𝑃𝑟𝑟𝑠𝑠 = ∑ ∑ 𝑦𝑦𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠𝜏𝜏𝑟𝑟𝑐𝑐𝑐𝑐∈𝒞𝒞r∈ℛ   ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮 (12) 

𝑃𝑃𝐶𝐶𝑟𝑟𝑠𝑠 = ∑ ∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠𝛼𝛼𝑝𝑝𝑠𝑠𝑝𝑝∈𝒟𝒟p∈𝒫𝒫   ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮 (13) 

𝑇𝑇𝐶𝐶𝑟𝑟𝑠𝑠 = ∑ ∑ 𝑦𝑦𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝∈𝒟𝒟p∈𝒫𝒫   ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮 (14) 

𝐷𝐷𝐶𝐶𝑟𝑟𝑠𝑠 = ∑ ∑ 𝑦𝑦𝑝𝑝𝑐𝑐𝑟𝑟𝑠𝑠𝜏𝜏𝑝𝑝𝑐𝑐𝑐𝑐∈𝒞𝒞d∈𝒟𝒟   ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮 (15) 

𝑍𝑍𝑟𝑟 = CAPk + OPk  ∀𝑘𝑘 ∈ 𝒦𝒦   (16) 

�̅�𝑍𝑟𝑟𝑠𝑠 = DCks + PCks + TCks + DCks  ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑠𝑠 ∈ 𝒮𝒮. (17) 

The two-stage optimization problem is 

min∑ 𝜙𝜙𝑟𝑟𝑍𝑍𝑟𝑟𝑟𝑟∈𝒦𝒦 + ∑ 𝓅𝓅𝑠𝑠(∑ 𝜙𝜙𝑟𝑟  �̅�𝑍𝑟𝑟𝑠𝑠𝑟𝑟∈𝒦𝒦 )𝑠𝑠∈𝒮𝒮    

     s. t. Eq. 1 − 9    (18) 

       𝑥𝑥𝑟𝑟𝑟𝑟 ≥ 0, 𝑧𝑧𝑟𝑟𝑟𝑟 ∈ {0,1}    

       𝑦𝑦𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠 ≥ 0,𝑦𝑦𝑝𝑝𝑐𝑐𝑟𝑟𝑠𝑠 ≥ 0,𝑦𝑦𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠 ≥ 0   

The parameter 𝜙𝜙𝑟𝑟 is the discounted value of cost contri-
butions in time period 𝑘𝑘. 

CASE STUDY 
We herein provide a concise description of the case 

study on Minnesota’s ammonia supply chain. For a more 
detailed case study description, please refer to our pre-
vious work [8]. We consider a supply chain planning hori-
zon from 2024 to 2032. We consider an 8.5% discount 
rate as it pertains to cost flows beyond 2024. Minnesota 
has 82 counties in which ammonia demand must be met 
for each period of the supply chain transition optimiza-
tion. In 2024, the total ammonia demand assumed to be 
795,000 mt/y and this is assumed to increase by 0.5% 
per year. This ammonia can be purchased from 10 con-
ventional producers which are located outside of Minne-
sota. The average conventional ammonia price from 2010 
to 2022 was $500/mt. Ammonia purchased from these 
producers is routed through one of three distribution 
centers in Minnesota. Conventional producers located 
further from Minnesota have higher associated costs to 
transport ammonia to a given distribution center. Pro-
ducer-to-distribution transportation costs range from 
$59/mt to $141/mt, while distribution center-to-county 
transportation costs range from $1/mt to $36/mt. 

We consider 26 candidate locations for new in-state 
renewable ammonia production. Capital costs of a given 
facility are incurred two years before renewable produc-
tion begins to represent a two year construction period. 
The operating cost includes renewable power purchases 
from PPAs with wind generators assumed to be co-
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located with the renewable ammonia production facility. 
The operating cost also includes revenue from hydrogen 
production tax credits (PTCs) contained in the U.S. fed-
eral government Inflation Reduction Act [15]. These cred-
its provide $3/kg of hydrogen produced for the first 10 
years of facility operation. Renewable ammonia is as-
sumed to be transported from new production facilities 
directly to counties. These transportation costs range 
from $1/mt to $47/mt. The capacity of each new renew-
able ammonia facility is constrained to a maximum asso-
ciated wind generation capacity of 250 MW (Eq. 3). The 
total installed capacity of renewable ammonia production 
across all facilities in a given year is constrained by elec-
trolysis availability, which increases from 250 MW in 
2024 to 850 MW in 2032 (Eq. 4).  The optimization model 
is implemented in Pyomo [16] and is solved using Gurobi 
10.0.2.0 [17] on an Apple MacBook Pro M1 with 8 physical 
cores and 16 GB of RAM. 

NUMERICAL RESULTS 

Deterministic case 
First, we solve a deterministic model using a 

$500/mt historical average conventional ammonia price, 
i.e., using the two-stage model with one scenario with 
probability one and price $500/mt. The optimization 
problem has 22,194 (234 binary and 21960 continuous) 
variables, 1,803 constraints and is solved in 6.7 seconds. 
The total net present cost is $3,002 million (MM) and re-
newable ammonia production is installed at eight new 
sites, as presented in Table 1. Three renewable ammonia 
facilities are installed in 2027, meaning that in-state pro-
duction does not begin until 2029 and all ammonia is pur-
chased from the conventional market for the first five 
years of the planning horizon (see Figure 3).  

Table 1: Installation year, location, and capacity for new 
renewable ammonia production in the deterministic case. 
Annual average wind capacity factors for each selected 
candidate location are provided in parentheses to de-
scribe wind potential. 

Year Location Capacity  
( mt/y) 

 Lake Wilson (%)  
 Chandler (%)  
 Worthington (%)  
 Luverne (%)  
 Wilmont (%)  
 Worthington (%)  
 Blue Earth (%)  
 Winnebago (%)  

 
Three additional facilities are installed in 2028. 

These first six facilities are all located in Southwest 

Minnesota, which has the highest wind capacity factors 
at 52%. In both 2027 and 2028, 575 MW of electrolysis is 
procured, the maximum allowable amount in each year. 
This is the reason that two smaller facilities are installed 
in Worthington in consecutive years.  The final facilities 
are installed in 2030 to ensure that all ammonia is ob-
tained via renewable production by 2032. These are both 
installed in Southeast Minnesota, which also has a high 
wind capacity factor at 47%. With the exception of the 
two smaller facilities in Worthington, all others use at 
least 225 MW of co-located wind generation in an at-
tempt to achieve economies of scale. 

Stochastic case 
We use the data presented in Figure 1 and generate 

the histogram presented in Figure 2 using ten bins, and 
obtain the price at the edge of each bin and the number 
of data points in each bin. Given these data, we generate 
the scenarios where the price of ammonia in scenario 𝑠𝑠 is 
set equal to the edge price in the bin 𝑠𝑠 and the probability 
𝓅𝓅𝑠𝑠 is the number of data points in the bin 𝑠𝑠 divided by the 
total number of data points. 

 

Figure 2. Histogram of U.S. Gulf Coast ammonia prices 
from 2010 to 2022. The width of each histogram bin is 
$117.5/mt. In the stochastic optimization model, the 
probability of the conventional ammonia price being 
within each bin is listed above that bin. 

The optimization problem has 217,566 (234 binary 
and 217332 continuous) variables, 11,927 constraints, 
and the solution time is 78 seconds. The total net present 
cost is $3,230MM and the renewable sites installed are 
presented in Table 2. As with the optimal solution of the 
deterministic model, eight new renewable production fa-
cilities are installed. However, these installations occur 
earlier in the optimal stochastic supply chain transition. 

One new facility each is installed in 2024 and 2025, 
which allows some market penetration of renewable am-
monia by 2026 (see Figure 3). Both of these facilities are 
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installed in locations with the highest wind potential and 
use the maximum allowable 250 MW of co-located wind 
generation capacity. In 2027, three additional facilities 
are added and these cumulatively use 575 MW of elec-
trolysis, the upper bound for that year. The facilities in 
both Luverne and Worthington use 250 MW of wind gen-
eration. We point out that these facilities have slightly 
higher production capacity than those in Lake Wilson 
(2024) and Chandler (2025) due to the more efficient 
electrolysis expected to be available in future years. The 
third 2027 facility is located in Southeast Minnesota de-
spite its lower wind potential, unlike in the deterministic 
supply chain. This enables another facility which uses 
250 MW wind to be installed in Wilmont in 2028; all five 
facilities with the highest wind potential (52% capacity 
factor) use this maximum amount of wind capacity to 
achieve economies of scale. Another facility is installed in 
Southeast Minnesota in 2028, also at the 2050 MW scale. 
Finally, a smaller facility is installed in Southeast Minne-
sota in 2030 to ensure a fully renewable supply chain by 
2032. 

Table 2: Installation year, location, and capacity for new 
renewable ammonia production in the two-stage sto-
chastic case. Annual average wind capacity factors for 
each selected candidate location are provided in paren-
theses to describe wind potential.  

Year Location Capacity  
( mt/y) 

 Lake Wilson (%)  
 Chandler (%)  
 Luverne (%)  
 Worthington (%)  
 Winnebago (%)  
 Wilmont (%)  
 Blue Earth (%)  
 Fairmont (%)  

 

Comparison between deterministic and 
stochastic cases 

The optimal transition in the stochastic case results 
in less conventional ammonia purchases and more in-
state renewable production over the planning horizon 
compared to the deterministic transition. This difference 
leads to a reduction in the total amount of ammonia pur-
chased leading to lower cumulative purchase, transpor-
tation, and distribution costs for conventional ammonia 
over the planning horizon (see Figure 4). Conversely, the 
capital cost for renewable ammonia production is higher 
in the stochastic transition even though the same total 
capacity of renewable production is installed in both 
cases. This is due to earlier installation using more ex-
pensive constituent technologies in the stochastic case. 

This also contributes to higher renewable ammonia oper-
ating costs over the planning horizon, though these are 
also higher simply because more renewable ammonia is 
being produced. Overall, the net present cost of the sup-
ply chain transition is 7.6% (228 MM$) higher in the sto-
chastic case than the deterministic case. 

 

Figure 3. Amount of ammonia (mt) in each time period 
from conventional purchases (black bar) and in-state 
renewable ammonia production (gray bar) for the 
deterministic (top figure) and stochastic (bottom figure) 
cases. 

 

Figure 4. Cost contributions to optimal net present cost 
for the deterministic and stochastic cases. The cost 
acronyms are defined as follows: CAP - Renewable 
capital, OP - Renewable operating, DR - Renewable 
distribution, PC - Conventional purchase, TC - 
Conventional transportation to Minnesota, DC - 
Conventional distribution. 

We compare the supply chain configurations ob-
tained via the deterministic and stochastic transition op-
timizations for different conventional ammonia prices to 
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elucidate the benefit of the stochastic approach. Specif-
ically, we discretize the ammonia price uniformly in 100 
points between $214/mt and $1389/mt, and for each 
price, we fix the investment decisions (timing of invest-
ments, i.e., binary variables and installed capacity) and 
compute the net present cost of supply chain transition 
(see Figure 5). We observe that for high prices of con-
ventional ammonia (above $700/mt), the net present cost 
of the supply chain obtained via stochastic programming 
is meaningfully lower than the cost of the deterministic 
design, whereas if the price is low (below $400/mt) the 
design obtained by the deterministic model has a mean-
ingfully lower net present cost. This difference can be at-
tributed to the different investment strategies for the sto-
chastic and deterministic cases (i.e., more ammonia is 
manufactured in-state for the stochastic case) as dis-
cussed in the previous paragraph. 

 

Figure 5. Levelized cost for the deterministic and 
stochastic design as a function of ammonia price. 

CONCLUSIONS 
In this work, we focused on quantifying the effect of 

uncertainty in conventional ammonia prices on Minne-
sota’s transition from importing fossil-derived ammonia 
from out-of-state conventional producers to in-state re-
newable ammonia production. We used a two-stage sto-
chastic programming approach to determine the optimal 
investment profile for in-state renewable ammonia pro-
duction over a fixed planning horizon such that the de-
mand of ammonia is satisfied while the net present cost 
is minimized. The results show that when accounting for 
uncertainty in the conventional ammonia price, invest-
ments are made earlier in the planning horizon compared 
to a deterministic supply chain transition model. This 
leads to a reduction in the amount of ammonia purchased 
from conventional producers. This can bring significant 
cost savings for higher-than-average ammonia prices. 
Overall, the stable production cost afforded by in-state 

renewable ammonia production can act as a hedge 
against conventional ammonia price uncertainty and the 
possibility of very high prices on the conventional ammo-
nia market.  

This work used a two-stage approach to account for 
conventional price uncertainty, but in practice these 
prices could evolve different multi-year trajectories. Fu-
ture work will therefore develop multi-stage stochastic 
programming models for the supply chain transition 
problem. Furthermore, technology cost reductions are 
also subject to uncertainty, especially further into a given 
planning horizon. For example, electrolysis costs are ex-
pected to decrease, but the magnitude of this reduction 
is not well-established at present. Thus, these types of 
uncertainties will also be incorporated into future supply 
chain transition models.   
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ABSTRACT 
Multilayer plastic films are widely used in packaging applications because of their unique proper-
ties. These materials combine several layers of different polymers to protect food and pharma-
ceuticals from external factors such as oxygen, water, temperature, and light. Unfortunately, this 
design complexity also hinders the use of traditional recycling methods, such as mechanical recy-
cling. Solvent-based separation processes are a promising alternative to recover high-quality pure 
polymers from multilayer film waste. One such process is the Solvent-Targeted Recovery and Pre-
cipitation (STRAPTM) process, which uses sequential solvent washes to selectively dissolve and 
separate the constituent components of multilayer films. The STRAPTM process design (separation 
sequence, solvents, operating conditions) changes significantly depending on the design of the 
multilayer film (the number of layers and types of polymers). Quantifying the economic and envi-
ronmental benefits of alternative process designs is essential to provide insights into sustainable 
recycling and film (product) design. In this work, we present a fast computational framework that 
integrates molecular-scale models, process modeling, techno-economic and life-cycle analysis to 
evaluate STRAPTM designs. The computational framework is general and can be used for complex 
multilayer films or multicomponent plastic waste streams. We apply the proposed framework to a 
multilayer film commonly used in industrial food packaging. We identify process design configura-
tions with the lowest economic and environmental impact. Our analysis reveals trends that can 
help guide process and product design.  

Keywords: Polymers, Process Design, Modelling and Simulations, Technoeconomic Analysis, Life Cycle Anal-
ysis 

INTRODUCTION 
A wide range of packaging applications use multi-

layer plastic films to protect products from external fac-
tors (e.g., oxygen, water, temperature, and light). Multi-
layer films are complex and diverse because they com-
bine several layers of distinct polymers to leverage their 
unique properties. The multilayer film design can vary for 
different applications; for instance, industrial films can in-
clude more than ten polymer layers. This complexity hin-
ders direct mechanical recycling. Solvent-based ap-
proaches have emerged as a promising alternative to re-
cover and recycle their constituent polymers. One such 
technology is the Solvent-Targeted Recovery and Pre-
cipitation (STRAPTM) process, which uses sequential 

solvent washes to selectively dissolve and separate the 
constituent components of multilayer plastic films [1]. 
The solvents used need to be properly selected to dis-
solve only a target component in each step. Thus, each 
selected solvent must have a high solubility for the target 
component and a low solubility for the other components 
of the multilayer film. This target component can refer to 
one or multiple polymers [2]. 

Molecular‐scale models have been employed to 
predict polymer solubilities for solvent selections in such 
recycling processes. We recently introduced a joint com-
putational and experimental workflow that can perform 
large-scale temperature-dependent polymer solubility 
predictions. Based on this approach, we generated a sol-
ubility database for common polymers and a large 

mailto:victor.zavala@wisc.edu
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number of solvents [3]. The database has enabled the 
creation of a computational tool that automates solvent 
selections for solvent-based processes. This tool can 
screen and rank solvent candidates based on the solubil-
ity requirements of separation sequences. Once the sol-
vent for the target component is selected, the next steps 
of the STRAPTM process can be taken as described be-
low. 

Figure 1 provides an example of the modules and 
process flow diagram that we use to represent the sepa-
ration of different components using the STRAPTM pro-
cess. For instance, for a multilayer film of 4 components, 
the first component can be separated as shown in the 
process flow diagram. In this example, each component 
comprises one polymer. The process steps are as fol-
lows: first, the multilayer film is mixed with a previously 
chosen solvent (that selectively dissolves only the target 
polymer P1) and heated; next, the solution is filtered to 
separate the undissolved solids (polymers P2, P3, P4); fi-
nally, the target polymer P1 is precipitated via tempera-
ture reduction, filtered, and recovered. Most of the sol-
vent is also recovered and recycled. Then, the process is 
repeated to separate the remaining components (poly-
mers P2, P3, P4). Hence, the separation of an n-compo-
nent multilayer film requires n-1 separation stage(s).  

 
 
Figure 1. Simplified flow diagram of the STRAPTM process 
for one separation module. 

A couple of precipitation techniques have been pre-
viously reported [2]. One is temperature-driven 

precipitation, which is economically and environmentally 
feasible and can be used for several polymer-solvent 
combinations. If the precipitation cannot be done via 
temperature, an antisolvent can be added to enable pre-
cipitation. However, adding an antisolvent leads to higher 
energy requirements because a distillation unit is re-
quired to separate the resulting mixture of solvents. Pre-
vious research has shown that the economic and envi-
ronmental performance of the process is better when the 
precipitation is temperature-driven [4]. Therefore, in this 
work, we will select solvents that can enable tempera-
ture-driven precipitation only. It is worth highlighting that 
the solvent and operating temperatures can change if the 
separation sequence changes (for example, with P2 as 
the target polymer). These changes can impact the eco-
nomic and environmental benefits of the process. Addi-
tionally, identifying the proper conditions to achieve a 
high solvent recovery rate is key for the process benefits. 
Previous techno-economic analysis (TEA) and life cycle 
assessment (LCA) of the different STRAPTM process var-
iations have also shown significant differences in costs 
and CO2 emissions due to solvent selection and separa-
tion sequence [5,6]. While these models have been use-
ful to determine the economic and environmental feasi-
bility as well as process design bottlenecks, they have 
also shown the need for a general framework to guide the 
design of solvent-based processes.   

In this work, we present a fast computational frame-
work that integrates molecular-scale models, process 
modeling, TEA and LCA to provide insights into sustaina-
ble solvent-based process design. We also aim to pro-
vide guidelines for multilayer film designs that are easier 
to recycle or have a lower recycling impact. This frame-
work can determine the economic and environmental im-
pacts of several process design scenarios, including dif-
ferent separation sequences, solvents that enable tem-
perature-driven precipitation, and process operating 
conditions (for dissolution, precipitation, and solvent re-
covery). The computational framework is general and can 
be used for complex multilayer films or multicomponent 
plastic waste streams.  

COMPUTATIONAL FRAMEWORK 
 Our computational framework follows a series of 

steps to determine the economic and environmental im-
pacts of each process design feasible scenario. The 
computational steps are summarized in Figure 2. 
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Figure 2. Schematic representation of the proposed 
framework. 

First, for any given multilayer film, the framework 
generates all possible separation sequences. Figure 3 
provides an example of the binary trees that we use to 
represent the separation sequences for a multilayer film 
composed of 4 polymers. Here, we use the left branch to 
denote the dissolved polymer(s) and the right branch to 
refer to the undissolved polymer(s). For this example, we 
can see that every separation step only dissolves one 
polymer. Therefore, this example has a 𝐷𝐷𝑛𝑛 = 1, which 
represents the number of polymers being dissolved in 
each step. Also, this binary tree only shows such separa-
tion sequence. Changing the separation order of the se-
quence provides all possibilities for the case of 𝐷𝐷𝑛𝑛 = 1. 
Therefore, the permutation of the set of polymers 
{𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4} results in 24 different sequences. 

 

 
 

Figure 3. Binary tree illustrating a possible separation se-
quence for a multilayer film composed of 4 polymers.  
 

To determine all the possible sequences, we also 
consider the binary trees where 2 polymers are dissolved 
in a certain step (𝐷𝐷𝑛𝑛 = 2), resulting in 2 different binary 
trees and 48 sequences. Similarly, when there are 3 pol-
ymers dissolved together, 2 different binary trees and 48 
sequences are possible. Therefore, the separation of a 4-
polymer mixture has in total 5 possible binary tree struc-
tures, which correspond to 120 sequences. Table 1 pre-
sents a summary of the number of sequences and binary 
trees generated based on the value of 𝐷𝐷𝑛𝑛 for the 4-poly-
mer mixture. It is worth highlighting that this combinato-
rial complexity increases rapidly with the number of pol-
ymers. For example, a 5-polymer mixture will have 14 dif-
ferent binary tree structures, which leads to 1680 possi-
ble sequences.  

Table 1: Possible binary trees and sequences for a 4-pol-
ymer mixture considering the different possible numbers 
of dissolved polymers in a certain step (𝐷𝐷𝑛𝑛). 

 𝑫𝑫𝒏𝒏 Binary 
Trees 

Se-
quences 

   
   
   

 
 As shown in Figure 2, the next step is to assign dif-
ferent polymer sequences to the binary trees and elimi-
nate the unfeasible sequences based on empirical rules 
from previous research (e.g., composition, polymer solu-
bility, and maximum number of polymers dissolved in 
each step) [3-6]. After this, we use the computational 
tool to identify all the solvent candidates for the target 
polymer(s) in each separation step. This tool selects sol-
vents (only based on solubility) from the previously re-
ported database that includes predicted temperature-
dependent polymer solubilities from molecular‐scale 
models [3]. The criteria to select the feasible solvents is 
that the solubility of the target polymer(s) should be 
greater than 15 wt% and the solubility of the non-target 
polymer(s) should be lower than 3 wt%. Once the sol-
vents have been identified, we estimate the required 
temperature of the condenser to achieve a high solvent 
recovery rate (~99.90%) given the inlet temperature from 
the dryer. Previous studies indicate that achieving a sol-
vent recovery of ~99.99% enhances the economic viabil-
ity of the separation process. However, solvents with low 
boiling points, such as toluene, pyridine, and acetic acid, 
face challenges in attaining this recovery rate. In con-
trast, solvents like glycol, dodecane, and diethylene gly-
col can achieve this target. It is equally essential to avoid 
solvents with high boiling points, as they can escalate the 
energy consumption in the distillation process during sol-
vent mixture recovery (which occurs in precipitation via 
antisolvent addition). Therefore, the solvent recovery is 
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set at ~99.90%, and future considerations will include 
evaluating the trade-offs associated with each solvent. 
The condenser temperature is estimated by simulating a 
heat exchanger and iterating over different temperatures 
to achieve the recovery rate specification as a pre-pro-
cess simulation.  The process model simulation for the 
heat exchanger is performed in the open-source platform 
BioSTEAM [7]. This Python process simulator has been 
validated against proprietary software (SuperPro De-
signer and Aspen Plus).  

Next, we use the collected inputs (mass, polymers, 
composition, separation sequence, solvent, and operat-
ing conditions) to simulate the STRAPTM process and per-
form the TEA in BioSTEAM. We use the minimum selling 
price (MSP) as the economic metric to compare different 
scenarios. After this, we evaluate the environmental im-
pact of each scenario using an LCA methodology. The 
LCA was performed using the open-source software 
openLCA [8], the Environmental Footprint and AGRI-
BALYSE databases and the Environmental footprint im-
pact assessment method [9,10]. We consider all the in-
puts to the process (electricity, steam, water) and we es-
timate the climate change (CC) impact for each scenario. 
Since there are limited data for solvents in the LCA 

databases and we are considering high recycling rates, 
we do not include the impact of solvents for this analysis. 
Finally, we store the economic (MSP, expressed in USD 
per kg of polymer sold) and environmental (CC impact, 
expressed in kg CO2 per kg of polymer) outputs of all fea-
sible process design scenarios (including different se-
quences and solvents).   

RESULTS AND DISCUSSION 
We applied the proposed computational framework 

to a multilayer film composed of LDPE, EVOH, PET, and 
Nylon 6 (N6). This 4-polymer multilayer film is commonly 
used for food packaging applications [11]. As mentioned 
above, there are 120 possible sequences for a 4-polymer 
mixture.  

To identify the sequences and solvents that lead to 
the best economic and environmental performance, we 
compare the MSP and CC impact of all the generated 
scenarios. We consider all the separation modules re-
quired to recover the 4 constituent polymers of the mul-
tilayer film using the STRAPTM process. As a benchmark, 
we also estimate the climate change impact of producing 
the 4 polymers from fossil sources and their average 

 

Figure 3. (a) Scenarios with the lowest MSP and CC impacts. The pink symbols represent the sequences (Sn) 
with the lowest MSP and the green symbols represent the sequences (Sn) with the lowest CC impacts. The 
abbreviations of the solvents used for each scenario are shown next to each symbol (see Table 1).  (b) Pink bars 
represent only the MSP for each sequence and green bars refer only to the CC. (c) Separation sequences shown 
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market prices.  
 First, we identify the solvents that lead to the low-

est MSP in each separation step of the different gener-
ated sequences and report the corresponding CC impact 
of these sequence-solvent combinations. Similarly, we 
identify the solvents that lead to the lowest CC impact 
and their corresponding MSP. Figure 3a presents the 
scenarios with the lowest MSP (pink symbols) and the 
lowest CC impact (green symbols). It should be noticed 
that each symbol refers to a different sequence (repre-
sented by Sn) and set of solvents used for all the required 
separation modules. Solvents are represented by an ab-
breviation which is related to the solvent common name 
in Table 2. From Figure 3a, we can see that there are 
trade-offs between the economic and environmental 
metrics. For instance, the sequence S1 with the set of sol-
vents p-Xylene, Diethylene glycol and Pyridine (repre-
sented by the pink circle) leads to the lowest MSP (0.97 
USD/kg), but it does not lead to the lowest CC impact. On 
the other hand, the sequence S1 with the set of solvents 
n- heptane, Diethylene glycol and Pyridine (represented 
by the green circle) leads to the lowest CC impact (1.33 
kg CO2/kg) but leads to a higher MSP.  

We compare these results with previous STRAPTM 
studies to show the viability of the proposed framework. 
A TEA [2] and an LCA [4] for a similar multilayer film com-
posed of LDPE, EVOH, PET, and EVA are used as refer-
ences. Here, the sequence used was similar to sequence 
S1 and was demonstrated experimentally. We find that 
the reported MSP is 1.1 USD/kg and the CC is 1.18 kg 
CO2/kg. Although the polymers, composition, and sol-
vents used are not equal to the multilayer film addressed 
in this study, we can see that the economic and environ-
mental impacts are similar which highlights the applica-
bility of the proposed framework. Future work will include 
evaluating the previously reported multilayer film (LDPE, 
EVOH, PET, and EVA) with our framework to identify 
other feasible sequences and solvents that could be 
tested experimentally. Figure 3b provides a summary of 
the MSP (pink bars) and CC impact (green bars) for each 
sequence. To compare these values to the price and cli-
mate change impact of virgin polymers we consider the 
following. As a reference, we find that the average mar-
ket prices of the recovered polymers are 1.2–2.6 USD/kg. 
Furthermore, the multilayer film addressed in this study 
has a market price of 2.9 USD/kg [11, 12]. From previous 
research, we know the range of the required scale to 
achieve an MSP comparable to these market prices [5]. 
Therefore, the results presented in this work were ob-
tained for a fixed plant capacity of 6,400 tons per year. 
As we can see in Figure 3b, the MSP of the recovered 
polymers is comparable to the average market prices. 
However, this trend is sensitive to the scale of the pro-
cess and can change with other capacity factors.  

Table 2: Common name of selected solvents for the sce-
narios with the lowest impacts. 

Solvent Abbrevia-
tion  

Solvent Common 
Name  

Ace Acetic acid 
Deg Diethylene glycol 
Gly Glycol 
Hep n-heptane 
Xyl p-Xylene 
Pyr Pyridine 
Tol Toluene 

 
Regarding the environmental impact of virgin poly-

mers, we estimate the CC impact of the production from 
fossil sources of the constituent polymers of the multi-
layer film considered in this work (LDPE, EVOH, PET, and 
N6). Considering that every polymer represents 25 wt% 
of the film, we find that 4.81 kg CO2 per kg of polymer are 
generated. From Figure 3b, we can see that all the dif-
ferent STRAPTM sequences have a lower CC impact. Spe-
cifically, sequence S1 results in around 60% fewer emis-
sions than the production of the multilayer film from fossil 
sources. 

Figure 3c presents the different sequences as bi-
nary trees showing the dissolved polymers in each sepa-
ration step (left branch). From the MSP and CC plots, we 
observe that sequence S1 results in the lowest economic 
and environmental impacts. This sequence refers to dis-
solving one polymer in each separation step in the follow-
ing order: LDPE, EVOH, PET, and N6. However, the set of 
solvents that lead to the lowest MSP and CC are different 
for each sequence. There are different factors that de-
termine if one sequence and solvent is better for the eco-
nomic or environmental metrics, such as the amount of 
required solvent (which is determined by the polymer sol-
ubility) and the thermodynamic properties of the sol-
vents. This first analysis provides initial suggestions of 
the key variables that impact the economic and environ-
mental performance. For instance, the dissolution tem-
perature is dependent on the boiling point of solvents. 
Therefore, solvents with low boiling points result in lower 
energy requirements and environmental impacts. On the 
other hand, we found that the solvents that require a 
lower polymer-solvent ratio (due to higher solubility) 
were selected for the scenarios with the best economic 
performance. Such solvents had a higher boiling point.  

CONCLUSIONS AND FUTURE WORK 
This work presented a fast computational frame-

work to provide insights into the STRAPTM process de-
sign. The proposed framework helps identify the separa-
tion sequence, solvents, and process operating 
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conditions with the lowest economic and environmental 
impact. We use the framework to identify process de-
signs with low impacts for a multilayer film composed of 
4 polymers. From these results, we conclude that the en-
vironmental performance is mainly driven by the boiling 
point of solvents while the economic performance is 
guided by the polymer solubility. Our framework is gen-
eral and can help guide the design of other solvent-based 
processes to efficiently treat complex multilayer waste 
streams. Therefore, future work will include analyzing 
case studies with different polymers and number of lay-
ers. Furthermore, we will consider varying recycling rates 
for the solvents. We will also evaluate other processing 
plant scales and the recovery of only selected polymers 
(for streams with large number of polymers).  
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ABSTRACT 
Plastic packaging plays a fundamental role in the food industry, avoiding food waste and facilitat-
ing food access. The increasing plastic production and the lack of appropriate plastic waste man-
agement technologies represent a threat to the environmental and human welfare. Therefore, 
there is an urgent need to identify sustainable packaging solutions. Circular economy (CE) pro-
motes reducing waste and increasing recycling practices to achieve sustainability. In this work, 
we propose a CE framework based on multi-objective optimization, considering both economic 
and environmental impacts, to identify optimal packaging designs and waste management tech-
nologies. Using mixed-integer linear programming (MILP), techno-economic analysis (TEA), and 
life cycle assessment (LCA), this work aims to build the first steps in packaging design, informing 
about the best packaging alternatives and the optimal technology or technologies to process 
packaging waste. For the economic analysis, we consider the minimum increase in price (MIP) 
when adding recycling to the cost of each packaging solution, while for the environmental analysis, 
the greenhouse gas emissions impact was considered. A case study on ground coffee packaging 
is used to illustrate the proposed framework. The results demonstrate that the multilayer bag op-
tion is the most convenient when considering both the chosen economic and environmental im-
pacts.   

Keywords: Optimization, Life Cycle Analysis, Technoeconomic Analysis, Supply Chain, Modelling 

INTRODUCTION 
Approximately 35-40% of plastics produced are dis-

carded as waste after their first use, this percentage is 
expected to rise in the coming years based on current 
projections [1]. Containers and packaging represent 
around 28% of the municipal solid waste. Plastic contain-
ers account for around the 18%, and more than half of 
them are disposed in landfills [2]. The growing generation 
of plastic waste and the lack of initiatives to upcycle it, 
along with the irresponsible disposal of waste, threatens 
both marine life and humans [3].  

The food industry is one of the largest manufactur-
ing sectors contributing to the global economy. Packag-
ing plays a crucial role in the food industry considering 
factors such as food quality and preservation, marketing 
appeal, and proper product identification. The final dis-
posal or management of the packaging at the end of its 

life is a critical factor that should be incorporated during 
the packaging design stage, given the environmental 
concerns around plastic pollution. Over the past years, 
food packaging has evolved to increase efficiency (ex-
tend shelf-life while maintaining the freshness of the 
product) increasing food accessibility and reducing food 
waste. However, plastic food packaging is considered to 
follow a linear economic model, where it is designed and 
produced just in accordance with its intended use [4]. 
The need for sustainable food packaging solutions has 
become increasingly significant as the proportion of food 
packaging waste in municipal waste is on the rise.  

Moreover, the increasing production of plastic im-
plies a growing stress on resources. Materials extraction 
along with the processing of materials, fuels, and food 
contribute to water stress, biodiversity loss, and ac-
counts for around 50% of the greenhouse gas (GHG) 
emissions [5. The growing production of plastics not only 
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implicates using more virgin materials, but also the use of 
more resources, including energy and water, for the man-
ufacturing of products. To tackle this, circular economy 
emerges as a system to promote the transition towards 
achieving environmental, economic, and social sustaina-
bility [6]. CE endorses, among other objectives, the 
closed-loop handling of natural resources to achieve 
minimal waste and to maintain the value of materials and 
products to their highest quality for as long as possible. 
Zhu et al notes that the design of packaging has been 
acknowledged as the essential initial step in moving to-
ward CE [4]. Transitioning to more sustainable packaging 
solutions requires analyzing the impacts of alternative 
materials and their corresponding waste management 
technologies. Reducing the waste generated and in-
creasing the compatibility of materials with recycling pro-
cesses are fundamental to achieving recyclability targets 
[7].  

Often, recycling complex plastic containing prod-
ucts can be more resource intensive than using the virgin 
plastic resins. For instance, PET possess a great re-
sistance to high temperature which involves a consider-
able amount of energy to recycle it. Another example is 
multi-layer plastic films that require fewer resources 
given the efficient combination of materials. However, 
this configuration affects its recyclability. Therefore, the 
waste management processes for packaging should be 
taken into consideration during the design of the pack-
aging. 

To this end, we present a circular economy system 
engineering framework and decision-making tool that ex-
amines alternative food packaging design options and 
waste management possibilities. Using a superstructure 
approach, the present work employs a mixed-integer lin-
ear programming model for determining the optimal com-
bination of packaging and recycling technologies based 
on economic and environmental criteria. As a case study, 
we have chosen coffee, which is the second largest 
traded commodity.  

LITERATURE REVIEW 
The state-of-the-art of sustainable packaging de-

sign consists of articles focusing on material selection, 
conceptual design, design development, and design val-
idation. The material selection work focuses on reusabil-
ity, biodegradable materials, and processability. The con-
ceptual design phase involves topics such as the integra-
tion of reusing, and the abstention of a variety of impact-
ful materials. The design development can incorporate 
the definition of appropriate features like size and weight, 
as well as the use of labels. Regarding the design valida-
tion phase, LCA tools and CE indicators are commonly 
used [4]. Although, the design guidelines should consider 
the facilitation of packaging waste management [8]. 

Karayilan et al [9] proposes a single-objective optimiza-
tion model to evaluate environmental benefits (climate 
change and marine ecotoxicity) and material circularity 
within the packaging value chain. However, other circu-
larity metrics and the economic aspect are not evaluated. 
Other studies, [10], focus on assessing the performance 
of different waste management systems for plastic 
waste, without considering the design of packaging. 

Life Cycle Assessment (LCA) studies have been 
conducted to analyze the environmental performance of 
food packaging. Toniolo et al [11] performed a compara-
tive LCA to estimate the appropriate recycling percent-
age for food packaging. However, most studies typically 
focus on evaluating metrics for the production and use of 
different packaging materials or designs. Siracusa et al 
[12] performed an environmental assessment for a single 
type of multilayer food packaging with a cradle to fac-
tory-gate scope. On the other hand, other LCA and 
techno-economic assessments evaluate various packag-
ing options, but they concentrate on a specific recycling 
technology. Xie et al [13] reported an LCA on the recy-
cling of Al-PE composite packaging. Some focus on com-
paring one or few alternative packaging solutions to the 
conventional, for example, reusable containers with sin-
gle-use containers [14]. Jeswani et al [3] presented an 
LCA for mixed plastic waste considering pyrolysis, me-
chanical recycling, and energy recovery. Similarly, Mun-
guia-Lopez et al [15] studied the environmental benefits 
of using solvent-based processes to recycle multilayer 
plastic films.  

Optimization studies can enable the identification of 
optimal solutions for scenarios considering CE principles. 
Systems engineering frameworks involving multi-objec-
tive modeling can be used for the optimization of supply 
chains or technology allocation. Komly et al [16] presents 
a multi-objective optimization strategy to find the optimal 
allocation of PET bottles and recycling technologies to 
minimize environmental impacts.  

However, a comprehensive economic and environ-
mental assessment and/or optimization study consider-
ing the production, use, and waste management for dif-
ferent packaging designs is still lacking. 

METHODOLOGY 
The methodology followed will be described based 

on the case study for coffee packaging. Ground coffee 
currently comes in several packaging types, including 
disposable and non-disposable alternatives (refilling and 
reusing options). These options encompass monolayer 
film bags, containers, multi-layer film bags, and metal 
cans, that utilize materials ranging from polyethylene 
and/or aluminum to polyethylene terephthalate and pol-
ylactic acid (PLA). Waste management processes also of-
fer various options, spanning traditional landfilling, 
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incineration, and mechanical recycling, to more recent 
technologies like pyrolysis, and solvent-targeted recov-
ery and precipitation (STRAP). Previous research has 
used LCA and multi-objective optimization to achieve a 
sustainable supply chain for coffee analyzing environ-
mental and economic impacts but considering coffee 
production and distribution, but not its packaging [17-18]. 
The proposed methodology focusing on the optimal de-
sign and waste management of ground coffee packaging 
is divided into the four steps described below.  

Packaging option identification  
The first step in this analysis, is the identification of 

coffee packaging options currently available in the mar-
ket. Between the packaging alternatives, various materi-
als are utilized to consolidate different presentations of 
packaging. Among the bags considered, there are two 
plastic film options: monolayer and multilayer films. A 
multilayer film is a flexible plastic packaging that is com-
posed of different materials that are combined to achieve 
specific properties that cannot be achieved with mono-
layer films alone. For example, in the case of coffee, a 
common multilayer film is composed of PE, PET, and alu-
minum. By combining the specific attributes of these ma-
terials, a packaging with high barrier properties and pro-
tection from light and oxygen is achieved, therefore, 
high-quality coffee is guaranteed. However, multilayer 
films are difficult to recycle using certain technologies 
such as mechanical recycling because of the incompati-
bility of the materials. Before multilayer films arose, mon-
olayer films dominated the market, and some options are 
still present today. 

The use of renewable resources to produce plastics 
arises as an alternative to avoid the dependence on fossil 
fuels (non-renewable energy sources) and address envi-
ronmental concerns. Common plant-based feedstocks 
like sugarcane and corn can be processed into polymers 
that would have the exact same structure as the fossil 
fuels-derived ones. The production of these biobased 
materials is expected to result in a reduced carbon foot-
print owing to the carbon sequestration occurred during 
the cultivation of the plants. However, due to the various 
estimation methods and the conflicting results based on 
considerations like land use, the present study considers 
the carbon uptake outside of the scope. 

Therefore, four options for ground coffee packaging 
were considered in this study: i) multi-layer film bags 
made with PE, aluminium, and PET, ii) monolayer film 
bags made with PE, iii) monolayer film bags made with 
biobased PE, and iv) rigid HDPE containers.  

Waste management options identification 
The most common plastic waste management tech-

nologies consist of landfilling, incineration, and mechani-
cal recycling. Given the limited landfill disposal and 

growing environmental concerns, more efforts have been 
put into the development of new recycling technologies. 
Therefore, processes like energy recovery, mechanical 
recycling, and chemical recycling have been proposed. 
Chemical recycling through pyrolysis transforms mixed 
plastic waste (MPW) into a chemical feedstock that can 
be used instead of virgin materials to remanufacture pol-
ymers. Alternatively, STRAP emerges as an alternative to 
recycle multilayer films by using solvents to separate the 
film into its different layers [19-20]. The process selec-
tively dissolves target polymers of multicomponent 
waste with specific solvents. 

Packaging waste management begins with the col-
lection and sorting of municipal waste, and the subse-
quent production of bales from plastic waste all of which 
takes place at a materials recovery facility (MRF). The 
second stage that transforms these plastic bales into a 
suitable feedstock for the different upcycling technolo-
gies occurs in a plastics reprocessing facility (PRF). In 
PRFs, plastic bales are reduced into plastic flakes and im-
purities are removed from the stream.  

Therefore, in this study five options for plastic pack-
aging waste management are considered: i) mechanical 
recycling, ii) STRAP, iii) pyrolysis, iv) incineration, and v) 
landfilling. All these waste management options have as 
a common denominator MRFs. Pyrolysis and mechanical 
recycling technologies also require PRFs. 

Economic and Environmental Impact 
Assessment 

This case study assumes the coffee companies will 
be responsible for recycling the post-consumer waste 
packaging following the Extended Producer Responsibil-
ity trend. The scope considered for the TEA starts with 
the purchasing of the plastic packaging by the coffee 
company. Moreover, the fixed and variable operational 
costs for the recycling technologies are considered, as 
well as the sales of the resulting products. The packaging 
costs are estimated according to the price market. The 
recycling technologies costs are calculated based on lit-
erature data [21-23]. The products costs are defined 
based on the quality and the corresponding price in the 
market. The difference between the costs of packaging 
and recycling, and the revenue from sales provides the 
minimum increase in price, a metric that is used to quan-
tity the economic behavior. 

For the GHG emissions assessment, the production 
of the packaging, along with the recycling process are 
considered. The climate change factors contemplated to 
perform the LCA are obtained from the Environmental 
Footprint database [24-25]. The factors of climate 
change used for the packaging take into consideration 
the steps that the production of each packaging requires, 
such as pellets production, film extrusion, or lamination. 
The same applies to the climate change impact for the 
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recycling technologies. The factors from the stages of 
the recycling processes, MRF and PRF, are included in 
the applicable scenarios. The different inputs required for 
the recycling technologies are collected from studies in 
the literature [21-23]. 

Previous studies have reported the economic and 
environmental feasibility of using STRAP to recover the 
constituent polymers of diverse multilayer films [19-20]. 
However, the multilayer film commonly used for coffee 
packaging (composed of PE, PET, and Al) has not been 
studied. Following the previous approaches, in this work, 
we propose a STRAP variation to treat such multilayer 
films. We performed STRAP experiments that showed 
that the recovery of all components and ink removal was 
feasible. The experimental yields were higher than 95 
wt%. and the composition of the packaging was deter-
mined to be: 49 wt% of PE, 32 wt% of PET, 17 wt% of 
aluminium and 2 wt% of ink. The recovered polymers 
have comparable properties to the corresponding virgin 
resins. The collected experimental data was used to sim-
ulate the STRAP process and perform the TEA and LCA 
analysis [26]. 

Superstructure Representation and multi-
objective MILP model 

For each packaging, all the possible options among 
waste management technologies and the subsequent 
products are contemplated. Figure 1 illustrates the super-
structure considered for this study.  

Following the alternatives previously described, 
seven scenarios are considered for the four most com-
mon coffee packaging options. Pyrolysis, landfill, and in-
cineration are contemplated for all the packaging, as 
shown in the superstructure in Figure 1. Pyrolysis is di-
vided into two scenarios: one that extends to the produc-
tion of the pyrolysis oil and another that additionally in-
volves the polymerization of new polymers from the py-
rolysis oil. Mechanical recycling can process only mono-
layer packaging (films or rigid containers) and STRAP, 
only multilayer films. Two scenarios were defined for 
STRAP: one with ink removal that separates all the layers 
of the packaging using: one solvent to remove the PE 
layer, a second solvent to separate the aluminum and 
PET leftover along with the ink, and an eddy current sep-
arator to separate the metal from the polymer. The sec-
ond scenario with no ink removal just removes the initial 
layer of PE (which constitutes the largest portion follow-
ing the common composition of coffee packaging [27]) 
and directs the remaining residue to landfill. The use of 
more solvents conveys a larger use of resources that 
generate more emissions, then a scenario considering 
STRAP and landfill is analyzed as an additional alterna-
tive. The basis for the study is defined as 1000 contain-
ers.  

 
Figure 1. Superstructure considered in the study.  

 Under the economic criteria, the goal is to find the 
minimum increase in price that the company or the cus-
tomer will have to cover. On the other hand, for the envi-
ronmental criteria, the objective is to select the process 
that would generate the least GHG emissions. Given 
these two competing objectives, this work proposes the 
use of a multi-objective optimization to evaluate the 
trade-offs between the different packaging designs and 
waste management technologies. Hence, the resulting 
pareto front of this circular economy framework serves 
as a decision-making tool. 

The basis for the study was defined based on a typ-
ical 500-gram ground coffee container, and the model 
was defined using the following nomenclature.  

Nomenclature 
Sets and Index  

𝑃𝑃, 𝑝𝑝 set of packaging packaging index 
𝑅𝑅, 𝑟𝑟 set of recycling technologies recy-

cling technology index 
𝑚𝑚 Individual materials index 
𝑚𝑚𝑚𝑚 multilayer packaging 
𝑚𝑚𝑚𝑚 monolayer packaging 
𝑏𝑏𝑚𝑚 biobased monolayer packaging 
ℎ𝑝𝑝 HDPE rigid container 
𝑝𝑝𝑝𝑝 pyrolysis with oil production 
𝑝𝑝𝑝𝑝 pyrolysis with polymerization 
𝑠𝑠𝑟𝑟 STRAP with ink removal 
𝑠𝑠𝑚𝑚 STRAP with no ink removal and land-

fill 
𝑚𝑚𝑟𝑟 mechanical recycling 
𝑙𝑙𝑙𝑙 landfill 
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𝑤𝑤𝑤𝑤 waste to energy  

Decision Variables 
𝐼𝐼𝑝𝑝 total input of packaging 
𝐵𝐵𝑃𝑃   number of bags for packaging p 
𝐹𝐹𝑝𝑝,𝑟𝑟 flow from packaging p to technology 

r 
𝐶𝐶𝑝𝑝 total cost for purchasing packaging p 

𝐶𝐶𝑅𝑅𝑝𝑝,𝑟𝑟 total cost for recycling packaging p 
through technology r 

𝑆𝑆𝑝𝑝,𝑟𝑟 sales of products obtained from pro-
cessing packaging p through technol-
ogy r  

𝐷𝐷𝑝𝑝,𝑟𝑟 difference between cost of recycling 
and sales for packaging p and recy-
cling technology r 

𝐸𝐸𝑃𝑃𝑝𝑝 CO eq emissions from the produc-
tion of packaging p  

𝐸𝐸𝑅𝑅𝑝𝑝,𝑟𝑟 CO eq emissions from the recycling 
of packaging p with technology r 

Constants  
 

𝑀𝑀𝑝𝑝 material per bag for packaging p 
𝑊𝑊𝑝𝑝 weight of packaging p  
𝑊𝑊𝑚𝑚 weight of individual material 
𝑋𝑋𝑝𝑝 cost of packaging p per ton 
𝑋𝑋𝑚𝑚 cost of individual material 
𝐶𝐶𝑝𝑝𝑠𝑠𝑚𝑚𝑟𝑟  cost of waste management technol-

ogy r per ton 
𝐶𝐶𝑝𝑝𝑠𝑠𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀  

 

cost for mechanical recycling for an 
hdpe rigid container  

𝑚𝑚𝑝𝑝,𝑟𝑟 yield of processing packaging p with 
technology r 

𝑚𝑚𝑙𝑙𝑝𝑝,𝑝𝑝𝑝𝑝 yield of the polymerization of LDPE 
𝑚𝑚𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝 yield of the polymerization of PP 
𝑋𝑋𝑝𝑝,𝑟𝑟  cost of product from packaging p 

processed through technology r 
𝑋𝑋𝑃𝑃𝑃𝑃 cost of PP 
𝑋𝑋𝑏𝑏𝑝𝑝 cost of polymerization by-products 
𝐺𝐺𝑝𝑝  Climate change factor for packaging 

p or material  
𝐺𝐺𝑚𝑚 Climate change factor for individual 

material 
𝐺𝐺𝑝𝑝,𝑟𝑟 Climate change factor for packaging 

p processed through technology r 
 The packaging alternatives have a set of possible 

recycling technologies r available. The set of packaging 
is: 𝑃𝑃 = {𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑚𝑚, ℎ𝑝𝑝}. The set of technologies is: 𝑅𝑅 =
{𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝, 𝑠𝑠𝑟𝑟, 𝑠𝑠𝑚𝑚,𝑚𝑚𝑟𝑟, 𝑙𝑙𝑙𝑙,𝑤𝑤𝑤𝑤}. Additionally, a set of materials is 
defined to refer to the components present in the multi-
layer film: 𝑀𝑀 = {𝑃𝑃𝐸𝐸𝑃𝑃,𝐴𝐴𝑙𝑙,𝑃𝑃𝐸𝐸}. 

The selection or not of the packaging and the tech-
nology is given by the following two binary variables: 

𝑦𝑦𝑝𝑝 ∀ 𝑝𝑝 ∈ 𝑃𝑃      (1) 

𝑧𝑧𝑟𝑟 ∀ 𝑟𝑟 ∈ 𝑅𝑅𝑃𝑃     (2) 

The decision variables depend on the following con-
tinuous variables:  

Bp ≤ 1000 𝑦𝑦𝑝𝑝    ∀ 𝑝𝑝 ∈ 𝑃𝑃   (3) 

∑ 𝐵𝐵𝑝𝑝𝑝𝑝 = 1000 ∀ 𝑝𝑝 ∈ 𝑃𝑃    (4) 

Ip = 𝐵𝐵𝑝𝑝Mp        ∀ 𝑝𝑝 ∈ 𝑃𝑃   (5) 

The amount that should come from packaging p to 
recycling technology rt is given by the continuous varia-
ble: 

∑ 𝐹𝐹𝑝𝑝,𝑟𝑟𝑟𝑟 = Ip ∀ 𝑟𝑟 ∈ 𝑅𝑅,∀ 𝑝𝑝 ∈ 𝑃𝑃   (6) 

The following equations are general constraints 
considered for the model: 

𝐹𝐹𝑝𝑝,𝑠𝑠𝑟𝑟 = 0 ,∀ p ∈ {mn, bm, hp} ∀ r ∈ {sr, sn} (7) 

𝐹𝐹𝑚𝑚𝑚𝑚,𝑚𝑚𝑟𝑟 = 0     (8) 

∑ 𝑦𝑦𝑝𝑝𝑝𝑝 ≥ 1 ∀ 𝑝𝑝 ∈ 𝑃𝑃    (9) 

∑ 𝑧𝑧𝑟𝑟𝑟𝑟 ≥ 1 ∀ 𝑟𝑟 ∈ 𝑅𝑅    (10) 

𝐹𝐹𝑝𝑝,𝑟𝑟 ≤ 100000𝑧𝑧𝑟𝑟 ∀ 𝑟𝑟 ∈ 𝑅𝑅,∀ 𝑝𝑝 ∈ 𝑃𝑃  (11) 

𝐹𝐹𝑝𝑝,𝑟𝑟 ≤ 100000𝑦𝑦𝑝𝑝  ∀ 𝑝𝑝 ∈ 𝑃𝑃,∀ 𝑟𝑟 ∈ 𝑅𝑅  (12) 

The packaging cost, the recycling cost and the 
products sales considered for the economic assessment 
are given by equations 13-22: 

𝐶𝐶𝑝𝑝 = 𝑊𝑊𝑝𝑝 𝑋𝑋𝑝𝑝𝐵𝐵𝑝𝑝   ∀ 𝑝𝑝 ≠ 𝑚𝑚𝑚𝑚   (13) 

𝐶𝐶𝑚𝑚𝑚𝑚 = (𝑊𝑊𝐴𝐴𝐴𝐴𝑋𝑋𝐴𝐴𝐴𝐴 + 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑊𝑊𝑃𝑃𝑃𝑃𝑋𝑋𝑃𝑃𝑃𝑃) 𝐵𝐵𝑚𝑚𝑚𝑚   
       (14) 

𝐶𝐶𝑅𝑅𝑝𝑝,𝑟𝑟 = 𝐹𝐹𝑝𝑝,𝑟𝑟 𝐶𝐶𝑝𝑝𝑠𝑠𝑚𝑚𝑟𝑟 ∀ 𝑝𝑝 ∈ 𝑃𝑃,∀ 𝑟𝑟 ∈ 𝑅𝑅 − {𝑖𝑖 = ℎ𝑝𝑝, 𝑗𝑗 = 𝑚𝑚𝑟𝑟}
       (15) 

𝐶𝐶𝑅𝑅ℎ𝑝𝑝,𝑚𝑚𝑟𝑟 = 𝐹𝐹ℎ𝑝𝑝,𝑚𝑚𝑟𝑟  𝐶𝐶𝑝𝑝𝑠𝑠𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀   (16) 

𝑆𝑆𝑝𝑝,𝑟𝑟 = 𝐹𝐹𝑝𝑝,𝑟𝑟𝑚𝑚𝑝𝑝,𝑟𝑟𝑋𝑋𝑝𝑝,𝑟𝑟  ∀ 𝑝𝑝 ∈ 𝑃𝑃,    ∀ 𝑟𝑟 ∈ 𝑟𝑟𝑚𝑚 ∶ 𝑟𝑟 ≠ 𝑝𝑝𝑝𝑝, 𝑙𝑙𝑙𝑙, 𝑠𝑠𝑟𝑟, 𝑠𝑠𝑚𝑚
       (17) 

𝑆𝑆𝑝𝑝,𝑝𝑝𝑝𝑝 = 𝐹𝐹𝑝𝑝,𝑝𝑝𝑝𝑝( 𝑚𝑚𝑙𝑙𝑝𝑝,𝑝𝑝𝑝𝑝 𝑋𝑋𝑃𝑃𝑃𝑃 + 𝑚𝑚𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑋𝑋𝑃𝑃𝑃𝑃 + 𝑚𝑚𝑝𝑝,𝑝𝑝𝑝𝑝 + 𝑋𝑋𝑏𝑏𝑝𝑝) 
       (18) 

𝑆𝑆𝑝𝑝,𝑠𝑠𝑟𝑟 = (𝐹𝐹𝑝𝑝,𝑠𝑠𝑟𝑟𝑚𝑚𝑝𝑝,𝑠𝑠𝑟𝑟)(0.49𝑋𝑋𝑃𝑃𝑃𝑃 + 0.32𝑋𝑋𝐴𝐴𝐴𝐴 + 0.17𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃) 
       (19) 

𝑆𝑆𝑝𝑝,𝑠𝑠𝑠𝑠 = 𝐹𝐹𝑝𝑝,𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝,𝑠𝑠𝑠𝑠0.49𝑋𝑋𝑃𝑃𝑃𝑃   (20) 

𝑆𝑆𝑝𝑝,𝐴𝐴𝑙𝑙 = 0     (21) 

𝐷𝐷𝑝𝑝,𝑟𝑟 = 𝑆𝑆𝑝𝑝,𝑟𝑟 − 𝐶𝐶𝑅𝑅𝑝𝑝,𝑟𝑟   ∀ 𝑝𝑝 ∈ 𝑃𝑃,∀ 𝑟𝑟 ∈ 𝑅𝑅  (22) 

𝑃𝑃𝑟𝑟𝑝𝑝𝑙𝑙𝑖𝑖𝑚𝑚 = ∑ ∑ 𝐷𝐷𝑝𝑝,𝑟𝑟 − ∑ 𝐶𝐶𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝     (23) 

The computation of the emissions used for the anal-
ysis of the environmental impact follow equations 24-27: 

𝐸𝐸𝑃𝑃𝑝𝑝 = 𝑊𝑊𝑝𝑝𝐺𝐺𝑝𝑝𝐵𝐵𝑝𝑝 ∀ 𝑝𝑝 ∈ 𝑃𝑃: 𝑝𝑝 ≠ 𝑚𝑚𝑚𝑚   (24) 
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𝐸𝐸𝑃𝑃𝑚𝑚𝑚𝑚 = (𝑊𝑊𝐴𝐴𝐴𝐴𝐺𝐺𝐴𝐴𝐴𝐴 + 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑊𝑊𝑃𝑃𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃) + 𝑀𝑀𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝐵𝐵𝑚𝑚𝑚𝑚
       (25) 

𝐸𝐸𝑅𝑅𝑝𝑝,𝑟𝑟 = 𝐺𝐺𝑝𝑝,𝑟𝑟𝐹𝐹𝑝𝑝,𝑟𝑟 ∀ 𝑝𝑝 ∈ 𝑃𝑃,∀ 𝑟𝑟 ∈ 𝑅𝑅 ∶ 𝑝𝑝 ≠ 𝑚𝑚𝑚𝑚  (26) 

𝐸𝐸𝑅𝑅𝑝𝑝,𝑠𝑠𝑠𝑠 = 𝐺𝐺𝑝𝑝,𝑠𝑠𝑠𝑠𝐹𝐹𝑝𝑝,𝑠𝑠𝑠𝑠 + (𝐹𝐹𝑝𝑝,𝑠𝑠𝑠𝑠0.22)(0.65𝐺𝐺𝐴𝐴𝑙𝑙 + 0.35𝐺𝐺𝐴𝐴𝑙𝑙𝐴𝐴)
       (27) 

𝐸𝐸𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑝𝑝𝑚𝑚𝑠𝑠 = ∑ 𝐸𝐸𝑃𝑃𝑝𝑝𝑝𝑝 + ∑ ∑ 𝐸𝐸𝑅𝑅𝑝𝑝,𝑟𝑟𝑟𝑟𝑝𝑝   (28) 

The model objective functions are given by the max-
imization of profit and the minimization of emissions, as 
shown in equations 23 and 28. 

DISCUSSION AND RESULTS 
The mixed-integer optimization model was imple-

mented in Julia 1.8.5 and solved with Gurobi v1.0.1. For 
the multi-objective problem, the ε-constraint method 
was utilized [28]. The resulting pareto front is illustrated 
in Figure 2, with the details of each pareto solution pre-
sented in Table 1.  

 
Figure 2. Superstructure considered in the study. 

Table 1: Percentage of multilayer film bags processed by 
the selected technologies for the points of the obtained 
pareto front. 

 Points Technology Bags Alloca-
tion 

• A STRAP with ink removal % 
• B STRAP with ink removal % 
 Landfilling % 
• C STRAP with ink removal % 

 Landfilling % 
• D STRAP with ink removal % 

 Landfilling % 
• E STRAP with ink removal % 

 Landfilling % 
• F STRAP with ink removal % 

 Landfilling % 
• G STRAP with ink removal % 

 Landfilling % 
• H STRAP with ink removal % 

 Landfilling % 
• I STRAP with ink removal % 
 Landfilling % 
• J Landfilling % 

The results indicate that the most profitable sce-
nario is STRAP with ink removal for a multilayer film with 
an increase in price of approximately zero per bag due to 
the high selling price of the recycled polymers. However, 
its emissions reach 0.067 kg of CO2eq. per bag. The min-
imum increase in price shows a negative value in the pa-
reto front due to a minimum profit of 0.0018 $ per bag 
that for simplicity is approximated to zero.  On the other 
hand, the least GHG-emitting alternative is the landfilling 
of multilayer packaging with the lowest emissions of 0.05 
kg CO2eq. per bag. Nevertheless, the extra cost reaches 
$0.06 per bag.  

The packaging type selected in all pareto points is 
the multilayer PE-Al-PET bag. The set of solutions show 
possibilities for: a combination of two technologies (blue 
points) or just one technology (pink points). The technol-
ogies contemplated are STRAP with ink removal and 
landfilling. Given the set of solutions found, it is shown 
that the reduction of materials together with the proper 
feasible recycling technology are key to sustainable 
packaging solutions.  

The costs and emissions for processing different 
packaging types even when using the same technology 
differ due to the different amounts of material present in 
each type of container. A trade-off between the amount 
of material needed and the desired performance of the 
packaging is highlighted. Multilayer films require less 
amount of material than monolayer packaging to achieve 
a high performance. However, the multilayer films char-
acterize by greater complexity that results in a challenge 
for traditional recycling technologies. Therefore, the re-
cently proposed process STRAP represents a break-
through technology. It would solve the recyclability limi-
tation generally attributed to multilayer films, while pro-
moting a packaging solution that is less resource inten-
sive. Furthermore, multilayer films represent a substantial 
advantage as the light weight leads to decreased energy 
consumption during transportation and consequently 
lower emissions. 

The integration of environmental and economic con-
siderations is suitable to determine the most convenient 
sustainable solutions. The LCA takes into consideration 
the emissions generated from the resources used in each 
of the technologies, like solvents, water withdrawal and 
energy requirements. Then, the CO2 equivalent emissions 
obtained from the LCA, enables an appropriate compari-
son of the environmental impact of the different pro-
cesses. However, there are other environmental impacts 
that should be considered. While landfilling has been se-
lected as the most environmentally convenient alterna-
tive when considering the GHG emissions, there are other 
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potential impacts of landfills to the environment includ-
ing: soil contamination, water and air pollution, and loss 
of resources. Landfilling is recognized to have long-last-
ing environmental impacts. Even after closure treatment 
and some years, landfills can still release gases and leach 
contaminants within the surrounding area [29].  

The model enables the quantification of alternatives 
that, while initially deemed beneficial, were ultimately ex-
cluded from the set of chosen solutions. A packaging 
choice anticipated as a green alternative, yet not se-
lected was the biobased polyethylene bag. Despite bi-
obased polyethylene being an environmentally friendly 
alternative due to its origin, it involves higher prices than 
fossil-fuel derived polymers and accounts for the same 
disposal issue (recycling requirement) as fossil-based 
plastics. The emissions for the biobased packaging 
(based on the system boundaries) with the landfill alter-
native increase to 0.29 kg CO2eq. per bag. Another pack-
aging option that was not selected as solution is the 
HDPE rigid container. Even though the packaging facili-
tates the recycling of the plastic waste, the amount of 
material required makes it less environmentally friendly. 
For this alternative, the emissions increase to 0.23 kg 
CO2eq per bag considering landfill. 

Besides recycling, the scope of the study takes into 
consideration the resulting products of the process. The 
outputs for the different scenarios are analyzed given 
that the products (and even the quality of the pellets) 
might vary. Depending on the products, the sales can be 
altered. Some LCA studies that compare mechanical with 
chemical recycling, don’t take into consideration im-
portant factors such as the quality of the outputs of the 
process, affecting the alternatives that provide a higher 
quality recycled product. The ideal case would be to ob-
tain the most valuable product, like in the case of pyroly-
sis with polymerization, however, that would imply higher 
costs and emissions for the further processing of the ma-
terial. The output of STRAP for the coffee packaging is of 
high quality and is obtained at a low cost, providing an 
economically feasible scenario. 

As previously noted, certain recycling technologies 
may degrade the plastic’s quality because they affect its 
mechanical properties [31]. Others instead produce a vir-
gin-like quality plastic without deterioration and applica-
tion restrictions [3]. Moreover, some processes might 
produce more waste or consume more resources than 
others. Consequently, the next logical step involves im-
plementing a comprehensive circularity assessment 
framework to holistically explore environmental impacts 
[32]. 

CONCLUSIONS 
Plastic packaging plays a significant role in modern 

society given its multiple benefits; however, a 

responsible management is required. Global efforts are 
put into the development of sustainable alternatives to 
reduce environmental impacts, such initiatives highlight 
the need to evaluate the required recycling infrastruc-
ture. The CE framework proposed in this work contrib-
utes to literature by analyzing the optimal packaging con-
figuration based on the recycling technologies available 
to process it and materials used for packaging. Packag-
ing solutions that are environmentally and economically 
viable are required. Both objectives are evaluated indi-
vidually and as competing objectives. The use of multi-
objective optimization generates a set of solutions valu-
able for decision-making. The case study of coffee pro-
vides an insight into the minimum increase in price if cof-
fee companies were responsible for the packaging recy-
cling. The prices are obtained for a combination of tech-
nologies with the best packaging resulting in different 
levels of emissions. 

Despite their initial classification as environmentally 
unfriendly, multilayer films prove to be the most conven-
ient option when equipped with a recycling technology to 
process it like STRAP. The technologies that are part of 
the solution encompass STRAP with ink removal and 
landfilling. The most economically viable technology is 
STRAP with a zero-price increase, but emissions of 0.07 
kgCO2 eq. per bag. Conversely, the most environmentally 
friendly alternative is landfill with 0.05 kgCO2eq. per bag, 
but an extra cost of 0.06 USD per bag. However, given 
the multiple environmental impacts caused by landfilling, 
further analysis is required. The toxicity of the leachate is 
one of the principal sources of contamination. Therefore, 
an analysis of their composition and their related impacts 
can provide insights in the environmental and human 
health effects [29,33]. This can be quantified under a 
metric that considers toxicity or the impact on water, air, 
land quality and human health. An alternative to assign a 
monetary value to environmental goods is to use an eco-
nomic valuation technique [34]. Additionally, for future 
work a further analysis for biobased packaging can be 
explored taking into account carbon uptake with different 
system boundaries and considerations. 

Regardless, the environmental and economic as-
sessment is a good approximation and first approach, a 
holistic evaluation of circularity needs to be developed. 
For that reason, the future work will focus on applying a 
circularity calculator to the different management tech-
nologies to extend the analysis and visualize the trade-
off between circular and economically feasible scenarios. 
The ultimate goal would be to provide insights to design 
more sustainable packaging and supply chains. Further-
more, there are a few biodegradable packaging options 
emerging today. However, it will be considered in the fu-
ture study together with reusing practices and alternative 
disposal technologies such as composting and home-
composting. 
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ABSTRACT 
The oil and gas energy sector uses billions of gallons of water for hydraulic fracturing each year 
to extract oil and gas. The water injected into the ground for fracturing along with naturally occur-
ring formation water from the oil wells surfaces back in the form of produced water. Produced 
water can contain high concentrations of total dissolved solids and is unfit for reuse outside the 
oil and gas industry without desalination. In semi-arid shale plays, produced water desalination for 
beneficial reuse could play a crucial role in alleviating water shortages and addressing extreme 
drought conditions. In this paper we co-optimize the design and operation of desalination tech-
nologies along with operational decisions across produced water networks. A multi-period pro-
duced water network model with simplified split-fraction-based desalination nodes is developed. 
Rigorous steady-state desalination mathematical models based on mechanical vapor recompres-
sion are developed and embedded at the desalination sites in the network model. An optimal com-
mon design is ensured across all periods using global capacity constraints. The solution approach 
is demonstrated for multi-period planning problems on networks from the PARETO open-source 
library. Model formulation and challenges associated with scalability are discussed. 

Keywords: Water Networks, Process Design, Modelling, Pyomo, Optimization 

1 INTRODUCTION 
Hydraulic fracturing accounts for about half of cur-

rent US crude oil production [1]. It involves the injection 
of large volumes of water underground to build pressure 
and force open rocks to release underground oil and gas 
reserves. The injected water along with natural formation 
water is returned to the surface as shown in Figure 1 and 
contains dissolved solids, oil, grease, and chemicals used 
during the well stimulation. The volume and quality of the 
water varies over time and is different from well to well. 
The oil and gas industry produces billions of gallons of 
high total dissolved solids (TDS) produced water every 
year due to oil and gas operations. There is a need to 
manage that water in cost-efficient and environmentally 
sustainable ways. 

Currently, produced water is either disposed or re-
cycled for well development purposes with pre-treat-
ment by adding friction reducers or other chemicals. 
Strategic planning and optimal operational policies in 

produced water management have shown to increase 
water reuse within the oil and gas industry, making the 
process more sustainable [2-3]. Several efforts have fo-
cused on building infrastructure for produced water man-
agement for economic and environmental benefits. For 
example, optimization models that minimize the cost of 
produced water management have been developed that 
consider reuse, storage and simplified treatment [4]. 
Multi-period planning models involving network infra-
structure expansion and strategic decisions have been 
shown to significantly improve profitability for upstream 
operators [5]. Due to large quantities of produced water 
and fracking scheduling, it may not be feasible to recycle 
a 100% of produced water within the oil and gas industry 
[6].  

To reuse produced water outside the oil and gas in-
dustry, it requires extensive treatment (i.e., desalination) 
to bring its quality to acceptable levels by lowering TDS 
concentrations. Desalination technologies for produced 
water are mainly classified into thermal-based [7–9] and 

https://doi.org/10.69997/sct.195308


 

Naik et al. / LAPSE:2024.1614 Syst Control Trans 3:829-835 (2024) 830 

membrane-based [10-11] technologies. Several studies 
have focused on developing detailed mathematical mod-
els for the desalination units to develop techno-economic 
analyses and determine the effectiveness of different 
desalination technologies [12–14]. Multi-effect evapora-
tion with mechanical vapor recompression (MEE-MVR) is 
a potential desalination technology for produced water at 
an industrial scale [7]. A thermo-economic model for an 
MEE-MVR process has been developed in [15]. Also, de-
tailed nonlinear programming (NLP) models for the MEE-
MVR process were developed in [16] with heat integra-
tion for the desalination of produced water from shale 
gas plays. These models were further used to minimize 
the total annualized cost (TAC) of the desalination unit 
and determine the optimal design and operation given 
the feed flow and salinity of produced water.  

Figure 1: Hydraulic fracturing 

Although produced water network optimization and 
optimization of rigorous desalination units have been in-
dividually explored, there is a gap with respect to inte-
grating these two research areas to create an overall op-
timal decision-making system. In [12] a network optimi-
zation model was developed for the Marcellus shale play 
by using a treatment cost model, obtained using techno-
economic assessment of membrane distillation. Simpli-
fied costing models for treatment have been used in sev-
eral works which consider produced water management 
optimization [2, 4]. However, these formulations don't 
provide the optimal treatment system design and opera-
tional decisions of the treatment units.  

This work supports the development of PARETO – a 
DOE-sponsored, free, and open-source optimization 
framework for onshore produced water management 
(www.project-pareto.org), by integrating detailed desal-
ination models into the existing produced water manage-
ment framework. Specifically, in this paper, we introduce 
a formulation for integrating steady-state desalination 
units into multi-period produced water network models 
for the co-optimization of design and operational deci-
sions. A multi-period produced water network model 
consisting of production pads, completion pads, storage, 
disposal, and desalination units has been developed. 

Since the resulting integrated formulation is nonlinear, it 
is crucial to ensure that there are no singularities arising 
due to zero flows in the network. Therefore, separate 
flow variables for solid and liquid flows are used for the 
mass balances to avoid bilinear terms in each network 
arc. We use the MEE-MVR model [16] with heat integra-
tion for the rigorous desalination unit with a separate 
MEE-MVR model for each period. A common design is en-
sured across all periods using global capacity constraints 
on the design variables. In Section 2 we provide the 
mathematical formulation for the produced water net-
work model, desalination units, and the integrated prob-
lem. Section 3 consists of case studies on a multi-period 
network with integrated desalination models. Section 4 
concludes the paper with a discussion on scaling up the 
problem to larger networks.  

2 MODEL FORMULATION 

Network Model 
A typical produced water network consists of pro-

duction pads (well sites) comprising mature oil or gas 
wells, which produce hydrocarbons and water, and com-
pletion pads, which have a water demand for drilling and 
hydraulic fracturing. It also consists of disposal wells, 
storage units, and – in the future – may involve desalina-
tion units where excess produced water can be sent. 
Completions pads’ water demand (for hydraulic fractur-
ing) can be met using existing water from the production 
pads or by procuring fresh water; this depends upon the 
cost of transportation vs. the cost of sourcing. Figure 2 
shows a schematic of a produced water network along 
with all possible network arcs.  

 
Figure 2: Produced water network. 

 In this section we describe our model formulation 
with mass balances for the produced water network 
model. Table 1 describes all the sets, variables, and pa-
rameters used in the formulation.  
 
 
 
Table 1: Description of sets, variables, and parameters 
for the network model. 

Sets 
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𝒩𝒩𝑃𝑃 ,𝒩𝒩𝐶𝐶 ,𝒩𝒩𝑀𝑀𝑀𝑀 Production pads, completion pads, 
mixers, or splitters respectively 

𝒩𝒩𝑇𝑇,𝐼𝐼𝐼𝐼 ,𝒩𝒩𝑇𝑇,𝑇𝑇𝑇𝑇,  
𝒩𝒩𝑇𝑇,𝐶𝐶𝑇𝑇 

Desalination inlet, treated water, and 
concentrated water nodes 

𝒯𝒯 Total time periods 
𝒯𝒯𝑛𝑛𝑃𝑃, 𝒯𝒯𝑛𝑛𝐶𝐶 ,𝒯𝒯𝑛𝑛0 Periods when node n is producing, 

consuming, or neither, respectively 
𝒬𝒬 Components in the stream 
𝒜𝒜 Arcs in the network 
𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛 Arcs to the inlet of node n 
𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂  Arcs from the outlet of node n 
𝒩𝒩𝑈𝑈𝑈𝑈(𝑛𝑛) Upstream node of node n 

𝑎𝑎𝐼𝐼𝑛𝑛(𝑛𝑛),𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂(𝑛𝑛) Arcs in or out of node n, respectively 
Variables 

𝐹𝐹𝑎𝑎𝑂𝑂 Flowrate of water in arc a at time t  
𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂 Flowrate of solids q in arc a at time t  
𝐶𝐶𝑛𝑛𝑎𝑎𝑂𝑂 Concentration of q at node n at time t  
𝐶𝐶𝑛𝑛𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑎𝑎𝑡𝑡 Total concentration at node n at time 

t 
𝐼𝐼𝑛𝑛𝑂𝑂 Water in inventory unit n at time t 
𝐼𝐼𝑛𝑛𝑎𝑎𝑂𝑂𝑠𝑠  Solids q in inventory unit n at time t 
𝛼𝛼𝑛𝑛𝑂𝑂 Water recovery fraction at desalina-

tion unit n at time t 
Parameter 

𝐹𝐹�𝑛𝑛𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃,𝐹𝐹�𝑛𝑛𝑂𝑂𝐶𝐶𝑡𝑡𝑛𝑛𝑠𝑠 Flowrate of water produced and con-
sumed at node n at time t 

�̂�𝑆𝑛𝑛𝑎𝑎𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 , �̂�𝑆𝑛𝑛𝑎𝑎𝑂𝑂𝐶𝐶𝑡𝑡𝑛𝑛𝑠𝑠 Flowrate of solids q produced and 
consumed at node n at time t 

�̂�𝐶𝑛𝑛𝑎𝑎𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 Concentration of solids q produced at 
node n at time t 

𝐼𝐼𝑛𝑛0 Initial water inventory at the inventory 
node 

𝐼𝐼𝑛𝑛𝑠𝑠0 Initial TDS level at the inventory node 
�̂�𝐶𝑚𝑚𝑚𝑚𝑛𝑛
𝑂𝑂𝑡𝑡𝑂𝑂𝑎𝑎𝑡𝑡, �̂�𝐶𝑚𝑚𝑎𝑎𝑚𝑚

𝑂𝑂𝑡𝑡𝑂𝑂𝑎𝑎𝑡𝑡 Concentration bounds for the desali-
nation inlet stream 

𝐹𝐹�𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛,𝐹𝐹�𝑛𝑛𝑚𝑚𝑎𝑎𝑚𝑚  Flowrate bounds for desalination inlet 
node n 

Δ𝑡𝑡 Time discretization  
 
A general flow balance for water and solids can be writ-
ten for each network connecting the mixers, splitters, and 
the production pads: 
� 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

+ 𝐹𝐹�𝑛𝑛𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 = � 𝐹𝐹𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

+ 𝐹𝐹�𝑛𝑛𝑂𝑂𝐶𝐶𝑡𝑡𝑛𝑛𝑠𝑠 ∀𝑛𝑛 ∈ 𝒩𝒩𝑃𝑃 ∪𝒩𝒩𝑀𝑀𝑀𝑀, 𝑡𝑡 ∈ 𝒯𝒯 

� 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛

+ �̂�𝑆𝑛𝑛𝑎𝑎𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 = � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

+ �̂�𝑆𝑛𝑛𝑎𝑎𝑂𝑂𝐶𝐶𝑡𝑡𝑛𝑛𝑠𝑠 ∀𝑛𝑛 ∈ 𝒩𝒩𝑃𝑃 ∪𝒩𝒩𝑀𝑀𝑀𝑀, 𝑞𝑞

∈ 𝒬𝒬 𝑡𝑡 ∈ 𝒯𝒯 
The outlet lines of the splitters contain equal concentra-
tion of solids. This constraint can be expressed as: 
If |𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂| > 1, 
�̂�𝑆𝑚𝑚𝑎𝑎𝑂𝑂 � 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

= 𝐹𝐹𝑚𝑚𝑂𝑂 � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛

 ∀𝑖𝑖 ∈ 𝒜𝒜𝑛𝑛
𝑂𝑂𝑂𝑂𝑂𝑂 ,𝑛𝑛 ∈ 𝒩𝒩𝑀𝑀𝑀𝑀, 𝑞𝑞 ∈ 𝒬𝒬, 𝑡𝑡 ∈ 𝒯𝒯 

For the inventory nodes, the mass balance is given by:  

𝐼𝐼𝑛𝑛𝑂𝑂 =  𝐼𝐼𝑛𝑛𝑂𝑂−1 + � 𝐹𝐹𝑎𝑎𝑂𝑂 − � 𝐹𝐹𝑎𝑎𝑂𝑂 
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

 
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛

∀𝑛𝑛 ∈ 𝒩𝒩𝑀𝑀, 𝑡𝑡 ∈ 𝒯𝒯 

If there is a pretreatment unit installed before the inven-
tory node, the concentration of solids in the inventory is 
zero. Otherwise, a solids mass balance is required to 
track the concentration of solids in the inventory: 
𝐼𝐼𝑛𝑛𝑎𝑎𝑂𝑂𝑠𝑠 = 𝐼𝐼𝑛𝑛𝑎𝑎𝑂𝑂−1𝑠𝑠 +  � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

− � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

∀𝑛𝑛 ∈ 𝒩𝒩𝑀𝑀, 𝑞𝑞 ∈ 𝒬𝒬, 𝑡𝑡 ∈ 𝒯𝒯 

The solids flow out of the inventory, depend on the con-
centration of the stored water and are given by: 
𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂 = 𝐹𝐹𝑎𝑎𝑂𝑂𝐶𝐶𝑛𝑛𝑎𝑎𝑂𝑂    ,    𝐶𝐶𝑛𝑛𝑎𝑎𝑂𝑂𝐼𝐼𝑛𝑛𝑂𝑂 = 𝐼𝐼𝑛𝑛𝑎𝑎𝑂𝑂    

𝑠𝑠 ∀𝑛𝑛 ∈ 𝒩𝒩𝑀𝑀, 𝑞𝑞 ∈ 𝒬𝒬, 𝑡𝑡 ∈ 𝒯𝒯 
Completions pads can consume water, produce water, 
do both simultaneously, or neither produce nor have de-
mand. Depending upon the mode of operation, the com-
pletions pad mass balances need to be written differ-
ently. If the completions pad is consuming water: 
𝐹𝐹�𝑛𝑛𝑂𝑂𝐶𝐶𝑡𝑡𝑛𝑛𝑠𝑠 =  � 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

   ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛𝐶𝐶 

� 𝐹𝐹𝑎𝑎𝑂𝑂 = 0, � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

= 0
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

   ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑞𝑞 ∈ 𝒬𝒬, 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛𝐶𝐶 

If the completions pad is producing water: 
𝐹𝐹�𝑛𝑛𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 = � 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝑂𝑂𝑂𝑂𝑂𝑂

    ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛𝑃𝑃 

�̂�𝑆𝑛𝑛𝑎𝑎𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 = � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

   ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛𝑃𝑃 , 𝑞𝑞 ∈ 𝒬𝒬 

� 𝐹𝐹𝑎𝑎𝑂𝑂 = 0, � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

= 0   ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑞𝑞 ∈ 𝒬𝒬, 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛𝑃𝑃 

If the completions pad is simultaneously producing and 
consuming: 
𝐹𝐹�𝑛𝑛𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 = � 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝑂𝑂𝑂𝑂𝑂𝑂

,𝐹𝐹�𝑛𝑛𝑂𝑂𝐶𝐶𝑡𝑡𝑛𝑛𝑠𝑠 = � 𝐹𝐹𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛

   ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛𝑃𝑃𝐶𝐶 

�̂�𝑆𝑛𝑛𝑎𝑎𝑂𝑂𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 = � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

   ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛𝑃𝑃𝐶𝐶 , 𝑞𝑞 ∈ 𝒬𝒬 

If the completions pad is neither consuming nor produc-
ing water:  

� 𝐹𝐹𝑎𝑎𝑂𝑂 = 0,
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛

       � 𝐹𝐹𝑎𝑎𝑂𝑂 = 0 
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

   ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛0 

� 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂 = 0, � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂 = 0 
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

   ∀𝑛𝑛 ∈ 𝒩𝒩𝐶𝐶 , 𝑞𝑞 ∈ 𝒬𝒬, 𝑡𝑡 ∈ 𝒯𝒯𝑛𝑛0 

The desalination unit node in the network is broken down 
into three parts: the inlet node, the concentrated water 
node, and the treated water node. For the desalination 
inlet node, we ensure that there is only one inlet connec-
tion. If there are multiple inlet lines going into a desalina-
tion unit, we add a mixer node with one outlet that goes 
to the desalination unit. The desalination inlet node equa-
tions are given by: 
𝐶𝐶𝑛𝑛𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑎𝑎𝑡𝑡 � 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

=  � � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛𝑎𝑎∈𝒬𝒬

   ∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝐼𝐼𝑛𝑛, 𝑡𝑡 ∈ 𝒯𝒯 
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The treated water stream from the desalination unit is 
considered fresh with zero salinity. This assumption is 
true in the case of MEE-MVR, since the condensate from 
the evaporators contains negligible amounts of solids. 
The concentrated water node consists of the brine from 
the desalination unit. The flow in and flow out are related 
by the water recovery fraction: 
𝐹𝐹𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂(𝑛𝑛)𝑂𝑂 = 𝛼𝛼𝑛𝑛′𝑂𝑂𝐹𝐹𝑎𝑎𝐼𝐼𝑛𝑛(𝑛𝑛′)𝑂𝑂 ∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝑇𝑇𝑇𝑇,𝑛𝑛′ ∈ 𝒩𝒩𝑈𝑈𝑈𝑈(𝑛𝑛), 𝑡𝑡 ∈ 𝒯𝒯 
𝐹𝐹𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂(𝑛𝑛)𝑂𝑂 = (1 − 𝛼𝛼𝑛𝑛′𝑂𝑂)𝐹𝐹𝑎𝑎𝐼𝐼𝑛𝑛(𝑛𝑛′)𝑂𝑂 ∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝐶𝐶𝑇𝑇 ,𝑛𝑛′ ∈ 𝒩𝒩𝑈𝑈𝑈𝑈(𝑛𝑛), 𝑡𝑡 ∈ 𝒯𝒯 
𝐶𝐶𝑛𝑛𝑎𝑎𝑂𝑂𝐹𝐹𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂(𝑛𝑛)𝑂𝑂 = 𝐶𝐶𝑛𝑛′𝑎𝑎𝑂𝑂 𝐹𝐹𝑎𝑎𝐼𝐼𝑛𝑛(𝑛𝑛′)𝑂𝑂 ,   𝑆𝑆𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂(𝑛𝑛)𝑎𝑎𝑂𝑂 = 𝐶𝐶𝑛𝑛𝑎𝑎𝑂𝑂𝐹𝐹𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂(𝑛𝑛)𝑂𝑂 

∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝐶𝐶𝑇𝑇,𝑛𝑛′ ∈ 𝒩𝒩𝑈𝑈𝑈𝑈(𝑛𝑛), 𝑡𝑡 ∈ 𝒯𝒯, 𝑞𝑞 ∈ 𝒬𝒬 
We assume that the desalination unit has a minimum flow 
and concentration restriction. This assumption is reason-
able as the startup procedure for the desalination units 
can be time consuming and expensive compared to run-
ning them at some minimum capacity for the entire plan-
ning horizon. Therefore, the bounds on desalination op-
eration can be written as: 
�̂�𝐶𝑚𝑚𝑚𝑚𝑛𝑛
𝑂𝑂𝑡𝑡𝑂𝑂𝑎𝑎𝑡𝑡 ≤  𝐶𝐶𝑛𝑛𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑎𝑎𝑡𝑡 ≤ �̂�𝐶𝑚𝑚𝑎𝑎𝑚𝑚

𝑂𝑂𝑡𝑡𝑂𝑂𝑎𝑎𝑡𝑡     ∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝐼𝐼𝑛𝑛, 𝑡𝑡 ∈ 𝒯𝒯  
𝐹𝐹�𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 ≤ � 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

≤ 𝐹𝐹�𝑛𝑛𝑚𝑚𝑎𝑎𝑚𝑚     ∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝐼𝐼𝑛𝑛, 𝑡𝑡 ∈ 𝒯𝒯 

The disposal sites also have disposal limits on the volume 
of water that can be disposed in a particular period: 
� 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛

≤ 𝐹𝐹�𝑛𝑛𝑚𝑚𝑎𝑎𝑚𝑚     ∀𝑛𝑛 ∈ 𝒩𝒩𝐷𝐷, 𝑡𝑡 ∈ 𝒯𝒯 

We assume that the salinity of the fresh water sourced is 
near-zero and that there are capacity constraints on the 
volume of water that can be sourced: 
� 𝐹𝐹𝑎𝑎𝑂𝑂

𝑎𝑎∈𝒜𝒜𝑛𝑛
𝑂𝑂𝑂𝑂𝑂𝑂

≤ 𝐹𝐹�𝑛𝑛𝑚𝑚𝑎𝑎𝑚𝑚  , � 𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

= 0   ∀𝑛𝑛 ∈ 𝒩𝒩𝐷𝐷, 𝑞𝑞 ∈ 𝒬𝒬, 𝑡𝑡 ∈ 𝒯𝒯 

The main advantage of including the solids flow stream 
into the network model is that we can bound the solids 
flow when the flow of water in any arc is zero: 
𝑆𝑆𝑎𝑎𝑎𝑎𝑂𝑂 ≤  �̂�𝐶𝑚𝑚𝑎𝑎𝑚𝑚𝐹𝐹𝑎𝑎𝑂𝑂    ∀𝑎𝑎 ∈ 𝒜𝒜, 𝑞𝑞 ∈ 𝒬𝒬, 𝑡𝑡 ∈ 𝒯𝒯 
This constraint avoids singularities in the problem formu-
lation and improves the robustness of the model while 
optimizing. 
 The operating cost of the network includes costs for 
transportation, storing water in the inventory units, 
sourcing fresh water, and produced water disposal or in-
jection. The desalination of water and the removal of wa-
ter from the inventory unit has a reward associated with 
it to encourage desalination and discourage storage of 
produced water. The desalination cost comes from the 
detailed MEE-MVR process model costs and hence is not 
included in the network cost here: 

𝐶𝐶𝑛𝑛𝑛𝑛𝑂𝑂 =  ��� 𝛽𝛽𝑎𝑎𝑃𝑃𝐹𝐹𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜

+ � � 𝛽𝛽𝑠𝑠𝐹𝐹𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛𝑛𝑛∈𝒩𝒩𝑆𝑆

+ � � 𝛽𝛽𝑠𝑠𝐹𝐹𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛∈𝒩𝒩𝑊𝑊𝑂𝑂∈𝒯𝒯

+ � � 𝛽𝛽𝑃𝑃𝐹𝐹𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝐼𝐼𝑛𝑛𝑛𝑛∈𝒩𝒩𝐷𝐷

− � � 𝛾𝛾𝑠𝑠𝐹𝐹𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛∈𝒩𝒩𝑆𝑆

− � � 𝛾𝛾𝑇𝑇𝐹𝐹𝑎𝑎𝑂𝑂
𝑎𝑎∈𝒜𝒜𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛∈𝒩𝒩𝑇𝑇,𝑇𝑇𝑊𝑊

� Δ𝑡𝑡 

Desalination Model 
An MEE-MVR process unit consists of single or mul-

tiple evaporator stages where the feed water enters on 
the shell side. As seen in Figure 3, hot steam flows 
through the evaporator tubes and the resulting heat 
transfer evaporates the feed water, which is split into liq-
uid brine and vapor streams. In a multistage evaporation 
setting, the vapor from the 𝑖𝑖𝑂𝑂ℎ evaporator is fed into the 
tubes of the (𝑖𝑖 + 1)𝑂𝑂ℎ evaporator and the brine from the 
𝑖𝑖𝑂𝑂ℎ evaporator is fed into the (𝑖𝑖 − 1)𝑂𝑂ℎ evaporator. A com-
pressor is used for vapor recompression from the last 
evaporator stage to feed it into the tubes of the first 
evaporator in the sequence. A preheater is used to ex-
change heat between the condensate and the feed to 
pre-heat the feed for better energy integration.  
 A rigorous MEE-MVR process model is developed 
based on [16], the mathematical model consists of mass 
and energy balances and non-linear pressure and tem-
perature relationships along with bounds for feasible op-
eration. The detailed modeling equations are provided in 
the digital supplementary material. The main costs asso-
ciated with the desalination unit are the CAPEX from the 
evaporators, preheater, and the compressor and the 
OPEX from using electricity to run the compressor. The 
CAPEX was calculated using correlations from [17] and 
was annualized using an amortization period of 10 years 
and an interest rate of 10%.  

 
Figure 3. MEE-MVR process with heat integration. 

Integrated Model 
 To formulate the multi-period integrated problem, a 
steady-state MEE-MVR unit model is written in each pe-
riod of the network. The variables from the network are 
linked with the input variables (represented by a bar on 
top of the variables) to the desalination unit using linking 
constraints. To ensure a common desalination design 
across all periods and feasible operation in every period, 
we use global capacity constraints on the capacity varia-
bles of the desalination model. The annualized CAPEX 
and OPEX are converted to daily CAPEX and OPEX given 
by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋Δt and 𝑂𝑂𝐶𝐶𝐶𝐶𝑋𝑋Δt.The integrated model formulation 
is given by: 
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min𝐶𝐶𝑛𝑛𝑛𝑛𝑂𝑂 + �(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋Δt + 𝑂𝑂𝐶𝐶𝐶𝐶𝑋𝑋Δt𝑂𝑂 )Δ𝑡𝑡
𝑂𝑂∈𝒯𝒯

  

s.t  ∑ 𝐹𝐹𝑎𝑎𝑂𝑂𝑎𝑎∈𝒜𝒜𝑛𝑛
𝐼𝐼𝑛𝑛 =  𝐹𝐹�𝑛𝑛𝑂𝑂𝑚𝑚𝑛𝑛      ∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝐼𝐼𝑛𝑛 , 𝑡𝑡 ∈ 𝒯𝒯 

       𝐶𝐶𝑛𝑛𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑎𝑎𝑡𝑡 =  �̅�𝐶𝑛𝑛𝑂𝑂𝑚𝑚𝑛𝑛              ∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝐼𝐼𝑛𝑛 , 𝑡𝑡 ∈ 𝒯𝒯 
       𝛼𝛼𝑛𝑛𝑂𝑂 =  𝛼𝛼�𝑛𝑛𝑂𝑂                   ∀𝑛𝑛 ∈ 𝒩𝒩𝑇𝑇,𝐼𝐼𝑛𝑛, 𝑡𝑡 ∈ 𝒯𝒯  
       𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋𝑛𝑛𝑒𝑒𝑎𝑎𝑈𝑈

(𝑚𝑚)𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑎𝑎𝑡𝑡 ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋����������𝑛𝑛𝑒𝑒𝑎𝑎𝑈𝑈,𝑂𝑂
(𝑚𝑚)   ∀𝑖𝑖 ∈ {1, . . , 𝐼𝐼}, 𝑡𝑡 ∈ 𝒯𝒯 

       𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋𝑈𝑈ℎ
𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑎𝑎𝑡𝑡 ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋����������𝑈𝑈ℎ,𝑂𝑂          ∀ 𝑡𝑡 ∈ 𝒯𝒯 

        𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋𝑐𝑐𝑡𝑡𝑚𝑚𝑈𝑈
𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑎𝑎𝑡𝑡 ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋����������𝑐𝑐𝑡𝑡𝑚𝑚𝑈𝑈,𝑂𝑂      ∀𝑡𝑡 ∈ 𝒯𝒯 

      All network equations and desalination model  
      equations in each period 
The 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋Δ𝑂𝑂 is calculated using the global CAPEX of in-
dividual equipment. It is assumed that there are no un-
certainties in the model. The integrated problem is a non-
linear model, developed in Pyomo [18] and solved using 
the open source NLP solver IPOPT [19].  

3 RESULTS 
In this section we demonstrate the results of our in-

tegrated optimization approach on a small network case 
study provided by “Project PARETO”. The network con-
sists of four production pads, one completions pad, two 
disposal sites, two fresh water sources, one storage site, 
and one prospective desalination site as shown in Figure 
4. A planning horizon of 52 weeks is considered with a 
weekly discretization. The completions pad has a water 
demand between weeks 1 to 12 and weeks 45 and 52. In 
the remaining time there is completions flowback, which 
means there is no demand for water within the network 
during that time. We perform three case studies: 

1. Embedding a single-stage MVR at R01 

2. Embedding at two-stage MVR at R01 

3. Embedding a three-stage MVR at R01 

Case Studies 
A single-stage desalination unit is embedded at de-

salination site R01. The problem consists of 6,972 varia-
bles, 6,015 equality constraints, and 2,860 inequality 
constraints. The optimal network operation profiles are 
shown in Figure 5. When there is no water demand in the 
network, the desalination unit is run at its maximum ca-
pacity as shown in Figure 5b. When there is completions 
demand, the optimal solution balances recycling and de-
salination to reduce costs incurred from freshwater 
sourcing. From Figure 5c, we observe that initially, when 
there is completions demand, the inventory is depleted 
to meet the demand, and then there is inventory build-up 
to meet the completions demand in the later weeks of the 
year. Finally, at the end of the year the inventory is com-
pletely depleted as there is no incentive to store excess 
water. The optimal solution indicates that 53% produced 
water is sent to desalination, 14% is reused to meet com-
pletions demand, and 33% is sent to disposal. 4.2 million 

barrels of fresh water are sourced to meet the comple-
tions demand. Table 2 shows the optimal design varia-
bles for the desalination plant.  

 
Figure 4. Produced water network case study.  
 

 
Figure 5. Optimal flow profiles for a single-stage 
desalination unit at R01. A) Production and demand 
forecasts against time and fresh water sourced in each 
period. b) Optimal water disposal, desalination, and reuse 
in each time period. c) Optimal volume of water stored in 
S01 in each period. 

 When a two-stage desalination unit is embedded 
at R01, the problem has 8,064 variables, 7,055 equality 
constraints, and 3,328 inequality constraints. The optimal 
flow profiles obtained are nearly identical to the single-
stage unit. The optimal design variables for the two-
stage desalination plant are shown in Table 2. The two-
stage desalination plant needs a smaller compressor due 
to the separation process being split over two evaporator 
stages. Hence, the CAPEX and the OPEX are both smaller 
for a two-stage unit compared to a single-stage unit. 
Overall, the network with a two-stage desalination unit is 
31% cheaper than with a single-stage unit in this exam-
ple.  

When a three-stage unit is installed, the desalination 
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unit doesn’t run at its full capacity because the compres-
sor reaches its maximum compression ratio at a lower in-
let flowrate to the desalination unit. Thus, the water sent 
to desalination is decreased, with only 48% water sent to 
desalination compared to the two-stage and single-stage 
case. Also, a smaller compressor is installed but the cost 
of installing three evaporator stages offsets the cost re-
duction obtained by installing the smaller compressor. 
Table 3 shows the cost breakdown of the network costs 
and desalination costs for each case study. Overall, the 
two-stage desalination unit has the smallest objective 
function and is therefore optimal in this case. All problems 
solve with IPOPT within an order of 100 s.  

Table 2: Optimal design of the desalination units obtained 
by solving the integrated problem. 

             Unit type → Single-
stage 

Two-
stage 

Three-
stage Equipment ↓ 

Evaporator area  372 𝑚𝑚2 372 𝑚𝑚2 372 𝑚𝑚2 
Evaporator area  − 372 𝑚𝑚2 372 𝑚𝑚2 
Evaporator area  − − 372 𝑚𝑚2 
Preheater area 73.87 𝑚𝑚2 118 𝑚𝑚2 78 𝑚𝑚2 
Compressor capacity 2750 𝐻𝐻𝐻𝐻  1790 𝐻𝐻𝐻𝐻 1449 𝐻𝐻𝐻𝐻 

 
Table 3: Optimal costs obtained by solving the integrated 
problem. 

             Unit type → Single-
stage  

Two-
stage  

Three-
stage Costs (kUSD)↓ 

Objective function 9882.9  9094  9575 
Transportation  370 370 366 
Storage 5.8 5.03 6.12 
Disposal 917.5 918 1060 
Fresh water 12682 12684 12680 
Desalination CAPEX 406 374.8 388 
Desalination OPEX 2143.2 1384.2 1075 
Storage reward 0.58 0.50 0.61 
Desalination reward 6640.6 6641.7 6002 

4 CONCLUSIONS 
In this paper, we develop an integrated optimization 

framework for the co-optimization of desalination units 
with operational decision-making in produced water net-
works. The framework is demonstrated on a multi-period 
network problem with three case studies embedding 
MVR desalination units with different number of stages 
into the network. The results show that in this case, a 
two-stage MVR leads to the lowest objective function. 
The framework gives the optimal operation variables in 
the network along with the optimal design and operation 
variables in the rigorous desalination units. 
 Future work involves developing decomposition 
techniques for scaling the framework for application on 
larger network instances. We also plan on incorporating 

bi-directional flow and strategic decision making into the 
network model.  

DIGITAL SUPPLEMENTARY MATERIAL 
 The detailed desalination unit model for MEE-MVR 
process is provided:  
https://pareto.readthedocs.io/en/latest/model_li-
brary/water_treatment/index.html 
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ABSTRACT 
Inspired by Nature, we propose that synergies between biorefinery and mineral refinery can be 
exploited so that at least a part of the carbon is captured before being released to the atmosphere. 
In doing so, carbon is captured not only from CO2 but also from biomass and developing more 
such processes may be the cornerstone for controlling CO2 emissions. A comparison of circular 
economy in traditional biorefineries and bio-mineral refineries is done by using general chemical 
formulas and it is shown that the bio-mineral refinery captures carbon. In this work, we have shown 
that Serpentine may be used to partially neutralise biomass pyrolysis oil. The extracted oil may be 
used as feedstock to produce downstream chemicals and further studies are required to produce 
the same. 

Keywords: Biofuels, Biomass, Carbon Capture, Carbon Dioxide Sequestration, Environment

INTRODUCTION 
Circular economy, a concept that focuses on recy-

cle, is viewed as a potential means of reducing new re-
source usage, thus limiting CO2 emissions. Applying the 
concept of circular economy to the chemical process in-
dustries; biomass, fossil resources, all the chemical prod-
ucts and CO2 can be considered as the intermediates, 
while energy to the system comes from the Sun. Cur-
rently, the rate of CO2 emissions is greater than the rate 
of biomass regeneration and this is leading to CO2 accu-
mulation in the atmosphere, and this is viewed as being 
linear. Furthermore, CO2 utilization/mineralization to re-
duce atmospheric CO2 accumulation may be viewed as 
the process of closing the loop in a circular economy; 
however, doing so is energy intensive and leads to fur-
ther CO2 emissions. Biorefineries have been proposed as 
a panacea since they can potentially substitute fossil 
sources, and the energy for CO2 capture and production 
of biomass is taken directly from the sun. However, bio-
refineries have had limited success, and most are single 
product chemical plants.  

The critical difference between fossil sources such 
as crude oil, natural gas and biomass is that biomass has 
about 40% (w/w) oxygen and the same is almost non-

existent in the fossil sources. In view of this, one can ex-
pect that biomass to chemicals/fuels is going to be ex-
pensive especially if oxygen elimination is necessary. An-
other critical difference is that fossil source is produced 
by natural interaction of dead biomass with the environ-
ment surrounding them and it is unknown how many 
tonnes of biomass produced one tonne of fossil source. 
On the contrary, biomass to chemicals process must 
have high productivity and the mass balance is stacked 
against bio-refineries. While this is challenging, our ef-
forts must continue to focus on the use of biomass since 
it replaces fossil sources. Where possible, this skewed 
mass balance must be turned to our advantage by fur-
thering our research. Further, the effect of the natural en-
vironment on biomass is not completely simulated in a bi-
orefinery. In view of this, we try to simulate the interac-
tion of biomass with the environment by combining bio-
refinery and mineral refinery. This inspiration comes from 
the fact that animals, which are complex chemical sys-
tems, take biomass as feed, produce complex (bio) 
chemicals within their body and leave mineral carbonates 
as bones at the end of their life cycle.  

The objective of this work is thus to demonstrate 
that it is possible to combine biorefineries and mineral re-
fineries such that synergies can be explored for the 

mailto:pavan-kumar.naraharisetti@ncl.ac.uk
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benefit of CO2 mineralization. In view of this, we present 
details of two chemical processes where the synergies 
between biomass refining and mineral refining can be ex-
plored, and carbon is captured. They are the production 
of acetone and acetamide/acetonitrile. While the two 
processes are based on existing know-how, we also ap-
ply the concept to demonstrate that the field of “Bio-
mineral refinery” can be developed to exploit the syner-
gies while using raw biomass source. In view of this, we 
use biomass pyrolysis oil with Serpentine and the con-
cept of Biomineral refinery is introduced by conducting 
preliminary experiments. In doing so, a multiproduct bio-
mineral refinery is designed; carbon is captured both 
from biomass and CO2 and good productivity achieved.  

CIRCULAR CHEMICAL ECONOMY WITH 
BIO-MINERAL REFINERIES 

In the natural world, dead biomass degrades by 
bacterial action while producing organic acids that dis-
solve the surrounding mineral ores. The process pro-
duces mineral salts that serve as nutrients to plant life 
and plants support the insect and animal life. At the end 
of their life, the biomass from the insects, plants and an-
imals degrades and the cycle continues. This entire pro-
cess can be viewed as a circular (bio) chemical system 
with several recycle loops where the biomass, insects, 
animals, O2 and CO2 are considered as intermediates and 
energy is input to the system in the form of sunlight (Fig. 
1A). Similarly, the processes in the chemical and allied in-
dustries can also be visualized where all the materials 
move in a loop with several recycles and energy is input 
to the system in the form of heat and electricity.  

On further examination, we can see that the animal 
life leaves mineral carbonates at the end of their life cy-
cle. Hence, the entire process can be viewed as a circular 
(bio) chemical system that is supported by a linear pro-
cess where mineral ores are converted to mineral car-
bonates. We can see that there are synergies between 
the circular (bio) chemical system and linear mineral pro-
cesses, and it is this synergy that we must exploit to de-
velop new chemical processes. The overall process can 
be viewed as the carbon and nitrogen cycles interacting 
with the linear mineral processes (Fig. 1B). Here we pre-
sent two processes in support of the Nature inspired ‘lin-
ear supported circular (bio) chemical system’. They are 
theoretically feasible and further research must be car-
ried out to evaluate the productivity, energetics, and the 
economic feasibility. The first is a bio-mineral refinery 
based on the carbon cycle and the second is based on 
carbon and nitrogen cycles. Briefly, mineral ores such as 
Wollastonite and Serpentine are used as raw materials to 
produce mineral carbonates and other inorganic prod-
ucts. One of the common products of biomass degrada-
tion is acetic acid and we present on the use of palm 

empty fruit bunch (EFB, C6H10.8O3.72) [1] derived acetic 
acid as one of the raw materials to produce organic inter-
mediates such as acetonitrile and acetone. The materials 
thus produced can be treated as intermediates and these 
chemicals can be used as platform materials to produce 
downstream chemicals. In the proposed Circular Chemi-
cal Economy, we consider carbon capture both from bio-
mass and from CO2 thus limiting CO2 emissions to the at-
mosphere. 
 

Part A 

  
Part B 

 
Figure 1. Part A: A tratitional circular (bio) chemical 
system. Intermediate materials move in cycles with 
energy from the sun. Part B: A circular (bio) chemical 
system that is dependent on a linear mineral process. 
Dotted arrows represents natural processes. 

CO2 MINERALIZATION POTENTIAL 
The reactions that may occur in a circular chemical 

economy to produce fuels and/or chemicals may be writ-
ten by assuming a general formula for biomass. Given, ‘n’ 
is the number of moles of biomass used to produce the 
products and capture CO2, ‘i’ is the number of moles of 
CO2 mineralized, ‘m’ is the number of moles of biomass 
combusted in order to provide heat to the process and  
‘e’ is the CO2 consumed/emitted by the process; where ‘i’ 
is a positive integer, ‘e’, ‘m’ and ‘n’ are real numbers; when 
i=0, the proposed bio-mineral refinery becomes a tradi-
tional biorefinery i.e., no carbon is captured. The same is 
depicted in Fig. 2 with reference to the circular economy. 
Biorefineries emit CO2 either by way of energy uses in the 
process or as a byproduct and a sequestration process is 
necessary to minimize the CO2 emissions. On the con-
trary, a part of the carbon is mineralized in Bio-mineral 
refineries and over a period of several cycles, the amount 
of carbon mineralized would be far greater than the 
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carbon emitted as CO2 and thus, the process turns from 
being a CO2 emitting process to carbon sequestration 
process.  

We can see from Fig. 2. that carbon is mineralized in 
each cycle as mineral carbonates; hence the Bio-Mineral 
refineries become net CO2/carbon negative processes 
after a few cycles. The total CO2 emissions (tonnes/tonne 
of CO2 mineralized) can be calculated to be equal to 
(mx+e)/i and the number of cycles required for the pro-
cess to become net carbon negative from being a CO2 
emitting process is also (mx+e)/i. We can conclude that 
‘e’ and ‘m’ must be as small as possible and ‘i’ must be as 
large as possible so that maximum amount of carbon is 
mineralized while the input energy to the process is low. 
However, as ‘m’ and ‘n’ increases, the amount of valuable 
products produced per ton of CO2 increases and this 
needs to be high to recover the cost of production. In 
view of this, detailed analysis on individual processes is 
necessary to understand the trade-off between the op-
posing objectives of maximizing the amount of CO2 min-
eralized (with low chemical production) and maximizing 
the mass of valuable products produced (with low CO2 
mineralization). 

 
Figure 2. A comparison of circular economy in traditional 
biorefineries (i=0) and bio-mineral refineries (i>0) is de-
picted here.  
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Bio-Mineral refinery – Carbon Cycle 
Acetic acid can be produced from biomass by (bio) 

chemical action. The chemical process has faster kinetics 
when compared to the bioprocess and may be suitable 
for large scale production. First, methanol is produced 
from biomass derived Syngas, next acetic acid is pro-
duced by the carbonylation of methanol (Monsanto and 
Cativa process) where the carbon monoxide may be pro-
duced from biomass derived carbon. Acetic acid can be 

used for leaching Wollastonite and SiO2 is precipitated [2] 
in the process. The salt that is produced, calcium acetate, 
can be separated and used to produce acetone while cal-
cium carbonate is precipitated [3]. Acetone serves as a 
platform chemical [4] to produce downstream chemicals 
such as isopropyl alcohol, propane, solvents (Methyl iso-
butyl alcohol, methyl isobutyl ketone), Bisphenol-A (Pol-
ycarbonates, Polyurethanes, epoxy resins), Methyl meth-
acrylate, among others. Acetone thus produced can po-
tentially reduce the dependence on acetone from the Cu-
mene process and hence some of the crude oil can be 
used in the production of other petro-chemicals and the 
overall use of crude oil reduced. Benzene may also be 
produced in a bio-mineral refinery to offset loss on pro-
duction via Cumene process. Hydrogen from biomass 
derived Syngas may be used to meet downstream de-
mand. The schematic of the processes is shown in Fig.3 
and the detailed chemical reactions for Fig. 3. are given 
in Table 1. Briefly, Carbon either from biomass or from 
CO2 is converted into mineral form thus removing some 
of it from the system. While such processes occur in ge-
ological time scales in the earth, chemical reactions in 
chemical plants are targeted to have faster chemical ki-
netics and it is hoped that the process of mineralization 
can be fastened. 

The carbon and nitrogen cycles-based bio-mineral 
refinery produces acetamide/acetonitrile by using ser-
pentine. These details, corresponding to Fig. 4., are only 
shown briefly due to limitation of space.  

EFB is used to produce both Syngas which is later 
used to produce acetic acid. We can see from Table 1 that 
1.32 moles of EFB successfully mineralizes 1.9 moles of 
CO2 as CaCO3 when Wollastonite is used. This is equiva-
lent to sequestering 0.44 tons of CO2/tonne of EFB used 
while producing 0.59 tonnes of acetone and 0.61 tonnes 
of Silica that can generate income. Like the Wollastonite 
process, we observed that 1.32 moles of EFB success-
fully mineralizes 1.9 moles of CO2 as MgCO3 when Ser-
pentine is used. The same amount of CO2 is mineralized 
while producing 1.19 tons of acetamide. The amount of 
acetamide produced per tonne of EFB is higher compared 
to the amount of acetone produced. This is obvious be-
cause CO2 is mineralized from biomass when acetone is 
produced, and flue gas is used as the CO2 source when 
acetamide is produced.  Here, we have assumed 100% 
conversion, and the actual values will be much different. 
In view of this, we take the basis as the amount of valua-
ble product produced as it is straight forward and these 
values won’t be dependent on the conversion, but only 
on reactions R8 (Fig. 3) or R12 (Fig. 4). When Wollastonite 
and Serpentine are used, 0.76 tonnes of CO2/tonne of ac-
etone and 0.37 tonnes of CO2/tonne of acetamide (or 
0.54 tonnes of CO2/tonne of acetonitrile) is mineralized 
respectively. We can see that the amount of CO2 miner-
alized per tonne of valuable product is large and these 
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processes potentially can be used to produce valuable 
chemicals while simultaneously capturing CO2. The CO2 
emissions from the use of energy and the penalty thereof 
must be estimated separately and this is estimated from 
the values presented in Table 1. To calculate the energy 
requirements of the processes, we only consider the en-
dothermic energy of the processes; any gains by heat in-
tegration associated with exothermic processes is ne-
glected as these must be subjected to detailed heat in-
tegration calculations.  

Based on Fig. 4. each cycle 6.95 tonnes or 8.78 
tonnes of CO2 is released into the atmosphere for every 
tonne of CO2 mineralized (detailed reactions not shown). 
Here, the amount of CO2 released to the atmosphere is 
large compared to the CO2 mineralized, and hence the 
proposed concept of circular chemical economy through 
bio-mineral refineries holds. In view of this, over a period 
of 7 and 9 cycles the net CO2 emitting processes become 
CO2 neutral processes since the atmospheric CO2 is ef-
fectively an intermediate that will be taken up in biomass 

Table 1: Reactions in a Bio-Mineral refinery that uses palm EFB and Wollastonite as feed.  ∆𝑂𝑂 at a given temperature is calcu-
lated using HSC 6.1 software [5]. Calculations for Serpentine (Carbon-Nitrogen cycle) are not shown. 

Use of Wollastonite as Feed & Production of Acetone Rxn.  T 
(°C) H∆ (kJ) 

Syngas Production (R1) C6H10.8O3.72 + 1.14O2 →  6CO + 5.4H2 700 2802 

Syngas Upgrading (R2)  6CO + 5.4H2 + 2.2H2O →  3.8CO + 7.6H2 +2.2CO2 300 86 

Methanol Production (R3) 3.8CO + 7.6H2 →  3.8CH3OH 250 373 

Carbon production (R4) 0.32C6H10.8O3.72 + 0.532O2 →  1.9C + 1.71H2O 1300 563 

CO production (R5) 1.9C + 1.9CO2 →  3.8CO 800 -323 

Acetic Acid Production (R6) 3.8CH3OH + 3.8CO →  3.8CH3COOH 200 620 

Mineral Digestion (R7) 1.9CaSiO3 + 3.8CH3COOH →  1.9(CH3COO)2Ca + 1.9SiO2 + 1.9H2O 50 209 

Mineralisation (R8) 1.9(CH3COO)2Ca + Heat → 1.9CH3COCH3 + 1.9CaCO3 160 -183 

 
Figure 3: Schematic of the process of producing Acetone from Biomass and Wollastonite. Acetone can be used a 
precursor to many other chemicals.  
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regeneration. After the 7 or 9 cycles the processes be-
come purely CO2 mineralization processes. A cycle is 
complete when the CO2 emitted by the process is taken 
up in biomass regeneration. Hence, biomass doubling 
time can be considered as time for one cycle i.e., the cy-
cle time is dependent on the biomass growth rate which 
in turn is dependent on the land area and the type of crop 
that is cultivated. Clearly, over the long term these pro-
cesses have the potential to sequester large amounts of 
CO2 and effectively de-carbonize the atmosphere.  In 
contrast to the traditional biorefinery where fuels and/or 
chemicals are produced and no CO2 is captured, a bio-
mineral refinery captures at least some amount of carbon 
as mineral carbonates and partially prevents atmospheric 
CO2 accumulation. This contrast is the key to the suc-
cessful development of circular chemical economy be-
cause the focus is on carbonate accumulation and not on 
CO2 accumulation in the atmosphere. EFB is produced at 
the rate of 18 to 30 tonnes/hectare/year [6]. Considering 
the lower value of 18 tonnes/hectare/year, each tonne of 
CO2 mineralized requires about 0.21 hectares or 0.26 
hectares of land for CO2 recycle and biomass regenera-
tion. However, the land required to produce biomass that 
is used as feedstock is larger at 0.33 hectares or 0.38 
hectares per tonne of CO2 mineralized since all the car-
bon in the biomass is not released to the atmosphere, but 
carbonates and valuable products are produced. Thus, 
we have demonstrated through two examples that there 
is scope for developing circular chemical economy with 
carbon mitigation and the development of other pro-
cesses to produce valuable products must be explored.    

While the proposed routes are interesting, the ap-
parent question is how fast each loop in the circular 
economy is. To answer such a question, detailed kinetics 
studies are necessary. While it suffices to say here that 
since CO2 of about 10 % (based on less than 10 cycles) is 
mineralized and that reactions in chemical industries are 
typically faster in the matter of minutes to hours, we also 
need to answer this in terms of the amount of mineraliza-
tion with reference to the mass of products produced. 
The same was presented earlier as 0.44 tonnes of 
CO2/tonne of EFB is mineralized for each of the two pro-
cesses. While this is theoretical conversion, the effi-
ciency related to energy penalty in such processes are 
expected to be 50% [7, 8] and may be appropriate to as-
sume that 0.22 tonnes of CO2 are mineralized per tonne 
of EFB after scale-up. 

Although more such examples exist in literature 
where biomass derived chemicals can be used for CO2 
mineralization and the production of valuable chemicals 
in a bio-mineral refinery, the key for successful imple-
mentation of the processes in a commercial scale is to 
use whole biomass so that the number of processing 
steps and the associated costs are reduced. The possi-
bility that whole biomass, which has a large amount of 

oxygen, be de-oxygenated by Ketonic decarboxylation 
must be explored so that valuable hydrocarbons and in-
organic products are produced, and carbon is mineral-
ized. Biomass has phenols and other aromatic com-
pounds, and it may (not) be possible to produce higher 
hydrocarbons which have a high C/O ratio using biomass 
as feedstock. Considering the variety of compounds in 
biomass, it would be rather difficult to predict the type of 
products that can be produced in hydrothermal/thermo-
chemical treatment of biomass & mineral ore mixtures. 
Further, addition of acid for acid hydrolysis of biomass 
and/or leaching of the mineral ore and production of salts 
thereof would lead to increased complexity. In view of 
this, experiments to study the products and the mecha-
nism of product formation in biomass-mineral interac-
tions are warranted for the development of bio-mineral 
refinery based circular chemical economy that can at 
least partially replace fossil fuel based chemical econ-
omy.  Hence, we have conducted experiments using bio-
mass pyrolysis oil and serpentine mineral and present the 
same here. 

Table 2: CO2 capture potential of the proposed pro-
cesses.  W-wollastonite; S-serpentine. 

 W S 
Endothermic energy required (MJ) 4.65 5.91 
Biomass for energy supply (80% 
energy efficiency, kg) 0.31 0.39 

CO2 emissions from Biomass com-
bustion (kg) 0.57 0.72 

Total Biomass required (tons/ton 
CO2 mineralized) 5.92 6.91 

Total CO2 emissions (kg) 0.58 0.73 
CO2 emissions (tonnes/tonne CO2 
mineralized) 6.95 8.78 
Products produced (tonnes/tonne 
CO2 mineralized) 
 

1.32 
(ace-
tone) 

2.68 
(acet-

amide) 
Number of Cycles required for the 
process to become net CO2 cap-
ture process 

7 
 

9 
 

Land area for feedstock biomass 
production  
(hectares/tonne of CO2 mineral-
ized) 

0.33 
 

0.38 
 

CAPTURING CARBON FROM BIOMASS 

Preliminary Experiments 
In this work, we need to first establish if bio-oil 

would react with Serpentine. In view of this, 20 grams of 
serpentine were mixed with 260 ml of water-soluble bio-
oil (60 ml water soluble component from 100 ml pure bio-
oil and 200 ml water) and stirred overnight. Then the solid 
samples, serpentine that gets disassociated, were col-
lected, and analyzed. We were able to collect 12.8 grams 
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of suspended solids (fine solids), 9.5 grams of settled 
solids (coarse) and 0.75 grams of magnetic material that 
sticks to the magnetic bar. The samples were left to air 
dry for three days inside a fume-hood and weighed 
again. The measured weights are as follows: 10.1 grams 
of suspended solids (fine solids), 9.3 grams of settled 
solids (coarse) and 0.69 grams of magnetic material. It 
was observed that there was a pH change from 1.0 to 4.3 
due to the addition of Serpentine.   

Separately, 100 ml of biomass pyrolysis oil is mixed 
with 200 ml of water. The water-soluble mixture is de-
canted (260 ml) and 10 g of serpentine is added to it and 
stirred for 4 hrs. A sample was collected for analysis by 
GC-MC. This mixture is heated in a Parr reactor at 175°C 
for 4 hrs. at a maximum CO2 pressure of 20 barg. The Parr 
reactor is left to cool over-night before opening. The con-
tents are allowed to settle at RTP for 2 hrs. after opening 
and before filtration to allow for the dissolved CO2 to es-
cape. 23 g of cake is collected, and this is allowed to air-
dry in a fume hood for two days after which the weight 
was observed to be 16 g. Elemental Analysis and TGA 

were conducted on this solid residue. A liquid sample is 
collected for analysis by GC-MS (results not presented).    

Preliminary Results 
TGA has shown that there is a 44% weight loss when 

heated up to 800°C; hence we can conclude that 56% 
(8.96 g) of the material is inorganic oxides and this is rea-
sonable since serpentine (10 g) is expected to have about 
10% water of hydration and this would be lost during cal-
cination at high temperature [9]. The rest of the mass 
(7.04 g) can be expected to be organic matter. The ele-
mental analysis of the material indicated 41.22% carbon, 
0.32% nitrogen, 4.11% hydrogen and 0.21% sulphur, lead-
ing to a total weight of 101.8% and this excess can be 
expected to be due to instrument error.  

Alternative uses 
One of the uses for the residual water insoluble sol-

ids is the production of construction material. With re-
spect to carbon capture, the precipitate so produced can 
then be compressed into bricks and stored as a material 

 
Figure 4: Schematic of the process of producing Acetamide/Acetonitrile from Biomass and Serpentine.  
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that effectively captured carbon. The solid material was 
mixed with water and shaken for 15 min and allowed to 
settle overnight. It was observed that the solid and water 
separated indicating that the material is largely insoluble 
in water. The advantage of this process is that the pre-
cipitate holds more carbon than if the mineral serpentine 
were to be reacted with CO2 and hence this process 
would require mining of fewer serpentine. In general, a 
gram of serpentine can hold up to a third of a gram of CO2 
to produce its mineral carbonate [10] and this is equiva-
lent to about a tenth of a gram of carbon. In contrast, the 
precipitate we produced holds about 0.66 g of carbon 
per gram of serpentine used. In view of this, it is worth-
while to explore two options; the first is to hydrogenate 
these residual water-soluble organics to produce a fuel. 
Preliminary results of hydrogenation of the mixture with-
out the use of an additional catalyst were performed at 
10 barg initial H2 pressure and a temperature of 175°C in 
a Parr reactor. The Parr reactor was allowed to cool over-
night, and the hydrogenation is repeated at the same 
conditions and this process is repeated on 4 consecutive 
days to test the catalytic effect of the mineral; the result-
ant liquid samples were analyzed by GC-MS. It was ob-
served that the composition of the product is rather dif-
ferent compared the starting material indicating that ser-
pentine has some catalytic effect, but the process did not 
produce any fuel or water insoluble materials (results not 
presented) and it may be necessary to use a commercial 
catalyst at a higher pressure and/or temperature to pro-
duce a fuel. The second option is to use this water-solu-
ble bio-oil as a substrate in a biochemical reactor to pro-
duce higher value chemicals in view of the current low 
crude oil price. Preliminary results have shown that the 
treated bio-oil is not bactericidal unlike the untreated py-
rolysis oil. Notwithstanding the economics, we are of the 
opinion that this concept must be explored further with a 
view of developing more Bio-Mineral refineries to miti-
gate climate change and hence we suggest other possi-
ble routes that could be explored.  

Other Possible Routes 
We present more examples where biomass derived 

chemicals are used to produce valuable products through 
decarboxylation. Propionic acid [11], Levulinic acid and 
Adipic Acid [12], Benzoic Acid [13], Butanol [14] and Bu-
tyric Acid [15] can be derived from biomass and used in 
bio-mineral processes. Briefly, Cyclopentanone and Cy-
clopentene from Adipic Acid [16], 3-pentanone from Pro-
pionic Acid [17], Acetic acid or acetone and a mixture of 
Cyclopentenones from Levulinic Acid [18], Benzene from 
Benzoic Acid [19], 5-nonanone from Pentanoic Acid [20, 
21] and 4-heptanone from Butanol via Butyric Acid [22] 
are other examples of bio-mineral processes where dif-
ferent metal oxides are used for decarboxylation. A list of 
possibilities using two different chemicals in a single 

Ketonic decarboxylation reaction can be found else-
where [23]. The ketones so produced can be hydrogen-
ated and dehydrated to produce olefins [24]. Consider-
ing that it is possible to capture carbon as a by-product 
of a chemical process, it may be possible to reengineer 
the crude oil, biorefinery and mineral refinery supply 
chains by the development of Bio-Mineral refineries that 
capture carbon and control climate change. Hence, it 
may be worthwhile to pursue research in this direction for 
the betterment of the planet. 

CONCLUSIONS 
We have proposed a circular chemical economy to 

produce silica, acetone and acetamide/acetonitrile while 
capturing carbon as mineral carbonates. The proposed 
concept relies on the notion that valuable chemicals can 
be produced in a circular economy while synergies be-
tween circular bio-economy and linear mineral economy 
are exploited. Details of two examples of multi-product 
bio-mineral refineries are given to demonstrate the con-
cept. Such refineries can capture some of the carbon be-
fore it is released into the atmosphere, while also captur-
ing CO2 from flue gas. We have shown that the proposed 
processes turn from being net CO2 emitters to being CO2 
neutral processes in 7 or 9 cycles, after which they can 
be treated as CO2 mineralization processes with the pro-
duction of valuable chemicals as by-products. While the 
proposed processes are technically feasible, it is of im-
portance to optimize them and identify more such pro-
cesses, keeping in mind the large number of chemical 
products that potentially need to be replaced with alter-
native processes to mitigate climate change. Further, it 
may be worthwhile to study the use of biomass along 
with mineral ores and reduce the number of processing 
steps which have a direct impact on the overall cost of 
production. Hence, we have conducted experiments us-
ing biomass pyrolysis oil and serpentine and these show 
promise for further studies. In view of this, detailed stud-
ies are necessary to further develop this research area. 
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ABSTRACT 
In response to the global imperative to address climate change, this research focuses on enhanc-
ing the transparency and efficiency of the Carbon Capture Utilization and Storage (CCUS) supply 
chain under carbon tax. We propose a decision-making framework that integrates the CCUS sup-
ply chain's optimization model, emphasizing carbon tax policies, with a blockchain network. Smart 
contracts play a pivotal role in automating the exchange and utilization of carbon emissions, en-
hancing the digitalization of the CCUS supply chain from source to sink. This automation facilitates 
seamless matching of carbon sources with sinks, efficient transfer of emissions and funds besides 
record-keeping of transactions. Consequently, it improves the monitoring, reporting, and verifica-
tion processes within the CCUS framework, thereby simplifying compliance with regulatory man-
dates for net emission reductions and carbon taxation policies. By eliminating reliance on third-
party verifiers, our blockchain-based CCUS system reduces verification costs and ensures reliable 
tracking of emissions, mitigating the risk of carbon leakage.  Policymakers and stakeholders gain 
valuable insights to optimize the CCUS network design, specifically considering the impact of car-
bon tax. This study represents an advancement in sustainable practices, providing a robust tool 
for decision-makers engaged in climate change mitigation efforts. 

Keywords: Carbon Dioxide, Carbon Capture, Carbon Dioxide Sequestration, Carbon Capture Utilization and 
Storage (CCUS), Supply Chain, Optimization, Carbon Reduction Policies, Carbon Tax, Blockchain, digitalization 

INTRODUCTION 
Climate change arises as an escalating global crisis, 

primarily fueled by soaring levels of greenhouse gas 
emissions, notably carbon dioxide. Alarming statistics 
from 2019 reveal a 54 % surge in net anthropogenic 
greenhouse gas emissions since 1990, underscoring the 
urgency of transformative solutions [1]. Carbon Capture 
Utilization and Storage (CCUS) emerges as a pivotal in-
tervention. Projections from the International Energy 
Agency [2] highlight the growing significance of CCUS, 
foreseeing a 12 % cumulative reduction in emissions by 
2050, particularly in sectors like cement, steel, and 
chemicals. 

The intersection of CCUS with carbon tax policies 
introduces a nexus laden with challenges and promises. 
Precise measurement and verification of captured and 

stored carbon dioxide pose intricate hurdles in a carbon 
tax regime. Challenges like low capture efficiency, oper-
ational costs, and the lack of international cooperation in-
hibit the holistic development of CCUS [3,4]. Carbon 
taxes, wielding economic influence, are instrumental in 
steering industries toward sustainable practices. They 
not only curtail energy    consumption but also propel ad-
vancements in emission reduction technologies [5]. 

However, the amalgamation of carbon taxes and 
CCUS confronts multifaceted obstacles encompassing 
cost implications, technology maturity, and governance 
complexities. The efficacy of carbon taxes hinges on me-
ticulous governance mechanisms to ensure precision in 
measurement, verification, and transparency, necessitat-
ing innovative solutions. Blockchain technology emerges 
as a disruptive force, offering a decentralized, transpar-
ent, and tamper-proof solution to address these 
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challenges and fortify the CCUS-carbon tax framework. 
Blockchain, with its immutable ledger system, 

stands poised to support the monitoring and verification 
of carbon emissions and cash flows. Its decentralized na-
ture instills trust in reported data, mitigates fraud, and 
fosters international collaboration in the pursuit of cli-
mate change mitigation. This paper proposes a block-
chain-based approach for CCUS-carbon tax nexus, pro-
pelling us toward a sustainable future. As we explore the 
challenging landscape of environmental responsibility 
and technological advancement, this study reveals a 
promising path where CCUS-carbon tax supply chains, 
and blockchain technology intersect. The subsequent 
sections delve into overview of blockchain technology, 
provide a summary of existing studies in the literature, 
elucidate the proposed framework, explore current chal-
lenges, and conclude with insights into future directions. 

BLOCKCHAIN TECHNOLOGY OVERVIEW 
Blockchain is a decentralized technology for record-

ing and managing data and transactions in a transparent, 
secure and tamper-proof manner [6]. The emerging 
technology is a distributed ledger that ensures integrity 
and immutability of data using cryptography and via the 
replication and allocation of transactions across a net-
work of computers [7]. Blockchain technology has the 
potential to eliminate security vulnerabilities, eradicate 
fraudulent activities, and establish an unprecedented 
level of transparency obviating the necessity for a relia-
ble third-party entity [8]. Blockchain technology is used 

to manage tangible and intangible assets using a chain of 
blocks each containing a set of digital transactions via a 
decentralized and peer-to-peer network [9]. 

The decentralization characteristic disperses au-
thority among network nodes, eradicating the need for 
central oversight. Integral cryptographic techniques bol-
ster data security and integrity [9]. The consensus mech-
anism arranges validation and transaction sequencing, 
often via Proof of Work (PoW) or Proof of Stake (PoS). 
This distributed ledger is bolstered by redundancy 
across network nodes, thwarting single points of failure. 
Smart contracts enable self-executing agreements. 
Blockchains can be public or private, and they imbue data 
with immutability, making alterations difficult. Further-
more, their permissioned or permissionless nature adds a 
layer of flexibility to their applications. These multifac-
eted features collectively empower blockchain's versatil-
ity in diverse domains, from cryptocurrencies to supply 
chain management and beyond [8]. Figure 1 represents 
blockchain working mechanism, showcasing decentral-
ized, secure, and transparent data sharing among vali-
dating nodes, ensuring integrity and traceability in infor-
mation recording and verification. 

LITERATURE REVIEW 
CCUS plays a pivotal role in global climate change 

mitigation, particularly in challenging industries. Recent 
advancements emphasize trade-offs between econom-
ics and environmental impact, showcasing the benefits of 
CCUS in achieving net-zero energy systems [10]. 

 
Figure 1: Schematic representation of the blockchain working mechanism. 
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Another study focused on optimal cost and environmen-
tal benefits of deploying CCUS supply chains at scale in 
Guangdong Province, China [11]. Some researchers eval-
uated comprehensive benefits of CCUS networks in coal-
fired power plants [12], while others optimized CCUS de-
ployment considering carbon neutrality, cost efficiency, 
and water stress [13]. These studies highlight evolving 
CCUS models, addressing economic viability, environ-
mental impact, and sector-specific applications. 

Carbon tax is pivotal in incentivizing CCUS adoption. 
The impact on CCUS source-sink matching in China was 
analyzed [14], and a stepwise deployment strategies was 
proposed in Canada based on varying carbon tax levels 
[15]. CCUS systems in Italy and Germany were  explored 
considering carbon tax in their comprehensive objective 
function [16]. Other work delved into a risk management 
framework under carbon tax uncertainties [17], and CO2 
storage potential in shale reservoirs was assessed fac-
toring in  
economic viability and carbon tax implications [18]. 
These studies emphasize the role of carbon taxes in 
shaping CCUS strategies. 

Blockchain integration transforms CCUS govern-
ance. A blockchain-based carbon trading mechanism 
was proposed [19], and a permissioned blockchain for 
emissions trading was modeled [20]. A Sovereign block-
chain for carbon trading was explored [21] and a token-
based economy for carbon trading was suggested [22]. 
The intersection of blockchain, carbon trading, and CCUS 
governance offers a promising avenue for transparency 

and efficiency in climate change mitigation. 
Existing literature focuses largely on CCUS model-

ing, optimization, and the impact of carbon taxes, leaving 
a research gap in exploring blockchain's potential beyond 
carbon trading in the CCUS landscape. This study ad-
dresses this gap by proposing an approach for integrat-
ing blockchain into CCUS supply chain optimization mod-
els under carbon tax influence. By harnessing block-
chain's transparency and tamper-proof nature, we aim to 
enhance data accuracy, prevent fraud, and foster global 
collaboration for effective climate change mitigation. This 
integration offers a comprehensive solution to key chal-
lenges in CCUS governance, contributing to a sustainable 
future. 

PROPOSED APPROACH 
Transparency of the CCUS supply chains necessi-

tates the inclusion of emissions and cost data from vari-
ous stages, encompassing CO2 capture, compression, 
utilization, and geological storage. To enhance transpar-
ency in designing CCUS supply chains with consideration 
of carbon tax, this study provides a framework integrat-
ing blockchain technology. This integration involves em-
bedding the CCUS-carbon tax optimization model with 
the blockchain network, aiming for an optimal CCUS net-
work design that fosters improved transparency in emis-
sions reduction, tracking, and cost management. The in-
tegration ensures the recording of emissions and cost 
data, facilitating transparent emission reduction 

 
Figure 2: Depicting the interactions among developed smart contracts within the proposed framework. 
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verification and limiting carbon leakage. The proposed 
framework empowers CCUS network optimization under 
carbon tax, fostering a distributed ledger containing 
transparent CCUS emissions and cost data across vari-
ous stages. 

In this study, we developed two smart contracts uti-
lizing Solidity, the primary programming language for 
crafting smart contracts on the Ethereum blockchain 
platform. These contracts, named IdentityRegistra-
tion.sol and CO2Exchange.sol, were meticulously de-
signed to support our research framework. To verify their 
integrity and operational effectiveness, both smart con-
tracts underwent a comprehensive process of compila-
tion, testing, and deployment. This rigorous validation 
process ensured that they met our stringent require-
ments for security, efficiency, and reliability, making 
them integral components of our blockchain-based 
CCUS system. 
 The IdentityRegistration.sol smart contract consti-
tutes the foundational layer of our blockchain-based sys-
tem. This pivotal contract is designed to facilitate a range 
of critical activities, including the registration of new in-
dustries and verification entities. It enables the enroll-
ment of carbon sources, sinks, and verifiers by capturing 
essential details such as name, industry, address, con-
tact information, email address, industry identification 
number (ID), verifier ID, carbon flow characteristics, qual-
ity parameters, physical properties, and associated 
costs, including treatment expenses for sources and pro-
cessing charges for sinks, alongside data on secondary 
emissions. This smart contract incorporates functions 
that allow for the retrieval of information about registered 
entities, enhancing transparency and accessibility within 
the system. A significant feature of this contract is its 
built-in mechanism to prevent duplicate registrations, 
thereby ensuring the integrity of the registration process. 
It achieves this by conducting preliminary checks against 
existing records before finalizing any new registrations, 
thus maintaining an accurate and reliable database of 
participants in the CCUS ecosystem. 

The CO2Exchange.sol smart contract is a critical 
component of our blockchain-based framework for man-
aging the CCUS supply chain under carbon tax, facilitat-
ing the effective exchange and utilization of captured 
carbon dioxide. This contract is designed to execute sev-
eral key functions crucial for the transparency and effi-
ciency of the CCUS process. It is responsible for accu-
rately documenting carbon emissions at each stage of 
the CCUS supply chain, including emission sources, 
treatment units, transportation mechanisms, and storage 
or utilization sinks. Additionally, it enables the seamless 
transfer of funds among carbon sources, sinks, and the 
government, thereby ensuring compliance with carbon 
tax regulations and supporting the economic aspects of 
carbon trading by managing the flow of funds within the 

system. This includes the recording of all related trans-
actions, providing a transparent and immutable ledger of 
carbon emissions and financial exchanges.  

Table 1: Algorithms of Smart Contracts.  

IdentityRegistrationsol Initializing CO utilization 
and exchange 

 Declare a contract called IdentityRegistration 
 Define structs for Sources and Sinks considering 

relevant information such as industry name type 
address contact information email industry ID 
carbon flow and quality  

 Define struct for Verifiers including relevant infor-
mation such as verifier name industry contact in-
formation email and verifier ID 

 Define mapping variables to map industry ID to 
Source/Sink structs  

 Define mapping variables to map verifier ID to ver-
ifier struct  

 Define events for NewSource NewSink and 
NewVerifier  

 Define functions to register new industries and ver-
ifiers and retrieve their information 

COExchangesol Transaction and tokenization pro-
cess 

 Declare a contract called COExchange 
 Define struct for CO transaction  
 Define mapping variables to map transaction ID to 

the transaction struct 
 Define function to record emissions from each 

stage including sources capturing units transpor-
tation and sinks 

 Define function to transfer funds from sinks to 
sources and from sources to government  

 Define function to record transactions  
 
 The operational logic and step-by-step functionality 
of these smart contracts are detailed in Table 1, providing 
a clear schematic of their roles within the CCUS system. 
Figure 2 visually depicts the dynamic interactions facili-
tated by the developed smart contracts, illustrating how 
they interconnect within the blockchain-enabled CCUS 
supply chain under carbon taxation. This representation 
underscores the smart contracts' pivotal role in stream-
lining the CCUS process to form a cohesive system that 
not only tracks carbon emissions and transactions but 
also facilitates the regulatory and economic mechanisms 
essential for effective carbon management and mitiga-
tion efforts. 

The commencement of the CCUS-blockchain sys-
tem takes place upon the availability of emissions and 
cost data, resulting in the creation of a new block. This 
block then undergoes a secure and decentralized distri-
bution process among validating and authorizing nodes, 
with the assumption that both government entities and 
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participating industries hold authorized access. The con-
firmed data blocks are smoothly added to the ongoing 
sequence by network nodes, safeguarded by distinctive 
hashes and the hash of the preceding block. Emissions 
and cost data from each stage are documented within 
authenticated and encrypted blocks, assuring the 
preservation of data integrity across the entire block-
chain network. Figure 3 demonstrates the proposed ap-
proach, integrating CCUS-carbon tax optimization mod-
els with a blockchain network for enhanced transparency 
in emission and cash flow tracking. 
 Incorporating blockchain technology within the 
CCUS carbon tax nexus presents a promising avenue for 
enhancing data integrity, transparency, and stakeholder 
trust. However, it introduces certain risks and drawbacks 
that necessitate careful consideration for successful im-
plementation. The adoption of blockchain technology 
significantly increases the operational complexity of the 
CCUS supply chain. Establishing a blockchain infrastruc-
ture requires substantial initial investments not only in 
technology but also in training personnel and developing 
new operational protocols. This upfront cost and the ef-
fort needed for integration can deter stakeholders, par-
ticularly in regions where CCUS technologies are still in 
nascent stages. The complexity associated with block-
chain can also slow down the decision-making pro-
cesses, potentially delaying critical CCUS deployments 
needed to meet urgent carbon reduction targets. 

While blockchain enhances data sharing and trans-
parency, it raises significant data privacy concerns. The 

immutable nature of blockchain means that once data is 
entered, it cannot be altered or removed, posing potential 
risks in handling sensitive or proprietary information. En-
suring that the blockchain architecture complies with 
global data protection regulations requires sophisticated 
solutions that can segregate and protect sensitive data 
without undermining the benefits of transparency and 
traceability that blockchain offers. A notable paradox in 
utilizing blockchain for environmental initiatives like 
CCUS is the technology’s own environmental footprint, 
particularly for systems that rely on energy-intensive 
consensus mechanisms like Proof of Work (PoW). The 
additional energy consumption required for blockchain 
operations could contribute to the greenhouse gas emis-
sions that CCUS seeks to  
mitigate. This aspect is critically important when consid-
ering the  
overall sustainability and environmental impact of inte-
grating blockchain into CCUS frameworks. 

As CCUS initiatives expand, the blockchain system 
must be able to scale accordingly without compromising 
performance or security. Achieving scalability while 
maintaining the decentralized nature of blockchain poses 
technical challenges. Furthermore, the decentralized de-
cision-making process inherent in blockchain networks 
requires consensus among all participants, which can be 
difficult to achieve across a diverse stakeholder group 
with varying interests, technological readiness, and pri-
orities. To overcome these challenges, collective efforts 
from stakeholders, government bodies, and 

 
Figure 3: Illustrating the synergy: blockchain, CCUS optimization, and carbon tax compliance for sustainable 
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technological experts are imperative to ensure the 
smooth integration of CCUS supply chains with block-
chain technology, facilitating transparent and effective 
strategies for emission reduction and cost management. 

Considering these complexities, our research em-
phasizes the need for a balanced approach that lever-
ages blockchain's strengths while addressing its inherent 
drawbacks. We propose a blockchain architecture that 
combines the transparency and immutability of public 
and private blockchain features through smart contracts. 
This approach, coupled with the development of smart 
contracts tailored to automate and streamline CCUS-
specific operations, aims to minimize the operational and 
environmental drawbacks of blockchain, ensuring that its 
integration into the CCUS carbon tax nexus contributes 
positively to the global effort against climate change.  

The consensus mechanism adopted in this study is 
the Delegated Proof of Stake (DPoS), which is strategi-
cally chosen for its efficiency in reducing the computa-
tional power required for transaction validation and con-
sensus achievement. Unlike the conventional Proof of 
Work (PoW) mechanism, which is known for its high en-
ergy consumption and consequent environmental emis-
sions, DPoS significantly minimizes these impacts. This 
approach not only aligns with our environmental sustain-
ability goals but also enhances the overall efficiency and 
scalability of the blockchain network by delegating the 
responsibility of transaction validation and block creation 
to a select group of trusted elected representatives. This 
mechanism ensures a more environmentally friendly and 
cost-effective solution for the blockchain framework em-
ployed in our CCUS system under carbon tax policy.  

Our approach introduces a blockchain architecture 
within the CCUS carbon tax nexus, significantly advanc-
ing current methodologies by balancing the need for 
transparency, data integrity, and stakeholder privacy. 
The proposed approach utilizes public and private fea-
tures of smart contracts. It ensures the immutability and 
transparency critical for public trust and regulatory com-
pliance while also providing the privacy and scalability 
necessary for industrial adoption and efficient operation. 
This innovative framework addresses key concerns 
around data privacy, scalability, and operational com-
plexity that have hampered broader blockchain applica-
tion in environmental and carbon management systems. 

A cornerstone of our approach is the strategic use 
of smart contracts to automate critical processes within 
the CCUS supply chain, from carbon emission verification 
to carbon tax computation and compliance reporting. 
This automation significantly reduces administrative 
overhead, minimizes human error, and speeds up the de-
cision-making process, allowing for more dynamic and 
responsive CCUS operations. Moreover, by eliminating 
the need for third-party verification, we expect to see a 
reduction in operational costs, further incentivizing the 

adoption of CCUS technologies by industries. 
The expected benefits of our approach are pro-

found. By enhancing the transparency and integrity of 
carbon and tax data, we aim to foster greater trust among 
stakeholders, including regulatory bodies, industries, and 
the public, thereby facilitating a more collaborative and 
efficient approach to carbon management. The reduction 
in operational costs and the improved efficiency of regu-
latory compliance processes are anticipated to acceler-
ate the deployment of CCUS technologies, contributing 
significantly to global efforts to mitigate climate change. 
Furthermore, the environmental impact of blockchain op-
erations is minimized through our energy-efficient block-
chain design, aligning the technology's application with 
the overarching goal of reducing greenhouse gas emis-
sions. 

In essence, our approach not only addresses the im-
mediate challenges faced by the CCUS carbon tax nexus 
but also sets a new standard for the integration of block-
chain technology in environmental governance, promis-
ing a more sustainable, transparent, and efficient frame-
work for global climate change mitigation efforts. 

ILLUSTRATIVE EXAMPLE 
This section presents an illustrative case study for 

the proposed approach of integrating CCUS optimization 
models with consideration for carbon tax implications 
through blockchain technology. The methodology builds 
upon a previously developed Mixed Integer Non-Linear 
Optimization Model (MINLP) [23]. The objective function, 
as expressed in Equation (1), seeks to minimize the Total 
Annual Cost (TAC), encompassing tax cost CsTax,  treat-
ment Cs,k

Treat, compression Cs,k
Comp, transportation Cs,k

Trans, 
and utilization Cs,k

Sinks costs.  
The objective function subject to constraints ensur-

ing that the carbon flow from each source equals the 
treated flowrate  Ts,k,t ,untreated flowrate  Us,k, and CO2 
emissions to the atmosphere Rs,emit as indicated via 
Equation (2). The CO2 utilized in each sink Fk defined as 
the sum of treated Ts,k,t and untreated Us,k CO2 trans-
ported from different sources as shown in Equation (3). 
Chemical absorption amine units were employed for CO2 
treatment due to its maturity. The costs associated with 
capturing, compression, transportation, and utilization 
were computed following the methodology outlined in 
[23].  

     TAC =  CsTax + Cs,k
Treat + Cs,k

Comp +  Cs,k
Trans +  CkSinks      

(1) 

          𝑅𝑅𝑠𝑠 = ∑ ∑ 𝑇𝑇𝑠𝑠,𝑘𝑘,𝑡𝑡 + ∑ 𝑈𝑈𝑠𝑠,𝑘𝑘 + 𝑅𝑅𝑠𝑠,𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 ;  ∀ 𝑠𝑠ℇ𝑆𝑆𝑘𝑘∈𝐾𝐾𝑡𝑡∈𝑇𝑇𝑘𝑘∈𝐾𝐾          
(2) 

Fk = ∑ ∑ Ts,k,t + ∑ Us,k ;  ∀ kℇK  s∈St∈Ts∈S              (3) 
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Data detailing CO2 composition (XCO2), flow rate, 
treatment cost parameter (Ct), sink processing cost pa-
rameter (Cs), and emission factors (Ce) which are ex-
pressed in tons of CO2 emitted per tons of CO2 pro-
cessed, for CO2 sources and sinks were acquired follow-
ing the registration of emission sources and sinks 
through the IdentityRegistration.sol smart contract. The 
data are presented in Tables 2 and 3, respectively. CO2 
compositions and flow rates exhibit variations across in-
dustries. This study examined four carbon emission 
sources: ammonia production facility, steel-iron mill, 
power generation plant, and refinery. Furthermore, it in-
cluded five carbon dioxide sinks, specifically: algae-
based carbon utilization system, saline aquifer storage, 
and the production processes for methanol, urea, and 
acetic acid. The study sets a target net emission reduc-
tion limit of 2.48 MM t CO2/yr and a tax rate of 50 $/t CO2. 
Industrial facilities face a decision to either adopt CCUS 
technologies or remit a carbon tax to meet the govern-
ment-mandated net emissions reduction target. The 
choice is based on minimizing the total annual cost. All 
plants are assumed to operate 8000 h per year. The 
blockchain-based CCUS-carbon tax optimization model 
was implemented, and the results are discussed below.  

Table 2: Carbon dioxide source data. 

Source XCO  
(wt%) 

CO Flow 
(t/d) 

Ct 
($/t CO) 

Ammonia  
Steel-iron  
Power plant  

 
 
 

 
 
 

 
 
 

Refinery     

Table 3: Carbon dioxide sink data. 

Sink XCO 
(wt%) 

Flow 
(t/d) 

Cs 
($/t 
CO) 

Ce 
(t/t 
CO) 

Algae    -  
Storage  
Methanol  
Urea  
Acetic Acid  

 
 
 
 

 
 
 
 

 
- 
- 
- 

 
 
 
 

 
 The optimal design achieved, through the imple-
mentation of CCUS, a carbon reduction of 1.5 million tons 
of CO2 per year, while the remainder of the net reduction 
goal was released into the atmosphere and subsequently 
subjected to taxation. The total annual cost of the optimal 
design is 19 MM $/yr, with a carbon tax cost amounting 
to 49 MM $/yr. Table 4 delineates the composition of the 
net carbon dioxide reduction target, illustrating that a sig-
nificant portion was achieved through the implementa-
tion of CCUS technology, while the remainder, not cap-
tured, was emitted, and subsequently subjected to 

taxation. This underscores the efficacy of carbon taxa-
tion as a driving force behind the adoption of CCUS tech-
nologies. 

Table 4: Analysis of carbon dioxide emission reduction 
target. 

Element Flow  
(MM t 
CO/yr) 

Net reduction tar-
get 

 

Carbon captured  
Carbon emitted  

 
 Optimal source to sink carbon allocations were iden-
tified and presented in Figure 4. The percentages on the 
left side of Figure 4 depict the CO2 usage across different 
sources, whereas the percentages on the right show how 
well the CO2 demands of each sink were satisfied. CO2 
from all sources was fully captured, utilized, or stored, 
except from the power plant as the low carbon quality 
limited utilization. To meet the government's targeted net 
reduction, CO2 was directed towards economically prof-
itable sinks such as algae, methanol, urea, and acetic 
acid, where the demand for carbon was completely sat-
isfied, leveraging the economic benefits derived from 
these CO2 utilization pathways. Conversely, the use of 
saline storage as a sink was not maximized due to its as-
sociated higher costs, including those for treatment, 
transport, and processing. Consequently, the CO2 that 
was not sequestered or utilized was released into the at-
mosphere, resulting in it being subject to carbon taxation. 

 

Figure 4: CO2 source to sink allocation for the proposed 
system. 

Most of the carbon demands for the algae sink are 
satisfied by the refinery's emissions, which do not require 
further treatment to align with the algae's carbon flow 
and quality specifications. Carbon from the steel-iron 
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sector is predominantly processed and then used to sup-
ply the necessary carbon flow for both methanol and urea 
production. The carbon requirements for the methanol 
sink are primarily fulfilled using processed carbon emit-
ted by the steel-iron facility, whereas urea benefits from 
treated carbon emissions from both steel and refinery 
operations. Additionally, the carbon demands for acetic 
acid production are mainly met by emissions from ammo-
nia and power generation plants. Notably, most of the 
carbon utilized in these processes is treated, except for 
the direct use of pure CO2 from ammonia sources and 
emissions from refineries to algae sinks. This exception 
is due to the refinery's emissions directly meeting the al-
gae's relatively low-quality carbon requirements. 

Table 5 illustrates carbon emissions at various 
stages of the CCUS process, encompassing emissions 
from sources, capture units, transportation, and sinks. 
The emissions detailed on the source side reflect those 
discharged post-CCUS implementation. The predomi-
nant sources of emissions are identified as the main 
source of emissions, succeeded by carbon sinks, trans-
portation, and capture facilities in terms of contribution. 
All emissions data are logged as transactions in the 
blockchain, facilitating the monitoring of CO2 emissions 
throughout the CCUS supply chain. 

Table 5: Carbon dioxide emissions from CCUS subsys-
tems. 

CCUS module Flow (t 
CO/d) 

Sources  
Capturing unit  
Transportation  
Sinks  

 
Each transaction plays a crucial role in ensuring ac-

countability, traceability, and reliability throughout the 
optimal CCUS network. The first transaction provides 
carbon dioxide generation data from sources, providing 
a foundation for mitigation strategies. The second trans-
action records emissions data from treatment units and 
the third transaction details emissions during compres-
sion and pumping, crucial for evaluating the environmen-
tal impact of transportation. The fourth transaction mon-
itors sinks emissions, offering insights into sink’s effec-
tiveness. The final transaction summarizes financial as-
pects, including carbon tax payments, and total annual 
cost essential for assessing the project's economic via-
bility and ensuring sustainable carbon management.  

The blockchain-based optimal CCUS supply chain 
ensures transparency, accountability, and trust through-
out the CCUS process, supporting environmental and 
economic goals. The study successfully meets the net 
emission capture target, and comprehensive results, en-
compassing both carbon dioxide flow rates and financial 

implications, are securely recorded in the blockchain, en-
suring tamper-proof integrity. 

CONCLUSIONS 
This study highlights the significant potential of block-
chain technology to enhance transparency, efficiency, 
and regulatory compliance in CCUS supply chains under 
carbon tax regimes. By developing and implementing the 
IdentityRegistration.sol and CO2Exchange.sol smart con-
tracts, we established a framework for automating car-
bon emissions tracking and regulatory reporting, ad-
dressing key challenges such as emission verification 
and carbon leakage. The adoption of the Delegated Proof 
of Stake (DPoS) consensus mechanism further aligns our 
approach with environmental sustainability by minimizing 
the energy consumption of blockchain operations. Our 
case study demonstrates that a substantial portion of 
carbon reduction targets can be met through CCUS, with 
carbon taxation serving as a compelling incentive for 
technology adoption. This research contributes to the 
optimization of CCUS networks, offering a scalable and 
sustainable solution to climate change mitigation and 
highlighting the critical role of innovative technologies in 
achieving global sustainability goals. 
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ABSTRACT 
Critical minerals and rare earth elements play an important role in our climate change initiatives, 
particularly in applications related with energy storage. Here, we use discrete optimization ap-
proaches to design a process for the recovery of Lithium and Cobalt from battery recycling, 
through membrane separation. Our contribution involves proposing a Generalized Disjunctive Pro-
gramming (GDP) model for the optimal design of a multistage diafiltration cascade for Li-Co sep-
aration. By solving the resulting nonconvex mixed-integer nonlinear program model to global op-
timality, we investigated scalability and solution quality variations with changes in the number of 
stages and elements per stage. Results demonstrate the computational tractability of the nonlinear 
GDP formulation for design of membrane separation processes while opening the door for decom-
position strategies for multicomponent separation cascades. Future work aims to extend the GDP 
formulation to account for stage installation and explore various decomposition techniques to en-
hance solution efficiency. 

Keywords: Critical Minerals, Lithium Recovery, Diafiltration Cascade, Superstructure Optimization, Generalized 
Disjunctive Programming, Mixed-Integer Nonlinear Programming. 

INTRODUCTION AND RELATED WORK 
The U.S. relies on the import of rare earth elements 

(REE) and critical minerals (CM) which are central to our 
climate change initiatives, particularly in applications 
such as electric vehicles and energy storage [1]. With an 
increasing demand for REE and CM, restrictions by com-
petitors on exports have disrupted the U.S. supply chain 
and pose a risk to the national economy [2]. Projections 
by the IEA indicate a staggering 60% surge in renewable 
energy power capacity from 2020 to 2026 [3]. As a re-
sult, recycling REE and CM has become one of the main 
objectives of the Department of Energy (DOE) since 2014 
[1]. 

One potential source of Lithium recovery is Lithium-
ion battery recycling [4]. This process addresses the lack 
of domestic CM production [5], as it can recover battery-
grade Lithium and Cobalt for a fraction of the materials 
extracted from either brine or ores [6]. However, con-
cerns arise from improper recycling, which affects human 

health and the environment [7], prompting opportunities 
to employ energy efficient processes with minimal envi-
ronmental impact like membrane separation. 

Diafiltration membranes offer significant ad-
vantages in the efficiency of recycling CM over existing 
battery recycling pathways, reducing energy needs and 
chemical use and cost. In a diafiltration membrane, the 
process employs a dilute solution, called diafiltrate, to re-
duce the solubility limit effect that leads to fouling. This 
approach allows the staging of membrane units into cas-
cades, facilitating the extraction of lithium and cobalt 
from leach liquors.  

There is a growing interest in utilizing membranes 
for the recovery and extraction of CM, as evident in re-
cent literature. A comprehensive review and feasibility 
assessment for membrane-based technology in lithium 
recovery were provided by Li et al. [8]. Similarly, Alvarez 
et al. [9] demonstrated the potential to enhance water 
security by utilizing membranes to filter out metals during 
water treatment. In the realm of lithium recovery 
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methods, Bae et al. [10] conducted a study that investi-
gated and compared various proposed techniques, in-
cluding chemical extraction and selective membrane pro-
cesses, with a focus on quantitative efficiency and purity 
based on existing literature. Razmjou et al. [11] delved 
into the physical construction of a nanofiltration mem-
brane for lithium recovery, proposing design principles to 
enhance selectivity. The prevailing trend in the current 
literature emphasizes a primary understanding and per-
formance evaluation of membrane processes, while rig-
orous mathematical optimization is less commonly ad-
dressed. 

In a prior study conducted by Wamble et al. [12], a 
superstructure formulation was introduced to determine 
the optimal configuration of a membrane cascade. This 
superstructure selects design variables (e.g., flow, con-
centration, stage length) while maximizing Cobalt recov-
ery and adhering to a minimum Lithium recovery fraction, 
employing the epsilon constraint approach. This super-
structure was posed as a nonlinear program (NLP), which 
was solved using IPOPT.  

In the earlier method, the determination of stream 
connectivity was performed continuously, allowing for 
the division of feed, diafiltrate, and refluxed streams. 
However, the authors noted that this continuous ap-
proach failed to consistently generate "physically sensi-
ble cascade designs" [12]. To address this issue, the au-
thors introduced a second optimization step. In our pro-
posed extension of this approach, we suggest modeling 
stream connectivity as a discrete decision, ensuring the 
singular allocation of side streams. As the model incorpo-
rates bilinear mixing and nonlinear performance con-
straints, the proposed method requires solving a noncon-
vex mixed-integer nonlinear programming (MINLP) prob-
lem. Additionally, we propose formulating the MINLP su-
perstructure as a Generalized Disjunctive Program (GDP), 
a widely employed approach in the literature for super-
structure optimization. The motivation behind this is the 
fact that GDP effectively avoids singularities in nonlinear 
expressions, particularly when variables become zero, a 
phenomenon recognized in the literature as zero-flow is-
sues [13]. This approach allows for the identification of 
the globally optimal superstructure and facilitates future 
extensions for the optimal determination of the number 
of separation stages. 

Generalized Disjunctive Programming 
Generalized Disjunctive Programming (GDP) corre-

sponds to a mathematical optimization framework de-
signed for modeling and solving problems characterized 
by embedded logic. Within GDP, the feasible region is 
represented by the intersection of disjunctions of sets, 
employing Boolean variables as indicators for each set. In 
this context, a 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 value for a Boolean variable indicates 
that the solution resides within the corresponding set 

[14]. The general formulation of a GDP is as follows: 

                               min  𝑓𝑓(𝑥𝑥)                        

                               𝑠𝑠. 𝑡𝑡.    𝑔𝑔(𝑥𝑥) ≤ 0 

                                        ⊻
𝑖𝑖∈𝐷𝐷𝑘𝑘

�
𝑌𝑌𝑖𝑖𝑖𝑖

𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥) ≤ 0� , 𝑘𝑘 ∈ 𝐾𝐾 

                                         Ω�𝑌𝑌𝑖𝑖,𝑖𝑖� = True 

                                         𝑥𝑥 ∈ ℝ𝑛𝑛 

                       𝑌𝑌𝑖𝑖𝑖𝑖 ∈ {True, False}, 𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖 , 𝑘𝑘 ∈ 𝐾𝐾 

where, an objective function 𝑓𝑓(𝑥𝑥) is to be minimized over 
a set of continuous real variables 𝑥𝑥 subject to a set of 
global constraints 𝑔𝑔(𝑥𝑥) ≤ 0. Boolean variable 𝑌𝑌𝑖𝑖𝑖𝑖 acts as 
the indicator for the set implied by constraints 𝑇𝑇𝑖𝑖𝑖𝑖 ≤ 0, 
standing for the 𝑖𝑖𝑡𝑡ℎ disjunct set of the 𝑘𝑘𝑡𝑡ℎ disjunction. 
Each of the 𝐾𝐾 disjunctions are related with an exclusive 
OR operator (⊻), which can be interpreted as an exactly-
One operator when |𝐷𝐷𝑖𝑖| > 2. The set of logical proposi-
tions Ω is composed of logical clauses connected with 
logical operators such as AND (∨), OR (∨), XOR (⊻), nega-
tion (¬), implication (⇒), and equivalence (⟺). Here, Ω is 
required to be 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 to indicate that all the propositions 
must be satisfied. 
 GDP offers a dual advantage by providing an intui-
tive means to model the logic inherent in problems and 
presenting a diverse array of solution methods that can 
be broadly categorized in two groups. One major cate-
gory involves reformulating the GDP as a mixed-integer 
(non)linear program through various transformations. 
These transformations translate the logical structure of 
the problem into a mathematical formulation suitable for 
traditional MINLP optimization algorithms. Examples of 
such transformations include Big-M [15], Hull [16], and 
Hybrid Planes [17], among others. The second category 
encompasses logic-based decomposition methods that 
directly operate on the logical structure of the problem. 
Tailored methods within this category include Logic-
based Outer Approximation [18], Logic-based Branch 
and Bound [16], and the Logic-based Discrete-Steepest 
Descent Algorithm [19], providing specialized ap-
proaches to address the unique complexities associated 
with the logic of the problem at hand.  

PROBLEM STATEMENT 
Given is the following information for the optimiza-

tion of a multistage diafiltration cascade aimed at sepa-
rating Lithium from Cobalt. The provided parameters in-
clude the predetermined number of separation stages 
and the number of discretization elements per stage. Ad-
ditionally, the model involves the flows and concentra-
tions associated with both the feed and diafiltrate 
streams. Relevant membrane parameters, such as the 
stage width, solvent flux across the membrane, and the 
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sieving coefficients for both components, are also spec-
ified. Furthermore, the model includes the performance 
relationships that govern the system’s behaviour as pro-
vided in Wable et al. [12].  

Design variables that specify the optimal diafiltra-
tion membrane cascade superstructure need to be de-
termined. Firstly, the optimal stream connections within 
the superstructure must be established. This involves 
identifying the position (in terms of stage and discretized 
element) for the feed, the diafiltrate, and the recycle from 
upstream stages. Additionally, the length of each stage 
in the diafiltration cascade needs to be determined to 
achieve an efficient separation process. Moreover, com-
prehensive determination of all flows and concentrations 
in regard to both components (Lithium and Cobalt) 
throughout the entire system must be determined. This 
comprehensive set of determinations forms the basis for 
configuring an optimized and well-functioning multistage 
diafiltration system for the separation of Lithium and Co-
balt. 

The primary objective of the optimization model is 
to maximize the recovery of Cobalt within a Cobalt-rich 
stream extracted from the retentate flow of the initial 
stage in the diafiltration cascade. This goal is set against 
the constraint of ensuring a minimum recovery of Lithium 

within a Lithium-rich stream exiting the permeate flow of 
the final stage. In essence, the goal is to manage the in-
herit multi-objective nature of recovering both Lithium 
and Cobalt. In this work, we consider the system to be 
isotropic, meaning that all stages share identical lengths. 
The configuration of the superstructure is presented in 
Figure 1.   

PROPOSED GDP SUPERSTRUCTURE 
 In this section, we illustrate the modifications made 
to the original model, primarily focusing on incorporating 
the necessary logic into the GDP framework to represent 
installing a singular position for the feed (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹), diafil-
trate (𝐹𝐹𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷), and reflux per stage (𝐹𝐹𝑛𝑛

𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅). To accomplish 
this objective, we model each discrete element individu-
ally, as illustrated in Figure 2, wherein the incoming side 
flows are handled in a disaggregated manner. Through 
this approach, the following disjunctions are imple-
mented, allowing for the activation or deactivation of in-
coming streams, thereby determining the existence of an 
incoming side stream. Here, the Boolean variables 𝑌𝑌𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 
𝑌𝑌𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷, and 𝑌𝑌𝑛𝑛𝑖𝑖

𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 indicate the existence of a feed, diafil-
trate or reflux in a particular position respectively.  

 
Figure 1: Superstructure sketch for a three-stage (|𝐾𝐾| = 3) diafiltration membrane cascade. 

 
 

 
Figure 2: Skecth of the flow structure of a single discretized element. 
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𝑌𝑌𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐹𝐹𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑥𝑥�𝑐𝑐
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  ∀𝑐𝑐 ∈ 𝐶𝐶

� ⊻ �
¬𝑌𝑌𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐹𝐹𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0
𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0  ∀𝑐𝑐 ∈ 𝐶𝐶

�,   

∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                                                      
(1) 

�
𝑌𝑌𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷

𝐹𝐹𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 = 𝐹𝐹�𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷

𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 = 𝑥𝑥�𝑐𝑐

𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷   ∀𝑐𝑐 ∈ 𝐶𝐶

� ⊻ �
¬𝑌𝑌𝑛𝑛𝑖𝑖

𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷

𝐹𝐹𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 = 0

𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 = 0  ∀𝑐𝑐 ∈ 𝐶𝐶

�,   

∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                                                      
(2) 

⎣
⎢
⎢
⎡ 𝑌𝑌𝑛𝑛𝑖𝑖

𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅

𝐹𝐹𝑛𝑛𝑖𝑖
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 = 𝐹𝐹|𝑁𝑁|,{𝑖𝑖+1}

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜

𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 = 𝑥𝑥𝑐𝑐,|𝑁𝑁|,{𝑖𝑖+1}

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜   ∀𝑐𝑐 ∈ 𝐶𝐶⎦
⎥
⎥
⎤
⊻ �

¬𝑌𝑌𝑛𝑛𝑖𝑖
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅

𝐹𝐹𝑛𝑛𝑖𝑖
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 = 0

𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 = 0  ∀𝑐𝑐 ∈ 𝐶𝐶

�,   

∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾\{|𝐾𝐾|}                                                      
(3) 

where 𝐹𝐹�𝑗𝑗 and 𝑥𝑥�𝑗𝑗 represent the known flow and composi-
tion of the incoming side stream 𝑗𝑗 ∈ {𝐹𝐹𝑇𝑇𝑇𝑇𝐹𝐹,𝐷𝐷𝑖𝑖𝐷𝐷𝑓𝑓}. The first 
two disjunctions establish connections between the in-
coming stream and known parameter values. In contrast, 
the third disjunction, which models the recycle, links a 
discretized element to the stream coming from the reten-
tate of the subsequent stage. While these disjunctions 
exclusively represent the presence of a stream at a given 
position, we also ensure a singular feed and diafiltrate 
throughout the entire structure, as well as a singular re-
cycle per stage. To account for this logic, the following 
cardinality clauses are introduced. 

𝑇𝑇𝑥𝑥𝐷𝐷𝑐𝑐𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇��𝑌𝑌𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾 ��  (4) 

𝑇𝑇𝑥𝑥𝐷𝐷𝑐𝑐𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇��𝑌𝑌𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷  ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾 ��  (5) 

𝑇𝑇𝑥𝑥𝐷𝐷𝑐𝑐𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑇𝑇��𝑌𝑌𝑛𝑛𝑖𝑖
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 ∀ 𝑛𝑛 ∈ 𝑁𝑁��,    𝑘𝑘 ∈ 𝐾𝐾\{|𝐾𝐾|}  (6) 

 Equations (1-6) represent the modeling logic of the 
superstructure. Next, with the introduced side stream 
disaggregation, the per-element mass balances are out-
lined as follows: 

𝐹𝐹𝑛𝑛𝑖𝑖𝐼𝐼𝑛𝑛 + 𝐹𝐹𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 + 𝐹𝐹𝑛𝑛𝑖𝑖

𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 = 𝐹𝐹𝑛𝑛𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖 , ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈

𝐾𝐾    (7) 

𝐹𝐹𝑛𝑛𝑖𝑖𝐼𝐼𝑛𝑛𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖𝐼𝐼𝑛𝑛 + 𝐹𝐹𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑛𝑛𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖

𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 + 𝐹𝐹𝑛𝑛𝑖𝑖
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖

𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 =
          𝐹𝐹𝑛𝑛𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖 , ∀ 𝑐𝑐 ∈ 𝐶𝐶, 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                                                        

(8) 

𝐹𝐹𝑛𝑛𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑛𝑛𝑖𝑖

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐹𝐹𝑛𝑛𝑖𝑖

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 , ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾        
(9) 

𝐹𝐹𝑛𝑛𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑛𝑛𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐹𝐹𝑛𝑛𝑖𝑖
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ,   ∀ 𝑐𝑐 ∈ 𝐶𝐶,         
𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                                                                              (10) 

The permeate mass balance is a function of the mem-
brane flux (𝐽𝐽), the width of the stage (𝑤𝑤) and the element 

length (𝐿𝐿�) as:  

𝐹𝐹𝑛𝑛𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖 + 𝐽𝐽𝑤𝑤𝐿𝐿�𝑛𝑛𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 , ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾                       
(11) 

 In the previous study, the performance equation 
was examined in terms of a log transform. However, we 
suggest maintaining the equation in its exponential form 
and rearrange the expression to remove the fraction. This 
reformulation ensures a well-defined expression within 
the domain of our variables, mitigating the risk of evalu-
ation errors and contributing to the overall stability and 
well-behaved nature of the NLP formulation. The result-
ing expression where, 𝑆𝑆 is the sieving coefficient per 
component is as follows: 

 𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖  �𝐹𝐹𝑖𝑖𝑘𝑘
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜

𝐹𝐹𝑖𝑖𝑘𝑘
𝑟𝑟𝑖𝑖𝑖𝑖 �

𝑆𝑆𝑐𝑐−1
,∀ 𝑐𝑐 ∈ 𝐶𝐶, 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾    (12) 

The elements can now be interconnected to create 
stages, where the key concept is to establish connec-
tions between the flow and composition exiting the per-
meate of one stage with the retentate entering the sub-
sequent stage. These connections can be expressed as: 

𝐹𝐹𝑛𝑛{𝑖𝑖−1}
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 =  𝐹𝐹𝑛𝑛𝑖𝑖𝐼𝐼𝑛𝑛  ,        ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾\{1}  (13) 

𝑥𝑥𝑐𝑐𝑛𝑛{𝑖𝑖−1}
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑥𝑥𝑐𝑐𝑛𝑛𝑖𝑖𝐼𝐼𝑛𝑛 ,     ∀ c ∈ C, 𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾\{1} (14) 

Moreover, the permeate and the flow-in entering 
the first element of each membrane are both assigned a 
value of zero. Similarly, in the last stage, there is no re-
cycle entering. 

𝐹𝐹1𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖 =  𝐹𝐹1,1

𝐼𝐼𝑛𝑛 = 0 ,       ∀ 𝑘𝑘 ∈ 𝐾𝐾                    
(15) 

𝑥𝑥𝑐𝑐1𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑐𝑐1𝑖𝑖𝐼𝐼𝑛𝑛 = 0 ,      ∀ c ∈ C, 𝑘𝑘 ∈ 𝐾𝐾                              

(16) 

𝐹𝐹𝑛𝑛|𝐾𝐾|
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 = 0 ,                   ∀ 𝑛𝑛 ∈ 𝑁𝑁                     

(17) 

𝑥𝑥𝑐𝑐𝑛𝑛|𝐾𝐾|
𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅 = 0 ,                  ∀ c ∈ C, 𝑘𝑘 ∈ 𝐾𝐾                    

(18) 

 A minimum Lithium recovery (𝑅𝑅min  
𝐿𝐿𝑖𝑖 ) from the lith-

ium-rich stream in the permeate exiting the last stage 
must be satisfied.  

𝐹𝐹|𝑁𝑁||𝐾𝐾|
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥𝐿𝐿𝑖𝑖,|𝑁𝑁||𝐾𝐾|

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 𝑅𝑅min  
𝐿𝐿𝑖𝑖 �𝐹𝐹�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥�𝐿𝐿𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹�𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑥𝑥�𝐿𝐿𝑖𝑖
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷� 

(19) 

 The objective function is to maximize the recovery 
of Cobalt in the Cobalt-rich stream exiting the permeate 
of the first stage. Considering that the cobalt entering 
the system remains constant, it suffices to maximize the 
following expression: 

max  𝐹𝐹|𝑁𝑁|,1
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥𝐶𝐶𝐶𝐶,|𝑁𝑁|,1

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜     (20) 



 

Ovalle et al. / LAPSE:2024.1617 Syst Control Trans 3:853-859 (2024) 857 

 For the remaining aspects of the model formulation 
and parameter values along with a deeper understand-
ing of the system's physical intuition, we direct the read-
ers to Wamble et al. [12]. 

RESULTS  
The proposed GDP superstructure model was trans-

formed into a nonconvex MINLP problem via a Big-M 
transformation.  To solve this MINLP, the solver SCIP v8.0 
was used, implemented through GAMS 40.4.0. The com-
putation was performed on a Linux machine featuring 8 
Intel Xeon Gold 6234 CPUs operating at 3.30 GHz, with a 
single hardware thread, and equipped with 1 TB of RAM, 
all within the Ubuntu environment. It is worth mentioning 
that we attempted solving the same problem using 
BARON v22.7.23 but the solver, incorrectly, found the 
problem to be infeasible. 

We conducted a study of the scalability and solution 
quality of the proposed superstructure. For this, we 
opted for a three-stage (|𝐾𝐾| = 3) membrane cascade su-
perstructure, varying the number of discretized ele-
ments. All superstructures were solved to global optimal-
ity (up to 0.001% gap). Figure 3 encapsulates the out-
comes, specifically summarizing the results for the case 
where a minimum Lithium recovery (𝑅𝑅min  

𝐿𝐿𝑖𝑖 ) of 60% was re-
quired. 

 
Figure 3: Cobalt recovery and solution time of a three-
stage superstructure with a minumum Lithium recovery 
of 60% for different number of discretized elements per 
stage. 

 As anticipated, the solution time exhibits rapid 
growth with the increasing size of the superstructure, as 
a larger number of elements results in a larger model. 
This poses a significant limitation when compared to the 
previous methodology that could solve large superstruc-
tures within seconds. The challenge arises from the fact 
that achieving global optimality in solving a nonconvex 

MINLP is computationally much more demanding than 
solving an NLP to local optimality. However, despite this 
computational complexity, the proposed approach 
demonstrates a slightly better solution compared to the 
previous methods. Figure 4 shows the resulting three-
stage superstructure (with |𝑁𝑁| = 10) for a lithium recov-
ery of 60%. It is noteworthy that the locally optimal su-
perstructure obtained by Wamble et al.  [12] exhibits the 
feed stream split at two different locations, while our su-
perstructure is characterized by a single side stream al-
location. Nevertheless, our approach yields a similar Co-
balt recovery (0.25% increase) while also ensuring the 
construction of a physically sensible membrane cascade. 
Considering that we are dealing with a membrane design 
problem that requires a one-time solution, it may be pref-
erable to tackle the problem to achieve global optimality. 
Furthermore, we want to extend this approach to use 
GDP methods for multicomponent cascade recycling.  
 We proceed to assess the scalability of the number 
of stages, opting for a discretization of only two elements 
per stage. This choice was informed by the examination 
of objective values presented in Figure 3, revealing a rel-
atively stable Cobalt recovery. Notably, this value does 
not exhibit a monotonic trend in relation to the number of 
discretized elements. Therefore, for this specific mem-
brane system and its performance equations, the resolu-
tion achieved by increasing the number of discretization 
elements does not substantially impact the objective. 
Consequently, a coarser discretization can be employed. 
The outcomes of this scalability analysis can be found in 
Figure 5.  
 As expected, the Cobalt recovery rises as we in-
clude more stages. Interestingly, and in contrast to the 
scenario where discrete elements were added, an in-
crease in the number of stages leads to a substantial rise 
in the recovery. It can be appreciated that the recovery 
values almost double when progressing from 2 stages to 
12. This captures the trade-off between the profit of re-
covering Cobalt in kg/hr and the expense associated with 
installing an additional membrane stage. Although cur-
rent solution approaches cannot easily address this 
problem, within the GDP framework, tackling this trade-
off is straightforward. To achieve this, a Boolean variable 
can be introduced to represent the presence or absence 
of a stage. When the Boolean variable is 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, the perfor-
mance equations for the stage are considered. Con-
versely, when the Boolean variable is False, the stage op-
erates as a bypass, and no side streams can be installed.  

Regarding the solution time, it is evident that reduc-
ing the number of discretized elements has diminished 
the model's size, enabling the solution of larger struc-
tures. Although this reduction may lead to a loss in reso-
lution, potentially impacting the quality of the solution, as 
discussed earlier, we anticipate the recovery values to 
remain within a similar order for a higher discretization. 
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Furthermore, the application of decomposition strategies 
will be investigated to tackle large-scale conceptual de-
sign problems. 

 

Figure 5: Cobalt recovery and solution time for a 
superstructure with a minumum Lithium recovery of 95% 
for different number of stages. 

CONCLUSIONS 
 This study introduces a Generalized Disjunctive Pro-
gramming formulation for optimizing the superstructure 
design of a multi-stage diafiltration cascade aimed at 
separating Lithium and Cobalt. The proposed superstruc-
ture ensures a unique side stream allocation for the feed, 
fresh diafiltrate, and recycle streams. We successfully 
solved the model to global optimality and investigated 
how the solution time and Cobalt recovery varied with 
different numbers of stages and discretized elements per 
stage. The results demonstrate the value of pursuing so-
lutions with global optimality and highlight a trade-off be-
tween capitalizing on recovered Cobalt and the installa-
tion of additional membranes. Future research directions 
include expanding the GDP formulation to account for 
stage existence, addressing the aforementioned trade-

off. Moreover, given the computational expense of solv-
ing the superstructure directly, exploration of decompo-
sition techniques to improve solution time is warranted. 
In this context, the Logic-based Steepest-Descent Algo-
rithm (LD-SDA) [19] emerges as a promising alternative, 
particularly due to its suitability for handling spatially or-
dered Boolean decisions inherent in the membrane su-
perstructure. 
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ABSTRACT 
Carbon capture is a promising option to mitigate CO2 emissions from existing coal-fired power 
plants, cement and steel industries, and petrochemical complexes. Among the available technol-
ogies, membrane-based carbon capture presents the lowest energy consumption, operating 
costs, and carbon footprint. In addition, membrane processes have important operational flexibility 
and response times. On the other hand, the major challenges to widespread application of this 
technology are related to reducing capital costs and improving membrane stability and durability. 
To upscale the technology into stacked flat sheet configurations, high-fidelity computational fluid 
dynamics (CFD) that describes the separation process accurately are required. High-fidelity sim-
ulations are effective in studying the complex transport phenomena in membrane systems. In ad-
dition, obtaining high CO2 recovery percentages and product purity requires a multi-stage mem-
brane process, where the optimal network configuration of the membrane modules must be stud-
ied in a systematic way. In order to address the design problem at process scale, we formulate a 
superstructure for the membrane-based carbon capture, including up to three separation stages. 
In the formulation of the optimization problem, we include reduced models, based on rigorous CFD 
simulations of the membrane modules. Numerical results indicate that the optimal design includes 
three membrane stages, and the capture cost is 45.4 $/t-CO2. 

Keywords: Carbon Capture, Membranes, Computational Fluid Dynamics, Process Design, Optimization 

INTRODUCTION 
Climate change remains a relevant environmental 

concern with the global average temperature of Earth 
steadily rising, and this phenomenon is associated with 
the high concentration of carbon dioxide (CO2) in the at-
mosphere. The current levels of carbon dioxide are over 
50% greater than those observed prior to the industrial 
era, achieving values of 424 ppm of CO2 concentration 
[1]. CO2 takes the lead as the primary contributor to cli-
mate change, and human activities, especially CO2 emis-
sions from the energy and industrial sectors, are signifi-
cant drivers. 

In this context, carbon capture approaches offer 
hope in reducing greenhouse emissions since these pro-
cesses can isolate carbon dioxide at point sources. Using 

this strategy, existing facilities can be retrofitted with 
capture plants, without changing the current industrial 
process significantly. Carbon capture technologies are 
crucial to achieving a net-zero emission scenario that 
limits the global average temperature increase below 
1.5 °C [2]. Current CO2 capture alternative pathways in-
clude absorption, adsorption, membrane-based, and cry-
ogenic processes [3].  

In contrast to adsorption and absorption, mem-
brane-based carbon capture does not need a regenera-
tion process, indicating potential capital and operating 
savings. Recent advancements in polymeric materials for 
gas separation, coupled with its straightforward plant de-
sign and operation, compactness, lightweight nature, and 
mobility, all combine to position membrane technology as 
a promising and feasible alternative for CO2 capture [4]. 

mailto:gpanagak@andrew.cmu.edu
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Polymeric membranes present a range of advantages 
across diverse applications. Their straightforward fabri-
cation simplifies technology adoption, ensuring accessi-
bility and cost-effectiveness. Moreover, they exhibit re-
duced material requirements for module construction, of-
fering both flexibility and cost savings. Additionally, their 
inherent processability empowers customization and 
adaptability, rendering them a versatile and appealing 
choice for various industries. For instance, the National 
Energy Technology Laboratory (NETL) has developed a 
rubbery thin film composite (TFC) membrane that exhib-
ited high CO2 permeance, high CO2/N2 selectivity, and 
stable performance in the presence of water vapor and 
non-aging behavior [5]. 

Several types of membrane modules are investi-
gated in experimental work for flue gas separation [6]. 
Researchers frequently employ plate-and-frame (flat 
sheet), tubular, and hollow fiber membrane modules. In 
particular, the plate-and-frame configuration offers the 
benefit of a low-pressure drop, which holds greater sig-
nificance in high-volume, low-pressure applications. In 
addition, this kind of membrane is easy to clean and to 
replace. On the other hand, additional supports are re-
quired for the membrane, and it offers low area-to-vol-
ume ratios.  

When compared to modeling approaches, conduct-
ing CFD simulations can be a cost-effective and efficient 
means to simultaneously study variable effects while en-
suring accuracy in the outputs [7]. Specifically, CFD tech-
niques provide the capability to analyze polymeric mem-
branes under conditions that surpass the limits of exper-
iments, enabling the generation of diverse trend analyses 
for better comprehension of the model results. CFD anal-
ysis proves valuable for assessing the viability and per-
formance of specific membrane modules for industrial 
applications. 

Regarding the implementation of the technology at 
process scale, it was concluded that a single-stage mem-
brane process is unable to achieve high capture rates 
and high purity simultaneously [8,9]. Therefore, multi-
stage membrane processes have been proposed to over-
come this issue. In order to address the design problem 
using a holistic approach, membrane systems engineer-
ing has evolved as an important research area to under-
stand the trade-offs among operating variables at plant 
scale, through mathematical modeling, simulations, and 
optimization techniques. In this context, superstructure 
optimization plays a crucial role in the formulation of the 
optimization problems since it involves creating a com-
prehensive network that includes all possible compo-
nents, units, and interconnections relevant to the case 
study. Qi and Henson [10] addressed the separation of 
acid gases (CO2 and H2S) from crude natural gas, by in-
troducing a superstructure with potential network config-
urations obtained through a strategic arrangement of 

mixers, splitters, and compressors. Arias et al. [11] used 
mathematical programming and superstructure-based 
optimization to design multi-stage CO2 capture mem-
brane systems, to find the optimal configuration of mem-
brane stages, areas, power requirements, recycle stream 
placement, and operational conditions. 

In this work, we formulate a superstructure optimi-
zation for the optimal design of a membrane-based car-
bon capture process, where we use rigorous CFD simu-
lations to build the models for the membrane modules. 

METHODOLOGY 
Based on the literature [10,11], we formulate the su-

perstructure shown in Fig. 1 for the optimal design of the 
multi-stage membrane process for carbon capture. In the 
present work, we demonstrate the potential of the tech-
nology using three separation stages. However, based on 
the application and the end goals, we could increase the 
number of stages as needed. 

The input stream can be conditioned by increasing 
its pressure and/or a cooling operation. Then, the input 
stream could be sent to any of three possible membrane 
stages. For each membrane stage, the input stream, the 
retentate product, and the permeate product stream 
could be pressurized if this operation contributes to in-
creasing the objective function. In addition, the permeate 
product could be cooled if required. It should be noted 
that this superstructure configuration embeds the poten-
tial process configurations, and the membrane order is 
not fixed beforehand. On the contrary, the order is deter-
mined based on the configuration that optimizes the ob-
jective function of the problem. 

 
Figure 1. Superstructure for the optimal design of the 
multi-stage membrane process for carbon capture. M: 
membrane separation stage. C: compressor. Hx: heat 
exchangers. s: splitters. mx: mixers. 

In order to model the superstructure of Fig. 1, we 
develop mathematical models for each equipment unit, 
and we consider the connections between them. Our 
modeling framework is mainly based on the litera-
ture[12,13] for the general process units, including the 
compressors, the heat exchangers, the mixers, and the 
splitters. For the calculation of the compound properties, 
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we fit polynomials based on the data from Aspen Plus, 
and we consider ideal gas thermodynamics calculations.  

The objective function is the minimization of the 
capture cost, and it is defined as follows 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝜙𝜙+𝜛𝜛)∙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶+𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅

𝐹𝐹𝐶𝐶𝑂𝑂2
  (1) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶 are the capital and operating 
costs, respectively; 𝜙𝜙 is the capital recovery factor 
(0.154), 𝜛𝜛 is a factor to consider the annual maintenance 
cost (0.045), 𝑀𝑀𝑅𝑅𝐶𝐶𝐶𝐶 is the annualized replacement cost of 
the membrane modules, and 𝐹𝐹𝐶𝐶𝑂𝑂2 is the flowrate of the 
captured CO2 in the plant. The 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is calculated from 
the purchased equipment cost of individual equipment 
units, and we use the cost correlations reported in [14], 
while the capital costs are updated to 2023 dollars by us-
ing a Chemical Engineering Plant Cost Index (CEPCI) of 
803.3. 

Regarding the membrane modules, we formulate a 
model including mass and enthalpy balances for the 
membrane modules, and we consider the operation of 
them in parallel. To calculate the CO2 recovery and the 
purity product in the permeate we also develop surrogate 
models based on a rigorous CFD model, which is de-
scribed in the next section. 

Rigorous CFD simulation 
The representation of the CFD model for the mem-

brane module is shown in Fig. 2. We consider a 3D geom-
etry that includes two main parts: the retentate side and 
the permeate side. The input CO2-rich stream enters the 
feed side, and carbon dioxide efficiently crosses through 
the selective boundary to the permeate side, where a 
concentrated CO2 stream is recovered. This technology 
utilizes thin film composite membranes consisting of rub-
bery polymer blends [5], without the inclusion of carriers. 

We implement the CFD model in Comsol Multiphys-
ics to describe the separation process using membranes. 
For this, we use the Navier-Stokes equation to calculate 
the velocity distribution, considering compressible lami-
nar flow with Mach number less than 0.3, as shown in Eq. 
(2): 

(𝒖𝒖 ∙ 𝛁𝛁)𝒖𝒖 − 𝜈𝜈∇2𝒖𝒖 + 1
𝜌𝜌
∇𝐶𝐶 = 0   (2) 

where 𝒖𝒖 is the velocity, 𝐶𝐶 is the pressure, 𝜈𝜈 is the kine-
matic viscosity and 𝜌𝜌 is the density.  

Regarding the mass transfer phenomena, we use 
the physics for transport of concentrated species, by 
considering the following expression: 

𝜌𝜌𝒖𝒖 ∙ ∇𝜔𝜔𝑖𝑖 + 𝛁𝛁 ∙ �−𝜌𝜌(𝐷𝐷𝑖𝑖𝛁𝛁𝜔𝜔𝑖𝑖)� = 0   (3) 

where 𝜔𝜔𝑖𝑖 is the mass fraction of species 𝑖𝑖, and 𝐷𝐷𝑖𝑖 is the 
diffusion coefficient of species 𝑖𝑖. 

For both retentate and permeate sides, we consider 
the coupled phenomena, which include the physics of the 

laminar flow and the mass transport. However, these do-
mains have different reference pressures since the re-
tentate side operates near atmospheric pressure and the 
permeate side usually operates under vacuum. The driv-
ing force for the species flow through the selective 
boundary is the CO2 partial pressure difference; increas-
ing this pressure difference increases the stage cut of the 
membrane process. 

 
Figure 2. CFD model for the membrane module. a) Main 
configuration and flux directions. b) Domains and 
selective boundary 

In order to model the membrane separation process, 
we define the selective boundary layer as a boundary 
condition for both physics. This selective layer is located 
at a height 𝑧𝑧𝑚𝑚 in the membrane module, as shown in 
Fig. 2. The species fluxes (𝐽𝐽𝒙𝒙,𝒊𝒊, 𝐽𝐽𝒚𝒚,𝒊𝒊, 𝐽𝐽𝒛𝒛,𝒊𝒊) are given by Eq. (3) 
in the transport phenomena, considering experimental 
data for the permeance of CO2 and N2 as pure gases (𝑄𝑄𝑖𝑖). 
In this way, the modeling approach considers the differ-
ent mass transfer resistances due to the membrane. 
Therefore, we do not have to include the information as-
sociated with the porosity of the support in the model. 
Regarding the velocity profile calculation, we consider a 
leaking wall as a boundary condition, calculating the 
equivalent velocity to satisfy momentum balances (see 
Eq. (4)). 

𝑧𝑧 = 𝑧𝑧𝑚𝑚 →  �
𝐽𝐽𝑥𝑥,𝒊𝒊 = 0
𝐽𝐽𝑦𝑦,𝒊𝒊 = 0

�𝐽𝐽𝒛𝒛,𝒊𝒊� = 𝑄𝑄𝑖𝑖𝑀𝑀𝑖𝑖(𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 −  𝐶𝐶𝑝𝑝𝑟𝑟𝑟𝑟𝑥𝑥𝑖𝑖
𝑝𝑝𝑟𝑟𝑟𝑟)

  (3) 

𝑧𝑧 = 𝑧𝑧𝑚𝑚  →   �

𝑢𝑢𝑥𝑥 = 0
𝑢𝑢𝑦𝑦 = 0

𝑢𝑢𝑧𝑧 = − 1
𝜌𝜌
∑ 𝐽𝐽𝒛𝒛,𝒊𝒊𝑖𝑖∈{𝐶𝐶𝑂𝑂2,𝑁𝑁2}

   (4) 

where 𝑄𝑄𝑖𝑖 is the permeance of species 𝑖𝑖, and 𝑀𝑀𝑖𝑖 is the mo-
lar mass of species 𝑖𝑖. 
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Regarding the boundary conditions for the inlet and 
outlet streams, we use the conventional approach to 
specify them, as explained in [15]. In particular, we run 
the CFD model several times to generate data for the re-
duced model generation, as we explain below. In this 
matter, we consider inlet mass flowrates between 40-
220 mg/s, inlet CO2 concentrations between 0.1 and 0.7, 
retentate outlet pressures between 1.02-2 atm, and per-
meate outlet pressures between 0.09-0.6 atm. 

Model simplification and mesh studies 
To enhance the computational tractability of the 

CFD model, a symmetry plane has been introduced for 
the membrane module. This modification involves the in-
corporation of a yz plane, resulting in a halved geometry, 
as depicted in Fig. 3. In this way, the number of cells re-
quired for the mesh is also halved.  

Regarding the mesh, we have developed a mapped 
mesh for the geometry as shown in Fig. 3. This meshing 
technique has shown a superior performance for mesh 
generation, offering the possibility of reducing the re-
quired number of cells to achieve accurate results. 

 
Figure 3. Mesh for the membrane module (637,460 
degrees of freedom) 
 
For the present case study, we perform a mesh 
independence study to select an appropriate number of 
mesh elements. This analysis is shown in Fig. 4, where 
we show the influence of degrees of freedom, directly 
proportional to the number of mesh nodes, on the CO2 
recovery of the membrane module for the mapped mesh 
and the free tetrahedral mesh. The results indicate that 
as the mesh becomes finer, the CO2 recovery decreases 
for the free tetrahedral mesh and increases for the 
mapped mesh. In addition, it is observed that the number 
of degrees of freedom to obtain accurate results is lower 
for the mapped mesh. It is worth noting that beyond 
637,460 degrees of freedom, there is no significant 
change in the CO2 recovery. The relative difference 
between this point and the one with the highest number 

of nodes (which is also the most accurate) is only 0.076%. 
This suggests that a mesh containing 637,460 degrees 
of freedom provides sufficient computational accuracy. 
 

 
Figure 4. Variation of the CO2 recovery with the degrees 
of freedom in the mesh. Input flow: 1250 SCCM; 𝑥𝑥𝐶𝐶𝑂𝑂2:0.3; 
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟: 1.2 bar; 𝐶𝐶𝑝𝑝𝑟𝑟𝑟𝑟: 0.2 bar. 

Surrogate model for the membrane process 
The CFD for the membrane module was validated 

using experimental data, as described in the literature 
[16], for a bench-scale experimental implementation. In 
the present work, we have scaled up the membrane mod-
ule to a length of 1 m and a width of 0.375, as shown in 
Fig .2. Then, from this model, we generate sampling data 
and build a reduced model by using kriging-based meth-
odology available in the IDAES computational framework 
[17]. This modeling approach considers a correlation 
function between different sampling points, which is usu-
ally called kernel. In the present case, we use the Gauss-
ian kernel (𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)), which is shown in Eq. (5). 

𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 𝑒𝑒𝑥𝑥𝐶𝐶 �−∑ 𝜃𝜃𝑟𝑟�𝑥𝑥𝑟𝑟𝑖𝑖 − 𝑥𝑥𝑟𝑟
𝑗𝑗�
2𝑑𝑑

𝑟𝑟=1 �   (5) 

where 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗 are sampling points, 𝜽𝜽 = {𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑑𝑑}𝑇𝑇 is 
vector associated with the length scale hyperparame-
ters, and 𝑑𝑑 is the dimension of the input variable vector. 
The values of output variables are calculated through the 
following expression: 

  𝑦𝑦∗ = 𝜇𝜇 + 𝒌𝒌∗𝑇𝑇(𝑲𝑲 + 𝜎𝜎2𝑰𝑰𝒏𝒏)−1(𝒚𝒚 − 𝟏𝟏𝜇𝜇)  (6) 

where 𝑦𝑦∗ is the expected value of the output variable, 𝜇𝜇 is 
the mean, 𝑛𝑛 is the number of sample points, 𝑰𝑰𝒏𝒏 is the iden-
tity matrix of dimension 𝑛𝑛, 𝜎𝜎 is the regularization param-
eter associated with the noise of the data and 𝒚𝒚 is the 
vector of the sampled output variable. The vector 𝒌𝒌∗  and 
the matrix 𝑲𝑲 are calculated through Eqs. (7) and (8), con-
sidering the Gaussian correlation function (see Eq. (5)).  

   [𝑲𝑲]𝑖𝑖,𝑗𝑗 = 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)   (7) 

   [𝒌𝒌∗]𝑖𝑖 = 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙∗)   (8) 

In particular, we build reduced models that consider the 
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following input variables: i) inlet flowrate; ii) pressure in 
the retentate; iii) pressure in the permeate; iv) inlet CO2 
concentration. On the other hand, we consider the CO2 
recovery and the CO2 purity in the permeate side as out-
put variables for the model. In this way, we can exploit 
the information of the rigorous CFD simulation to create 
a reduced model, which is implemented in the super-
structure for the selection of the multistage membrane 
process. 

Table 1. Main statistics metrics of the Kriging model for 
the CO2 recovery (output variable) 

 CO recovery Training 
data 

Validation 
data 

R   
Mean squared error ∙- ∙- 
Mean rel error (%)   
Max rel error (%)   

 
The main performance metrics for our built-reduced 

models are shown in Table 1. It is observed that the per-
formance of the built reduced models is appropriate for 
their implementation in the optimization model since the 
R2 coefficients are close to one, for both output variables. 
In addition, the statistics metrics for the training and the 
validation data do not change significantly, indicating a 
low risk of overfitting. 

Table 2. Main statistics metrics of the Kriging model for 
the CO2 purity in the retentate (output variable) 

 Purity Training 
data 

Validation 
data 

R   
Mean squared error ∙- ∙- 
Mean rel error (%)   
Max rel error (%)   

RESULTS 
In the present work, we consider the optimal design 

of a plant to treat a flue gas of 30 % CO2 -70% N2 and a 
molar flow rate of 1000 mol/s, as a case study. This CO2 
concentration is representative of steel plants but our 
model can account for any set of inlet and operating con-
ditions. We set the lower bounds for CO2 recovery and 
the purity at 80 % and 90 %, respectively.  

The mathematical programming model is imple-
mented in Pyomo and solved using IPOPT [18]. As com-
mercial solvers for global optimization turn out to be in-
efficient in solving the present problem design, we use a 
multi-start approach to increase the possibility of finding 
the global optimal solution. 

The optimization problem includes 539 variables 
and 50 optimization variables. We note that the use of 

reduced models reduced the problem complexity signifi-
cantly since the rigorous simulation of each membrane 
separation stage includes 637,460 variables. Therefore, 
solving the full optimization model for optimal design rep-
resents computational challenges, which would be the 
bottleneck of any decision-making. It is only through sur-
rogate models that we can seek a practical design opti-
mization in an acceptable timeline. 

The main economic indicators are shown in Table 3. 
The objective function is the capture cost, for which we 
obtain a value of 45.4 $/t-CO2. This value is of the ex-
pected order for a multi-stage membrane process [6]. 
The total annual cost for the capture plant is also shown 
in Table 1. The main contributor to this economic indica-
tor is the annualized capital cost (51 %), while the oper-
ating cost represents 29 % of the total annual cost. Our 
results indicate that the capital cost associated with 
compressors accounts for 65 % of the CAPEX, while the 
membrane cost is 33%. It should be noted that the purity 
and the CO2 recovery are at their lower bounds for the 
optimization problem.  

Table 3. Economic indicators associated with the optimal 
design of the membrane-based carbon capture 

  Value 

Capture cost ($/t-CO)  
Total annual cost (MM$/y)  
Capital cost (MM$)  
Operating cost (MM$/y)  
Purity (%)  
CO recovery (%)  

 

 
Figure 5. Optimal configuration for the membrane 
process. M: membrane separation stage. C: compressor. 
Hx: heat exchangers. s: splitters. mx: mixers. 

The optimal configuration for the membrane-based 
carbon capture process is shown in Fig. 5. It comprises a 
three-stage membrane separation setup. The inlet flue 
gas is introduced into the second membrane module, M2. 
The retentate product from M2 is fed to the third module, 
M3, where a N2-rich stream is recovered in the retentate 
stream, while the permeate side is recirculated back to 
M2. The permeate stream originating from M2 is then 
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sent to the first module, M1, which yields the purified CO2 
stream. The retentate product from M1 is also recycled to 
M2 for further processing. 

It should be noted that the optimal network for the 
separation process using membranes is not trivial, and 
there is a trade-off between the recovery and purity in 
each separation stage. At process level, there are also 
trade-offs related to recycled streams; high recirculation 
rates increase the operating costs but they have the po-
tential to reduce the required membrane area. In this con-
text, the proposed superstructure optimization is a valu-
able tool for finding a solution, considering these process 
interactions in the design. 

Regarding the operating condition and separation 
performance of the membrane stages, Table 4 shows the 
main results. It is observed that the membrane M2 in-
cludes a higher area than M1 and M3, and this result is 
associated with its high inlet flow (recycling streams for 
M1 and M3 are sent to M2 in the process network). In ad-
dition, we observe that M1 operates at high inlet CO2 con-
centration to achieve the target purity of the CO2 product 
(90 %), while M3 operates with a CO2-dilute stream 
(15 %) to recover the greenhouse gas before expelling 
the N2-rich stream from the retentate of this membrane 
stage. The permeate side for the membrane stages is at 
vacuum pressure, while the retentate is at atmospheric 
pressure. M2 and M3 operate at low pressure (0.1 atm) in 
the permeate side to promote CO2 transport through the 
selective layer; while the pressure of the permeate side 
of M1 is 0.4 atm. For each membrane stage, we also re-
port the dimensionless feed flow and the retentate re-
covery, which are associated with the capital cost and 
the energy requirement [19], respectively. 

In order to verify the accuracy of the reduced mod-
els in the environment of the optimal solution, we have 
run the rigorous CFD simulation considering the input 
variables reported in Table 4 for each membrane stage. 
These input variables include the inlet flow, the inlet CO2 
molar fraction, and the pressure of the retentate and the 
permeate sides. The results associated with this analysis 
are shown in Table 5. In general, we obtained relative dif-
ferences between the reduced model and the rigorous 
CFD simulations lower than 1 %. The sole exception is the 
prediction of the reduced model for the CO2 purity for M3, 
which is 5 % lower than the value obtained by the CFD 
simulation. This means that the objective function of the 
optimization problem could slightly improve by updating 
the reduced model with this information. Future work will 
focus on using the trust-region filter method [20,21] to 
solve the problem and obtain highly accurate solutions 

Table 4. Operating conditions and results for the mem-
brane stages 

  M M M 

Membrane 
area (m)    

Inlet flow 
(mol/s)    

Inlet CO  
molar fraction    

Retentate 
pressure (atm)    

Permeate 
pressure (atm)    

CO  
recovery    

CO purity    
Dimensionless 
feed flow    

Retentate  
recovery    

 

Table 5. Output variables from the rigorous CFD simula-
tions and the NLP model (calculated from the Kriging ap-
proach), using the input variables shown in Table 4 

  M M M 

CO recovery 
(CFD model)    

CO recovery 
(NLP model)    

CO purity 
(CFD model)    

CO purity 
(NLP model)    

 
The CO2 molar fraction profile (𝑥𝑥𝐶𝐶𝑂𝑂2) of membrane 

stage M2 is shown in Fig. 6. Initially, the inlet 𝑥𝑥𝐶𝐶𝑂𝑂2 is 0.36, 
while the retentate outlet 𝑥𝑥𝐶𝐶𝑂𝑂2 is 0.15. The decrease in 
𝑥𝑥𝐶𝐶𝑂𝑂2 is attributed to the selective CO2 flow through the 
membrane selective layer during the separation process. 
In the permeate region close to the feed, 𝑥𝑥𝐶𝐶𝑂𝑂2 reaches 
high purities of up to 0.90. However, as we move closer 
to the permeate side near the retentate outlet, the CO2 
purity decreases to around 0.50. Consequently, the av-
erage CO2 purity of the outlet permeate flow is estimated 
to be approximately 0.70. 
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Figure 6. Profile of CO2 molar fraction (𝑥𝑥𝐶𝐶𝑂𝑂2) for M2. Input 
flow: 86.06 mg/s; 𝑥𝑥𝐶𝐶𝑂𝑂2:0.36; 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟: 1.02 atm; 𝐶𝐶𝑝𝑝𝑟𝑟𝑟𝑟: 0.11 atm. 

Effect of the CO2 concentration in the feed 
stream 

We also explore the effects of changing the CO2 mo-
lar fraction in the feed stream on key parameters, such 
as the objective function (capture cost), the membrane 
area, and the energy demand. For this purpose, we run 
the optimal design problem by considering different inlet 
CO2 molar fractions in the interval of 0.2-0.3, while keep-
ing the input molar flowrate of CO2 constant.  

The results associated with this analysis are shown 
in Table 6. In all of the cases, the purity and the CO2 re-
covery were found at their lower bounds, 90 % and 80 %, 
respectively. It is observed that the capture cost de-
creases significantly as the inlet CO2 molar fraction in-
creases. These results are in agreement with the litera-
ture [14]. This trend can be explained by the simultane-
ous reduction in both membrane area and energy de-
mand as the inlet CO2 molar fraction rises, as detailed in 
Table 6. 

Table 6. Effect of the inlet CO2 concentration of the feed 
in the capture cost, membrane area, and energy demand 

Inlet CO 
molar 
fraction 

Capture 
cost  
($/t-CO) 

Membrane 
area 
(m) 

Energy 
demand 
(kWh/t-CO) 

    
    

    
    

    

CONCLUSIONS AND FUTURE WORK 
In this work, we address the optimal design of a 

multi-stage membrane process for carbon capture. For 
this task, we develop a CFD model of a membrane mod-
ule, from which we generate a Kriging reduced model to 

be implemented in an optimization problem. In order to 
design the separation network, we formulate a super-
structure to consider a three-stage membrane process. 
As the main case study, we consider an inlet flue gas 
stream with a CO2 molar fraction of 30 % and a molar 
flowrate of 1000 mol/s. However, our computational 
framework is flexible and versatile and can therefore be 
adapted to accommodate various inlet and operating 
conditions to simulate any post-combustion or industrial 
plant and real-life gas stream compositions. Our work 
could also be extended to inform both new plants and to 
retrofit existing ones.  

Our results show that the optimal design includes 
the three membrane stages and the capture cost of the 
process is 45.69 $/t-CO2. Determining the resulting net-
work configuration and optimal operating conditions for 
the membrane stages is a non-trivial task. In this context, 
the optimization formulation shows its value as it deter-
mines optimal trade-offs between the decision variables.  

Future work will focus on including additional design 
variables associated with the membrane module, i.e., ge-
ometric variables. In addition, we will include the effect of 
temperature on the transport phenomena for the CFD 
model. Regarding the solution strategy, we will solve the 
problem by using trust region methods, to guarantee the 
optimality of the solution.  
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ABSTRACT 
In this work, we propose a Mixed Integer Nonlinear Programming (MINLP) model to determine the 
optimal sustainable design of a poly(hydroxyalkanoate)s (PHAs) production plant configuration 
and its heat exchanger network (HEN). The superstructure-based optimization model considers 
different carbon sources as raw material: glycerol (crude and purified), corn starch, cassava 
starch, sugarcane sucrose and sugarcane molasses. The PHA extraction section includes four al-
ternatives: the use of enzymes, solvent, surfactant-NaOCl or surfactant-chelate. Model con-
straints include detailed capital cost for equipment, mass and energy balances, product specifi-
cations and operating bounds on process units. To assess the feasibility of the PHA plant, we 
considered the Sustainability Net Present Value (SNPV) as the objective function, a multi-criteria 
sustainability metric that considers economic, environmental and social pillars. The Net Present 
Value (NPV) was also calculated. SNPV metric provides useful insights on sustainable PHA pro-
duction, as the optimal technological route results in the sugarcane-surfactant-chelate option, ra-
ther than the sugarcane-enzyme pathway which proves more economically profitable, but with 
higher environmental impacts. Moreover, inclusion of HEN design significantly improves the ob-
jective function value, mainly due to a 24% carbon footprint impact reduction. 

Keywords: Biomass, Environment, Modelling, Optimization, Process Design

INTRODUCTION 
Poly(hydroxyalkanoate)s (PHAs) constitute a family 

of biodegradable and biocompatible polymers emerging 
as promising alternatives to substitute conventional syn-
thetical plastics such as polypropylene and polyethylene 
[1]. PHAs can be intracellularly stored as a carbon and 
energy reservoir in the cytoplasm of different microor-
ganisms capable of metabolizing various substrates [2].  

Koller and Mukherjee (2022) [3] documented the 
current global companies actively engaged in the com-
mercialization of PHAs. However, its industrial scale pro-
duction is constrained by high production costs mainly 
attributed to the feedstock used as carbon source [4]. 
Consequently, competing with petroleum-based plastics 
market price becomes challenging. Nevertheless, em-
bracing an integral process optimization framework [5] 
and a circular economy action plan emerges as a favora-
ble strategy for biopolymers, envisioning sustainability by 

addressing not only economic aspects but also environ-
mental and social considerations. 

Previous work shows that employing sugarcane as 
carbon source for PHAs production and enzymes for 
PHAs extraction, results in a biopolymer production cost 
round to 3 USD/kg of PHA [6]. In this context, an exten-
sion of this study focusing on sustainability design, could 
offer valuable insights on whether the chosen carbon 
source and extraction method align with optimal sustain-
able approaches for PHAs production, as well as simulta-
neously design the HEN. 

In this work, a superstructure is presented for the 
simultaneous optimal sustainable design of a PHA pro-
duction process and its heat exchanger network (HEN). 
The objective function is the maximization of the sustain-
ability net present value (SNPV) proposed by Zore et al. 
(2018) [7]. The model has into account several alternative 
carbon sources as substrates and includes different 
technological pathways for the biosynthesis, extraction 

mailto:sdiaz@plapiqui.edu.ar
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and purification stages. 

PROCESS DESCRIPTION 
The PHA production process has three main stages: 

upstream processing (raw material pretreatment), bio-
synthesis and downstream processing (biopolymer ex-
traction and purification). Figure 1 presents the proposed 
superstructure, including different technological alterna-
tives. For a more comprehensive description of the tech-
nological pathways, refer to Ramos et al. (2019) [6]. 

Upstream processing 
Three different raw materials and some of their de-

rivatives are considered as carbon source, namely, glyc-
erol, starch and sugarcane. Raw glycerol can be em-
ployed as an economical carbon source for several mi-
crobiological processes such as PHAs production [8]. 
Crude glycerol can be fed to the fermentation step after 
being sterilised, or it can be purified to improve down-
stream biomass growth. If glycerol purification step is se-
lected, methanol can be sold as a co-product after re-
covery. It is worth mentioning that selling purified glyc-
erol also is set as a possible alternative, instead of being 
used as carbon source for PHAs production.  

Starch is one agro-industrial product that holds a 
promising outlook as substrate for biomaterial produc-
tion. Three potential alternatives are considered for 
starch production in the superstructure presented in Fig. 
1. The first one consists of including the process of starch 
production from corn. The second option involves the di-
rect purchase of corn starch, while the third one contem-
plates the possibility of using cassava starch [9]. The su-
perstructure also includes the possibility of producing 

glucose, through starch liquefaction and saccharification, 
to be used as substrate for the microbial biosynthesis in 
the PHA production stage. 

The last alternative is the use of sucrose from sug-
arcane as a carbon source for the production of biopoly-
mers [10]. In this sense, sugarcane processing is embed-
ded within the proposed superstructure for PHA produc-
tion. Sugarcane bagasse constitute an important residue 
from the sugar industry, which can be processed for the 
production of thermal and electrical energy. In the pro-
posed superstructure, a typical electrical energy produc-
tion system is considered as a destination for this sub-
product [11]. As alternatives to the processing of sugar-
cane, the possibility of directly buying processed sucrose 
or sugarcane molasses is included in the superstructure 
[12]. 

Biosynthesis 
PHA production takes place in the biosynthesis 

stage by the biopolymer intracellular accumulation in a 
microbial strain, through an excess supply of a carbon 
source and the limitation of another growth essential nu-
trient like nitrogen or phosphorus.  

According to the selected carbon source, several 
operational alternatives are presented for the bioreactors 
used in this stage of the production process. Available 
technologies involve two fermentation stages. The first 
stage is included for biomass optimal growth without nu-
trient limitation imposed, while in the second, PHAs pro-
duction takes place and its accumulation is triggered by 
the limitation of essential nutrient sources. 

Downstream processing 
The extraction of biopolymers from the 

 
Figure 1: PHA production biorefinery simplified superstructure. 
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microorganism's cytoplasm is a crucial step in the pro-
duction process, as its quality directly impacts the final 
product. Therefore, an appropriate selection of the ex-
traction technology is essential to establish a viable pro-
cess in terms of sustainability. As shown in Fig. 1, four 
extraction alternatives are included in the PHA produc-
tion process superstructure, the use of enzymes, solvent, 
surfactant- sodium hypochlorite (NaOCl) or surfactant-
chelate. 

The enzymatic extraction alternative is based in a 
digester, where the cell wall lysis is carried out by the use 
of enzyme pancreatin in a 2 wt % [13]. The process that 
employs solvent for PHA extraction uses diethyl succin-
ate (DES) and includes a homogenizer, which operates at 
a high pressure to enable cell lysis [14]. The third option 
involves the use of NaOCl and a surfactant for biopoly-
mer extraction. The last technological route embedded in 
the superstructure comprises surfactant and chelate as 
extraction agents. This method is based on the process 
proposed by Chen et al. (2001) [15], and is presented as 
a promising alternative because it is environmentally 
friendly having a higher quality of the final product and 
minimizing the requirement of chemicals. 

MATHEMATICAL MODEL 
The proposed superstructure is formulated as a 

mixed-integer nonlinear programming (MINLP) problem 
and implemented in GAMS 35.2.0 [16] in order to deter-
mine the optimal sustainable design of a PHAs production 
plant and its heat exchanger network (HEN). The objec-
tive function is to maximize the monetary-based sustain-
ability metric, Sustainability Net Present Value (SNPV) 
[7]. The proposed superstructure includes mass and en-
ergy balances, equipment design equations and capital 
cost correlations for the PHAs production plant pro-
cesses, as well as its HEN design and connection equa-
tions to link process design variables with HEN variables. 
Binary variables are associated to potential units and to 
heat exchanger matches. 

Nonreactive units mass balances within the super-
structure are formulated as shown in Eq. (1). 

 
� 𝑓𝑓𝑢𝑢1,𝑢𝑢,𝑗𝑗

𝑢𝑢1∈𝑈𝑈𝑈𝑈𝑢𝑢

= � 𝑓𝑓𝑢𝑢,𝑢𝑢2,𝑗𝑗
𝑢𝑢2∈𝑈𝑈𝑈𝑈𝑢𝑢

     𝑗𝑗 ∈ 𝐽𝐽,𝑢𝑢 ∈ 𝑈𝑈𝑁𝑁𝑁𝑁                            (1) 

 
where 𝑓𝑓𝑢𝑢1,𝑢𝑢,𝑗𝑗 is the flowrate from unit 𝑢𝑢1 to 𝑢𝑢 of compo-
nent 𝑗𝑗; 𝑈𝑈𝑈𝑈𝑢𝑢 and 𝑈𝑈𝑈𝑈𝑢𝑢 are subsets that define the connec-
tion between units. Nonreactive units splitting are repre-
sented by Eq. (2) as it is shown below. 

 
𝑓𝑓𝑢𝑢,𝑢𝑢2,𝑗𝑗 = 𝛼𝛼𝑢𝑢,𝑢𝑢2,𝑗𝑗 ∙ � 𝑓𝑓𝑢𝑢1,𝑢𝑢,𝑗𝑗

𝑢𝑢1∈𝑈𝑈𝑈𝑈𝑢𝑢

      𝑗𝑗 ∈ 𝐽𝐽,𝑢𝑢 ∈ 𝑈𝑈𝑁𝑁𝑁𝑁,𝑢𝑢2 ∈  𝑈𝑈𝑈𝑈𝑢𝑢   (2) 

 
where 𝛼𝛼𝑢𝑢,𝑢𝑢2,𝑗𝑗 is a splitting parameter for component 𝑗𝑗 that 

leaves unit 𝑢𝑢 and leads to unit 𝑢𝑢2. It is worth mentioning 
that Eq. (3) should be verified in order to fulfill mass con-
servation. 

 
� 𝛼𝛼𝑢𝑢,𝑢𝑢2,𝑗𝑗

𝑢𝑢2∈𝑈𝑈𝑈𝑈𝑢𝑢

= 1         𝑗𝑗 ∈ 𝐽𝐽,𝑢𝑢 ∈ 𝑈𝑈𝑁𝑁𝑁𝑁                                              (3) 

 
Reactive unit mass balances are described by Eq. 

(4). 
 

� 𝑓𝑓𝑢𝑢,𝑢𝑢2,𝑗𝑗
𝑢𝑢2∈𝑈𝑈𝑈𝑈𝑢𝑢

= � 𝑓𝑓𝑢𝑢1,𝑢𝑢,𝑗𝑗
𝑢𝑢1∈𝑈𝑈𝑈𝑈𝑢𝑢

+ � �𝜉𝜉𝑢𝑢,𝑟𝑟,𝑗𝑗  � 𝑓𝑓𝑢𝑢1,𝑢𝑢,𝑟𝑟
𝑢𝑢1∈𝑈𝑈𝑈𝑈𝑢𝑢

�
𝑟𝑟∈𝑁𝑁𝑢𝑢

     (4) 

𝑗𝑗 ∈ 𝐽𝐽,𝑢𝑢 ∈ 𝑈𝑈𝑁𝑁 
 

where 𝜉𝜉𝑢𝑢,𝑟𝑟,𝑗𝑗 denotes the mass coefficient for component 
𝑗𝑗 from the main reactant 𝑟𝑟 in reactive unit 𝑢𝑢. This coeffi-
cient is positive for products and negative for reactants. 
Reactive unit splitting is represented by Eq. (5) as follows. 

 

𝑓𝑓𝑢𝑢,𝑢𝑢2,𝑗𝑗 = 𝛼𝛼𝑢𝑢,𝑢𝑢2,𝑗𝑗. � � 𝑓𝑓𝑢𝑢1,𝑢𝑢,𝑗𝑗
𝑢𝑢1∈𝑈𝑈𝑈𝑈𝑢𝑢

+ � �𝜉𝜉𝑢𝑢,𝑟𝑟,𝑗𝑗  � 𝑓𝑓𝑢𝑢1,𝑢𝑢,𝑟𝑟
𝑢𝑢1∈𝑈𝑈𝑈𝑈𝑢𝑢

�
𝑟𝑟∈𝑁𝑁𝑢𝑢

�  (5) 

 𝑗𝑗 ∈ 𝐽𝐽,𝑢𝑢 ∈ 𝑈𝑈𝑁𝑁,𝑢𝑢2 ∈  𝑈𝑈𝑈𝑈𝑢𝑢 
 
The electrical energy consumption (𝐸𝐸𝐸𝐸𝑢𝑢)  is calcu-

lated through linear functions, as shown in Eq. (6). 
 

𝐸𝐸𝐸𝐸𝑢𝑢   = 𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢.� � �𝑓𝑓𝑢𝑢1,𝑢𝑢,𝑗𝑗
𝑗𝑗∈𝐽𝐽𝑢𝑢1∈𝑈𝑈𝑈𝑈𝑢𝑢

 �       𝑢𝑢 ∈ {𝑈𝑈𝑁𝑁𝑁𝑁 ∪ 𝑈𝑈𝑁𝑁}             (6) 

 
where 𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢 is the energy consumption ratio per unit of 
mass flowrate relative to unit 𝑢𝑢. Conditional units pro-
posed in the superstructure are associated with binary 
variables through Big-M formulations in order to deter-
mine the optimal technological route. The corresponding 
mixed integer constraints are formulated as it is shown in 
Eq. (7) 

 
� �𝑓𝑓𝑢𝑢,𝑢𝑢2,𝑗𝑗

𝑗𝑗∈𝐽𝐽𝑢𝑢2∈𝑈𝑈𝑈𝑈𝑢𝑢

  − 𝐵𝐵𝐵𝐵.𝑦𝑦𝑢𝑢 ≤ 0      𝑢𝑢 ∈ 𝑈𝑈𝐶𝐶                                    (7) 

 
where 𝑦𝑦𝑢𝑢 is the binary variable related to the selection of 
conditional unit 𝑢𝑢; and BM is a big M parameter [28]. 

Regarding equipment design equations and capital 
cost correlations, we include standard capital cost mod-
els from the literature [17-18]. 

The objective function Sustainability Net Present 
Value (SNPV) presented by Zore et al. (2018) [7], includes 
economic (𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸), environmental (𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) 
and social (𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) net present values (Eq. (8)). It is 
worth mentioning that, in order to assess sustainability 
from a combined point of view of the company and gov-
ernment, we consider the SNPV macroeconomic 
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perspective [7]. 
 

𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸        (8) 
 
The economic pillar of the objective function is rep-

resented by 𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 and is calculated as shown in Eq. 
(9). The annual cash flows are discounted from its year 
to the present time by the use of a corresponding factor 
that involves the discounted rate, 𝑖𝑖=10 %, and the project 
lifetime, 𝑛𝑛=20 years. 𝐸𝐸 accounts for annual revenues 
from products and by-products sales, 𝐸𝐸 includes annual 
manufacturing and general costs. 𝑈𝑈 is the total capital in-
vestment cost for a turnkey plant and involves the sum 
of equipment cost, considering tax contingency factor 
(𝜑𝜑1= 1.18) and a grass-root factor (𝜑𝜑2= 1.3), land cost, 
piping and instrumentation cost, and the working capital. 
In addition, 𝑁𝑁𝑟𝑟𝐸𝐸𝐸𝐸 is the recovery value, an income estima-
tion from selling the equipment and recovering the work-
ing capital at the end of the project lifespan. 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = (𝐸𝐸 − 𝐸𝐸).
(1 + 𝑖𝑖)𝐸𝐸 − 1
𝑖𝑖. (1 + 𝑖𝑖)𝐸𝐸 − 𝑈𝑈 + 𝑁𝑁𝑟𝑟𝐸𝐸𝐸𝐸 . (1 + 𝑖𝑖)𝐸𝐸      (9) 

 
Furthermore, 𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 stands for the envi-

ronmental pillar of sustainability and is defined by Eq. 
(10.1). The annual environmental benefit (𝐸𝐸𝐵𝐵) represents, 
in monetary terms, the unburdening effect of raw mate-
rials, products, technologies, transport, energy and 
waste on the environment (Eq. (10.2)). On the other hand, 
the annual environmental cost (𝐸𝐸𝐸𝐸) corresponds to their 
burdening effect on the environment (Eq. (10.3)). Both 
terms are calculated by the eco-cost coefficients [7],  
𝑐𝑐𝐸𝐸,𝐸𝐸𝐸𝐸𝐸𝐸ℎ and 𝑐𝑐𝑗𝑗 ,𝐸𝐸𝐸𝐸𝐸𝐸ℎ, for annual raw materials and products, 
respectively. Superindexes 𝐸𝐸𝑈𝑈𝑁𝑁𝑈𝑈 and 𝐸𝐸𝑈𝑈 denote the un-
burdening and burdening effect of the annual raw mate-
rials required by process tech, respectively. Similarly, 
𝑁𝑁𝑈𝑈𝑁𝑁𝑈𝑈 and 𝑁𝑁𝑈𝑈 denote the unburdening and burdening ef-
fect of the annual products produced by unit 𝑡𝑡𝑡𝑡𝑐𝑐ℎ, re-
spectively. These environmental effects are proportional 
to annual raw material and product mass flowrates, 𝑞𝑞𝐸𝐸𝑖𝑖 

and 𝑞𝑞𝐸𝐸𝑗𝑗, respectively. Also, a substitution factor, 𝑓𝑓𝑗𝑗,𝐸𝐸𝐸𝐸𝐸𝐸ℎ
𝑆𝑆/𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈, 

is taken into account to represent the ratio between the 
annual amount of product to be substituted and the an-
nual amount of product obtained in the bioprocess. 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = (𝐸𝐸𝐵𝐵 − 𝐸𝐸𝐸𝐸).
(1 + 𝑖𝑖)𝐸𝐸 − 1
𝑖𝑖. (1 + 𝑖𝑖)𝐸𝐸                       (10.1) 

 
𝐸𝐸𝐵𝐵 = � � 𝑓𝑓𝐸𝐸,𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈 . 𝑐𝑐𝐸𝐸,𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈

𝐸𝐸𝑖𝑖𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝜖𝜖

 + 

� � 𝑓𝑓𝑗𝑗,𝐸𝐸𝐸𝐸𝐸𝐸ℎ
𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈 . 𝑠𝑠𝑓𝑓𝑗𝑗,𝐸𝐸𝐸𝐸𝐸𝐸ℎ

𝑆𝑆/𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈 . 𝑐𝑐𝑗𝑗,𝐸𝐸𝐸𝐸𝐸𝐸ℎ
𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈

𝑗𝑗𝑖𝑖𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝜖𝜖

                                         (10.2) 

 

𝐸𝐸𝐸𝐸 = � � 𝑓𝑓𝐸𝐸,𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑁𝑁𝑈𝑈 . 𝑐𝑐𝐸𝐸,𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑁𝑁𝑈𝑈

𝐸𝐸𝑖𝑖𝑁𝑁𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝜖𝜖

 + � � 𝑓𝑓𝑗𝑗,𝐸𝐸𝐸𝐸𝐸𝐸ℎ
𝑃𝑃𝑈𝑈 . 𝑐𝑐𝑗𝑗 ,𝐸𝐸𝐸𝐸𝐸𝐸ℎ

𝑃𝑃𝑈𝑈

𝑗𝑗𝑖𝑖𝑃𝑃𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝜖𝜖

  (10.3) 

 
 

Referring to the environmental pillar of the objective 
function, it is important to note that environmental bur-
den can be classified into a set of impact categories as 
midpoints or endpoints. The former are considered to be 
links in the cause-effect chain of an impact category at 
which characterization factors can be derived to reflect 
the relative importance of emissions or extractions [19]. 
Midpoints that are considered in this framework are 
global warming (Globwarm), acidification (Aci), eutrophi-
cation (Eutro), ecotoxicity (Ecotox), photochemical oxi-
dants (Sums), human toxicity carcinogens (Htoxc), hu-
man toxicity non carcinogens (Htoxnc), fine dust (Fined), 
metals scarcity (Mets), fossil products (Foss), uranium 
(Ura), land-use (Lanu) and baseline water stress (Basew). 
On the other hand, the endpoints are indicators that show 
the environmental impact on higher aggregation levels, 
being considered carbon footprint (Globwarm), ecosys-
tems (Aci, Eutro, Ecotox), human health (Sums, Htoxc, 
Htoxnc, Fined) and resource scarcity (Mets, Foss, Ura, 
Lanu, Basew). 

The social term of the objective function, 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 
is represented by Eq. (11.1) and considers social security 
contributions (𝑆𝑆𝑆𝑆), social unburdening effect due to new 
jobs creation (𝑆𝑆𝑈𝑈) and social cost (𝑆𝑆𝐸𝐸). Social security 
contributions (Eq. (11.2)) are defined as the difference 
between gross and net annual salaries (𝑆𝑆𝑔𝑔𝑟𝑟𝐸𝐸𝑔𝑔𝑔𝑔 and 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸, 
respectively) for the number of jobs created (𝑁𝑁𝑗𝑗𝐸𝐸𝑗𝑗𝑔𝑔). This 
variable is included in the model through the manufactur-
ing cost term, which takes into account direct costs such 
as operating labor associated with the attention required 
by an operator to run the equipment [18]. Social unbur-
dening effect is described by Eq. (11.3) and contemplates 
the state social transfer needed to annually support an 
unemployed person (𝐸𝐸𝑔𝑔𝑈𝑈𝑁𝑁𝐸𝐸,𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) who is now employee 
(𝑁𝑁𝑗𝑗𝐸𝐸𝑗𝑗𝑔𝑔). Eq. (11.4) describes the annual social support of 
the state and the company for each employee (𝑁𝑁𝑗𝑗𝐸𝐸𝑗𝑗𝑔𝑔) 
considering a state social transfer (𝐸𝐸𝑔𝑔𝐸𝐸𝐸𝐸𝑃𝑃,𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) and a com-
pany social charge (𝐸𝐸𝑔𝑔

𝐸𝐸𝐸𝐸𝑃𝑃,𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐) parameter. 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = (𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑈𝑈 − 𝑆𝑆𝐸𝐸).
(1 + 𝑖𝑖)𝐸𝐸 − 1
𝑖𝑖. (1 + 𝑖𝑖)𝐸𝐸                            (11.1) 

 
𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑗𝑗𝐸𝐸𝑗𝑗𝑔𝑔. (𝑆𝑆𝑔𝑔𝑟𝑟𝐸𝐸𝑔𝑔𝑔𝑔 − 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸)                                                        (11.2) 

 
𝑆𝑆𝑈𝑈 = 𝑁𝑁𝑗𝑗𝐸𝐸𝑗𝑗𝑔𝑔 .𝐸𝐸𝑔𝑔

𝑈𝑈𝑁𝑁𝐸𝐸,𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                                                                  (11.3) 
 

𝑆𝑆𝐸𝐸 = 𝑁𝑁𝑗𝑗𝐸𝐸𝑗𝑗𝑔𝑔 . �𝐸𝐸𝑔𝑔
𝐸𝐸𝐸𝐸𝑃𝑃,𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝑔𝑔

𝐸𝐸𝐸𝐸𝑃𝑃,𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐�                              (11.4) 
 
In this work, we address a simultaneous design of 

the bioprocess and its heat exchanger network (HEN), 
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following Pedrozo et al. [17]. It is worth mentioning that, 
since we performed a simultaneous process and HEN de-
sign, heat balance equations at each stage are nonlinear, 
as both process stream flowrates and stage tempera-
tures are variables, as presented in the previous publica-
tion. The heat exchanger network capital cost (𝐻𝐻𝐸𝐸𝑁𝑁𝐸𝐸) is 
calculated as shown in Eq. (12), while the total utility cost 
(𝑇𝑇𝑈𝑈𝐸𝐸) is given by Eq. (13), as follows, 

 
𝐻𝐻𝐸𝐸𝑁𝑁𝐸𝐸 = � ���𝛼𝛼0𝑧𝑧ℎ,𝐸𝐸,𝑘𝑘 + 𝐻𝐻𝑋𝑋ℎ,𝐸𝐸,𝑘𝑘�

ℎ∈𝐻𝐻

+
𝐸𝐸∈𝐶𝐶𝑘𝑘∈𝑆𝑆𝜖𝜖

��𝛼𝛼0𝑧𝑧ℎ𝐶𝐶𝑈𝑈
ℎ∈𝐻𝐻

+ 𝐻𝐻𝑋𝑋ℎ𝐶𝐶𝑈𝑈� + �(𝛼𝛼0𝑧𝑧𝐸𝐸𝐻𝐻𝑈𝑈 + 𝐻𝐻𝑋𝑋𝐸𝐸𝐻𝐻𝑈𝑈)
𝐸𝐸∈𝐶𝐶

             (12) 

 
𝑇𝑇𝑈𝑈𝐸𝐸 = 𝛽𝛽𝐶𝐶𝑈𝑈 � 𝑞𝑞ℎ𝐶𝐶𝑈𝑈

ℎ∈𝐻𝐻

+ 𝛽𝛽𝐻𝐻𝑈𝑈�𝑞𝑞𝐸𝐸𝐻𝐻𝑈𝑈
𝐸𝐸∈𝐶𝐶

                                              (13) 

 
where 𝛼𝛼0 corresponds to fixed cost associated with 

heat exchanger units; 𝐻𝐻𝑋𝑋ℎ,𝐸𝐸,𝑘𝑘 is the heat exchanger cost 
corresponding to the hot stream ℎ and cold stream 𝑐𝑐 
match at stage 𝑘𝑘; 𝐻𝐻𝑋𝑋ℎ𝐶𝐶𝑈𝑈 and 𝐻𝐻𝑋𝑋𝐸𝐸𝐻𝐻𝑈𝑈 are the heat exchanger 
cost of the hot stream ℎ and cold stream 𝑐𝑐 with their re-
spective external utilities; 𝑧𝑧ℎ,𝐸𝐸,𝑘𝑘 is the binary variable that 
is equal to one when the hot stream ℎ matches the cold 
stream 𝑐𝑐 at stage 𝑘𝑘 and equal to zero otherwise; 𝑧𝑧ℎ𝐶𝐶𝑈𝑈 and 
𝑧𝑧𝐸𝐸𝐻𝐻𝑈𝑈 are binary variables that are equal to one when the 
hot stream ℎ and the cold stream 𝑐𝑐 require extreme ex-
ternal utilities, respectively, and equal to zero otherwise.  
𝛽𝛽𝐶𝐶𝑈𝑈 and 𝛽𝛽𝐻𝐻𝑈𝑈 stand for the cooling utility and the heating 
utility costs, respectively. 𝑞𝑞ℎ𝐶𝐶𝑈𝑈 and 𝑞𝑞𝐸𝐸𝐻𝐻𝑈𝑈 are cooling and 
heating utilities for hot and cold streams, respectively. It 
is worth noting that the continuous elements of the 
model, involves mass flowrates, equipment cost, sustain-
ability indices, and energy variables. Conversely, the dis-
crete component comprises unit selection variables (𝑦𝑦𝑢𝑢) 
and binary variables involved in the HEN model (𝑧𝑧ℎ,𝐸𝐸,𝑘𝑘, 𝑧𝑧ℎ𝐶𝐶𝑈𝑈 
and 𝑧𝑧𝐸𝐸𝐻𝐻𝑈𝑈). For further details regarding HEN design, 
please refer to Pedrozo et al. [17]. 

NUMERICAL RESULTS AND DISCUSSION 
The MINLP model formulated for sustainability opti-

mization and simultaneous process and HEN design in-
cludes 5,412 discrete variables, 30,228 continuous vari-
ables and 41,632 constraints. It was solved to an objec-
tive function value of SNPV=-111.40 M USD using DI-
COPT, with CONOPT and CPLEX as nonlinear and linear 
subsolvers, respectively [20]. The optimal technological 
route in terms of sustainability, includes the use of sug-
arcane (0.21 Mt/y) as carbon source for biopolymer pro-
duction, selecting the surfactant-chelate pathway as the 
PHA extraction method. A PHA capacity is fixed at 10,000 
t/y is achieved, which is similar to numerous currently in-
dustrial production plants [21]. 

A conventional techno-economic assessment was 

carried out for the optimal configuration, considering an 
interest rate of 10 % and a project lifetime of 20 years, 
providing a Net Present Value (NPV) of 131.93 M USD, 
which is consistent with the results already presented in 
Ramos et al. (2019) [6]. 

With respect to the SNPV value, a deeper analysis 
for comparing purposes was performed, considering four 
different suboptimal technological routes. Table 1 shows 
for the different alternatives, the SNPV and NPV values. 
The alternatives were based on sugarcane (sc) or sugar-
cane molasses (mls) as carbon source, as these resulted 
to be the more sustainable options. Also, the extraction 
methods for PHAs that prove to be the more sustainable, 
were enzymatic extraction (enz), NaOCl and surfactant 
extraction (surf) and surfactant and chelate as extraction 
(surf & ch). 

Alternative 1, which is based on sugarcane as a car-
bon source and whose extraction method is enzymatic, 
yielded more economical profitability in comparison with 
the optimal configuration. Alternative 2, also based on 
sugarcane as carbon source, with surfactant and NaOCl 
as option for PHA extraction method, resulted in nearly 
the same economical profitability in comparison to the 
optimal scheme. Although the economical profitability is 
higher or nearly the same for alternatives 1 and 2, respec-
tively, there is a significant detriment in the SNPV value. 
This is mainly due to the ecotoxicity environmental im-
pact of NaOCl emissions [22], chemical that is used for 
dissolution improvement of the cell wall for the enzymatic 
extraction in alternative 1, and for chemical digestion in 
surfactant and NaOCl extraction in alternative 2. Consid-
ering alternatives 3 and 4, where is employed sugarcane 
molasses as carbon source, there is a worsening in both 
SNPV and NPV. Hence, processing of sugarcane leads to 
enhanced sustainability in PHAs production plant design. 

Table 1: Set of potential technological routes for PHAs 
production. 

Alternative SNPV (MUSD) VPN (MUSD) 
Optimal -  
 (sc + enz) -  
 (sc + surf) -  
 (mls + enz) -  
 (mls + surf & ch) -  

 
Regarding heat integration, additional runs were 

carried out without heat integration and numerical results 
show that the optimal integrated scheme with HEN in-
creased the number of heat exchangers required, as 
compared to the optimal base case without HEN (16 vs 
15) and it also reduced the cost of external thermal utili-
ties by 35.60 % (from 123.65x106 kJ/h to 79.64 x106 kJ/h). 
Moreover, the reduction of utilities matches from 15 to 13 
accounts for significant utility savings that improve the 
sustainability objective function (see Table 2), that led to 



 

Ramos et al. / LAPSE:2024.1619 Syst Control Trans 3:868-875 (2024) 873 

an improvement of 48.58 % in the objective function. This 
aligns with the results reported by Ramos et al. (2023) 
[27]. 

According to the results shown in Table 2, a mean-
ingful enhancement of 15.14 % is found in the economic 
pillar between the two proposed cases. This is due to the 
energy savings, that result economically more impactful 
than the increase of the heat exchanger capital cost (1 
extra heat exchanger for HEN case). Furthermore, there 
is a significant improvement of 19.42 % in the environ-
mental pillar, while only a difference of 0.89 % can be 
reached in the social pillar. Regarding the economic pillar, 
a further analysis demonstrates that, while the utility cost 
reduction with heat integration represented a 34.14 % 
(from 8.46 M USD to 5.57 M USD), the heat exchanger 
capital cost increased in a 19.72 % (from 1.20 M USD to 
1.43 M USD). The social pillar difference is associated 
with the increase in the number of heat exchangers after 
heat integration, representing more workers’ contracts. A 
decrease of fossil fuels requirements (external utilities), 
positively benefits the environmental pillar in the objec-
tive function. 

Table 2: Sustainability Net Present Value pillars compar-
ison for heat and non-heat integration scenarios. 

Sustainability 
metric (MUSD) 

With 
HEN 

Without 
HEN Difference 

SNPV - -  % 
NPVeconomic    % 
NPVenvironmental - -  % 
NPVsocial    % 

 
In order to provide a comprehensive insight into the 

environmental pillar of the objective function, Fig. 2 dis-
plays a breakdown in endpoint impact categories, for the 
heat and non-heat integration scenarios, both for the op-
timal configuration of the PHAs production plant. 

The highest environmental burden is attributed to 
carbon footprint, as a consequence of the thermal energy 
required in the surfactant and chelate extraction method, 
which is the extraction method with the higher thermal 
energy demand. Significant reductions in the carbon 
footprint impact category can be achieved with heat in-
tegration, as it reduces this burden by 23.65 %. This re-
duction is mainly attributed to the lower thermal energy 
consumption required at the biorefinery, leading to less 
energy production from conventional sources.  

In the case of eco systems environmental burden, 
impact that follows carbon footprint in intensity, the ma-
jor contribution to this category resulted from the back-
ground environmental impact of the acquisition of raw 
sugarcane. This background accounts for all the environ-
mental burdens related to eco systems category, primar-
ily linked to ecotoxicity and acidification impacts, that 
were generated in order to bring along the carbon source 

into the Biorefinery. 
Human health and resource scarcity resulted in the 

least negatively impacted categories, where the minor 
contributions were the background process environmen-
tal burden from energy requirements. Overall, numerical 
results reinforce the need for including simultaneous HEN 
models within the superstructure framework [23]. 

 
Figure 2. SNPV environmental pillar breakdown. 
 

In order to provide major insight into environmental 
impacts due to foreground and background processes 
emissions, Fig. 3 presents the midpoints radar chart ex-
pressed in M USD, for the optimal configuration of the bi-
orefinery (HEN scenario). 

 
Figure 3. Midpoints radar chart for heat integration case. 
 

Also, we performed a local sensitivity analysis in or-
der to determine most influential parameters on SNPV, 
that could be improved to achieve a higher sustainability 
profit on the biorefinery, considering a variation of ± 10 % 
from base value of the parameters (Figure 4). It can be 
seen that PHA’s selling price resulted in the parameter 
with the largest effect on SNPV. For instance, a 10 % in-
crease in this parameter (from 5.46 USD/kgPHA [24] to 
6.01 USD/kgPHA) represents an objective function en-
hancement of 41.74 % (from -111.40 M USD to -64.90 M 
USD). On sensitivity effects, it is followed by PHA yield, 
CEPCI index, sugarcane raw material price.  

PHA yield [11] resulted in a meaningful effect on 
SNPV, mainly due to the fact that, if this yield is higher in 
the biosynthesis section, this leads to a minor require-
ment of sugarcane as carbon source in order to achieve 
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the PHA demand. As it was aforementioned, sugarcane 
background processes’ environmental burden resulted in 
a major contribution in the ecosystems impact category. 
Also, reduction of sugarcane results in a decrease of cap-
ital costs. 

It is worth noting that SNPV is not particularly sen-
sitive to interest rate and utility service’s cost. This last 
outcome, is due to the fact that the major impact on 
SNPV for the optimal configuration of the biorefinery, is 
the environmental pillar. Hence, the external utilities cost 
is not as relevant as diminishing the utilities requirements. 

Based on these results, some of the above-men-
tioned parameters can be modified to potentially improve 
plant economics as proposed by Aui et al. [25] and 
Rizwan et al. [26], and subsequently enhance the pro-
posed objective function for the biorefinery. However, 
some of these parameters are intrinsically connected 
with the market, such as product selling price, CEPCI in-
dex or interest rate. Therefore, special attention should 
be devoted to the technology-dependent parameters, 
such as the biological parameter PHA yield, since it is cru-
cial to improve the sustainability objective function. 

 
Figure 4. Sensitivity analysis for the optimal scheme. 

CONCLUSIONS 
In this work, we have addressed the production of 

biopolymers, namely PHAs, by a mixed integer nonlinear 
programming (MINLP) model for the optimal sustainable 
design of a biorefinery and its heat exchanger network 
(HEN). A superstructure that considered the processing 
of different carbon sources and PHAs extraction meth-
ods was developed. Optimization results point out that 
the optimal technological route is the one that employs 
sugarcane as a carbon source for PHAs production and 
surfactant-chelate for PHAs extraction. Heat integration 
was proved to be valuable since it enhanced significantly 
the SNPV objective function. Also, various technological 
alternatives were explored, and although they exhibited 
economic parity or superiority, they were notably inferior 
in terms of sustainability in comparison with the optimal 
scheme. Moreover, a breakdown of the environmental 
pillar was conducted, in order to provide insights into the 

environmental impacts related to the biorefinery design. 
It was clearly demonstrated that the reduction of external 
utilities through heat integration, resulted in a significant 
decrease in carbon footprint impact category. Further-
more, sensitivity analysis shows the potential aspects 
that should be taken into account to increase the process 
sustainability. 
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ABSTRACT 
Computer-aided molecular and process design (CAMPD) tries to find the best molecules together 
with their optimal process. If the optimization problem considers two or more components as de-
grees of freedom, the resulting mixture design is challenging for optimization. The quality of the 
solution strongly depends on the accuracy of the thermodynamic model used to predict the ther-
mophysical properties required to determine the objective function and process constraints. To-
day, most molecular design methods employ thermodynamic models based on group counts, re-
sulting in a loss of structural information of the molecule during the optimization. Here, we unlock 
CAMPD based on property prediction methods beyond first-order group-contribution methods by 
using molecule superstructures, a graph-based molecular representation of chemical families that 
preserves the full adjacency graph. Disjunctive programming is applied to optimize molecules from 
different chemical families simultaneously. The description of mixtures is enhanced with a recent 
parametrization of binary group/group interaction parameters. The design method is applied to 
determine the optimal working fluid mixture for an Organic Rankine cycle. 

Keywords: Molecular Design, Energy Conversion, Process Design, Optimization, Exergy Efficiency 

INTRODUCTION 
Computer-aided molecular and process design 

(CAMPD) [1] determines optimal molecules jointly with 
their optimal process. Evaluating molecules for their per-
formance in a process enables a comprehensive assess-
ment. The influence of different molecular characteristics 
is combined in a process-level target function that can 
quantify the thermodynamic, economic, or environmental 
performance of the process. 

Molecules occur as degrees of freedom for various 
energy conversion processes like heat pumps [2] and or-
ganic Rankine cycles (ORC) [3-5] or separation pro-
cesses like CO2 capture [6]. The design space of mole-
cules is vast but can even be extended exponentially by 
considering blends of multiple molecular species [7,8]. 

To optimize a molecule, its structure must be fea-
turized, i.e., expressed in a machine-readable way [9]. 
Common features used in molecular design are group 
counts that indicate the number of occurrences of pre-
defined groups in a molecule. The group counts can be 
used as degrees of freedom in an optimization algorithm. 

Additional molecular constraints can ensure that the op-
timization only generates valid molecules. 

The group counts are used in group-contribution 
methods to determine the thermophysical properties re-
quired for the process model [10]. A disadvantage of us-
ing group counts as features is that some of the structural 
information of the molecule is lost in the featurization. 
Therefore, the optimization does not necessarily allow 
the identification of an optimal molecule but rather a set 
of optimal isomers that share the same group counts. 

The limitation of group counts is alleviated by main-
taining structural information during the optimization. 
This can be achieved by optimizing the coefficients of an 
adjacency matrix [11]. However, the number of degrees 
of freedom becomes large, which is a limiting factor in the 
presence of expensive model evaluations that occur in an 
integrated molecular and process design. As an alterna-
tive, we recently introduced molecule superstructures 
[12]. The superstructures can encode all molecules of a 
particular chemical family using a significantly reduced 
number of binary variables. 

The molecular design space superstructures offer is 
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smaller than first-order group-contribution methods. 
However, the molecular representation should not only 
be picked for computational convenience but also based 
on the expected accuracy of property prediction meth-
ods. Often, extrapolating a group contribution method to 
molecules significantly different from the molecules used 
for parameter adjustment (e.g., polyfunctional molecules) 
leads to low accuracies that undermine the results of a 
molecular design. 

Evaluating a process model requires an equation of 
state or an equivalent model. For mixture design, the 
model should predict a wide range of fluids and their mix-
tures. Molecular equations of state like those based on 
statistical associating fluid theory (SAFT) [13] leverage 
molecular insights to describe mixtures accurately based 
on pure-component parameters. If a higher accuracy is 
required, binary interaction parameters can further en-
hance the description of mixtures. 

In a recent study, the authors and co-workers [14] 
extended the group contribution method for PCP-SAFT 
[15,16] by Sauer et al. [17] to mixtures by accounting for 
hydrogen bonding between polar molecules (aldehydes, 
ketones, ethers, formates, and esters) and self-associat-
ing molecules (alcohols and amines), and by parametriz-
ing a group contribution method for binary interaction pa-
rameters. The study compares a homosegmented and a 
heterosegmented group-contribution method. The ho-
mosegmented approach determines PCP-SAFT parame-
ters from group counts and group-specific parameters. In 
the heterosegmented approach, segments replace mol-
ecules as species in the equation of state. The heter-
osegmented approach was determined to be more accu-
rate for pure components [17] and for mixtures [14], but 
to parametrize the model, the number of bonds between 
different groups is required in addition to the group 
counts. The molecule superstructures [12] can be used 
to infer both group counts and bond information.  

In this work, the more accurate heterosegmented 
group-contribution method for PCP-SAFT is unlocked for 
application in an integrated molecular and process de-
sign using molecule superstructures. We demonstrate 
the approach in a case study determining the optimal 
working fluid mixture for an organic Rankine cycle (ORC). 
Due to the combinatorial complexity of possible working 
fluid mixtures, a molecular design is necessary to deter-
mine the optimal working fluid systematically. 

MOLECULE SUPERSTRUCTURES 
To optimize molecules in a computer-aided molec-

ular and process design, the structure of the molecule 
needs to be represented in a format that is accessible to 
the optimization algorithm. Molecule superstructures are 
a graph-based representation of a molecular family [12]. 
Fig. 1 shows an example of a small molecule structure. It 

consists of a graph with four nodes and three edges. 
Every node corresponds to an atom type and a binary 
structure variable. Structural constraints are introduced 
to ensure that only valid molecules are generated (in this 
case water, methanol, ethanol, or dimethyl ether). The 
structure variables are converted to group and bond 
counts that are required to parametrize the equation of 
state. The structural constraints and group/bond counts 
can be derived generically for arbitrarily large super-
structures. We refer to the original publication [12] for the 
detailed expressions. 

 
Figure 1: Example for an ether/alcohol superstructure 
including the corresponding structural constraints and 
resulting group and bond counts. 

Previously, optimal molecules were determined for 
every chemical family individually [12]. For mixtures, the 
number of possible combinations of chemical families be-
comes large. Therefore, we extend the superstructure 
approach to optimize any number of chemical families 
simultaneously using methods from disjunctive program-
ming [18]. 

 The superstructure converts binary structure varia-
bles 𝑦𝑦𝑘𝑘 into molecular features used in the property pre-
diction method. Linear inequality constraints are required 
to ensure that only valid molecules are found. The spe-
cific constraints are elucidated in the original publication 
[12]. In general, the constraints can be expressed as 

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘 ≤ 𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘     (1) 

Here, 𝑖𝑖 enumerates the chemical families and their 
respective molecule superstructures, 𝑗𝑗 indicates different 
constraints, and 𝑘𝑘 enumerates the structure variables 𝑦𝑦𝑘𝑘. 
The number of constraints 𝑁𝑁𝑐𝑐,𝑖𝑖 and structure variables 𝑁𝑁𝑦𝑦,𝑖𝑖  
depends on the considered molecule superstructures.  

To combine the different chemical families in one 
structure, a common set of structure variables is defined 
by using 𝑁𝑁𝑦𝑦 = max

𝑖𝑖
𝑁𝑁𝑦𝑦,𝑖𝑖 binary variables and adding addi-

tional constraints that force the unused variables to 0. 

∑ 𝑦𝑦𝑘𝑘
𝑁𝑁𝑦𝑦
𝑘𝑘=𝑁𝑁𝑦𝑦,𝑖𝑖+1

≤ 0    (2) 

The constraints associated with each molecule su-
perstructure can then be formally expressed as disjunc-
tions in the optimization problem. 
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∨𝑖𝑖 �∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 𝑏𝑏𝑖𝑖𝑖𝑖�    (3) 

The Big-M method and convex hulls have been es-
tablished as standard methods to convert disjunctive 
programs into MILPs or MINLPs [18]. The convex hull has 
a tighter feasible region than the Big-M formulation but 
requires more additional variables. Therefore, the Big-M 
formulation is better suited for the integrated process de-
sign task with expensive target function evaluations. Ap-
plying the Big-M method introduces additional binary 
variables 𝑐𝑐𝑖𝑖, one for each disjunction and hence chemical 
family. Only one disjunction can be active at the same 
time, leading to the additional constraint: 

∑ 𝑐𝑐𝑖𝑖𝑖𝑖 = 1     (4) 

The constraints for every molecule superstructure 
are rewritten by introducing the parameter 𝑀𝑀𝑖𝑖𝑖𝑖. 

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘 + 𝑀𝑀𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑖𝑖𝑖𝑖   (5) 

In general, 𝑀𝑀𝑖𝑖𝑖𝑖 must be large enough to ensure that 
the constraint is turned off if 𝑐𝑐𝑖𝑖 = 0, but as small as pos-
sible to ensure tight relaxation bounds. For the binary 
variables 𝑦𝑦𝑘𝑘, the optimal value for 𝑀𝑀𝑖𝑖𝑖𝑖 can be derived ge-
nerically, as 

𝑀𝑀𝑖𝑖𝑖𝑖 = ∑ max�𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘, 0�𝑘𝑘 − 𝑏𝑏𝑖𝑖𝑖𝑖   (6) 

The original publication on molecule superstructures 
[12] describes a generic method to infer the group and 
bond counts from the structure variables. The same 
method is used for every individual superstructure. The 
resulting group counts 𝑛𝑛𝑖𝑖,𝛼𝛼 and bond counts 𝑏𝑏𝑖𝑖,𝛼𝛼𝛼𝛼 are then 
weighted with the chemical family indicator 𝑐𝑐𝑖𝑖 of every 
superstructure to give the total group and bond counts. 

𝑛𝑛𝛼𝛼 = ∑ 𝑐𝑐𝑖𝑖𝑛𝑛𝑖𝑖,𝛼𝛼𝑖𝑖 , 𝑏𝑏𝛼𝛼𝛼𝛼 = ∑ 𝑐𝑐𝑖𝑖𝑏𝑏𝑖𝑖,𝛼𝛼𝛼𝛼𝑖𝑖   (8) 

The group and bond counts are used to parametrize 
the heterosegmented group-contribution method for 
PCP-SAFT [17], which is used to determine phase equi-
libria and residual properties. To calculate caloric proper-
ties, the group counts are also used in the group-contri-
bution method for the ideal gas heat capacity by Joback 
and Reid [19]. The resulting MINLP is solved using the 
branch-and-bound implementation in Artelys Knitro [20]. 

CASE STUDY: ORGANIC RANKINE CYCLE 
We apply the molecular design method using mole-

cule superstructures to the integrated design of an or-
ganic Rankine cycle (ORC) and its working fluid. ORCs 
can convert waste heat into power, reducing energy 
losses and increasing the exergetic efficiency of pro-
cesses. The process flowsheet of the standard ORC used 
in this case study is shown in Fig. 2. Analogous to a reg-
ular Rankine cycle, the working fluid of the ORC is evap-
orated and potentially superheated to be then fed into a 

turbine that extracts power from the working fluid. Part 
of the power is used to pump the working fluid that leaves 
the condenser back to the pressure level of the evapora-
tor. 

 
Figure 2: Flowsheet and key specifications for the ORC. 

Using an organic working fluid rather than water en-
ables the operation above atmospheric pressures, even 
for low-temperature heat sources. This work optimizes 
the working fluid mixture to maximize the power output 
of the ORC. The design of an actual waste heat valoriza-
tion unit needs to consider additional aspects regarding 
safety, stability, and costs that are outside the scope of 
this study. 

ORC processes are promising targets for mixture 
design since replacing pure working fluids with zeotropic 
mixtures leads to non-isothermal evaporation and con-
densation. The resulting temperature glide in the con-
denser and evaporator can be tuned to the respective 
temperature glides in the heat source and cooling medi-
ums. A more homogeneous temperature difference 
across the heat exchangers reduces the exergy loss dur-
ing heat transfer and, in conclusion, increases the net 
power output of the process. 

The case study is based on the analysis of Chys et 
al. [21] and the design study by Schilling et al. [8]. The 
most important specifications are shown in Fig. 2: The 
heat source has an inlet temperature of 175 °C and a heat 
capacity rate of 65 kW/K. The cooling medium is heated 
from 25 °C to 40 °C. The outlet temperature of the heat 
source medium is only indirectly constrained via the 
pinch condition. The heat exchangers are modeled as 
isobaric. The full specification of the process is given in 
Tab. 1. This thermodynamic optimization aims to maxim-
ize the net power 𝑃𝑃net of the cycle. 
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Table 1: ORC case study specifications from [8,21] 

Component Parameter Value 

Heat source 
Inlet temperature  °C 
Heat capacity rate  kW/K 
Min approach temp  K 

Turbine Isentropic efficiency  
Min vapor quality (outlet)  

Pump Isentropic efficiency  

Condenser Min absolute pressure  bar 
Min relative pressure e- 

Evaporator Max absolute pressure  bar 
Max relative pressure  

Cooling 
Inlet temperature  °C 
Outlet temperature  °C 
Min approach temp  K 

 

RESULTS 
As a reference, the molecule superstructures with 

disjunctions are first used to determine the optimal pure 
working fluid for the ORC. A ranking of the ten molecules 
that yield the highest net power output is shown in 
Tab. 2. The ranking consists of alkanes, alkenes, and 
propyne.  

Table 2: Ranking of the best pure component working flu-
ids based on the net power output of the ORC. 

# SMILES Name Net power 
[kW] 

 CCC propane  
 C=CC propene  
 C#CC propyne  
 CC(C)C isobutane  
 CC(C)(C)C neopentane  
 CCCC butane  
 C=C(C)C isobutene  
 C=CCC butene  
 C=CC(C)(C)C neohexene  

 CCC(C)C isopentane  
 

The molecular design space also contains polar (al-
dehydes, ketones, ethers, formates, and esters) and self-
associating molecules (alcohols and amines). However, 
these molecular families are unsuitable for the application 
due to their lower vapor pressures and higher critical 
temperature. The ranking is topped by the C3 hydrocar-
bons propane, propane, and propyne, with the highest 
achievable net power output being 472.25 kW using pro-
pane as the working fluid. 

Higher net power outputs can be achieved by con-
sidering mixed working fluids. To obtain a ranking of 
working fluid candidates, we use the molecule 

superstructure concept to find optimal additives for each 
of the ten best-performing pure components. The rank-
ing is shown in Tab. 3. The ten best mixtures all consist 
of mainly propane or propene with traces of larger, 
mostly non-polar molecules. The mixtures containing one 
of the other well-performing fluids from the pure-compo-
nent case consistently lead to lower power outputs than 
those based on propane or propene. This observation 
strongly implies that optimizing additives can determine 
the optimal mixture for this case study. However, both 
molecules must be optimized in a single optimization 
problem for a more comprehensive result. Schilling et al. 
[8] demonstrate how the approach can significantly re-
duce the number of function evaluations compared to a 
screening of mixtures using a CAMD method based on 
group counts. The design setup in our study allows the 
simultaneous optimization of both constituent molecules, 
but the prevalence of local optima impedes an efficient 
direct determination of optimal working fluid mixtures. 
Therefore, it was not possible yet to determine a ranking 
comparable to Tab. 3 by optimizing both fluids rather 
than an additive in a reasonable timeframe. An MINLP so-
lution algorithm better suited for the specificity of inte-
grated molecular and process design is required to im-
prove the solution times and generate more robust can-
didate mixtures [22]. The non-convexity of the MINLP 
also suggests using global optimization [23], however, 
the expensive function evaluations that include multiple 
phase equilibrium calculations with the heterosegmented 
group-contribution method for PCP-SAFT are a limiting 
factor. 

Fig. 3 compares the process for the optimal pure 
working fluid (propane) with the best mixed working fluid 
candidate. In the pure-component case, the temperature 
of the working fluid is constant during evaporation and 
condensation. Therefore, the optimization mainly deter-
mines process conditions in which the temperature glide 
of the heat source medium aligns well with the tempera-
ture during the preheating step in the evaporator. The 
mixed working fluid shows a temperature glide in the 
condenser. The resulting process conditions find a com-
promise between the exergy loss in the evaporator and 
the condenser. Consequently, the net power output of 
the ORC is increased by 11% compared to propane as the 
working fluid. This increase is partly driven by the tem-
perature glide in the cooling medium, which is fixed to 15 
K in this case study. For other process conditions, the 
benefit of using mixed working fluids can be small [24], 
and a reduced heat transfer during condensation and 
evaporation must be considered for an economic assess-
ment of the process [25,8].  

Choosing the correct composition of the mixture is 
essential for the performance of the ORC. Fig. 4 shows 
the optimized net power output of the ORC using the four 
best mixtures from Tab. 3 over the entire composition 
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range. The solutions from the mixture design align well 
with the maxima in the discretized curves. In all cases, 
adding the longer hydrocarbon to pure propane initially 
increases the net power due to the establishment of the 
temperature glide. Further increasing the amount of ad-
ditive reduces the performance, with the curves showing 
local minima that, in one case, are even below the net 
power output of the pure additive. 

The net power output is strongly related to the ratio 
of the temperature glides in the condenser and the cool-
ing medium [8]. Changing the composition of the mix-
tures affects the glide in the condenser, with the largest 
glide occurring in the middle of the composition range. 
The glide also explains the shape of the maxima in the 
net power: A jump of the pinch from the condenser outlet 
to the inlet leads to a kink in the net power (cf. Fig. 4). If 
the temperature profile in the condenser is shaped in a 

way that the pinch is located between the inlet and the 
outlet, the maximum in the net power is smooth. 

A strong sensitivity to variations in the composition 
of the working fluid can be problematic in an actual ORC 
process when leakage is non-negligible, and the compo-
sition can change due to the constituents' different rela-
tive volatilities. With the abundance of near-optimal mix-
tures in the solution space of the molecular design, the 
robustness with respect to composition changes can be 
incorporated as an additional constraint in the optimiza-
tion problem.  

Table 3: Ranking of the best working fluid mixtures found in the integrated design. 

# 
Component  Component  Molar Net power 

SMILES Name SMILES Name composition [kW] 
 CCC propane C#CC(C)C -methyl--butyne % / %  
 CCC propane CC(C)(C)C neopentane % /   %  
 CCC propane C#CCC -butyne % / %  
 CCC propane CCC(C)C isopentane % /   %  
 C=CC propene CCCC butane % / %  
 C=CC propene CCC(C)C Isopentane % /   %  
 CCC propane C=C(C)CC -methyl--butene % /   %  
 CCC propane CCCCC pentane % /   %  
 CCC propane CCCOC -methoxypropane % /   %  

 CCC propane COC(C)C -methoxypropane % /   %  

 
Figure 3: Ts-diagram for the ORC using propane (left) and the best mixture (right) as working fluid. The phase 
change of the working fluid (green) is isothermal for pure components but exhibits a temperature glide for 
mixtures. In the optimization the temperature glide is adjusted to the tempearture profiles in the heat source 
medium (red) and the cooling water (blue). 
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Figure 4: Optimized net power output of the ORC using a 
propane + X mixture with the specified composition. The 
marks represent the optimal composition found in the 
molecular design. 

CONCLUSION 
Molecule superstructures are used to determine the 

optimal working fluid mixture for an ORC. Multiple chem-
ical families represented by their own superstructure are 
optimized simultaneously using disjunctive programming. 
Due to the full structural information available during the 
molecular design, the accurate heterosegmented group-
contribution method for PCP-SAFT can be used as a 
property prediction method. The model accuracy is fur-
ther enhanced by a recent parametrization of binary 
group/group interaction parameters [14]. 

The optimization determines mixtures of propane or 
propene with larger hydrocarbons as optimal working flu-
ids. The top-ranked mixtures deliver comparable perfor-
mances. This observation suggests that additional mate-
rial properties should be considered within the optimiza-
tion to reduce the molecular design space. Amongst the 
mixtures with the best thermodynamic properties are two 
that contain alkynes, components that are unsuited for 
long-term application as working fluids due to their low 
chemical stability. If predictive models are available, add-
ing constraints for the working fluid’s safety, stability, and 
environmental impact avoids a posteriori filtering of the 
results and provides a more efficient design method. Fi-
nally, economic considerations were circumvented by 
empirical pinch constraints instead of a direct considera-
tion by using more detailed, rate-based process models 
[8]. Also, in this case, the more detailed representation 
by molecule superstructures could enable advanced 
thermodynamic models, e.g., for the required transport 
properties. 
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ABSTRACT 
Ethylene is a crucial precursor for a diverse spectrum of products and services. As global produc-
tion exceeds 150 million tons annually and is projected to surpass 255 million tons by 2035, the 
imperative for sustainable and efficient ethylene production becomes increasingly clear. Despite 
Externally Heated Crackers (EHCs) dominating ethylene production for over a century, they face 
intrinsic limitations that necessitate transformative solutions, including intense radial thermal gra-
dients, high metal demand, and substantial CO2 emissions. This study employs a robust combina-
tion of Computational Fluid Dynamics (CFD) coupled with detailed chemical kinetics to rigorously 
assess selected configurations of Internally Heated Crackers (IHCs) against the leading EHC de-
signs. Our findings reveal that IHCs exhibit the potential to enhance ethylene output by a factor of 
1.66 when compared to EHCs of the same length, diameter, and surface temperature. These re-
sults herald a promising era for developing more efficient cracking reactor designs, poised to re-
define the landscape of sustainable chemical manufacturing towards achieving Net-Zero emis-
sions. Embracing innovative technologies like IHCs presents an opportunity for the chemical in-
dustry to make significant strides in reducing its environmental footprint while meeting the growing 
global demand for ethylene and its derivatives. 

Keywords: Net-Zero, Decarbonization, Ethylene, Cracking, Reactor Design, Process Optimization, CFD 

INTRODUCTION 
Ethylene (C2H4) may be one of the simplest hydro-

carbons, yet it is a pillar of the global economy. Its value 
chain includes vital chemical products like polyethylene, 
ethylene oxide, and polyester. These, in turn, are used 
across multiple sectors, such as internet communica-
tions, medical sterilization, and textiles [1], [2]. The level 
of importance of ethylene is such that in 2017, the Amer-
ican Association of Fuel and Petrochemical Manufactur-
ers (AFPM) referred to it as the "World's Most Important 
Chemical”[3]. 

1.1 Externally Heated Crackers (EHCs) 
Since their industrial debut in 1921, Externally 

Heated Crackers (EHCs) have been the dominant tech-
nology for ethylene production [4], [5]. These specialized 
units operate at temperatures of ~850°C to split or 
"crack" hydrocarbon feedstocks into ethylene [6]. Fig-
ures 1, 2, and 3 illustrate the main EHC configurations. 

 

 

 
 

 

Figure 1. Illustration of a Flame-heated Tubular Cracker 
(FTC). External burners heat a series of long reaction 
tubes, facilitating cracking. This configuration is 
commonly called a steam cracker when steam serves as 
the diluent.  
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Figure 2. Illustration of an Impedance Tubular Cracker 
(ITC). Electricity flows directly through the reaction tubes 
generating heat. This configuration is also known as 
direct heating cracking [7]. 

 
 
 
 
 
 
 

Figure 3. Illustration of an External Resistance Tubular 
Cracker (ERTC). Electric heating elements outside the 
reaction tube provide heat to facilitate cracking. This 
configuration is also known as indirect heating cracking 
[8].  

1.2 Intrinsic Limitations of EHCs 
The efficiency of cracking reactors is intrinsically 

tied to their heat transfer performance. In the case of 
EHCs, one of the primary limitations stems from internal 
radial thermal gradients, reaching up to 100°C from the 
tube walls to the center [9]. These uneven reaction con-
ditions result in reduced ethylene yields near the center 
and promote undesired reactions close to the wall. To 
mitigate this effect, tube diameters are kept remarkably 
small, sometimes as narrow as 3 cm [10]. However, this 
approach reduces the flow area, necessitating a large 
number of parallel tubes to scale up production. Depend-
ing on the specific design, a single EHC may require up 
to 200 reaction tubes, representing ~2500 tons of raw 
metal and costing around half a billion dollars due to the 
specialized alloys involved [11], [12]. 

Achieving precise temperature control in EHCs is 
also challenging due to the large number of reaction 
tubes and the difficulty in continuously monitoring inter-
nal temperatures. In practice, only the mean outlet tem-
peratures are measured, resulting in sub-optimal eth-
ylene outputs and reduced reactor lifespan. At typical re-
action conditions, an increase of just 20°C in the metal 
temperature can halve its lifespan [13]. This situation is 
highly undesirable due to the high cost of the materials 
involved. Furthermore, when fossil fuels are used for 
heating, EHCs can release vast amounts of CO2. 

1.3 EHCs and CO2 emissions 
Over the past century, fossil fuel combustion has 

been the default alternative for heating in EHCs. This is 
due to the historically lower cost of fossil fuels compared 
to other energy sources. However, this approach also en-
tails a substantial climate cost. For every ton of ethylene 
produced, between 1.0 and 1.6 tons of CO2 are released 
[6]. In 2021 alone, with a market of ~150 Million tons (Mt), 
EHCs emitted ~200 Mt of CO2, accounting for ~0.6% of 
global CO2 emissions [14], [15]. The ethylene market is 
projected to increase ~73% from $132B in 2022 to $228B 
by 2032 [16]. In a business-as-usual scenario, emissions 
could surpass 335 Mt in the next decade, directly con-
flicting with global decarbonization efforts to reach a 
Net-Zero emissions economy before 2050 [17], [18]. 

1.4 Electric & Hydrogen-powered EHCs 
 EHCs powered by electricity or hydrogen have re-
cently emerged as alternatives to reduce CO2 emissions 
[19], [20]. Notably, in September 2022, BASF, in collabo-
ration with Linde and SABIC, began the construction of a 
pilot-scale Impedance Tubular Cracker (ITC) and External 
Resistance Tubular Cracker (ERTC) in Germany [21]. 
When coupled with low-carbon energy sources, these 
units can help reduce CO2 emissions by up to 95% com-
pared to FTCs [22]. However, since they still rely on heat 
transfer to the gas from the tube walls, they present the 
same intrinsic limitations that affect all EHC designs.  

1.5 Internally Heated Crackers (IHCs) 
The limitations of EHCs have prompted the quest for 

alternative reactor configurations with superior perfor-
mance and lower carbon emission, leading to the emer-
gence of Internally Heated Crackers (IHCs) [23], [24]. 
IHCs set themselves apart by embedding the heating el-
ements directly within the reaction zone, where energy is 
needed, effectively reducing the radial thermal gradients. 
This innovative approach facilitates using larger diameter 
reaction tubes while increasing the heat transfer area, 
consequently reducing the required amount of metal dur-
ing construction, and lessening the weight for transpor-
tation compared to EHCs [25]. Furthermore, as they are 
electrically heated, they retain the same benefits of de-
carbonization. Configurations featuring combined inter-
nal and external heating options offer added versatility 
[26], especially at small diameters where the tube's ex-
ternal surface contributes more to the total heat transfer 
area.  

This study focuses on comparing external heating 
against solely internal heating designs. However, future 
simulations will delve into the effects of the combined ap-
proach. Figures 4 and 5 illustrate two IHC configurations 
introduced by Agrawal et al. [23] [26], which will be em-
ployed in this study. 
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Figure 4. Illustration of an Internally Heated Cracker (IHC) 
with one heating rod. An electrical element generates 
heat directly inside the reactor, in the reaction zone.  
 
 

 
 
 

 
 
Figure 5. Illustration of an Internally Heated Cracker (IHC) 
with four heating rods. The additional heat transfer area 
enhances heat delivery, producing more ethylene. 

1.6 IHC vs EHC: A Comparative Study 
While IHCs hold promise over traditional EHCs, it is 

imperative to demonstrate their performance quantita-
tively through rigorous modeling and experimentation. 
This study employs a robust combination of Computa-
tional Fluid Dynamics (CFD) coupled with detailed chem-
ical kinetics to compare selected lab-scale EHC and IHC 
configurations. This scale was selected to provide a basis 
for subsequent experimental work. 

The following sections delve into the comparative 
analysis details and the results obtained, shedding light 
on the intricacies of ethylene production and the effi-
ciency of these two distinct technologies. 

METHODS 

2.1 The need for CFD simulations 
Evaluating novel cracking reactor designs requires a 

modeling approach capable of handling fluid dynamics 
and predicting the heat transfer coefficient for arbitrary 
geometries. This model must seamlessly integrate with 
detailed chemical kinetics to rigorously account for free-
radical reactions while addressing turbulence effects and 
heat transfer from radiation. Additionally, it should con-
verge quickly enough and offer reasonable numerical 
stability to allow for timely simulations. Computational 
Fluid Dynamics (CFD) simulations provide a useful mod-
eling tool to meet these requirements.   

 
 

2.2 Types of CFD Simulations 
Accurately selecting a simulation strategy for a spe-

cific project is crucial for ensuring reliable results and 
overall success. For example, Direct Numerical Simula-
tion (DNS) is the most accurate CFD method, avoiding 
flow approximations. However, it is also characterized by 
high computational costs and is primarily reserved for 
specialized applications and benchmarking. In contrast, 
approaches like Large Eddy Simulation (LES) or Reyn-
olds-Averaged Navier-Stokes (RANS) deliberately sim-
plify physics across spatial scales, sacrificing some pre-
cision, but reducing the computational cost by orders of 
magnitude compared with DNS.  

This research utilizes the RANS equations coupled 
with an Menter's Shear Stress (SST) k-ω model to ac-
count for turbulence and a Surface to Surface (S2S) 
model to address radiation. The SST k-ω model was cho-
sen as it is widely accepted as an industry standard for 
turbulence. The S2S model although computationally ex-
pensive, was selected because it is particularly good for 
modeling the radiative heat transfer in closed domains. 

2.3 Kinetic Model 
The correct implementation of chemical kinetics is a 

critical element for the modeling of cracking reactors. 
While the concept of cracking can be traced back to the 
early 1800s [27], it was not until the 1970s that compel-
ling kinetic models were readily available. This research 
implements Sundaram and Froment's (1978) kinetic 
model [28], recognized as some of the most comprehen-
sive in the field, enabling the modeling of feedstocks 
containing ethane, ethylene, propane, propylene, n-bu-
tane, and iso-butane.  

Olsvik and Billaud’s model (1992) can be added to 
account for methane thermal decomposition [29]. How-
ever, at the reaction conditions for ethylene production, 
methane behaves mainly as inert, resulting in little differ-
ences compared with just Froment's model [30]. Com-
bined, both models comprise a total of 170 chemical re-
actions and 41 chemical species, including free radicals. 

2.4 Thermodynamic Properties 
Given the temperature changes and chemical reac-

tions involved, obtaining a comprehensive set of thermo-
dynamic properties for each species is essential to model 
cracking reactors accurately. As the reactions occur in 
the gas phase, the main properties needed are heat ca-
pacity, enthalpy, entropy, and Gibbs free energy. This re-
search employs the NASA 7-coefficient polynomial sys-
tem with coefficient values sourced from the Active Ther-
mochemical Tables (ATcT), maintained by Argonne Na-
tional Laboratory [31]. 
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2.5 Boundary Condition 
Common boundary conditions for inlet/outlet ports 

in cracking reactors include mass flow rate, flow velocity, 
and flow pressure. Mass flow rate is often employed for 
closed domains like tubes, while flow velocity is typically 
for open environments. Pressure conditions can be used 
to complement both open and closed domains. This 
study implemented a combination of pressure boundary 
conditions at the reactor inlet and mass flow at the reac-
tor outlet. 

The inlet pressure was maintained at a constant 
value of 2 bar across all simulations, aligning with typical 
industrial ethylene cracker conditions. At the same time, 
the outlet mass flow was optimized for each configura-
tion to maximize ethylene production. This setup ensures 
fair evaluation across all cases. 

For the reactor walls, common boundary conditions 
include isothermal, constant heat, and convection cases. 
Isothermal conditions can be used to assess the maxi-
mum ethylene production capacity for a given configura-
tion as it predicts the heat transfer capacity ceiling when 
the maximum metal temperature is used across all sur-
faces. Constant heat flow conditions can be used to sim-
ulate the effect of electric heating but require prior 
knowledge of the heat transfer profile. Convection 
boundary conditions can be used to model heat transfer 
in open environments. This study implements isothermal 
walls at 1100 °C for all simulations to compare the maxi-
mum ethylene production capacity across designs. The 
selected temperature mirrors the upper limit achievable 
with industry-standard nichrome alloy heating elements.  

2.6 Feed Composition 
Industrial ethylene crackers utilize diverse feed-

stocks, often based on local availability. In the United 
States, for example, gas feedstocks like ethane or shale 
gas are prevalent, while in Europe, liquid feedstocks like 
naphtha are more common [6]. 

Another crucial aspect is the inclusion of dilution 
agents, which enhance reaction conversion and reduce 
coke formation. The level of dilution is an economic opti-
mization variable; higher dilution favors reaction but in-
creases energy consumption [32]. Typical dilution ratios 
range between 0.3 - 0.7 kg of inert per kg of hydrocarbon 
[33]. Historically, steam has been the most common di-
lution agent, but the shale revolution has made methane 
an attractive alternative due to its abundance in shale gas 
deposits [34], [35]. 

Our simulation scheme can incorporate various dilu-
tion agents, including steam, methane, nitrogen, and car-
bon dioxide. However, for this study, no dilution agent 
was implemented; instead, pure ethane was used as feed 
in all simulations. This choice enables the isolation of ge-
ometry effects from those of dilution. Future simulations 
will explore the combined effects. 

2.7 Feed Temperature 
Another essential aspect is the inlet feed tempera-

ture. In Industrial EHCs, the feed is preheated using the 
flue gases from combustion or heat integration with the 
product, reaching ~650 °C inlet feed temperature [6]. In 
this case, all simulations use 350 °C, aligned with typical 
lab-scale cracking reactors.  

2.8 Tube Material 
As the material for the reactor tubes, all simulations 

employ SANDVIK 353 MA. This material is an austenitic 
chromium-nickel steel alloy with nitrogen and rare earth 
metals and is representative of the alloys utilized in in-
dustrial cracking reactors. Its maximum operating tem-
perature is ~1175 °C and is characterized by a high re-
sistance to oxidation and carburization environments. 
The main material properties required for simulation are 
density, heat capacity polynomial, and thermal conduc-
tivity polynomial, which can be found in its datasheet. 

2.9 Convergence 
In CFD simulations, the convergence criteria play a 

crucial role in determining the accuracy of the results. 
While residual functions are commonly used and provide 
a good indication of the simulation state, defining a set of 
parameters is advisable to determine when a simulation 
has reached a converged state. 

This study employs the Mass-Weighted Average 
Gas Temperature and Mass-Weighted Average Ethylene 
Mass Fraction at the outlet as convergence criteria. When 
further iterations do not yield changes beyond the third 
decimal point, convergence is deemed achieved. Also, 
since this study focuses on the system's steady state, in-
termediate-state results are not saved, allowing the use 
of pseudo-transient solvers. Future simulations could ex-
plore the effects of reactor configuration on the system's 
dynamic response. 

2.10 Mesh Sensitivity Study 
In CFD simulation, selecting an appropriate mesh 

density is crucial for achieving accuracy and efficiency. 
Coarse meshes may introduce spatial discretization er-
rors, while excessively fine meshes prolong simulation 
times unnecessarily. A Mesh Sensitivity Study (MSS) 
should be conducted to balance these factors. An MSS 
involves running the same simulation sequentially using 
higher mesh densities until the convergence parameters 
reach a stable value within a defined tolerance. This anal-
ysis should be performed for each configuration under 
consideration for best practices. In this research, the 
mesh densities were sequentially increased until a 2% 
change in convergence variables was no longer ob-
served. At this point, the results were deemed independ-
ent of spatial resolution, ensuring acceptable accuracy 
for further analysis. 
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2.11 Simulation Workflow 
This research implements the following workflow: 

1. Define reactor geometry using Ansys Design Mod-
eler. 

2. Discretize the domain using the Ansys Mesh editor. 
3. Load Fluent. Activate and set up the energy, vis-

cous, species, and radiation models. 
4. Load kinetic model and thermodynamic properties.  
5. Establish boundary conditions, starting with an ini-

tial mass flow guess. 
6. Define convergence criteria. 
7. Run simulations until convergence is achieved. 
8. Repeat the process from step 5 to determine a first 

approximation of the mass flow that maximizes eth-
ylene production. 

9. With a well-informed guess for the optimal mass 
flow, conduct a mesh sensitivity study, increasing 
mesh density by a factor in the range of 1.5-2.0 be-
tween cases. 

10. Once the final mesh density has been established, 
optimize the mass flow again. 

11. Save results. 

2.12 Reactor Dimension 
 Simulations were performed considering lab-scale 
reactors to lay the groundwork for future experimental 
efforts. Typical lab-scale EHCs range from 1-2 m long by 
5-13 mm diameter. However, to better showcase the po-
tential of internal heating for more compact reactors with 
larger diameter tubes, a length of 0.5 m and internal di-
ameter of 35 mm (Schedule 40 NPS 1-1/4 piping) were 
selected. 
 

3. RESULTS 
 Figures 6 and 7 illustrate the outcomes obtained 
during step 10 of the simulation workflow, presenting a 
series of fields displaying the parameter distributions 
within the reaction domain. Analyzing these fields 
provides crucial insights into the system’s performance. 
For instance, Figure 6 showcases the intense radial 
thermal gradients of EHCs. Also, since the peak ethylene 
composition is observed within the unit rather than at the 
outlet, it suggests the mass flow of 0.275 g/s is too low 
in this case. Moreover, radial temperature distribution 
results in higher reaction rates at the tube walls rather 
than evenly distributed across the cross-section. These 
Figures were generated using a mesh density of ~150k 
nodes. As shown in Figure 8, this resolution allows for 
mesh-independent results in this case. 50 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Mesh sensitivity study for the externally heated 
case. Results converge after ~150,000 nodes.  

 
 
 
 
 
 
Figure 6. Middle-plane distribution of C2H4 Mass Fraction in an EHC for a feed flow rate of 0.275 g/s of ethane. 
Composition peaks near the tube wall where the temperature is higher, indicating cracking to ethylene occurs 
predominantly in these regions. Note that due to the high residence time, the secondary reactions decrease the 
concentration of ethylene near the exit of the reactor tube. 
 
 
 
 
 
 
 
Figure 7. Middle-plane distribution of Temperature in an EHC. Heat flows from the hot tube walls to the reactor 
fluid, leading to intense radial thermal gradients. Results obtained after Mesh Sensitivity Study. 
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 Figure 9 illustrates the optimization process for the 
inlet feed flow in the externally heated case. Each data 
point represents a fully converged CFD simulation after 
the MSS study. The analysis reveals that the optimal feed 
flow for this configuration is ~1.2 g/s, accompanied by a 
corresponding outlet ethylene feed flow of ~0.09 g/s. 
This specific value emerges as the optimal operating 
point for the externally heated case. 
 The same iterative process is systematically re-
peated for the other configurations as well. For instance, 
Figures 10 and 11 offer comprehensive 2D and 3D views 
of the composition and temperature profiles of one of the 
simulations for the internally heated case with four rods. 
In contrast to the externally heated configuration, the ra-
dial gradients are less pronounced, resulting in a more 
even radial temperature distribution and higher ethylene 
production. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Feed flow rate optimization for the externally 
heated case. The optimal point is at 1.2 g/s. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. (A) External-face and (B) Middle-plane C2H4 mass fraction distribution in an Internally Heated Cracker 
(IHC) with four rods.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. (A) External-face and (B) Middle-plane temperature distribution in an Internally Heated Cracker (IHC) 
with four rods. Results obtained after Mesh Sensitivity Study. 
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 Figure 12 summarizes the results obtained for each 
configuration after step 11 of the workflow. The results 
reveal compelling insights. For example, the configura-
tion featuring a single internally heated rod achieves a 
lower ethylene composition of ~0.08 g/s than the exter-
nally heated case, taken as a reference. This behavior is 
attributed to the limited heat transfer area offered by a 
single rod. In contrast, the scenario with four heated rods 
exhibits a remarkable outlet ethylene composition of 
~0.15 g/s, surpassing the external heating case by a fac-
tor of ~1.66, showing the potential for achieving higher 
ethylene production than state-of-the-art externally 
heated designs. This behavior is attributed to more ho-
mogeneous set reaction conditions and increased trans-
fer area. Furthermore, these findings encourage further 
exploration to discover new internally heated configura-
tions capable of achieving even higher performance lev-
els. 
 The analysis presented in this study sheds light on 
the intricacies of ethylene production and heralds a 
promising frontier for developing more efficient cracking 
reactor designs, poised to redefine the chemical manu-
facturing landscape toward achieving a Net-Zero future. 
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ABSTRACT 
Sand produced along with well-production fluids accumulates in the surface facilities over time, 
taking valuable space, while the sand carried with the fluids damages downstream equipment. 
Thus, sand is separated from the fluid in the sand traps and separators and removed during peri-
odic clean-ups. But at high sand productions, the probability of unscheduled facilities shutdowns 
increases. Such extreme production conditions can be handled by strategic planning and optimal 
design of the separator network to enable maximum sand separation at minimal equipment cost 
while ensuring the accumulation extent is within tolerable limits. This paper develops a mathemat-
ical model to optimize the separator network design to maximize sand separation while the sand 
accumulation extent and total equipment cost are minimal. The optimization model is formulated 
using multi-objective mixed-integer nonlinear programming (MINLP). The capabilities of the de-
veloped model to assist sand management in the separator network are demonstrated with a case 
study of optimizing the network for two wells producing sand particles of different sizes. A resi-
dence time distribution-based model is used to predict sand settling behavior. The developed 
Pareto Front shows the trade-off between the increase in total sand accumulation rate and total 
equipment cost for an increase in the fraction of sand settled.  

Keywords: Optimization, Planning, Oil and Gas, Separator, Sand 

INTRODUCTION 
On the surface, sand produced with oil and gas ac-

cumulates in the separators, leading to costly unsched-
uled shutdowns, while the sand carried over damages the 
downstream equipment [1]. Sand management practices 
include sand separation from the fluid in the sand traps 
and separators and removal during periodic clean-ups. 
Multiple separators are generally necessary to separate 
the multiphase production containing oil, gas, water, and 
sand. The extent of sand separation and accumulation in 
separators depends on the production conditions, sepa-
rator design, and separator network. Previous studies 
have developed algorithms for simultaneous optimization 
of the well production and separation systems for pro-
duction management and enhancement [2,3]. However, 
these studies do not account for the sand separation in 
the separators.  

This paper develops a mathematical programming 
model to optimize separator network design with three 

objectives: (i) to maximize the overall sand separation, (ii) 
to minimize sand accumulation in each separator, and (iii) 
to minimize the total purchased equipment cost. The 
model is formulated as a multi-objective mixed-integer 
nonlinear programming model (MINLP) and solved using 
epsilon-constraint method.  

PROBLEM STATEMENT 
The main goal is to develop an optimization-based 

framework that assists the design of the separator net-
work by (i) selecting separators from each layer of the 
separator network for the separation of produced fluid 
and sand, (ii) determining the design specifications of the 
selected separators, and (iii) estimating sand settling rate 
in the separators. The objective is to maximize sand sep-
aration from the produced fluid while minimizing sand ac-
cumulation in each separator and the total equipment 
cost of the separators. 

The superstructure in Figure 1 illustrates the 



 

Santhamoorthy et al. / LAPSE:2024.1622 Syst Control Trans 3:892-898 (2024) 893 

separator network. Production fluids (𝐹𝐹𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) and sand 
(𝑆𝑆𝑛𝑛𝑛𝑛) from wells (𝑊𝑊𝑛𝑛𝑛𝑛) enter the network. The sets 𝑛𝑛𝑛𝑛 ∈
𝑁𝑁𝐹𝐹 and 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊 represent the fluid phases and wells. 
The layers correspond to different stages of separation, 
and each layer consists of separators (𝑆𝑆𝐹𝐹𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛). The sets 
𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 and 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑆𝑆 represent the layers and separators 
in each layer. The well fluids are separated into their con-
stituents in each layer. 

 
Figure 1. The superstructure of the separator network. 

MULTI-OBJECTIVE OPTIMIZATION 
MODEL FORMULATION 

The three objectives of the separator network de-
sign optimization model are: i) to maximize the overall 
sand separation, ii) to minimize the sand accumulation in 
each separator, and iii) to minimize the total purchased 
equipment cost of the separators in the network. The 
overall sand separation is represented as a fraction of 
sand produced by the wells that are separated from the 
produced fluid in the separators (𝐹𝐹𝑆𝑆) (Eq. 1). It is com-
puted using the total sand production rate from the wells 
and the total sand settling rate in the separators in each 
layer of the network. The sand accumulation in each sep-
arator in the network is minimized by minimizing the sum-
mation of the sand accumulation rate in each separator 
(𝐴𝐴𝐴𝐴). The sand accumulation rate is determined as the 
rate at which the sand bed height increases in the vessel 
(Eq. 2). The total purchased equipment cost of the sepa-
rators network (𝑇𝑇𝐴𝐴) is computed from the equipment cost 
of each separator in the network (Eq. 3). 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝑆𝑆 = (∑ 𝑚𝑚𝑛𝑛1′𝑛𝑛𝑛𝑛1𝑛𝑛𝑛𝑛1∈𝑁𝑁𝑁𝑁1 + 𝑚𝑚𝑛𝑛2′𝑛𝑛𝑛𝑛2  (0) 

                  +⋯+ ∑ 𝑚𝑚𝑛𝑛𝑛𝑛′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝑁𝑁𝑁𝑁𝑁𝑁 )/∑ 𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝑁𝑁𝑁𝑁 (1) 

𝑀𝑀𝑀𝑀𝑛𝑛 𝐴𝐴𝐴𝐴 = ∑ 𝑀𝑀𝑎𝑎1𝑛𝑛𝑛𝑛1𝑛𝑛𝑛𝑛1∈𝑁𝑁𝑁𝑁1 + ⋯+ ∑ 𝑀𝑀𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝑁𝑁𝑁𝑁𝑁𝑁   (2) 

𝑀𝑀𝑀𝑀𝑛𝑛 𝑇𝑇𝐴𝐴 = ∑ 𝑎𝑎𝑐𝑐1𝑛𝑛𝑛𝑛1𝑛𝑛𝑛𝑛1∈𝑁𝑁𝑁𝑁1 + ⋯+ ∑ 𝑎𝑎𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝑁𝑁𝑁𝑁𝑁𝑁  (3) 

The sets 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊 and 𝑛𝑛𝑛𝑛1 ∈ 𝑁𝑁𝑁𝑁1, 𝑛𝑛𝑛𝑛2 ∈ 𝑁𝑁𝑁𝑁2, … ,𝑛𝑛𝑛𝑛𝑛𝑛 ∈
𝑁𝑁𝑛𝑛𝑁𝑁 represent the oil and gas wells and separators in the 
different layers of the network, respectively. The param-
eter 𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛 represents the sand production rate from each 
well 𝑛𝑛𝑛𝑛. The variables 𝑚𝑚𝑛𝑛1′𝑛𝑛𝑛𝑛1, 𝑚𝑚𝑛𝑛2′𝑛𝑛𝑛𝑛2, and 𝑚𝑚𝑛𝑛𝑛𝑛′𝑛𝑛𝑛𝑛𝑛𝑛 

represent the sand settling rate in each separator in each 
network layer. The variable 𝐹𝐹𝑆𝑆 represents the fraction of 
produced sand separated (i.e., settled) in the separators 
network. The variables 𝑀𝑀𝑎𝑎1𝑛𝑛𝑛𝑛1 and 𝑀𝑀𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 represent the 
sand accumulation rate in each separator in each net-
work layer and the summation of the accumulation rates 
is represented by the variable 𝐴𝐴𝐴𝐴. The variables 𝑎𝑎𝑐𝑐1𝑛𝑛𝑛𝑛1and 
𝑎𝑎𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 represent the purchased equipment cost of the 
separators in different network layers, and 𝑇𝑇𝐴𝐴 represents 
the total equipment cost of all the separators in the net-
work.  

Binary Variables 
A set of binary variables, 𝑦𝑦1𝑛𝑛𝑛𝑛1, …, 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, is defined 

in Eqs. (4) and (5) to represent the selection of separa-
tors in each network layer (𝑛𝑛𝑛𝑛1 ∈ 𝑁𝑁𝑁𝑁1, … ,𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑛𝑛𝑁𝑁). An-
other binary variable, 𝑛𝑛1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1, is defined in Eq. (6) to rep-
resent the interaction between the wells and the first-
layer separators (𝑛𝑛𝑛𝑛1 ∈ 𝑁𝑁𝑁𝑁1). Similarly, another set of bi-
nary variables, 𝑛𝑛2𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, …, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛, is defined in 
Eqs. (7) and (8) to represent the interaction between the 
first- and second-layer separators and the separators in 
the subsequent 𝑁𝑁𝑁𝑁𝑁𝑁 − 1 and 𝑁𝑁𝑁𝑁𝑁𝑁 layers. If fluid phase 
separation occurs in the first-layer separators, the indi-
vidual or mixed phases (the phases that are still not sep-
arated) enter the second network along with sand. Thus, 
the interaction variables 𝑛𝑛2𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, …, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛 are 
written in terms of the set of fluid phases 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝐹𝐹. All fluid 
phases from the 𝑁𝑁𝑁𝑁𝑁𝑁 layer separators exit the separator 
network. 

𝑦𝑦1𝑛𝑛𝑛𝑛1 = �1, if separator 𝑛𝑛𝑛𝑛1 in 𝑁𝑁𝑁𝑁1 layer is selected
0, otherwise                                                        (4)      

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �1, if sep.𝑛𝑛𝑛𝑛𝑛𝑛 in 𝑁𝑁𝑁𝑁𝑁𝑁 layer is selected
0, otherwise                                               (5)                                

𝑛𝑛1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1 = �
1, if fluid from well 𝑛𝑛𝑛𝑛 enters 

  sep.𝑛𝑛𝑛𝑛1 in 𝑁𝑁𝑁𝑁1 layer           
0, otherwise                                  

 (6) 

𝑛𝑛2𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2 = �
1, if phase 𝑛𝑛𝑛𝑛 from sep.𝑛𝑛𝑛𝑛1 in 𝑁𝑁𝑁𝑁1
layer enters sep.𝑛𝑛𝑛𝑛2 in 𝑁𝑁𝑁𝑁2 layer

0, otherwise                                           
 (7) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛 = �

1, if phase 𝑛𝑛𝑛𝑛 from sep.𝑛𝑛𝑛𝑛𝑛𝑛 − 1
 in 𝑁𝑁𝑁𝑁𝑁𝑁 − 1enters                  
sep.𝑛𝑛𝑛𝑛𝑛𝑛 in 𝑁𝑁𝑁𝑁𝑁𝑁 layer          

0, otherwise                                     

 (8)    

∀ 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝐹𝐹,𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊,𝑛𝑛𝑛𝑛1 ∈ 𝑁𝑁𝑁𝑁1, … ,𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑛𝑛𝑁𝑁   

Parameters 
The parameters are defined for the produced fluid, 

produced sand, separators design, and separators cost 
models. (i) Produced fluid: The volumetric flow rate of 
each fluid phase 𝑛𝑛𝑛𝑛 (𝑄𝑄𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) produced from each well 𝑛𝑛𝑛𝑛 
are given. Similarly, the physical properties of each fluid 
phase (𝜀𝜀𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛), such as density and viscosity, are given 
for each well 𝑛𝑛𝑛𝑛. (ii) Produced sand: The sand density 
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(𝜌𝜌𝑛𝑛), sphericity (𝜓𝜓), and the sand production rate (𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛) 
and mean particle diameter of sand produced (𝑑𝑑𝑛𝑛𝑛𝑛) from 
each well 𝑛𝑛𝑛𝑛 are given. The fraction of produced sand 
dispersed in each fluid phase (𝐹𝐹𝑑𝑑𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) is given for each 
well 𝑛𝑛𝑛𝑛. (iii) Separators design: Lower and upper limits 
are given for each design specification of the separators 
in the network, 𝐷𝐷𝑛𝑛 and 𝐷𝐷𝐷𝐷, respectively. (iv) Separators 
cost models: The cost model parameters, 𝛼𝛼1𝑛𝑛𝑛𝑛1, 𝛼𝛼2𝑛𝑛𝑛𝑛2, …, 
𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 specific to separators in each network layer are 
given. 

Constraints  
If the separator 𝑛𝑛𝑛𝑛1 is selected in the first layer of 

the network, the binary variable 𝑦𝑦1𝑛𝑛𝑛𝑛1 takes a value of 
one, and if the separator has input from the well 𝑛𝑛𝑛𝑛, the 
binary 𝑛𝑛1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1 takes a value of one. The fraction of the 
total produced fluid and sand from well 𝑛𝑛𝑛𝑛 that enters the 
separator 𝑛𝑛𝑛𝑛1 is represented by the variable 𝑛𝑛𝑓𝑓1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1. 
Thus, it can take a value of zero to one. If the separator 
𝑛𝑛𝑛𝑛1 does not have input from the well 𝑛𝑛𝑛𝑛, the variables 
𝑛𝑛1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1 and 𝑛𝑛𝑓𝑓1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1 take a value of zero. This disjunction 
is given in Eq. (9). Similarly, the interaction between sep-
arators in the subsequent layers 𝑁𝑁𝑁𝑁𝑁𝑁 − 1 and 𝑁𝑁𝑁𝑁𝑁𝑁 are 
represented by the binary variable 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛 and the 
fraction of each fluid phase 𝑛𝑛𝑛𝑛 entering the separator in 
𝑁𝑁𝑁𝑁𝑁𝑁 layer from 𝑁𝑁𝑁𝑁𝑁𝑁 − 1 layer is represented by the vari-
able 𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛 (Eq. 10). 

�
𝒍𝒍𝟏𝟏𝒏𝒏𝒏𝒏,𝒏𝒏𝒍𝒍𝟏𝟏 = 𝟏𝟏

0 ≤ 𝑛𝑛𝑓𝑓1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1 ≤ 1� V �
𝒍𝒍𝟏𝟏𝒏𝒏𝒏𝒏,𝒏𝒏𝒍𝒍𝟏𝟏 = 𝟎𝟎
𝑛𝑛𝑓𝑓1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1 = 0�  (9) 

                                                       ∀ 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊,𝑛𝑛𝑛𝑛1 ∈ 𝑁𝑁𝑁𝑁1 

�
𝒍𝒍𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒍𝒍𝒏𝒏−𝟏𝟏,𝒏𝒏𝒍𝒍𝒏𝒏 = 𝟏𝟏

0 ≤ 𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛 ≤ 1�   (9)  

                V �
𝒍𝒍𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒍𝒍𝒏𝒏−𝟏𝟏,𝒏𝒏𝒍𝒍𝒏𝒏 = 𝟎𝟎
𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛 = 0�  (10) 

    ∀ 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝐹𝐹, 𝑛𝑛𝑛𝑛𝑛𝑛 − 1 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁 − 1,𝑛𝑛𝑛𝑛𝑁𝑁 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁 

The design specifications, fluid flow rate and prop-
erties, and sand properties in the separator 𝑛𝑛𝑛𝑛𝑛𝑛 selected 
in 𝑁𝑁𝑁𝑁𝑁𝑁 network layer are given in Eq. (11). The design 
specifications of the separator (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) should be within 
the specified lower and upper bounds (𝐷𝐷𝑛𝑛 and 𝐷𝐷𝐷𝐷). The 
total volumetric rate of each fluid phase (𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) enter-
ing the separator is computed from the fraction of each 
fluid phase entering the separator 𝑛𝑛𝑛𝑛𝑛𝑛 from each separa-
tor 𝑛𝑛𝑛𝑛𝑛𝑛 − 1 in the previous layer 𝑁𝑁𝑁𝑁𝑁𝑁 − 1 (𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛) 
and the volumetric rate of each fluid phase in the previ-
ous layer separators (𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1). Similarly, the rate at 
which sand of size 𝑛𝑛𝑛𝑛 dispersed in phase 𝑛𝑛𝑛𝑛 enters the 
separator 𝑛𝑛𝑛𝑛𝑛𝑛 (𝑚𝑚𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) is computed using the 
amount of sand carried by the fluid phase from the pre-
vious layer separators (𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛n−1) and the fraction of 
that fluid phase entering the separator 𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛. 

In the previous description, the set 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊 is used to 
denote the different particle sizes from different wells in 
the network. The physical properties of each fluid phase 
are estimated (𝜀𝜀𝑛𝑛′𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) based on the properties of fluid 
from each previous layer separator (𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1). The de-
sign specifications, fluid flow rate and properties, and 
sand amount variables take a value of zero if the separa-
tor is not selected in the network, i.e., when 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0. 
The design specifications (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) depend on the total vol-
umetric flow rate of each fluid phase in the separator 
(𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) and other separator type-specific factors 
(𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) (Eq. 12).  
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𝒚𝒚𝒏𝒏𝒏𝒏𝒍𝒍𝒏𝒏 = 𝟏𝟏
𝐷𝐷𝑛𝑛 ≤ 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≤ 𝐷𝐷𝐷𝐷

𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = ∑ 𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛−1
𝑚𝑚𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1

𝜀𝜀𝑛𝑛′𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛(𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛, 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1) ⎦
⎥
⎥
⎥
⎥
⎤

 (9) 

                                     V 
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𝒚𝒚𝒏𝒏𝒏𝒏𝒍𝒍𝒏𝒏 = 𝟎𝟎
𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0
𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 0

𝑚𝑚𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 0
𝜀𝜀𝑛𝑛′𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 0 ⎦

⎥
⎥
⎥
⎥
⎤

 (11) 

𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛(𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛,𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)   (12) 

        ∀ 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝐹𝐹,𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊,𝑛𝑛𝑛𝑛𝑛𝑛 − 1 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁 − 1,𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁 

Sand particles of different sizes (𝑑𝑑𝑛𝑛𝑛𝑛) from different 
wells are settling in the separator 𝑛𝑛𝑛𝑛𝑛𝑛. The fraction of 
sand particles of each size initially dispersed in phase 𝑛𝑛𝑛𝑛 
that settle to the vessel bottom (𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) depends on 
the properties of the fluid (𝜀𝜀𝑛𝑛′𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) it is dispersed in, sep-
arator design specifications (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), and particle diame-
ter (𝑑𝑑𝑛𝑛𝑛𝑛) (Eq. 13). Similarly, the fraction of each sand size 
carried by each phase from the separator 𝑛𝑛𝑛𝑛𝑛𝑛 
(𝐹𝐹𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) is estimated. Some amount of sand initially 
dispersed in the fluid phase 𝑛𝑛𝑛𝑛 = 1 can move to the phase 
𝑛𝑛𝑛𝑛 = 2, and vice versa. This amount is accounted for by 
adding the variables 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1 and 𝛿𝛿𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1 to the 
fraction settled and fraction carried, respectively. This 
variable can take a value in the range [−1, 1] based on the 
sand dispersion and settling model selected for the sep-
arator. The rate of sand settling at the bottom 
(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) and sand being carried (𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) for dif-
ferent sand sizes are computed from the amount of each 
sand size entering the separator (𝑚𝑚𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛). If the sep-
arator 𝑛𝑛𝑛𝑛𝑛𝑛 is not selected in the network, all these varia-
bles take a value of zero.  
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𝒚𝒚𝒏𝒏𝒏𝒏𝒍𝒍𝒏𝒏 = 𝟏𝟏
𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛�𝜀𝜀𝑛𝑛′𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛,𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑑𝑑𝑛𝑛𝑛𝑛� + 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛

𝐹𝐹𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛�𝜀𝜀𝑛𝑛′𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛,𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑑𝑑𝑛𝑛𝑛𝑛� + 𝛿𝛿𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝐹𝐹𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤
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                 V 

⎣
⎢
⎢
⎢
⎢
⎡

𝒚𝒚𝒏𝒏𝒏𝒏𝒍𝒍𝒏𝒏 = 𝟎𝟎
𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 0
𝐹𝐹𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 0
𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 0
𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛 = 0⎦

⎥
⎥
⎥
⎥
⎤

  (13) 

                       ∀ 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝐹𝐹,𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊,𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁   

The fluid and sand produced from each well should 
be treated in the separator network. Thus, the total frac-
tion of fluid entering from each well into different sepa-
rators in the first network layer (𝑛𝑛𝑓𝑓1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1) is equal to one 
(Eq. 14). The fluid phases exiting separators in each net-
work layer either enter the separators in the subsequent 
layer or exit the network based on the interaction variable 
𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛𝑛𝑛 given in the Eq. (10).  

∑ 𝑛𝑛𝑓𝑓1𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛1𝑛𝑛𝑛𝑛1 = 1  ∀ 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊   (14) 

The total amount of sand settled in each separator 
𝑛𝑛𝑛𝑛𝑛𝑛 (𝑚𝑚𝑛𝑛𝑛𝑛′𝑛𝑛𝑛𝑛𝑛𝑛) is computed as the total amount of each 
sand size dispersed in each phase that has settled to the 
separator bottom (𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) (Eq. 15). The sand accu-
mulation rate (i.e., rate of increase of sand bed height) in 
each separator is computed based on the amount of sand 
particles of each size settled in the separator and the 
void space between the settled particles. The void space 
is accounted for using void fraction, which depends on 
the mean particle size, particle size distribution, and the 
sphericity of the particles (𝜓𝜓) [7]. The mean particle size 
and particle size distribution are estimated based on the 
amount of different particle sizes settled in the separator. 
Thus, the void fraction of the sand particles settled in the 
separator (𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) depends on the particle sizes present 
(𝑑𝑑𝑛𝑛𝑛𝑛) and the amount of each particle size settled in the 
separators (𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛) (Eq. 16). The sand accumulation 
rate in the separator (𝑀𝑀𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) is computed using the void 
fraction (𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), the total amount of sand settled in the 
separator (𝑚𝑚𝑛𝑛𝑛𝑛′𝑛𝑛𝑛𝑛𝑛𝑛), sand density (𝜌𝜌𝑛𝑛), and cross-sec-
tional area of the separator (𝐴𝐴𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) (Eq. 17).  

𝑚𝑚𝑛𝑛𝑛𝑛′𝑛𝑛𝑛𝑛𝑛𝑛 = ∑ 𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛  ∀ 𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁 (15) 

𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛(𝑑𝑑𝑛𝑛𝑛𝑛 ,𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛)   (16) 

𝑀𝑀𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑛𝑛𝑛𝑛′𝑛𝑛𝑛𝑛𝑛𝑛/(𝐴𝐴𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝜌𝜌𝑛𝑛(1 − 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)) (17) 

                  ∀ 𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝐹𝐹,𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑊𝑊,𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁 

The purchased equipment cost of each separator 
depends on its design specifications. The cost of the 
separator 𝑛𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) is estimated based on its design 
specifications (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) using the separator-specific cost 
model (𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) (Eq. 18). 

𝑎𝑎𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛(𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)  ∀ 𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁  (18) 

CASE STUDY 
The equations (1) to (18) yield a deterministic multi-

objective mixed-integer nonlinear programming model 
(MINLP) that maximizes sand separation, minimizes sand 
accumulation, and minimizes the total purchased equip-
ment cost of the separator network. The disjunctive con-
straints in the model are reformulated using Big-M Refor-
mulation [4]. In the developed multi-objective model, a 
set of decision variables improving one objective's value 
could negatively affect another objective and vice versa. 
Thus, a single optimal solution is not possible; rather, a 
set of optimal solutions is obtained, which forms the Pa-
reto front [5]. This work uses the epsilon-constraint 
method [6] to obtain the Pareto front for the developed 
model. The model is solved by selecting one of the ob-
jective functions as the only objective and the remaining 
objective functions as constraints. Then, the constraint 
bounds are systematically varied to obtain the Pareto 
front. 

The capabilities of the developed model to optimize 
a separator network design for sand management are 
demonstrated with a test problem. The well production 
and the separation of the produced fluid and sand in the 
separator network are shown in Figure 2. Two wells pro-
ducing oil, gas, water, and sand are considered. The 
amount of fluid produced, the fluid's physical properties, 
and the sand's size differ for the two wells. It is assumed 
that the production from the two wells is completely 
mixed before it enters the separator network. The pro-
duced fluid now contains two different sizes of sand par-
ticles, which are assumed to be evenly dispersed in the 
liquid phases (oil and water). The produced fluid and 
sand particles enter the separator network containing 
two layers of separators, and each layer contains two 
separators. The separators in the first layer separate the 
produced fluid into its constituents: oil, water, and gas. A 
fraction of the sand particles is separated from the pro-
duced fluid by settling to the bottom of the separators. 
The remaining sand particles are carried by oil and water. 
These liquid phases carrying sand enter the separators in 
the second layer, where more sand particles are sepa-
rated from the liquid. It is assumed that liquid phases sep-
arated in the first-layer separators cannot enter the same 
second-layer separator, i.e., the second-layer separators 
can handle sand/oil or sand/water only. Thus, a two-
phase vertical gravity separator is used for separation in 
the second layer. 

The design specifications of the four-phase gravity 
separator are given in Eqs. (19-21). The vessel diameter 
(𝐷𝐷𝑆𝑆) is selected based on the volumetric flow rate of liquid 
(oil and water) separated in the vessel (𝑄𝑄𝑜𝑜 and 𝑄𝑄𝑛𝑛) and 
the mean residence time of the liquid phases in the vessel 
(𝜏𝜏). The separator height (𝐻𝐻𝑆𝑆) is selected based on the 
ratio of the height to the diameter for the separator (𝑓𝑓). 
The vessel's capacity should be large enough that the liq-
uid level is within the maximum allowable level (𝐻𝐻𝑆𝑆,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙) 
(Eq. 19). A minimum vessel diameter (𝐷𝐷𝑚𝑚𝑀𝑀𝑛𝑛) is required to 
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slow the gas to a velocity at which the liquid droplets set-
tle and separate from the gas phase [8]. This minimum 
diameter depends on the volumetric flow rate of the gas 
(𝑄𝑄𝑔𝑔) and the settling velocity of liquid droplets in the gas 
phase in the separator (𝜈𝜈𝑛𝑛) (Eq. 20). Thus, the vessel di-
ameter should be greater than the minimum diameter (Eq. 
21). The two-phase gravity separator has only sand/oil or 
sand/water phases, and it is also designed using Eqs. (19-
21).  

(𝑄𝑄𝑜𝑜 + 𝑄𝑄𝑛𝑛)𝜏𝜏/(𝜋𝜋/4𝐷𝐷𝑆𝑆2𝐻𝐻𝑆𝑆) = 𝐻𝐻𝑚𝑚𝑀𝑀𝑀𝑀/ 𝐻𝐻𝑆𝑆  (19) 

𝐷𝐷𝑚𝑚𝑀𝑀𝑛𝑛 = �4𝑄𝑄𝑔𝑔/(𝜋𝜋𝜈𝜈𝑛𝑛)�
0.5   (20) 

𝐷𝐷𝑆𝑆 ≥ 𝐷𝐷𝑚𝑚𝑀𝑀𝑛𝑛     (21) 

Sand settles at the bottom of the gravity separator 
when its settling time is less than the residence time of 
the fluid it is dispersed. The residence time of the fluid is 
expressed using Residence Time Distribution (RTD) mod-
els [9]. In our previous work [10], an RTD-based model 
was developed to compute the fraction of sand settled in 
a vertical gravity separator. This model is used to esti-
mate the extent of sand separation in each separator in 
the network.  

Figure 2. Well production (oil, gas, water, and sand) from 
two wells enters a separator network with two layers. The 
separators in the first layer separate the produced fluids. 
Sand is separated from the produced fluids in both 
layers. 

The model assumptions for the sand settling behav-
ior in a four-phase gravity separator are: (i) As oil and wa-
ter separate inside the vessel, the sand particles initially 
dispersed in the oil move to the oil column, while the par-
ticles dispersed in the water move to the water column. 
(ii) Sand particles in the oil column gradually settle with a 
constant terminal settling velocity, during which a 

fraction of the sand particles get carried away by the 
flowing oil. Similarly, in the water column, the sand parti-
cles settle down at a constant velocity specific to the wa-
ter phase, and the water carries a fraction of these parti-
cles. (iii) The remaining sand particles in the water col-
umn eventually settle down at the bottom of the separa-
tor. The remaining particles in the oil column enter the 
water phase and settle at a constant velocity. The water 
carries away some particles, and the rest settle at the 
separator's bottom. 

The terminal sand settling velocity in the oil and wa-
ter phases is estimated using Stokes' law [11]. The set-
tling time of a sand particle in a liquid column is estimated 
as the time required to settle through the entire liquid col-
umn height at terminal velocity. The distribution of resi-
dence time (𝐸𝐸(𝑡𝑡)) is expressed by the RTD model for a 
single CSTR [9] (Eq. 22). The mean residence time is rep-
resented as 𝜏𝜏. 

𝐸𝐸(𝑡𝑡) = 𝑒𝑒−𝑡𝑡/𝜏𝜏

𝜏𝜏
     (22) 

The fraction of sand particles initially dispersed in 
the oil phase is 𝐹𝐹𝑑𝑑𝑜𝑜, and the rest in the water phase (𝐹𝐹𝑑𝑑𝑛𝑛). 
The fraction of sand dispersed in oil fraction with resi-
dence time less than sand settling time in oil (𝑡𝑡𝑛𝑛𝑜𝑜) is car-
ried away by oil (𝐹𝐹𝑜𝑜,𝑐𝑐𝑜𝑜), and it is estimated by Eq. (23). The 
remaining fraction of sand in oil (𝐹𝐹𝑜𝑜,𝑒𝑒𝑛𝑛) settles through the 
oil column and enters the water phase (Eq. 24). Thus, two 
sets of sand particles are dispersed in water, particles in-
itially dispersed in water (𝐹𝐹𝑑𝑑𝑛𝑛) and particles that entered 
the water from oil (𝐹𝐹𝑜𝑜,𝑒𝑒𝑛𝑛). Sand dispersed in the water 
fraction with residence time less than sand settling time 
(𝑡𝑡𝑛𝑛𝑛𝑛) is carried away by water. Thus, a fraction of sand 
initially dispersed in water, and another fraction that en-
tered the water from oil gets carried by water, 𝐹𝐹𝑛𝑛,𝑐𝑐𝑛𝑛 and 
𝐹𝐹𝑜𝑜,𝑐𝑐𝑛𝑛, respectively (Eqs. 25 and 26). The remaining frac-
tion of sand in the water settles to the separator bottom 
(𝐹𝐹𝑛𝑛) (Eq. 27). 

𝐹𝐹𝑜𝑜,𝑐𝑐𝑜𝑜 = 𝐹𝐹𝑑𝑑𝑜𝑜 ∫ 𝐸𝐸(𝑡𝑡𝑜𝑜)𝑑𝑑𝑡𝑡𝑜𝑜
𝑡𝑡𝑛𝑛𝑜𝑜
0    (23) 

𝐹𝐹𝑜𝑜,𝑒𝑒𝑛𝑛 = 𝐹𝐹𝑑𝑑𝑜𝑜 − 𝐹𝐹𝑜𝑜,𝑐𝑐𝑜𝑜    (24) 

𝐹𝐹𝑛𝑛,𝑐𝑐𝑛𝑛 = 𝐹𝐹𝑑𝑑𝑛𝑛 ∫ 𝐸𝐸(𝑡𝑡𝑛𝑛)𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡𝑛𝑛𝑤𝑤
0    (25) 

𝐹𝐹𝑜𝑜,𝑐𝑐𝑛𝑛 = 𝐹𝐹𝑜𝑜,𝑒𝑒𝑛𝑛 ∫ 𝐸𝐸(𝑡𝑡𝑛𝑛)𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡𝑛𝑛𝑤𝑤
0    (26) 

𝐹𝐹𝑛𝑛 = �𝐹𝐹𝑑𝑑𝑛𝑛 − 𝐹𝐹𝑛𝑛,𝑐𝑐𝑛𝑛� + (𝐹𝐹𝑜𝑜,𝑒𝑒𝑛𝑛 − 𝐹𝐹𝑜𝑜,𝑐𝑐𝑛𝑛)  (27) 

The void fraction of the sand particles settled at the 
separator bottom is estimated using a semi-empirical re-
lation [7] developed for a loosely packed bed. 

The purchased equipment cost of the separators 
(𝐴𝐴𝑐𝑐) is approximated using the cost model for vertical 
pressure vessel [8] (Eq. 28). The equipment cost de-
pends on the shell mass of the separator (𝑆𝑆𝑀𝑀), which is a 
function of the separator diameter, height, and shell 
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thickness. The equipment cost is in the United States Gulf 
Coast basis, January 2006 (Chemical Engineering (CE) 
index = 478.6 and Nelson-Farrar Cost Index (NFCI) = 
1961.6). The cost is converted to 2023. 

𝐴𝐴𝑐𝑐 = −10000 + 600 𝑆𝑆𝑀𝑀0.6   (28) 

RESULTS AND DISCUSSIONS 
In the test problem, the total fluid production rate 

from the two wells is 50 m3/h of oil, 50 m3/h of water, and 
900 m3/h of gas. Sand is produced along with wellbore 
fluid at a rate of 26.5 kg/h. The sand concentration in the 
liquid is 0.01 vol%. The particles are spherical and have 
diameters of 150 microns and 50 microns. The sand den-
sity is 2650 kg/m3. The produced oil, water, and gas den-
sities are 700 kg/m3, 990 kg/m3, and 23.6 kg/m3, respec-
tively. The viscosities of the oil and water are 0.77 x 10-3 
kg/m/s and 0.55 x 10-3 kg/m/s. The lower and upper 
bounds for the separator diameter (𝐷𝐷𝑆𝑆) are 1 m and 3.5 
m, respectively, and for the mean residence time of pro-
duction fluids in the separator (𝜏𝜏), they are 10 mins and 
20 mins. The height-to-diameter ratio (𝑓𝑓) for the separa-
tor is 3. The maximum liquid level in the separator 
(𝐻𝐻𝑆𝑆,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙) is 50% of the separator height. The shell thick-
ness is assumed to be 5 mm. 

The optimization models are formulated in Python 
V3.8.6 using PYOMO V6.4.1. The MINLP models are 
solved using BARON V23.11.13 to 5% optimality gap, all 
on an Intel Xeon Gold 6248R 3 GHz processor with 48 
cores and utilizing a maximum of 100 GB RAM.  

Firstly, the separator network optimization model is 
solved for the three objectives ((i) maximizing sand sep-
aration, (ii) minimizing equipment cost, and (iii) minimiz-
ing accumulation rate) separately to obtain the bounds 
for the Pareto front. The results for separator design 
specifications, separation extent, accumulation rate, and 
solution time for solving for each objective are given in 
Table 1. (i) For the given production conditions, a maxi-
mum of 84% of the produced sand can be separated from 
the production fluid with the separator network under 
study. One large separator (D=2.98 m) and another small 
separator (D=1.18 m) are selected for the first-layer sep-
aration, and the residence time of production fluids is 20 
mins in both separators. For second-layer separation, 
two more equally sized separators are selected to sepa-
rate sand from the oil and water phases further, with a 
residence time of 20 mins in the separator. (ii) To mini-
mize the total cost of the network ($43,000), a single 
separator (D=2.4 m) with a residence time of 10 mins is 
selected to separate the production fluids to their con-
stituents. (iii) A single large separator (D=3.04 m) is se-
lected to ensure that the bed height increase rate is min-
imal (0.93 m/week). Only 56% of the sand is separated 
with this network design. The highest sand separation 
(84%) is achieved with a total network cost of $107,000 

and a weekly total sand accumulation rate of 1.77 m in the 
separators in the network. The solution time is the high-
est while solving for the equipment minimization objec-
tive (6958 CPU s). 

Table 1: Sand separation extent, accumulation rate, net-
work cost, network design specifications, and solution 
times for three cases: (i) maximum sand separation, (ii) 
minimum equipment cost, and (iii) minimum total accu-
mulation rate.  

Design spec / Solution time Results 
(i) Maximum sand separation  
Fraction of sand settled*  
Total cost (thousand $)  
Total accumulation rate   
Layer    
Diameter (m)  

 
Residence time (min)  

 
Layer   
Diameter (m)  (O) 

 (W) 
Residence time (min)  (O) 

 (W) 
Solution time (CPU s)  
(ii) Minimum equipment cost  
Total cost* (thousand $)  
Fraction of sand settled  
Total accumulation rate  
Layer   
Diameter (m)  
Residence time (min)  
Layer  Not selected 
Solution time (CPU s)  
(iii) Minimum accumulation rate 
Total accumulation rate* (m/week)  
Fraction of sand settled  
Total cost (thousand $)  
Layer   
Diameter (m)  
Residence time (min)  
Layer  Not selected 
* denotes the model objective for each case 
O and W denote the two-phase separators  
for oil/sand and water/sand separation 

 

A Pareto front plot has been developed by plotting 
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the total equipment cost and total accumulation rate in 
the network against the fraction of total sand settled in 
Figure 3. For low sand separation extent, a single sepa-
rator is selected in the network. A larger separator is used 
to decrease the accumulation rate, while a smaller resi-
dence time is used to decrease the equipment cost. To 
achieve higher sand separation, a second separator is 
added in the second layer to separate the sand from the 
oil phase further while minimizing accumulation. Cost is 
reduced for a higher separation extent by using two 
smaller separators in the first layer and a second-layer 
separator for the water phase, in which the sand settling 
rate is higher than that in oil. But this arrangement signif-
icantly increases the sand accumulation rate, as seen for 
71% separation extent. Maximum sand separation is 
achieved by using all the separators in the network. A 
high residence time and smaller diameter are preferred 
for these separators. 

 
Figure 3. Pareto front for separator network design. 

CONCLUSION AND FUTURE WORK 
A multi-objective separator network optimization 

model was developed to maximize the sand separation 
while minimizing the total equipment cost and total sand 
accumulation rate in the separators. The developed 
model was used to obtain a Pareto front for a separator 
network with two separation stages containing two sep-
arators each. The Pareto front can be used for the selec-
tion and design of the separators to achieve a desired 
sand separation extent with the separator network, with-
out high accumulation in the separators and at less 
equipment cost.  

This work will be extended to use the developed 
model for solving larger separator networks with more 
design and decision flexibility, such as optimizing the 
height-by-diameter ratio and determining the conditions 
under which the production fluids from two wells should/ 
should not be separated in the same separator. Reformu-
lation approaches will be investigated for reducing the 
solution time of the developed MINLP model. 
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ABSTRACT 
Most studies in process systems engineering are applying incomplete methods when incorporat-
ing sustainability.  Including sustainability is a laudable goal, and practitioners are encouraged to 
develop systems that promote economic, environmental, and social aspects.  Ten methods that 
are often overlooked in performing sustainable process systems engineering are listed in this ef-
fort and discussed in detail.  Practitioners are encouraged to create designs that are inherently 
safer, to be more complete in their identification of process chemicals used and released, to be 
complete in their definitions of supply chains, and to apply additional environmental impact cate-
gories.  Other methods point to items that are factors in process systems engineering such as 
disruptive recycling, robust superstructures for optimizations, and employing complete sets of 
objectives.  Finally, users should be aware that sustainability tools are available, which might have 
been outside of their awareness.   

Keywords: Optimization, Process Design, Supply Chain, Life Cycle Analysis, Environment, Sustainability 

INTRODUCTION AND BACKGROUND 
Practitioners of process systems engineering stand 

at the cusp of chemical process design / analysis and life 
cycle assessment.  For those interested in sustainability 
the methods available to users are growing in popularity 
but perhaps remain still largely unknown.   

In an effort to promote sustainability, studies that 
developed into the modern methods of life cycle assess-
ment (LCA) were first reported in the 1960s [1].  These 
studies considered cumulative energy use and compari-
sons of different beverage containers to quantify the use 
of natural resources and releases to the environment. 
Today, rules are being set to formally compare products 
within categories [2], and LCA studies can model regions 
[3] and the whole economy [4].

Unlike the above evaluations of supply chain (i.e.,
cradle-to-grave) sustainability, efforts to optimize chem-
ical processes have smaller single-system domains.  The 
potential addition of new chemicals or technologies into 
a process makes them open ended, and demonstrated 
methods for the conceptual design of processes are 
available [5].  A subset of the open-ended problems can 

be optimized, and this is where various process system 
engineering methods realize their power.   

These fields cross pollinate as described in a review 
of design methods for the environment by Cano-Ruiz and 
McRae [6].  Alternative generation for designs is com-
bined with optimization methods.  One can consider the 
sustainability of processes within a system by continually 
expanding the system boundaries to the enterprise, life 
cycle, economy, and ecosystem [7].  Most studies which 
make an attempt towards sustainability are incomplete, 
and so a listing of commonly overlooked methods is of-
fered here.     

TEN UNDERVALUED METHODS OF 
SUSTAINABLE PROCESS SYSTEMS 
ENGINEERING 

Awareness of methods to improve sustainable pro-
cess and system design are available as listed in Table 1. 
Following the table, a series of descriptions will be pro-
vided to describe each item in more detail.  

mailto:smith.raymond@epa.gov
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Table 1: Ten methods for sustainable process systems 
engineering that are undervalued.  

Number  Name  
       Use Inherently Safer Designs   
     Incorporate Inputs / Outputs of 

Complete Supply Chains  
 

     
 

      

Account for All Chemicals and       
Releases  
Define Final Fate / Destination for 
Every Chemical  

 

     
      
      
      
      
      
      
      
    

Include All Emissions Discharges 
and Solid Wastes  
Apply Additional Impact Categories  
Recognize the Disruptive Nature of 
Recycling to Design / Optimization  
Create a Robust Superstructure of 
Alternatives   
Use Complete Sets of Objectives  
Realize Sustainability Tools are 
Available  

 

Use Inherently Safer Designs  
Inherently safer designs avoid circumstances that 

could cause accidents as well as chemicals that are un-
necessarily toxic.  This is one of the original principles of 
green chemistry, which are listed along with engineering 
principles in one reference [8].  While not repeated here, 
the intent is to include all of these principles in this listing 
of methods for process systems engineers to consider.  
Only designs that advance these principles will be aligned 
with sustainability.  

Incorporate Inputs / Outputs of Complete 
Supply Chains  

Designing chemical processes is an open-ended 
problem with the potential to introduce various chemicals 
to be part of a product formulation, reacted, or to ease 
processing.  Each chemical introduced requires its own 
supply chain of processes to manufacture and transport 
the used chemical.  This complete inventory of reactants, 
solvents, catalysts, processing aids, and cleaning agents 
is not simple to assemble [9], but the reaction products 
may be a much longer and less well-known list.  Each of 
these byproducts should be considered for where it ends 
up and the output system of processes required to han-
dle non-products.  Some of these non-product processes 
may involve flaring, wastewater treatment, hazardous 
waste treatment, or recycling, each with its own supply 
chain and releases to the environment.  Many of these 
processes are never seen in studies that show process 
system diagrams.  Therefore, in many cases of process 
design and analysis, it can generally be concluded that 
little attention is paid to the fact that every input / output 
to / from a system requires an upstream / downstream 
supply chain. 

Account for All Chemicals and Releases  
The reactions most process systems engineering 

studies and life cycle inventory databases consider are 
overly simplified.  As an example, acetic acid production 
can be modeled according to the stoichiometry of carbon 
monoxide and methanol reacting to form acetic acid.  The 
actual components found in a real process are often 
much higher [10].  Beyond the process inputs, chemicals 
might be introduced to a process for a number of rea-
sons: absorption, boiler feedwater circulation, catalysis, 
cleaning, cooling tower circulation, input water treat-
ment, wastewater treatment, etc.  Some examples of 
these are presented in the context of early-stage process 
development [11].  All of these inputs might be released 
to the environment.  In addition, boilers, cooling towers, 
and fugitive emissions can dramatically increase the 
number of chemicals released to the environment.  

Define Final Fate / Destination for Every 
Chemical  

When considered holistically, one can envision that 
every chemical must eventually be reacted, recycled, re-
leased, or treated.  Certainly, some chemicals go into 
products, but holistically they will have to realize one of 
these fates.  The challenge for the practitioner of process 
systems engineering is to logically identify the chemicals 
present and then track their fates.  First, one can apply a 
version of the methodology described by Douglas [12] 
where each reactor effluent component is given a desti-
nation code.  Products and by-products exit as product 
streams, but impurities of these products will likely be in 
other streams.  In addition, consider that there will be 
other impurities in the product streams.  Unused inputs 
will mostly be recycled, where possible, but input impuri-
ties and unrecycled quantities will exit in various streams.  
Some streams may have a high enough energy content 
to legitimately be used as fuel.  The other streams will 
exit as process wastes, where their phase will dictate 
their form and whether they are vented, process liquid 
wastes, or solid wastes.  Where captured, each of these 
can be treated with absorption, flaring, land disposal, 
thermal oxidation, wastewater treatment, etc., and each 
of these processes has its own resource use and releases 
to the environment [13].  In addition to exiting in the paths 
described above, the uncaptured chemicals (some of 
which will be valuable products, reactants, etc.) may be 
released or exit as fugitive emissions.  

Include All Emissions, Discharges, and Solid 
Wastes 

In designing and analyzing processes, the releases 
to the environment include air emissions, liquid dis-
charges, and solid waste.  Air emissions are the best rep-
resented and analyzed of the releases.  The most com-
mon of the reported air emissions are greenhouse gases 
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(GHGs), which are easily determined through calculations 
of energy type and amount used.   

One can speculate that the search for data that is 
relevant to environmental impact categories suffers from 
the “streetlight effect”.  This effect is told as a story of 
someone looking for their keys under a streetlight, and a 
passerby who stopped to help look for them finally asks 
where the keys were dropped.  The answer is two blocks 
away, but the light is better here, with the analogy for 
emission data being the easy-to-see GHG data.  Other 
forms of bias, like availability, can play a role as well, as 
that bias selects easily recalled items as being important.  
In general, analyses would benefit from not prescribing 
what important emissions, discharges, and solid waste 
flows are in advance of evaluations.  

To improve process models that have been ignoring 
storage, transfer, vent, and fugitive emissions as well as 
liquid discharges and solid wastes, a number of methods 
are reviewed in the literature [10].  In addition, specific 
methods for estimating emissions for unit operations 
such as boilers, loaders / forklifts, and cooling towers are 
available [11].  

Apply Additional Impact Categories  
The number of human health and environmental im-

pact categories included in most studies are very limited.  
Global warming potential is often incorporated, but many 
other categories are dismissed through omission.  I.e., no 
one has made a conscious decision to give a zero 
weighting to other categories; they have simply been 
omitted.  Even in examples where more categories are 
used, the number is still relatively small [14].  A more ex-
tensive taxonomy of environmental impacts is available 
consisting of many tables of detailed midpoint effects 
(e.g., global warming potential (GWP) is a midpoint effect 
determined from emissions), endpoint effects (e.g., skin 
cancer, reduced lung function), and damage groupings 
(e.g., disability adjusted life years) [15].  Seldom, if ever, 
will a study use all of the available impact categories, but 
a review of those that are available can inform a more 
complete analysis, i.e., one in which more categories are 
included, or the text better describes the intent and ca-
veats of the system analysis.  

Recognize the Disruptive Nature of Recycling 
to Design / Optimization  
 In chemical engineering process design, an early 
lesson is the effect a recycle loop can have on a design.  
Whereas in a straight-line process, or single-pass pro-
cess, the highest yield is the best use of raw materials, 
when a recycle loop is added the optimum conversion 
can move towards the highest selectivity for use of raw 
materials.  Recycle loops can return raw materials to the 
reactor system to react them more efficiently at higher 
selectivity.  The optimum is often balanced by larger 

equipment and recycle streams that can increase energy 
use and costs.  
 The advantages of recycling along a supply chain 
are somewhat different.  For post-consumer use materi-
als, a meta-analysis using 366 datasets for 14 materials 
was performed, and the mean GWPs for secondary pro-
duction were better than the mean GWPs for primary pro-
duction (i.e., with virgin materials) [16].  However, expe-
rience has shown that the quality of recycled materials is 
not equivalent to virgin for many reasons (e.g., for PET 
plastic bales other materials are present, and for PET 
items other materials are part of their composition) [17].  
Thus, the secondary production process is different from 
the primary one.  This represents a radical divergence 
from internal recycle loops in chemical processes, where 
higher selectivity accomplished with more recycling 
leads to less impurities.   
 For both process systems and supply chain sys-
tems, recycling must be evaluated.  A combined analysis 
was done for producing waste-recycled feeds using sty-
rene “tar” from the bottoms of a styrene-refining column 
[18].  There is no generalization to make regarding the 
desirability of recycling such streams, as the system de-
pends both on the technology and the materials recycled 
and produced.  A practitioner of process systems engi-
neering would do well to design and analyze each sys-
tem.  

Create a Robust Superstructure of 
Alternatives  

In process systems engineering a common problem 
studied is the superstructure-based reactor synthesis.  
An early paper on the subject used a recycle reactor with 
heat exchange as the basis [19].  More recently, super-
structure methods were applied to complex sets of reac-
tions modeled with uncertain inputs and limiting reagents 
[20].  The process synthesis problem is aimed at achiev-
ing a conceptual design that identifies the operations to 
do.  A similar larger-scale problem is challenging at the 
process level when new chemicals can be introduced into 
a process [5].  In each case the idea is to have a robust 
superstructure of equipment and interconnections that is 
flexible enough to capture designs when applying optimi-
zation.  Further, at a larger supply chain scale the analysis 
of designs is challenging when new chemicals are intro-
duced, as up- and down-stream processes and their re-
source use and environmental releases will be affected.  

Use Complete Sets of Objectives  
In the real world, decisions are not simple because 

there is seldom a real-world decision that only has one 
objective.  Our models of processes and systems can di-
verge strongly from this generalization, as assumptions 
are made to only consider a single dimension.  In process 
design, one might optimize economics, flexibility, 
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controllability, safety, and environmental impacts.  The 
GREENSCOPE tool of Ruiz-Mercado et al. has approxi-
mately 140 indicators in the four E’s of Environment, Eco-
nomics, Energy, and mass Efficiency, thus providing 
many possible objectives to optimize chemical processes 
[21].  

There are various ways of handling multiple objec-
tives.  One method is to rearrange an objective as a con-
straint on acceptable solutions.  Solving over a range of 
different values for the constraint will create a series of 
solutions.  Another method to address multiple objectives 
is to normalize each objective (i.e., dividing by a maxi-
mum possible value is one normalization), weighting the 
multiple objectives with respect to each other, and finally 
adding the objectives together on a single scale.  A 
method for applying these steps using marginal rates of 
substitution and total utility is described by Smith and 
Ruiz-Mercado [22].  Others may approach the multiple 
objectives through the simultaneous development of 
many Pareto solutions, although dimensionality issues 
require a method for spacing solutions among the various 
objectives [23].  

Realize Sustainability Tools are Available  
In designing or analyzing process systems it may be 

that people are unaware of tools that are available.  Ex-
amples of tools one can use to further sustainability in-
clude GREENSCOPE [21], release estimation [11], and 
LCA [4] tools.  In addition, solvent replacement and tox-
icity prediction methods are available from the U.S. EPA’s 
Office of Research and Development (ORD).  The Pro-
gram for Assisting the Replacement of Industrial Solvents 
(PARIS) allows one to quickly find solvent replacements 
(either individual solvents or mixtures) that are similar in 
physical and chemical properties to the original.  The pro-
gram also provides a calculation of potential environmen-
tal impacts in eight categories, from global warming po-
tential, ozone depletion potential, acidification potential, 
and smog potential, to four categories of potential tox-
icity [24].  Additional toxicities and many other physical 
properties can be estimated with the Toxicity Estimation 
Software Tool (TEST), also available from EPA’s ORD 
[25].  

DISCUSSION 
Practitioners of process systems engineering are 

encouraged to employ the above list to improve their 
chemical processes and associated supply chains.  To 
summarize the above, one should first create designs 
that are inherently safer, including other principles of 
green chemistry and engineering.  Sustainable research 
and development breakthroughs advanced through sus-
tainable chemistry and engineering improve system per-
formance while reducing environmental burdens and 

economic and social costs.  In the absence of break-
throughs, one can only optimize systems to make them 
more sustainable.   

Practitioners should also be as complete as possible 
in their identification of process chemicals used and re-
leased, be more complete in their definitions of supply 
chain processes, resources used, and releases, and ap-
ply additional environmental impact categories as appro-
priate.   

Users are likely already familiar with recycling, su-
perstructure optimizations, and creating sets of objec-
tives.  This effort simply advises to employ these in a 
manner that positively disrupts systems, defines the wid-
est possible variety of system structures, and includes 
complete sets of objectives.  This setting of objectives, 
as choices of objectives, constraints, and boundaries of 
what is included and excluded, is critically important in 
defining the scope of studies.  

Finally, users should be aware that sustainability 
tools are available, which might have been outside of 
their awareness.  In the end practitioners of process sys-
tems engineering will likely still limit their studies with in-
complete methods for sustainability, but perhaps the list-
ing here can be used as a checklist to address what could 
be considered and help refine some future work.   
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author and do not necessarily represent the policies or 
views of the U.S. Environmental Protection Agency.  
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ABSTRACT 
Reverse electrodialysis (RED) is a nascent renewable technology that generates clean, baseload 
electricity from salinity differences between two water streams, a renewable source known as 
salinity gradient energy (SGE). Full-scale RED progress calls for robust techno-economic and en-
vironmental assessments. Using generalized disjunctive programming (GDP) and life cycle assess-
ment (LCA) principles, this work proposes cost-optimal and sustainable RED process designs in-
volving different RED stack sizes and width-over-length ratios to guide the design and operation 
from the demonstration to full-scale phases. Results indicate that RED units will benefit from larger 
aspect ratios with a relative increase in net power of over 30% with 6 m2 membrane size. Com-
mercial RED unit sizes (0.25–3 m2) require larger aspect ratios to reach an equal relative increase 
in net power but exhibit higher power densities. The GDP model devises profitable RED process 
designs for all the assessed aspect ratios in a foreseeable scenario for full-scale deployment, that 
is, the energy recovery from desalination concentrates mixed with reclaimed wastewater efflu-
ents. A RED system with 3 m2 RED units nine times wider than its length could earn a net present 
value of $2M at a competitive levelized cost of electricity of $111/MWh in the Spanish electricity 
market. On-site, RED-based electricity could abate roughly 7% of the greenhouse gas emissions 
from the desalination plant's energy supply, given the low emissions contribution of RED supply 
share. These findings demonstrate that optimization-based eco-technoeconomic assessments 
are a vital ally in making RED a full-scale reality. 

Keywords: Process Design, Renewable and Sustainable Energy, Optimization, Pyomo, Modelling and Simula-
tions, Life Cycle Analysis 

INTRODUCTION 
Demonstrating and deploying clean renewable en-

ergy technologies must be a global priority in pursuing a 
net-zero emissions economy by mid-century [1]. Salinity 
gradient energy (SGE) technologies offer deep and sus-
tained reductions in greenhouse gas (GHG) emissions to 
keep the 2050 goal within reach. These technologies re-
cover the chemical energy released when high-salinity 
and low-salinity streams are reversibly mixed. Reverse 
electrodialysis (RED) is one of the most researched and 
advanced SGE technologies. 

RED employs ion-exchange membranes (IEMs) to 
generate electricity from SGE directly. These IEMs allow 
ions of opposite charge but not water to pass through. A 
RED device is built by stacking a series of alternating cat-
ion (CEMs) and anion exchange membranes (AEMs) that 
separate salt solutions of different concentrations. Se-
lective transport of ions through the IEMs creates an 
electric potential across the pairs of AEMs and CEMs that 
drive redox reactions at electrodes on either side of the 
membrane pile. The overall electric potential of the set of 
cell pairs and the electric current then power an external 
load that closes the circuit [2]. 

mailto:dbernaln@purdue.edu
https://doi.org/10.69997/sct.126079
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In 2014, REDstack BV hit a significant milestone 
when their demonstration plant was successfully put into 
operation on the Afsluitdijk in the Netherlands, meeting 
Technology Readiness Level (TRL) 7. With a total mem-
brane area per stack of 250 m2, this plant is powered by 
a blend of salt water and freshwater, producing 50 kW at 
present [3,4]. The REAPower pilot plant in Trapani, Italy 
is not functioning now and is being used as a demonstra-
tion project. Using both natural saturated brine from a 
saltworks and brackish water from a shoreline well, a trio 
of RED stacks were able to generate a total power output 
of 330 W, with a combined membrane area of more than 
400 m2 [5]. The main barriers preventing RED technolog-
ical readiness are the low power density of large-scale 
RED systems (0.38–2.7 W/m2 total membrane area), foul-
ing, and the high cost of commercial membranes (> 
$100/m2) [6–8]. The development of high-performing 
membranes, electrode segmentation, and multi-staging 
are some of the approaches to enhance the power den-
sity and energy efficiency of RED. 

The water sector opens new avenues to prove and 
advance full-scale RED. Desalination concentrates and 
treated wastewater effluents are abundant yet largely 
untapped waste streams from which RED can extract 
sustainable and clean electricity [9]. On-site RED elec-
tricity generation in desalination plants can also lessen 
the dependence on the water and energy-intensive grid 
mix and reduce the environmental burden and costs as-
sociated with brine treatment and disposal [10]. This, in 
turn, contributes to more sustainable and self-sufficient 
water supply systems. Besides, RED operation with de-
salination brines delivers higher power densities than 
river/seawater pairs, and the reject brine does not require 
further energy-intensive treatment as raw seawater. 

Even so, the complex process configuration and op-
erational decision space make it technically challenging 
to estimate the costs and performance of RED with con-
ventional heuristics. In previous work, we developed a 
Generalized Disjunctive Programming (GDP) optimization 
model incorporating a RED stack predictive model to de-
fine the cost-optimal RED process design in different 
scenarios [11]. The solution for the GDP model provided 
the flowsheet design that maximizes the process net pre-
sent value (NPV) for a given RED stack design. 

The quantification of the RED process environmen-
tal loads is also a valuable input to devise environmentally 
sound design alternatives to RED technology. In this re-
gard, we conducted a life cycle assessment (LCA) of the 
RED stack to define the environmental profile of RED and 
to estimate greenhouse gas (GHG) emissions reduction 
in desalination plants partly sourced with SGE [12]. 

Building on the LCA of the RED unit and the GDP op-
timization model of the RED process, this follow-up work 
explores how scaling up and the design of the RED units' 
compartments may affect the eco-technoeconomic per-
formance of the optimal RED process flowsheets. 

METHODS 
The performance metrics in the eco-techno-eco-

nomic assessment (eTEA) are the net power output (NP), 
the net power density (NPD, i.e., net power per total 
membrane area), the NPV, the levelized cost of electricity 
(LCOE), and the global warming potential (GWP). 

Problem Statement 
Given a set of identical candidate RED units 

𝑟𝑟 ∈  𝑅𝑅𝑅𝑅 = {𝑟𝑟1,⋯ , 𝑟𝑟𝑟𝑟𝑟𝑟}, the goal is to determine which ones 
are active, how they are hydraulically arranged, and their 
working conditions (e.g., electric current, inlet flow rate, 
and molar concentration of the HC and LC streams) that 
yield the cost-optimal flowsheet design of the RED pro-
cess for a given concentration, volume, and temperature 
of the high-salinity and low-salinity feed streams, and 
design parameters of the RED units. 

The superstructure in Figure 1 incorporates all the 
alternative hydraulic topologies for the RED system with 
𝑟𝑟𝑟𝑟 conditional RED units. The superstructure and nota-
tion are fully described in previous work [11]. 

Table 1 summarizes the design parameters of the 
RED units spanning pilot to commercial scales and differ-
ent compartment geometries. We set seven distinct sizes 
(active area in Table 1) and, for each size, nine different 
width-over-length ratios (aspect ratio, Table 1). Using the 
predictive model, we estimate the operational conditions 
that maximize the net power of the stand-alone RED unit 
for each size and aspect ratio. This sensitivity analysis 
provides guidelines for RED unit design and operation in 
all development stages. 

We quantify the GWP of the RED units in Table 1 
based on the previous LCA of pilot-scale RED units [12]. 

Later, to explore how the design of the RED stack 
compartments affects the techno-economic and envi-
ronmental performance of the optimal RED process de-
sign, we solve the GDP model of the RED system with 
3 m2 size RED units varying their aspect ratio. 
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Table 1: Design parameters of the RED stack [11]. 

Parameter Value 
Number of cell pairs  
Aspect ratio w/L – 
Active area  m 
Spacers  
Thickness  µm 
Porosity % 
IEM fumasep® CEM (FKS-) / AEM (FAS-) 
Areal resistance  /  Ω/cm 
Permselecitivity  
Thickness  µm 

 

Optimization Model 
The set of equations (1) defines the general form of 

the Generalized Disjunctive Programming (GDP) optimi-
zation model for the superstructure in Figure 1. 

We code the GDP model using the algebraic model-
ing language Pyomo [13] and Pyomo.GDP [14], a dedi-
cated Pyomo library extension for logic-based modeling 
and optimization. 

max𝑟𝑟𝑁𝑁𝑁𝑁 = 𝑓𝑓(𝑥𝑥)
𝑠𝑠. 𝑡𝑡. 𝑔𝑔(𝑥𝑥) ≤ 0

�
𝑌𝑌𝑟𝑟

ℎ𝑟𝑟(𝑥𝑥) ≤ 0� ⊻ �
¬𝑌𝑌𝑟𝑟

𝐵𝐵𝑟𝑟𝑥𝑥 = 0
�  ∀ 𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅

𝛺𝛺(𝑌𝑌𝑟𝑟) = 𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇
𝑥𝑥 ∈ 𝑋𝑋 ⊆ 𝑅𝑅𝑛𝑛
𝑌𝑌𝑟𝑟 = {𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇,  𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑇𝑇} ∀ 𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅

 (1) 

In problem (1), the objective is to maximize the NPV 
of the RED process. The continuous variables 𝑥𝑥 are the 
molar concentration and flow rate of the streams and the 
internal variables of the active RED units. The decision 
variables are the electric current, inlet concentration, and 
flow rate of the RED stacks. 

The global constraints, 𝑔𝑔(𝑥𝑥) ≤ 0, describe specifica-
tions and physical relationships that must hold for any se-
lection of alternatives in the superstructure, e.g., mass 
balances of the feed, source, sink, and discharge units, 
and concentration and flowrate upper and lower bounds. 

The 𝑟𝑟𝑟𝑟 two-term disjunctions denote the discrete 
activation and deactivation of the 𝑟𝑟𝑟𝑟 candidate RED units 
governed by the corresponding Boolean variables 𝑌𝑌𝑟𝑟 in 
each disjunct. When the unit exists (𝑌𝑌𝑟𝑟 = 𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇), the active 
constraints ℎ𝑟𝑟(𝑥𝑥) ≤ 0 impose the RED unit discretized 
model equations (e.g., mass and energy balances or 
other physicochemical phenomena within the RED unit), 
compute the capital and operating costs, and set bounds 
on the internal variables and the concentration and flow 
rate of the inlet and outlet streams; otherwise, (¬𝑌𝑌𝑟𝑟) the 
RED unit equations in the inactive disjunct are ignored, 
and 𝐵𝐵𝑟𝑟 𝑥𝑥 = 0 constraints set to zero a subset of the con-
tinuous variables and cost terms in the objective function. 

The logical relationships (𝛺𝛺(𝑌𝑌𝑟𝑟) = 𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇) establish the 
logic conditions for selecting the candidate RED units. 

To formulate the GDP problem, we assume: 

1.  Pure sodium chloride (NaCl) feed solutions, 
thus presuming ideal aqueous solution (i.e., 
unity activity coefficients) and the absence of 
other species. 

2.  The ionic resistances of solutions and 
membranes are the unique internal energy loss. 

 
Figure 1: Superstructure for the RED process with: the set of high (HC) and low-salinity (LC) feed (𝑓𝑓𝑠𝑠 ∈ 𝐹𝐹𝐹𝐹𝑅𝑅) and 
discharge (𝑑𝑑𝑑𝑑 ∈ 𝐷𝐷𝐷𝐷𝑅𝑅) units; the set of source (𝑟𝑟𝑠𝑠 ∈ 𝑅𝑅𝐹𝐹𝑅𝑅) and sink (𝑟𝑟𝑑𝑑 ∈ 𝑅𝑅𝐷𝐷𝑅𝑅) units and the set of candidate RED 
units (𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅) embedded in the RED Process unit (RPU); the set of inlet and oultet ports; and the set ofstreams or 
links between outlet-to-inlet port pairs. Adapted from [11]. 
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3.  Constant membranes' permselectivity and ionic 
resistance with concentration and temperature. 

4.  No water transport across membranes due to 
osmosis, so the streamwise volumetric flow rate 
in the RED channel is constant. 

5.  Salt diffusivities in the membrane phase are 
independent of concentration and temperature. 

6.  No fluid leakage or ionic shortcut currents in the 
RED stack's manifolds. 

7.  Co-current flow. 

8.  Isothermal and isobaric conditions. 

Be aware that simplifying the RED stack model [11] 
leads to an increased net power output, causing the 
LCOE to be underestimated and the NPV to be overesti-
mated. 

The 𝑟𝑟𝑁𝑁𝑁𝑁 of the RED process (2) accounts for dis-
counted annual revenues from electricity sales and car-
bon pricing incentives and discounted operating costs 
(𝑂𝑂𝑁𝑁𝑂𝑂𝑋𝑋 in $/year) and capital expenses (𝐶𝐶𝐶𝐶𝑁𝑁𝑂𝑂𝑋𝑋 in $). The 
𝑂𝑂𝑁𝑁𝑂𝑂𝑋𝑋 and annualized 𝐶𝐶𝐶𝐶𝑁𝑁𝑂𝑂𝑋𝑋 define the total annual cost 
(3), 𝑇𝑇𝐶𝐶𝐶𝐶, of the RED system. The 𝐶𝐶𝐶𝐶𝑁𝑁𝑂𝑂𝑋𝑋 is annualized 
over the expected lifetime of the plant 𝐿𝐿𝑇𝑇 in years, using 
the capital recovery factor, 𝐶𝐶𝑅𝑅𝐹𝐹, given in (4) with a dis-
count rate 𝐷𝐷𝑅𝑅. 

We assume the RED plant electricity is sold to the 
grid at the Spanish average price of electricity for non-
house consumers, 𝑇𝑇𝑒𝑒 [15], and that the abated GHG 
emissions from the grid mix (Spanish emission factor, 𝑇𝑇𝑓𝑓) 
are subsidized at the average price, 𝑐𝑐𝑒𝑒, in the European 
Union Emission Trading System (EU ETS) [16]. 

𝑟𝑟𝑁𝑁𝑁𝑁 =
(𝑇𝑇𝑒𝑒 + 𝑐𝑐𝑒𝑒 𝑇𝑇𝑓𝑓) 𝑇𝑇𝑟𝑟𝑁𝑁 8760 𝐿𝐿𝐹𝐹 − 𝑇𝑇𝐶𝐶𝐶𝐶

𝐶𝐶𝑅𝑅𝐹𝐹
(2) 

𝑇𝑇𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑅𝑅𝐹𝐹 𝐶𝐶𝐶𝐶𝑁𝑁𝑂𝑂𝑋𝑋 + 𝑂𝑂𝑁𝑁𝑂𝑂𝑋𝑋 (3) 

𝐶𝐶𝑅𝑅𝐹𝐹 =
𝐷𝐷𝑅𝑅

1 − (1 + 𝐷𝐷𝑅𝑅)−𝐿𝐿𝐿𝐿 (4) 

𝑇𝑇𝑟𝑟𝑁𝑁 = � 𝑟𝑟𝑁𝑁𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑅𝑅

(5) 

We adapt our RED stack model [10] for a tractable 
yet rigorous solution. When the RED unit is active (𝑌𝑌𝑟𝑟 =
 𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇), the discretized model computes the net power 
output, 𝑟𝑟𝑁𝑁𝑟𝑟, that is added to the RED system net power 
capacity, i.e., total net power, 𝑇𝑇𝑟𝑟𝑁𝑁 in kW (5). The net 
power output equals zero when the RED unit is absent 
(¬𝑌𝑌𝑟𝑟). 

We apply a load factor, 𝐿𝐿𝐹𝐹, to the annual full-capac-
ity energy yield (kWh/year) of the RED plant to account 
for plant downtime due to membrane cleaning and sys-
tem maintenance. 

The capital investment involves the cost of RED 
stacks, ∑ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅 , pumps, 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and civil and elec-
trical infrastructure costs, 𝐶𝐶𝐶𝐶𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

𝐶𝐶𝐶𝐶𝑁𝑁𝑂𝑂𝑋𝑋 = � 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑅𝑅

+ 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐶𝐶𝐶𝐶𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (6) 

The annual operating cost comprises the electricity 
cost from pumps, ∑ 𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅 , the replacement cost of 
membranes, ∑ 𝑂𝑂𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑟𝑟𝐼𝐼𝑝𝑝,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅 , and maintenance and labor 
costs (2% of 𝐶𝐶𝐶𝐶𝑁𝑁𝑂𝑂𝑋𝑋). 

𝑂𝑂𝑁𝑁𝑂𝑂𝑋𝑋 = � 𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑅𝑅

+ � 𝑂𝑂𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑟𝑟𝐼𝐼𝑝𝑝,𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑅𝑅

+ 0.02 𝐶𝐶𝐶𝐶𝑁𝑁𝑂𝑂𝑋𝑋 (7) 

When the RED unit is active, 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟 is added to 
𝐶𝐶𝐶𝐶𝑁𝑁𝑂𝑂𝑋𝑋, and 𝑂𝑂𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑟𝑟 and 𝑂𝑂𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑟𝑟𝐼𝐼𝑝𝑝 to the 𝑂𝑂𝑁𝑁𝑂𝑂𝑋𝑋; if not, 
these terms take zero values. 

The objective function in (2) is maximized subject to 
constraints in the GDP detailed in [11]. The main financial 
parameters are reported in Table 2. 

Solution Strategy 
We solve the GDP problem with the Global Logic-

based Outer Approximation (GLOA) algorithm [17,18] im-
plemented in the logic-based solver GDPopt version 
20.2.28 built on Pyomo.GDP. The GLOA algorithm de-
composes the solution to the GDP into a sequence of 
mixed-integer linear programming (MILP) problems and 
reduced nonlinear programming (NLP) subproblems. 

We solve the MILP master problems with CPLEX and 
the NLP subproblems with BARON setting the time limit 
at 1 hour and 1% optimality gap on a machine running 
Windows 10 (x64) with 6 cores processor (Intel® Core™ 
i7-8700 CPU @3.2 GHz) and 16 GB of RAM. We use the 
MINLP and NLP solver versions from GAMS 34.1.0. 

Table 2: Financial parameters of the RED process. 

Parameter Value 
Plant lifetime 𝐿𝐿𝑇𝑇 []  years 
Membrane lifetime []  years 
Membrane price [] $/m 

Load factor 𝐿𝐿𝐹𝐹 [] % 
Discount rate 𝐷𝐷𝑅𝑅 [] % 
Spanish GWP 𝑇𝑇𝑓𝑓  kg CO-eq/kWh 
Carbon price 𝑐𝑐𝑒𝑒 $/t CO-eq 
Electricity price 𝑇𝑇𝑒𝑒  $/MWh 

Spanish 2019-average price of electricity for non-house con-
sumers. Band IB: annual consumption between 20 MWh and 
500 MWh, excluding taxes and levies. 
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RESULTS AND DISCUSSION 
In all the assessments the RED units retrieve energy 

from the concentrate effluent of the Maspalomas II sea-
water reverse osmosis desalination plant in Gran Canaria 
(Canary Islands, Spain) [21–23]. Maspalomas II plant re-
jects 17,602 m3/day (733 m3/h) of brine (1.67 M NaCl, 
20°C) and consumes 3.77 kWh per cubic meter of de-
salted water. The low-salinity feedwater (20mM NaCl) is 
obtained from nearby wastewater treatment plants 
(e.g., el Tablero, las Burras) [24], so the same LC and HC 
feed volume is available for SGE conversion. 

Stand-alone RED unit 
The discretized RED unit NLP model involves 

107-1187 variables and 107–1232 constraints is solved in 
237 s up to an hour CPU time with BARON depending on 
the number of finite elements (from 3 up to 48 finite ele-
ments) that is set to keep the same axial discretization 
accuracy between the different sizes and aspect ratios. 

Pilot-scale research often employs stack designs 
based on their counterparts in desalination, i.e., electro-
dialysis [6,25]. These modules feature greater length and 
smaller width, as the objective is to dilute the feed to 
comply with a given quality standard [26]. Alternatively, 
square geometries are usually adopted [5,6]. 

The premise of this study is that using modules that 
are wider than longer (i.e., aspect ratio greater than one) 
while housing the same membrane area would allow 
more powerful systems and the treatment of larger feed 
volumes with fewer units. This would result in more com-
pact and cost-effective systems. 

The RED unit power generation sensitivity to aspect 
ratio increases with size (Figure 2). The smaller units re-
quire larger aspect ratios to reach an equal relative in-
crease in NP. For instance, 1 m2 units reach a 13% relative 
increase in NP when the aspect ratio moves from 1:1 to 
9:1, while a RED unit twice its size requires a 4:1 ratio to 
reach the same increase. Increasing the width of the larg-
est 6 m2 stack nine times would lead to a 31% boost in 
net power generation, from 24.6 kW to 32.2 kW. In com-
parison, the smaller unit with an area of 0.25 m2 and the 
same shape only generates 6% more net power than the 
square one. 

Findings also indicate that while the largest RED unit 
delivers more net power than its pilot counterparts (Fig-
ure 2), it exhibits a lower power density (Figure 3). This 
may raise the cost per kWh of the RED unit despite the 
improvement in net power output. 

Depending on the stack's geometry and size, and ul-
timately its ability to sustain the salinity gradient along 
the flow path, the optimal solution tunes the linear flow 
velocity in the HC and LC channels, the inlet concentra-
tion of the LC feedstream, and the electric current of the 
RED unit to maximize the net power output.  

Shorter flow paths—realized by reducing the size 
for a given aspect ratio or increasing the aspect ratio for 
a given size—keep the inlet concentration gradient, i.e., 
the highest driving force, along the channels. If the length 
is enlarged, there is enough time for ions to flow from the 
HC to the LC side, fading the concentration gradient. 

 
Figure 2: Optimal net power output of the stand-alone 
RED unit with different sizes (active area) and width-
over-length ratios. 

Recovering energy from high salinity gradients gives 
rise to two opposing effects on power generation. On one 
hand, the electric potential of the cell pairs increases, re-
sulting in a higher gross power generation. On the other 
hand, the low conductivity of the LC channel increases 
the internal losses, leading to a decrease in gross power. 

Given that the electric current drives the migration 
of ions across membranes from high-salinity to low-sa-
linity compartments, the optimal electric current should 
decrease with longer RED units to extend the concentra-
tion gradient along the flow path. The opposite is true for 
shorter RED units, where the optimal solution sets a 
higher electric current, balancing the increase in the elec-
tric potential and internal resistance loss that arises from 
a higher concentration gradient, as shown in Table 3. 

 
Figure 3: Net power density of the stand-alone RED unit 
with different sizes (active area) and width-over-length 
ratios under optimal net power conditions. 
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As the optimization model predicts, shifting to a 
wider-than-long stack design allows preserving the sa-
linity gradient along the flow path with a lower linear ve-
locity in the compartments. This, in turn, reduces hydrau-
lic losses and pumping power to overcome head losses. 
Table 3 highlights the impact of this effect on the module 
with a membrane area of 3 m2. As the module length de-
creases, a downward trend in the optimal linear velocity 
is observed in both the HC and the LC. The flow rate rises 
despite the lower linear velocity due to the larger cross-
sectional area. Concurrently, the concentration of the LC 
feed increases to offset the rise in the internal resistance. 

Optimal RED process design 
We assume the superstructure has 25 identical can-

didate RED units with an active membrane area of 3 m2. 
For each aspect ratio (i.e., 1, 3, 6, and 9) and the given 
financial parameters, the optimal solution provides the 
topology and decision variables that balance electricity 
production and capital and operating expenses. Discrete 
decisions involve the working RED units and the active 
water streams. Continuous variables are the inlet streams 
flow rate and concentration and active RED stacks elec-
tric current. 

The GDP model finds profitable RED process de-
signs for all the assessed RED units' aspect ratios (Table 
4). But wider-than-long RED units earn more profits than 
the square peers with almost the same number of active 
RED units. As anticipated in the former section, the 
shorter RED stacks exhibit a higher power density. If the 
total membrane area and HC and LC feed volumes are 
the same, the RED process using shorter units can pro-
duce more power. In the NPV-optimal solution, to accom-
modate more wider-than-long RED units, the optimal so-
lution makes them operate with flow rates below the op-
timal ones in Table 3. Such reduced inlet flowrate de-
clines the RED units' net power density. Nevertheless, the 
increase in electricity production revenues considerably 
outstrips the increase in capital and operating cost of the 
wider-than-long RED units with lower power density.  

By incorporating RED-based electricity, the grid mix 
share of the desalination plant supply could be de-
creased by as much as 7%, thereby reducing GHG emis-
sions. This results from RED's relative emissions contri-
bution to the energy supply being perceptibly slighter, at 
2.6–2.9 kg CO2-eq/MWh compared to the Spanish grid 
mix, which emits 374 kg CO2-eq/MWh. 

Table 3: Optimal operation variables of the 3 m2 stand-alone RED unit. 

 Aspect Ratio w/L 
    

Current density  mA/cm  mA/cm  mA/cm  mA/cm 
Potential per cp  mV  mV  mV  mV 
Linear velocity HC  cm/s  cm/s  cm/s  cm/s 
 LC  cm/s  cm/s  cm/s  cm/s 
Flow rate HC  m/h  m/h  m/h  m/h 
 LC  m/h  m/h  m/h  m/h 
LC Concentration  mM  mM  mM  mM 
Net power NP  kW  kW  kW  kW 
Net Power Density NPD  W/m  W/m  W/m  W/m 

Table 4: NPV-optimal solution of the RED process with 3 m2 RED units and different width-over-length ratios. 

 Aspect Ratio w/L 
    

Active RED units     
Net Present Value NPV $M $M $M $M 
Net Power Capacity TNP  kW  kW  kW  kW 
Net Power Density NPD  W/m  W/m  W/m  W/m 
Levelized Cost of Electricity 
LCOE 

$/MWh $/MWh $/MWh $/MWh 

Global Warming Potential 
GWP 

 
kg CO/MWh 

 
kg CO/MWh 

 
kg CO /MWh 

 
kg CO /MWh 

# variables     
# constraints     
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Overall, the GDP model defines cost-effective and 
sustainable RED process designs that improve the envi-
ronmental profile and resource circularity of energy-in-
tensive desalination and wastewater treatment plants; 
however, the nonconvexities leads to GDP problems that 
takes hours to solve with conventional global solvers (Ta-
ble 4). This may be particularly true in full-scale RED sys-
tems with large-scale RED units. 

CONCLUSIONS 
This work provides environmentally sustainable and 

cost-effective RED process designs exploring the RED 
units' different sizes and aspect ratios based on mathe-
matical programming and the LCA framework. As a case 
study, we define energy recovery from mixing a real de-
salination plant's brine with reclaimed wastewater treat-
ment plant effluents, a promising scenario for full-scale 
RED implementation.  

The technical assessment of the size and different 
width-over-length ratios gives design and operation 
guidelines to derive compact systems that treat larger 
feed volumes with fewer yet powerful RED units. The as-
sessment can assist in identifying the best aspect ratio 
for each module size.  

Regarding the NPV-optimal RED process design 
with 3 m2 RED units, the 9:1 width-over-length ratio yields 
the highest profit, $2M, with an LCOE of $111/MWh below 
the Spanish electricity market price ($197/MWh) and a 
net power capacity of 282 kW from 22 RED units and vir-
tually no added emissions to desalination plant's energy 
supply. As a result, RED-based electricity can abate 
around 7% of desalination plant's GHG from the grid mix 
supply at a competitive cost. 

Overall, these results indicate that fine-tuning the 
aspect ratio is an effective way to advance in the devel-
opment and commercial deployment of RED technology 
and prove that optimization-based eTEA is a robust tool 
to assist all development stages of emerging technolo-
gies such as RED electricity production. 

Nonconvexities in the mixers and the RED unit model 
led to multiple optimal local solutions, therefore requiring 
computationally demanding global optimization tech-
niques to solve to global optimality. This is particularly 
true, in large-scale RED systems where the model size 
significantly grows. A natural progression of this work is 
to reformulate the nonlinear equations into quadratic or 
linear approximations to exploit the bilinear nature of the 
GDP problem that solvers like Gurobi may effectively 
solve. 
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ABSTRACT 
This paper presents optimal design for an energy-integrated biogas-fuel cell system for renewable 
electricity generation. The integrated process consists of two steps. The first step generates hy-
drogen from biogas via methane steam reforming (SMR), whereas the second step electrochemi-
cally converts this hydrogen into electricity using a solid oxide fuel cell (SOFC). These two steps 
are coupled via material and energy integration. Specifically, various design alternatives like anode 
and/or cathode gas recycling, biogas upgradation by CO2 removal, external versus direct internal 
reforming, and auxiliary power production through steam and/or micro gas turbine are explored to 
improve the overall efficiency and total annualized cost of the system. Specifically, a flowsheet 
superstructure is developed by incorporating all the available design alternatives. An optimal flow-
sheet with minimum total annualized cost is extracted from this superstructure using formal opti-
mization techniques to meet the desired power target. Heat exchanger network superstructure is 
used to incorporate energy integration effectively. The proposed flowsheet and the corresponding 
optimal operating conditions are explained by analyzing the trade-offs associated with the corre-
sponding design variables in terms of power production, capital expenditure, and utility consump-
tion. For a power target of 300 kW, the proposed optimal energy-integrated process has a total 
annualized cost of $608,955/y with a net electrical efficiency of 67.1% and corresponds to elec-
tricity cost of $0.23/kWh. 

Keywords: Process design, Optimization, Heat integration, Renewable electricity 

INTRODUCTION 
Growing push towards sustainable practices has led 

to an increase in research activity in the area of power 
production from clean and renewable energy sources. Bi-
ogas, generated from the anaerobic digestion of organic 
matter, holds significant potential as a promising source 
for renewable power generation. Traditionally, biogas 
has been utilized to generate power through the use of 
reciprocating engines, microturbines, gas turbines, and 
steam turbines, resulting in low electrical efficiency. An 
efficient way to enhance the overall electrical efficiency 
of biogas is to integrate it with hydrogen fuel cells [1]. 

Integration of biogas with a fuel cell is, in principle, 
a two- step process. The first step generates hydrogen 
from biogas via a reforming reaction, like steam methane 
reforming (SMR), autothermal reforming, partial oxidation 
or dry reforming [2]. The second step electrochemically 

converts this hydrogen into electricity using a fuel cell like 
solid oxide fuel cell (SOFC), proton exchange membrane 
fuel cell or molten carbonate fuel cell. These two steps 
can be coupled via material and energy integration. Spe-
cifically, various processing options like anode and/or 
cathode gas recycling, biogas upgradation by CO2 re-
moval, external versus direct internal reforming, use of 
steam turbine and/or micro gas turbine can be incorpo-
rated to improve the overall efficiency of the system.  

Several studies have reported flowsheets for such 
integrated process. Piroonlerkgul et al. [3] proposed four 
designs differing on the basis of reforming agent (steam, 
air, or both) for external reformer and auxiliary power 
generation via steam turbine. Farhad et al. [4] proposed 
three designs involving external reformers with steam 
methane reforming or partial oxidation and explored the 
possibility of anode gas recycling. Trendewiz and Braun 
[5] presented designs for small, medium, and large-scale

https://doi.org/10.69997/sct.194065
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integrated biogas-SOFC systems with anode gas recy-
cling, external pre-reforming and direct internal reform-
ing. They subsequently performed techno-economic 
analysis to estimate minimum electricity cost. Siefert and 
Lister [6] proposed a pressurized system with anode gas 
recycling and a micro gas turbine to generate auxiliary 
power from combustion of unspent fuel. Lastly, Baldineili 
et al. [7] proposed a design with biogas upgradation us-
ing membrane separator and proposed the use of direct 
internal reforming. It can be noted that most of these 
studies focus on only few select options for performance 
comparison, use parametric analysis to obtain final de-
sign instead of formal optimization and incorporate en-
ergy integration in an ad hoc manner. Thus, there is a 
need for a systematic approach for design and optimiza-
tion of such highly integrated systems. 

Motivated by this, the objective of this work is to de-
velop an optimal flowsheet for power production via in-
tegrated SMR-SOFC system with biogas feed. A flow-
sheet superstructure is proposed based on the available 
design alternatives. Using formal optimization tech-
niques, the optimal flowsheet is extracted from this su-
perstructure by selecting the best combination of the 
processing alternatives to meet the set power target. The 
proposed flowsheet as well as the corresponding optimal 
operating conditions are explained by analyzing the 
trade-offs associated with the corresponding design var-
iables in terms of power production, capital expenditure 
and utility consumption. 

The rest of the paper is organized as follows. The 
next section describes the proposed flowsheet super-
structure. The following section presents the optimal de-
sign framework with special emphasis on the trade-offs 
associated with key decision variables. The solution of 
the optimization problem and the corresponding results 
are discussed in the subsequent section. 

PROCESS SUPERSTRUCTURE 
Superstructure optimization is a systematic tech-

nique to evaluate the different process alternatives. The 
first step involves generating a process flowsheet super-
structure incorporating all the potential design alterna-
tives. In the second step, this superstructure is converted 
into an optimization problem by incorporating material 
and energy balance equations along with operating and 
capital cost correlations. In the final step, this optimiza-
tion problem is solved to obtain the optimal flowsheet 
along with the corresponding performance indices.      

In this work, the various design alternatives pro-
posed in literature (such as anode gas recycle, biogas 
upgradation, pre-reformer and direct internal reforming, 
steam and gas turbine) are combined together to gener-
ate the flowhseet superstructure. Previously unexplored 
options like cathode gas recycle or micro gas turbine on 

membrane separator retentate are also incorporated. 
Lastly, a superstructure of heat exchanger networks is 
included to ensure efficient energy integration. The re-
sulting superstructure is depicted in Figure 1. 

The feed biogas at ambient conditions is supplied to 
the process via a blower or a compressor (C1) based on 
the system's operating pressure. Biogas produc-
tion/cleanup is not explicitly considered in this work. In-
stead, cost of cleaned biogas is considered as feed cost 
as shown in Eq. (3). There are two potential routes for 
this biogas. In the anode gas recycle route, the feed bio-
gas is mixed with a part of the spent anode gas which is 
rich in steam and H2 and proposes advantages in operat-
ing cost due to reduced consumption of fresh feed and 
steam. However, there is a penalty in terms of capital 
cost of reformer and fuel cell due to large flow rates and 
dilute conditions. The biogas upgradation route consid-
ers removal of CO2 via membrane separation. In this 
route, the biogas is pressurized using compressors C2 
and C3. CO2 is removed as a low pressure permeate. The 
high-pressure retentate is expanded over a micro gas 
turbine to produce auxiliary power. The output of both 
these routes is heated using internal or external heating 
sources and subsequently fed to the external reformer. 
The H2-rich exhaust of this reformer is fed to the anode 
section of the SOFC. If required, heating is provided by 
internal sources or hot utility. The SOFC anode is also ca-
pable of performing internal reforming to generate H2. 
The relative extent of external and internal reforming can 
be manipulated by adjusting reformer operating condi-
tions and the bypass provided over the reformer. The air 
required by the SOFC is sent through a blower/compres-
sor (C4). Similar to the anode gas, it can be heated to the 
required temperature through internal or external 
sources. A part of the hot cathode effluent gas, which is 
rich in oxygen, is recycled back to reduce air demand as 
well as utility consumption. Similarly, in the case of anode 
gas recycle route, a part of the hot anode effluent gas is 
recycled back to the reformer. The rest of the anode and 
cathode spent gas (after taking out the anode and cath-
ode recycle) is sent to the combustor. The combustor 
converts the chemical energy available with the spent 
fuel (unconverted hydrogen) into thermal energy which 
can be used for heating or auxiliary power generation. A 
part of the hot exhaust gas from the combustor is used 
to generate high-pressure steam via PPX10. This steam 
subsequently drives a steam turbine (T1) to generate 
auxiliary power. The rest of the hot gas is used for inter-
nal energy integration. It can be used to supply heat to 
the external reformer (PPX2) or meet high-temperature 
heating demand of the anode (PPX1) and cathode (PPX3) 
or reformer (PPX4 and PPX5) feed. The steam turbine ex-
haust can also be used to meet low temperature de-
mands of reformer feed (PPX7), cathode (PPX6), re-
former steam (PPX8) and membrane separator retentate 
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(PPX9). Process utility heat exchangers (PUX1 through 
PUX10) are placed to meet the rest of the heating and 
cooling demands.  

It can be noted that the SOFC, along with steam (T1) 
and micro gas (T2) turbine produce electrical power. A 
part of this power is consumed internally to drive com-
pressors C1, C2 and C3. The performance of the optimal 
integrated process is quantified by net electrical effi-
ciency (η𝑛𝑛𝑛𝑛𝑛𝑛−𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒). It represents the conversion efficiency 
of the process and is defined as the ratio of the net power 
output to the total energy fed to the system. It can be 
computed using Eq. (1).  

η𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆       +  ∑ 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗   𝑗𝑗 −  ∑ 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗  𝑗𝑗   
𝐿𝐿𝐿𝐿𝑉𝑉𝐵𝐵𝐵𝐵+∑ 𝑄𝑄𝐻𝐻,𝑗𝑗𝑗𝑗

                          

(1) 

where 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 represents power generated by the SOFC, 
𝑊𝑊𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗   and 𝑊𝑊𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗  represent power generation and con-
sumption by turbine and compressor, respectively. 𝐿𝐿𝐿𝐿𝑉𝑉𝐵𝐵𝐵𝐵 
represents the heating value of the biogas feed and 𝑄𝑄𝐿𝐿,𝑗𝑗 
represents the hot utility consumption. Along similar 
lines, the performance of the SOFC is quantified by its 
conversion efficiency and is defined as the ratio of its 
power output to thermal energy input. The corresponding 
SOFC efficiency (η𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is computed using Eq. (2). 

 η𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐿𝐿𝐿𝐿𝑉𝑉_𝐵𝐵𝐵𝐵

                                                            
      (2) 

 

OPTIMIZATION PROBLEM FORMULATION 
The superstructure optimization problem consists of 

three components; the objective function, the decision 
variables and the process constraints. This section pro-
vides details about each of these components. 

Objective function 
In order to obtain an economically efficient design, 

it is important to consider capital as well as operating 
cost. To this end, minimization of total annualized cost 
(TAC) is considered as an objective function. The capital 
cost for each equipment is computed using cost correla-
tions given in Table 1. In the case of SOFC, the capital 
cost consists of cost of electrode active surface area 
(𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), enclosure cost, converter cost and stack re-
placement cost. The cost of membrane separator is esti-
mated based on required membrane area (𝐴𝐴𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑚𝑚𝑛𝑛𝑛𝑛). 
This area is computed through material balance and con-
sidering membrane permeance of 100 GPU. 

The installed capital cost is computed by multiplying 
the above capital cost by the corresponding installation 
factors. It is subsequently scaled to 2023 cost using cost 
index (CECPI). Finally, the annualized capital cost is ob-
tained by dividing this cost by equipment life. For this 
study, expected life of 10y is considered for all equip-
ment, except membrane separator whose expected life 
is taken as 5y.    

Operating cost consists of biogas feed cost along 

 
Figure 1 Integrated biogas-SOFC system superstructure 
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with hot and cold utility as all the electrical power require-
ments are met internally. Thus the total annualized cost 
is computed using Eq. (3). 

𝑇𝑇𝐴𝐴𝑇𝑇 =  𝑇𝑇𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵 + 𝑇𝑇𝐿𝐿𝐻𝐻/𝑆𝑆𝐻𝐻 ∑ 𝑄𝑄𝐿𝐿,𝑘𝑘/𝑆𝑆,𝑘𝑘𝑘𝑘 + ∑ 𝐸𝐸𝑘𝑘
𝐿𝐿𝑘𝑘𝑘𝑘         

(3)  

where 𝑇𝑇𝐵𝐵𝐵𝐵 is the cost of feed biogas, 𝑇𝑇𝐿𝐿𝐻𝐻/𝑆𝑆𝐻𝐻 is the 
cost of hot or cold utility, 𝐸𝐸𝑘𝑘 is the installed equipment 
cost and 𝐿𝐿𝑘𝑘 is the expected life of that equipment. 

Table 1. Cost correlations and parameters 

Equipment/Feed/Util-
ity 

 Cost correlation/value 

SOFC Active surface 
area 

$ × 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (m)[] 

SOFC Enclosure $  × (𝑃𝑃𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (atm)) [] 
SOFC stack replace-
ment 

$  × 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  (kW)  [] 

DC/AC convertor $  × 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  (kW) [] 
Air/Biogas Blower $  × (𝑄𝑄(m))  [] 
Steam turbine  $  × (P(kW)) [] 
Micro gas turbine $  × (P(kW)) [] 
Combustor  $  × (Q(kW)) [] 
Utility heater $  × (Q(kW)) []                  
Process heat ex-
changer 

$  × A (m) [] 

Membrane Separator $  × 𝐴𝐴𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡𝑚𝑚𝑛𝑛𝑛𝑛 (m) [] 
Reformer $ (𝑚𝑚𝐿𝐿2 1125⁄ ) [] 
Biogas feed (𝑇𝑇𝐵𝐵𝐵𝐵)  $/kmol [] 
Hot utility (𝑇𝑇𝐿𝐿𝐻𝐻) $ × 10−5/kJ [] 
Cold utility (𝑇𝑇𝑆𝑆𝐻𝐻) $ × 10−6/kJ [] 

Decision variables 
The key decision variables and the corresponding 

trade-offs are given below.  

1. SOFC operating pressure (𝑃𝑃𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆): High SOFC pres-
sure favors high open circuit voltage and SOFC ef-
ficiency. However, it increases capital cost, air 
compressor power consumption and lowers power 
production via micro gas turbine.  

2. SOFC operating temperature (𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆): High SOFC 
temperature reduces voltage losses in SOFC, re-
quires less airflow to carry exothermic heat and exit 
gases have high energy integration potential. How-
ever, it reduces open circuit voltage and increases 
hot utility consumption.  

3. SOFC Fuel utilization factor (𝑈𝑈𝑓𝑓): It represents the 
fractional conversion of hydrogen in the SOFC. A 
high value of 𝑈𝑈𝑓𝑓 increases power generation from 
the SOFC. However, it leads to increased current 
density and voltage losses as well as an increase in 

airflow to maintain SOFC temperature. To accom-
modate voltage losses, a higher SOFC area is re-
quired, which leads to increased capital cost. Fur-
thermore, it reduces opportunity for anode gas re-
cycle, auxiliary power production via steam turbine 
and internal energy integration.  

4. SOFC Air utilization factor (𝑈𝑈𝑚𝑚): It represents the 
fractional conversion of oxygen in the SOFC. A low 
value of 𝑈𝑈𝑚𝑚 allows for better heat management in 
SOFC, but results in increased air compression 
power and dilution at the cathode reduce SOFC ef-
ficiency.  

5. Reformer temperature (𝑇𝑇𝑡𝑡𝑛𝑛𝑓𝑓): High reformer temper-
ature results in increased CH4 conversion and H2 
yield, subsequently leading to high cell voltage and 
SOFC power generation. However, it also increases 
the heat load of the reformer and reduces net elec-
trical efficiency. Moreover, with more CH4 conver-
sion, reformer capital cost and hot utility cost in-
creases at the expense of improved SOFC effi-
ciency. 

6. Reformer S/C ratio (𝑆𝑆𝑇𝑇𝑆𝑆): A high value of SCR in-
creases H2 yield and potential of high SOFC effi-
ciency. However, it also dilutes the anode gas, lead-
ing to lower open circuit voltage and increased hot 
utility for steam generation. Furthermore, it in-
creases reformer and steam generator capital cost. 

7. Reformer bypass fraction (𝑓𝑓𝑡𝑡𝑏𝑏𝑐𝑐): This fraction con-
trols the extent of external and internal reforming. 
External reforming results in high hydrogen partial 
pressure in the SOFC; hence, higher SOFC effi-
ciency, thus lowering the feed demand and operat-
ing cost. However, it also suffers from increased hot 
utility and reformer capital cost. On the other hand, 
direct internal reforming provides better synergy 
between endothermic reforming and exothermic 
electrochemical reactions, thereby reducing the 
utility cost but results in lower partial pressure of 
hydrogen, cell voltage and thus increases SOFC 
capital cost.  

8. Anode gas recycle fraction (𝑓𝑓𝐴𝐴𝐵𝐵𝐴𝐴): A high value of an-
ode gas recycle fraction represents better material 
and energy integration and thus reduces feed and 
hot utility cost. However, it reduces auxiliary power 
production through steam turbine and thus in-
creases SOFC capital cost. 

9. Cathode gas recycle fraction (𝑓𝑓𝑆𝑆𝐵𝐵𝐴𝐴): A high value of 
cathode gas recycle fraction reduces the fresh air 
flow and the corresponding heating and compres-
sion loads, reducing hot utility cost and compres-
sion cost. However, it causes dilution of cathode 
gas and reduces cell voltage. 
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10. Flue gas split fraction (𝑓𝑓𝑠𝑠𝑐𝑐𝑒𝑒𝑠𝑠𝑛𝑛): This fraction controls 
the extent of internal energy integration and auxil-
iary power production via steam turbine. A high 
fraction of flue gas going to steam generator in-
creases turbine power contribution and unloads the 
SOFC, resulting in lower SOFC capital cost. How-
ever, it limits internal energy integration and in-
creases hot utility consumption. Consequently, the 
hot utility cost increases. 

11. SOFC active surface area (𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆): A high value of ac-
tive surface area reduces the current density, re-
sulting in lower voltage loss and high operating 
voltage, and high SOFC efficiency, leading to a re-
duction in feed demand and corresponding operat-
ing cost. However, increased SOFC area results in 
increased capital cost of the SOFC. 

12. Hot effluent split fractions (𝑓𝑓𝑠𝑠): There are total 5 such 
split fractions, two on exhaust gas and three on 
steam turbine exhaust. These split fractions control 
the relative extents of the heat transfer among var-
ious process heat exchangers. 

13. Route selector (𝑦𝑦): This binary variable provides se-
lection between anode gas recycle and biogas up-
gradation route. While anode gas recycle reduces 
feed cost through material integration, it also re-
sults in increased utility cost as well as increased 
SOFC capital cost. On the other hand, biogas up-
gradation route reduces SOFC capital cost but in-
creases capital cost contribution from membrane 
separator and compressors.  

Process constraints 
The key equality constraints are the material and 

energy balance equations for each process unit. These 
equations relate the various process inputs like pressure, 
temperature, flow rate, area, etc. to the key outputs like 
power generation, reaction conversion, etc. The details 
of these equations can be found in our earlier publication 
[9]. The key inequality constraint corresponds meeting 
power production target and is represented by Eq. (4).  

𝑃𝑃𝑛𝑛𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛 ≤ 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + ∑ 𝑊𝑊𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 −𝑗𝑗 ∑ 𝑊𝑊𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗  𝑗𝑗         
(4) 

For each heat exchanger, there is a need to ensure 
positive thermal driving force. Correspondingly, the fol-
lowing constraints are incorporated for each of the pro-
cess heat exchangers (PPX1 through PPX10). 

𝑇𝑇𝐿𝐿,𝑠𝑠𝑛𝑛,𝑗𝑗 − 𝑇𝑇𝑆𝑆,𝑐𝑐𝑡𝑡𝑛𝑛,𝑗𝑗 ≥ ∆𝑇𝑇𝑐𝑐𝑠𝑠𝑛𝑛,   𝑇𝑇𝐿𝐿,𝑐𝑐𝑡𝑡𝑛𝑛,𝑗𝑗 − 𝑇𝑇𝑆𝑆,𝑠𝑠𝑛𝑛,𝑗𝑗 ≥ ∆𝑇𝑇𝑐𝑐𝑠𝑠𝑛𝑛      
(5) 

Lastly, upper and lower bounds for each decision 
variable are included.  

RESULTS AND DISCUSSION 
For this study, biogas composition of 65% CH4 and 

35% CO2 is considered. Optimal flowsheet is designed for 
a power target of 300 kW. This capacity represents 
power potential of a small-scale wastewater treatment 
facility [5]. The optimization problem presented in the 
previous section is a mixed integer nonlinear program-
ming (MINLP) problem. However, there is only one binary 
variable. It can therefore be easily split into two nonlinear 
programming problems (NLP), one for each processing 
route. As a NLP problem is easier to solve, we have ob-
tained separate optimal flowsheets for each processing 
route. These NLP problems are solved using GAMS with 
Baron as a solver and the corresponding solutions are 
presented through Figure 2, 3 and Table 2.  

Table 2: Optimal solution for each processing route (LB:      
lower bound, UB: Upper bound) 

Variables Anode gas 
recycle  

Biogas up-
gradation 

TAC ($/y)    
η𝑛𝑛𝑛𝑛𝑛𝑛 (%)   
η𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (%)   
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (kW)   
𝑊𝑊𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑛𝑛𝑛𝑛𝑚𝑚𝑐𝑐  (kW)   
𝑊𝑊𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡𝑚𝑚𝑠𝑠  (kW) -  
𝑊𝑊𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐,𝑆𝑆1  (kW)    
𝑊𝑊𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐,𝑆𝑆2  (kW) -  
𝑊𝑊𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐,𝑆𝑆3  (kW) -  
𝑊𝑊𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐,𝑆𝑆4  (kW) -  
𝑛𝑛𝐵𝐵𝐵𝐵 (mol/s)              
𝑛𝑛𝐴𝐴𝑠𝑠𝑡𝑡 (mol/s)   
𝑛𝑛𝐵𝐵𝑆𝑆𝑊𝑊 (mol/s)    
𝑃𝑃𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (bar)  (LB)  (LB) 
𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (K)  (UB)  (UB) 
𝑈𝑈𝑓𝑓    (UB) 
𝑈𝑈𝑚𝑚   (LB)  (LB) 
𝑇𝑇𝑡𝑡𝑛𝑛𝑓𝑓 (K) - - 
SCR - - 
𝑓𝑓𝑡𝑡𝑏𝑏𝑐𝑐   (UB)  (UB) 
𝑓𝑓𝐴𝐴𝐵𝐵𝐴𝐴   - 
𝑓𝑓𝑆𝑆𝐵𝐵𝐴𝐴   (LB)  (LB) 
𝑓𝑓𝑠𝑠𝑐𝑐𝑒𝑒𝑠𝑠𝑛𝑛    
𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (m)   

 
It can be seen that the anode gas recycle route re-

sults in lower TAC as compared to the biogas upgrada-
tion route. The optimal process recommends operating 
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the SOFC at atmospheric conditions and high tempera-
ture (1123K). Total internal reforming is chosen over ex-
ternal reforming to save the capital cost of reformer and 
hot utility consumption for reforming reaction. Cathode 
gas recycling is not selected as dilution effects over-
weigh material and energy integration benefits. It can be 
noted that considerable fraction (60%) of anode gas is 
recycled back to utilize the unconverted hydrogen and 
generate power with higher efficiency (SOFC versus 
combustor + steam turbine). 43% of the high temperature 
flue gas is sent to the high-pressure steam generator for 
the auxiliary power generation and the rest of the fraction 
is sent to the process for heat integration to meet the in-
ternal heat demands of the process. By using heat from 
this flue gas as well as turbine exhaust, all of the heat 
demands are met. The SOFC generates 78% of the total 
power, and the steam turbine contributes the rest. Re-
moval of the external reformer, efficient energy integra-
tion and synergy between the SOFC and steam turbine 
resulted in high net electrical efficiency of 67.1%. The to-
tal annualized cost of the plant is $608955/y which cor-
responds to electricity production cost of $0.23/kWh. 
This is slightly higher than typical electricity cost from 
conventional resources. The feed cost dominates the 
overall economics and contributes to 72% of the total an-
nualized cost. This is due to capital intensive biogas pro-
duction and cleanup process. %). The cost of electricity 
can be further reduced by optimizing biogas production 
and cleanup process leading to reduced feed cost. The 
second most significant cost contribution comes from the 
SOFC (13%). Another way to reduce the cost of electricity 

is to improve SOFC electrode design to reduce its cost 
per unit active surface area. This will allow for increasing 
the SOFC active surface area to further improve net elec-
trical efficiency and lower the contribution of feed cost.  

A similar trend is observed for the biogas upgrada-
tion route as well. Specifically, SOFC temperature and 
fuel utilization are set at upper bound, while pressure and 
air utilization are constrained at lower bound. Internal re-
forming is chosen over external reforming and cathode 
gas recycling is excluded. Even though more power is 
generated through the steam turbine, SOFC generates 
82% of the total power, which is slightly higher than the 
previous case. This is due to increased power consump-
tion via biogas compressors C2 and C3. It should be 
noted that the option of gas turbine is not selected as the 
power generated through it is sufficient enough to justify 
capital expenditure in turbine and the entry heat ex-
changer. 44.5% of the flue gas goes for auxiliary power 
generation, and the rest is utilized for heat integration. 
Similar to the previous case, this process also does not 
require any hot utility, resulting in net electrical efficiency 
of 65.1%. The total annualized cost for this process is 
$687475/y and the corresponding cost of electricity is 
$0.26/kWh. Similar to the previous process, the feed cost 
contributes significantly (66%) towards the total cost. 

Let us now compare the two routes. The process 
with anode gas recycle has lower feed demand for the 
same power target and thus results in higher SOFC effi-
ciency. Overall, the net electrical efficiency of anode gas 
recycle route is slightly better than biogas upgradation 
route. The other operating conditions of the two routes 

 
Figure 2 : Optimal flowsheet for anode gas recycle route 
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are similar.  
Let us now assess the impact of capital cost on the 

optimal design of the integrated process. Previously, op-
timal flowsheet was designed to minimize total operating 
cost [9]. Anode gas recycle was the most optimal option 
in that case as well. Most of the optimization variables 
had similar values. The total annualized cost of that pro-
cess was $609688/y, marginally higher than the pro-
posed solution. This corroborates well considering that 
the feed cost dominates the overall economics.    

The optimization problem for anode gas recycle in-
volved 753 equations, 692 variables, and took 2583 s 
(CPU time) to solve. Similarly, the optimization problem 
for biogas upgradation involved 863 equations, 765 var-
iables and took 4489 s to solve. The problems were 
solved on an Intel i7-7700 CPU @ 3.60 GHz processor. 

CONCLUSION 
This paper presents optimal design for a biogas-

based fuel cell system for electricity generation. A biogas 
superstructure consisting of various design alternatives 
is constructed. An optimal flowsheet is synthesized by 
minimizing the total annualized cost. The optimal flow-
sheet results in electrical cost of $0.23/kWh. The follow-
ing key conclusions can be drawn from this study.  

1. Anode gas recycling route is more optimal as com-
pared to biogas upgradation. A high value of recy-
cle fraction is recommended to balance the trade-
offs between material and energy integration and 

auxiliary power generation. 

2. Internal reforming provides better heat manage-
ment, high net electrical efficiency, low capital in-
vestment, and low utility costs as compared to ex-
ternal reforming. 

3. Feed biogas cost is the major contributor towards 
the total annualized cost. 

4. Cathode gas recycle option does not provide net 
benefits towards efficiency improvement. 
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ABSTRACT 
The study of sustainable design has gained prominence in response to the growing emphasis on 
environmental and social impacts of critical infrastructure. Addressing the different dimensions 
inherent in sustainability issues necessitates the application of many-objective optimization tech-
niques. In this work, an illustrative four-objective design system is formulated, wherein uncertain-
ties lie within two different socially-oriented objectives. A stochastic community detection ap-
proach is proposed to identify robust groupings of objectives. The findings reveal that the modu-
larity of the optimal solution surpasses that of the average graph, thus demonstrating the efficacy 
of the proposed approach. Furthermore, a comprehensive exploration of the Pareto frontiers for 
both the robust and single-scenario best groupings is undertaken, demonstrating that using the 
robust grouping results in little to no information loss about tradeoffs.  

Keywords: Sustainability, Multi-Objective Optimization, Network Theory

INTRODUCTION 
Various global events over the past several years 

have made clear the importance of designing new infra-
structure not only at low cost but also that does not neg-
atively impact global climate, that is resilient against dis-
ruptive events such as pandemics and wars, and that 
provides positive social outcomes for all relevant stake-
holders [1]. For many large industries, shareholders are 
increasingly concerned about the significance of envi-
ronmental, social, and governance (ESG) considerations 
within the framework of sustainability. The chemical in-
dustry is no exception to this trend. Consequently, there 
exists a compelling impetus to investigate sustainable 
process designs which perform well both in traditional 
economic metrics, such as net present value, annualized 
cost, or payback period, while also achieving positive so-
cial and environmental outcomes [2]. Moreover, when 
such environmental and social outcomes are considered, 
it is important to consider tradeoffs between different as-
pects of these main pillars. For instance, a socially posi-
tive outcome will consist of outcomes such as added 
jobs, safe operation, equitable outcomes among relevant 
stakeholders, and community acceptance, some of which 
may be in conflict with one another when considering 

design alternatives. To evaluate the potential tradeoffs 
between these various goals, we employ many-objective 
optimization, an approach with widespread applicability 
in chemical process systems research. [3] The result of 
many-objective optimization is not a singular solution but 
a Pareto frontier, illustrating the tradeoffs between dif-
ferent objectives. All points along the Pareto frontier in-
dicate the best one objective can do without hurting an-
other one. 

Unfortunately, for problems with large number of 
objectives, the time that is required to solve the sustain-
able design problem escalates significantly when the 
number of objectives increases, with problems of more 
than three objectives impractical to solve and interpret 
using rigorous solution methods such as the weighted 
sum or epsilon constraint approaches. Additionally, when 
Pareto frontiers can be obtained in these high dimen-
sional spaces, they are challenging if not impossible for 
relevant stakeholders to interpret. To address these is-
sues, our previous work developed a method for system-
atically reducing the dimensionality of a many-objective 
optimization problem on the basis of their competing or 
correlating nature using a network theoretic approach 
[4]. We then extended this framework to process opera-
tions problems where the underlying economic or 
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environmental parameters inherently varied in time (due 
to, for example, varying costs and emissions associated 
with grid-purchased electricity), demonstrating that the 
time-varying natures of these signals can alter the appro-
priate grouping of objectives when repeatedly solving the 
operation problem over time [5]. This work builds upon 
our previous efforts in the many-objective optimization 
space by analyzing how to group objectives which inher-
ently contain a large degree of uncertainty. This phenom-
enon is most commonly seen when considering social ob-
jectives, which are typically ill-defined and difficult to 
quantify, and thus can be subject to large ranges of un-
certainty. 

In this work, we focus on an illustrative four objec-
tive design problem formulated as a linear program (LP). 
The objectives to minimize include net present costs, 
carbon emissions, safety risk and social inequity. We as-
sume the presence of uncertain parameters in the two 
social objectives, risk and equity. The design problem is 
straightforward and illustrative in nature, with all four ob-
jectives being linear combinations of design variables.  

The dimensionality reduction approach is systemat-
ically applied in all different scenarios generated from un-
certain parameters. We want to find out the most robust 
grouping of objectives among the scenarios identifying 
the grouping of objectives with the highest expected 
modularity over all scenarios. To achieve this, a novel ap-
proach is developed which treats the community detec-
tion of an uncertain graph as a stochastic optimization 
problem and employs a column generation approach to 
decompose the problem into several interconnected de-
terministic community detection problems with modified 
modularity objectives. The remainder of this paper is 
structured as follows: in the next section, we describe the 
many-objective optimal design problem considered in 
this work. Then, a novel approach for stochastic commu-
nity detection of uncertain graphs is described. Next, we 
present results of solving applying our dimensionality re-
duction approach and solving the many-objective optimi-
zation design problem. Finally, concluding remarks and 
avenues for future work are presented. 

PROBLEM FORMULATION 

 
Figure 1. Two reactor, two separator superstructure 
considered in this work. 

System description  
In this study, we demonstrate a straightforward de-

sign problem with two reaction and two separators as 
shown in Fig. 1, which depicts the superstructure of the 
reactor/separator system. The chemical reaction design 
model considered has two reactants and one product, 
necessitating separation in the designated separators as 
part of the design problem. Flow with both reactants al-
lows for reactions in either Reactor A, Reactor B or both. 
Additionally, there are two choices for separators, and all 
flow resulting from the chemical reaction is directed to-
wards these separators. Each reactor and separator is 
characterized by a unique conversion for both the reac-
tion and separation processes. 
 Moreover, specific carbon emission and operating 
cost parameters are assigned to each unit in the system. 
There are uncertain parameters in the system that are as-
sociated with safety risk and social equity objectives; in 
this problem, we assume that there are two possible re-
alizations of this objective parameter for each unit con-
sidered. 

Objective functions 
 The first objective that we consider is to minimize 
the annualized net present cost N that combines the 
capital cost and operating cost of the design system:   

𝑁𝑁 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∗
1
𝜃𝜃

+ 𝑜𝑜𝑐𝑐𝑖𝑖4
𝑖𝑖=1                                                               (1) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 =  𝑐𝑐𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟( 𝐹𝐹𝑖𝑖

𝐹𝐹𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟)𝛾𝛾                                                        (2) 

𝑜𝑜𝑐𝑐𝑖𝑖 = 𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖                                                                   (3)    

where θ is the NPC-scaled lifetime used to annualize the 
capital cost and F is the flow through the reactors or sep-
arators, which acts as a proxy for unit size. The capital 
cost as we can see in equation (2) is a nonlinear func-
tion,where 𝑐𝑐𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐹𝐹𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 are the sizes and capital costs, 

respectively, of the reference for unit i , and 𝛾𝛾  is the scal-
ing exponent. Unit subscripts I correspond to the four 
units shown in Fig. 1. In order to formulate the problem as 
an LP such that our objective reduction framework can 
be applied, we choose γ as 1; extension of our dimension-
ality reduction framework to nonlinear problems will be 
the scope of future work. The operating cost is given in 
equation (3) and it is proportional to the flow through 
each unit, where 𝛼𝛼𝑖𝑖 are cost parameters and 𝐹𝐹𝑖𝑖 are flow 
in each units. 
 Besides the traditional economic factors, we con-
sider minimization of carbon emissions H, related to the 
usage of all the facilities in the system, where 𝛽𝛽𝑖𝑖 repre-
sent emission parameter of different units: 

 𝐻𝐻 = ∑ 𝛽𝛽𝑖𝑖𝐹𝐹𝑖𝑖4
𝑖𝑖=1                                                                            (4) 

 The emission objective has similar structure with 
operating cost: it is linear combination of the flow through 
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the different units. Moreover, two social objectives, risk 
and inequity, are analyzed in the optimization: 

 𝑅𝑅 =  ∑ 𝛿𝛿𝑟𝑟𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖                                                                  (5) 

 𝐸𝐸 =  ∑ 𝛿𝛿𝑟𝑟𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖                                                                   (6)   

  In this work, the coefficients for the two social ob-
jectives, 𝛿𝛿𝑟𝑟𝑖𝑖 and 𝛿𝛿𝑟𝑟𝑖𝑖, are uncertain parameters. Note that 
for this illustrative example, the emissions, risk, and ineq-
uity objectives are a linear combination of all design var-
iables, which for this problem are simply the flows. Thus, 
while it's uncommon to find that social objectives are de-
termined by the same variables as cost and emission ob-
jectives in practical applications, the approach shown 
here is generalizable for linear objectives as variables 
which do not impact a given objective can have the cor-
responding coefficient set to zero. The extension of this 
approach to more realistic nonlinear problems is still on-
going work which is beyond the scope of this paper. 

Model Constraints 
 The chemical design system should follow physical 
and practical limitations. First, we set a total amount of 
initial feed in the system (Ft) that equals to the sum of the 
flow in the reactors (F1, F2): 

  𝐹𝐹1 + 𝐹𝐹2 = 𝐹𝐹𝑡𝑡                                                    (7) 

 𝐹𝐹𝑡𝑡 ≥ 𝐹𝐹𝑖𝑖 ≥ 0       

Since an A+B->C reaction is assumed, total amount 
of flow (on a molar basis) will reduce after the reaction 
based on different conversions (E1, E2) of the reactors: 

�1 −  𝐸𝐸1
2
� 𝐹𝐹1 + �1 −  𝐸𝐸2

2
� 𝐹𝐹2 =  𝐹𝐹3 + 𝐹𝐹4                            (8) 

We assume that the separators can distinguish the 
specific product that we want but can’t totally remove the 
product from the flow. Thus, here we use the flow from 
the reactors to the respective separators (F3, F4) and pa-
rameters for efficiency of the separators (E3, E4), which 
are all based on the mixture of reactants and products.  

𝐸𝐸3𝐹𝐹3 + 𝐸𝐸4𝐹𝐹4 ≥ 𝐹𝐹𝑚𝑚𝑖𝑖𝑚𝑚                                                       (9) 

Equation (9) indicates that a minimum requirement 
of the product (Fmin) needs to be satisfied in the reaction 
system. 

Case study data 
As this problem acts to serve as an illustrative ex-

ample, problem parameters are chosen by the research-
ers and not necessarily meant to be representative of a 
real process. We aim to apply our method to analyze ob-
jective tradeoffs for different practical process designs 
from the literature as future work. 

The conversions of the two reactors are 80% and 95% 
which means that 80% or 95% of the reactants are trans-
formed into product. The two separators can obtain 25% 

and 40% of the product from the flow relatively. The total 
feed flow into the reactors is constrained as 100mol/h 
and the total flow goes into the separators is calculated 
from the conversions of the reactors.  

For annualized net present cost, cost references of 
2000, 5000, 700, 1200 dollars are set for the capital cost 
of the facilities. Operating cost and carbon emission pa-
rameters of all the facilities are set as 2, 0.9, 0.2, 0.15 
dollar per mol/h and 80, 50, 80, 35 kg CO2 per mol/h rel-
atively. 

Table 1: uncertain parameters in Risk and Equity ob-
jectives. 

Facility Risk parameter Equity parameter 
  or   or  

  or   or  

  or   or  

  or   or  
 
Risk and equity objectives are linear combination of 

the flow in each facility with uncertain parameters. Pos-
sible values of the parameters are shown in the Table 1. 
As social objectives such as equity can be difficult to 
quantify, we consider that these values can differ by a 
large amount. Each facility has two possible values of 
both risk and equity parameters, all 256 scenarios from 
their combinations are considered in the optimization. 
Despite having only two uncertain parameters, we note 
that the wide range of uncertainty and large number po-
tential scenarios resulting from their combination show-
cases the ability of our proposed approach to deal with 
highly undertain objectives. We also note that our pro-
posed approach also allows for the quantification of un-
certain parameters with a larger number of values. 

STOCHASTIC OBJECTIVE REDUCTION 
ALGORITHM 

In this section, a process for systematically reducing 
the dimensionality of a MILP with many uncertain objec-
tives into a problem with three or fewer objective func-
tions is presented. The core of the algorithm, which con-
siders deterministic objectives, was originally developed 
in our group’s previous work  and is summarized as fol-
lows [4]. First, cost vectors (the gradient vector of the 
objective function) are projected onto the constraint sur-
faces. Strength of interaction is defined as the inner 
product of the projected vectors and a weighted sum of 
the constraint interaction strengths is used to determine 
the total objective correlation strength. Objective corre-
lation strength is scaled to be between 0 and 1. This in-
formation is embedded into an objective correlation 
graph, which consists of nodes corresponding to the 
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different objectives and edges weighted by the objective 
correlation strength. Community detection is applied to 
identify groups of objectives that are strongly correlated 
within the group and competing with objectives in other 
groups. For more details about the objective reduction 
algorithm, please reference our previous works [4,5]. 

For problems with uncertain objective functions, this 
uncertainty will manifest itself as uncertainty in the edge 
weights of the objective correlation graph. For each real-
ization of uncertainty, a different objective correlation 
graph can be obtained. Since the true realization of un-
certainty is not known a priori, it is essential to identify a 
grouping of objectives that performs robustly well for all 
realizations of uncertainty to be able to obtain a full un-
derstanding of the tradeoffs between the many objec-
tives. 

Stochastic community detection 
The community structure within a network mani-

fests as a statistically significant configuration of edges 
which can be evaluated through the value of the modu-
larity. [6] The modularity is described by the number of 
edges falling within groups minus the expected number 
in an equivalent network with edges placed at random, as 
depicted in formulation (10): 

max
𝑧𝑧

  ∑ �𝐴𝐴𝑖𝑖𝑖𝑖′
𝑚𝑚
− 𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖′

𝑚𝑚2 � 𝑧𝑧𝑖𝑖𝑖𝑖′𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝑖𝑖𝑖𝑖   (10a) 

s.t.    𝑧𝑧𝑖𝑖𝑖𝑖 = 1 ∀ 𝑖𝑖 ∈ 𝐼𝐼 (10b) 

𝑧𝑧𝑖𝑖𝑖𝑖′ + 𝑧𝑧𝑖𝑖𝑖𝑖′′ −  𝑧𝑧𝑖𝑖′𝑖𝑖′′  ≤  1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼\{𝑖𝑖}, 𝑖𝑖′′ ∈ 𝐼𝐼\{𝑖𝑖, 𝑖𝑖′}  

 (10c) 

𝑧𝑧𝑖𝑖𝑖𝑖′ ∈ {0, 1}  ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼  (10d) 

where I is the set of nodes in the graph, A is the graph 
adjacency matrix, 𝑐𝑐𝑖𝑖 =  ∑ 𝐴𝐴𝑖𝑖𝑖𝑖′ 𝑖𝑖′𝑖𝑖𝑖𝑖  is the degree of node i,  
𝑚𝑚 =  ∑ 𝑐𝑐𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖  is twice of the total number of edges in the 
network, and 𝑧𝑧𝑖𝑖𝑖𝑖′ is a binary partitioning variable that is 
one if nodes i and i’ are assigned to the same community, 
and zero otherwise. The community detection is accom-
plished by maximizing modularity. 

To apply this approach to uncertain graphs, such as 
those obtained from our objective reduction approach 
with uncertain objectives, the traditional community de-
tection problem must be recast as a stochastic optimiza-
tion problem. In this case, a reasonable goal is to pursue 
the most robust partition that has consistently high mod-
ularity across all realizations of uncertainty. Here, we use 
expected value of modularity to evaluate partitions: 

max
𝑧𝑧

    𝐸𝐸𝛴𝛴[∑ �𝐴𝐴𝑖𝑖𝑖𝑖′
𝑚𝑚
− 𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖′

𝑚𝑚2 � 𝑧𝑧𝑖𝑖𝑖𝑖′𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝑖𝑖𝑖𝑖 ]  (11) 

s.t.     (10𝑏𝑏 − 𝑑𝑑) 

Note that other stochastic metrics, such as conditi-
onal value at risk, may also be used in place of expected 
value; we will assess how this proposed approach 

extends to other metrics in future work. To simply the 
equation, we assume all scenarios are equally likely and 
replace the expectation operator with an average over all 
scenarios: 

max 
𝑧𝑧

     1
|𝐾𝐾|
∑ ∑ �

𝐴𝐴𝑖𝑖𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘

−
𝑎𝑎𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘
2 � 𝑧𝑧𝑖𝑖𝑖𝑖′𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝑖𝑖𝑖𝑖 𝑘𝑘𝑖𝑖𝐾𝐾   (12) 

s.t.       (10𝑏𝑏 − 𝑑𝑑) 

Set 𝐾𝐾 indicates all the scenarios from the uncertain 
parameters. Unfortunately, fast algorithms for commu-
nity detection such as spectral partitioning [7], fast un-
folding [8], or the Leiden algorithm [9] are not directly ap-
plicable to the problem. However, this problem can be 
decomposed into a set of single-scenario community de-
tection problems with a slightly modified objective. First, 
copy variables corresponding to each scenario are intro-
duced to generate exploitable structure: 

max 
𝑧𝑧

   1
|𝐾𝐾|
∑ ∑ �

𝐴𝐴𝑖𝑖𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘

−
𝑎𝑎𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘
2 � 𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝑖𝑖𝑖𝑖 𝑘𝑘𝑖𝑖𝐾𝐾   (13) 

s.t.     𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘 = 1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾 

𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 +  𝑧𝑧𝑖𝑖𝑖𝑖′′𝑘𝑘 −  𝑧𝑧𝑖𝑖′𝑖𝑖′′𝑘𝑘  ≤  1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼\{𝑖𝑖},  

 𝑖𝑖′′ ∈ 𝐼𝐼\{𝑖𝑖, 𝑖𝑖′}, 𝑘𝑘 ∈ 𝐾𝐾  

𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 ∈ {0, 1}  ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾  

𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 =  𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘′   ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾, 𝑘𝑘′ ∈ 𝐾𝐾  

In this problem, the non-anticipativity constraints 
𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 =  𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘′ are complicating, such that if they were re-
moved, the stochastic problem could be treated as |𝐾𝐾| 
independent community detection problems. Using  co-
lumn generation [10] can help to solve formulation (13). It 
can be transformed into the following master problem:  

max 
𝑧𝑧,𝜆𝜆

   1
|𝐾𝐾|
∑ ∑ 𝜆𝜆𝑐𝑐𝑘𝑘𝑓𝑓𝑐𝑐𝑘𝑘∗𝑐𝑐𝑖𝑖𝑐𝑐 𝑘𝑘𝑖𝑖𝐾𝐾   (14) 

s.t.               ∑ 𝜆𝜆𝑐𝑐𝑘𝑘𝑧𝑧𝑖𝑖𝑖𝑖′𝑐𝑐𝑘𝑘
∗

𝑐𝑐𝑖𝑖𝑐𝑐 =  𝑧𝑧𝑖𝑖𝑖𝑖′   ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾  (𝜋𝜋) 

∑ 𝜆𝜆𝑐𝑐𝑘𝑘𝑐𝑐𝑖𝑖𝑐𝑐 = 1 ∀ 𝑘𝑘 ∈ 𝐾𝐾  (𝜇𝜇)  

𝜆𝜆𝑐𝑐𝑘𝑘  ∈ {0, 1}  ∀ 𝑘𝑘 ∈ 𝐾𝐾, 𝑐𝑐 ∈ 𝐶𝐶  

where C is the set of columns generated which corre-
spond to a specific partitioning of the graph into commu-
nities, 𝑓𝑓𝑐𝑐𝑘𝑘∗  is the modularity of column c in scenario 𝑘𝑘, 𝑧𝑧𝑖𝑖𝑖𝑖′𝑐𝑐𝑘𝑘

∗  
is the partitioning variable in the corresponding modular-
ity. 𝜋𝜋  and 𝜇𝜇  are the dual variables corresponding to the 
constraints in the same line, which are used to generate 
new columns (potential partitions) via the following set of 
|𝐾𝐾| subproblems, one per scenario 𝑘𝑘: 

max
𝑧𝑧

∑ (
𝐴𝐴𝑖𝑖𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘

−
𝑎𝑎𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘
2 − 𝜋𝜋𝑖𝑖𝑖𝑖′𝑘𝑘)𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖′𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑘𝑘  (15) 

𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘 = 1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾  

𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 +  𝑧𝑧𝑖𝑖𝑖𝑖′′𝑘𝑘 −  𝑧𝑧𝑖𝑖′𝑖𝑖′′𝑘𝑘  ≤  1 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼\{𝑖𝑖},  

 𝑖𝑖 ′′ ∈ 𝐼𝐼\{𝑖𝑖, 𝑖𝑖′},𝑘𝑘 ∈ 𝐾𝐾  
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𝑧𝑧𝑖𝑖𝑖𝑖′𝑘𝑘 ∈ {0, 1}  ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑖𝑖′ ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾  

Formulation (15) is the modularity in scenario 𝑘𝑘 with 
two Lagrangian terms resulting from the column genera-
tion decomposition. Since both are constants obtained 
from the dual solution of the master problem, only the 𝜋𝜋𝑧𝑧 
term needs to be considered when implementing the ob-
jective change into a community detection algorithm. Do-
ing so is straightforward: using Newman’s spectral parti-
tioning algorithm [7], which makes use of the eigenvalues 
and eigenvectors of the modularity matrix M, we modify 
the modularity matrix by subtracting the symmetric part 
of the 𝜋𝜋 matrix: 

𝑀𝑀�𝑖𝑖𝑖𝑖′ =  𝐴𝐴𝑖𝑖𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘

− 𝑎𝑎𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖′𝑘𝑘
𝑚𝑚𝑘𝑘
2 − 𝜋𝜋𝑖𝑖𝑖𝑖′𝑘𝑘+𝜋𝜋𝑖𝑖′𝑖𝑖𝑘𝑘

2
    (16) 

The eigenvalues and eigenvectors of the new matrix 𝑀𝑀� 
are then used to partition the graph in the same way as 
before. Alternatively, when using the fast unfolding (Lou-
vain) [8] and Leiden [9] algorithms, we take grouping 
steps which give the largest increase in the modularity 
augmented with the Lagrangian 𝜋𝜋𝑧𝑧 terms, rather than just 
the modularity. As in any column generation approach, 
the algorithm proceeds by iteratively solving the master 
problem and subproblems until no subproblem returns a 
partition with positive objective value, indicating that no 
partition not already in the set of columns has the poten-
tial to improve the objective value. 

RESULTS AND DISCUSSION 
To study the stochastic design problem, objective 

correlation graphs are generated for all 256 possible sce-
narios of the social objective parameters. We then com-
pare the results of community detection applied to each 
individual graph and show the resulting grouping fre-
quencies are in Table 2. Notably, [[N, H], [R, E]] and [[N, 
E], [H, R]] emerge as the most common partitions, where 
the symbols N, E, H, and R refer to the four different ob-
jectives as introduced in the problem formulation section 
and defined again in Table 2. However, we observe that 
four different “best” objective groupings occur depend-
ing on which scenario is actually realized, and it is unclear 
which performs best, on average, over all possible sce-
narios with this approach. It's essential to highlight that 
there aren’t any uncertain values in the annualized net 
present cost and emission objectives in our system, sig-
nifying a constant correlation strength between them. 
The established correlation strength, determined through 
our previous algorithm, is 0.813, a relatively but not over-
whelmingly high value which explains the prevalence of 
111 instances where annualized net present cost and 
emission fall within the same group. 

In contrast, the introduction of uncertain parameters 
in risk and equity objectives brings variability to the cor-
relation strengths between different objectives. For in-
stance, with risk parameters set at [100, 50, 20, 10] and 

equity parameters at [800, 500, 70, 20], the correlation 
strength between risk and equity is notably high at 0.991, 
resulting in the grouping [[N, H], [R, E]]. Conversely, when 
using [80, 30, 20, 10] and [40, 500, 50, 20] as risk and 
equity parameters, the correlation strength significantly 
decreases to 0.094, leading to the grouping [[N, E], [H, 
R]]. Thus, the frequencies that risk and equity are in the 
same group or not depends on the realization of uncer-
tain parameter set of the two objectives. In this case, 
these two objectives are in the same group over half of 
the scenarios. 

Table 2: Community detection results of the uncertain 
system. N: annualized net present cost, H: carbon emis-
sions, R: risk, E: Equity.  

Grouping Frequency 
[[N H] [R E]]  

[[N E] [H R]]  

[[N] [H R E]]  

[[R] [N H E]]  

 
Figure 2. Grouping and expectation results of the 
average graph (left) and the most robust grouping (right) 

Despite this variability, to address the tradeoffs 
within the uncertain design problem effectively, it is ra-
tional to identify the most robust partition across all sce-
narios as defined by the expected modularity over all 
scenarios. The results, as depicted in Fig. 2 through the 
application of the stochastic algorithm, reveal that the 
optimal grouping is, [[N, E], [H, R]]. It is important to note 
that this grouping differs from what one would find by 
just averaging the edge weights from the objective cor-
relation graphs generated from all 256 scenarios, [[N], [H, 
R, E]]. The expectation of the modularity in the optimal 
solution is 0.0649, and the expectation of the second-
best partition, [[N, H], [R, E]] is 0.0615. Both are higher 
than the partition of the average graph, which gives an 
expected modularity of 0.0475, suggesting that a 



 

Wang et al. / LAPSE:2024.1626 Syst Control Trans 3:920-926 (2024) 925 

deterministic approach of averaging edge weights is not 
an effective mechanism for identifying objective group-
ings that preserve tradeoff information in as many sce-
narios as possible. 

For further study of the system, we compare the 
weighted sum Pareto frontiers for one scenario using 
both robust grouping found by community detection and 
the grouping that is “best” for the specific scenario con-
sidered, [R], [H, N, E]]. Fig. 3 illustrates all optimal design 
configurations occurring along the Pareto frontier. Pareto 
frontiers are depicted on the left side of Fig. 4 for the 
scenario which uses risk and equity parameters set at 
[100, 30, 15, 5] and [40, 30, 70, 300]. Points sharing the 
same color on the Pareto frontier represent the same op-
timal design configuration within the Pareto frontier. In 
configuration 1, the emphasis is on risk reduction, leading 
to the utilization of Reactor B and Separator B, both pos-
sessing the lowest risk parameters. Conversely, Config-
uration 3 aims to minimize the sum of costs, equity, and 
emissions. Only Reactor A is constructed due to its lower 
cost, emissions, and equity parameters. Separator A and 
B are both utilized with specific flow values to optimize 
the three objectives.  

In the middle of the Pareto frontier, the tradeoff 
point results from balancing the sum of costs, equity, and 
emissions against risk. In this case, only Reactor B is em-
ployed compared to Configuration 3, and the flow values 
in the separators are also different. The Pareto frontier 
for the optimal result's grouping, [[N, E], [H, R]], is dis-
played on the right side of Fig. 4. The trade-off point us-
ing the [[R], [H, N, E]] grouping also appears in the Pareto 
frontier of [[N, E], [H, R]], suggesting that employing the 
most robust grouping can provide valuable insights in a 
certain extent, and demonstrating that tradeoff 

information can be preserved in the robust grouping even 
when it is not the same as the “best” grouping for a par-
ticular scenario. 

However, in numerous other scenarios, the Pareto 
frontier of [[N, E], [H, R]] does lose a bit of information 
about design tradeoffs in comparison to the individual 
scenario’s best grouping. This is not unexpected, as 
choosing a grouping of objectives with suboptimal mod-
ularity for a particular scenario inherently means that ob-
jectives with some degree of competition are being 
grouped together, which will result in loss of information 
regarding tradeoffs between the grouped objectives. The 
[[N, E], [H, R]] grouping with 95 times and other scenarios 
with no information loss in [[N, E], [H, R]] reveal that opt-
ing for the most robust grouping is a practical choice 
when attempting to understand tradeoffs in many-objec-
tive optimization problems with uncertain parameters. 

CONCLUSIONS AND FUTURE WORK 
Environmental and social considerations for sustain-

ability are essential aspects of optimal design problems 
for modern chemical production infrastructure. However, 
they can be subject to a great deal of uncertainty making 
critical evaluation of tradeoffs between objectives chal-
lenging. In this work, we developed a method for system-
atically identifying groups of objectives that, on average, 
tend to be more correlating than competing, forming the 
basis of a dimensionality reduction in many-objective op-
timization problems that is robust to uncertainty. Through 
the use of an illustrative case study with a two reactors, 
two separators superstructure, the efficacy of our ap-
proach towards identifying an objective grouping with 
low loss of tradeoff information was demonstrated. 

 
Figure 3: Illustration of different design configurations 

 

 
Figure 4: Weighted sum Pareto frontier between (left) risk and cost + equity + emission as well as (right) risk+ 
emission and cost + equity in the scenario of [[R], [H, N, E]] grouping. 
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As future work, we aim to apply this framework to a 
set of more practically relevant design problems from the 
literature such as a hydrogen production process and 
green ammonia production system, in order to better un-
derstand the tradeoffs inherent in designing future 
chemical production infrastructure. This analysis will en-
tail further development of our objective reduction algo-
rithm, such that it can be applied to nonlinear, as well as 
linear, many-objective optimization problems. 
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ABSTRACT 
This work explores the economic and environmental opportunities for sustainable aviation fuel 
(SAF) in the Brazilian sugarcane industry. Brazil was one of the first countries to use biomass fuels 
for transportation and is currently the 2nd largest producer of the world’s bioethanol. Bioethanol 
produced from sugarcane can be upgraded to SAF via the American Society for Testing and Ma-
terials (ASTM)-certified pathway alcohol-to-jet (ATJ); however, at least two challenges exist for 
commercial implementation. First, technologies to produce bio-jet fuels cost more than their con-
ventional fossil-based counterparts. Second, there is considerable uncertainty regarding returns 
on investment as the sugar and ethanol markets have been historically volatile. As such, we pro-
pose a new optimization model to inform risk-conscious investment decisions on SAF production 
capacity in sugarcane mills. Specifically, we propose a linear program (LP) to model an integrated 
sugarcane mill that can produce sugar, ethanol, or SAF. Then, using historical price data as sce-
narios, we determine optimal operation at different market scenarios. Based on the relationship 
between ethanol, sugar, and SAF prices, we show that the integrated sugarcane mill operates in 
four production regions. Furthermore, through sensitivity studies, we quantify the impact of SAF 
prices showing a premium SAF price of 2 $ L-1 results in 100% of scenarios favoring SAF production. 
These results allow us to guide SAF buyers or policymakers by showing the price point for SAF to 
become attractive for sugarcane mill integration. 

Keywords: Biofuels, Optimization, Environment, Energy, Design Under Uncertainty 

INTRODUCTION 
The aviation industry accounted for 2.8% of global 

GHG emissions in 2019. These emissions are expected to 
increase due to more global air traffic and high depend-
ence on traditional fossil jet fuel [1]. In response to global 
sustainability efforts following the 2016 Paris Agreement, 
the aviation industry pledged to reduce emissions by 
50% by 2050 [2]; however, decarbonization options are 
limited in this industry as electrification and advanced 
fuels (e.g., hydrogen) require two or three decades of de-
velopment [3]. Sustainable Aviation Fuels (SAFs) are one 
of the most promising options for reducing greenhouse 
gas (GHG) emissions in aviation due to their technology 
readiness and drop-in compatibility with existing aircraft 

and fuel systems; however, high costs compared to fos-
sil-based fuels have led to slow capacity development 
[4]. 

SAF demand is expected to increase significantly by 
the year 2050 to combat high GHG emissions in the avi-
ation industry. To reach the SAF demand track for net-
zero emissions by 2050, the current global SAF capacity 
would need to increase by ~46 billion L by 2030 [4,5]. 
Thus, there is an urgent need to increase global SAF ca-
pacity efficiently and economically to meet 2050 sustain-
ability goals. 

Brazil was one of the first countries to use biofuels 
for transportation in the 1970s. In 2023, 25.3 million m3 
of bioethanol was consumed (mostly to fuel private vehi-
cles in the country, 10.1 million m3 used as a gasoline 

https://doi.org/10.69997/sct.154109
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blend, and 15.2 million m3 used as direct fuel) [6]. Brazil 
is currently the second-largest producer of the world’s 
bioethanol and the first-largest bioethanol producer from 
sugarcane [7]. A conventional sugarcane mill starts with 
juice extraction from crushed sugarcane stalks. The ex-
tracted juice is treated to remove impurities, and the clar-
ified juice is then shared between the ethanol distillery 
and the sugar factory. The juice split fractions for ethanol 
and sugar production are decided at the beginning of a 
harvesting season and are important operational deci-
sions for the mill [8]. Typical juice split fractions vary be-
tween 40% and 60%, with many sugarcane mills only 
containing installed capacity for sugar production be-
tween 50–75% of the total juice extracted during one 
season [8]. 

 Several existing sugarcane mills have already ex-
panded their product range beyond sugar and ethanol to 
produce fertilizer, industrial salts, animal feed, etc. These 
diversified products boost the overall financial security of 
the sugarcane mill and provide an opportunity to jump 
into previously unexplored markets [9-10]. Following 
their footsteps, bioethanol can be upgraded to jet fuel via 
the ASTM-certified pathway alcohol-to-jet (ATJ) [11]. 
ATJ converts biomass to an alcohol intermediate (typi-
cally ethanol) to jet fuel via the following three conversion 
steps: alcohol dehydration, oligomerization, and hydro-
genation. Partnerships targeting SAF production exist 
between companies producing alcohols and converting 
alcohols to fuels, notably BioChemtex/Gevo and 
LanzaTech/Swedish Biofuels [12]. 
 Bioethanol from sugarcane is considered a first-
generation biofuel since it is derived from a food-based 
feedstock. Although first-generation biofuels are ques-
tioned due to food security, they are currently economi-
cally feasible and commercially supplied [13]. Sustainable 
biofuel production generally considers second-genera-
tion (non-edible crops) to fourth-generation (waste) 
feedstocks [14]. From an environmental perspective, Fo-
teinis et al. [15] illustrate the non-linear nature of the re-
lationship between feedstock generation and environ-
mental impact. Foteinis et al. [15] compare life cycle anal-
ysis (LCA) results for biodiesel production from sunflower 
seed oil (first-generation), used cooking oil (second-gen-
eration), and micro-algae (third-generation). Biodiesel 
from used cooking oil (second-generation) had the low-
est environmental impact and third-generation biodiesel 
had the highest environmental impact [15].  
 Integration of SAF in the Brazilian sugarcane indus-
try presents complex and interdependent optimization 
problems. Several factors complicate the decision to in-
vest in new technologies in the sugarcane industry. First, 
the mill’s final product mixes must be decided at the be-
ginning of a harvesting season, with little operational 
flexibility throughout the remaining season [16]. Second, 
weather conditions, international sugar prices, and 

instability of governmental fuel policies and subsidies 
create substantial uncertainties in sugar and ethanol 
market prices [8]. The interdependence of these two fac-
tors leads to large uncertainty on the return on invest-
ment, which hinders risk-conscious mill owners from in-
vesting in new technologies. Furthermore, it is well 
known that SAF technologies are not cost-competitive 
with their fossil-based counterparts [4], leading to addi-
tional financial risk with SAF integration. 

Mutran et al. [8] developed a multi-objective, two-
stage stochastic program to de-risk bioenergy invest-
ment decisions in the sugarcane industry to address 
some of these complexities. In this work, we extend the 
optimization analysis of Mutran et al. [8] to inform risk-
conscious investment decisions on SAF capacity in sug-
arcane mills by considering the uncertainty in sugar, eth-
anol, and jet fuel markets and the interrelation between 
production decisions in terms of the final product mix. 
Furthermore, we quantify the impact of government in-
centives or environmentally conscious industry contracts 
on SAF economics. 

METHODS 
We propose a linear program (LP), adapted from [8], 

to study the economic risk of integrated SAF production 
in a sugarcane mill in Brazil. Specifically, we study the op-
timal operation of an integrated sugarcane mill that can 
produce sugar, ethanol, and SAF. 

 
Figure 1. Process flow diagram (PFD) of integrated SAF 
production in a single sugarcane mill. 

Fig. 1 presents a process flow diagram of the inte-
grated sugarcane mill process. The units in this process 
include sugarcane milling (mill), sugar factory (fact), eth-
anol distillery (dist), treatment of vinasse residues (treat), 
a cogeneration system using a traditional Rankine cycle 
with back-pressure turbine (rank), and an ethanol up-
grading to SAF (upgrade). Saleable products from the 
sugarcane plant comprise sugar (sug), ethanol directed 
to the market (eth-market), SAF (jet), fertilizer from 



 

Watson et al. / LAPSE:2024.1627 Syst Control Trans 3:927-932 (2024) 929 

vinasse residue (fert), as well as electrical power for the 
regulated market (el). In contrast, intermediates are con-
sidered to be juice (jui), juice directed to the sugar factory 
(jui-fact), juice directed to the ethanol distillery (jui-dist), 
ethanol directed to the upgrading (eth-upgrade), ba-
gasse (bag), molasses (mol), and vinasse (vin).  

Table 1: Nominal parameter values from [8] except 𝜆𝜆𝑗𝑗𝑗𝑗𝑗𝑗 
and 𝜔𝜔𝑗𝑗𝑗𝑗ℎ,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗,𝑗𝑗𝑗𝑗𝑗𝑗 which originate from [17]. 

Symbol Description Nominal Value 
𝜔𝜔𝑐𝑐𝑢𝑢𝑐𝑐𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗𝑢𝑢𝑚𝑚 Conversion  

tonne/tonne 
𝜔𝜔𝑐𝑐𝑢𝑢𝑐𝑐𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑢𝑢𝑢𝑢 Conversion  

tonne/tonne 
𝜔𝜔𝑗𝑗𝑢𝑢𝑚𝑚,𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗,𝑠𝑠𝑢𝑢𝑢𝑢 Conversion  

tonne/tonne 
𝜔𝜔𝑗𝑗𝑢𝑢𝑚𝑚,𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗,𝑗𝑗𝑗𝑗ℎ Conversion  tonne/m 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗,𝑗𝑗𝑗𝑗ℎ Conversion  tonne/m 

𝜔𝜔𝑗𝑗𝑗𝑗ℎ,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗,𝑗𝑗𝑗𝑗𝑗𝑗 Conversion  m/m 

𝜔𝜔𝑣𝑣𝑚𝑚𝑐𝑐,𝑗𝑗𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗,𝑓𝑓𝑗𝑗𝑢𝑢𝑗𝑗 Conversion  m/m 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗 Generation  tonne 
𝜌𝜌𝑣𝑣𝑚𝑚𝑐𝑐,𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗  Generation  m 

Γ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  Maximum Capacity  
tonne/year 

Γ𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗 
 

Maximum Capacity  
tonne 

Γ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗  Maximum Capacity  m 

Γ𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗  Maximum Capacity  
tonne 

𝛾𝛾𝑠𝑠𝑢𝑢𝑢𝑢 Minimum Produc-
tion 

 

𝛾𝛾𝑗𝑗𝑗𝑗ℎ Minimum Produc-
tion 

 

𝛾𝛾𝑗𝑗𝑗𝑗ℎ−𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚𝑗𝑗𝑗𝑗  Minimum Produc-
tion 

 

𝛾𝛾𝑗𝑗𝑗𝑗𝑗𝑗 Minimum Produc-
tion 

 

𝜆𝜆𝑠𝑠𝑢𝑢𝑢𝑢 Production Cost  $R/tonne 
𝜆𝜆𝑗𝑗𝑗𝑗ℎ Production Cost  $R/m 

𝜆𝜆𝑗𝑗𝑗𝑗𝑗𝑗 Production Cost  $R/m 

𝜆𝜆𝑗𝑗𝑚𝑚 Production Cost  $R/MWh 
𝜆𝜆𝑓𝑓𝑗𝑗𝑢𝑢𝑗𝑗 Production Cost  $R/m 

   
 
In the mathematical model formulation that follows, 

the continuous variables 𝑥𝑥𝑚𝑚  ≥ 0 refer to the yearly pro-
duction of product I, the parameters 𝜔𝜔𝑚𝑚,𝑢𝑢,𝑗𝑗 refer to the 
conversion of product i  to product j  in unit u; the param-
eters 𝜌𝜌𝑗𝑗,𝑢𝑢 refers to the yield of intermediate product j in 
unit u; the parameters 𝜆𝜆𝑚𝑚 refers to the production cost to 
produce product i; the parameters 𝜋𝜋𝑚𝑚 refers to the market 
price for product i; the parameters Γ𝑢𝑢 refers to the maxi-
mal annual processing capacity of unit u; and the param-
eters 𝛾𝛾𝑚𝑚 refers to the minimum production fraction of 

product i. Table 1 reports the nominal parameter values. 
The LP is formulated below in Eq. (1). The objective 

is to maximize the sugarcane mill’s expected revenue 
(i.e., profit) Eq. (2) constrained by mass balances Eq. (3)-
(13), unit capacity restrictions Eq. (14)-(16), and minimum 
production constraints Eq. (17)-(20). Minimum production 
constraints are enforced to maintain typical juice shares 
for sugar and ethanol production (40 – 60%), limit food 
supply (sugar) competition, sufficiently utilize installed 
SAF capacity, and require a contribution to the bioethanol 
available for private vehicle use. 

 This optimization formulation is an adaption of the 
model proposed by Mutran et al. [8] with the addition of 
the SAF upgrading unit Eq. (9)-(10) and the minimum pro-
duction constraints Eq. (16)-(19). Electricity generation is 
determined using a piece-wise linear surrogate model to 
determine the amount of surplus bagasse based on the 
shares of ethanol and sugar. We denote this relationship 
as 𝑔𝑔(⋅), represented by Eq. (18)-(20) in Mutran et al. [8]. 

max𝑅𝑅(𝑥𝑥|𝜋𝜋, 𝜆𝜆,𝜔𝜔,𝜌𝜌)  

𝑠𝑠. 𝑡𝑡.  Eq. (3) − (20)                                     (1) 

  𝑔𝑔(∙) ≥ 0   

  𝑥𝑥𝑚𝑚 ≥ 0 

         𝑅𝑅(𝑥𝑥) = �𝜋𝜋𝑠𝑠𝑢𝑢𝑢𝑢 −  𝜆𝜆𝑠𝑠𝑢𝑢𝑢𝑢�𝑥𝑥𝑠𝑠𝑢𝑢𝑢𝑢 +  𝜋𝜋𝑗𝑗𝑗𝑗ℎ𝑥𝑥𝑗𝑗𝑗𝑗ℎ−𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚𝑗𝑗𝑗𝑗 −
            𝜆𝜆𝑗𝑗𝑗𝑗ℎ𝑥𝑥𝑗𝑗𝑗𝑗ℎ + �𝜋𝜋𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜋𝜋𝑢𝑢𝑢𝑢𝑗𝑗𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚 −  𝜆𝜆𝑗𝑗𝑗𝑗𝑗𝑗�𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗 +
                 (𝜋𝜋𝑗𝑗𝑚𝑚 − 𝜆𝜆𝑗𝑗𝑚𝑚)𝑥𝑥𝑗𝑗𝑚𝑚 + �𝜋𝜋𝑓𝑓𝑗𝑗𝑢𝑢𝑗𝑗 −  𝜆𝜆𝑓𝑓𝑗𝑗𝑢𝑢𝑗𝑗�𝑥𝑥𝑓𝑓𝑗𝑗𝑢𝑢𝑗𝑗                                  
       (2) 

𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚 =  Γ𝑚𝑚𝑚𝑚𝑚𝑚𝜔𝜔𝑐𝑐𝑢𝑢𝑐𝑐𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗𝑢𝑢𝑚𝑚   (3) 
𝑥𝑥𝑏𝑏𝑢𝑢𝑢𝑢 =  Γ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜔𝜔𝑐𝑐𝑢𝑢𝑐𝑐𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑢𝑢𝑢𝑢   (4) 
𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚 = 𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚−𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗 + 𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚−𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗   (5) 
𝑥𝑥𝑠𝑠𝑢𝑢𝑢𝑢 = 𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚−𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗𝜔𝜔𝑗𝑗𝑢𝑢𝑚𝑚,𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗,𝑠𝑠𝑢𝑢𝑢𝑢   (6) 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑠𝑠𝑢𝑢𝑢𝑢𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗    (7) 
𝑥𝑥𝑗𝑗𝑗𝑗ℎ = 𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚−𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗𝜔𝜔𝑗𝑗𝑢𝑢𝑚𝑚,𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗,𝑗𝑗𝑗𝑗ℎ + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗,𝑗𝑗𝑗𝑗ℎ (8) 
𝑥𝑥𝑗𝑗𝑗𝑗ℎ = 𝑥𝑥𝑗𝑗𝑗𝑗ℎ−𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑗𝑗𝑗𝑗ℎ−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗  (9) 
𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑥𝑥𝑗𝑗𝑗𝑗ℎ−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗𝜔𝜔𝑗𝑗𝑗𝑗ℎ,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗,𝑗𝑗𝑗𝑗𝑗𝑗  (10) 
𝑥𝑥𝑣𝑣𝑚𝑚𝑐𝑐 = 𝑥𝑥𝑗𝑗𝑗𝑗ℎ𝜌𝜌𝑣𝑣𝑚𝑚𝑐𝑐,𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗    (11) 
𝑥𝑥𝑓𝑓𝑗𝑗𝑢𝑢𝑗𝑗 = 𝑥𝑥𝑣𝑣𝑚𝑚𝑐𝑐𝜔𝜔𝑣𝑣𝑚𝑚𝑐𝑐,𝑗𝑗𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗,𝑓𝑓𝑗𝑗𝑢𝑢𝑗𝑗   (12) 

        𝑥𝑥𝑗𝑗𝑚𝑚 = 𝑔𝑔(⋅)     (13) 
𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚−𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗 ≤  Γ𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗    (14) 
𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚−𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗 ≤  Γ𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗    (15) 
𝑥𝑥𝑗𝑗𝑗𝑗ℎ−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗 ≤  Γ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗   (16) 
𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚−𝑓𝑓𝑢𝑢𝑐𝑐𝑗𝑗 ≥ 𝛾𝛾𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚    (17) 
𝑥𝑥𝑗𝑗𝑗𝑗ℎ ≥ 𝛾𝛾𝑗𝑗𝑗𝑗ℎ𝑥𝑥𝑗𝑗𝑢𝑢𝑚𝑚𝜔𝜔𝑗𝑗𝑢𝑢𝑚𝑚,𝑢𝑢𝑚𝑚𝑠𝑠𝑗𝑗,𝑗𝑗𝑗𝑗ℎ   (18) 
𝑥𝑥𝑗𝑗𝑗𝑗ℎ−𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚𝑗𝑗𝑗𝑗 ≥ 𝛾𝛾𝑗𝑗𝑗𝑗ℎ−𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗ℎ   (19) 
𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗 ≥ 𝛾𝛾𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗ℎ    (20) 
 
Product prices for sugar, ethanol, and jet fuel are 

taken from weekly price records in Brazil over the period 
of 2013–2022 [18-20] a total of 526 observations. Fig. 2 
shows the weekly price signals (𝜋𝜋𝑗𝑗𝑗𝑗𝑗𝑗,𝜋𝜋𝑗𝑗𝑗𝑗ℎ, and 𝜋𝜋𝑠𝑠𝑢𝑢𝑢𝑢) for the 
three main products expressed in the 2023 $R. We 
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assume that SAF prices are equivalent to market prices 
of jet fuel plus some premium (𝜋𝜋𝑢𝑢𝑢𝑢𝑗𝑗𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚) paid by airline 
companies or policy incentives. 

a) 

 
b) 

     
Figure 2. Weekly historical market data for ethanol and 
jet fuel (a) and sugar (b) in Brazil from 2013 to 2022 
expressed in the 2023 $R [18-20]. 

RESULTS 
We start by solving optimization problem Eq (1) – 

(20) independently for each week from 2013 to 2022, 
considering historical price data for sugar, ethanol, and 
jet fuel (Fig. 2). We then map the optimization results for 
each scenario (week) into four categories based on the 
core products:  

1. Maximize sugar and send the maximum amount of 
residual ethanol to the market (blue in Fig. 3 and 
Fig. 4). 

2. Maximize sugar and upgrade the maximum amount 
of residual ethanol to SAF (red in Fig. 3 and Fig. 4). 

3. Maximize ethanol and send the maximum amount of 
residual ethanol to the market (green in Fig. 3 and 
Fig. 4). 

4. Maximize ethanol and upgrade the maximum 
amount to SAF (purple in Fig. 3 and Fig. 4) 

Fig. 3 shows the optimal operation pathways 

colored on the process flow diagram. Fig. 4 shows the 
percentage of market scenarios (weekly) for each of the 
four operation pathways while varying the SAF premium 
parameter 𝜋𝜋𝑢𝑢𝑢𝑢𝑗𝑗𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚.  At a SAF premium price of 1 $ L-1, 
the sugarcane mill prefers to operate under standard 
practice, maximizing sugar production and sending any 
ethanol produced to the market. On the contrary, at a SAF 
premium of 3 $ L-1, the sugarcane mill prefers to send all 
its resources towards maximizing SAF production. Both 
of these scenarios represent cases where there is one 
predominant operating mode regardless of market 
prices. In between these cases (𝜋𝜋𝑢𝑢𝑢𝑢𝑗𝑗𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚 = 1.5 to 2.5 $ L-

1) we observe variation between optimal operating 
modes. Furthermore, after applying a SAF premium of 2 
$ L-1, 100% of all market scenarios favor SAF production 
(red and purple) over selling ethanol to the market (green 
and blue). 

 
Figure 3. Optimal operation pathways colored on the 
process flow diagram (PFD) of integrated SAF production 
in a single sugarcane mill.  

The multiple optimal operating modes in SAF pre-
mium cases 1.5 $ L-1 to 2.5 $ L-1 (Fig. 4) motivate investi-
gating the operational flexibility in the sugarcane mill, i.e., 
changing the product flow rates in response to weekly 
market conditions. Standard practice in the sugarcane in-
dustry is to choose ethanol and sugar shares at the be-
ginning of the harvesting season with little flexibility 
throughout the year. Our analysis shows there may be 
some financial benefit to change operation in response to 
market prices (different optimal operating modes). Profit 
savings from flexibility may be significant for SAF inte-
gration in the sugarcane industry, especially with uncer-
tainty in monetary incentive timelines for SAF. 
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Figure 4. Percentage of scenarios under each oper-

ating region at different levels of SAF premiums  
 
Furthermore, the competition that may arise be-

tween ethanol use for ground and air transportation 
should be carefully considered. If the majority of sugar-
cane mills favor SAF production over selling ethanol to 
the market (e.g., SAF premium of 2 $ L-1), private vehicles 
in the country may be forced to use gasoline (electric ve-
hicles in Brazil are currently underdeveloped). Future 
work should include LCA to better understand the envi-
ronmental impact of producing SAF from sugarcane bio-
ethanol and bioethanol produced from other sugarcane 
mill waste residues (i.e., bagasse). 

CONCLUSION 
In summary, we proposed a LP to model SAF pro-

duction integrated in the Brazilian sugarcane industry. 
Then, using historical prices, we compute the optimal op-
eration over a variety of market scenarios for ethanol, 
sugar, and SAF prices. We show that the integrated sug-
arcane mill operates in four production regions based on 
the relationship between ethanol, sugar, and SAF prices. 
Furthermore, through sensitivity studies, we quantify the 
impact of SAF prices (e.g., price premiums airlines may 
pay for SAF compared to conventional jet fuel to meet 
industry/government decarbonization goals) and discuss 
the potential for operational flexibility in a sugarcane mill.  

This research motivates the following open research 
questions: 

1. How to economically distribute ethanol upgrading 
technologies throughout Brazil to allow for ethanol-
use flexibility (integrated vs. stand-alone)? 

2. How to develop detailed process designs for inte-
grated SAF-producing systems under uncertainty? 

3. How to integrate techno-economic analysis and 

policy design for biofuel technologies? 

4. What is the difference in carbon intensity in the 
ground and air transportation sectors? 
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ABSTRACT 
Triacetic acid lactone (TAL) is a bio-privileged molecule with potential as a chemical precursor, 
traditionally synthesized from petroleum. Current trends are shifting towards the use of renewable 
biomass or CO2-derived feedstocks to enhance sustainability. However, comprehensive studies 
on the techno-economic viability and carbon life cycle of such methods are limited. This study 
assesses TAL production from conventional glucose and a novel approach co-feeding Yarrowia 
lipolytica (YL) with glucose and formic acid (FA), aiming for a more cost-effective and eco-friendly 
process. We confront the inherent challenges in this process by exploring different technology 
scenarios using kinetic bioprocess modeling underpinned by techno-economic analysis (TEA) and 
life cycle assessment (LCA) to identify the most cost-effective and sustainable routes to TAL pro-
duction. A noteworthy component of our investigation centers around the prospect of recycling 
and utilizing the CO2 emitted from the YL bioreactor to eliminate greenhouse gas emissions inher-
ent in aerobic fermentation processes. The study combines TEA and LCA to dissect the proposed 
TAL bio-production routes, evaluating the sustainability of the process and the implications of net-
zero greenhouse gas emission manufacturing. We employed SuperPro Designer and Aspen soft-
ware for process simulation and energy balance computations. The results underscore the bene-
fits of CO2 recycling in TAL production, with an estimated minimum selling price (MSP) slightly 
increasing by 6.21-7.80% compared to traditional methods, but significantly undercutting the mar-
ket price of $51000/mt-TAL and achieving net-negative CO2 emissions. This research illustrates a 
viable route to bio-production with net-zero emissions, providing a model for future bioprocessing 
and industrial practices. 

Keywords: Technoeconomic Analysis, Life Cycle Assessment 

INTRODUCTION 
Energy systems across the globe are moving to-

wards more integrated, cleaner, and sustainable pro-
cesses [1]. However, attaining a carbon-free economy 
presents a formidable challenge, as it requires a signifi-
cant reduction in emissions from hard-to-decarbonize 
sectors such as industrial and chemical processes. This 
study explores the production of triacetic acid lactone 
(TAL) through carbon dioxide utilization in aerobic 

fermentation cycles. The goal is to achieve Net-Zero 
emissions by identifying economically viable and envi-
ronmentally friendly processes to produce chemicals. 
The study aims to guide the development of sustainable 
industrial methodologies using TAL as a case-study. 

TAL is a promising molecule for sustainable chemi-
cal production, obtained through bio-production from re-
newable resources [2]. It has the potential to serve as a 
key precursor for the production of valuable chemical in-
termediates, as well as end products like sorbic acid [3], 

mailto:mgi@udel.edu
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which have significant global demand (market size was 
USD 500 million in 2022, reported by Reports and Data, 
a market research and consulting company). Traditional 
synthesis methods rely on petrochemical processes that 
are not sustainable [4]. With the engineering Yarrowia lip-
olytica (YL), a yeast and model organism and naturally 
proficient lipid producer, to produce TAL, we can shift to-
wards using biomass as a renewable feedstock [5-6]. 
This addresses the growing need for carbon-neutral pro-
duction pathways. However, bioproduction involves met-
abolic processes that produce significant amounts of 
CO2, which is typically considered waste [7]. In this study, 
the bioprocess emits CO2 at concentrations greater than 
99 wt.% by assuming high-purity O2 used in providing 
aerobic fermentation. [8]. Rather than releasing it into the 
atmosphere, there is an opportunity to repurpose this 
emission [8]. The current trend is to convert CO2 into 
value-added chemicals, which aligns with the industrial 
symbiosis paradigm of repurposing waste streams to re-
duce environmental impact [9].  

One innovative approach is the electrocatalytic con-
version of CO2 into formic acid [10-11]. This process re-
cycles carbon and transforms it into a chemical with sig-
nificant utility in various industrial applications. Formic 
acid is an auxiliary energy source for numerous microbial 
species that use formate dehydrogenase enzymes (FDH) 
to transfers electrons to NAD+, generate NADH and re-
lease CO2 [10-11]. This metabolic pathway is central to 
the co-feeding strategy used in the TAL production pro-
cess with YL [10-11]. By co-feeding formic acid with glu-
cose, YL can utilize additional reducing power for biosyn-
thesis, contributing to the efficient production of TAL. 
The integration of CO2-to-formic acid utilization in the 
production process has a dual benefit. It provides a sup-
plementary energy source that enhances microbial 
growth and product yield and represents a strategic 
move toward decarbonization. The application of this 
technology on an industrial scale promises to reduce the 
carbon footprint of biochemical production and to miti-
gate the impact of climate change associated with indus-
trial activities that are otherwise difficult to decarbonize. 

When developing a bioprocess to supplement or re-
place an existing chemical product, it is crucial to conduct 
a techno-economic analysis. Despite the significant eco-
nomic and environmental implications of developing bio-
refinery processes for TAL manufacture, only a few stud-
ies have examined it through techno-economic analysis 
(TEA) [12-13]. Based on the current retail price of 
$550/kg, sourced from Biosynth (bio-synth.com), and a 
bulk chemical price of $51,000/mt from vendors, all the 
scenarios are economically feasible in the proposed TAL 
production routes. By integrating carbon dioxide recy-
cling into the current systems, biogenic carbon capture 
could be achieved, leading to a substantial reduction in 
greenhouse gas (GHG) emissions. 

This study explores a novel route for TAL production 
by focusing on CO2-to-formic acid electrocatalysis and 
co-feeding formic acid with glucose in the YL process. 
This approach highlights the transformative potential of 
recycling CO2, which is traditionally viewed as a draw-
back in economics (options such as storage only add 
costs) [14], into a value-added input. This enhances the 
sustainability profile of TAL production, epitomizing the 
principles of a circular economy. Furthermore, the pro-
posed model has the potential to shift toward more sus-
tainable industrial practices, meet economic and environ-
mental benchmarks, and contribute to the goal of achiev-
ing net-zero greenhouse gas emissions. 

PROCESS OVERVIEW 
The focus of the present study is to conduct a thor-

ough comparison between two YL production systems, 
each scaled to produce 100 metric tons of TAL annually, 
examining their techno-economic and life cycle aspects. 
The first system utilizes Yarrowia lipolytica fed solely with 
glucose, while the second system involves a simultane-
ous feed of YL with glucose and formic acid [10-11]. This 
latter system utilizes electrochemical production of for-
mic acid from carbon dioxide [15-16]. 

In the present study, process simulations were exe-
cuted using SuperPro Designer [17], while energy bal-
ances and heat integration analyses were computed via 
Aspen Plus, employing the Non-Random Two-Liquid 
(NRTL) thermodynamic model to ensure accurate calcu-
lations of properties [18]. The scope of the investigation 
extends to a LCA and TEA across two distinct system 
configurations as exhibited in Figure 1A and 1B, further 
delineated into four specific scenarios. Within these sce-
narios, glucose serves as the primary substrate within the 
YL bioreactor, facilitating the biosynthesis of bio-TAL. 
Further explorations, as demonstrated in Figure 1B, illus-
trate the particular scenario in which a co-feeding strat-
egy of formic acid and glucose is employed, showcasing 
an integrated method for enhancing the bio-production 
efficiency of TAL. It considers the sourcing of glucose 
and the subsequent recycling of off-gas into the three-
compartment cell (TCC) reactor [15,19]. This innovative 
approach integrates the reactor for the electrochemical 
synthesis of formic acid from carbon dioxide emissions 
considering three carbon recycle percentage cases: 25%, 
50%, and 75%.  

Substrate for the TAL Biosynthesis Process 

(A) Production of TAL Using Yarrowia lipolytica 
with Glucose as Substrate 

The production of TAL through biotechnological 
routes is a promising alternative to traditional chemical 
synthesis. The process starts with the metabolic assimi-
lation of glucose by YL, which undergoes glycolysis and 
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enters the tricarboxylic acid (TCA) cycle and the associ-
ated biosynthetic pathways [10]. Genetic engineering 
has optimized YL to overproduce acetyl-CoA and malo-
nyl-CoA, the precursors necessary for TAL formation 
[20]. By upregulating the genes involved in these path-
ways and downregulating those leading to competing 
pathways, YL can produce TAL. 

(B) Cofeeding of Yarrowia lipolytica with glucose 
and formic acid 

In the pursuit of sustainable bioproduction, a signif-
icant step forward involves capturing and utilizing CO2 
emissions, which is crucial for reducing the carbon foot-
print of biotechnological applications. According to Noor-
man (2020) [10-11], an innovative approach involves the 
electrochemical reduction of biogenic CO2 using renew-
able electricity to form valuable organic molecules that 
can be fed to the fermentation process. This study uses 
a Three Compartment Cell (TCC) reactor to electrochem-
ically reduce CO2, effectively converting it into formic 
acid with the net reaction [15,21]:  

𝐶𝐶𝐶𝐶2 + 𝐻𝐻2𝐶𝐶 → 𝐶𝐶𝐻𝐻𝐶𝐶𝐶𝐶𝐻𝐻 +
1

2
𝐶𝐶2    (1) 

This method creates a closed carbon cycle, captur-
ing emitted CO2, reducing it to formic acid, and reintro-
ducing it into the fermentation stage. Theoretically, this 
cycle could sustain cellular energy requirements (ATP) 
through respiration alone. Moreover, by utilizing the pri-
mary carbon source, such as glucose, predominantly for 
biomass and product assimilation rather than energy pro-
duction, this process substantially increases biomass and 
product yields, thereby enhancing the overall efficiency 
of the primary carbon source. 

The TCC reactor's innovative configuration employs 
a gas diffusion electrode (GDE) cathode, GDE anode, and 
central flow compartments [15,19]. The central compart-
ment is flanked by a cation exchange membrane adjacent 
to the anode, which is coated with an IrO2 catalyst on 
Toray paper [15,19], and an anion exchange membrane 
on the cathode side, loaded with a tin (Sn) catalyst and 
polytetrafluoroethylene at 5% [15,19]. The key electro-
chemical reactions are delineated within their respective 
compartments. Notably, the TCC reactor design does not 
require the separation of by-products, given their minor 
concentrations within the effluent stream [21]. The efflux 
from the anode compartment predominantly comprises 

 
Figure 1: Comparative Models for TAL Production Scenarios: (A) TAL production via the YL biosynthesis process 
with glucose procured directly from commercial suppliers. This traditional aerobic fermentation process entails 
the partial oxidation of glucose to CO2, which provides metabolic energy, while the remaining glucose serves as 
the carbon source for biosynthesis. (B) TAL production through the YL biosynthesis process, where glucose is co-
fed with CO2-derived formic acid. In this scenario, formic acid acts as an additional energy source, facilitating 
electron transfer, while glucose is exclusively utilized as a carbon source. The system incorporates a TCC reactor 
to recycle biogenic CO2 emissions directly from the YL fermentation process. (C) Environmental burdens for the 
biosynthesis multi-routes TAL production. 
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unconverted H2O and the by-product O2, where O2 will be 
sent to the aerobic fermentation reactor and excess wa-
ter will be recycled back to the TCC reactor [15]. The for-
mic acid flow from the center part of the TCC is sent to a 
pressurized 4 bar distillation tower to remove the excess 
water to achieve a 70 wt. % of FA and then co-fed with 
glucose to the YL bioreactor [15]. 

To produce 1 kg of formic acid, the process requires 
an input of 0.96 kg CO2 and 0.57 kg H2O within the TCC 
reactor. The electrochemical reduction itself is powered 
by 4.79 kWh of electricity [15]. This co-feeding approach, 
where Yarrowia lipolytica is supplemented with both glu-
cose and electrochemically produced formic acid, repre-
sents a shift toward more sustainable and partially decar-
bonized biotechnological processes. 

TAL Purification Process 
Purification stands as a critical component in biore-

fining, with significant implications for costs. The process 
necessitates the removal of excess biomass, alongside 
organic and inorganic contaminants from the fermenta-
tion broth. Various techniques, including hexanol extrac-
tion [22], have been employed to recover TAL. However, 
an enhanced method utilizing charcoal adsorption has 
been delineated by Singh R. et al. [13], where TAL is ab-
sorbed by activated charcoal and subsequently de-
sorbed using ethanol, which is then recovered for reuse. 
The selection of charcoal adsorption is predicated on its 
extractant reusability, providing a method that facilitates 
continuous operation while aligning with economic and 
environmental objectives, particularly leveraging the vol-
atility of ethanol and ready availability. 

Bioprocess modeling 
A bioprocess model used for this study was trained using 
fermentation profiles from Markham et al. [33]. A fed-
batch process configuration was considered for all con-
ditions explored. Briefly, within the system of ordinary 
differential equations (ODEs), the amount ATP generated 
from intracellular carbon catabolism at each timestep 
was calculated. It was then assumed that 25, 50, or 75% 
of the CO2 emitted from the bioreactor could be captured 
and recycled as formic acid. An equal amount of formic 
acid was fed as was consumed by the organism (keeping 
the concentration in the bioreactor at zero). The molecu-
lar stoichiometry and energy generation from formic acid 
consumption defined by van Winden et al. [34] was used 
in the study. Energy generated from formic acid recycling 
was considered as a replacement for the same amount of 
energy generated via intracellular carbon catabolism, and 
the intracellular carbon that would have been used for 
catabolism to generate that energy was re-directed to-
wards biomass and TAL in a ratio consistent with the car-
bon molar ratio of biomass and TAL produced under the 
glucose only feeding condition at each timepoint in the 

ODE integration. 

RESULTS 

TEA results 
The TEA conducted for TAL production adhered to 

the 2019 Chemical Engineering Equipment Cost Index 
and applied the discounted cash flow methodology for 
the determination of the Minimum Selling Price (MSP). 
The derived MSP was subsequently benchmarked 
against market prices ($50/kg) to assess economic via-
bility. The Internal Rate of Return (IRR) served as the eco-
nomic indicator for comparison among different technol-
ogies. 

Capital and operational expenditures were extrapo-
lated from existing literature and SuperPro Designer [17], 
with equipment costs being estimated according to size 
by employing a power scaling factor, of 0.6 [23].  This 
calculation was based on an equipment price benchmark 
of a 500 m³ bioreactor [35], providing a reference for 
cost estimations. Annual operating costs were assessed, 
including material, labor, utilities, and laboratory opera-
tions, along with facility expenses such as maintenance, 
depreciation, insurance, taxes, and overheads, with labor 
costs aligned with project demands. The detailed eco-
nomic parameters are listed in Table 1. The TEA results, 
detailed in Table 2 [15,24-26], encompass capital ex-
penditure (CapEx), operating expenditure (OpEx), the 
MSP of TAL, and the Internal Rate of Return (IRR) across 
various scenarios. Moreover, there is an additional by-
product sale in the recycling scenarios examined in the 
TEA for TAL production. A key aspect was the conversion 
of all emitted CO2 into FA. This process not only contrib-
utes to the sustainability of the operation but also adds a 
revenue stream, as the portion of FA not used for feeding 
back into the reactor is sold externally. 

TEA analysis indicates that the scenario using glu-
cose as the sole substrate for TAL production outper-
forms the co-feeding scenario with glucose and CO2-de-
rived formic acid (FA). Notably, the co-feeding approach, 
with a 75% carbon recycle rate, demonstrates more than 
double the conversion efficiency compared to the glu-
cose-only scenario. This enhanced efficiency is at-
tributed to the additional NADH generated by the dissim-
ilation of formic acid, which contributes to ATP produc-
tion, thus supporting growth [11]. However, the produc-
tion cost for CO2-derived FA, ranging from $0.78 to $2.63 
per kg, exceeds that of glucose [21], priced at $0.33 per 
kg on average [27]. 

In the co-feeding scenarios, the 25% carbon recy-
cling case achieves the most favorable MSP at 
$30.91/kg. The lower MSP in scenarios with less formic 
acid co-feeding correlates with the profits from by-prod-
uct sales after accounting for the amounts needed for 
co-feeding, the surplus FA is sold as a by-product, 
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offsetting TAL production costs). Based on the SuperPro 
database, with an FA market price of $0.91 per kg, ap-
proximately 240, 448, and 648 mt/yr of FA can be sold in 
the 75%, 50%, and 25% carbon recycling scenarios, re-
spectively. In these scenarios MSP is inversely correlated 
to TAL yield on glucose (0.30, 0.21, and 0.18 g TAL per 
gram of glucose for 75%, 50%, and 25% carbon recycle 
cases, respectively). Also worth noting, the opposite 
trend in TAL MSP is observed if we only produce the re-
quired amount of formic acid and release the remainder 
of the CO2 to atmosphere (at $33.6, $31.74, and $31.51 
per kilogram, for 25, 50, and 75% recycle scenarios, re-
spectively). 

Figure 2 illustrates the detailed cost components 
contributing to the MSP for each production scenario. 
The primary utilities impacting the process economics 
are identified as electricity, steam, process water, and 
cooling water. The energy-efficient TAL separation pro-
cess, notably the adsorption and desorption steps, is 
highlighted for its role in reducing utility costs. However, 
for the electrochemical production of FA, the requirement 
of 4.79 kWh of electricity per kilogram of FA [15] results 
in a higher proportion of utility costs compared to glu-
cose-based TAL production. 

Table 2: Summary of TEA for various raw materials for a 
benchmark plant capacity of 100 mt TAL/y. 

Stream CapEx 
(MM$) 

OpEx 
(MM$) 

MSP 
($/kg)a 

IRR 
(%) b 

Glucose     
Glucose + 
Formic acid 
% carbon 
recycle 

    

Glucose + 
Formic acid 
% carbon 
recycle 

    

Glucose + 
Formic acid 
% carbon 
recycle 

    

a MSP is computed when the sum of the discounted cash flow 
over 10 years equals zero (minimum selling price without any 
benefit).  
b The internal rate of return after twenty years is based on the 
glucose-based MSP at a scale 0.1 kt/y, 50.00 $/kg. 

 

Table 1: Summary of economic assumptions for capital and operating cost. 

TCC process Capital investment cost Fixed operating cost 

Cathode Graphite block with 
Sn nanoparticles 

General & Ad-
ministrative 
Overheads 

% DFC a Operating  
Labor Cost 

average annual 
pre-taxed salary 
of $ per 
employee 

Anode Titanium anode with 
IrO-based catalyst 
coating 

Contract Fee % DFC Mainte-
nance Cost 

% of installed 
equipment cost 

Membrane Amberlite® IR 
strong acid ion ex-
change resin  
–  μm and 
Nafion 
//  

General & Ad-
ministrative 
Overheads 

% DFC Operating 
Charges 

% Operating 
Labor Cost 

Electrolyzer 
cost 

 $/kW Working  
capital 

% annual 
operating 
cost  

Operating 
General & 
Administra-
tive Cost 

% direct pro-
duction cost 

Pressure 
temperature 

Ambient pressure 
 C 

Contingencies % DFC Time parameters 

Residence 
time 

 min Contract Fee % DFC Project life  yr 

Membrane 
lifetime 

 hr Other Capital 
Cost  

% DFC Deprecia-
tion period 

 yr 

    Annual op-
erating time 

 hr 
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Figure 2. Cost breakdown of applying different TAL 
production routes.  

The larger FA requirement to feed in the 75%, 50%, 
and 25% carbon recycle cases, with amounts of 95.95, 
58.42, and 28.03 kg/hr, respectively causes an increase 
in electricity demands for the TCC reactor. However, TAL 
production using 75% carbon recycling of FA incurs less 
utility costs in the YL sections, as the cooling water de-
mands of the YL bioreactor decrease, assuming that the 
reaction expends 115 kcal of heat for each mole of O2 
consumed [32]. To produce an equivalent quantity of 
TAL, the oxygen mole ratio required for the 75%, 50%, 
and 25% FA scenarios are 13.67, 15.13, and 16.59, re-
spectively. The trade-off in utility costs between the two 
sections indicates that the CO2-to-FA process is more 
energy-intensive. When using only glucose as a sub-
strate in the YL bioreactor, a higher capital expenditure is 
required due to the lower yield and productivity of TAL 
(larger reactor size and more fermentation broth); they 
are 0.40, 0.66, 0.52, and 0.45 g-O2/kg broth/h for the 
glucose-based scenario and FA co-feeding with glucose 
with 75, 50, and 25 % carbon recycle scenarios respec-
tively. However, when FA and glucose are co-fed, yield 
and productivity increase. For the 75%, 50%, and 25% 
carbon recycle cases, they are 0.30, 0.21, and 0.18 g 
TAL/g glucose, that is 0.19, 0.13, and 0.10 g-TAL/kg 
broth/h in productivity, respectively. In these scenarios, 
the increase in biomass yield not only enhances product 
titer but also allows the system to burn less glucose for 
ATP generation. This efficiency results in smaller reactor 
sizes, with the 75% carbon recycle case being 44% 
smaller than the 25% case, and less fermentation broth, 
further improving the overall productivity (0.19 and 0.10 
g-TAL/kg broth/h respectively). Moreover, in the 25% 
carbon recycling scenario, capital costs for the CO2-de-
rived FA segment are lower due to the reduced CO2 out-
put from the YL section. 

LCA results 
The life cycle assessment (LCA) aimed to evaluate 

the environmental advantages of electrochemically con-
verting CO2 to FA and the subsequent co-feeding of 

glucose and FA for TAL production. The assessment, 
considering cradle-to-gate scope, tracked the CO2 from 
its origin in the YL bioprocess through its transformation 
into FA and its return to the YL bioprocess in combination 
with glucose. The functional unit for this analysis was set 
at 1 kg of TAL. 

Conforming to the ISO 14040 standard [28], the en-
vironmental evaluation of the CO2-to-FA reduction was 
conducted using the Brightway2 framework [29] and the 
Ecoinvent® v3.9.1 database [30], prioritizing US data but 
using global data when US data was unavailable. To de-
termine carbon footprint and LCA, emissions factors 
were created and used for various activities, such as grid 
electricity usage, measured in g CO2/kWh consumed. 
These factors represent an estimate of emissions from a 
broad system of power generators, rather than a single 
point source of emissions. The ReCiPe Midpoint method 
(version 1.13) was employed to gauge the Global Warm-
ing Potential (GWP) of greenhouse gases over a century 
[31], thus ensuring a comprehensive perspective of both 
immediate and enduring environmental effects. 

Furthermore, the LCA utilized system expansion for 
product allocation within multi-output processes, a 
method advantageous for co-products with distinct, 
quantifiable market values. This approach allows for the 
apportionment of environmental burdens proportionately 
to the economic value or utility of each product. In this 
case, the co-produced FA, derived from recycled CO2, is 
considered an environmental credit, acknowledging its 
displacement of fossil-derived equivalents, as depicted 
by the blue squares in Figure 1(C). Oxygen, another by-
product of electrolysis, was excluded from further utility 
considerations in this assessment. 

The LCA results demonstrate that co-feeding Yar-
rowia lipolytica with glucose and formic acid significantly 
improves the greenhouse gas performance of TAL pro-
duction. Notably, the scenarios with 75%, 50%, and 25% 
carbon recycling exhibit negative net emissions, thereby 
enhancing the environmental profile of the process. The 
25% carbon recycling case is the most effective, with a 
net emission reduction to -10.25 kg CO2-equivalents per 
kg of TAL (4.03 CO2-eq per kg of TAL, if not considering 
the CO2-to-FA credit), indicating an exemplary case of 
carbon-negative output. While if not considering the car-
bon credit from the by-product, FA, the 75% carbon re-
cycling case performs the best in GWP impact. The inclu-
sion of recycled CO2 as a feedstock for formic acid pro-
duction contributes to this improvement, showcasing a 
viable pathway for reducing GHG emissions in chemical 
manufacturing. On the other hand, the production of TAL 
using glucose-based methods, without recycling the CO2 
generated during fermentation, results in a higher carbon 
footprint. In this scenario, the carbon emissions from the 
fermentation process account for more than 50% of the 
total net emissions. This assessment solidifies the co-
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feeding of glucose with formic acid, particularly with high 
rates of carbon recycling, as a technologically and envi-
ronmentally advantageous route for TAL production, 
aligning with global sustainability goals. 

 

Figure 3. Lifecycle greenhouse gas emissions for 
glucose-based TAL and cofeeding of Yarrowia lipolytica 
with glucose and formic acid-based TAL. 

DISCUSSION 

The transition to sustainable energy systems is a 
critical endeavor in mitigating the environmental impact 
of hard-to-decarbonize sectors, including industrial and 
chemical processes. This study's LCA and TEA have shed 
light on a novel bioprocessing route for TAL production 
that integrates carbon recycling—a pivotal step towards 
achieving net-zero emissions. 

The LCA results affirm that the co-feeding of Yar-
rowia lipolytica with glucose and formic acid significantly 
advances the GHG performance of TAL production. The 
standout 75% carbon recycling scenario not only meets 
but exceeds net-zero emission goals, venturing into the 
carbon-negative territory. This demonstrates the pro-
found environmental benefits of incorporating CO2-to-
formic acid conversion within the TAL production cycle. 

From a techno-economic perspective, the TEA find-
ings reveal that the co-feeding approach, particularly 
with a high rate of carbon recycling, is economically via-
ble. Despite the higher utility costs associated with the 
electrochemical generation of formic acid, this is coun-
terbalanced by the revenue generated from the sale of 
excess formic acid, thereby enhancing the process's 
cost-competitiveness. 

The capital cost analyses for the bioreactor config-
urations further corroborate the economic viability of the 
co-feeding approach. Although the initial outlay is more 
substantial for the glucose-only scenario due to the 
larger reactor requirements (4.88 MM$ CapEx of YL pro-
cess), co-feeding with formic acid benefit the reactor siz-
ing and utility consumption, leading to a reduction in both 
capital and operating expenses (3.21-4.66 MM$ CapEx 
of YL process). 

Incorporating these findings, future directions will 

involve refining the bioprocesses and scaling the produc-
tion while aligning with policy developments that support 
economic and environmental sustainability. This research 
sets a foundation for policy-backed industry practices 
that promote a circular economy and contribute to the 
global goal of a net-zero carbon future. 
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ABSTRACT 
Managing oil and gas produced water, characterized by hypersalinity and large volumes, presents 
significant challenges. This paper introduces an advanced optimization framework, PARETO, 
which offers a novel approach to strategic water management, emphasizing produced water (PW) 
treatment, quality tracking, quantification of emissions, and environmental justice. This work pre-
sents a case study showcasing different produced water management challenges. The PARETO 
framework demonstrated its effectiveness in optimizing water management strategies in line with 
environmental sustainability and regulatory compliance. 

Keywords: produced water management, MINLP, process design, network optimization, MILP

INTRODUCTION 
Produced water (PW) management presents signif-

icant challenges to oil and gas industry stakeholders due 
to variable production volumes (unpredictable handling 
requirements) and water quality, especially due to its 
high concentrations of total dissolved solids (TDS) and 
other constituents (necessitating treatment). Given the 
variability in water produced across different basins 
along with the difficulty of treating hypersaline brine, oil 
and gas companies need to identify fit-for-purpose pro-
duced water management, treatment, and reuse ap-
proaches. Projected increases in PW volumes in coming 
decades [1], recent injection capacity curtailments [2 - 
3], and intensive capital investments (e.g., PW infrastruc-
ture) all motivate novel, cost-effective strategies for PW 
management. Therefore, decision-support tools to as-
sess techno-economic feasibility are critical. However, 
few such software tools currently exist. 

In 2021, the US Department of Energy (DOE) 
launched a three-year, $5 million PW optimization initia-
tive to develop, demonstrate and deploy PARETO, a 
novel optimization framework for PW management and 
beneficial reuse. PARETO is developed by the National 
Energy Technology Laboratory (NETL), in cooperation 
with Lawrence Berkeley National Laboratory (LBNL), 

Carnegie Mellon University, Georgia Tech, New Mexico 
State University, and the Ground Water Protection Coun-
cil, and is designed to identify cost-effective and envi-
ronmentally sustainable PW management, treatment and 
reuse solutions [4]. Specifically, PARETO supports deci-
sion-makers with 1) PW management, including infra-
structure buildout recommendations and the coordina-
tion of PW deliveries; 2) PW treatment, including treat-
ment facility placement recommendations and the selec-
tion of effective treatment technologies; and 3) PW ben-
eficial reuse, including the identification of beneficial re-
use options and the distribution of treated PW and/or 
concentrated brine.  

In previous versions of PARETO, the tool's core ca-
pabilities for optimizing water distribution across the net-
work were demonstrated using the Mixed Integer Linear 
Programming (MILP) method [4]. These capabilities in-
cluded user-defined treatment site specifications and 
post-process water quality tracking. The optimization 
aimed at various objectives, such as minimizing costs or 
maximizing water recycling within the network. Building 
upon this work, the current version of PARETO introduces 
significant enhancements, including new methods for in-
tegrating produced water (PW) treatment and quality 
tracking. This is achieved through surrogate modeling of 
rigorous desalination models, which capture the impact 
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of water quality and flow rate on treatment costs, utilizing 
both MILP and Mixed Integer Nonlinear Programming 
(MINLP) methods. Furthermore, this update includes ad-
vanced techniques for quantifying emissions and pro-
moting environmental justice, enabling a detailed analy-
sis of the trade-offs between economic factors and en-
vironmental objectives. 1) the PARETO treatment module 
includes a library of PW desalination technologies that 
can be used to obtain treated water for use outside oil 
and gas operations; 2) the PARETO environmental mod-
ule allows a user to track pollutants generated during 
produced water operations and provides a tool to bring 
environmental justice to communities located near oil and 
gas operations. 

The results show PARETO’s advanced mathematical 
modeling capabilities are able to solve large scale water 
network problems, with an emphasis on complex nonlin-
earities arising from studying effective formulations for 
solving water networks with water quality predictions. 

CASE STUDY AND PROBLEM 
STATEMENT 

This work presents an industrial-size produced wa-
ter network based on the Permian Basin (New Mexico 
and Texas).  

The main characteristics of PW networks in this re-
gion are the availability of pipelines and limited use of 
trucking for transport (the opposite is true in some other 
basins such as the Appalachian). Figure 1 shows a repre-
sentative PW network, which consists of 14 production 
pads, 3 completion pads, 5 disposal wells, 4 treatment 
sites (one of which is for desalination – R03), and 3 treat-
ment technologies (i.e., membrane vapor compression, 
membrane distillation, and osmotic assisted reverse os-
mosis). Figures 2-4 show the time-varying nature of the 
water production forecast and completions demand. The 
PW forecasts follow an exponential decay pattern, 
whereas the completions pads demand large amounts of 
water during specific time windows. Table 1 summarizes 
the water volumes, as can be seen, the PW forecast ex-
ceeds the completions demand, which is typical in PW 
networks.  

The main challenges associated with PW network 
management are:  

 Handling large volumes of produced water during 
specific time windows. (see Figure 3 and 4) 

 High salinity (TDS > 120,000 mg/L) and other 
constituents (i.e., oil, grease, barium, lithium, etc.). 

 Pipeline hydraulics (i.e., pressure drop, pumping 
stations, etc.). 

 Active development in the area requiring 
infrastructure buildout (i.e., new pipelines, new 

disposal wells, new treatment plants). 

 Selecting appropriate treatment and beneficial 
reuse alternatives for produced water (if 
available/applicable). 

 
Figure 1: PW network schematic. 

 
Figure 2: PW forecasts from production pads. 

 
Figure 3: Completions demand volumes. 
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Figure 4: Flowback forecast from completions pads. 
 
Table 1: Total PW volume and completion demand.  

Item  Volume (bbl/day) 
Completions Demand  
Produced Water Forecast  
Disposal Capacity  
Starting Treatment Capacity  

PARETO PRODUCED WATER QUALITY 
MODELING APPROACH 

 In produced water network management, a key el-
ement involves the estimation of flowrates and water 
qualities. This process involves tracking various compo-
nents within the network to efficiently manage and reuse 
water, tailored to the quality requirements of specific end 
uses. A notable consideration in modeling these net-
works is the non-convex and bilinear term in the mass 
balances emerging from the product of flow rates and 
concentrations of various components. Within its com-
prehensive management framework, PARETO adopts 
two distinct methods to estimate water quality. The main 
goals are to allow users to: 1) identify component/quality 
peaks within the produced water network; 2) simulate 
operating constraints based on water quality limitations; 
3) enable the selection and sizing of treatment technolo-
gies to enable beneficial reuse.  

Quality Post-Processing: In this case, PARETO 
solves an MILP model focusing on binary decisions and 
flow rates, without considering water quality. Once these 
flow rates are estimated, quality constraints are activated 
and flows and binary variables serve as parameters for 
subsequent quality assessment, simplifying these calcu-
lations to linear constraints. This approach is particularly 
valuable for pinpointing specific areas in the network that 
require targeted treatment and for identifying the most 
suitable technologies for the reuse of produced water 
(see Figure 5). 

Predictive Quality Management: This more 

advanced method begins with optimizing flow rates using 
an MILP, followed by the explicit integration of quality 
constraints. Subsequently, the system is initialized for a 
comprehensive MINLP model. While this method adeptly 
sets the stage for detailed analysis, the primary challenge 
emerges from the intricacies of the bilinear terms, partic-
ularly their nonconvex nature. This complexity hampers 
the achievement of a global optimum, highlighting the ad-
vanced analytical challenges inherent in accurately mod-
eling and optimizing such systems. This approach is val-
uable for adding performance constraints, and/or to iden-
tify the best treatment technology for a given network. 
Figure 5 presents a case study demonstrating the appli-
cation of an MILP model without quality level restrictions, 
resulting in elevated quality levels at specific locations. 
However, by integrating an MINLP model with explicit 
quality level constraints, it becomes feasible to precisely 
regulate and monitor the water flow and quality in these 
areas, ensuring that the quality does not exceed a spec-
ified threshold. 

 
Figure 5. The TDS (g/L) level at a specific location in the 
PW network. 

With both these methodologies in play, a pivotal as-
pect is the role of water treatment centers. The efficiency 
of these centers in component removal and water recov-
ery is integral to determining the final quality and quantity 
of treated and residual streams. The PARETO framework 
provides flexibility by allowing users to define specific 
water recovery and removal efficiency targets for each 
treatment site and technology. 

PARETO Treatment and Desalination 
Treatment systems are critical in achieving the re-

quired water quality for diverse applications such as ben-
eficial reuse and critical minerals recovery. The costs 
linked to these treatment systems, varying with the pur-
pose and intensity of treatment, play a substantial role in 
determining the overall investment in PW management 
strategies. It is, therefore, imperative to give due consid-
eration to the cost and functionality of treatment models 
within the broader context of produced water manage-
ment strategies. 

PARETO advanced water treatment analysis: PA-
RETO provides three methodologies (high-level cost 
analysis, semi-rigorous, and rigorous cost analysis):  
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1) discrete numerical inputs to enable flexible sizing of 
treatment plants (PARETO documentation includes 
a detailed literature review and vendor survey of 
treatment CAPEX and OPEX: https://pa-
reto.readthedocs.io/en/latest/model_library/wa-
ter_treatment/index.html).  

2) the deployment of detailed rigorous models for com-
prehensive process design and network optimiza-
tion.  

3) the application of surrogate models for streamlined 
computational analysis.  

Notably, while discrete numerical inputs facilitate 
the estimation of treatment costs, they fall short in cap-
turing the intricate interplay between water quality and 
cost implications. To bridge this gap, this work presents 
a PARETO surrogate modeling approach. These surro-
gate models adeptly establish correlations between wa-
ter quality, plant capacity (measured as flow rate), and 
cost, thereby furnishing a more rigorous cost analysis 
framework. 

PARETO effectively leverages the WaterTAP [5] li-
brary's rigorous models, which include a selection of ad-
vanced desalination technologies. Among these, Osmot-
ically Assisted Reverse Osmosis (OARO), Mechanical Va-
por Compression (MVC), and Membrane Distillation (MD) 
are prominent for their applicability in treating hyper-
saline produced water. The presented case study in-
cludes these technologies alongside primary treatment 
processes to produce both purified water and clean brine 
for beneficial reuse and network recycling, respectively. 

The methodologies utilized in PARETO, as previ-
ously detailed, provide a platform for diverse approaches 
in water treatment analysis. To showcase and compare 
these capabilities, we evaluate three distinct cases, each 
reflecting a different strategy within the PARETO frame-
work: 

Case 1: Discrete Input Values: In this approach, the 
PARETO framework is applied to analyze a system with 
discrete input values, where cost data for discrete ex-
pansion sizes of the plants are provided. The model uses 
this data to evaluate and identify the most cost-efficient 
desalination method among Mechanical Vapor Compres-
sion (MVC), Membrane Distillation (MD), and Osmotic As-
sisted Reverse Osmosis (OARO). 

Case 2: MILP-NN Surrogate: This approach in-
volves the use of the MILP integrated with a surrogate 
neural network (NN). Operating under fixed feed quality 
assumptions typical of Permian produced water with 
128,000 mg/L Total Dissolved Solids (TDS), the model al-
lows for variability in feed flow rate, demonstrating the 
effectiveness of MILP-NN in systems with fixed quality 
and variable flow rates. 

Case 3: MINLP-NN Surrogate: This case employs an 
MINLP model, incorporating a surrogate for the MVC 

process. It enables analysis under varying inlet feed qual-
ity and flow rate, providing a comprehensive view of the 
system's performance under different conditions. 

Surrogate Models 
Surrogate models are essential for simplifying com-

plex processes in situations where computational limita-
tions (i.e., large scale network problems such as pro-
duced water networks), lack of algebraic representation, 
or external functions/constraints are present.  

In our study, we address the complexities of Me-
chanical Vapor Compression (MVC) produced water 
treatment technology, which features a non-linear, non-
convex nature, making it unsuitable for direct represen-
tation in the large-scale Mixed-Integer Linear Program-
ming (MILP) framework. To manage the substantial in-
crease in problem size from the MVC model's 54 con-
straints/variables (per time period), we employ surrogate 
models based on simulations and empirical data, focus-
ing on regression techniques. 

Machine learning surrogate models, particularly 
Neural Networks with Rectified Linear Unit (ReLU) acti-
vation functions, are integrated into PARETO strategic 
model optimization frameworks. These models are ap-
plied to MVC plant scenarios, focusing on inputs like wa-
ter quality and recovery, and outputs including CAPEX, 
OPEX, and energy consumption. 

This work leverages the IDAES-PSE [6] machine 
learning toolset to train surrogate models for the treat-
ment technologies and integrate the surrogate model 
within the PW network problem to determine the optimal 
selection of treatment technologies (case 2 and 3 men-
tioned above). 

PW Quality and Treatment Results 
The results presented in Table 2 provide a compre-

hensive overview of the model's performance across the 
various cases.  

The overarching goal here is not to compare these 
cases on absolute numbers but rather to demonstrate the 
PARETO framework's flexibility and adaptability. The ba-
sis of calculations and underlying assumptions varies for 
each method, reflecting the diverse scenarios and user 
requirements each case study aims to address. This 
framework is designed to cater to a range of user needs, 
offering tailored solutions for different operational condi-
tions and types of analysis.  

An important observation across all cases is the 
model's effectiveness in optimizing water management, 
particularly in its emphasis on recycling water for com-
pletions purposes. The data shows that a significant por-
tion of produced water, approximately 45%, is recycled, 
which substantially reduces reliance on freshwater 
sources (only about 4%). 

 

https://pareto.readthedocs.io/en/latest/model_library/water_treatment/index.html
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Table 2: PW quality and treatment results. a kbbl 

 Case    Case   Case  
Total Cost k$    
Sourced Watera    
Disposal Volumea    
Reuse Volumea    
Piping OPEX k$    
Disposal CAPEX k$    
Pipeline CAPEX k$    
R treatment tech MVC - - 
R inlet salinity g/l    
Run time seconds    
Gap %    

 
As shown in Table 2, the model suggests investing 

in pipeline, treatment, and disposal infrastructure as an 
optimal long-term solution. This recommendation is 
based on a detailed cost-benefit analysis, indicating that 
such investments, despite their initial capital require-
ments, are beneficial in the long run for sustainable and 
efficient water management. 

Case 1: Basic Approach with Discrete Input Val-
ues: Case Study 1 represents a fundamental yet effective 
approach, utilizing discrete input values for treatment 
costs and plant sizes. This method simplifies the analysis 
by not tracking water quality within the network, focusing 
instead on optimizing cost and size parameters. One of 
the significant advantages of this approach is its reduced 
computational intensity. As indicated in the results, this 
method can solve the network in just 272 seconds, 
demonstrating its efficiency and suitability for quick as-
sessments or preliminary planning phases. 

Another notable aspect of Case 1 is its suitability for 
scenarios where vendor or industrial data is available in a 
discrete format. This approach aligns well with situations 
where the costs and technologies for water treatment are 
not heavily dependent on the inlet water quality. It is par-
ticularly beneficial in cases where the variation in water 
quality across the network is minimal, allowing for a more 
straightforward optimization process without the need 
for intricate quality tracking mechanisms. 

Case 2 Advanced Approach with Surrogate Model 
Integration: Case 2 incorporates a neural network based 
surrogate model that is responsive to both inlet flowrate 
and inlet water quality. To maintain the MILP structure 
while capturing the effects of varying costs associated 
with plant capacity and treatment, the water quality in 
this model is assumed to be a fixed value, representative 
of the conditions in the Permian Basin. A key attribute of 
Case Study 2 is its ability to strike a balance between 
computational efficiency and the adaptability of the 
model (reaching zero gap after 400s). 

One of the most notable features of Case 2 is its ca-
pacity to effectively capture the nuances of centralized 

versus decentralized treatment systems. By providing a 
finer-scale comparison that takes into account varying 
treatment cost and plant sizes in various location, this 
model delivers insights crucial for the consideration of 
transportation costs associated with water movement to 
the treatment centers. 

Further enhancing the model's capabilities, Case 2 
can incorporate an iterative procedure yielding to a dy-
namic and adaptable analysis by leveraging the post-
processing approach (i.e., estimate cost/performance, 
update quality levels, and re-estimate cost/performance, 
until convergence is reached). 

Case 3 - Advanced Modeling with MINLP and Qual-
ity Tracking: Case Study 3 employs an advanced MINLP 
model that intricately incorporates aspects of water qual-
ity, flowrate, and recovery. The scope of Case 3 extends 
beyond mere operational optimization. It is specifically 
designed to not only address environmental and regula-
tory considerations, but also efficiently predict treated 
water, recovery, and concentrated water. Which is criti-
cal to enable beneficial reuse (i.e., recovery of critical 
minerals from produced waters). 

While Case Study 3 offers the most detailed and so-
phisticated analysis among the three models, it is also the 
most computationally demanding. As evidenced by the 
results, this model requires a significant amount of time 
to reach an acceptable optimality gap. This computa-
tional intensity reflects the model's complexity and the 
depth of analysis it provides. Users of Case Study 3 need 
to be cognizant of the trade-off between its comprehen-
sive analytical capabilities and the time and computa-
tional resources required. 

QUANTIFYING EMISSIONS AND 
ENVIRONMENTAL JUSTICE IN 
PRODUCED WATER NETWORKS 
Accurate estimation of emissions is not only critical for 
maintaining regulatory compliance but also for the eco-
nomic considerations of PW systems, especially with the 
introduction of new emissions regulations. The Inflation 
Reduction Act, for example, established the Methane 
Emissions Reduction Program which introduces a charge 
for reported waste emissions beginning in 2024 [7]. While 
emissions measurements are generally acknowledged, 
there is also a growing interest in environmental justice 
impact.  In 2021, the Justice40 initiatives in response to 
Executive Order 14008 outlined new guidance for envi-
ronmental justice, including specific recommendation for 
the decrease of environmental exposure and burdens for 
Disadvantaged Communities. [8]. 

The PARETO framework includes three categories 
of environmental impact and environmental justice 
measures: (1) air pollutant metrics, (2) environmental ex-
posure in disadvantaged communities, and (3) trucking 

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/
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activity. Air emissions are tracked at different sources 
throughout the system: trucking, pipeline operations, 
pipeline installation, disposal, storage, and treatment. 
Five measures of air pollutants were identified for this 
case study: Greenhouse gas emissions (CO2 equiva-
lents), NH3, NOx, SO2, and PM2.5. Table 2 presents the 
respective coefficients.  PARETO reports on air emissions 
at each source and across the full PW network for each 
air pollutant type. Total emissions are also calculated as 
the sum across all pollutant types. To incorporate emis-
sions metrics into PARETO decision-making, users can 
select to optimize the PW network with an objective to 
minimize total emissions. 

Table 3: Air emission coefficients.  

Source Unit Type Coefficient 
Trucking g/hour CO  
  NH  
  NOx  
  SO  
  PM  
Pipeline Opera-
tions 

g/bbl-mile 
CO  

  NH  
  NOx  
  SO  
  PM  
Pipeline Instal-
lation  

g/mile 
CO  

  NH  
  NOx  
  SO  
  PM  
Disposal  g/bbl CO  
  NH  
  NOx  
  SO  
  PM  

Storage 
g/bbl-
week  CO  

  NH  
  NOx  
  SO  
  PM  

 
Table 3 and Table 4 present coefficients used to es-

timate air emissions output for unit of time, volume, dis-
tance, or combination, depending on the source. Air 
emissions coefficients and mathematical constraints are 
based on environmental impact modeling in Bartholomew 
& Mauter [7]. Ongoing work for emissions measurement 
includes establishing coefficients for technologies 

beyond Mechanical Vapor Compression. 

Table 4: Treatment technology air emission coefficients.  

Treatment Technology Type 
Coefficient 

(g/week) 
Mechanical Vapor Com-
pression 

CO  
NH  
NOx  
SO  
PM  

 
The second category included in the PARETO 

framework addresses environmental justice and focuses 
on Disadvantaged Communities (DAC) as defined by the 
Climate and Economic Justice Screening Tool [9]. This 
metric is a function of air emission measures and reports 
the air pollutants contributed from sources in the pro-
duced water system that fall within a DAC. Ongoing work 
for environmental justice measures includes incorporat-
ing penalties for building new PW infrastructure into an 
environmental objective function.  

The third category reports trucking activity for the 
total volume of water trucked and total hours of trucking 
time with non-zero water load. 

Environmental Impact Assessment 
The above-mentioned metrics have been added to the 
PARETO framework. Figures 6 to 8 present detailed 
emissions for the given produced water network. The re-
sults presented correspond to Case 1 from the previous 
section (base case – minimize total cost). It is worth not-
ing that, in the context of this case study and based on 
the specific data analyzed, the emissions originating from 
disposal, storage, and pipeline operations are minimal 
compared to those from treatment and pipeline installa-
tion. For this reason, they are not depicted in the figures 
but are instead included in the analysis. 

 
Figure 6: CO2 emissions in PW networks [kton]. 
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Figure 7. NOx emissions in PW networks [kton]. 

 
Figure 8. PM2.5 emissions in PW Networks [kton]. 

Emissions Trade-offs in Produced Water 
Management 

The emissions calculations presented in Table 5 of 
our study provide insightful findings on the environmen-
tal tradeoffs of various produced water management 
strategies. These results reveal the trade-off between 
minimizing costs and reducing total system emissions. 
The data indicates that while some strategies effectively 
reduce overall costs, they may result in higher total emis-
sions. Conversely, approaches focused on minimizing 
emissions demonstrate a substantial decrease in envi-
ronmental impact but at an increased cost. These find-
ings underscore the complexities involved in balancing 
economic and environmental objectives in produced wa-
ter management, highlighting the need for multi-faceted 
approaches that consider both financial and ecological 
sustainability.  

For the given case study, PARETO framework re-
duced PW treatment in favor of increasing produced wa-
ter disposal to reduce the overall emissions. This result 
can be seen as contradicting from the water sustainabil-
ity perspective, presenting a potential opportunity to ex-
plore different environmental objectives. 

Table 5: Results environmental KPIs. 

Objective (minimize) Cost  Emissions 
w/ limits   

Total Cost (k$)   
Total Emissions (kton)   
Sourced Water (kbbl)   
Disposal Volume (kbbl)   
Reuse Volume (kbbl)   
Piping operational costs 
(k$)   

Disposal CAPEX (k$)   
Pipeline CAPEX (k$)   

 
It is crucial to acknowledge the intrinsic limitations 

of the network studied, particularly in the context of the 
Permian case study which primarily relies on piping for 
water transportation. Piping, as demonstrated by prior 
research [10], offers emission savings compared to 
trucking, which is absent in our base case scenario, in-
herently limiting the scope for further emission reduc-
tions. Furthermore, the scope of the presented case 
study is constrained to a 52-week period, covering only 
16 production and completion pads. This limited geo-
graphical and temporal scale suggests that the observed 
emission savings, while seemingly modest, may repre-
sent a larger potential for emission reduction across 
broader basins and over the operational lifetime of wells. 

Lastly, it is pertinent to consider that the direct 
emission savings, while valuable, may not fully capture 
the broader environmental and health benefits. These 
benefits are more significantly recognized when emis-
sions are translated into cost dollars in terms of Human 
Health Effects (HHE). Although the conversion to an 
HHE-focused objective is beyond the scope of this itera-
tion of the PARETO framework, it represents a critical 
area for future exploration to comprehensively assess 
the value of emission reductions. 

CONCLUSIONS 
This work presents an update on project PARETO’s 

capabilities for advanced treatment modeling and quality 
tracking, and the quantification of environmental justice 
and emissions in produced water networks. We demon-
strated the use of PARETO framework to determine opti-
mal infrastructure buildout, PW management, and the se-
lection of treatment technologies that will enable poten-
tial beneficial reuse options in oil and gas produced water 
networks.  

Further work will focus on demonstrating multi-ob-
jective optimization tools for optimizing produced water 
networks under different objectives (i.e., water quality, 
cost, emissions and environmental justice, PW reuse, 
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etc.). Additionally, PW quality can be seen as a source of 
uncertainty in the decision-making process; process de-
sign under uncertainty is a promising topic in the area of 
PW desalination. 
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ABSTRACT 
Equation-oriented (EO) modeling has the potential to enable the effective design and optimization 
of the operation of advanced energy systems. However, advanced modeling of energy systems 
results in a large number of variables and non-linear equations, and it can be difficult to search 
through these to identify the culprit(s) responsible for convergence issues. The Institute for the 
Design of Advanced Energy Systems Integrated Platform (IDAES-IP) contains a tool to identify 
poorly scaled constraints and variables by searching for rows and columns of the Jacobian matrix 
with small L2-norms so they can be rescaled. A further singular value decomposition can be per-
formed to identify degenerate sets of equations and remaining scaling issues. This work presents 
an EO model of a flowsheet developed for post-combustion carbon capture using a monoethano-
lamine (MEA) solvent system as a case study. The IDAES diagnostics tools were successfully ap-
plied to this flowsheet to identify problems to improve model robustness and enable the optimi-
zation of process design and operating conditions of a carbon capture system. 

Keywords: Pyomo, Optimization, Carbon Dioxide Capture, Jacobian, Modelling

INTRODUCTION 
In order to achieve carbon neutrality by 2050, as is 

the US Department of Energy’s present goal [1], a wide 
variety of energy systems must be deployed. Process 
optimization can help allocate resources in the most effi-
cient manner to effect the changes necessary in the US 
and world economies to achieve this goal. The Institute 
for the Design of Advanced Energy Systems (IDAES) was 
founded in 2015 to study such advanced energy systems 
and to develop the IDAES Integrated Platform (IDAES-IP) 
to facilitate their development and optimization. [2] 
IDAES-IP is based on the Pyomo modeling language [3-
4] in Python and has been used to simulate a wide variety
of chemical and energy process systems.

Because IDAES-IP is equation-oriented (EO), it can 
provide improved convergence when closing recycle 
loops over the sequential-modular (SM) approach that is 
used in popular commercial process modeling and simu-
lation tools like Aspen Plus®. [5] However, it also requires 
more user skill to ensure that the model is well-

formulated to benefit from these theoretical convergence 
improvements. IDAES has developed and implemented a 
diagnostics toolbox leveraging several years of experi-
ence of many experts in EO modeling, debugging, and 
optimization, making it available to the public. [6] In this 
work, we detail some of the techniques that have been 
incorporated in that toolbox as applied to a flowsheet be-
ing developed for analysis of post-combustion carbon 
capture (PCC) systems. 

METHODS 
When prototyping a model, it is typically best to 

solve a “square problem,” i.e., one in which there are an 
equal number of free variables and equality constraints. 
The number of degrees of freedom can be checked by 
the function idaes.core.util.model_statis-
tics.degress_of_freedom. There are zero degrees of
freedom in a square problem. Variable bounds can be 
present, as they are often helpful to keep the nonlinear 
solver from exploring areas with non-physical solutions 

mailto:douglas.allan@netl.doe.gov
https://doi.org/10.69997/sct.160262
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or areas in which equations become undefined. For ex-
ample, if a logarithm of a variable is taken, its lower bound 
should be set to zero.  

However, variable bounds should not be active at a 
solution, because the inclusion of such a bound is effec-
tively a constraint, reducing the number of degrees of 
freedom by 1. The system of equations then either be-
comes infeasible, which precludes a solution, or degen-
erate, which means that some of the equations are re-
dundant. Different nonlinear solvers handle degeneracy 
differently, but it either prevents or dramatically slows 
convergence to a solution. For this reason, inequality 
constraints more complex than variable bounds should 
be avoided when formulating a square problem. 

 The principal diagnostic methods used in this work 
utilize the Jacobian. When solving a root-finding problem 

�
𝑓𝑓1(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

⋮
𝑓𝑓𝑛𝑛(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

� ≔ 𝒇𝒇(𝒙𝒙) = 𝟎𝟎    (1) 

the Jacobian matrix of 𝒇𝒇(𝒙𝒙) is given by 

𝐽𝐽(𝒙𝒙) ≔

⎣
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

⋯ 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥1

⋯ 𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥𝑛𝑛⎦

⎥
⎥
⎤
    (2) 

For a square problem, the Jacobian matrix is square. Each 
row of 𝐽𝐽(𝒙𝒙) corresponds to an equality constraint and 
each column corresponds to a free variable. Therefore, 
we can examine 𝐽𝐽(𝒙𝒙) to find clues about problems in 
equations and constraints. In the past, calculation of the 
Jacobian was difficult because derivatives had to either 
be calculated by hand or by finite differences. However, 
advances in algorithmic differentiation (AD) allow for au-
tomatic, precise calculation of derivatives. Pyomo offers 
access to the AD capacities of the AMPL solver library 
(ASL) [7] through the PyNumero interface [8]. 
 The most common methods of solving multivariate 
root-finding problems of the form of (1), like the one uti-
lized in IPOPT [9], which is freely available and was used 
as a nonlinear solver in this paper, are variations on New-
ton’s Method. The method approximates 𝒇𝒇(⋅) as linear 
and then repeatedly solves the linearized equation 

𝒇𝒇(𝒙𝒙𝑘𝑘) + 𝐽𝐽(𝒙𝒙𝑘𝑘)Δ𝒙𝒙𝑘𝑘 = 0    (3) 

𝒙𝒙𝑘𝑘+1 = 𝒙𝒙𝑘𝑘 + Δ𝒙𝒙𝑘𝑘    (4) 

until the condition  

‖𝒇𝒇(𝒙𝒙𝑘𝑘+1)‖2 ≤ 𝜀𝜀     (5) 

in which ‖⋅‖2 is the vector two (Euclidean) norm, is satis-
fied for some chosen tolerance 𝜀𝜀. In a practical implemen-
tation, the Newton step (4) may be truncated, either to 
account for variable bounds or because ‖𝒇𝒇(𝒙𝒙𝑘𝑘+1)‖2 >
 ‖𝒇𝒇(𝒙𝒙𝑘𝑘)‖2, but it is desirable to take the full step when 
possible. It is a sign of a well-formulated method working 

on a well-formulated problem when the full step (4) is fre-
quently taken until a solution is reached. 
 A condition number of a matrix is a measure of the 
sensitivity of changes in the solution to a system of linear 
equations. For example, for the Newton step-finding 
problem 

𝐽𝐽(𝒙𝒙𝑘𝑘)Δ𝒙𝒙𝑘𝑘 = −𝒇𝒇(𝒙𝒙𝑘𝑘)    (6) 

suppose we perturb the function output by 𝛿𝛿𝒇𝒇𝑘𝑘 and want 
to estimate the perturbation in the resulting step 𝛿𝛿𝒙𝒙𝑘𝑘 

𝐽𝐽(𝒙𝒙𝑘𝑘)(Δ𝒙𝒙𝑘𝑘 + 𝛿𝛿𝒙𝒙𝑘𝑘) = −(𝒇𝒇(𝒙𝒙𝑘𝑘) + 𝛿𝛿𝒇𝒇𝑘𝑘)  (7) 

Use of the condition number for the 2-norm 𝜅𝜅2(𝐽𝐽(𝒙𝒙𝑘𝑘)) 
gives us the bound 

‖𝛿𝛿𝒙𝒙𝑘𝑘‖2 ≤  𝜅𝜅2�𝐽𝐽(𝒙𝒙𝑘𝑘)�‖𝛿𝛿𝒇𝒇𝑘𝑘‖2   (8) 

In practice, such perturbations in the function output al-
ways exist from the roundoff errors in floating point arith-
metic. The relative error inherent in double precision 
floating point arithmetic is on the order of 10−16. Addi-
tionally, a large condition number 𝜅𝜅2(𝐽𝐽(𝒙𝒙𝑘𝑘)) (greater than 
about 108) makes it difficult to solve the problem (6) nu-
merically, increasing the time that Newton iterations take 
to solve. 
 The condition number of 𝐽𝐽(𝒙𝒙) is given by 

𝜅𝜅2� 𝐽𝐽(𝒙𝒙)� = ‖ 𝐽𝐽(𝒙𝒙)‖2/‖𝐽𝐽(𝒙𝒙)−1‖2   (9) 

in which ‖ ⋅ ‖2 is the operator norm induced by the vector 
2-norm, provided  𝐽𝐽(𝒙𝒙) is full rank. A more useful formula 
comes from the singular value decomposition (SVD). We 
factorize 

𝐽𝐽(𝒙𝒙) = 𝑈𝑈Σ𝑉𝑉𝑇𝑇     (10) 

in which  𝑈𝑈 and 𝑉𝑉 are orthogonal matrices and  

Σ = �
𝜎𝜎1 0 0
0 ⋱ 0
0 0 𝜎𝜎𝑛𝑛

�    (11) 

in which 𝜎𝜎1 ≥  𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝑛𝑛 ≥ 0. If  𝐽𝐽(𝒙𝒙) is full rank, then 
𝜎𝜎𝑛𝑛 > 0 and  

𝜅𝜅2� 𝐽𝐽(𝒙𝒙)� = 𝜎𝜎1/𝜎𝜎𝑛𝑛    (12) 

Therefore, we can improve the problem formulation by 
reducing the condition number by bringing the values of 
𝜎𝜎1 and 𝜎𝜎𝑛𝑛 closer together. This can be done by appropri-
ate scaling of variables and constraints. 

Scaling 
When working in SI units, it is common to have vari-

ables and equations that vary over many orders of mag-
nitude, from mole fractions of trace components with 
magnitudes 10−6  to enthalpy flow values that can be up 
to 106. IDAES-IP offers a variety of tools to assist in scal-
ing both variables and constraints. Scaling serves two 
purposes: first, to ensure that the convergence criterion 
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(5) guarantees that all equations are satisfied without be-
ing unduly difficult to satisfy, and second, to reduce the 
condition number of the Jacobian. A method exists [10] 
for calculating scaling factors for variables and con-
straints that minimize the condition number of the Jaco-
bian by solution of a convex program. While this method 
achieves the second goal, it has no guarantee of achiev-
ing the first goal. 

 Let there be two example equations that may occur 
in, for example, a heater: 

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 −  𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑓𝑓1(𝒙𝒙)   (13) 

𝐻𝐻𝑖𝑖𝑛𝑛 + 𝑄𝑄 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑓𝑓2(𝒙𝒙)   (14) 

in which 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the mole fraction of a trace component, 
𝐻𝐻 represents stream enthalpies, and 𝑄𝑄 is a heat duty. If 
the initial values were off by a relative error of 100%, the 
error in (13) would be of the order 10−6 and the error in 
(14) of the order 106. If equations of these magnitudes 
are loaded into the same 𝒇𝒇(⋅), significant error can exist 
in the values of mole fractions with the equation ostensi-
bly satisfied while the solver would strain to keep reduc-
ing the error in the enthalpy equation far beyond what is 
significant. IDAES and Pyomo allow us to give the first 
equation a scaling factor of 106 and the second one of 
10−6 to bring them to the same basis. 

Let us note the effect of such scaling on the function 
and the Jacobian. We would replace (13) and (14) with 

106(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 −  𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜𝑡𝑡) = 𝑓𝑓1(𝒙𝒙)  (15) 

10−6(𝐻𝐻𝑖𝑖𝑛𝑛 + 𝑄𝑄 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡) = 𝑓𝑓2(𝒙𝒙)   (16) 

and the corresponding rows in the Jacobian would be re-
placed by 

𝐽𝐽(𝒙𝒙) ≔

⎣
⎢
⎢
⎡ 106 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥1
⋯ 106 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑛𝑛

10−6 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

⋯ 10−6 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥n

⋮ ⋮ ⋮ ⎦
⎥
⎥
⎤
   (17) 

Now we have coefficients in the Jacobian of extremely 
different values. Row 1 has norm 106√2 and row 2 has 
norm of 10−6√3. We can derive a lower bound for the con-
dition number in terms of rows with largest and smallest 
2-norm. Rearrange Jacobian rows so that they are sorted 
in descending order of 2-norm magnitude 

𝐽𝐽(𝒙𝒙) = �
𝑟𝑟𝑚𝑚𝑡𝑡𝑥𝑥
⋮

𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛

�    (18) 

Then we have that 

 
1 Scaling at the time of passing the model to the solver can be 
done by use of the ipopt_v2 solver in Pyomo through the 
SolverFactory function. 

‖𝑟𝑟max‖2 = �[1 0 …] �
𝑟𝑟𝑚𝑚𝑡𝑡𝑥𝑥
⋮

𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛

��
2

≤ 𝜎𝜎1  (19) 

and 

‖𝑟𝑟min‖2 = �[… 0 1] �
𝑟𝑟𝑚𝑚𝑡𝑡𝑥𝑥
⋮

𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛

��
2

≥ 𝜎𝜎𝑛𝑛   (20) 

so, we have that 

𝜅𝜅2� 𝐽𝐽(𝒙𝒙)� = 𝜎𝜎1/𝜎𝜎𝑛𝑛 ≥ ‖𝑟𝑟max‖2/‖𝑟𝑟min‖2  (21) 

Presently, the Jacobian matrix has condition number 
greater than √6

3
⋅ 1012. To reduce it, we need to also set 

scaling factors for variables. We define  
𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 ≔  106𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 

𝐻𝐻�𝑜𝑜𝑜𝑜𝑡𝑡 ≔ 10−6𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 
Suppose we had 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 = 𝑥𝑥1 and 𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑥𝑥𝑛𝑛. The Jaco-
bian now looks like 

𝐽𝐽(𝒙𝒙) ≔

⎣
⎢
⎢
⎡

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

⋯ 1012 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

10−12 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

⋯ 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥n

⋮ ⋮ ⋮ ⎦
⎥
⎥
⎤
   (22) 

The entry involving 1012 would be potentially problem-
atic, but because 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑛𝑛
= 0, it is irrelevant.  In short, scaling 

a constraint multiplies the corresponding Jacobian row 
by that scaling factor, and scaling a variable divides the 
corresponding Jacobian column by that scaling factor. 
 It is not necessary to manually create transformed 
variables and constraints because Pyomo allows the user 
to store scaling factors associated with variables and 
constraints as part of the model. The unscaled model can 
then be transformed into the scaled model before being 
passed to the nonlinear solver.1 A scaled version of the 
model can also be retrieved for debugging purposes 
through a scaling transformation. 
 In a model with thousands of variables and con-
straints, however, it is difficult to keep track of which var-
iables and constraints have been scaled, and whether the 
scaling factors assigned are appropriate. The IDAES di-
agnostics toolbox, described in [6], has the methods 
display_constraints_with_extreme_jacobians 
and display_variables_with_extreme_jacobians 
that iterate over Jacobian rows and columns, respec-
tively, to display the ones with 2-norms larger and smaller 
than some user-specified tolerances (by default 104 and 
10−4). These methods highlight areas of the model that 
require work, but the user still needs to determine appro-
priate values for scaling factors, as well as which varia-
bles and constraints need to be scaled. For example, 
rows 1 and 2 would be highlighted in the Jacobian of (17), 
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when it is the variables, not the constraints, that require 
scaling.  
 Scaling is often an iterative process. Once appropri-
ate scaling factors are assigned to variables, bringing the 
Jacobian into the form (22), large or small entries can ap-
pear in additional rows, corresponding to other con-
straints, that would then need to be scaled. Finally, a 
large entry can correspond to a model that is intrinsically 
ill-conditioned. For example, when modeling a process 
with a large recycle ratio, large terms can appear in the 
corresponding Jacobian. Small impurities in the feed 
stream can become concentrated by factors of 100 or 
1000 as a feature of the process. Scaling might be able 
to hide this feature, but it can cause a loss in accuracy 
and will be revealed by performing SVD of the Jacobian. 

Singular Value Decomposition 
 Even once rows and columns with inappropriately 
large or small norms have been removed by scaling, the 
Jacobian’s condition number, which can be revealed 
through the SVD of the Jacobian, can still be extremely 
large. Both 𝜎𝜎1 and 𝜎𝜎n appear directly in the expression for 
the condition number, so reducing 𝜎𝜎1 and increasing 𝜎𝜎n 
should help reduce it. In practice, 𝜎𝜎1 is usually reduced to 
a reasonable level by scaling rows and columns, so we 
will focus on increasing 𝜎𝜎n instead.  
 Consider the solution to a Newton step problem 

𝒇𝒇(𝒙𝒙𝑘𝑘) = −𝐽𝐽(𝒙𝒙𝑘𝑘)Δ𝒙𝒙𝑘𝑘    (23) 

By decomposing 𝐽𝐽(𝒙𝒙) using the SVD and using that to 
solve (23), we obtain 

𝒇𝒇(𝒙𝒙𝑘𝑘) = −𝑈𝑈Σ𝑉𝑉𝑇𝑇 Δ𝒙𝒙𝑘𝑘     (24) 

−VΣ−1𝑈𝑈𝑇𝑇𝒇𝒇(𝒙𝒙𝑘𝑘) = VΣ−1𝑈𝑈𝑇𝑇𝑈𝑈Σ𝑉𝑉𝑇𝑇 Δ𝒙𝒙𝑘𝑘 = Δ𝒙𝒙𝑘𝑘 (25) 

So, in solving the perturbed problem, the constraint re-
sidual is projected by 𝑈𝑈𝑇𝑇 into orthogonal components in 
the space of the singular values, scaled by the inverse 
singular values, and those scaled values are projected by 
𝑉𝑉 into the space of variables.  
 Looking at (25) another way 

−𝑈𝑈𝑇𝑇𝒇𝒇(𝒙𝒙𝑘𝑘) = Σ𝑉𝑉𝑇𝑇Δ𝒙𝒙𝑘𝑘     (26) 

Each column of 𝑈𝑈 (row of 𝑈𝑈𝑇𝑇) is an orthogonal vector, as-
sociating elements of 𝒇𝒇(𝒙𝒙𝑘𝑘), i.e., particular constraints, 
with a singular value. Likewise, each column of 𝑉𝑉 (row of 
𝑉𝑉𝑇𝑇) is a vector associating elements of Δ𝒙𝒙𝑘𝑘, i.e., particular 
variables, with a singular value. The SVD shows which 
constraints are being satisfied using which variables in a 
neighborhood of 𝒙𝒙𝑘𝑘, and the sensitivity of the variables 
with respect to constraints.  
 If the smallest singular value 𝜎𝜎𝑛𝑛 ≪ 1, a small change 
in certain function values requires a large change in vari-
able values. By looking at the constraints involved in the 
nth left-singular vector 𝑢𝑢𝑛𝑛 and the variables involved in 
nth right singular vector 𝑣𝑣𝑛𝑛 we can attempt to determine 

what is causing this dysfunctional relationship. Because 
of the dense linear algebra involved, we expect most en-
tries of 𝑢𝑢𝑛𝑛 and 𝑣𝑣𝑛𝑛 to be populated by nonzero numbers. A 
simple but crude method is to filter for indices that have 
values greater than some tolerance. We have found ab-
solute values of 0.1 to 0.3 work well for this. If too many 
variables and constraints appear, raise the tolerance. If 
too few appear, decrease it. 
 Ideally, we would want the condition number of 𝐽𝐽(𝒙𝒙𝑘𝑘) 
to be relatively small. In practice, however, we typically 
accomplish a condition number on the order of 106-108. 
That means filtering for singular values smaller than 10−8-
10−6 and attempting to remedy them. In general, there 
are four causes of small singular values: 

1. Incorrect scaling of variables or constraints 
2. Redundant equations, hinting a problem that 

over-specifies some variables and under-speci-
fies others, i.e., global degeneracy 

3. A local singularity, caused by evaluating 𝐽𝐽(𝒙𝒙) at a 
point where it locally loses rank, i.e., local degen-
eracy 

4. Attempting to solve a problem that is inherently 
ill-conditioned. 

Incorrect scaling is probably the most common cause of 
small singular values of values 10−12-10−6, followed by in-
herent ill-conditioning. For singular values smaller than 
10−12, the cause is typically local or global degeneracy.  
The next section presents a carbon capture application 
in which these concepts can be demonstrated. 
 A similar technique for identifying sets of degener-
ate equations is given by the Degeneracy Hunter algo-
rithm proposed in [11]. This algorithm is also incorporated 
into the IDAES diagnostics toolbox. It differs from this 
technique by performing a QR factorization instead of an 
SVD, then solving a mixed integer linear program (MILP) 
to find an irreducible degenerate set of equations. Which 
algorithm is appropriate for a given problem depends on 
the algorithms available for a sparse QR factorization, a 
sparse SVD, and MILP solution. An advantage the SVD 
provides, however, is that it shows which combinations 
of variables are being used to satisfy combinations of 
constraints. If a degenerate constraint is removed, then 
another constraint must be added to constrain that com-
bination of free variables.  

CASE STUDY: POST COMBUSTION 
CARBON CAPTURE FLOWSHEET 
 A flowsheet in which CO2 is captured from flue gas 
(from a ~690 MWe Natural Gas Combined Cycle power 
plant) by absorption into monoethanolamine (MEA) pro-
vides several examples in which these diagnostic tests 
were of great assistance in model refinement and in-
creasing robustness. This flowsheet was first presented 
in [12], but despite the techniques used to provide robust 
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solutions, such as a four-stage initialization routine for 
the absorption and stripping columns, it remained fragile 
and prone to failure.  It was desirable to improve conver-
gence and numerical robustness so the flowsheet could 
be used for robust design optimization. The flowsheet 
consists of an absorption column, stripper column, lean-
rich heat exchanger, and balance-of-plant equipment. It 
is divided into two sub-flowsheets, an absorber section 
and a stripper section, that are solved independently be-
fore being linked and solved together. 

 
Figure 1. MEA carbon capture flowsheet, divided into 
stripper and absorber sections. 

 We begin with a flowsheet that has some partial 
scaling applied to the column model, but does not have 
scaling for any other models. The column model has al-
ready been reformulated to remove division in con-
straints where possible, which helps avoid bad numeric 
behavior when the denominator of an expression is 
nearly zero at an intermediate iteration. For an unscaled 
or partially-scaled model, the output can be hundreds of 
lines long. The output length is mostly the result of scal-
ing issues in indexed variables or constraints resulting in 
those variables or constraints being printed for each 
value of their indices. Since the column model is discre-
tized into 40 finite elements along its length, 10 badly-
scaled equations results in 400 entries. Therefore, the 
output cannot be fully displayed here, but some repre-
sentative entries can be shown. 

Jacobian Analysis 
 Here, we run the diagnostics tools after a suc-

cessful solution of the flowsheet. They can be used after 
failures to solve a flowsheet, but care should be taken as 
variables may not have realistic values, which is reflected 
in the model Jacobian. The following is one line (out of 
hundreds) produced by the display_varia-
bles_with_extreme_jacobians command from the 
DiagnosticsToolbox: 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].temperature: 1.997E+08 

This entry indicates a column norm of 2 ⋅ 108. We can in-
spect the associated column of the Jacobian to find 
which rows are associated with this large value. In IDAES-

IP, we can do this using the display_constraints_in-
cluding_variable function in the SVDToolbox. 
fs.stripper_section.reflux_mixer.enthalpy_mixing_equa-
tions[0.0]: 1.997e+08 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_k_eq_constraint[bicarbonate]: 
5.364e+00 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_k_eq_constraint[carbamate]: 6.551e+00 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,MEACO
O_-]: 1.514e+00 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,HCO3_
-]: 2.333e-01 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,MEA_+
]: 1.748e+00 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,H2O]: 
3.183e+01 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,MEA]: 
1.129e+00 

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,CO2]: 
5.685e-03 

    fs.rich_temperature: 1.000e+02 

From inspection, the problematic Jacobian entry is asso-
ciated with a mixer enthalpy mixing equation that is not 
yet scaled.  
 To fix the problem, we need to determine an appro-
priate scaling factor. We can calculate such a value from 
scaling factors for both the molar flow and the specific 
molar enthalpy. Finding the molar flow scaling factor is 
easy; it is generally observed that the molar flow rates 
are on the order of 103-104 throughout the flowsheet, so 
we choose 3 ⋅ 10−4 as a scaling factor for the molar flow 
rate. Determining a scaling factor for the specific molar 
enthalpy is harder. Enthalpy can be either positive or 
negative in different areas of the flowsheet, so its order 
of magnitude does not make a good scaling factor. By 
evaluating the liquid-phase enthalpy in the reflux mixer, 
the water makeup mixer, and the reboiler, we get values 
of −42200, −43600, and −38800. With an apparent range 
of 4800, a scaling factor of 3 ⋅ 10−4 is also a good choice 
for this variable. Values for scaling factors do not have to 
be exact: almost counts in horseshoes, hand grenades, 
and model scaling. 
 The process of removing this scaling issue took us 
through at least three Pyomo sub-models (and associ-
ated Python files) to determine a process through which 
the scaling factor for one equation was calculated. How-
ever, had reasonable default scaling factors for the prop-
erty sub-model been set by the user ahead of time, this 
issue would never have arisen. 
 Next, we consider scaling the equations describing 
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heat transfer in the column 

ℎ𝑉𝑉𝑎𝑎𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴 = −(𝐶𝐶𝑝𝑝𝑝𝑝𝑂𝑂2,𝑉𝑉𝑁𝑁𝑝𝑝𝑂𝑂2,𝑉𝑉 + C𝑝𝑝𝐻𝐻2𝑂𝑂,𝑉𝑉𝑁𝑁𝐻𝐻2𝑂𝑂,𝑉𝑉)  (28) 

ℎ𝑉𝑉′ 𝑎𝑎𝑡𝑡(1 − exp (𝐴𝐴𝐴𝐴𝐴𝐴 )) = C𝑝𝑝𝑝𝑝𝑂𝑂2,𝑉𝑉𝑁𝑁𝑝𝑝𝑂𝑂2,𝑉𝑉 + C𝑝𝑝𝐻𝐻2𝑂𝑂,𝑉𝑉𝑁𝑁𝐻𝐻2𝑂𝑂,𝑉𝑉 (29) 

in which ℎ𝑉𝑉 is the heat transfer coefficient from liquid to 
vapor, 𝑎𝑎𝑡𝑡 is the effective area of heat transfer per unit 
column volume, 𝐶𝐶𝑝𝑝,𝑖𝑖,𝑉𝑉 is the heat capacity of species 𝑖𝑖, 𝑁𝑁𝑖𝑖,𝑉𝑉 
is the molar flux of species 𝑖𝑖 from vapor to liquid, and 𝐴𝐴𝐴𝐴𝐴𝐴 
is the Ackerman factor, which is a measure of how much 
diffusive heat fluxes are distorted by convective heat 
transfer. It was discovered that |𝐴𝐴𝐴𝐴𝐴𝐴| ≤ 10−2 for operating 
conditions of interest and was frequently on the order of 
10−5. This causes ill-conditioning in both equations be-
cause the factors 𝐴𝐴𝐴𝐴𝐴𝐴 and 1 − exp (𝐴𝐴𝐴𝐴𝐴𝐴) became close to 
zero. Because 𝐴𝐴𝐴𝐴𝐴𝐴 could vary over several orders of mag-
nitude depending on location and operating conditions, 
assigning a consistent scaling factor is difficult. 
 If we first rearrange (28) and (29) to make the rela-
tionship between ℎ𝑉𝑉 and ℎ𝑉𝑉′  more clear 

ℎ𝑉𝑉′  = ℎ𝑉𝑉
𝐴𝐴𝑡𝑡𝑘𝑘

(exp(𝐴𝐴𝑡𝑡𝑘𝑘 )−1)    (30) 

several solutions are possible. The function  

𝜃𝜃(𝑥𝑥) = 𝑥𝑥
exp(𝑥𝑥)−1

    (31)  

has an indeterminant form at 𝑥𝑥 = 0, but a well-defined 
Taylor expansion  

𝜃𝜃(𝑥𝑥) ≈ 1 − 𝑥𝑥
2

+ 𝑥𝑥2

12
+ 𝑂𝑂(𝑥𝑥4)   (32) 

A Taylor approximation could be substituted for 𝜃𝜃(𝐴𝐴𝐴𝐴𝐴𝐴) in 
(30), but 𝜃𝜃(𝑥𝑥) could also be implemented as an external 
grey-box function in IDAES, switching between the full 
form (31) and Taylor form (32) based on |𝑥𝑥|. Both options 
were eventually implemented. An external function for 
𝜃𝜃(𝑥𝑥) is implemented in IDAES with a sixth-order Taylor 
approximation, but the trivial Taylor approximation 𝜃𝜃(𝑥𝑥) ≈
1 is presently used in the MEA flowsheet because not 
every solver in Pyomo supports external functions. 

SVD Analysis 
 The SVD also tells us valuable information about the 
state of the flowsheet. Its condition number is 9.2 ⋅ 1017, 
so the matrix is singular to machine precision. The small-
est singular value is  𝜎𝜎𝑛𝑛 = 3.1 ⋅ 10−10. Using a tolerance for 
the singular vectors of 0.1, we find the following variables 
involved: 
 

fs.stripper_section.reflux_mixer.re-
flux_state[0.0].log_conc_mol_phase_comp_true[Liq,H
CO3_-] 

fs.stripper_section.reflux_mixer.re-
flux_state[0.0].log_conc_mol_phase_comp_true[Liq,M
EA_+] 

fs.stripper_section.reflux_mixer.re-
flux_state[0.0].log_conc_mol_phase_comp_true[Liq,M
EA] 

fs.stripper_section.reflux_mixer.re-
flux_state[0.0].log_conc_mol_phase_comp_true[Liq,M
EACOO_-] 

and the following constraints involved: 
fs.stripper_section.condenser.liquid_phase[0.0].ap
pr_to_true_species[Liq,MEA] 

fs.stripper_section.condenser.liquid_phase[0.0].tr
ue_mole_frac_constraint[Liq,HCO3_-] 

fs.stripper_section.condenser.liquid_phase[0.0].tr
ue_mole_frac_constraint[Liq,MEA_+] 

fs.stripper_section.condenser.liquid_phase[0.0].tr
ue_mole_frac_constraint[Liq,MEA] 

fs.stripper_section.condenser.liquid_phase[0.0].lo
g_conc_mol_phase_comp_true_eq[Liq,HCO3_-] 

fs.stripper_section.condenser.liquid_phase[0.0].lo
g_conc_mol_phase_comp_true_eq[Liq,MEA_+] 

fs.stripper_section.condenser.liquid_phase[0.0].lo
g_conc_mol_phase_comp_true_eq[Liq,MEA] 

fs.stripper_section.condenser.liquid_phase[0.0].ap
pr_to_true_species[Liq,HCO3_-] 

fs.stripper_section.condenser.liquid_phase[0.0].ap
pr_to_true_species[Liq,MEA_+] 

All these variables and constraints occur in the conden-
ser, which makes interpretation of the problem easier. 
However, if multiple degeneracies are present, they can 
mix between different tiny singular values, so sometimes 
additional analysis is necessary to separate different de-
generacies.  
 Because the property model in this flowsheet does 
not account for amine volatility, the mole fraction of MEA 
in the condenser is effectively zero. All the variables im-
plicated here are dissociation species of MEA, which sim-
ilarly have concentrations of effectively zero. The con-
straints are likewise the disassociation equations for 
MEA. Thus, the absence of MEA causes degeneracy in 
the system of equations governing the dissociation reac-
tions. Different strategies can be employed to overcome 
this degeneracy. The easiest is to increase the mole frac-
tion of MEA to around 10−4. However, this merely miti-
gates the ill-conditioning—it does not remove it—and the 
addition of extra MEA in the system could cause prob-
lems with material balances converging.  
 IDAES-IP allows the user to define property pack-
ages that bundle together thermodynamic calculations 
into a single sub-model that can then be employed in dif-
ferent unit models.  The solution we employed was to 
create a duplicate property package without the dissoci-
ation reactions and use that for the condenser and reflux 
mixer. That solution works only because the liquid phase 
property sub-model does not rely on ion concentrations 
for the calculation of enthalpy. For one that requires ion 
concentrations to calculate the enthalpy of mixing, like 
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eNRTL, another solution would have to be devised. 

Limits of Scaling and Reformulation 
 Not every problem that can be discovered by these 
diagnostic tools has a nice solution.  Such is the case with 
the system of equations for the enhancement factor for 
mass transfer in reactive systems. Taken from [13] for the 
MEA-CO2 system, the full enhancement factor model has 
ten tightly coupled numerical expressions in it. However, 
the core numerical issues derive from two equations: 

𝐸𝐸 = 1 + (𝐸𝐸∞∗ − 1) 1−Υ𝑀𝑀𝑀𝑀𝑀𝑀
𝑖𝑖

1−Υ𝐶𝐶𝑂𝑂2
𝑏𝑏     (33) 

𝐸𝐸 = 𝐻𝐻𝑎𝑎�Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 1−Υ𝐶𝐶𝑂𝑂2
∗

1−Υ𝐶𝐶𝑂𝑂2
𝑏𝑏      (34) 

in which 𝐸𝐸 is the enhancement factor, 𝐸𝐸∞∗  is the “instan-
taneous enhancement factor,” a theoretical maximum 
value for the enhancement factor, Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖  is a dimension-
less concentration of MEA at the vapor/liquid interface, 
Υ𝑝𝑝𝑂𝑂2
∗  is the dimensionless concentration of CO2 at the in-

terface, Υ𝑝𝑝𝑂𝑂2
𝑏𝑏  is the dimensionless concentration of CO2 in 

the bulk liquid, and 𝐻𝐻𝑎𝑎 is the Hatta number, the ratio of 
reaction film to the rate of diffusion in the film. Absorption 
happens when Υ𝑝𝑝𝑂𝑂2

𝑏𝑏 < 1, desorption happens when Υ𝑝𝑝𝑂𝑂2
𝑏𝑏 >

1, and equilibrium occurs when Υ𝑝𝑝𝑂𝑂2
𝑏𝑏 = 1. 

 The problem occurs near equilibrium, because the 
expression 1 − Υ𝑝𝑝𝑂𝑂2

𝑏𝑏  is nearly equal to zero, and the quo-
tients in (33) and (34) are nearly singular. At actual solu-
tions to the system of equations, numerical tests show 
that 1 − Υ𝑝𝑝𝑂𝑂2

∗  and 1 − Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖  also approach zero, so the quo-
tient remains defined. However, since we now must deal 
with a multivariate function, we have been unsuccessful 
at removing the singularity by use of a Taylor series, like 
we did with the Ackerman factor. The expressions 1 −
Υ𝑝𝑝𝑂𝑂2
𝑏𝑏  and 1 − Υ𝑝𝑝𝑂𝑂2

∗  will have the same sign at any solution 
to the activity factor system. However, contrary to what 
is stated in [13], there exist at least one scenario in which 
1 − Υ𝑝𝑝𝑂𝑂2

𝑏𝑏  has the opposite sign as 1 − Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 . When CO2 is 
desorbing at low temperatures, the rate of reaction can 
become slow enough that the rate of desorption is lower 
with reaction than it would be without reaction, and the 
enhancement factor drops below one. That fact limits 
possible reformulations of these two equations.  
 The equations were ultimately reformulated in sev-
eral steps. First, a log variable 𝑆𝑆𝑝𝑝𝑂𝑂2 was introduced for 
one of the singular ratios: 

(1 − Υ𝑝𝑝𝑂𝑂2
𝑏𝑏 ) exp�𝑆𝑆𝑝𝑝𝑂𝑂2� = 1 − Υ𝑝𝑝𝑂𝑂2

∗     (35) 

so that (34) could be rewritten as the linear equation 

log𝐸𝐸 = log𝐻𝐻𝑎𝑎 + 1
2

logΥMEA𝑖𝑖 + 𝑆𝑆𝑝𝑝𝑂𝑂2   (36) 

in which log𝐸𝐸, log𝐻𝐻𝑎𝑎, and logΥMEA𝑖𝑖  are all additional log 
variables defined using equations of the form 

exp (log 𝑥𝑥) = 𝑥𝑥    (37) 

To be completely clear, log 𝑥𝑥 is a single variable, not an 
expression denoting the logarithm of the variable 𝑥𝑥, 
which we denote log(𝑥𝑥). We have that log 𝑥𝑥 = log(𝑥𝑥) at so-
lutions of the model, i.e., when 𝒇𝒇(𝒙𝒙) = 𝟎𝟎, but equality does 
not necessarily hold at intermediate Newton iterates. The 
benefit of implicitly taking the logarithm in equations like 
(35) and (37) instead of using a log function in (36) is that 
the variable log 𝑥𝑥 can maintain numerical accuracy even 
when the values of 𝑥𝑥 are extremely small or extremely 
large.  

 

 

 
(a) (b) 

Figure 1. Convergence of the pilot-scale stand-alone 
column model depending on inlet parameters (a) 
before and (b) after the scaling and reformulations 
detailed here. A filled square indicates it converged, an 
unfilled square indicates it did not converge. In the 
reformulated model, divergence typically is a result of 
Υ𝑝𝑝𝑂𝑂2
∗  incorrectly converging to 1, resulting in (35) and 

(38) becoming degenerate. 

  
(a) (b) 

Figure 2. Convergence of the plant-scale full 
flowsheet model depending on inlet parameters (a) 
before and (b) after the scaling and reformulations 
detailed here. A filled square indicates it converged, an 
unfilled square indicates it did not converge.  

Unfortunately, both (35) and (39) become de-
generate when Υ𝑝𝑝𝑂𝑂2

𝑏𝑏 = 1. Because the enhancement 
factor system can be largely decoupled from the re-
maining equations, a surrogate model was created to 
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give the log enhancement factor as a function of liquid 
phase CO2 and H2O loading, vapor phase CO2 partial 
pressure, temperature, and liquid and vapor mass 
transfer coefficients. However, too much accuracy 
was lost in the first attempt at a surrogate model, and 
the reformulated enhancement factor model is reliable 
enough to keep. Figures 1a and 1b show the conver-
gence of the original and reformulated stand-alone 
column models, while Figures 2a and 2b show the con-
vergence of the original and reformulated full flow-
sheet models (with all changes, not just to the en-
hancement factor calculations), respectively. The nu-
merical robustness of the reformulated and scaled 
models is significantly improved over that of the origi-
nal model. 
 It is possible to use the same technique as (35) for the 
ratio of MEA to CO2 in (33). However, that implicitly 
assumes that 1 − Υ𝑝𝑝𝑂𝑂2

∗  and 1 − Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖  have the same 
sign, which is true for most operating conditions of in-
terest, but is not true for desorption at low tempera-
tures. The resulting reformulation of (33) is then 

exp (log𝐸𝐸)(1 − Υ𝑝𝑝𝑂𝑂2
𝑏𝑏 ) = exp(η)�1 − Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 �          (38) 

exp(𝜂𝜂) = 𝐸𝐸∗ − 1               (39) 

in which the log variable 𝜂𝜂 has been introduced 
for the instantaneous enhancement factor minus one 
because there is a simple expression for 𝜂𝜂 (not given 
here) in terms of logarithms of other variables.   

CONCLUSIONS 
We have outlined model diagnostic methods using 

tools available in Pyomo and IDAES-IP. As illustrated 
through the example of the MEA flowsheet, these tools 
can be of great assistance to the user by serving to point 
out likely problems. However, they do not solve them for 
the user. Finding problems in a model with tens of thou-
sands of constraints and variables is a major service, but 
the user’s insight and modelling expertise is still neces-
sary to solve them. Nevertheless, these tools and tech-
niques can help make EO modeling frameworks more ac-
cessible and facilitate the use of advanced optimization 
techniques in process design. 
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ABSTRACT 
We present the implementation of combined junior course projects encompassing three core 
courses: reaction engineering, separations, and process simulation and design. The combined pro-
ject aims to enhance the vertical integration of process design learning through all levels of the 
curriculum. We design the projects to utilize novel modular process technologies (e.g., membrane 
separation) and to emphasize new process design goals (e.g., sustainability, decarbonization). 
Two example projects, respectively on green methanol synthesis and ethylene oxide production, 
are showcased for project implementation. Feedback from junior and senior students is also pre-
sented to motivate the development of such joint project in CHE curriculum. We will also discuss 
the challenges we hope to address to maximize student learning from this unique project. 

 Keywords: Education, Modelling and Simulations, Process Design, Process Intensification, Carbon Capture.

INTRODUCTION 
Chemical Engineering curriculum is well-recognized 

for its broad scope covering many core concepts with a 
wide range of engineering applications. Students typi-
cally acquire the fundamentals distributed over courses 
in the first three years while applying the entire body of 
knowledge to a capstone design project during the senior 
year. Given this, vertical integration of process design ex-
periences through the curriculum1-2 offers promise to 
help students develop a connected ChE knowledge map 
and foster critical thinking before starting senior design.  

In this paper, we present our efforts on advancing 
junior-level design education, in particular, leveraging 
combined projects joint across three courses that stu-
dents are taking in the Spring semester, namely Reaction 
Engineering, Separations, and Process Simulation and 
Design. The major goals of the combined project include: 
1. Students work in teams to solve open ended chemical 

engineering problems.
2. Integrate topics and knowledge from multiple courses

towards plant design and optimization.
3. Learn emerging new modular units (e.g., membrane)

and integrate to existing process options.
4. Learn new process design goals including

decarbonization, sustainability, etc.

EXAMPLES OF COMBINED PROJECT 

Project 1: Methanol Synthesis using Captured 
CO2 and Green Hydrogen 

The Spring 2022 combined project is shown in Fig. 
1, which involved the modeling, simulation, and optimiza-
tion of an industrial-scale methanol synthesis process 
using captured CO2 and green hydrogen. The CO2 cap-
ture unit, which was the focus of Separations course, in-
volved designing and optimizing a membrane-based pro-
cess for CO2 capture from natural gas combined cycle 
plant3. This enabled the students to be familiar with a rel-
atively new separation technology as opposed to tradi-
tional sorbent-based processes. For the CO2 hydrogena-
tion reactor, the focus of Reaction Engineering course, 
students analyzed various reactor designs and operating 
conditions with an emphasis on the impact of recycle 
stream. This enabled the students to model a more com-
plex reactor while investigating how the reactor design 
was influenced by the up/down process streams. Stu-
dents also simulated and analyzed the entire flowsheet4 
as part of Process Simulation and Design course. Process 
design optimization strategies were proposed and inves-
tigated by students, assessed against multiple econom-
ics and sustainability metrics. 

mailto:madelyn.ball@mail.wvu.edu,
mailto:oishi.sanyal@mail.wvu.edu
https://doi.org/10.69997/sct.187851
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Project 2: Ethylene Oxide Production 

Fig. 2 illustrates the Spring 2023 combined project 
to design an ethylene oxide production plant via the di-
rect oxidation of ethylene. The base case process design 
starts with compressing a mass amount of dry air which 
includes both nitrogen and oxygen. The multi-stage com-
pressors are the major energy consumer in this process. 
The Separations course focuses on analyzing an alterna-
tive route in which oxygen is first separated from air via 
membranes before being sent to compressors. This ena-
bled the students to quantitatively compare two process 
options, including a well-established process with high 
energy intensity and an emerging modular process where 
the large-scale commercialization is at an early stage. For 
the ethylene oxidation reactor, the focus of Reaction En-
gineering course, students compared the simulation us-
ing equilibrium-based reactor and kinetic reactor to un-
derstand the characteristics of this reaction. Students 
also searched for alternative catalysts from open 

literature, such as the use of promoters on the Ag cata-
lyst to improve selectivity to the ethylene oxide product. 
This enabled the students to learn the impact of reaction 
kinetics on the design and optimization of this reactor 
unit as well as the integrated process systems. Students 
simulated and optimized the entire flowsheet as the fo-
cus of Process Simulation and Design course. They also 
analyzed the bottleneck of base case process design 
based on cost breakdown and investigated systems-
level integration of the upstream membrane units. 

IMPLEMENTATIONS AND OUTCOMES 
This section presents several examples to showcase 
student implementations for the green methanol 
synthesis project (Fig. 1). 

Separations 
The Separations design project was focused on simulat-
ing a hollow fiber membrane-based carbon capture 

 
Figure 1: Combined design project for methanol synthesis using captured CO2 and green hydrogen. 
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process, in conjunction with natural gas combined cycle 
(NGCC), i.e., primarily aimed at CO2/N2 separation. The 
project involved analysis of the effects of intrinsic mem-
brane parameters (CO2 permeability and CO2/N2 selectiv-
ity) on the overall system performance such as product 
quality, recovery, and membrane area. The membrane 
properties were chosen from prior experimental studies. 
Some preliminary calculations were expected to be done 
by students using the membrane separation principles 
covered during regular lectures. The students were also 
required to identify the input parameters (e.g., membrane 
performance, upstream/downstream pressure) which 
significantly affect the final product purity. Finally, the 
student groups were asked to identify improvement and 
possible modifications to the proposed system. Results 
from one representative group are shown in Fig. 3.  

Reaction Engineering 
The Reaction Engineering design project section was fo-
cused on simulating the CO2 hydrogenation reactor and 
investigating the impact of the recycle stream on reactor 
performance. The rate expressions for both methanol 

synthesis and the reverse water gas shift reactions were 
provided along with the corresponding kinetic parame-
ters. These kinetic expressions were implemented into 
CHEMCAD by the students and compared the reaction 
section - including reactor, heat exchanger, flash vessel, 
and recycle – modeled with these kinetics vs a reactor at 
equilibrium. Students were asked to report selectivity 
and yield, as well as fractional conversion as a function 
of the reactor volume to optimize the reactor sizing. Ad-
ditionally, they were asked to propose a reactor improve-
ment based on either economic or performance metrics. 
As an example of the results, one project group results 
are shown in Fig. 4. This specific group used profit as the 
metric by which to conduct their optimization and deter-
mined the reactor volume based on maximum profit.  

Process Design and Simulation 
The Process Simulation and Design project section was 
focused on simulating the entire flowsheet using CHEM-
CAD which included (multi-stage) compression of the 
CO and H feed streams CO hydrogenation reactor 
and a series of separation units (flash and distillation 

 
Figure 2: Combined design project for ethylene oxide production. 
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columns) Students were also required to perform equip-
ment sizing and calculate the equivalent annual operating 
cost (EAOC) to identify the process design bottlenecks 
On this basis students would propose and implement 
two major areas for process improvements Fig  pre-
sents an example of the improvements by one of the de-
sign groups where they applied heat integration utilizing 
the high temperature reactor effluent to heat the inlet 
streams respectively to reactor and distillation column 
Additionally they added a membrane module to recover 
hydrogen from the vent stream As this project assumed 
the use of green hydrogen the raw material cost took up 
more than % of base case EAOC The recovery of re-
maining H would effectively reduce the cost The stu-
dents proposal of using a membrane for downstream gas 
separation also well justified the efficacy of this com-
bined project to bring emerging modular intensified pro-
cess technologies to the toolbox of next-generation 
chemical engineers To address the trade-off between 
sustainability and economic competitivity as illustrated 
by this green methanol process one design group ex-
plored the impact of carbon tax 

STUDENT FEEDBACK 
After the second year of project implementation, 

surveys were conducted for both project cohorts of 

students. The survey administered to the junior students 
who had just completed the project (2023 project on eth-
ylene oxide production) focused on how the project 
helped them develop skills and apply technical content 
from the courses. The survey administered to the senior 
students, who had completed the joint project approxi-
mately one year prior (2022 project on methanol synthe-
sis), focused on how the project prepared them for senior 
design.    

Junior Survey on Combined Project 
The primary survey question investigated whether 

students felt the joint project helped them to practice 
material from each of the three courses, shown in Fig. 6.  

Most students felt that the joint project helped them 
practice material from the Process Design course, with a 
strong majority answering “very much”. For the Separa-
tions and Reaction Engineering courses, however, re-
sponses were more distributed with approximately equal 
numbers of students responding 3 (neutral), 4, or 5 (very 
much).  

Additionally, students were asked to compare their 
skills before and after working on the junior design pro-
ject across a range of areas, including technical skills 
such as process design and optimization as well as skills 

 
Figure  Effects of (a) CO permeance (b) CO/N selectivity and (c) Inlet pressure on permeate quality and (d) 
effect of CO permeance on the fiber length   
 



 

Ball et al. / LAPSE:2024.1631 Syst Control Trans 3:959-965 (2024) 963 

such as teamwork, communication, and creativity. The 
results are shown in Fig. 7, with the left of each bar indi-
cating before the project and the right of each bar indi-
cating after the project.  

While all skills showed an improvement after partic-
ipating in the design project (indicated by more green and 
blue and less red/orange/yellow), the most significant im-
provements were observed for the technical skills. In re-
flecting on the beginning of the class, at least half the 

class rated themselves as having poor, fair, or good skills 
in process/single unit design and optimization. After par-
ticipating in the project, the vast majority of the students 
reported their skills in these areas as very good or excel-
lent. Improvements to group work, communication, and 
other similar skills were less drastic.   

 

 

 
Figure 4: (Top) Methanol yield as a function of reactor volume, (bottom left) conversion and equilibrium 
conversion as a function of reactor volume, and (bottom right) process profit as a function of reactor volume to 
determine the optimum reactor size. 

 
Figure 5: Process design improvements via heat integration and membrane-based hydrogen recovery. 
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Figure 6: Responses from junior students to “Did the 
course project help you put into practice material from 
Separations (blue), Reaction Engineering (red), and 
Process Design (yellow)?” Responses were given on a 
scale of 1 (not at all) to 5 (very much). 

 
Figure 7: Responses from junior students on their skills in 
a variety of topic areas before (left, faded) and after 
(right, darker) working on the junior design project. 
Responses were given on a scale of poor, fair, good, very 
good, and excellent. 

Senior Survey on Preparation for Capstone 
Design 

The senior students who participated in the first im-
plementation of the joint project in Spring 2022 were sur-
veyed about their experience in Spring 2023. This survey 
served to assess their perception of preparation for their 
senior design course, as well as their retrospective per-
ception of how well the project helped them practice ma-
terial from each of the junior level courses. Most students 
reported a neutral or positive experience of working on 
the project, however the perception of preparation for 

senior design was mixed. Students reported an average 
of 3.4 (out of 5) indicating they felt that the junior course 
project somewhat prepared them for senior design.  

Additionally, when asked if the joint course project 
helped students practice material from each of the three 
courses, a range of responses were given. Notably, the 
students reported that the project helped them practice 
course material to a lesser extent than the junior re-
sponses, indicating that the project modifications be-
tween implementation in 2022 and 2023 better con-
nected the course content and project. Similar to the re-
sponses from the junior class above, the students found 
that the project helped them put into practice material 
from Process Design to a greater extent than Separations 
or Reaction Engineering.  

 

Figure 8: Survey results for seniors, responses collected 
approximately one year after completing the joint junior 
course project. Scale of 1 (not at all) to 5 (very much). 

 
Figure 9: Survey results for seniors, responses collected 
approximately one year after completing the joint junior 
course project. Scale of 1 (not at all) to 5 (very much). 
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Select Student Comments  

Comments from seniors who took CHE 355 in 
Spring 2022 (surveyed a year later) 

Q  What was the most interesting/enjoyable part of 
the junior course project? 

Response: The integration of a single topic between all 
of our core classes (since it reflected more of a real-world 
process design project) 

Q  What was the most challenging part of the junior 
course project? 

Response: Finding a true optimum case because so many 
factors + process units depend on each other 

Comments from juniors who took CHE 355 in 
Spring 2023 (surveyed at the end of semester)  

Q  What was the most interesting and/or enjoyable 
part of the project? 

Response 1: The most interesting part of the project was 
finally integrating all of the information we've learned into 
one project instead of a bunch of little bits and pieces. 

Response 2: Seeing how much money that can be saved 
with implementation of simple optimizations was very 
interesting. 

CONCLUDING REMARKS 
In this paper, we have introduced our development 

of combined junior process design project across reac-
tion engineering, separations, and process simulation 
and design. Two project examples are presented which 
strive to integrate the knowledge from different courses 
and highlight the increasingly important process design 
goals such as sustainability and decarbonization. It is 
worth highlighting that the implementation of such com-
bined course projects can be greatly benefited by, while 
not restricted to the availability of, a specialized process 
design course at junior level. Based on student feedback, 
we aim to address the following key points to continu-
ously improve the combined project in future semesters:  

 Emphasize systems-level optimization and its 
interactions (or trade-offs) with single unit 
optimization.  

 Emphasize process design and optimization with 
simultaneous considerations of multiple objectives 
(e.g., economics, carbon footprints, water usage).  

 Arrange training workshops on Aspen and custom 
modeling to prepare students for senior design 
with an enriched set of simulation tools and skills.  

 Integrate graduate student teaching practice to 
train next-generation process design educators.  
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ABSTRACT 
Equation-Oriented (EO) modeling techniques have been gaining popularity as an alternative for 
simulating and optimizing process systems due to their flexibility and ability to leverage state-of-
the-art solvers inaccessible to many procedural modeling approaches. Despite these advantages, 
adopting EO modeling tools remains challenging due to the significant learning curve and effort 
required to build and solve models. Many techniques are available to help diagnose problems with 
EO process models and reduce the effort required to create and use them. However, these tech-
niques still need to be integrated into EO modeling environments, and many modelers are unaware 
of sophisticated EO diagnostic tools. To survey the availability of model diagnostic tools and com-
mon workflows, the U.S. Department of Energy’s Institute for the Design of Advanced Energy Sys-
tems (IDAES) has conducted user experience interviews of users of the IDAES Integrated Platform 
(IDAES-IP) for process modeling. The interviews reveal a gap between the availability and utiliza-
tion of model diagnostic tools driven primarily by a lack of awareness of and lack of standard 
interfaces among different tools. To address this gap, the IDAES team has developed a recom-
mended workflow for integrating diagnostics into the model development process and an IDAES 
Model Diagnostics Toolbox that provides a standard interface for many of these best practices. 
This paper identifies barriers to the widespread adoption of diagnostic tools for EO models and 
reduces these barriers by providing a standard, user-friendly interface for many different tools. 

Keywords: Modelling and Simulations, Optimization, Simulation, Pyomo, Education 

INTRODUCTION 
Equation-Oriented (EO) modeling techniques are 

powerful tools for solving complex process engineering 
models, providing modelers with access to powerful gra-
dient-based solvers and greater flexibility than more tra-
ditional sequential-modular tools [1]. Several EO-based 
modeling tools are now available for use, including ABA-
CUS [2], AIMMS [3], AMPL [4], Aspen Custom Modeler 
[5], DAEPACK [6], GAMS [7], gPROMS [8], JuMP [9,10], 
and Pyomo [11]. 

However, EO-based tools come with several chal-
lenges, especially when applied to large models, as 

model tractability significantly depends on the formula-
tion and the provision of good initial guesses to the 
solver. The number of potential issues in EO models is 
extensive, and understanding how to identify and remedy 
them during model development requires significant ex-
pertise from the user. Some possible problems include: 

 inconsistencies in units of measurement,

 numerical evaluation errors and singularities,

 structural singularities in the problem matrix
[12,13],

 degenerate equations and rank deficiency in the
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Jacobian of the model [14], 

 poorly scaled variables and constraints, and 

 bound violations and infeasible constraints. 

These issues are easily overlooked when manually in-
specting large, complicated models such as those re-
quired for sophisticated process systems. 

In 2015, the U.S. Department of Energy established 
the Institute for the Design of Advanced Energy Systems 
(IDAES) to develop a next-generation platform for pro-
cess modeling: the IDAES Integrated Platform (IDAES-IP) 
[15,16]. IDAES aims to make state-of-the-art EO model-
ing techniques accessible to the process modeling com-
munity. A significant advantage of the IDAES-IP is that it 
is built on Pyomo [11] and Python, allowing the develop-
ment of algorithms that directly interrogate a model’s 
structural and numerical properties.   

UNDERSTANDING CURRENT 
APPROACHES 

To understand the challenges faced by modelers, 
the IDAES team started by performing a user experience 
study, interviewing a range of users of both IDAES-IP and 
Pyomo with varying backgrounds and levels of modeling 
experience. These interviews sought to discover each 
modeler’s most common issues and the workflows and 
tools they used to help diagnose them. Additionally, the 
interviews sought to understand how modelers devel-
oped these workflows and learned about the different 
tools they applied to better inform the education of new 
modelers. 

The interviews were structured as free-form con-
versations to capture the range and nuance of users’ ex-
periences. With encouragement, interviewees often ex-
panded on their responses to an initial set of questions 
and provided relevant anecdotes. While much of each in-
terview was open-ended, Table 1 summarizes the re-
sponses to three interview questions. Note that the cat-
egorization of issues in responses to Q1 is imperfect due 
to imprecise definitions of various modeling issues. For 
example, what one user may refer to as a “degeneracy” 
due to a flow rate approaching zero, another may refer to 
as a “scaling issue.” In responses to Q2 and Q3, “Basic 
‘model statistics’” refers to simple utility functions for 
identifying variables and constraints with useful proper-
ties, e.g., variables close to (or exceeding) their bounds 
or constraints with large residuals, that are provided by 
the idaes.core.util.model_statistics module. 

The most frequently identified issue was poor model 
scaling. This is partly because the IDAES-IP (and Pyomo) 
tools are designed to be as general as possible to cover 
a wide range of operating conditions. For best perfor-
mance, modelers should specify scaling factors to tailor 

the problem to the specific operating range of interest. 
Another common issue IDAES-IP users encounter is 

infeasibility, usually due to bound violations, partly due to 
the modular nature of the IDAES model libraries. Model-
ers frequently rely on pre-built sub-models, e.g., for ther-
modynamics, but often do not check that the ranges of 
applicability, and thus bounds, for those sub-models 
match the needs of their application. 

A third common issue was numerical evaluation er-
rors, such as divisions by zero or logarithms of negative 
numbers. Nearly a quarter of the interviewees reported 
numerical evaluation errors related to zero-flow condi-
tions in their models. These frequently arise in process 
systems involving reactions where not all components 
are present in every process stream. Suppose care is not 
taken to eliminate these components in streams where 
they do not exist or to ensure a minimum positive lower 
bound on flow/concentration. In that case, these values 
can cause numerical errors in complicated thermody-
namic expressions involving logarithms or divisions. 

Perhaps surprisingly, degenerate equations were 
not a common issue identified by users. However, this 
might indicate a need for more awareness of degenera-
cies rather than their infrequent occurrence. Most pro-
cess flowsheets include at least one recycle stream, and 
these can easily introduce degeneracies into a model un-
less care is taken to identify an appropriate tear stream. 
Degeneracies are often tricky to identify unless the mod-
eler knows what to look for. Degenerate models have a 
family of feasible solutions; thus, the solver frequently re-
ports “optimal solution” termination messages. Hence, if 
the modeler does not intentionally inspect the solver 
logs, they may miss that their model is degenerate. 

Qualitatively, the interviews revealed that most us-
ers had no formal training in diagnosing modeling issues 
and that most learning had come through experience. As 
a result, there was little uniformity in the workflows and 
tools used, and the interviewees tended to only think 
about issues they had previously encountered. Addition-
ally, while most modelers interviewed used a bottom-up 
approach, starting with small models and gradually add-
ing complexity and resolving issues as they appeared, 
some of those interviewed used a top-down approach, 
building the full complex model first and then trying to 
work backward to find the resulting issues. 

 A second finding was that there were two types of 
modelers within the IDAES user base: those who focused 
on developing models for unit operations and those who 
generally constructed flowsheets from pre-existing unit 
models in model libraries. Modelers in the first category 
were generally more aware of the different modeling is-
sues they might encounter and how to fix them. At the 
same time, those who used existing models tended to 
struggle with diagnosing modeling issues. One key as-
pect of this is awareness of the model equations; unit 
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model developers were generally fully aware of the equa-
tions in their models as they had written most equations 
themselves, while model users typically treated the li-
brary models as black boxes and were thus unable to re-
solve modeling issues that arose from them. 

Finally, while solver logs were the most common 
method of identifying that a problem had occurred, many 
interviewees were not familiar with the full content of 
these. They focused mainly on apparent signs such as 
the final solver status, number of iterations, and obvious 
warning messages. This practice reveals a need to edu-
cate modelers about the data provided by solvers and 
how it can be used to identify potential modeling issues. 
Indeed, many modelers interviewed assumed that once a 
solver reports an “optimal solution,” that their model is 

well-behaved; it is crucial to educate modelers that just 
as one should always check that the solution of their 
model makes sense, they should also check the solver 
logs to ensure that no warnings were encountered. 
 In terms of tools used to help diagnose modeling is-
sues, the modelers identified existing tools within the 
IDAES-IP toolset, Pyomo, or other Python packages (e.g., 
the SciPy packages for linear algebra [17]) to diagnose 
most of the modeling issues encountered. These tools 
fell into three categories: 

1. Structural analysis tools that analyze constraints, 
variables, and bounds without depending on specific 
variable values. These tend to be computationally 
cheap and do not require the model to be initialized.  

Table 1: Questions asked and responses received during 13 user experience interviews. 

Q What are the issues you most commonly encounter with equation-oriented modeling and optimization in 
IDAES? 

 
Response Number of users 

Scaling issues  
Infeasibility  
Incorrect degrees of freedom  
Evaluation errors  
Initialization issues  
Zero-flow issues  
Not understanding library models  
Degeneracy  
Incompatible assumptions  

 
Q2. How do you recognize when these problems occur in your model or workflow? 

 
Response Number of users 

Solver log  
Basic “model statistics”  
Inspect Jacobian  
Incidence graph analysis  
Test failure  
Physical sanity check  

 
Q3. What tools do you use to diagnose the cause of the issue or propose a fix? 
 

Response Number of users 
Basic “model statistics”  
Degeneracy Hunter  
Inspect Jacobian  
Change solver options  
Solver log  
Incidence graph analysis  
Ask for help  
Parameter sweep  
Pyomo model viewer  
Solver callback  
Singular value decomposition  
Serialize model state  
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2. Numerical analysis tools that analyze constraints, 
bounds, and their Jacobian at specific variable val-
ues. These tend to be slightly more computationally 
expensive and require that all variables have values 
from a previous solution or initialization. 

3. Advanced techniques, such as singular value de-
composition or meta-modeling techniques, to iden-
tify irreducible degenerate sets. These tend to be 
more computationally expensive. 

However, as these tools were scattered across dif-
ferent packages with different interfaces and output for-
mats, no single modeler who was interviewed was aware 
of all the tools and how to use them. When asked about 
other tools, the most common response was that model-
ers were unaware of them, followed by comments about 
the lack of user-friendliness of some tools. 

The interviews reveal that the main barrier to effec-
tive debugging of EO models was awareness of different 
issues modelers might encounter, the tools available to 
diagnose them, and methods to remedy them when they 
occur. To address this, the IDAES team developed and 
documented a comprehensive workflow and set of best 
practices for diagnosing modeling issues, accompanied 
by an integrated toolbox interfacing with most of the  
existing tools mentioned by the interviewees. 

PROPOSED DIAGNOSTICS WORKFLOW 
The interviews revealed that issues can arise at 

many points during the modeling process. Therefore, 
modelers must continuously iterate between model de-
velopment and diagnostic testing. Almost all the model-
ers interviewed agreed that the best approach to model 
development was to start from the bottom up, starting 
from simpler sub-models and gradually adding complex-
ity, checking for and resolving issues at each step. In this 
way, the source of the problems can be easily traced to 
the most recent changes made to the model, and the 
smaller these changes, the easier it is to identify the root 
cause. As such, model development and diagnosis 
should always be viewed as an incremental process of 
gradual development and refinement, not a “one-shot” 
fix-all operation.  

Additionally, the consensus across the modelers in-
terviewed was that diagnosis should start with a “square” 
simulation model with no degrees of freedom; all optimi-
zation models derive from an underlying deterministic 
model by releasing some degrees of freedom. Adding de-
grees of freedom to the problem can often make it easier 
to solve, but this can obscure issues in the model. If the 
simulation model is ill-posed or poorly formulated, then 
these issues remain in the optimization model even if 
they are not apparent. 

Based on this incremental, iterative approach and 

the “hierarchy” of diagnostic tools, a sequence of com-
mon steps for model development was proposed, which 
is shown in Figure 1 and explained below. 

 
Figure 1. Proposed Model Diagnostics Workflow. 

1. The workflow begins with an existing model, which 
should be the simplest possible model to start with 
(or an existing model that has been thoroughly 
tested for issues). 

2. Next, the degrees of freedom necessary to form a 
square simulation model should be fixed. If the 
modeler is uncertain of which degrees of freedom 
to choose, they should take their best guess and 
allow the subsequent checks to identify any poten-
tial singularities. 

3. As the model development and diagnosis process is 
iterative and often involves trial and error, modelers 
should always take the time to create a checkpoint 
so that they can easily revert changes to earlier 
states in case the current thrust of development 
becomes a dead-end. This is especially important 
results are being generated and recorded in parallel 
with the model development; there is nothing more 
frustrating than to discover that you can no longer 
reproduce a previous set of results with no idea of 
how or why this occurred. (Tip: version control sys-
tems such as git make it much easier to systemati-
cally track incremental model changes during 
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iterative diagnostics and refinement.) 

4. When checking for potential modeling issues, the 
modeler should first apply structural analysis tools. 
As these only rely on model structure, they do not 
require an initial guess for the model solution. Fixing 
these structural issues before calling a solver de-
creases the chance of a critical solver failure. 

5. Modelers should resolve issues as they are identi-
fied and should generally only make changes to ad-
dress one issue at a time. Issues can often be inter-
woven, and fixing one issue may create or reveal 
other issues (or resolve other known issues). As 
each change is made to the model, modelers should 
return to the top of the workflow and follow all the 
steps again to make sure they are not accidentally 
introducing new issues. 

6. Only once all (known) structural issues are resolved 
should modelers attempt to solve their model (ini-
tializing as necessary). Modelers should always re-
view the solver output logs, as these can contain 
helpful information for diagnosing modeling issues. 
Hopefully, the solver will return a solution, even if it 
is infeasible, which can be used to continue the 
model diagnostics workflow. (Tip: If a solution is not 
returned, then the modeler can re-run the solver 
with a lower iteration limit or use a block triangular 
decomposition solve (see Section 3.6 of [12]) to ob-
tain a partial solution.) 

7. Once an initial solution is obtained, even if it is infea-
sible, the modeler can check for potential numerical 
issues at the current state. Again, problems should 
be resolved as they are identified, and modelers 
should return to the top of the workflow after each 
change. Numerical issues inherently depend on the 
current state of the model. As optimization involves 
exploring the behavior of the model over an entire 
design space, it is essential to perform numerical 
checks across this design space. 

8. If issues remain (e.g., failure to converge or signs of 
poor behavior in the solver logs), modelers should 
then apply the advanced diagnostics tools to try to 
find the root cause of the issues. As these tech-
niques are computationally intensive, they are re-
served for the final step to address challenging is-
sues. 

9. Once a reliable model has been identified, modelers 
can then move on to optimization studies and other 
more complex modeling tasks. Modelers should 
continue monitoring the solver logs for signs of po-
tential issues and should apply the model diagnos-
tics workflow if these signs appear. 

10. Finally, as solutions and results are generated, 

modelers should always maintain a checkpoint and 
log of the model state (e.g., git commits) to ensure 
that they can reproduce these results in the future 
and to provide a point of comparison in case future 
changes to the model change these results. 

 Finally, modelers should keep in mind that their 
model may be used by others in the future who may not 
have the same level of familiarity with the model equa-
tions and formulation; this is especially important for de-
velopers of model libraries such as those in IDAES-IP. As 
the original modeler has the most experience with the 
formulation of the model, they are best suited for ensur-
ing the model is as robust as possible to minimize the 
challenges faced by future users. 

IDAES DIAGNOSTICS TOOLBOX 
Whilst the workflow described above provides mod-

elers with a series of steps to take when developing their 
models and diagnosing any issues that arise, they also 
need access to a suite of tools to perform these checks. 
To limit the number of methods and interfaces modelers 
need to know, a new Diagnostics Toolbox has been 
added to the IDAES-IP (v2.2.0, released September 
2023) [16], which incorporates tools to check for a wide 
range of common modeling issues. 

To assist users with the model diagnostics work-
flow, the Diagnostics Toolbox guides them through the 
diagnostics process through a series of “reporting meth-
ods.” These reporting methods call a series of tools to 
check for different types of issues and then provide the 
modeler with a summary of the issues found and a set of 
next steps for further investigation. Each of these “next 
steps” corresponds to a “display” method to call one of 
the underlying methods and provides a detailed descrip-
tion of the issue and, if possible, its source. 

Currently, the Diagnostics Toolbox contains three 
reporting methods—one for structural issues, one for nu-
merical issues, and one for irreducible degenerate sets—
and approximately 22 associated display methods. To 
assist modelers with identifying the most likely causes of 
model failures, problems are further divided into “warn-
ings” representing issues that will most likely result in 
solver issues or incorrect results (e.g., singularities and 
degeneracies), and “cautions” that warrant checking but 
may be expected model behavior (e.g., variables which 
do not appear in any constraint). The Diagnostics 
Toolbox may be imported from IDAES as: 

from idaes.core.util import DiagnosticsToolbox 

The remainder of this section gives a brief overview of 
the structural and numerical issues that can be diag-
nosed by the Diagnostics Toolbox. 

Structural Issues 
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The Diagnostics Toolbox contains three methods 
that check a model for unexpected variable status: 

 variables which do not appear in any constraints, 

 variables which are not declared as part of the 
model being diagnosed, 

 and variables with a value fixed to exactly 0. 

If any such variables are encountered, the modeler is 
cautioned. Additionally, the Diagnostics Toolbox contains 
methods to check constraints and objectives for con-
sistent units, verify that the over and under-constrained 
subsystems of the model’s Dulmage-Mendelsohn de-
composition [12,13] are empty, and check for potential 
evaluation errors. If any of these checks fail, a warning is 
displayed. 

Numerical Issues 
The Diagnostics Toolbox contains several checks 

performed with simple variable and expression evalua-
tions. These check for: 

 variables with values at or outside their declared 
bounds, 

 variables with no values, 

 variables with values near zero, 

 variables with extremely large or small values, 

 variables with values approaching their bounds, 

 and constraints with large residuals. 

These checks display a warning or a caution depending 
on the magnitude of e.g., variable value or bound prox-
imity/violation. A variable with no value always yields a 
caution. The Diagnostics Toolbox also contains methods 
that analyze the model’s Jacobian matrix to detect the 
following indicators of ill-conditioning: 

 values in the Jacobian matrix with extremely large 
or small values, 

 rows and columns in the Jacobian matrix with 
extreme 2-norm values, 

 and condition number of the Jacobian. 

Whether a warning or a caution is displayed again de-
pends on the magnitude of the value detected. 

Advanced Diagnostics Tools 
For cases where the above tools are not sufficient 

to fully diagnose the issues in a model, the Diagnostics 
Toolbox also contains an implementation of Degeneracy 
Hunter [14] and an interface for performing Singular 
Value Decomposition (SVD) analysis on the model (by de-
fault using the SciPy linear algebra libraries [17], but with 
support for modeler-provided SVD routines). 

CASE STUDY 
To better demonstrate the application and utility of 

the Diagnostics Toolbox, consider the following toy prob-
lem with variables v1[units: 𝑚𝑚], v2[𝑚𝑚], v3 ∈ [0,5], v4, v5 ∈
[0,1], v6, v7 ∈ [0𝑚𝑚, 1𝑚𝑚], and v8, and constraints: 

v1 + v2 = 10     1) 

𝑣𝑣3 = 𝑣𝑣4 + 𝑣𝑣5     2) 

2𝑣𝑣3 = 3𝑣𝑣4 + 4𝑣𝑣5 + 𝑣𝑣6    3) 

v7 = 1 × 10−8v1    4) 

One common issue facing modelers relying on pre-
built EO models is identifying suitable degrees of freedom 
to fix for their application. Poor choices can often result 
in infeasible models or structural singularities. To demon-
strate this, consider setting the following conditions for 
fixed variables: 𝑣𝑣4 = 2, 𝑣𝑣5 = 2, and 𝑣𝑣6 = 0. 

While the above problem may appear relatively sim-
ple and involve only linear constraints, the model will yield 
an infeasible result after fixing the specified degrees of 
freedom and attempting to solve it. This is because there 
are several issues in the model as posed. As this model is 
small, an experienced modeler can likely identify most or 
all these issues by manually inspecting the variables and 
constraints; however, it will likely take a few minutes. The 
Diagnostics Toolbox, however, can automatically detect 
all these issues in under a second and direct the modeler 
to the root causes. 

Following the diagnostics workflow, the first step is 
to check the model for structural issues. This is done by 
calling the report_structural_issues method from 
the Diagnostics Toolbox. This executes the series of 
checks described in the previous section, which reveals 
two warnings (critical issues) and two cautions. 

Structural warning 1: Checking unit consistency re-
veals an issue in constraint 1): 𝑣𝑣1 and 𝑣𝑣2 were assigned 
units of meters; however, the constant in the constraint 
was not assigned units. If this constant was in units other 
than meters, then the solution to the model would be in-
correct. This should be corrected by rewriting constraint 
1) to include the units for the constant and applying any 
necessary unit conversion. 

Structural warning 2: Performing a Dulmage-Men-
delsohn partition of the incidence matrix reveals a struc-
tural singularity. After fixing 𝑣𝑣4, 𝑣𝑣5, and 𝑣𝑣6, constraints 2) 
and 3) include only a single free variable. Similarly, con-
straints 1) and 4) include three free variables, and thus 
this sub-system is under-constrained. Addressing this is-
sue requires the modeler to rethink the degrees of free-
dom they have chosen or the constraints they have cho-
sen to write. The Dulmage-Mendelsohn partition helps 
the modeler choose degrees of freedom, as variables 
that are candidates for degrees of freedom must be in 
the under-constrained subsystem. 
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Structural caution 1:  A simple inspection routine re-
veals that 𝑣𝑣8 does not appear in any constraint. This could 
be considered a modeling error. Either it was meant to be 
included in a constraint, but a mistake was made, or this 
variable is extraneous and should be removed from the 
model definition. 

Structural caution 2:  𝑣𝑣6 has been assigned a value 
of exactly 0. While this will not cause an issue in the cur-
rent model, modelers should be careful when assigning 
values of zero to ensure this will not cause numerical is-
sues (e.g., appearing in a denominator or logarithm). 

For this example, assume that the units of the con-
stant in constraint 1) were meters and that the modeler 
decides to use 𝑣𝑣2 = 5 instead of 𝑣𝑣4 = 2. After reviewing 
the two cautions, 𝑣𝑣8 should be removed from the model, 
while 𝑣𝑣6 can remain fixed to 0 for now. After making these 
changes and confirming that the structural issues have 
been resolved, the next step is to try to solve the model. 
The solver reports that the model is infeasible, so the 
next step is to check the model for numerical issues by 
calling the report_numerical_issues method from 
the Diagnostics Toolbox. This will execute the second set 
of checks described above, which will reveal two addi-
tional warnings and four cautions. 

Numerical warning 1: At least one of the constraints 
has a large residual. The specific constraint may depend 
on the solver used but will be constraints 2) or 3). This 
should not be unexpected due to the infeasible solution 
returned by the solver. 

Numerical warning 2: Iterating over all the variables 
in the model and comparing their values to any bounds 
specified will reveal that 𝑣𝑣3 and 𝑣𝑣5 have values at or out-
side their bounds. In the case of 𝑣𝑣3, this is because the 
value required to satisfy both constraints 2) and 3) lies 
below the lower bound of 0, while for 𝑣𝑣5 the issue is that 
it was fixed to a value outside of its bounds (it was as-
signed a value of 5 but had bounds of [0,1]). Addressing 
these issues requires the modeler to consider why these 
bounds were placed on the model in the first place (e.g., 
to indicate a range over which an empirical correlation is 
reliable or to protect against a numerical singularity) and 
to decide whether the bounds can be relaxed or if 
changes to the model constraints are required. 

Numerical cautions 1-4: All four cautions arise be-
cause 𝑣𝑣7 = 5 × 10−8, which is likely close to the solver tol-
erance. Additionally, while it does not violate the bounds, 
this value is very close to the lower bound. Analysis of 
the Jacobian will reveal a large value for 𝑣𝑣1 in constraint 
4). This points to poor scaling of 𝑣𝑣7 and constraint 4) and 
addressing this will likely improve solver performance. 

As mentioned previously, an experienced modeler 
would likely discover most of these issues by manual in-
spection. However, this becomes more challenging for 
more complex (and especially nonlinear) models or mod-
elers with less experience. The Diagnostics Toolbox runs 

these checks automatically and quickly, providing the 
modeler with immediate guidance on which constraints 
and variables to investigate to resolve any issues ob-
served with solver behavior or solutions. 

A full demonstration of applying the Diagnostics 
Toolbox to this example can be found here: 

https://idaes-examples.readthedocs.io/en/lat-
est/docs/diagnostics/diagnostics_toolbox_doc.html 

ONGOING WORK 
Since the release of the IDAES Diagnostics Toolbox, 

the team has been working to advertise these capabilities 
to users and solicit feedback on how they can be im-
proved. The IDAES team have begun using these tools to 
debug modeling issues, and future work will involve a 
second round of user interviews to determine whether 
the tools have been successful. The team is also contin-
uing to identify additional modeling issues and tools to 
diagnose them, as well as visualization tools to improve 
user-friendliness and aid in interpreting results. 

Anecdotally, initial responses have been uniformly 
positive, and including a handful users who have suc-
cessfully applied the tools in practice during the past few 
months. Users have reported that the Diagnostics 
Toolbox has greatly reduced the time required to get 
their models to solve. One user reported that the toolbox 
helped them resolve a structural singularity due to mis-
specified initial and boundary conditions in a discretized 
PDE model that they described as “like searching for a 
needle in a haystack.” 

However, diagnosing issues with nonlinear optimi-
zation problems remains challenging with many open 
questions. To quote an experienced researcher in pro-
cess systems engineering consulted for this study: 
 

Automatically diagnosing arbitrary issues with 
nonlinear optimization problems is a Holy Grail 
of Operations Research. 

 
While identifying the presence of an issue in a model 

can be automated, tracing this back to the true root 
cause and identifying a fix often requires a degree of en-
gineering knowledge that can only be gained by experi-
ence. Documentation to help users in this process is still 
required, and a long-term goal for IDAES is to create a 
library of examples for resolving different issues. 

CONCLUSIONS 
The IDAES Diagnostics Toolbox and workflow have 

been developed to assist modelers with addressing is-
sues encountered when developing, debugging, and 
solving equation-oriented models. A standard workflow 
for systematically identifying issues has been created. 

https://idaes-examples.readthedocs.io/en/latest/docs/diagnostics/diagnostics_toolbox_doc.html
https://idaes-examples.readthedocs.io/en/latest/docs/diagnostics/diagnostics_toolbox_doc.html
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This workflow is supported by a toolbox that includes 
methods for automatically detecting common modeling 
issues and identifying the associated variables and con-
straints for the modeler. This workflow and toolbox will 
significantly reduce the time, effort, and expertise that 
modelers require for diagnosing issues when working 
with large, complicated models. 
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ABSTRACT 
Chemical engineering is a highly complex interconnected major. Just as chemical engineers have 
broken complex processes into unit operations, the chemical engineering curriculum has been 
broken up into courses. The organization of these courses vary among institutions and are based 
on years of prior teachings and research. Despite this, there have been calls to revaluate the cur-
riculum from both industry and academia. We propose a graph-based representation of curricula 
in which topics are represented by nodes and topic dependencies are represented by directed 
edges forming a directed acyclic graph. This enables using graph theory measures and tools to 
provide formal ways of evaluating a curriculum. Additionally, the abstraction is readily understand-
able meaning conversations between instructors regarding the curriculum can occur within a de-
partment and even across institutions. This abstraction is explained with a simplified curriculum 
and applied to the undergraduate chemical engineering curriculum at University of Wisconsin-
Madison. Highly and lowly connected topics are identified and approaches for grouping the topics 
into modules are discussed.  

Keywords: Education, Curriculum, Graph Theory

INTRODUCTION 
The early days of chemical engineering focused on 

tools such as unit operations, material and energy bal-
ances, process control, transport phenomena, and more 
to develop petrochemicals. Since then, these tools have 
been increasingly applied to more applications, and 
chemical engineers can be found in diverse industries 
and roles. Climate change has also placed pressure on 
industries to decrease the environmental impact of their 
products and processes. However, there are proven dif-
ficulties in embedding sustainability in engineering cur-
ricula, and industry has identified ability shortages in 
graduating chemical engineers [1]. For these reasons and 
more, there have been calls to evaluate the chemical en-
gineering curriculum, and some departments have 
elected to no longer seek accreditation to allow students 
more personalized paths towards different careers [2].  

Process design is often treated as the culmination 
of the undergraduate chemical engineering curriculum. 
This course draws on knowledge from previous chemical 
engineering courses including transport, balances, 

controls, and more. Students are often reminded of what 
they learned in previous courses and are for the first re-
quired to pull knowledge from multiple previous courses. 
This means students are likely seeing the interconnectiv-
ity of the curricula for the first time at the very end of their 
education. Additionally, process design tends to focus on 
the design of a single process typically within the chem-
icals or petrochemical sector. This means that students 
interested in other fields of such as biological systems or 
semiconductors may be less motivated in this course. For 
these reasons, there is discourse on implementing sys-
tems thinking and design throughout the curriculum to in-
stead tying the curriculum together at the very end of a 
student’s learning experience. 

The ability shortages and the changing field of 
chemical engineers means the curriculum needs to eval-
uate to improve outcomes. There are some tools to ana-
lyze curricula, such as curriculum prerequisite maps to 
identify bridge and source-hub courses, tree-structured 
topic modeling, and concept maps [3,4]. Concept maps 
have been applied to chemical engineering courses and 
curriculum to enhance student learning and explore the 

mailto:victor.zavala@wisc.edu
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ontology of topics covered [5]. Other work has applied 
statistical tools to study how chemical engineering cur-
ricula has changed focus and analyzed different se-
quencing of transport courses at institutions [6]. 

We propose a graph-based representation in which 
topics are represented by nodes and dependencies be-
tween topics are represented by directed edges. Unlike 
in concept maps, the directed edges do not have words 
attached to them. This enables the use of graph tools 
guide curriculum analysis with numerical measures to 
formalize discussion in improving a curriculum. 

GRAPH ABSTRACTION 
 To explain graph theory applied to a curriculum, a 
simplified Curriculum A will be used. Curriculum A is com-
posed of six courses which are named ABC 101-106. 
These courses depend on one other through prerequi-
sites. For example, ABC 101 is a prerequisite to complete 
ABC 103. The full list prerequisites and the credits for 
each course can be found in Table 1.  

Table 1: Courses making simplified Curriculum A. 

Course Credits Prerequisite(s) 
ABC   None 
ABC   None 
ABC   ABC  
ABC   ABC  
ABC   ABC  ABC  
ABC   ABC  

 This table looks like one a student would find in their 
handbook or when registering for the courses for the 
term. This table can be represented with a graph abstrac-
tion in which courses are represented by nodes and di-
rectional edges connecting nodes represent dependen-
cies as seen in Figure 1. The edges are directional to rep-
resent the sequence of the courses and follows the think-
ing of ”I have to take this course before I take that 
course.” With the nature of course progression there are 
no cycles. For example, ABC 103 would not and cannot 
be a prerequisite for ABC 101 because then there would 
be no way take either of them. This makes the graph ab-
straction both directional and acyclic. Within this repre-
sentation, the number of credits for each course is re-
flected by the node size. 
 The course level graphical abstraction can allow for 
the scheduling one’s term and visualizing how courses in-
teract with one another. However, these dependencies 
rely on the accuracy of the prerequisites which could 
have been established years prior and the courses and, 
more broadly, the curriculum could have changed since. 
For example, students may be encouraged by their ad-
viser to take ABC 103 and ABC 104 in the same term. 
From the graph abstraction, this need is not clear per-
haps because ABC 103 has topics that are required for 

ABC 106 despite not showing up in the perquisites. This 
means looking more closely into the courses and their in-
terconnectivity is required to fully understand the curric-
ulum. 

To look more closely at the curriculum, we can de-
velop topic level graphs for each course within Curricu-
lum A. This could be generated from the schedule of top-
ics in a syllabus, recommended textbook readings, and 
more. The selection of topics and their connectivity takes 
some expertise and refinement, but the generation of the 
abstraction can provide invaluable insights. The graph 
abstraction for ABC 101 is presented in Figure 2.  

 
Figure 1. Course level graph abstraction of Curriculum A 
in which courses are represented as nodes and directed 
edges represent course dependencies. Node size 
represents the credit hours for the course. Courses 
without prerequisites are green, terminary courses are 
red, and coures with both prerequisits and subsequent 
dependeices are blue.  

 
Figure 2. Graph abstraction of course ABC 101 in which 
nodes represent topics and topic dependencies are 
represented as directed edges. Node size represents the 
realtive  resources use in terms of credit hours.  

In this topic level graph abstraction of ABC 101, top-
ics are represented by nodes and the size of the nodes 
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represent the relative time spent covering the topic in 
terms of the credit hours for the course. This means the 
sum of all the node sizes is the number of credit hours for 
the course. Topic connectivity is represented by the di-
rectional edges. A topic without any preceding topics, 
such as T1-1, means it can be taught without any other 
prior knowledge. These can be thought of as introductory 
topics like how one would think about an introductory 
course. A topic with preceding topics, such as T1-6, 
means it requires the preceding connected topics (T1-4 
and T1-5) to be taught. This follows the logic of ”I need 
to know numbers and counting to learn addition.” These 
dependencies can also be used to help plan the course 
by noticing topic T1-10 requires all other topics besides 
T1-8. Topics not connected to any others, such as T1-8, 
means it can be taught at any time during the course be-
cause it does not build on previous topics, nor is it re-
quired to understand other topics.   

While the graph abstraction of ABC 101 provides a 
lot of valuable insights, it is not the complete picture. ABC 
101 is a prerequisite for ABC 103, but this is not yet indi-
cated. Expanding the topic level abstraction to include all 
courses will provide the complete picture of the 

curriculum and enable understanding of the inter-con-
nectivity of the topics and courses. This is accomplished 
by constructing a graph abstraction of each course and 
then connecting them where appropriate. This results in 
the topic level graph abstraction of Curriculum A in Fig-
ure 3.  

Topics can be introduced in one course and later re-
viewed in another. Reviewing a topic and then building 
off it (connecting to another topic) is different than just 
building off one topic to another because of the time 
spent on the review. To reflect this, if a topic is intro-
duced and later reviewed, then the size of the topic is the 
sum of both times. To distinguish between, a border will 
be added to node. For example, T3-24 is introduced in 
ABC 103, but is later reviewed in ABC 105. As such the 
inner circle represents the resources first spent learning 
T3-34 and the outside circle represents the resources 
spent revieing.  

Reviewing topics in later courses could seem to lead 
to a cycle being created. The simplest case of a review-
ing a topic is to remind students of what they were taught 
due to the time between the topic was first presented 
and when it needs to be built off from. For this case, no 

 
Figure 3. Topic level graph abstraction Curriculum A in which topics are represented by nodes and topic depend-
encies are represented by directed edges forming a directed acyclic graph. Node size reflects the relative re-
sources required for the topic in terms of the credit hours for the course.  
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cycle is formed because it is just a reminder of what was 
taught with no other context or methods. A topic may 
also be reviewed to provide more detail in a new frame-
work or using a new skill that has since been taught. For 
example, phase equilibrium may be introduced in the 
context of pure components in a first course on thermo-
dynamics. Then phase equilibrium may be introduced in 
a multicomponent context in a second course on thermo-
dynamics. This scenario would then be composed of 
three nodes: “Phase Equilibrium of Pure Components”, 
“Mixtures”, and “Phase Equilibrium of Mixtures”. In this 
scenario to teach “Phase Equilibrium of Mixtures” one 
would review “Phase Equilibrium of Pure Components” 
and combine that with “Mixtures”. This example demon-
strates that revisiting a concept in a new context can bet 
treated as a review of the original topic plus a depend-
ency on the context.   

The topic level graph of Curriculum A can be very 
useful on its own to understand the scope of the curricu-
lum and discuss properties amongst instructors. How-
ever, the analysis can be improved by using tools from 
graph theory to provide formalized measures to discuss 
ways of changing the curriculum. Measures like the de-
gree of node (the number of edges connected to a node), 
determining paths (getting from one node to another 
without any repeat nodes), the number of components 
(subsets of nodes that do not have edges to other 
nodes), connected vs. strongly connected graphs, and 
more can be considered. For this analysis, grouping of 
nodes through community detection and modularity and 
the degree of a node will be critical for analysis.  

For grouping of nodes, a common approach is 
known as community detection which seeks to maximize 
“modularity” using optimization. The “modularity” is func-
tion of the interconnectivity of communities that make up 
the graph. These algorithms can be useful to identify 
which topics form areas of dense interconnectivity, but it 
does not consider the size of the nodes. This means it 
may result in communities of varying sizes. For example, 
applying the community detection algorithm know as 
greedy modularity maximization to Curriculum A results 
in the communities in Figure 4. Here the number of com-
munities was restricted to be equal to the number of orig-
inal courses (six). It is important to note that the topics 
forming a community are not always from the same 
course. The community sizes are 5.8, 3.4, 3.2, 2.7, 2.65, 
and 2.25 credit hours which when turned into courses 
could lead to an unbalanced courseload.  

To improve upon the community detection, a differ-
ent approach to modularity will be considered. This ap-
proach described in [7] can restrict the sizes of the mod-
ule in addition to the number of modules. This approach 
maximizes a different measure of modularity with con-
straints to set the number of modules and the size of 
modules are within a given size. This is cast a binary 

quadratic optimization program. Additionally, we can use 
the framework to provide a definition of a modular curric-
ulum. A curriculum will be considered modular if: (a) the 
topics in a module form a cluster of dense dependency, 
(b) connectivity between modules is sparce, and (c) the 
modules are within a set resource use (credit hours). 
These two approaches enable evaluating the modularity 
of the curriculum using modules to guide course organi-
zation and overall curriculum planning.  

 
Figure 4. Topic level graph abstraction Curriculum A 
grouped into six communtites (equal to the number of 
orginal courses) using greedy community detection.  

Restricting the module size between 2.9 and 4.1 
credit hours, the new topic grouping is presented in Fig-
ure 5. This results in community sizes of 3.9, 3.8, 3.4, 3.1, 
2.9, and 2.9 credit hours. This approach leads to more 
balanced courseload implementable sizes.  

CASE STUDY 
To demonstrate some the capabilities and insights 

that can be gained from this graph abstraction, this anal-
ysis will be applied the undergraduate chemical engi-
neering curriculum at University of Wisconsin-Madison. 
This curriculum is composed of 19 credit hours of math, 
10 of physics, 20 of chemistry, 6 of life sciences, 6 of 
communication skills, 16 of liberal studies, 6 of profes-
sional depth, 40 of core chemical engineering courses, 
and 9 chemical engineering electives for a total of 132 
semester credit hours. The focus of this analysis will be 
on the core chemical engineering courses listed in Table 
2 along with their already defined prerequisites. Most of 
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these courses are similar to courses required by other 
undergraduate chemical engineering programs.  

 
Figure 5. Topic level graph abstraction Curriculum A 
grouped into six communtites (equal to the number of 
orginal courses) when restricing modules size.  

A graph abstraction of the core chemical engineer-
ing courses is presented in Figure 6. One interesting note 
of the curriculum is CBE 250 can be taken concurrent 
with CBE 255 and CBE 255 can be taken concurrent with 
CBE 310, but CBE 250 is a prerequisite for CBE 310. Since 
this graph abstraction is made to model the flow of top-
ics, CBE 250 will be treated as a prerequisite CBE 255 
and CBE 255 will be treated as a prerequisite for CBE 310. 

A similar scenario exists for CBE 320 and CBE 324 and 
CBE 430 and CBE 470. From this course level abstrac-
tion, one can easily see just how many courses depend 
on CBE 320 based on the connectivity. 

 
Figure 6. Course level graph abstraction of the core 
chemical engineering courses.  

To construct the topic level graph abstraction of the 
curriculum, the syllabuses, course schedules, course 
readings, and lab documents were collected from recent 
occurrences of the courses. Then, a graph abstraction 
was developed for each course. For example, the graph 
CBE 320: Introductory Transport Phenomena is shown in 
Figure 7. This course covers momentum, heat, and mass 
transport at a theoretical level. The selection of topics 
and the “resolution” (how detailed the topics are e.g., En-
ergy Flux Vector vs Convective, Conductive and Work 
Flux Vector) of the topics had to be decided for each 
course. This was an iterative process to ensure the 
graphs for each course were similar in terms of the level 
of resolution. While the graphs made and presented with 
this approach could look different depending on who 

Table 2: Core chemical engineering courses at University of Wisconsin-Madison. Term taken is the term a student 
would normally take the course where 1F means fall of year one and 4S means spring of year four. 

Course Name Term Credits Prerequisite(s) 
CBE  Intro to Chemical Engineering F  None 
CBE  Process Synthesis F  None 
CBE  Intro to Chemical Process Modeling S  CBE  (co) 
CBE  Chemical Process Thermo S  CBE  (co) 
CBE  Thermodynamics of Mixtures F  CBE  CBE  
CBE  Intro Transport Phenomena F  None 
CBE  Transport Phenomena Lab S  CBE  CBE  
CBE  Momentum and Heat Transfer S  CBE  (co) 
CBE  Mass Transfer Operations F  CBE  CBE  
CBE  Chem Kinetics and Reactor Design F  CBE  CBE  
CBE  Process Design S  CBE  CBE  CBE  
CBE  Process Dynamics and Control S  CBE  CBE  (co) 
CBE  Operations Process Lab Su  CBE  CBE  CBE  CBE  
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makes them, it opens a more formal discussion of what is 
being taught to students in a course. This could be used 
alongside learning goals to get the full picture of a course. 

With a graph abstraction of each course, the topic 
level graph abstraction of the core chemical engineering 
courses can be constructed. To do this, the dependen-
cies between courses and review of topics in subsequent 
courses were identified. For example, there is review of 
some material from CBE 310: Chemical Process Thermo-
dynamics in CBE 311: Thermodynamics of Mixtures and 
there are topics introduced in CBE 320: Introductory 
Transport Phenomena that are required to understand 
topics in CBE 426: Mass Transfer Operations. This was 
also an iterative process to ensure topics of the same 
name had the same scope and to ensure the intercon-
nectivity of courses was fully captured. Again, the inter-
connectivity of the topics between courses could be up 
for debate. However, this abstraction encourages con-
versation beyond “Make sure you introduce the Peng-
Robinson Equation of State in Thermodynamics I because 
I need it for Thermodynamics II” that may occur between 
instructors teaching a series.  

The topic level graph abstraction is presented in 
Figure 8. Due to the size of the graph, interactive ver-
sions of the graph are available in the supplementary ma-
terial. Across the 13 courses and 40 credit hours, there 
are 286 topics and 398 edges. 43 topics are introduced 
in one course and reviewed later in another totalling 4.96 
credit hours. Introductory topics often involve a physical 
property like density and entropy while topics without 
successors are often lab experimentation or extensions 

into more complex application such as multiphase reac-
tions.  

 
Figure 8. Graph abstraction of the topics covered in the 
core chemical engineering courses.  

The grouping of topics into modules was conducted 
restricting the module size to three to fours credit hours 
across 13 modules resulting in modules in Figure 9 (un-
fortunately, due to the size of the problem, the optimiza-
tion was solved to 4.4% optimality gap in one hour and 

 
Figure 7. Graph abstraction of CBE 320:Introductoray Transport Phenomena. 
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future work will need to be done to optimize an entire 
curriculum with reasonable solver times). The modules 
here would reflect if the department wanted to keep the 
same number of courses but rearrange the topics to cre-
ate more even courses rather than being between one 
and five credits. Some of the modules are close to what 
they were prior. For example, topics covered within CBE 
470 and CBE 450 are largely still with the same topics. 
This demonstrates these courses are distinct from other 
parts of the curriculum. For CBE 450, this means that im-
plementing systems thinking and design throughout the 
curriculum would require a different approach than just 
rearranging the topics from process design. As such, to 
teach systems design throughout a curriculum we would 
have to revisit the entire curriculum and identify gaps and 
areas where concepts from systems design could be in-
troduced using this framework. 

 
Figure 9. Graph abstraction the core chemical 
engineering courses with topics grouped into modules. 

An additional note is on the transport related 
courses of CBE 320, CBE 324, CBE 326, CBE 426, and 
CBE 424.  Previous work has discussed how different in-
stitutions sequence transport topics. The curriculum is 
currently designed to introduce the theoretical aspects 
of transport in one course and equipment and experimen-
tation in subsequent courses. The modules determined 
by the optimization, on the other hand, tend to have the 
theoretical, equipment, and experimentation of each 
transport type (momentum, heat, mass) together due to 
the higher connectivity of topics within the same 
transport type compared to between the transport types.  

CONCLUSION 

This work presented a graph abstraction in which 
courses are represented by nodes and connections be-
tween courses are represented by directed edges. Addi-
tionally, a graph abstraction in which topics are repre-
sented by nodes and topic dependencies are repre-
sented by directed edges was presented. This graph ab-
straction was applied to the core chemical engineering 
courses required for undergraduate chemical engineer-
ing students at University of Wisconsin-Madison. This 
abstraction identified lowly and highly connected topics 
and discussed ways of grouping topics. This abstraction 
encourages instructors to discuss how topics and curric-
ula are presented. This work improves upon past efforts 
by formalizing the node attributes (topic size, review 
size) and the direction of edges between nodes. This for-
malization allows the exploration of topic dependencies 
and grouping with measurable features from graph the-
ory.  

FUTURE WORK 
 While the core chemical engineering courses for the 

undergraduate chemical engineering program at Univer-
sity of Wisconsin-Madison was presented here, this anal-
ysis can easily and will be expanded to include the entire 
undergraduate chemical engineering curriculum. This will 
enable further study into the interconnectivity between 
chemical engineering courses and background courses 
from chemistry, math, and physics. With this ability, the 
determination of which courses should be taught by the 
chemical engineering department and which courses are 
appropriate to be taken from other departments.  

For example, the chemical engineering undergrads 
at University of Wisconsin-Madison are required to take 
the three-credit STAT 324: Introductory Applied Statis-
tics for Engineers course while there also exists CBE 562: 
Statistics for Chemical Engineers and can be used to-
wards the chemical engineering elective requirement. 
This graph abstraction could be used with connectivity 
measures to make a case for CBE 562 to replace STAT 
324 entirely to improve the connectivity of the topics 
with more relevant chemical engineering examples and 
improve reinforcement of topics.  

In the current framework, some additional con-
straints could be added to account for additional attrib-
utes of topics. For example, a topic could be categorized 
as being a lab or lecture topic and a constraint could be 
implemented to ensure modules are made such that they 
are either lab or lecture modules. This would make the 
modules more accurately reflect more traditional course 
organization. 

While the module sizes were set to the sizes of typ-
ical courses in this analysis, the module size can be 
smaller. Setting the module size smaller would reflect 
smaller units within a course. This would enable writing 
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specific learning objectives for each module and package 
the curriculum into more easily presented sizes. This 
would further encourage discourse surrounding the cur-
riculum and what exactly is and should be taught within 
it. The creating of smaller modules could have the added 
benefit of increased flexibility to move modules around 
and replace modules with different concepts such as 
adding and electrochemistry module to the curriculum.  

Another use for this graph abstraction is to embed 
important concepts or ideas throughout it such as safety, 
sustainability, and systems thinking and design. For ex-
ample, implanting systems thinking and design through-
out the curriculum can be accomplished by creating case 
studies. These case studies would involve systems think-
ing and design that depend on topics from different 
stages in the curriculum. In doing so, the case studies 
would have to be designed in a way such that all topics 
are used to understand and solve the case studies. A 
similar approach could be used for implementing safety 
and sustainability.   

DIGITAL SUPPLEMENTARY MATERIAL 
Interactive HTML files of Figures 8 and 9 are availa-

ble at https://github.com/zavalab/ML/tree/master/Cur-
riculaGraphs.  

ACKNOWLEDGEMENTS 
We acknowledge funding from NSF CAREER award 

CBET-1748516 

REFERENCES 
1. Rampasso IS, Anholon R, Silva D, Cooper Ordoñez 

RE, Quelhas OLG, Leal Filho W, Santa-Eulália LA. An 
analysis of the difficulties associated to 
sustainability insertion in engineering education: 
Examples from HEIs in Brazil, J Clean Prod, 
193:363-371 (2018) 

2. Armstrong RC. A Vision of the Chemical 
Engineering Curriculum of the Future. Chem Eng 
Educ 40:104–109 (2006) 

3. Rouly JM, Rangwala H, Johri A. What Are We 
Teaching? Automated Evaluation of CS Curricula 
Content Using Topic Modeling. ICER ’15 189–197 
(2015)  

4. Toral SL, Martínez-Torres MR, Barrero F, Gallardo 
S, Durán MJ. An electronic engineering curriculum 
design based on concept-mapping techniques. Int 
J Technol Des Educ 17:341–356 (2007) 

5. Bussemaker M, Trokanas N, Cecelja F. An 
ontological approach to chemical engineering 
curriculum development. Comput Chem Eng 
106:927–941 (2017) 

6. Voronov RS, Basuray S, Obuskovic G, Simon L, 
Barat RB, Bilgili E. Statistical analysis of 
undergraduate chemical engineering curricula of 
United States of America universities: Trends and 
observations. Educ Chem Eng 20:1-10 (2017) 

7. Shao Y and Zavala VM. Modularity measures: 
Concepts, computation, and applications to 
manufacturing systems. AIChE J 66:e16965  (2020) 

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 
 

https://github.com/zavalab/ML/tree/master/CurriculaGraphs
https://github.com/zavalab/ML/tree/master/CurriculaGraphs


Research Article 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Peer Reviewed Conference Proceeding 

https://doi.org/10.69997/sct.121271 Syst Control Trans 3:983-989 (2024) 983 

Laying the foundations of Machine Learning in 
Undergraduate Education through Engineering 
Mathematics  
Pavan Kumar Naraharisetti a, * 
a Newcastle University in Singapore, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle Upon Tyne NE1 
7RU, UK 
* Corresponding Author: pavan-kumar.naraharisetti@ncl.ac.uk

ABSTRACT 
Some educators place an emphasis on the commonalities between engineering mathematics with 
process control, among others and this helps students see the bigger picture of what is being 
taught. Traditionally, some of the concepts such as diffusion and heat transfer are taught with a 
mathematical point of view. Now-a-days, Machine Learning (ML) has emerged as topic of greater 
interest to both educators and learners and new and disparate modules are sometimes introduced 
to teach the same. With the emergence of these new topics, some students (falsely) believe that 
ML is a new field that is somehow different and not linked to engineering mathematics. In this 
work, we show the link between the different topics from engineering mathematics, that are tra-
ditionally taught in UG education, with ML. We hope that educators and learners will appreciate 
the treatise and think differently, and we further hope that this will further increase the interest to 
improve ML models.  

Keywords: Education, Machine Learning, Optimization, Numerical Methods, Modelling, Process Control

INTRODUCTION 
It is important that students understand the similar-

ities and differences between the various modules in UG 
education so that they become well rounded engineers. 
To this end, mathematics, kinetics, thermodynamics, and 
process control allow us to explain the link between the 
different modules. While each module is designed to be 
disparate for the convenience of teaching, without plac-
ing due emphasis on the commonalities, it is easy to for-
get that all the topics are linked. Some educators place 
an emphasis on the commonalities between a.) engineer-
ing mathematics (ordinary differential equations, eigen 
values and eigen vectors) with process control (Laplace 
Transforms, poles, and state space modelling), b.) engi-
neering mathematics and diffusion/heat transfer via par-
tial differential equations, among others and this helps 
students see the bigger picture of what is being taught. 
Further, the concept of empirical equations and models 
is introduced much earlier to students through topics in 
fluid mechanics and heat and mass transfer.  

Considering UG Chemical Engineering education at 
the Newcastle University in Singapore, the different 
modules that teach applied mathematics are Engineering 
Mathematics – I & II, Computing & Simulation, Process 
Measurement Dynamics and Control, Process Control 2, 
and Chemical Process Optimization. In these modules, 
the following topics are taught. Linear algebra, ordinary 
differential equations (ODEs), numerical methods – solu-
tion to linear and nonlinear systems, series (Taylor, Fou-
rier, Trigonometric), partial differential equations (PDEs), 
introduction to artificial neural networks (ANN), and La-
place Transforms. In addition, students are also taught to 
program some of the topics using Matlab and Python.  

A focussed student and an experienced educator 
can readily see that the solution to some common ODEs 
is either in terms of an exponential or in terms of a sine or 
cosine function. Further, some common PDEs can be 
written as a combination of exponential, sine, and cosine 
functions using the Fourier Law. Through the study of 
Taylor series, we know that any function (exponential, 
sine, cosine, or others) can be written as a polynomial and 
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hence we can hypothesize that the solution to any ODE 
or PDE is a polynomial. We know that the trigonometric 
functions such as sine and cosine can be written as a pol-
ynomial using Maclaurin series. Thus, a system repre-
sented as a trigonometric series can be shown to be a 
polynomial. Fourier series is a special case of trigonomet-
ric series in which the coefficients can be calculated 
through the given formulae. Thus, Fourier series is also a 
polynomial (Fig. 1). 

Further, transfer functions in ANN have its founda-
tions in exponential functions. Albeit the exponential is in 
the denominator, we will be able to convert this into a 
polynomial using Taylor series. Exploring such common-
alities, we aim to bring forth a common thread between 
engineering mathematics and machine learning so that 
readers will better appreciate what they are learning in 
the new and emerging topics.   

Figure 1. System (One Dependent and One Independent 
Variable) – Polynomial 

Through some examples, this paper will lay the 
foundations of the inter-links between the different top-
ics and show that “any (simple) system can be modelled 
as a polynomial”. It is believed that the motivational ex-
amples will lay the foundations for understanding ma-
chine learning better. To this end, we start with univariate 
problems, as simple polynomials (and straight lines which 
are first degree polynomials) are taught to students at the 
beginning are most courses as they are easy to compre-
hend.  

SINGLE-INPUT SINGLE OUTPUT MODELS  
Single-input, single-output (SISO) models are the 

earliest and easiest to understand, especially so in UG 
education. We begin first by introducing the power series 
whose parameters must be estimated. A simple example 
is that of a solution to a 1st order ordinary differential 
equation (ODE) shown in Eqn. 2. This can be re-arranged 
and shown that the solution is an exponential function 
i.e.,  𝑒𝑒𝑥𝑥+𝑐𝑐, where ‘c’ is a constant. If 𝑒𝑒𝑐𝑐 = 𝑎𝑎0 the solution is 
𝑎𝑎0𝑒𝑒𝑥𝑥. While it is known that  𝑒𝑒𝑥𝑥 can be written as a 

polynomial using Maclaurin series (derivation not shown), 
the solution to Eqn. 2 becomes a polynomial. Separately, 
we can also calculate the coefficients of the power series 
by substituting it (Eqn. 1) in Eqn. 2 and prove that the 
power series is the same as the polynomial obtained 
through direct integration.  

 
𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3 …                            (1) 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

= 𝑦𝑦                                                                     (2) 
 

Substituting Eqn. 1 in Eqn. 2 gives,  
 (𝑎𝑎1 −  𝑎𝑎0) + (2𝑎𝑎2 −  𝑎𝑎1)𝑥𝑥 + (3𝑎𝑎3 − 𝑎𝑎2)𝑥𝑥2 + ⋯ . = 0  (3) 
 
Thus, (𝑎𝑎1 −  𝑎𝑎0) = 0; (2𝑎𝑎2 −  𝑎𝑎1) = 0; (3𝑎𝑎3 − 𝑎𝑎2) = 0. This 
shows that 𝑎𝑎1 =  𝑎𝑎0 and 𝑎𝑎𝑛𝑛 =  𝑎𝑎0

𝑛𝑛!
  and hence, 𝑦𝑦 =  𝑎𝑎0𝑒𝑒𝑥𝑥 

Modelling differential equations as 
polynomials 
 The solution to a simple 1st order ODE has been pre-
sented from Eqn. 1 onwards. Here, let us look at some 
other examples where the solution to an ODE can be pre-
sented as a polynomial.  Consider a 2nd order ODEs which 
can be written in homogeneous form as, 
 
 𝑎𝑎 𝑑𝑑2𝑑𝑑

𝑑𝑑𝑥𝑥2
+  𝑏𝑏 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
+ 𝑐𝑐𝑦𝑦 = 0                  (4) 

                                                       
 The solution to this can be obtained by solving for 
the roots of the characteristic equation. If the roots are 
real, the solution only has exponentials, however, if the 
roots are complex, the solution has trigonometric func-
tions which causes the system to oscillate (relevant to 
stable and unstable systems in process control). And 
since trigonometric functions can always be written pol-
ynomials, the solution to the above ODE is a polynomial. 
Here, we should note (details not shown) that we can 
show that the roots of the characteristic equation are the 
same as the poles of second order equation solved using 
Laplace Transforms (in process control) and that the 
roots are also same as the eigenvalues if we were to 
solve the second order equation by reducing it into a sys-
tem of two first order equations written in homogeneous 
form. As a side note, we need to remember that eigen-
values and eigenvectors are also useful in state-space 
modelling in process control. While it is possible to obtain 
the solution for homogeneous form of ODEs, the concept 
of system as a polynomial can also be extended to non-
homogeneous forms by obtaining the complementary 
function (solution to homogeneous form which is a poly-
nomial) and the particular-integral (where solution is as-
sumed as either being a polynomial or a trigonometric 
function which in turn is a polynomial).  

 If we consider higher order ODEs, which is still a 
SISO system, it can be reduced to a system of first order 
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linear ODEs that can be represented in a homogeneous 
form (𝑑𝑑𝑥𝑥

𝑑𝑑𝑑𝑑
= 𝐴𝐴) and can be solved using Eigenvalues and 

Eigenvectors of the matrix A. The solution would be of 
the form, 𝑥𝑥 = ∑ 𝑐𝑐𝑖𝑖𝑣𝑣𝑖𝑖𝑒𝑒𝜆𝜆𝑖𝑖𝑑𝑑𝑛𝑛

𝑖𝑖=1  where, 𝜆𝜆𝑖𝑖 are the eigenvalues, 
𝑣𝑣𝑖𝑖 are the eigenvectors, and 𝑐𝑐𝑖𝑖 are the constant of inte-
gration which can be obtained using the initial conditions. 
Since an exponential can be written as a polynomial, we 
can conclude that the solution to a system of first order 
linear ODEs is a polynomial as well. Whether this structure 
can be represented as a graph, or a neural network would 
be of interest.  

Consider the third order ODE, 𝑑𝑑
3𝑑𝑑
𝑑𝑑𝑑𝑑3

− 6 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

+ 11 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
−

6𝑦𝑦 = 0. Fig. 2 shows the ODE represented as a graph. 
Readers who are familiar with Simulink would readily see 
that this graph has similarities with it. Simulink would 
have an inverse representation and solve the system us-
ing integration while the representation in Fig. 2a, shown 
as a graph, uses differentiation. The same is further elab-
orated in Fig. 2b as activity on node so that it is easier to 
see the similarities with a neural network. Hence, it is not 
entirely surprising that ODEs have been incorporated into 
neural networks. In our syllabus, we cover the famous 
Lotka-Volterra model to explain solution to system of 
ODEs. 

 

Figure 2a. Representation of an ODE as a graph.   

 
Figure 2b. Representation of an ODE as a network with 
activity on node, which is akin to a neural network. 

More in-depth studies incorporating solution of 
ODEs had been addressed by the development of neural 
differential networks where researchers have com-
mented that “neural differential equations (NDEs) 
demonstrate that neural networks and differential equa-
tion are two sides of the same coin” [1]. While the details 
of NDEs are beyond the scope of this work, we believe 
that Fig. 2 aptly captures this statement. A simplistic view 

is that the neural network in NDEs is a series of first order 
ODEs resulting in a higher order system. 

Use of SISO models in neural networks 
 When we move to artificial neural networks (ANN), 
the logistic regression, a special case of the sigmoid 
function, is used as the activation function (Eqn. 5). The 
sigmoid function, given below, can also be represented 
as a polynomial. There are three ways of deriving the pol-
ynomial. One, we could use the Maclaurin series to derive 
the same. Two, one can assume a higher order polyno-
mial and estimate the parameters using matrix opera-
tions. Three, estimate the parameters using optimization 
(error minimization). 
 
 𝑦𝑦 = 1

1+𝑒𝑒−(𝑥𝑥−𝜇𝜇)/𝑠𝑠         (5) 
 
where, 𝜇𝜇 is a location parameter used to recenter ‘𝑥𝑥’ 
around ‘0’ and ‘𝑠𝑠’ is scaling parameter used to normalise 
the value of ‘𝑥𝑥’. For simplicity, we can assume that 𝜇𝜇 = 0 
and 𝑠𝑠 = 1.  
 A comparison of the 10th-degree and 13th-degree 
polynomials generated by using matrix operations for pa-
rameter estimation with a sigmoid function is shown in 
Fig. 3 (method of estimation and parameters not shown). 
We observe that it is rather easier to represent the 
data/system as a sigmoid than a polynomial and that the 
polynomials generated do not completely represent the 
sigmoid. Whether a higher order polynomial is required 
remains to be seen. Thus, for use in ANN, it is prudent to 
use sigmoid instead of an equivalent polynomial. For 
more on the equivalent polynomials used in ANN and 
other advanced versions of neural networks, the reader 
is referred to [2]. Another point to note here is that We 
can clearly see here that we have plotted only [-7, +7] 
range for the polynomials which already resulted in poor 
accuracy whereas we can plot for any range [-∞, +∞] 
when sigmoid is considered. While it is known that Poly-
nomial Neural Networks are difficult to implement be-
cause polynomials have ‘exploding gradients’ i.e., steep 
inclines in the plot, this simple single input, single output 
system clearly demonstrates the pitfalls of using a poly-
nomial as an activation function.  Will a trigonometric se-
ries give a better fit? Probably (see next section on saw-
tooth wave alludes to it), however, we refrain from doing 
it for the SISO system. 
 Although our attempt to represent sigmoid function 
has failed (miserably), one can readily see why. Sigmoid 
function is in fact a ratio of two polynomials, and we can 
see this if we try to bring the exponential to the numera-
tor. It may be worthwhile try to model sigmoid as the ratio 
of two different polynomials, but we refrain from doing it 
here. 
 To conclude this section, while any SISO system can 
be modelled as a polynomial, the question remains as to 
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whether it is necessary to do so in neural networks espe-
cially since many hidden layers with the activation func-
tion in each will result in a nonlinear system and may suf-
ficiently capture the system dynamics. 

 
Figure 3. Comparison of sigmoid function with a 10th and 
13th degree polynomial.   

A side note 
 Using the Maclaurin series, the formula for the bino-
mial series, which is (1 + 𝑥𝑥)𝑛𝑛, can be derived, and by us-
ing the binomial series, the expanded equation for 
(𝑎𝑎 + 𝑏𝑏)𝑛𝑛 can be found by assuming that 𝑏𝑏

𝑎𝑎
= 𝑥𝑥. As an ex-

ample, we can expand (𝑎𝑎 + 𝑏𝑏)3 as,  
 
𝑎𝑎3(1 + 𝑥𝑥)3 =  
 
𝑎𝑎3(1 + 3(1 + 𝑥𝑥𝑥𝑥=0)2𝑥𝑥) + 3×2(1+𝑥𝑥𝑥𝑥=0)𝑥𝑥2

2!
+  3×2×1×𝑥𝑥3

3!
)  

 
which becomes, 
 
 𝑎𝑎3(1 + 3𝑥𝑥 + 3𝑥𝑥2 + 𝑥𝑥3) = (𝑎𝑎3 + 3𝑎𝑎2𝑏𝑏 + 3𝑎𝑎𝑏𝑏2 +  𝑏𝑏3).  
 
 We must note here that this derivation is normally 
not taught using series and it is hence interesting that al-
gebraic formulae can also be derived using series and 
represented as a polynomial.  

DOUBLE-INPUT SINGLE OUTPUT 
MODELS  

Double input, single output systems can also be 
called Two/Twin input, single output models (TISO). Let 
us consider two problem types for this analysis. The first 
is that of geometric shapes and the second is solution of 
2nd order partial differential equations used in heat and 
mass transfer.  

Modelling topology using neural networks 
We first consider the case of a cone and a parabo-

loid. They can be represented by Eqn. 5a & 5b 

respectively.  
𝑧𝑧2 = 𝑥𝑥2 + 𝑦𝑦2     (5a) 
 
𝑧𝑧 = 𝑥𝑥2 +  𝑦𝑦2      (5b) 
 
In theory, these two surfaces can be modelled as an 

ANN with two inputs (𝑥𝑥 and 𝑦𝑦) and one output (𝑧𝑧). Once 
the ANN model is generated (using data generated by 
Eqn. 5), we should be able to calculate 𝑧𝑧 by giving differ-
ent values of 𝑥𝑥 and y and regenerate the surfaces using 
the ANN model. The question then is that if surfaces can 
be modelled simply as in Eqn. 5, should we resort to using 
neural networks to do the same? Or, a more philosophical 
question is, how can topology be modelled as a neural 
network? The answer does not seem to be simple or 
straight forward, and it appears that when the physics is 
well understood, there is no need to use a neural network, 
or is that so? Let us understand this visually by taking a 
step back by looking at a SISO problem. 

Consider the sawtooth wave which can be repre-
sented by simple piecewise linear mathematical repre-
sentation as given in Eqn. 7. While this is simple, engi-
neers however are interested in a continuous function 
that can be differentiated and is easy to implement (es-
pecially in electronics and signal processing). Fourier 
transforms allow us to generate an equivalent continuous 
function which allows us to do the same. The equation for 
the Fourier series is given in Eqn. 8.   

 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥               ∀   0 ≤ 𝑥𝑥 <  𝜋𝜋                                                (7a) 
 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥 − 2𝜋𝜋      ∀   𝜋𝜋 ≤ 𝑥𝑥 <  2𝜋𝜋                                                (7a) 
 
𝑓𝑓(𝑥𝑥) = 2∑ ((−1)𝑘𝑘+1 sin (𝑘𝑘𝑥𝑥)

𝑘𝑘
∞
𝑘𝑘=1 )                                                (8) 

 

Figure 4. Sawtooth wave. A comparison of piecewise 
linear representation vs. Fourier series (k= 7).   

It can be seen from Fig. 4 that although the Fourier 
series will have increasing accuracy with increasing ‘k’, 
the ‘edge-effects’ will continue to be present. While the 
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application of this simple example is easy to understand, 
and we are willing to compromise accurate (accuracy be-
yond a point is not perceived to the end-user) for easy of 
use, we do not fully understand the implications of com-
promising accuracy over easy of use in multidimensional 
problems where neural networks are typically used. Note: 
It is possible to represent the sigmoid function, presented 
in the earlier section, as a trigonometric series or Fourier 
series, but we will refrain from doing it here.  

Another way to look at the issue of accuracy is by 
considering a cone or a paraboloid. While Eqns. 5a & 5b 
give a perfectly smooth representation, objects in the 
real world are not nearly as perfect at the microscopic 
level. We can only achieve certain level of smoothness 
using machining processes and objects are always non-
smooth when we see them under magnification. Thus, we 
can probably say that neither of Eqn. 5a & 5b are perfect 
representations of the reality. We do not however know 
what the implications are if we can represent this ‘imper-
fect reality’ through imperfect neural networks! Fig. 3 
shows both the smoothness and the gaps between the 
data points in a cone (‘imperfections’ arising from dis-
crete datasets). 

 
Figure 5. A cone, with both smoothness and gaps 
(imperfections) is shown.  

Having said that, developing neural networks that 
understand or replicate topology may open new doors for 
the field of artificial intelligence in its quest for developing 
cognitive capabilities. Here, we should emphasize that 
we must not confuse ‘topology of neural networks’ with 
‘modelling topology using neural networks’ – we are al-
luding to the later and not the former.  Readers who are 

more interested in ‘topology of neural networks’ with ap-
plications to ‘modeling topology using neural networks’ 
are referred to what is known as ‘Geometric Deep learn-
ing’, more specifically ‘Geodesic Convolutional Neural 
Networks’ [3], which are beyond the scope of a typical 
undergraduate programme in chemical engineering. 

Modelling partial differential equations using 
neural networks 
 Solution to partial differential equations with two in-
dependent variables and one dependent variable can 
also be derived by using Fourier series and the same is 
taught in our undergraduate courses. Consider the case 
of a hotplate shown in Fig. 6. The solution, temperature 
vs. location, of this problem which can be derived from 
first principles is given in Eqn. 9. We can see from Eqn. 9 
that the solution is an infinite series that involves trigono-
metric function sine as well as exponentials. The data for 
change in temperature with location can be obtained by 
direct integration of the constant, 𝑐𝑐𝑛𝑛, and substituting dif-
ferent values of x and y. We must note here that, just as 
in SISO Fourier series, the accuracy increases as ‘n’ be-
comes large. 

 
Figure 6. Hotplate that is heated at y = b.  

 𝑇𝑇(𝑥𝑥,𝑦𝑦) =  ∑ 𝑐𝑐𝑛𝑛sin (𝑛𝑛𝑛𝑛𝑥𝑥
𝑎𝑎

)(𝑒𝑒
𝑛𝑛𝑛𝑛
𝑎𝑎 𝑑𝑑 − 𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑎𝑎 𝑑𝑑)∞

𝑖𝑖=1   (9) 
 
where, 𝑐𝑐𝑛𝑛 = 2

𝑎𝑎(𝑒𝑒
𝑛𝑛𝑛𝑛𝑛𝑛
𝑎𝑎 −𝑒𝑒−

𝑛𝑛𝑛𝑛𝑛𝑛
𝑎𝑎 )

∫ 𝑓𝑓(𝑥𝑥) sin �𝑛𝑛𝑛𝑛𝑥𝑥
𝑎𝑎
� 𝑑𝑑𝑥𝑥𝑎𝑎

0  

 
 This equation can be visualised as being equivalent 
to a graph or a network through Fig. 7. Here, the node 
represents a product (multiplication) and the arc repre-
sents the transformation of the input node to the output. 
This is not exactly like the traditional neural network, but 
it is important to understand that the equation can be 
represented as a graph. When n=1, only the equations in 
big rectangle are used. As ‘n’ increases, the number of 
such rectangles can be increased as the structure within 
the rectangle remains the same.   
 Separately, the graphical representation of solution 
of Eqn. 9 is shown in Fig. 8a as a 3D image. On the other 
hand, obtaining the neural network model of the solution 
using data either from experiments or data generated 
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using Eqn. 9 is also possible. While it may not be clear 
from Fig. 8a that we can model this as a neural network, 
Fig. 8b makes it clearer. It being a 2D image with different 
colours, we can clearly see that generating multiple such 
images with different values of f(x) and calculating ‘T’ 
with respect to ‘x’ and ‘y’ will clearly help us generate an 
equivalent neural network model. We can say this with 
reasonable confidence since making sense of 2D images 
is one of the earliest applications of neural networks. 
While four sub-models are required if we are to obtain the 
solution to a hotplate that is heated on all four sides, Fig. 
8c (equations not shown), it may be possible to generate 
an equivalent neural network model that can model a hot 
plate heated on all sides within one model.    

 
Figure 7. Graph representation of Eqn. 9 with hotplate 
heated on one side. 
   

 
Figure 8a. Solution to PDE (in 3D) of a hotplate that is 
heated on one side. Note: Fig. 6a-c are from lecture 
notes, CHE1021 Engineering Mathematics II by Liu Wen 
Paul, former faculty at Newcastle University. 

To elaborate, in a simple image analysis problem, 

the value in each pixel is vectorized and several such pic-
tures are used to train (parameter estimation) the model 
to determine if the image is that of a cat or a dog i.e., the 
training data consists of 1024x1024 inputs (assuming 
that image dimension is 1024x1024) vs. one output (cat 
or dog). On the contrary, if a hot plate is to be modelled 
as a neural network, there will be six inputs (location (x, 
y) and temperature, T, on the four sides) and one output 
(temperature at the given pixel/location). Even though 
the image dimensions are large (1024x1024), the problem 
can be modelled with fewer number of input nodes in the 
neural network.  

Figure 8b. Solution to PDE (in 2D) of a hotplate that is 
heated on one side. 

Figure 8c. Solution to PDE (in 2D) of a hotplate that is 
heated on all four sides.  

We should note here that, just as accuracy increases 
with increasing ‘n’ in Eqn. 9, the accuracy of the neural 
networks also increases with increasing hidden layers 
and nodes. We should note here that parameters and 
hence model size increases with ‘n’ in Eqn. 9 and with the 
number of hidden layers and nodes in neural networks.  
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Hence, we may allude that similarities exist between first 
principles models and neural networks that more the pa-
rameters, the more accurate representation of the reality. 
 We should also note that parameter estimation be-
comes more tedious in this TISO model if we were to for-
mulate is as a pure mathematical model with no under-
standing of Fourier series.  We can envision that higher 
dimensional problems can also be modelled as a trigono-
metric series and exponentials. We must however re-
member that the issue with using trigonometric functions 
in mathematical modelling and then performing parame-
ter estimation is that trigonometric functions create ‘rip-
ples’ which have multiple (bad) local minima and hence 
parameter estimation may become difficult, if not impos-
sible. On the contrary, neural networks have been exten-
sively used to model higher dimensional problems. So, 
unless there is an easier way to estimate the parameters 
when using trigonometric series, such as in Fourier se-
ries, it is probably better to use neural networks in the 
near term. Having said that, it may be worthwhile to ex-
plore use of trigonometric series and exponentials in neu-
ral networks. One rather interesting use of trigonometric 
functions in neural networks is the use of wavelets and 
the treatise of the same is beyond the scope of this work.  

CONCLUSIONS  
 In this work, we have demonstrated through simple 
examples how engineering mathematics course in under-
graduate education can be used to lay the foundations of 
neural networks. The author is of the view that other top-
ics such as numerical methods, optimization, parameter 
estimation can also be taught with a machine learning fla-
vour.   

To conclude, although any SISO system may be a 
polynomial or may be reduced to be a polynomial, it is 
rather difficult to model (and perform parameter estima-
tion on) all systems by assuming that they are multi-in-
put, multi-output polynomials or as combination of trigo-
nometric functions. Hence, modellers should be con-
scious to incorporate the physics of the system into the 
modelling framework where possible. Alternatively, an 
appropriate existing model must be used, typically with 
an understanding of the problem under consideration 
which incorporated known knowledge into the model. 
This must be emphasized early on in mathematics edu-
cation so that future research and education can be di-
rected at bridging the gap between traditional mathe-
matics and machine learning, possibly leading to explain-
able AI.  
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DESIGNING IRRESISTIBLE SUPERIORITY 
At Procter and Gamble, innovation is based on a 

framework of Irresistible Superiority [1] that utilizes five 
complementary components – Products, Packages, 
Communication, Retail Execution, and Value.  Increas-
ingly, the computational techniques heavily leveraged 
within the Process Systems Engineering community are 
playing a leading role in delivering these five vectors, and 
they become increasingly valuable as we aim to deliver 
products in more exploratory consumer spaces – where 
combining high-volume data, advanced modeling, and 
quantified uncertainty will allow us to discover and de-
liver better products faster than ever before. 

Superior Product & Package Design 
In the product design space, we have a long history 

of utilizing traditional modeling & simulation to deliver su-
perior products [2].  In today’s technology landscape, we 
see potential in both product and ingredient discovery 
through the complementary use of traditional modeling 
with machine learning techniques for high-throughput 
screening applications.  This approach allows us leverage 
digital twins to explore a wide variety of environments in 
which our products must perform, but it also allows for a 
simultaneous exploration of numerous – and often com-
peting - constraints on ingredient safety, sourcing, and 
performance. 

Packaging presents different opportunities for com-
puter aided design.  We continue to use modeling & sim-
ulation to design our physical packages to be resilient in 
the supply chain and to give novel and superior consumer 
experiences.  These same models – and specifically the 
material constitutive equations therein – can help us 
identify more sustainable materials and can improve our 
internal processing of our packages.  In more recent de-
velopments, we are also using package models combined 
with formulation understanding to improve prod-
uct/package interactions, enabling the delivery of sus-
tainability without sacrificing product performance in our 
consumers’ daily use. 

Superior Communications & Retail Execution 
While the above two areas seem somewhat conven-

tional domains for computational design, perhaps some 
of our biggest opportunities lie in consumer communica-
tion.  We are constantly challenged to translate our prod-
ucts’ technical superiority to consumer-noticeable supe-
riority, and measuring that superiority is very well-suited 
to Bayesian inference from small testing and larger con-
sumer behaviors data.  For example, we have long uti-
lized Bayesian methods for estimating latent effects in 
sensory tests, and we leverage learnings from these 
small experiments in well-established methods for claims 
and communication testing (i.e. A/B tests).  These tech-
niques help us ensure that the best aspects of our tech-
nical performance are meaningfully visible to our con-
sumers. 

Retail execution presents still more opportunities for 
computer-aided design – especially as an increasing 
amount of retail activity is conducted via digital plat-
forms.  We learn through online channels and ML models 
which aspects of brand propositions work well with con-
sumers, and we are then able to leverage those best-per-
forming elements into successful retail executions.  Con-
versely, we often supplement our retail displays with dig-
ital information that is relevant to consumers based on 
environmental & behavioral trends – enabling models to 
present the most meaningful content to a consumer who 
is searching for more about our brands [3]. 

Superior Value to Customers & Consumers 
Finally, it is essential that we continue to deliver the 

above superiority at an exceptional value – to both the 
consumer and the customer.  This value delivery is read-
ily enabled by productivity-enhancing AI in data-rich ar-
eas like ingredient screening, but in other areas of design, 
we rely heavily on Process Systems Engineering experts 
across the whole of our supply chain.  Increasingly, we 
are using process systems & machine learning together 
to prioritize & screen new ingredients not based solely on 
their performance properties, but also on their possible 
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supply chains & their actual and perceived safety & reg-
ulatory risks.  This allows us to deliver new products 
quicker and more affordably than could have been imag-
ined even 10 years ago. 

COMPUTATIONAL DESIGN SKILLS OF 
THE FUTURE 

What then does this multi-faceted approach to de-
sign demand of the computational design community?  
First and foremost, it demands partnership.  We need a 
diverse set of skills in computational disciplines that span 
data engineering, machine learning, multi-objective opti-
mization, and Bayesian inference – all of which must com-
plement well-established modeling disciplines!  We can-
not possibly expect researchers and students to master 
each of these disciplines, so they must instead demon-
strate their ability to master a few areas and partner very 
effectively with the others as quickly as possible. 

Second and just as importantly, we require practi-
tioners of computational design to become obsessed 
with the decisions they are driving and the problems they 
are solving rather than the computational capabilities 
themselves.  Practically, this means being keenly aware 
of the decisions being influenced by any prediction or op-
timization algorithm.  And in an innovation environment, 
we need computational leaders to recognize that accel-
erated learning is an objective in itself – learning in new 
spaces, as efficiently as possible, with the possibility of 
generating new data in areas where we have never ex-
plored.  This combination of factors paints an exciting 
picture of the future of computational design of con-
sumer products, and as consumers ourselves, we should 
all be eager to enjoy the fruits of these superior design 
capabilities in our daily lives. 
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EXTENDED ABSTRACT 
The United States’ Inflation Reduction Act (IRA) of 

2022 has established incentives to facilitate the energy 
transition. While these policies provide economic incen-
tives that encourage investment and may reduce finan-
cial risk for the private sector on the supply side, transi-
tioning to a lower carbon or net-zero economy by 2050 
presents several challenges. These include designing 
flexible production systems that can interact with inter-
mittent renewable energy resources, ensure process 
safety, redesigning existing energy infrastructure to sup-
port new energy carriers like hydrogen or ammonia, and 
making long-term investment decisions in an uncertain 
and evolving market. Addressing these challenges pre-
sents significant opportunities for the computer-aided 
design community to leverage techniques at the inter-
section of process design, AI/ML, data science, and opti-
mization, which will play a key role in designing robust 
systems that can thrive during the energy transition. 

This presentation aims to provide an overview of 
different technologies that are being considered and as-
sociated challenges faced by the industry at the ground 
level, particularly around hydrogen and ammonia produc-
tion routes, as shown in Figure 1, in a post-IRA era. Spe-
cifically, the presentation will highlight the policy details 
in sections 45V and 45Q of the IRA and how these influ-
ence problem formulations and economic calculations. It 
will also demonstrate the importance of considering pro-
cess design for hydrogen and ammonia production from 
a systems-level perspective that incorporates the inter-
action of tightly coupled, time-varying systems, and how 
conventional techno-economic designs need to consider 
emissions at the design stage given the incentive struc-
tures in the IRA are related to carbon intensity. In addi-
tion, this presentation will discuss how optimization-
based end-to-end pipelines are deployed in production 
within a business environment while addressing 

challenges around comparison to pre-existing methods, 
data uncertainty, problem infeasibilities, and sustaining 
engagement with end users. 

Figure 1: Potential production pathways from electricity 
and natural gas for H2 and NH3  
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INTRODUCTION 
The overarching goal of process design (Figure 1) is 

to find technologically feasible, operable, economically 
attractive, safe and sustainable processing pathways 
and process configurations with specifications for the 
connectivity and design of unit operations that perform a 
set of tasks using selected functional materials (e.g., cat-
alysts, solvents, sorbents, etc.) to convert a set of feed-
stocks or raw materials into a set of products with de-
sired quality at a scale that satisfies the demand. Process 
synthesis and integration can further screen, optimize 
and improve these pathways for given techno-econo-en-
vironmental targets or objectives. These objectives may 
include, but are not limited to, minimizing the overall in-
vestment and processing costs, minimizing the energy 
consumption, minimizing the emissions or wastes, max-
imizing the profit, and enhancing the safety, operability, 
controllability, flexibility, circularity, and sustainability, 
among others. 

Figure 1. Overarching goal of optimal process design. 

For a long time, fossil fuels (petroleum, natural gas, 
and coal) have been predominantly used as primary 
feedstocks as well as primary energy providers for the 
chemical process industry (CPI). The chemicals and re-
fining is by far the largest contributor of industrial direct 

and indirect carbon emissions [1]. In recent times, decar-
bonization and transition to renewable energy have 
emerged as the major pathways for reducing anthropo-
genic greenhouse gas emissions that contribute to global 
warming and climate change. Like many other sectors, 
CPI is considering them to reduce its overall carbon foot-
print.  

Industrial decarbonization primarily refers to reduc-
tion or elimination of CO2 emissions from a manufacturing 
process. For CPI, it would include the following, among 
others [1]: (i) improving energy efficiency through novel 
process design, optimization and integration, (ii) incorpo-
rating bridging reduced/net-zero/negative emission 
technologies such as carbon capture, utilization and stor-
age (CCUS) [2], direct air capture (DAC), hydrogen 
and/or biomass based energy & fuels, (iii) electrification 
of process heating and cooling, and (iv) substitution of 
fuels, feedstocks, and energy sources. 

Energy transition is another broad concept that en-
capsulates a significant shift in the way we produce, dis-
tribute, and use our primary energy sources. Typically, it 
refers to move from conventional fossil fuels to more sus-
tainable and environmentally friendly alternatives, such 
as renewables (solar, wind, hydro, geothermal), energy 
storage technologies, and increased energy efficiency 
measures. 

This work explores the pivotal role of process de-
sign and optimization as the CPI navigates through dif-
ferent challenges and opportunities towards mitigating 
carbon emissions and facilitating the shift towards re-
newable energy. 

CHALLENGES AND OPPORTUNITIES 
While these measures show great promise for re-

ducing carbon emissions, an effective integration and 
deployment of these measures pose are significant and, 
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in some cases, unique challenges for the CPI. Chemical 
and refining processes are historically developed consid-
ering a steady supply of conventional feedstocks and en-
ergy. High efficiency and low capital intensity, both of 
which contributed to high economic gain, were achieved 
through economies-of-scale of large, centralized pro-
cessing facilities. However, as we consider shifting to-
wards utilizing unconventional feedstocks and renewable 
energy sources, we loose the economies-of-scale. Many 
unconventional feedstocks and most renewable energy 
sources are distributed, only intermittently available, and 
uncertain. One such example is shown in Figure 2, where 
we observe significant variability in the long-term, sea-
sonal, and daily availability of methane from landfill gas, 
which is an unconventional feedstock. 

 
Figure 2. Long-term, seasonal and daily variability in 
landfill-based methane feedstcok availability. 

Similar to the unconventional feedstocks, renewable 
energy sources such as solar and wind are distributed 
and intermittent. The future price of renewable electricity 
could decrease substantially to compete with traditional 
fossil fuels [3]. However, intermittency, spatio-temporal 
variability and non-dispatchability of renewables pose 
considerable challenges for systems integration. Figure 3 
shows an example of variability of solar and wind energy 
availability.  

 

 

Figure 3. Temporal variability in solar and wind energy. 

 The intermittency of these variable renewable 
sources and the high energy requirement of carbon cap-
ture restrict their widespread deployment in the CPI. This 
often leads to simultaneous design and scheduling prob-

lems [4]. These challenges are traditionally addressed in-
dependently at the grid-level, leading to conservative 
costs and limited operational flexibility for both systems. 
However, opportunities exist to examine the synergistic 
integration of renewables and flexible carbon capture 
with individual chemical plants. Renewables can provide 
clean energy for carbon capture, while energy storage 
can be incorporated to counter renewable intermittency. 
To assess whether the benefits obtained from integration 
outweigh the capital cost under spatiotemporal variability 
of electricity markets and renewable energy, we can de-
velop and use mathematical programming-based optimi-
zation frameworks for process design and optimization. 
We can decouple the design and operational decisions in 
a two-stage optimization strategy to efficiently solve the 
large-scale problem. 

Electrification of the chemical industry reduces the 
reliance on fossil fuels across the economy and enables 
plants to integrate cleaner energy sources such as re-
newables. However, the variation and intermittency in re-
newable energy supply is a key challenge in electrifying 
industrial processes. Plant-wide energy storage will most 
likely play an important role in electrification by leveling 
off the change in energy supply [5]. Thermal energy stor-
age (TES) is particularly suitable for chemical process 
plants due to the use of low-cost storage mediums. With 
the support from TES, renewable powered electric heat-
ers can be introduced. However, there is a need for sys-
tematic methods that simultaneously consider the time-
varying utility supply from renewables, the design and in-
tegration of single/multistage TES process configurations 
with heat exchanger networks, the scheduling of optimal 
charging/discharging operations, and the selection of en-
ergy storage mediums. One such concept of renewable-
powered electrification is illustrated in Figure 4.  

 
Figure 4. Renewable powered chemical process heat 
integration with TES and backup green hydrogen. 
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By integrating advanced modeling techniques, sim-
ulation tools, and artificial intelligence, engineers can fur-
ther optimize the performance of existing processes and 
develop novel, sustainable solutions under uncertainty. 
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Flexibility is a critical feature of any industrial system 
as it tells us about the range of conditions under which 
the system can effectively and safely operate. It is be-
coming increasingly important as we face greater volatil-
ities in market conditions, diverse customer needs, more 
stringent safety and environmental regulations, the 
growing use of resources with varying availability such as 
renewable energy, and an increased likelihood of disrup-
tions caused by, for example, extreme weather. 

In process systems engineering, there is a long his-
tory of applying flexibility analysis [1] to evaluate and de-
sign flexible process systems. In particular, Swaney and 
Grossmann [2] introduced the concept of flexibility index 
to quantify the level of operational flexibility in a given 
design. Here, one assumes that the system’s input pa-
rameters can take values within certain ranges defined 
by a so-called uncertainty set, which typically takes the 
form of a hyperrectangle. The size of the uncertainty set 
is given by a scalar parameter, and for a given design, the 
flexibility index is the largest possible value of that size 
parameter for which the operation of the system is guar-
anteed to be feasible with proper adjustment of the con-
trol variables. In addition, we often want to optimize the 
design of a system while satisfying given flexibility re-
quirements. In that case, the uncertainty set is fixed, and 
the design problem can be formulated as a two-stage ro-
bust optimization problem [3]. 

In this work, we propose a new design approach that 
can directly determine the design that maximizes the 
flexibility of the system. It also provides a rigorous way of 
investigating the trade-off between cost and flexibility, 
and it can be especially useful when the uncertainty set 
has a more complex structure with multiple parameters 
defining its shape and size. We find that the problem can 
be formulated as a two-stage robust optimization prob-
lem with endogenous uncertainty [4]. Its trilevel nature 
and the decision-dependent uncertainty set give rise to 
a computationally highly complex optimization problem. 
For its solution, we apply variants of the column-and-

constraint generation algorithm proposed by Zeng and 
Wang [5]. We demonstrate the key features and efficacy 
of this new design approach using several examples, in-
cluding a computational case study considering the de-
sign of a supply chain involving mobile modular plants un-
der uncertainty. 
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EXTENDED ABSTRACT 
Process design is a core component of chemical en-

gineering education and either involves or is followed by 
an extensive design project in most schools. The design 
project is often considered a core activity in the educa-
tion of future chemical engineers because it develops 
their skills in creative and critical thinking beyond the 
boundaries of their acquired knowledge, as well as train-
ing them in teamwork. Such skills are likely to be crucial 
to empower students to develop process technologies 
that respond to the relevant future challenges in process 
design. These future challenges include accommodating 
alternative raw materials and energy resources, address-
ing sustainability concerns, and arranging production 
schedules that are more flexible. Some schools already 
integrate certain of these challenges in process design 
courses and design projects, e.g., water and energy con-
servation as well as CO2 capture, storage and utilization, 
and biochemical manufacturing. At the same time, pro-
cess design tools are also evolving, including, for exam-
ple, increased emphasis on combination with data-based 
methods, digital twin concepts, or integration with virtual 
and augmented reality tools.  

On the other hand, only a small fraction of chemical 
engineering departments teach product design. With in-
dustrial diversification, it is of growing importance to 
teach techniques for selecting products that satisfy con-
sumer needs while incorporating the latest new R&D 
technologies. Our presentation will describe methods for 
helping undergraduate students learn the technologies 
sufficiently well to incorporate them in designing new 
products. Here expert faculty and industrial persons, 
along with doctoral researchers, can formulate timely 
product design problems, while helping students obtain 
solutions. Clearly, new products should be accompanied 
by process designs, but product-design strategies are 
emphasized. Also, initially, methods for selecting new 

products using well-known technologies are empha-
sized. Furthermore, product-designs that involve AI and 
account for the environment and sustainability can be 
considered. Finally, reasons many departments teach 
only process design are covered. For FOCAPD 2024, an 
extensive report, prepared by faculty and industrial per-
sons, describing the latest approaches, will be summa-
rized. The report, Teaching Chemical Product Design, will 
have been circulated worldwide with a survey concerning 
product design – the results of which will be de-scribed 
at the conference.  

To summarize our combined position, we propose to 
present the state of the art in teaching process and prod-
uct design, and to begin a discussion on how to achieve 
these objectives within the timeframe that is allocated to 
chemical process/product design instruction. 
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CHEMICAL PROCESS DESIGN 
All ABET-accredited engineering programs mandate 

a culminating major design experience based on 
knowledge and skills acquired in earlier course work and 
incorporating realistic appropriate engineering standards 
and multiple realistic constraints. Some chemical compa-
nies organize their Manufacturing Innovation Process 
into a sequence of stages which typically include Need 
Identification, Product Design, Basic and Detailed Chem-
istry, Process Design, Equipment Design, Plant Design, 
Detailed Engineering and Vendor Specifications, Compo-
nent Acquisition, Plant Construction Planning and Execu-
tion, Operating Procedure Development, Plant Commis-
sioning and Start-up, and Production Planning, Schedul-
ing, and Operation. Each of these stages involve the so-
lution of many "design" problems that could be the sub-
ject of the culminating undergraduate chemical engineer-
ing design experience.  

Most chemical engineering programs historically 
have chosen Process Design and Equipment Design for 
the capstone design experience as these aspects incor-
porate more of the science and engineering principles 
(mass and energy conservation, classical, solution, and 
reaction thermodynamics, transport phenomena, kinet-
ics, separations, unit operations, control, safety, etc.) and 
computational tools (equation solvers, physical property 
prediction, process and fluid dynamics simulators, etc.) 
taught within undergraduate chemical engineering cur-
ricula. However, some programs have chosen instead a 
Product Design experience, especially if the product is it-
self a process (like an analytical instrument, oxygen con-
centrator, etc.) or if product fitness-for-use depends on 
its performance in a process (a solvent, mass separating 
agent, refrigerant, membrane, catalyst, etc.) or user ex-
perience (microstructured consumer products, etc.). 
Other aspects of the innovation process (e.g., Needs 
Identification, Basic and Detailed Chemistry, Plant De-

sign, Vendor Specification, Construction Planning, Oper-
ating Procedure Development, Production Planning and 
Scheduling, etc.), while certainly interesting, typically 
have not been used as the capstone design experience 
either because they require more specialized mathemat-
ics, chemistry, biology, materials science, etc. knowledge 
than most undergraduates are exposed to, or because 
they require prerequisite Process and Equipment Design. 

Process Design at Purdue 
At Purdue our chemical engineering senior design 

experience has focused on Conceptual Process Design 
and Economic Evaluation with some aspects of Plant De-
sign, Plant Wide Control, and Process Safety. This in-
cludes Equipment Design at different levels of detail ap-
propriate for conceptual economic evaluation and some-
times for vendor specification. Our subject processes 
may be of any scale, usually continuous but can be batch, 
and of a complexity that can be reasonably solved by 
teams of four or five students within one semester. We 
expect this course scope to continue into the future. 

We teach a design paradigm (using terminology ap-
propriate for Process Design, but applicable in general to 
many design problems within the innovation process) in-
volving Formulation, Synthesis, Analysis, Evaluation, and 
Optimization. 

As might be expected, we have a somewhat greater 
emphasis on Process Synthesis (generation of process 
flowsheet alternatives by identifying tasks required to 
achieve objectives, phenomena to be exploited to ac-
complish these tasks, equipment and utilities required to 
implement these tasks, and interconnections among 
those equipment) than most process design courses or 
textbooks. We describe three basic approaches to Pro-
cess Synthesis: Evolutionary Modification (alteration of 

existing flowsheets), Superstructure Optimization 
(simultaneous selection of equipment, equipment inter-
connections, and operating conditions with a purported 
optimizing simulator), and Systematic Generation 
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(hierarchical specification of property difference resolv-
ing tasks be-tween raw materials and desired products). 
We make a specific distinction between the Tasks that 
must be completed in a process and the Equipment in 
which these tasks will be accomplished. We teach both 
goal-oriented and constraint-oriented (largely the result 
of nonideal solution thermodynamics) strategies for iden-
tifying process tasks as well as patterns of intercon-
nected tasks that have previously found applicability in 
specific situations, for example for breaking homogene-
ous and heterogeneous azeotropes. Our process design 
approach is specifically task-oriented rather than equip-
ment-oriented. We further take the position that process 
designs have Primary Objectives (make the right stuff, in 
the right amount, fit for use - not too difficult; even a 
computer can do it) while at the same time optimizing as 
best as possible Secondary Objectives (economics, en-
vironmental im-pact, safety, controllability, sustainability, 
societal im-pact, etc. - the real challenge). We note that 
the relative importance of some of these secondary ob-
jectives are currently changing, and new emphasis espe-
cially on the environment is the principal challenge im-
pacting the future of chemical process design. 

Our approach to Process Analysis and Evaluation is 
fairly conventional, involving computer-simulation-as-
sisted heat and material balancing about each proposed 
task in the synthesized flowsheet, choosing operating 
parameters and finding annual utility requirements and 
costs for each task, and flows and other properties of the 
interconnecting streams among the tasks to meet the Pri-
mary Design Objectives. Then an initial assumption is 
made that each task can be implemented in a single piece 
of equipment after which that equipment is designed at 
an appropriate conceptual level of detail using (some-
times computer-assisted) methods learned throughout 
the curriculum just sufficient to estimate a preliminary ac-
quisition and installation cost. Then these equipment 
capital costs are combined with utility and other annual 
operating costs in an appropriate way to produce an eco-
nomic Figure of Merit, initially simple Total Annual Cost 
(or Levelized Cost) and later Net Present Cost better acc-
counting for variable cash flow timing and financing, de-
preciation, and income tax implications, 

At this point we turn our attention to Optimization of 
the Secondary Design Objectives. Students first start 
with Design Heuristics (published results of previous 
equipment selection and parameter optimization experi-
ence) for example, best equipment type selection in par-
ticular situations, optimum approach temperatures, oper-
ating number of stages and reflux ratios, multistage com-
pression pressure ratios, economic pipe velocities, etc. 
These will be starting points for more detailed model-
based parameter optimizations with realistic objective 
functions typically economic considering both capital and 
annual operating costs, but other objectives including 

improved safety or environmental impact minimization 
may also be appropriate. Preliminary safety studies such 
as Failure Modes and Effects Analysis are also performed 
early, especially since proposed response to identified 
critical issues may involve changes to the process struc-
ture or operating conditions. 

In addition to Design Parameter Optimizations, we 
also consider what we call Structural Parameter Optimi-
zations. These are based on consideration of some sixty 
thought-provoking ideas we have accumulated related to 
reaction path, input-output-recycle structure, heat and 
power management and thermodynamic efficiency (in-
cluding heat and power integration algorithms and pro-
cess condition adjustment to increase the opportunities 
for such integration), alteration of phase, solution, or re-
action equilibria or rate- (and size-) determining mecha-
nisms (classical process intensification), changing the or-
der of tasks and the relationship between tasks and the 
equipment used to execute them (another form of pro-
cess intensification), advantaged scale-up or scale-
down, cost reduction, and improved safety, operability, 
controllability, and maintainability. This broader consid-
eration of structural parameter optimization all involves 
synthesizing local alternatives (for example, a proposed 
heat integration, or compressor staging with intercoolers, 
or enhanced heat transfer device, or alternative solvent, 
or combined reaction and separation, etc.) with selection 
then based on capital and operating cost economic eval-
uation or other appropriate criteria. Finally, development 
of equipment layout, plot plans, and a plant-wide control 
strategy complete our process design approach. Alt-
hough not required for conceptual capital cost estimation 
and more appropriate for vendor specification, some-
times more detailed design of selected equipment such 
as shell-and-tube heat exchangers or distillation columns 
using more of the methods described in textbooks and 
handbooks is performed for the learning experience. 

WHAT IS CHANGING 
Not too long ago, after not discovering any new 

large oil or gas fields for a few decades, there was pre-
diction of "peak oil" and a time when we would run out of 
finite fossil reserves not only for fuels but also as organic 
chemical industry feedstocks exacerbated by higher 
prices as worldwide demand approached known produc-
tive capacity. While some suggested a return to coal 
(whose reserves appeared to be an order of magnitude 
greater than those of oil and gas), others advocated a 
switch to "renewable" (recently alive biological) feed-
stocks ultimately derived from continuing photosynthe-
sis. As these renewable materials, for example cellulose, 
starch, lignin, triglycerides, etc., are compositionally dif-
ferent from traditional coal, petroleum, or natural gas, it 
was thought that entirely new processes would need to 
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be developed, or entirely new products more appropriate 
to renewable raw materials would need to be developed 
to meet society's needs (especially for fuels, but other 
products as well). As these renewable raw materials were 
created by biological reactions, it was assumed that bio-
logical reactions may also be important in their trans-for-
mation to products. As a result, biochemistry was added 
to the scientific foundation in many chemical engineering 
curricula and fermentation was added to the list of unit 
operations studied. While the process design paradigm 
remained applicable essentially unchanged, the chemis-
tries and products to which it could be applied in practice 
and in the classroom were significantly expanded. 

Then, with the successful development of direc-
tional drilling, logging-while-drilling, slickwater hydraulic 
fracturing, and microseismic monitoring technologies to 
extract fossil hydrocarbons from impermeable shale for-
mations, shale resources became included within exploit-
able reserves expanding them to more than a century of 
projected demand. Peak oil never happened, and prices 
fell (and in the case of natural gas, to half its historical 
ratio compared to oil). Access to hydrocarbon feed-
stocks for both fuels and chemicals no longer appears to 
be an immediate problem. 

Carbon Dioxide Emissions 
However, continued emission of carbon dioxide to 

the atmosphere is. These emissions principally come 
from burning carbonaceous fuels for heating, power 
(electricity production), transportation, and from certain 
chemistries (notably the smelting of ores, limestone de-
composition, and the production of hydrogen). These 
emissions are measurably increasing the concentration 
of CO2 in the atmosphere which in turn is causing delete-
rious climate change. Carbon dioxide emissions, and not 
feedstock availability, is the real sustainability issue fac-
ing society in general and the processing industries in 
particular. 

If the carbon source resulting in CO2 emissions were 
biological ("renewable"), then some would consider such 
a process to be "carbon neutral" just recycling CO2 back 
to where it came, although others would argue that such 
a process should not be considered carbon neutral until 
the biological feedstock is actually regrown. 

If CO2 emissions are from a stationary source like an 
electricity-producing power plant boiler, utility steam 
boiler, furnace, fired heater, lime kiln, etc., in principle 
they could be captured, separated from other things with 
which they may be admixed, and permanently seques-
tered from the atmosphere, for example by injection into 
a suitable capped porous geological formation, dissolu-
tion in a deep saline aquifer, or reaction with an appropri-
ate alkaline geologic material such as basalt. This is not 
widely done at present, but to do so does not involve any 
new process design paradigm. 

If CO2 emissions are from a mobile source, carbon 
capture may not be practical. Either some other non-CO2-
emitting process must be used, or the emitted amount of 
CO2 must be captured from the atmosphere (true for any 
CO2-emitting process). CO2 must also be captured from 
the atmosphere if it is desired to reduce atmospheric 
concentrations from existing levels. 

Process Electrification 
Since most CO2 emissions are currently from the 

combustion of carbonaceous fuels for heat and power 
(space heating, industrial heating, electricity generation, 
and transportation), there is interest in substituting car-
bon-emissions-free electric power in as many of these 
applications as possible. Carbon-emissions-free electric-
ity does exist from nuclear, hydroelectric, wind, photo-
voltaic, and geothermal sources (and stationary fossil-
fired power plants might also be included if the resulting 
CO2 were captured and sequestered). Electricity is al-
ready widely used for space heating and also increasingly 
for short distance transportation. Until now because of 
cost, electricity is not much used for heating in the pro-
cess industries, with the exception of electric arc fur-
naces in steel production. That is about to change, and 
that will be one of the biggest factors affecting the future 
of the process industries. 

Hydrogen 
Hydrogen is a major chemical mostly used for desul-

furization in petroleum refineries and for ammonia and 
methanol production. It is now also being considered as 
a carbon-emissions-free fuel for all sorts of heating ap-
plications in furnaces, for power production, and for 
transportation. Currently, hydrogen is usually made from 
high temperature endothermic steam reforming of a car-
bonaceous feedstock (methane, light naphtha, coal, etc.) 
resulting in significant CO2 coproduction. Although not 
yet much practiced, this CO2 could be captured and se-
questered ("blue hydrogen"), or hydrogen could be made 
by water electrolysis with carbon-emissions-free elec-
tricity using a number of different electrolyzer technolo-
gies ("green hydrogen"). 

Direct Air Capture 
If to offset CO2 emissions to the atmosphere an 

equal amount of CO2 is removed from the atmosphere 
(Direct Air Capture), then how should this CO2 be cap-
tured, and what should be done with this captured at-
mospheric CO2? Both biological (agricultural, silvicultural, 
aquicultural, etc.) and technical (absorption, adsorption, 
etc.) carbon capture processes are possible. Then after 
capture, this CO2 could be sequestered or it could be 
converted into the very products that resulted in CO2 
emissions to the atmosphere, although this latter choice 
would generally involve chemical reduction, likely with 
carbon-emissions-free hydrogen (a new demand for 
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hydrogen). 

THE FUTURE OF PROCESS DESIGN 
What does all this likely mean for the future of pro-

cess design? 
First, many new processes, using new chemistries, 

and involving new raw materials (possibly biological 
where that may make sense) will be developed. But not 
necessarily any new theory of process design. 

Second, energy will become more expensive (be-
cause of carbon capture and sequestration or CO2 emis-
sions avoidance). That may lead to even more consider-
ation of energy-saving structural optimizations involving 
heat integration and process intensification. Even so, it is 
not necessarily certain that there will be a fundamental 
shift in the ratio of operating costs to capital costs, since 
historically as process energy costs have risen (for what-
ever reasons), so too soon thereafter have process cap-
ital costs (because energy is the major economic input in 
producing the material for process equipment). 

Third, carbon-free electricity will replace fossil fuel 
combustion for space heating and short distance trans-
portation throughout society. This will approximately 
double total electricity demand requiring a corresponding 
increase in total electrical generation and distribution ca-
pacity (with any fossil-fired capacity either retired or ret-
rofitted with carbon capture and sequestration). 

Fourth, the process industries will become electri-
fied for heat as they already have increasingly become 
for work. Electric heating will be implemented in numer-
ous ways including resistive heating, inductive heating, 
dielectric (microwave) heating, plasma heating, arc heat-
ing, etc. Much of this detail will be new to chemical pro-
cess and equipment designers. Electricity may be used 
to boil steam (so that chemical processes heated by 
steam condensation remain unchanged), or to directly 
heat equipment (perhaps more precisely) including re-
placement of fired heaters and furnaces for temperatures 
greater than steam. 

Fifth, chemical processes are unique in that many 
kinds of operations like distillation and absorption both 
require heat at higher temperature and reject nearly the 
same quantity of heat at lower temperature. These situ-
ations may be appropriate for electricity-powered heat 
pumps moving heat from the lower temperature source 
to the higher temperature requirement (generally more 
efficient than straight electrical heat itself) which hereto-
fore have been practically limited to the distillation of 
close-boiling mixtures but whose applicability may be 
much expanded given CO2 emission elimination consid-
erations. 

Sixth, hydrogen will be more in demand both as a 
chemical reducing agent and as a carbon-emissions-free 
fuel for both mobile and stationary applications. It re-
mains to be seen whether that hydrogen is best 

produced by carbon-free electrolysis or carbon-free 
electrically-powered carbon-captured fossil reforming. 

Seventh, powerful oxidants oxygen and chlorine are 
already produced by electrically powered air separation 
and chloride electrooxidation. Reductant hydrogen will 
either be made by water electrolysis or electrically pow-
ered fossil reformation (with carbon capture). Given 
these reagents, it is not yet clear if chemical electrosyn-
thesis will find other major advantaged applications. 

While process design theory may not change, the 
future overarching emphasis on carbon dioxide emis-
sions elimination, atmospheric CO2 concentration reduc-
tion, and process electrification will have a significant im-
pact on Structural Optimization objectives in addition to 
traditional economics, safety, waste minimization, and 
controllability. This inevitably will result in new and differ-
ent process flowsheets, product costs different from cur-
rent experience, and many new problems and case stud-
ies for undergraduate design courses. However, our stu-
dents will be prepared and will be up to the challenge. 
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Chemical Process Industries must navigate a series 
of changes in their operations to comply with increasing 
sustainability targets. These changes may involve the 
use of electricity-based operations, the implementation 
of carbon capture strategies, and the use of biomass or 
end-of-life carbon-containing waste as feedstocks. De-
carbonizing oil refineries is particularly challenging as 
they possess highly valuable infrastructure. Discarding 
this infrastructure before the end of its life to build en-
tirely new electric and biomass-based operations does 
not seem to be an economical or even a sustainable so-
lution. This presentation will cover recent work in my 
group related to the decarbonization of oil refineries, fo-
cusing on proposing solutions that could be integrated 
with existing plants.  

In the first part of the talk, we will present a deci-
sion-making tool to assist chemical industries in their 
transition to decarbonization. The proposed tool consid-
ers a given process flowsheet, representing current op-
erations in the refinery, a list of decarbonization initia-
tives based on the electrification of steam and hydrogen 
production, and carbon capture initiatives, along with 
costs, expenditure limits, and carbon emission reduction 
goals. Based on the available decarbonization options 
and existing plant needs, we propose a superstructure 
and model it as a multiperiod MILP. The tool returns an 
optimal technology switch strategy and the timeline for 
its implementation, where optimal means the one with the 
lowest net present cost. We will present the results of an 
oil refinery in the United States that intends to reduce its 
carbon emissions by half by 2030 and become carbon-
free by 2050. We then explore the trends across various 
scenarios of electricity costs and carbon tax levels, 
among others, to find those that will result in a more ex-
tensive adoption of electrified technologies.   

The second part of the talk discusses several works 
on the use of biomass in oil refineries. We start with a 
short overview of a project whose objective was to 

design a sustainable aviation fuel (SAF) process based on 
the hydrotreatment of oil seeds that could be adapted to 
an existing refinery infrastructure. Hydrotreatment of oil 
seeds results in hydrocarbons that produce green naph-
tha and green diesel that can be seamlessly blended with 
oil-based fuels (i.e. drop-in fuels).   

Next, we discuss a second project where we expand 
these ideas to consider other possible biomass and tech-
nologies. In this case, we assume six well-established bi-
omass to fuel technologies and identify the oil refinery 
operations that can be repurposed for biomass pro-
cessing. A retrofitting problem is formulated to find the 
optimal facility repurpose strategy that meets a given fuel 
demand. 

Finally, we explore possible synergies between the 
forest supply chain and existing fossil-based facilities to 
produce fuels from biomass residues from the first one. 
We propose a decision-making problem to define the lo-
cation and possible integration of new facilities to pro-
duce intermediates, assuming that traditional pulp-pro-
ducing and sawmill facilities, as well as refineries and bio-
refineries, are already operating. 
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EXTENDED ABSTRACT 
There is a global consensus that steps must be 

taken to mitigate the impact of anthropogenic climate 
change. The Paris Agreement on climate change has 
been ratified by 192 countries and the signatories have 
pledged to make changes to their patterns of energy and 
land use that achieve “carbon neutrality” or net-zero 
emissions of greenhouse gases (GHG) by approximately 
mid-century. In these countries, energy ministries, en-
ergy companies and utilities are evaluating alternative 
fuels and power sources that can deliver the heat and 
power required for a modern economy with reduced GHG 
emissions. While technically proven low-emissions alter-
natives exist for almost every application, most of these 
alternatives cost substantially more than the fuels or en-
ergy sources they replace. Consequently, most countries 
will use a combination of regulations, taxes and subsidies 
to distort the energy market in favor of the lower-emis-
sions alternatives.  

Achieving a net-zero GHG economy while meeting 
the energy demand and economic growth needs of the 
world’s population requires a substantial transformation 
of every industry. No human activity is strictly carbon 
neutral unless it removes sufficient carbon dioxide from 
the atmosphere to offset the emissions from all the man-
ufacturing, operation and decommissioning steps asso-
ciated with the activity. Electric power can be produced 
with relatively low GHG footprint by wind turbines, solar 
cells, hydroelectric plants, geothermal plants and nuclear 
power, enabling electrification as a decarbonization 
strategy in many applications.  

While electrification will pay a large role in reducing 
GHG emissions, there are several industrial and transpor-
tation applications that are difficult to electrify. These ap-
plications either require high temperature heat that is 
best delivered by burning a fuel, or else require rapid re-
fueling to maximize capital efficiency of vehicle utiliza-
tion. In the future, these applications will be served by a 
mixture of hydrogen, renewable fuels derived from 

biological sources, and fossil fuels whose GHG impact 
has been offset by activities such as land use changes 
that sequester an amount of carbon dioxide equivalent to 
the GHG emissions.  

The pace of the energy transition will be constrained 
by the speed at which new vehicle, power generation and 
fuel production technologies can be deployed. The tran-
sition to lower GHG emission transportation modes (bat-
tery electric vehicles and hydrogen- or electric-powered 
trucks) is constrained by both the rate of global fleet 
turnover and the rate at which the global vehicle manu-
facturing industry transitions fully to low emissions vehi-
cles. Similarly, the transition to lower GHG forms of in-
dustrial heat will be constrained both by the supply of re-
newable electric power and the availability of low-GHG 
fuels such as hydrogen.  

There are multiple implications for design practition-
ers, particularly those who are developing large capital 
projects that must remain economically viable throughout 
the energy transition period. Some recent case studies 
from industrial practice will be presented to illustrate how 
companies are responding to these challenges. 
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INTRODUCTION 

Achieving Sustainability 
Achieving sustainability in the energy sector re-

quires an economically viable path with a balanced tran-
sition that does not aggravate environmental and socio-
logical problems associated with current fossil-based 
power production.  Increasing the grid penetration of in-
termittent renewables to realize a sustainable energy fu-
ture without consideration of the balanced transition may 
result in devastating economic and societal impacts [1]. 
As we press for the minimization of renewable power cur-
tailment, current fossil-based technology struggles to 
meet demand under extreme transient and part-load 
conditions.  This results in dramatic reduction of effi-
ciency and a corresponding increase in emissions of not 
only carbon, but far more devastating pollutants. 

Without a doubt, the needs of a sustainable future 
require new technologies, not only for renewable power 
like wind and solar, but also for dispatchable power [2]. 
Ideally, technology to serve the transition would provide 
a significant increase in the efficiency of fossil fuels con-
version under transient and part-load conditions as well 
as an opportunity to use renewable fuels and integrate 
with existing wind and solar.  To meet the aggressive 
timelines for decarbonization and transition to a renewa-
ble energy sector posed by many world governments, 
these new technologies would need to be developed with 
an unprecedented haste not supported by our current 
technology development paradigm [3]. 

Integrated Energy Systems 
Integrated energy systems provide hope for high ef-

ficiency conversion of fuels to electricity, low emissions, 
load following flexibility, and low-cost carbon manage-
ment.  By integrating a variety of power generation as-
sets, developing technologies can be matched with 

mature technologies, mitigating risk and facilitating early 
adoption of novel component concepts. 

As an example, the synergies of a solid oxide fuel 
cell (SOFC) – gas turbine system through thermal inte-
gration result in efficiencies that exceed the sum of the 
individual parts.  Through optimizing the integration of 
fuel reforming in the cycle, theoretical efficiencies over 
70% low heating value (LHV) natural gas can be realized 
at SOFC fuel utilizations below 45% where the fuel cell 
represents less than half the power of the cycle [4].  
Merging developing (SOFC) and mature (gas turbine) 
technologies mitigates SOFC early adoption risk by low-
ering the fraction of power generation and associated 
costs.  Even if the SOFC does not function to its fullest 
potential, higher efficiencies and turndown capabilities 
can be realized through the thermal energy storage ca-
pacity of the SOFC materials, facilitating the transition to 
a sustainable future.  Similarly, concentrated solar power 
and thermal energy storage can be coupled to the mature 
gas turbine technology. 

Co-Design 
Although many benefits of integrated energy sys-

tems have been extolled in the literature and even in dis-
tributed scale demonstrations, system integration and 
dynamic control issues inhibit commercial adoption of 
these technologies.  In the current technology develop-
ment paradigm, integration and control issues are not of-
ten identified until the completion of a pilot scale system 
[3,5], as shown in the abbreviated technology develop-
ment timeline in Figure 1.  Failure at the pilot scale stems 
further investment and shatters all hope for commercial-
ization efforts.  As such, the bridge between numeric 
models and the hardware of a pilot plant represents the 
greatest risk in technology development and the oppor-
tunity for the greatest gain in accelerating the path to 
commercialization of new concepts. 
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Figure 1. Current paradigm of technology development  

The simultaneous co-design of system components, 
system integration, and dynamic control would be re-
quired to minimize development risks.  If a pilot plant 
could be built with some confidence of the operability 
and potential for automation, the chances for success 
would be greatly improved.  This could be best accom-
plished if component design could be changed based on 
identified needs for system integration and controls.  To 
realize effective co-design, the use of new tool would be 
required [3,6,7]. 

Cyber-Physical Systems 
When considering the design tools needed in the 

transition from numeric models to pilot-scale hardware, 
cyber-physical systems (CPS) come to the forefront as a 
method to model complex integrated energy systems.  As 
shown in Figure 2, CPS interact with a physical environ-
ment through a seamless combination of numeric models 
and hardware through a series of sensors and actuators.   
 

 
Figure 2. Interaction between physical environment and 
real-time numerical models in cyber-physical systems 

Simulations using cyber-physical models are distin-
guished from hardware-in-the-loop simulations (HILS) 
that couple a physical component to a virtual environ-
ment for testing.  Although commercial digital twin (Twin) 
products also couple numeric models to hardware, CPS 
requires the models to converge within the sampling fre-
quency of the dynamic controller. In power systems, 
Twins generally require convergence within the optimi-
zation time of a supervisory controller, or about 5 to 15 
minutes.  The CPS facility at NETL requires convergence 
in 5 milliseconds. Concepts of HILS, Twin and CPS are 
compared in Figure 3. 

 

 

Figure 3. Illustration of the concepts of hardware-in-the-
loop, digital twins, and cyber-physical system 

Changing the Paradigm 
To minimize the highest risk or “valley of death” in 

the technology development, the current paradigm must 
be modified to accommodate co-design by including a 
feedback loop in the highest risk part of the design pro-
cess [3,5].  As shown in Figure 4, if CPS techniques could 
be employed before investment in a full pilot scale power 
system, opportunities to modify materials and bench 
scale systems would be available to maximize success at 
the pilot scale. 

 

 

Figure 4. De-risk technology development through 
cyber-physical systems 

The new design paradigm for integrated energy 
systems of the future must include pathways that make 
use of dynamic models, hardware-in-the-loop simulation, 
digital twins, cyber-physical models, and ultimately, 
cyber-physical systems to support intelligent power gen-
eration.  As shown in Figure 4, filling the “valley of death” 
with a continuum of simulation methods between nu-
meric models and hardware models can provide an op-
portunity to achieve commercialization of new energy 
system technologies within the time scale needed to re-
alize economically viable energy transitions on an inter-
national scale. 

ACKNOWLEDGEMENTS 
This work was done with support and funding from 

the Advanced Sensors, Controls, and Novel Concept Pro-
gram and the Solid Oxide Fuel Cell Research Program, Of-
fice of Fossil Energy and Carbon Management, U.S. De-
partment of Energy.  



 

Tucker et al. / LAPSE:2024.1643 Syst Control Trans 3:1006-1008 (2024) 1008 

DISCLAIMER 
This project was funded by the United States De-

partment of Energy, National Energy Technology Labor-
atory, in part, through a site support contract. Neither the 
United States Government nor any agency thereof, nor 
any of their employees, nor the support contractor, nor 
any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned 
rights.  Reference herein to any specific commercial 
product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily consti-
tute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency 
thereof. The views and opinions of authors expressed 
herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

REFERENCES 
1. Moore, F. C. et al. Determinants of emissions 

pathways in the coupled climate–social system. 
Nature 603, 103–111 (2022). 

2. McDonell, V. et al. Hydrogen Based Energy Storage 
System for Integration with Dispatchable Power 
Generator (Phase I Feasibility Study). 
https://www.osti.gov/biblio/1874681 (2022). 

3. Tekaat, J. L. et al. The Paradigm of Design Thinking 
and Systems Engineering in the Design of Cyber-
Physical Systems: A Systematic Literature Review. 
2021 IEEE International Symposium on Systems 
Engineering (ISSE), Vienna, Austria, pp. 1-8, doi: 
10.1109/ISSE51541.2021.9582548 (2021). 

4.  Chen, H. et al. High efficiencies with low fuel 
utilization and thermally integrated fuel reforming in 
a hybrid solid oxide fuel cell gas turbine system. 
Appl. Energy 272, 115160 (2020). 

5.  Garcia-Sanz, M. Control Co-Design: An engineering 
game changer. Adv Control Appl.; 1:e18. 
https://doi.org/10.1002/adc2.18 (2019). 

6. Ruchkin, I. Integration Beyond Components and 
Models: Research Challenges and Directions. In 
Proceedings of the 3th Architecture Centric Virtual 
Integration Workshop (ACVI) (in conjunction with 
WICSA/CompArch). Venice, Italy (2016). 

7.  M. Torngren, D. et al. Tool supporting the co-design 
of control systems and their real-time 
implementation: Current status and future directions. 
2006 IEEE Conference on Computer Aided Control 
System Design, 2006 IEEE International Conference 
on Control Applications, 2006 IEEE International 
Symposium on Intelligent Control, Munich, Germany, 
2006, pp. 1173-1180, doi: 10.1109/CACSD-CCA-
ISIC.2006.4776809 (2006). 

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 
 



Extended Abstract 
Foundations of Computer Aided Process Design (FOCAPD 2024) 

Breckenridge, Colorado, USA. July 14-18, 2024 
Not Peer Reviewed 

https://doi.org/10.69997/sct.181858    Syst Control Trans 3:1009-1010 (2024) 1009 

Design Education Across the Curriculum for the Future of 
Design 
Ashlee N. Ford Versypt* 
University at Buffalo, The State University of New York, Department of Chemical and Biological Engineering, Buffalo, NY, USA 
* Corresponding Author: ashleefv@buffalo.edu

Keywords: Education, Modelling and Simulations

EXTENDED ABSTRACT 
The future of computer-aided process design 

hinges on continued recruitment, training, and retention 
of the next generations of engineers. Many elementary 
and secondary school programs focused on engineering 
have made substantial impacts in informing children 
about careers in science, technology, engineering, and 
mathematics (STEM). A report by the National Academies 
established three general principles for pre-college engi-
neering education, the first of which is that elementary 
and secondary engineering education should emphasize 
engineering design1. Curricula focused on teaching the 
engineering design process have been developed for K-
12 students and educators2,3. These materials often em-
phasize engineering design as an engaging process with 
iterative prototype testing and a supportive process 
where learning from failure is encouraged in a positive 
way. However, these engineering design process con-
cepts have not necessarily been communicated to uni-
versity-level engineering faculty (in contrast to the scien-
tific method). This is a problem when college students 
only see design as a high-stakes, time-intensive senior 
capstone project or as highly specialized content siloed 
in upper-division courses with design explicitly in the 
name such as Plant Design, Process Design, or Product 
Design. 

Despite upward trends for exposure to engineering 
design in pre-college settings and for students majoring 
in engineering more broadly, particularly computer sci-
ence, a concerning trend is the decline in chemical engi-
neering enrollments4. Computer-aided process design 
presents the opportunity to integrate design into engi-
neering education at the pre-college and undergraduate 
levels while also leveraging strong interests in computa-
tional sciences and data-oriented careers. This presen-
tation will focus on surveying several design project ac-
tivities from the author and others5-9 aimed at high 

school and early college students to teach chemical en-
gineering principles and attract them to and retain them 
in chemical engineering. Recommendations for integrat-
ing design across the curriculum through hands-on and 
computational activities will be also discussed to support 
the future of computer-aided process design.  
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